
The Linux Kernel on iSeries

Dave Boutcher
IBM

Rochester, Minnesota
boutcher@us.ibm.com, http://www.ibm.com/iSeries/linux

Abstract

Between May 2000 and May 2001 PowerPC Linux
was enabled to run on the IBM iSeries system.
While the title of this talk could be “YALP” (Yet
Another Linux Port) there are some interesting
technical aspects to this port that make it worth
discussing.

1 Introduction

The iSeries port was accomplished by a small group
of programmers working at IBM in Rochester Min-
nesota. The port was made easier because of the
extensive experience of working with the lowest lev-
els of the PowerPC processor to deliver and optimize
the OS/400 operating system.

This paper describes some of the implementation
details of enabling Linux to run on the iSeries plat-
form beside the OS/400 operating system. For ad-
ditional details, see the code.

Specifically, the fact that the entire kernel always
runs relocatable (i.e. with address translation oc-
curring through a page table), and the fact that
many I/O events are not delivered as interrupts, but
rather as “event” on a queue are interesting twists
on the existing PPC implementation.

Part I

iSeries Background

2 What is an iSeries?

The IBM iSeries system was known as “AS/400” un-
til earlier this year. It is 100% a business computer.
People buy it to run their stores, their payroll, their
warehouses, their trucks.

Despite the plebeian tasks to which it is put, how-
ever, the technology has remained very advanced.
One of the interesting things about the system is
that it ranges from single processor systems (cost-
ing under $20,000 US) to the largest system with
24 680MHz PowerPC processors, 128 GB of mem-
ory and 18.5 TB of disk space (costing way too much
to be worth mentioning here.)

The processor is identical to the IBM pSeries (aka
the RS/6000) but the I/O structure is significantly
different. In order to support features like 2000 disk
units, I/O is off loaded to separate I/O Processor
(IOP) cards, which in turn drive the I/O adapters.

The iSeries operating system is OS/400, and it has
a few unique features:

• Single level store

– Pointers are 128 bits long

– All storage (including disk) is addressed
as memory using these pointers

– All processes share a single flat memory
space

• Built in relational database

– Built into the kernel

– Used heavily by the operating system it-
self

• Ability to run Windows on a card plugged into
the system

Additionally it has features such as

• A built-in JavaTM Virtual Machine

• Ability to run the Apache web server

• Ability to run AIX binaries

• Ability to logically partition the physical sys-
tem up to 32 partitions.

A discussion of how a single address space can be
shared in a secure fashion between multiple concur-
rent processes is fascinating, but beyond the scope
of this paper. Suffice it to say that the architecture
mandates the following:

• A hidden 65th bit (called a “tag”) is associated
with every quad-word (64-bit) in memory.

• The processor can be set such that a pointer is
only valid if it has the tag bit on.

• Turning the tag bit on is a privileged instruc-
tion (i.e. only valid in the kernel.)

Consequently only the kernel can create pointers.
See [Soltis] for additional information.

Similar with most other operating systems on the
planet, OS/400 has both “user” state and “system”
state, where user state code requests system state
functions using the sc (System Call) processor in-
struction.

The PowerPC architecture allows both 32 bit and
64-bit processors. OS/400 has been a 64-bit sys-
tem since 1995 and all iSeries systems ship with
64-bit PowerPC processors. 64-bit PowerPC pro-
cessors also support running in 32 bit mode. While
the PowerPC processor supports both little endian
and big endian modes, OS/400 always runs in big
endian.

The current iSeries processor is the “SStar” pro-
cessor. Table 1 shows some of the features of this
processor.

Two-way multithreaded
128KB on-chip L1 Instruction cache

128KB on-chip L1 Data Cache
On-chip L2 cache directory supporting up to

16MB of off-chip L2 cache
512-entry translation lookaside buffer

Four-way superscalar
Five-stage pipeline

32-byte-wide on-chip buses
500 - 680 MHz operating frequencies

Table 1: SStar Processor Features in iSeries ma-
chines

3 iSeries Logical Partitioning

The Logical Partitioning (LPAR) facility permits
processors, portions of real storage, and I/O devices
to be assigned to partitions. It is extremely impor-
tant that a program executing in one partition not
be able to interfere with any program executing in
a different partition. This isolation is provided for
both user and system state programs by using a
layer of trusted software, called the hypervisor.

The iSeries system can be partitioned into as many
as 32 logical partitions. While I/O devices are al-
ways owned by a single partition, processors and
memory are shared by partitions. A partition can
be assigned from 0.1 of a processor to 23.9 of a pro-
cessor (assuming that some other partition is using
the remaining 0.1) in increments of 0.01. The hy-
pervisor provides pre-emptive timeslicing between
partitions sharing a processor. If a partition is allo-
cated 0.45 of a processor, the hypervisor will guar-
antee that it gets 0.45 of a processor, no more and
no less, even if the remainder of the processor is
unused.

Processors, memory and I/O devices can be added
and removed from OS/400 partitions without re-
quiring a re-IPL. This allows some interesting sce-
narios where, for example, a single system can be
split into three partitions to support three different
geographic areas. Each partition may be running
using a different timezone and language. On a 24

hour clock cycle, processor and memory resources
can be scheduled to be moved to the partition with
the most activity.

The PowerPC architecture supports extensions to
the standard and the IBM PowerPC processors used
in the i and p series systems contain a number of
extensions. In addition to support for the iSeries
single level store memory model, the processor in-
cludes specific support for logically partitioning the
system.

Specifically, a “Hypervisor” (HV) bit was defined in
the Machine Status Register (MSR). This bit, along
with the Problem State (PR) bit controls whether
the processor is in hypervisor state.

LPAR provides an environment in which only the
hypervisor can run with address translation dis-
abled, and all interrupts except the System Call
Vectored Interrupt invoke the hypervisor. It also
ensures that manipulation of the Translation Look-
aside Buffer can only be done from the hypervisor.
This is key to guaranteeing partition isolation.

Hypervisor

OS/400
V5R1

Primary

OS/400
V4R5

Linux
PPC32

Linux
PPC64

CPU
0

CPU
1

CPU
2

CPU
3

0.25
CPU

0.75
CPU

2.0
CPU

1.0
CPU

Figure 1: iSeries Partitioned System

4 Hardware Multi-Threading

In a hardware multithreaded processor (HMT), the
processor holds the state of several tasks/threads.
When one thread would normally be stalled because
of a cache miss, instructions from the other threads
can utilize the processor’s resources. Current iSeries
processor contain HMT support.

Measurements of commercial workloads, as opposed
to the kind of tight processor loops found in many

scientific calculations, have demonstrated up to a
30% performance improvement from HMT.

To the operating system, the processor “appears” as
multiple processors. In general, all thread switch-
ing on an HMT processor is done by the hardware
without intervention by the operating system. In
some cases, however, intelligent hints to the proces-
sor can have dramatic impacts on the behavior of
the system. The spin-lock code and the idle loop
are instances where it is appropriate to hint to the
processor that a thread should not work too hard,
even without cache misses.

The typical no-op instruction in the PPC instruc-
tion set is or 0,0,0 (or GPR01 with GPR0, stor-
ing the result in GPR0.) In what can be de-
scribed either as an incredible hack or a very elegant
side effect, the instructions or 1,1,1 , or 2,2,2 ,

or 3,3,3 (which functionally act as no-ops) indi-
cate to the HMT hardware that this thread should
be given low, medium, or high priority related to
other HMT threads.

See [Borkenhagen] for an excellent technical article
on hardware multithreading in the PowerPC pro-
cessor.

5 Linux in a Logical Partition

The decision was made to implement iSeries Linux
only in a Logical Partition. If someone wants to
run Linux on a nice, black, IBM PowerPC system,
the pSeries2 is available. Since all iSeries systems
come with the deep (and proprietary) IOP based
I/O structure, significant I/O rework would be re-
quired to support Linux on the cold hardware.

The initial port of Linux to the iSeries was based on
the existing 32 bit PPC kernel as the 64-bit PPC
kernel was not yet available. Since the existing PPC
Linux implementations are big endian, this fits well
with the existing interfaces to the hypervisor and
the remainder of the system.

1General Purpose Register 0
2aka RS/6000

Part II

Linux Kernel
Changes

6 Existing PPC Implementation

The iSeries kernel port began with the existing 32
bit Linux PPC architecture. The goal was to keep
the iSeries support being a sub-architecture of PPC,
as opposed to creating a new architecture. Addi-
tionally, the changes will be merged into the 64-bit
PPC architecture as it is developed. Since PPC al-
ready has a few different sub-architectures, this is
a natural extension. The new processor type screen
on the PPC menuconfig is now shown in Table 2.

An even more important (and obvious) goal was
that all PPC programs outside the kernel should
run unchanged on the iSeries system. At the time
of writing it is possible to take the existing SuSE 7.1
PPC CDs and, by using an updated kernel, install
and run all the software. Other than software which
is very hardware specific (e.g. there are no sound
cards supported on the iSeries) we have not cur-
rently encountered any software that doesn’t work.

Since the majority of the processors that support
Linux on the iSeries have HMT capability, it is ex-
pected that kernels used on the iSeries will be built
with SMP. Table 3 shows the /proc/cpuinfo file on
a single processor partition with HMT enabled.

7 Being Well Behaved

Linux running in an iSeries logical partition is re-
stricted by the processor state from direct control
of many hardware functions. As mentioned earlier,
it is imperative that an operating system running in
a logical partition not, either accidentally or mali-
ciously, be able to affect another partition. A con-
sequence of this is that many operations, such as
setting up the Hardware Page Table, that are per-
formed directly in the other flavours of the PPC ar-
chitecture are performed by calling the hypervisor
in the iSeries implementation.

processor : 0

cpu : I-star

clock : 500.04Mhz

time base : 500.04MHz

i-cache : 128

d-cache : 128

revision : 0.1

bogomips : 470.72

processor : 1

cpu : I-star

clock : 500.04Mhz

time base : 500.04MHz

i-cache : 128

d-cache : 128

revision : 0.1

bogomips : 470.72

total bogomips : 940.94

machine : iSeries Logical Partition

Table 3: iSeries /proc/cpuinfo with HMT

The hypervisor requires that a partition demon-
strate “aliveness” by either making hypervisor calls,
or responding to interrupts (which goes through the
hypervisor.) A partition that does not demonstrate
aliveness for 500ms will be terminated by the hy-
pervisor. During development there were a few sce-
narios where the Linux kernel would have interrupts
disabled for too long and be terminated by the hy-
pervisor. Since the hypervisor preserves the regis-
ters at the time the partition is terminated, 3 it
turned out to be an excellent debugging mechanism
for problems that otherwise would have been very
hard to isolate (hanging with interrupts disabled.)
The mechanism whereby the hypervisor determines
partition aliveness is termed the “heartbeat” mech-
anism. The hypervisor concludes the partition is
dead if it does not detect heartbeats.

When the hypervisor preempts a shared processor
running with HMT there are some interesting dead-
locks. One scenario that was encountered involved
two processors competing for a spinlock with inter-
rupts disabled. The first processor got the spinlock
and invoked a hypervisor call. Since the processor

3Interesting note: how do you terminate a processor that
is running with interrupts disabled? The hypervisor inval-
idates the hardware page table for the partition causing a
Data Storage Interrupt (DSI) which will be vectored through
the hypervisor code.

+-------------------------- Processor Type --------------------------+

| Use the arrow keys to navigate this window or press the hotkey of |

| the item you wish to select followed by the <SPACE BAR>. Press |

| <?> for additional information about this option. |

| +--+ |

| | () 6xx/7xx/7400/8260 | |

| | () 4xx | |

| | () POWER3 | |

| | () POWER4 | |

| | () 8xx | |

| | (X) ISERIES_LPAR | |

| +--+ |

+--+

| <Select> < Help > |

+--+

Table 2: menuconfig Processor Types

had reached the end of it’s timeslice, the hypervisor
attempted to interrupt the second thread. Unfortu-
nately the second thread was waiting on the spinlock
with interrupts disabled. Eventually the hypervisor
concluded that the second thread was dead and ter-
minated the machine. The fix for this scenario was
“soft disabling” interrupts (see below.)

8 What Changed

There are a number of PPC files specific to the var-
ious architectures. One of the main files handles
entry to the kernel via exceptions, system calls, etc.
This is an assembler file named “head.S” (or some
variation on that. A fragment of the Makefile in
arch/ppc/kernel is shown in Table 4.

Table 5 shows a mapping of some other files which
are common in the other PPC flavours but have
specific iSeries versions.

9 Control Blocks

In order to set up a well managed interface between
the hypervisor and the operating system in the log-
ical partition, an architected set of control blocks
is built into the kernel. Some of the information in
these blocks is examined by the hypervisor before

ifeq (\$(CONFIG_4xx),y)

KHEAD := head_4xx.o

else

ifeq (\$(CONFIG_8xx),y)

KHEAD := head_8xx.o

else

ifeq (\$(CONFIG_PPC_ISERIES), y)

KHEAD := iSeries_head.o

else

KHEAD := head.o

endif

endif

endif

Table 4: head.S configuration

setup.c -> iSeries_setup.c
hashtable.c -> iSeries_hashtable.c
dma.c -> iSeries_dma.c

Table 5: iSeries files

doing any initialization of the logical partition, and
certainly before the kernel begins execution. For
example, one of the blocks indicates how the initial
load area should be mapped in memory (remember
that the kernel always executes with address trans-
lation active) and how many pages to map.

The root of all control blocks is the “HvRelease-
Data” block. The hypervisor looks for an offset to
that block at offset 0x20 in the kernel. The format
of the HvReleaseData block as architected, includes
flags indicating whether this OS supports:

- Tags active or Tags Inactive
- 32 or 64-bit addressing
- Processor sharing
- HMT
- Minimum supported Hypervisor version

There are two other significant architected control
blocks that are used to exchange information be-
tween Linux and the hypervisor. There is one
“NACA” (Node Architected Control Area) 4 for the
partition, that contains information such as the logi-
cal partition number for this partition. Additionally
it contains the interrupt vector with the addresses
of the routines that the hypervisor will invoke for
various types of exceptions.

There is one control block for each processor in the
partition called the “PACA” (Processor Architected
Control Area). The biggest use of this data struc-
ture is as a save location during interrupt process-
ing. Special purpose register 1 (SPRG1) of each
processor always points to the virtual address of
the PACA associated with that processor. Upon an
interrupt, the value stored in SPRG1 is read, con-
verted to a real address, and then used as a base
pointer to the PACA where a small amount of pro-
cessor state is stored while relocation remains dis-
abled and a kernel stack is not yet available. Ad-
ditionally there are indicators for whether deferred
interrupts have occurred (the hypervisor may defer
interrupts that occur while the hypervisor itself is
running.)

The NACA and PACAs are anchored (via a couple
of levels of indirection) off the HvReleaseData block.

4The terms NACA and PACA come from the internal de-
sign of OS/400, and do not exist in the 32 bit PPC code
other than the iSeries sections. They are, however, working
their way into the 64-bit version because there is a need for
a system wide control block, and processor specific control
blocks and there didn’t seem like a good reason to change
the names

Other than locating and initializing these blocks,
they do not drive significant changes into the PPC
code.

9.1 Memory Management

In an iSeries partition, the operating system has no
direct access to the hardware page table. The iS-
eries hypervisor manages the hardware page table,
and is directed by the operating system in the par-
tition. The hypervisor establishes addressibility for
the first 64 MB of memory at 0xC0000000 by build-
ing a hashed page table and setting segment register
12.

The partition memory is not physically contiguous,
nor necessarily addressable with a 32-bit real ad-
dress. Obviously in a system with 32 partitions each
allocated a gigabyte or more of memory, many ad-
dresses are high. Also, because of the way mem-
ory is allocated to partitions, and because of the
fact that OS/400 partitions support dynamic addi-
tion and removal of memory, there are no guarantees
about memory continuity.

The hypervisor provides functions which the kernel
can use to discover the layout of memory. The iS-
eries LPAR specific code in the kernel builds a table
that maps contiguous pseudo-real addresses start-
ing at zero to the actual physical addresses owned
by this partition. In 32-bit mode it is restricted to
no more than 768 MB currently.

The iSeries system may have very large memories
(up to 128 GB) and a partition may get memory
in “chunks” that may be anywhere in the 252 real
address space. The chunks are 256K in size. To map
this to the memory model Linux expects, the iSeries
specific code builds a translation table to translate
what Linux thinks are “physical” addresses to the
actual real addresses. This allows it appear to Linux
that there is contiguous memory starting at physical
address zero while in fact this could be far from the
truth.

To avoid confusion, let the words physical and real
address apply to the Linux addresses while the term
“absolute address” refers to the actual hardware real
address.

iSeries setup contains a routine which gets infor-
mation from the Hypervisor to determine the ab-

solute addresses of the memory that has been as-
signed to the partition. It builds a table used to
translate Linux’s physical addresses to these abso-
lute addresses. Absolute addresses are needed when
communicating with the hypervisor (e.g. to build
HPT entries). This table is called the mschunks ta-
ble.

The bulk of the Linux PPC code then deals in
“physical” addresses, and only the actual HPT map-
ping code does the translation to absolute addresses.

The load area is mapped at physical address 0, and
the memory mapped by the hypervisor before the
kernel is first invoked is mapped sequentially after
that.

Since the PowerPC hardware page table cannot (in
general) contain all required address translations,
sometimes entries must be cast out to make room
for new entries. The requirement to handle page
faults with relocation on further requires that some
entries (those required to handle page faults them-
selves) never be cast out. These special hardware
page table entries are known as “bolted” entries.

1. Fault handler code. This code is identified ei-
ther by its physical address (the first four pages
of physical memory), or through use of the com-
piler directive bolted.

2. Task structure and kernel stacks (one exists for
each process)

3. Linux page tables (one exists for each process)

4. msChunks array. This data structure is used
to convert Linux logical addresses to hardware
physical addresses when building HPT entries.

5. NACA

6. PACA array. This object must be bolted be-
cause it might be used to store some data dur-
ing the interrupt processing.

All of the above, except the kernel stacks and Linux
page tables, are fixed at boot time and are bolted
using their kernel (0xC000. . .) addresses.

See Table 6 for a boot log showing some of the mem-
ory mapping messages.

9.2 Interrupts

The PPC architecture has a number of special pur-
pose registers. Specifically, SRR0 and SRR1 are
named “Machine Status Save/Restore Registers”
and are set when interrupts occur. The PPC ar-
chitecture has no concept of automatically saving
things on the stack on interrupts. SRR0 normally
contains the next instruction address, and SRR1
contains the machine status. There are four spe-
cial purpose software registers (SPRG0 to SPRG3)
for use by privileged software.

When Linux interrupt handlers get control, the hy-
pervisor has already saved SRR0 and SRR1 into the
PACA control block shared between the hypervi-
sor and Linux. The values in the actual SRR0 and
SRR1 are not valid. The hypervisor reserves SPRG0
for its own use, which requires a change in the use
of the the way the SPRG registers from the rest of
the PPC architecture. The definitions are:

Register iSeries Architecture
SPRG0 reserved for hypervisor
SPRG1 addr of PACA
SPRG2 temp - used to save gpr
SPRG3 Linux thread

Table 7: Special register mapping

It is frequently possible for an interrupt to occur ei-
ther while a hypervisor system call is active, or (on
a partition sharing a processor with another oper-
ating system) while the partition does not own the
processor. In these cases the hypervisor will turn
on a bit in the PACA indicating that a deferred in-
terrupt has occurred. The kernel is responsible for
checking these bits and running the appropriate in-
terrupt vectors.

It is extremely significant to note that the only asyn-
chronous interrupts that are processed on the iSeries
are decrementer interrupts and Inter Processor In-
terrupts (IPIs.) Obviously there are lots of syn-
chronous exceptions (such as accessing an invalid
address, or floating point errors) that get vectored
through the interrupt code.

All other I/O related events are delivered as LP
Events (see Table 9.4 for a description of LP events.)

Mapping load area - physical addr = 0, absolute addr = 0000000012000000

Load area size 32768K

HPT absolute addr = 0000000026000000, size = 2048K

D-cache line size = 128 (log = 7)

I-cache line size = 128 (log = 7)

<5>mf.c: iSeries Linux LPAR Machine Facilities initialized

Total memory: 67108864 bytes

Progress: [0300] - MMU:hash init

Progress: [0105] - hash:enter

iSeries_hashinit: added 8192 hptes to existing mapping

Progress: [0205] - hash:done

Progress: [0301] - MMU:mapin

Linux version 2.4.30419UI (boutcher@TERRIER) (gcc version 2.95.2-5 19991024 (

Progress: [3eab] - setup_arch: enter

Progress: [3eab] - setup_arch: bootmem

Max logical processors = 32

Max physical processors = 16

Processor frequency = 500.04

Time base frequency = 500.04

Processor version = 360001

Table 6: iSeries boot log

9.2.1 Soft Disable

To support shared processors on iSeries LPAR and
the iSeries hypervisor heartbeat mechanism, the
kernel only “soft” disables interrupts. External in-
terrupts and decrementer interrupts remain enabled
from the hardware’s point of view even when Linux
is disabled. If Linux is soft disabled, the external
and decrementer interrupt handlers merely mark (in
the processor’s PACA) that an interrupt occurred
and then return to the interrupted code. Only when
interrupts are subsequently soft enabled, are the in-
terrupt service routines driven.

9.3 System Calls from System Calls

There is one and only one system call instruction
in the PowerPC architecture. That one instruc-
tion, however, is used to make two different tran-
sitions. User state code wanting to call the kernel
loads GPR0 with the system call function it is invok-
ing. In order to differentiate Linux (and OS/400)
system calls from hypervisor calls, all hypervisor
calls load -1 in GPR0 and store the hypervisor func-
tion in GPR3. The hypervisor will only accept sys-
tem calls from privileged state preventing user mode
code from trying to invoke hypervisor routines.

Whenever the system call instruction is executed the
hypervisor will be invoked. If GPR0 contains -1 and
the call came from privileged state, the hypervisor
considers the call targeted at itself. If GPR0 con-
tains some other value, or the call came from user
state, the call is passed to the system call code in
the Linux kernel.

9.4 Logical Partition Events

The hypervisor provides a mechanism for commu-
nicating between partitions. This mechanism is a
queue of events, known as “LP Events” anchored
off the PACA. In general, each partition has only
one queue, so the queue pointer in the first PACA
will be set and the pointer in all the other PACAs
will be NULL. This means that all LP Event pro-
cessing will be done by the first processor.

LP Events are intended to be small and fast. They
are limited to 256 bytes. There are both “acknowl-
edged” events, where the hypervisor guarantees that
an acknowledgment will be returned for every event
sent, and “unacknowledged” events that are the
equivalent of UDP spray and pray.

The LP Event queue is key to the I/O structure of

Linux on an iSeries.

For data larger than 256 bytes, DMA addresses are
sent and a DMA operation is done between par-
titions. The DMA infrastructure is used, however
under the covers the hypervisor essentially does a
memcpy.

10 Virtual Devices

Configuring an OS/400 logical partition is a com-
plex operation. OS/400 expects boot disks, console
devices, etc. all arranged in the correct IOP/IOA
structure. A goal of Linux on iSeries was to keep
the configuration extremely simple.

In order to do this, Linux on iSeries supports “Vir-
tual” I/O where the I/O devices are provided by
OS/400 and do not actually exist as hardware man-
aged by Linux. This means that the minimum con-
figuration for an iSeries partition is 64MB of mem-
ory and 1/10 of a processor. OS/400 then provides
the following virtual devices to Linux:

• Virtual console

• Virtual disk

• Virtual Ethernet

• Virtual CD

• Virtual tape

All of these virtual devices are implemented with a
Linux device driver that exchanges LP Events with
an OS/400 partition. The LPAR configuration sup-
ports identifying one partition as “hosting” another.
A hypervisor call exists so the Linux partition can
request the identity of its hosting partition. Virtual
I/O events are then sent to that partition.

Virtual Console ends up connecting to a terminal
or telnet session connected to a port on OS/400.
An interesting twist on this is that Linux initialized
the TERM environment variable to linux, which can
confuse the telnet client (which thinks it’s talking
something like VT100.) This can be worked around
by setting a kernel parameter like TERM=vt100.

The virtual disk ends up being very much like a
loopback file system file, where the disk file is man-
aged by OS/400.

Virtual tape and virtual CD allow a path to the real
tape and CD devices attached to OS/400. CD can
be shared by many users concurrently, while tape
is single-user (i.e. only OS/400 or only one Linux
partition.)

Finally, the OS/400 LPAR environment supports
up to 16 virtual ethernet segments that can be con-
nected to any combination of logical partitions. The
OS/400 display for configuring virtual ethernets is
shown in table 8.

10.0.1 DMA Space

Given the discontiguous, 64-bit nature of the iSeries
physical address space, it is necessary to map 32-
bit PCI DMA addresses to 64-bit “real” (remem-
bering the definition of “real” in an earlier section)
addresses. On PowerPC, the translation entries are
known as TCEs (Translation Control Entries). The
management of TCEs is implemented within the
pci alloc consistent, pci free consistent (and simi-
lar pci functions). The deprecated virt to bus,
virt to phy functions are not implemented in Linux
for iSeries.

The hypervisor does not allow direct access to the
TCE table, therefore hypervisor calls must be made
to add and delete TCE table entries.

For scatter/gather lists, pci map sg/pci unmap sg
allow multiple buffers to be allocated to a contiguous
range in DMA space as long as buffers fall on page
boundaries. Since most buffers used by disk I/O
are 4K blocks, which is the same as the page size,
significant numbers of pages can be collapsed into
single DMA space entries.

10.1 PCI I/O Space

MMIO address are manufactured addresses that
don’t really exists in Linux. They are mapped to
the device in the Linux iSeries I/O support. The
PCI I/O space is managed by the Hypervisor and
only devices (PCI I/O space) that are assigned to
the Linux partition are accessible. Direct memcpy
functions will not work, however the memcpy toio

Work with Virtual LAN Configuration

System: ISERIESA

Type options press Enter.

2=Change

Par -------------------Virtual LAN Identifiers-------------------

Opt ID Name 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_ 0 PRIMARY 1 1

_ 1 LINUX1 1 1

_ 2 LINUX2 1 . 1

_ 3 LINUX3 1 . 1

_ 4 LINUX4 1 . 1 1

_ 5 LINUX5 1 . . 1

’1’ Indicates LAN in use. ’.’ Indicates LAN not in use.

F3=Exit F9=Show all partitions

F11=Display communication options F12=Cancel

Table 8: iSeries Virtual LAN Configuration

and memcpy fromio functions are supported. This
allows the hypervisor to check all accesses and pro-
vide the degree of isolation required on that plat-
form. In addition, this approach allows the hyper-
visor to manage some of the error recovery when
access to certain I/O devices fails. This does result
in some performance overhead, however robustness
requirements were the top priority on this platform.
One again, it is critical that devices owned by one
partition not be visible or accessible from another
partition.

One consequence of this scheme is that the ioremap
call does not work as it does on some other archi-
tectures. ioremap maps a PCI address to virtual
memory. On the iSeries system the 32 bit PCI ad-
dresses are usable on calls such as readb(), but are
not usable directly. It is interesting to note the de-
fines in vga.h which will not work:

#define vga_readb(x) (*(x))
#define vga_writeb(x,y) (*(y) = (x))

11 PCI Device Support

In the 32 bit iSeries kernel PCI device drivers are
supported only after recompiling. This is due to

some of the changes above. Table 9 shows some of
the definitions in io.h.

Note that in the non-iSeries case the readb() etc.
interfaces resolve to inline macros, whereas on the
iSeries these are calls to routines.

The iSeries system formally supports a selected set
of PCI adapters. In the first release, IBM will
formally support a selected set of LAN and SCSI
adapters under Linux on iSeries.

Part III

Summary

12 OS400 Changes to support Linux

Surprisingly few changes were made to OS/400 to
support running in a partition. Due to the strongly
architected Hypervisor system call interfaces that
already existed, the operating system structure was
ready to support another operating system in a par-
tition.

#if defined(CONFIG_PPC_ISERIES) && defined(CONFIG_PCI)

#define readb(addr) iSeries_Readb((u32*)(addr))

#define readw(addr) iSeries_Readw((u32*)(addr))

#define readl(addr) iSeries_Readl((u32*)(addr))

#define writeb(data, addr) iSeries_Writeb(data,(u32*)(addr))

#define writew(data, addr) iSeries_Writew(data,(u32*)(addr))

#define writel(data, addr) iSeries_Writel(data,(u32*)(addr))

#else

#define readb(addr) in_8((volatile u8 *)(addr))

#define writeb(b,addr) out_8((volatile u8 *)(addr), (b))

#define readw(addr) in_le16((volatile u16 *)(addr))

#define readl(addr) in_le32((volatile u32 *)(addr))

#define writew(b,addr) out_le16((volatile u16 *)(addr),(b))

#define writel(b,addr) out_le32((volatile u32 *)(addr),(b))

#endif /* CONFIG_PPC_ISERIES && defined(CONFIG_PCI) */

Table 9: io.h

Obviously some changes were made to the system
configuration (both the internal support as well as
the user interfaces) to allow for something other
than OS/400 to run in a partition.

Additionally, support for virtual I/O was added to
OS/400.

Part IV

Status

All the changes to the kernel to support the iSeries
are working their way into the kernel. As documen-
tation typically follows function, the following web
pages may or may not have anything really interest-
ing on them yet:

http://www.ibm.com/iSeries/linux
http://www.iSeriesLinux.com/

At the time of writing this paper, the kernel patches
including the iSeries changes are at:

http://oss.software.ibm.com/
developerworks/opensource/

linux/projects/ppc/

The code should be working its way through the
general community site

http://penguinppc.org/

and fsmlabs:

http://www.fsmlabs.com/linuxppcbk.html

13 Acknowledgments

The iSeries Linux team at IBM included:
Bill Armstrong
Troy Armstrong
Dave Boutcher
Keith Cooper
Mike Corrigan
Jeff Haumont
Wayne Holm
Bob Holthorf
Brian King
Kyle Lucke
Naresh Nayar
Greg Nordstrom
John Scales
Jeff Scheel
Al Trautman

References

[Borkenhagen] J.M. Borkenhagen, R.J. Eickemeyer,
R.N. Kalla, S.R. Kunkel, A multithreaded Pow-
erPC processor for commercial servers, IBM
Journal of Research and Development, Volume
14, Number 6, November 2000 p. 885-898.

[Armstrong] Bill Armstrong, Troy Armstrong,
Naresh Nayar, Ron Peterson, Tom Sand, Jeff
Scheel, Logical Partitioning,
http://www-1.ibm.com/servers/

eserver/iseries/beyondtech/lpar.htm

[Soltis] Frank Soltis, Inside the AS/400,
Duke Press, 1997

14 Trademarks

Linux is a registered trademark of Linus Torvalds.

The following terms are trademarks or registered
trademarks of International Business Machines Cor-
poration.

AS/400
iSeries
OS/400
IBM
iSeries
pSeries
PowerPC

Java is a trademark of Sun Microsystems, Inc.

