
Proceedings of the
Linux Symposium

July 13th–16th, 2010
Ottawa, Ontario

Canada

Contents
Boosting up Embedded Linux device: experience on Linux-based Smartphone 9

Kunhoon Baik, Saena Kim, Suchang Woo and Jinhee choi

Implementing an advanced access control model on Linux 19
Kumar, Grünbacher, Banks

Consistently Codifying Your Code: Taking Software Development to the Next 33
Keith Bergelt

Developing Out-of-Tree Drivers alongside In-Kernel Drivers 35
Jesse Brandeburg

Open Source Governance: An Approach 41
Art Cannon

Database on Linux in a virtualized environments over NFS 43
Bikash Roy Choudhury

KVM for ARM 45
C. Dall and J. Nieh

UBI with Logging 57
Brijesh Singh & Rohit Vijay Dongre

Looking Inside Memory 63
Garg, Ankita, Singh, Balbir & Srinivasan, Vaidyanathan

Dynamic Binary Instrumentation Framework for CE Devices 75
A. Gerenkov, S. Grekhov, J. Jeong

Prediction of Optimal Readahead Parameter in Linux by Using Monitoring Tool 83
Ekaterina Gorelkina, Sergey Grekhov, Jaehoon Jeong

Unprivileged login daemons in Linux 91
Serge Hallyn and Jonathan T. Beard

Twin-Linux: Running independent Linux Kernels simultaneously on separate cores of a
multicore system 101
Swapnil Pimpale

VirtFS—A virtualization aware File System pass-through 109
Venkateswararao Jujjuri

Taking Linux Filesystems to the Space Age: Space Maps in Ext4 121
Saurabh Kadekodi, Shweta Jain

Mobile Simplified Security Framework 133
Dmitry Kasatkin

Automating Virtual Machine Network Profiles 147
Vivek Kashyap, Arnd Bergman, Stefan Berger, Gerhard Stenzel, Jens Osterkamp

Coverage and Profiling for Real-time tiny Kernels 153
Sital Prasad Kedia

The advantages of a Kernel Sub-Maintainer 155
Jeff Kirsher

Linux-CR: Transparent Application Checkpoint-Restart in Linux 159
Oren Laadan and Serge Hallyn

Optimizing processes on multicore for speed and latency 173
Christoph H. Lameter

Open Source issues? Avoiding the ipo(a)ds ahead.. 175
Christoph H. Lameter

Deploying Preemptible Linux in the Latest Camcorder 177
Geunsik Lim

User Space Storage System Stack Modules with File Level Control 189
S. Narayan, R. K. Mehta and J. A. Chandy

expect-lite 197
Craig Miller

Impediments to institutional adoption of Free/Open Source Software 207
Peter St. Onge

Linux kernel support to exploit phase change memory 217
Youngwoo Park

The Virtual Contiguous Memory Manager 225
Zach Pfeffer

Transactional system calls on Linux 231
Donald Porter

CPU bandwidth control for CFS 245
P. Turner, B. B. Rao, N. Rao

Page/slab cache control in a virtualized environment 255
Balbir Singh

The Benefits of More Procrastination in the Kernel 263
Geoff T Smith

Scaling Beyond 10 Gigabit Ethernet 265
Peter P. Waskiewicz Jr.

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Linux Symposium
Martin Bligh, Google
James Bottomley, Novell
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Matthew Wilson

Proceedings Committee

Robyn Bergeron

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Boosting up Embedded Linux device: experience on Linux-based
Smartphone

Kunhoon Baik
Samsung Electronics Co., Ltd.
knhoon.baik@samsung.com

Saena Kim
Samsung Electronics Co., Ltd.
saina.kim@samsung.com

Suchang Woo
Samsung Electronics Co., Ltd.
suchang.woo@samsung.com

Jinhee Choi
Samsung Electronics Co., Ltd.
jh106.choi@samsung.com

Abstract

Modern smartphones have extensive capabilities and
connectivities, comparable to those of personal com-
puters (PCs). As the number of smartphone features
increases, smartphone boot time also increases, since
all features must be initialized during the boot time.
Many fast boot techniques have focused on optimizing
the booting sequence. However, it is difficult to obtain
quick boot time (under 5 seconds) using the fast boot
techniques, and many parts of the software platform re-
quire additional optimization. An intuitive way to obtain
instant boot times, while avoiding these issues, is to boot
directly from hibernation. We apply hibernation-based
techniques to a Linux-based smartphone, and thereby
overcome two major obstacles: long loading times for
snapshot image and maintenance costs related to hard-
ware change.

We propose two mechanisms, based on hibernation, to
obtain outstanding reductions in boot time. First, min-
imize the size of snapshot image via page reclamation,
which reduces the load time of image. Snapshot is split
into two major segments: essential-snapshot-image and
supplementary-snapshot-image. The essential snapshot
image is a minimally-sized image used to run the Linux
kernel and idle screen, and the supplementary-snapshot-
image contains the remained that could be restored on
demand. Second, we add additional device information
to the essential-snapshot-image, which is used when the
the device is reactivated upon booting up. As a result,
our mechanism omits some time-consuming jobs related
to device re-initialization and software state recovery. In
addition to quick boot times, our solution is low main-
tenance. That is, while the snapshot boot[3] is imple-
mented in the bootloader, our solution utilizes the kernel

infrastructure because it is implemented in the kernel.
Therefore, there is little effort required, even when the
target hardware is changed. We prototyped our quick
boot solution using a S5PC110[17]-based smartphone.
The results of our experiments indicate that we can ob-
tain get dramatic gain in performance in a practical man-
ner using this quick boot solution.

1 Introduction

Smartphones generally require long boot times. As the
number of smartphone functions increases, the initial-
ization times required for the corresponding software
modules also increase. In addition, as smartphones are
equipped with more and more peripheral devices such
as sensors, cameras, Bluetooth and WiFi, these devices
require their own initialization times, which further in-
creases boot time.

To obtain instant boot times, "boot optimization" or
"hibernation-based boot" techniques can be used. In the
case of "boot optimization", each module must be opti-
mized and the initialization flow must be modified after
a profiling step. This can be difficult to accomplish if
there are many software modules involved, or if the ini-
tialization process is complex. However, in the case of
"hibernation-based boot" techniques, we can obtain in-
stant boot times quite easily. In this paper, we apply
hibernation-based fast boot techniques to a Linux-based
smartphone.

There remain some barriers to applying hibernation-
based boot techniques.

1. Mobile software platforms, such as Android[14],
hold about 100MB of RAM capacity, but Flash

• 9 •

10 • Boosting up Embedded Linux device: experience on Linux-based Smartphone

memory offers only poor I/O speed. If the read
performance is 20MB/s, then snapshot image alone
require loading time of about 5 seconds. There-
fore, we cannot obtain instant boot times via the
hibernation-based boot technique alone.

2. Because swsusp’s the device reactivation flow
in the standard Linux kernel was developed for
generic purposes1, it has some additional steps to
reactivate devices. The snapshot boot technique
eliminates these steps by restoring snapshot image
in the bootloader, but also requires additional im-
plementations in the bootloader.

3. If the same snapshot image is used every time the
device boots up, information inconsistency prob-
lems will occur in the file system and database.

In this paper, we introduce new methods to obtain in-
stant boot times by solving these issues. We focus
on the following two methods. The first method opti-
mizes the size of snapshot image to be less than 15MB
without compression, to reduce snapshot image loading
time. The second method improves the device reactiva-
tion flow to obtain similar performance to the snapshot
boot technique, without tinkering with the bootloader.
We also briefly discuss related issues such as informa-
tion inconsistency problems.

This paper is organized as follows. In section 2, we
summarize fast boot techniques already developed in
Embedded Linux systems, and compare them with our
approach. In section 3, we analyze smartphone boot
times and investigate points where improvements can
be made. In section 4, we introduce our approach,
which optimizes snapshot image loading times with on-
demand-paging and early device reactivation. Section
5 describes the experimental environment and provides
experimental results. Finally, in sections 6 and 7, we
suggest directions for future work and summarize the
paper.

2 Related studies

Until recently, Linux development has focused on the
desktop and server markets, in which boot time is not

1swsusp (Software Suspend) is a suspend-to-disk implementa-
tion in the 2.6 series Linux kernel. It is the Linux equivalent of
Windows hibernate functionality.

an important issue. However, boot time has become an
important feature as more and more embedded systems
are adopting Linux due to benefits such as low cost and
the ability to be utilized across a variety of hardware
platorms.

Boot time optimization techniques include profiling, re-
duction and optimizing techniques. These techniques
were well summarized by the Bootup Time Working
Group of the CE Linux Forum[5]. This section intro-
duces some of these techniques, which can be used with
our approach.

At the bootloader level, uncompressed kernel[6] or fast
kernel decompression[7] techniques can be used. In the
case of uncompressed kernel techniques, the kernel im-
age loading time is longer but decompression time is
not required. Fast kernel decompression improves ker-
nel decompression performance using fast decompress
mechanisms such as UCL[18]

At the kernel level, disable console[8], preset loops
per jiffy(LPJ)[9] and deferred initcalls[10] techniques
may be used. The disable console technique mini-
mizes kernel printk messages during boot time to re-
duce serial console accessing time. The preset LPJ
uses a constant delay value instead of the calibrate_
delay() function that is commonly used for calibrat-
ing delay time in the kernel. The deferred initcalls tech-
nique forces some initcalls to run later if they do not
need to be initialized early.

Hibernation-based techniques also reduce boot time.
Hibernation is a feature used for power management in
Linux. As a power saving mode, hibernation backs up
the running state of the system into the disk space as a
snapshot image, and powers down the system. When the
power comes back up, the system is restored to the run-
ning state based on the snapshot image. Hibernation can
be implemented by several techniques. Among these,
the most common techniques are the swsusp technique
that is included in the standard Linux kernel, and the
TuxOnIce(suspend2)[11] technique that is provided as
a patch of the kernel. The fundamentals are almost the
same in these two techniques, but TuxOnIce offers more
useful options compared to swsusp. However, the Tux-
OnIce patch requires many changes for the kernel, and
therefore also incurs additional maintenance costs ac-
cording to the kernel revision. The snapshot boot tech-
nique is a fast boot technique based on swsusp. In this
technique, every time a device boots up, the snapshot

2010 Linux Symposium • 11

Figure 1: Bootchart – normal boot sequence of the smartphone used in this study

image is loaded in the bootloader instead of the original
kernel image. Device initialization tasks are also per-
formed at the bootloader level to improve the device re-
activation flow in swsusp. However, most of the changes
in the bootloader are heavily dependent on hardware,
and for this reason, the associated maintenance costs
are increased due to required changes of hardware de-
sign. This shortcoming makes the application of snap-
shot boot techniques less practical. Even if the snapshot
boot technique is applied to a system, instant boot may
not be achieved without further optimizing the size of
the snapshot image. Recent smartphones require more
memory space than older models, because of their ex-
tensive functionalities, and for this reason optimizing
snapshot image must be considered a necessity. In a pre-
vious case study examining the use of the snapshot boot
technique for digital TV systems[4] many parts of the
software platform were modified to minimize the size
of the snapshot image. However, such an approach in-
creases maintenance costs due to the necessity of hard-
ware and software platform revisions.

3 Smartphone Boot Time

Figure 1 is a the bootchart[12] of the smartphone model
used in our experiments. More than 30 seconds of boot
time are required to initialize the user area. This indi-
cates that it will be difficult to reduce boot time to less

than 5 seconds by optimizing the boot sequence. Even
if we implement hibernation-based fast boot techniques,
we cannot achieve 5 second boot times due to the barri-
ers described in section 1.

To solve these problems, we must analyze each el-
ement of hibernation-based boot time. We calculate
hibernation-based boot time(tb) using the following for-
mula.

tb = tp + tl +∑ tr

tp includes the block device setup time for loading snap-
shot image and the cpu/clock/timer/power setup times
for minimal operation. These constitute the necessary
initialization events for booting from hibernation, and
therefore the time required for these steps cannot be re-
duced. tl is the time required to load the image from
disk to the original memory location, and tr is the time
required to restore the cpu/device to the same state as
when the snapshot image was made. These two factors
can be optimized by improving the implementation of
hibernation. tl can be calculated using the following fo-
mula.

tl =
size of snapshot image
disk read performance

+ tc

12 • Boosting up Embedded Linux device: experience on Linux-based Smartphone

Create Bitmap for snapshot

Trigger

Freeze Process

Shirink Memory

Suspend & Power down
device

Save System State

Allocate memory &
copy memory contents

Write to swap

Create Bitmap for snapshot

Trigger

Freeze Process

Full Page Reclaim

Suspend & Power down
device

Save System State
and devices’ state

Allocate memory &
copy memory contents

Write to swap

Save Processor state and registers
Save the return address

Including swapout

Save Processor state and registers,
Save the return address
Save device related state

(a) ’swsusp’ suspend (b) Our approach - suspend

Figure 2: Comparision between the swsusp suspend method and our suspend approach

tc is the time required to copy the loaded snapshot im-
age, stored in in temporal memory, to the assigned mem-
ory location. As mentioned above, as the size of snap-
shot image get bigger, tl becomes longer. When this
happens, we can simply use a compression method such
as TuxOnIce to reduce the size of the snapshot image.
However, this method requires additional decompres-
sion time which increases tc.

Another factor that influences hibernation-based boot
time is tr which is heavily dependent on the method used
to restore the device. In the case of swsusp, all periph-
erial devices are initialized and then suspended to place
them in a resumable state, meaning the same state as
when the snapshot image was made. Therefore, if the
number of peripherial devices is increased, tr and tc are
also increased because the memory required for those
device drivers is occupied. The snapshot boot technique
places peripherial devices into the resumable state and
loads snapshot image at the bootloader level. In this
way, tr is much reduced and tc is eliminated. However,
the snapshot boot technique requires additional mainte-
nance costs associated with necessary changes of hard-
ware.

In this paper, we suggest the following two mechanisms
to speed up boot times. The first is to minimize the size
of the snapshot image in order to reduce snapshot im-
age loading time (tl) which is the most influential factor
hibernation-based boot time. To implement this mech-
anism, we store snapshot image separately as essential-

snapshot-image, which will be loaded at boot time, and
supplementary-snapshot-image, which will be restored
on demand. The other mechanism is to place the pe-
ripherial devices in resumable states using information
stored in snapshot image, to reduce ∑ tr. The details of
these mechanisms are described in the next section.

4 Minimizing Boot Times: Our Approach

4.1 Overall Architecture

In this section, we analyze the suspend/resume flow
in swsusp and introduce our improved suspend/resume
flow.

As shown in Figure 2, we modify the "shrink memory"2

stage to "full page frame reclamation," which involves
minimizing the size of snapshot image by reclaiming al-
most of all of the memory required except for essential
code and data required for hibernation. At the "save sys-
tem state" stage, we save information about device re-
lated states as well as processor related states to resume
the device stage after power up.

As shown in Figure 3-(a), the swsusp resume is started
after all devices are initialized. And at the "Suspend de-
vice" stage, all of them are suspended – in other words,

2A stage in the swsusp suspend flow that ensures enough mem-
ory space is allocated to create the snapshot image in memory space.

2010 Linux Symposium • 13

Initialize Kernel core

Load Kernel

Start and prepare
Software Resume

Freeze Process

Load snapshot image

Suspend device

Restore System State

Resume device
and Thaw process

Initialize Kernel core

Load Kernel

Start and prepare
Software Resume

Freeze Process

Load snapshot image

Suspend device

Restore System State
and devices’ state

Resume devices
and Thaw process

arch/machine initcall arch/machine initcallInitcall (0~3)

subsystem, fs, rootfs,
device initcallInitcall (4~7)

Early subsystem and
early device initcall

Copy snapshot image to its original address
Restore registers and processor state

Jump to the saved return address

for all device

for all device

Initcall (0~3)

Copy snapshot image to its original address
Restore registers and processor state
Restore device related state
Jump to the saved return address

for all device

for partial device

(a) ’swsusp’ resume (b) Our approach - Kernel level resume

Bootloader

Kernel

Figure 3: Comparision between the swsusp resume approach and our resume approach(kernel level)

this stage place them into the resumable state. There-
fore, if there are more devices, or device complexity in-
creases, the time required to initialize and suspend de-
vices will be increased. On the other hand, in our ap-
proach as shown in Figure 3-(b), the device initialization
and suspend stages are removed and the "restore devices
state" is added to the "restore system state" stage. At the
"restore devices state" stage, we can place the devices
into resumable states based on information that is saved
in the snapshot image.

4.2 Full Page Reclamation

Figure 4 outlines a logical view for "full page frame
reclamation." Using the "swap out" mechanism in
Linux, all application code and data can be reclaimed
except locked memory and the caches can be dropped.
The reclaimed memory can be restored on demand us-
ing the "on demand paging" mechanism in Linux. By
taking advantage of these features, the snapshot image
can be seperated into two parts, the essential-snapshot-
image, which will be restored at boot time, and the
supplementary-snapshot-image, which will be restored
on demand while the system is running.

To implement the mechanism described above, we cre-
ate a new swap device for the supplementary-snapshot-
image and reclaim pages in the "shrink memory" stage
until the number of reclaimable pages reaches zero. We
define this mechanism as "full page frame reclamation."
As shown in Figure 4, supplementary-snapshot-image,
backed up to the file, or dropped.3 Among the remain-
ing parts, we can exclude the unnecessary parts such
as the kernel code4 using the register_nosave_
region(). As a result, the essential-snapshot-image
includes a minimal number of pages, and we can en-
ter the running state simply by restoring the essential-
snapshot-image. Other pages requested by users will be
restored on demand by the Linux memory management
mechanism.

Smartphones require many processes that must be re-
stored right after boot up, such as idle screens and
other service daemons, causing natural delays after
boot up. At the moment of boot up, many pages are
swapped in for initial running. To improve performance,
the supplementary-snapshot-image can be split up and

3Before entering hibernation, all pages in the other swap partition
must be swapped in

4Kernel code is already included in the original kernel image that
is loaded by the bootloader.

14 • Boosting up Embedded Linux device: experience on Linux-based Smartphone

Kernel Code
Kernel Data

Locked pages

Application
Code

Application
Data 1

Cache

Essential
Snapshot Image

File
(Disk)

ramzswap

Full Page Reclaim

Throw out
Non-volatail

memory space

Volatail
memory space

Except
nosave region

Unmap
& File back

Swap out

Application
Data 2

Swap out

Supplementary
Snapshot Image

Figure 4: Making a snapshot image

stored in separate swap memory areas: ramzswap[13]
and flash/disk swap. Because ramzswap is a RAM based
block device, the read performance of ramzswap is bet-
ter than other swap memory areas. If pages that must be
restored right after boot up are stored in the ramzswap
area, users only rarely perceive the latency. However,
when making the snapshot image, the ramzswap parti-
tion is included in the essential-snapshot-image because
it is a part of the kernel area. The method chosen to di-
vide the supplementary-snapshot-image is important to
improve performance after boot up. An easy method
to achieve this is to make the flash/disk swap partition
first and the ramzswap partition later. At the "full page
reclaim" stage, inactive pages are reclaimed first and ac-
tive pages are reclaimed later. Therefore, most, or all,
inactive pages are stored in the flash/disk swap partition
first, and the rest of the pages, including active pages,
are stored in the ramzswap partition.

4.3 Fast Device Reactivation

In smartphones, sleep mode, or suspension to RAM
(STR), is a necessary implementation because standby
time is much longer than actual used time. When a
smartphone goes into sleep mode, processes are frozen
and devices are suspended to save power. The waking
up process reverses the sleep process. A notable char-
acteristic of this mechanism is that the suspended de-
vice information is backed up to memory before enter-
ing sleep mode, and then restored from memory when
woken up by external stimuli.

In our approach, we store suspended device information
in the essential-snapshot-image when entering hiberna-
tion. This is different from STR because the alive and
non-alive block information for the processor are both
stored in our approach, while STR stores only non-alive
block information. When restoring from hibernation,

we place the peripherial devices into resumable state
based on the stored information instead of the initializ-
ing and suspending stages. However, some devices, in-
cluding some block subsystems and some block devices
that are used for loading snapshot image or devices that
require special initializations, should be initialized.

To implement this mechanism, three new initcall sec-
tions are added: "early subsystem initcall," "early device
initcall," and "resume initcall," as shown in Figure 3.
"Early subsystem initcall" and "early device initcall" are
required to initialize necessary devices that are used to
restore devices from hibernation or to initialize devices
that require special initialization. At the "resume init-
call" section, the kernel performs the rest of the resume
sequence in software_resume().

In fact, the "initall 4∼7" sections5 are the most time con-
suming parts of the normal booting sequence because it
includes lots of delay routines. If there are many de-
vices, or many kinds of devices, involved, then boot time
will be increased. As a result, the time required for those
sections is decreased with our mechanism.

Our mechanism operates via simple re-ordering of part
of the subsystem/device initializing sequence, so it can
continue to work in case of normal boot up, as shown in
Figure 5. This mechanism can be used when restoring
at the bootloader level, like the snapshot boot technique
with a simple modification. When restoring at the kernel
level, the technique is more generic and does not require
additional management costs. The trade-offs between
boot time and management cost can be minimized by
manipulating the features of the system. More details
about these trade-offs are discussed in section 6.

5initcall 4∼7 has "subsystem initcall," "device initcall," and
"rootfs/fs initcall."

2010 Linux Symposium • 15

core/arch initcall

Init Kernel Core

Early subsystem and
early device initcall

Check
Resume header

Initcall (4~7)

Freeze Process
Normal boot

Resume from Hibernation

Run Iinit script

Load
Essential snapshot image

Suspend device

Restore System State
and devices’ state

Resume device
and Thaw process

Run
Hibernation resume script

subsystem, fs, rootfs,
device late initcall

Initcall (0~3)

Copy snapshot image to its original address
Restore registers and processor state
Restore device related state

Figure 5: Our mechanism - booting sequence flow

4.4 Resolving Inconsistency Problems

The original purpose of hibernation is not for booting
but for restoring, and in such cases the snapshot image
is used only once. However, for hibernation-based boot-
ing, if the snapshot image is created newly at every boot-
up the life of flash memory may decrease due to frequent
I/O operation. In addition, it is difficult to produce a
snapshot image representing the state of a system right
after boot-up, and it takes a long time to do so. Situa-
tions of power failure situation must also be considered
when entering hibernation.

However, the keep-image mode6 results in inconsis-
tency problems, because the information in storage can
be changed anytime. TuxOnIce recommends following
two methods to resolve inconsistency problems. The
first is using a read-only file system. The second is to un-
mount the file system before entering hibernation and
re-mount the file system after restoration from hiberna-
tion. However, in the real world, such constraints may
be unacceptable. So, we tried the other way to resolve

6Using the same snapshot image for every boot-up is referred to
as keep-image mode in TuxOnIce.

this problem. The way is updating superblock7 and in-
odes8 in memory when restoring from hibernation, for-
bidding to modify inodes included in a snapshot image
after restoration from hibernation.

In keep-image mode, SIM9 or database information in-
consistency problems and changes of user configura-
tions must also be considered for implementations. Mo-
dem devices use external storage such as SIM card, and
information saved in a SIM card, or the SIM card itself,
can be changed anytime. Some service daemons like
alarm must be reinitialized according to configuration
changed by user. Therefore, proper synchronization is
required after boot up from hibernation.

5 Experiments

A smartphone based on Linux kernel 2.6.29 is used
for this experiment. This smartphone has a Samsung
S5PC110 CPU and a Cortex A8 processor, 512MB of
Flash memory and 384MB of DRAM. A UBI[15] and

7A structure representing the underlying filesystem
8The objects that represent the underlying files
9Subscriber Identity Module

16 • Boosting up Embedded Linux device: experience on Linux-based Smartphone

three UBIFS[16] are used as the file system, and the
LCD resolution is 400x800. The I/O performances of
the Flash memory are 20MB/s for read and 3MB/s for
write. Before the experiment, we implemented swsusp
for ARM Cortex A8 because the kernel does not support
the software suspend mechanism for ARM. The ACPI
code lines were disabled because ARM does not sup-
port ACPI.

We make the snapshot image in IDLE screen view right
after boot up, and keep it in the swap partition. Be-
fore making the snapshot image, we mark some re-
gions as nosave_region to exclude them from the snap-
shot image, such as the kernel code, a portion of the
frame buffer, the sound buffer, and the reserved region
for the camera and 3D using register_nosave_
region(). Every boot up, the same snapshot image
is loaded to measure the performance.

5.1 Full Page Reclamation

Table 1: Boot time - Full Page Reclamation
Category Time(ms)

Bootloader
initialization 597
kernel image loadinga 270
go kernel 27

kernel

Kernel core initb 214
initcall 0 ∼ 3 37
initcall 4 ∼ 7 3,749
prepare resume 12
snapshot image loadingc 741
device suspend (all) 236
copy memory to original 77
resume device and thaw process 453

Total 6,413

a Size of kernel image = about 5.5MB
b Include 100ms of calibrating delay
c Size of snapshot image = 15MB

Before applying "full page frame reclamation", the size
of snapshot image is 120MB, and loading time alone
takes about 6 seconds. After applying "full page frame
reclamation", we obtain a 15MB essential-snapshot-
image and a 50MB supplementary-snapshot-image. As
a result, we can reduce the size of the snapshot image
about 87.4%, and the loading time is dramatically re-
duced to 0.75 second. We measure the time for each
stage using a hardware (H/W) timer, and Table 1 shows
the boot time when only "full page frame reclamation"
is applied. Total boot time is 6.4 seconds, but there

is some delay required in initial operation to load the
supplementary-snapshot-image on demand. If 10MB of
ramzswap partition is applied, it will require an addi-
tional 494ms of boot time to load 10MB of ramzswap
partition, but the user will only rarely perceive the la-
tency.

5.2 Fast Device Reactivation

Table 2: Boot time - Full Page Reclamation and Fast
Device Reactivation

Category Time(ms)

Bootloader

initialization 597
kernel image loadinga 270
go kernel 27

Kernel

kernel core initb 214
initcall 0 ∼ 3 37

early subsystem initcall 59early module initcall
prepare resume 7
snapshot image loadingc 741
device suspend (partial) 35
copy memory to original 61
resume device and thaw process 492

Total 2,540

a Size of kernel image = about 5.5MB
b Include 100ms of calibrating delay
c Size of snapshot image = 15MB

According to Table 1, restoring from hibernation is
started after 4.894 seconds. The most time-consuming
task is initcall 4∼7, because the smartphone used in this
experiment includes many peripheral devices. In the
"fast device reactivation" technique, we add the "early
system init" and "early device init" sections before re-
sume. The "early system init" includes a memory tech-
nology device (MTD) and block I/O subsystem initial-
ization, and the "early device init" includes flash device
initialization. Initialization of the power management
chip is added to the "early device init." As shown in Ta-
ble 1, restoring from hibernation is started after 1.204
seconds with the "fast device reactivation" technique.
As a result, we achieve boot up within 3 seconds when
applying both "full page frame reclamation" and "fast
device reactivation". The time required for the "device
suspend" stage is reduced by about 85%. By extension,
we can compare these results with results for restoring
the bootloader level. If the snapshot image is loaded at
the bootloader level, we can skip some tasks – kernel im-
age loading (270ms), go kernel (27ms), kernel core init

2010 Linux Symposium • 17

Kernel core init (1.1s) Initialize device (3.8s) Run Init script (33.8s)

Restore from hibernation (1.4s) Update information

Bootloader init (0.6s)

Normal boot

Our approach
Kernel level

Our approach
Bootloader level

Kernel core init (1.1s)

IDLE Screen is shown

IDLE Screen is shown

Restore from hibernation (1.6s) Update information

Figure 6: Estimated boot time for each technique

(214ms), initcall 0∼3(37ms), early subsystem/module
initcall (59ms), prepare resume (7ms), device suspend
(35ms), and copy memory to original (61ms). The total
time requied for these tasks is 610ms, not including the
time for calibrating the delay (100ms), but we must add
206ms because the loading kernel image includes ker-
nel data as well as kernel code. In other words, the total
reduction from loading the snapshot image in the boot-
loader is under 0.5 second. Further details about apply-
ing our approach at the bootloader level are discussed in
the next section.

5.3 Resolving Inconsistency Problems

We add a file system recovery stage after boot from hi-
bernation to solve the file system inconsistency problem.
The file system recovery stage includes following oper-
ations: UBI re-scanning, updating UBIFS superblock in
memory, updating inodes in memory. Our current im-
plementation does not include forbidding modifications
for inodes which are included in essential-snapshot-
image yet, and it is left as our future work. As a result,
2.4 seconds10 are added after boot from hibernation to
recover the file system, but it can be improved by im-
proving the UBI re-scanning method.

To resolve the modem service inconsistency problem,
we simply stop the modem service daemon before mak-
ing the snapshot image. After boot from hibernation, we
execute the modem service daemon to synchronize with
the modem device. For other service daemons like alarm

10The UBI re-scanning operation requires 1.8 seconds for 512MB
memory and updating UBIFS superblock requires 0.6 seconds.

daemon, we publish an update notification message us-
ing inotify to force them to update their information.

5.4 Estimation

Figure 6 shows a comparision of boot times between
normal boot mechanisms and our improved mecha-
nisms. While a normal boot takes about 40 seconds,
we visualize the idle screen within 3 seconds and total
boot time does not exceed 6 seconds with our mecha-
nism. If the approach is applied at the bootloader level,
we realize an additional reduction of 0.5 seconds.

6 Discussion

To apply our mechanism at the bootloader level, some
functions must be implemented in the bootloader which
are already implemented in the kernel: snapshot image
loading, initializing some devices, and some other func-
tions. As a result, applying these mechanisms at the
bootloader level can eliminate another 0.5 seconds of
boot time. Although the bootloader level approach re-
quire additional implementation and management, the
required works are much less than the snapshot boot.
This result suggests that there is a trade-off between
boot time and management cost.

7 Conclusions and Future Work

This paper introduce two mechanisms: "full page frame
reclamation," which minimizes the sizes of snapshot im-
ages, and "fast device reactivation," which improves de-
vice reactivation flow. As a result, we designed a plat-
form independent mechanism that can be easily applied

18 • Boosting up Embedded Linux device: experience on Linux-based Smartphone

to Linux-based software platforms and eventually ob-
tained instant boot time in a Linux based smartphone.
We also considered some issues stemming from keep-
image-modes. Obviously, some obstacles still remain
to applying these mechanisms to commercial products,
such as showing splash, and some other inconsistency
problems. However, we believe that these issues may be
overcome with proper user workflow and careful verifi-
cation.

References

[1] Tim R. Bird, "Methods to Improve Bootup Time in
Linux," In Proc. of the Linux Symposium, 2004.

[2] A. Leonard Brown, Rafael J. Wysocki, "Suspend-
to-RAM in Linux," In Proc. of the Linux Sympo-
sium, 2008

[3] Hiroki Kaminaga, "Improving Linux Startup Time
Using Software Resume," In Proc. of the Linux
Symposium, 2006

[4] Heeseung Jo, Hwanju Kim, Hyun-Gul Roh, and
Joonwon Lee, "Improving the Startup Time of
Digital TV," IEEE Transactions on Consumer
Electronics, Volume 52, Issue 2, May 2009.

[5] CELF - Boot Time, http://eLinux.org/
Boot_Time

[6] Uncompress Kernel, http://elinux.org/
Uncompressed_kernel

[7] Fast Kernel Decompression, http://elinux.
org/Fast_Kernel_Decompression

[8] Disable console, http://elinux.org/
Disable_Console

[9] Preset LPJ, http://elinux.org/Preset\
_LPJ

[10] Deferred Initcalls, http://elinux.org/
Deferred_Initcalls

[11] TuxOnIce (suspend2), http://www.
tuxonice.net/

[12] Bootchart, http://www.bootchart.org/

[13] Ramzswap, http://code.google.com/p/
compcache/

[14] Android, http://www.android.com/

[15] UBI, http://www.linux-mtd.
infradead.org/doc/ubi.html

[16] UBIFS, http://www.linux-mtd.
infradead.org/doc/ubifs.html

[17] Samsung, http://www.samsung.com/
global/business/semiconductor/

[18] UCL, http://www.oberhumer.com/
opensource/ucl/

Implementing an advanced access control model on Linux

Aneesh Kumar K.V
IBM Linux Technology Center

aneesh.kumar@linux.vnet.ibm.com

Andreas Grünbacher
SUSE Labs, Novell
agruen@suse.de

Greg Banks
gnb@fmeh.org

Abstract

Traditional UNIX-like operating systems use a very
simple mechanism for determining which processes get
access to which files, which is mainly based on the file
mode permission bits. Beyond that, modern UNIX-like
operating systems also implement access control models
based on Access Control Lists (ACLs), the most com-
mon being POSIX ACLs.

The ACL model implemented by the various versions
of Windows is more powerful and complex than POSIX
ACLs, and differs in several aspects. These differ-
ences create interoperability problems on both sides; in
mixed-platform environments, this is perceived as a sig-
nificant disadvantage for the UNIX side.

To address this issue, several UNIXes including So-
laris and AIX started to support additional ACL mod-
els based on version 4 of the the Network File Sys-
tem (NFSv4) protocol specification. Apart from vendor-
specific extensions on a limited number of file systems,
Linux is lacking this support so far.

This paper discusses the rationale for and challenges in-
volved in implementing a new ACL model for Linux
which is designed to be compliant with the POSIX stan-
dard and compatible with POSIX ACLs, NFSv4 ACLs,
and Windows ACLs. The authors’ goal with this new
model is to make Linux the better UNIX in modern,
mixed-platform computing environments.

1 Introduction

File access control is concerned with determining which
activities on file system objects (files, directories) a le-
gitimate user is supposed to be permitted. It mediates
attempts to access files, and allows or denies them based
on administrative metadata attached to those files.

Linux has traditionally had a file access control model
based on the traditional UNIX file mode model stan-
dardised by POSIX [7]. This model is proven, robust
and simple. Beyond that, Linux implements the non-
standard but widely deployed POSIX ACL model suit-
able for more complex permission scenarios, all within
the bounds that the POSIX standard defines.

However, when a Linux system uses a remote filesystem
access protocol like CIFS or NFSv4 to share files with a
Microsoft Windows system, the mismatch between the
Linux and Windows access control models poses a sig-
nificant interoperability challenge. This is a very com-
mon and economically significant deployment scenario,
and other UNIX-like systems (Solaris [10] and AIX [1])
have a solution to these problems.

In this paper, we discuss the challenges involved in im-
plementing an advanced access control model on Linux
which is designed to address these problems. The new
model is based on the NFSv4 ACL model [6], with de-
sign elements from POSIX ACLs that ensure its compli-
ance with the standard POSIX file permission model.

The NFSv4 ACL model is in turn based, somewhat
more loosely, on the Windows ACL model [3]. This
means the mapping between the new model and Win-
dows ACLs, while not completely trivial, is at least pre-
dictable, understandable, and not lossy. This has the
benefit of smoothing remote file access interoperability.

Another benefit is to provide Linux system administra-
tors with an access control model for local filesystems
which is finer-grained and more flexible than the tradi-
tional POSIX model. Some system administrators might
also find the new model more familiar.

For compatibility and security, it is necessary to ensure
that applications using the traditional POSIX file mode
based security model still work when using a filesystem
which implements the new ACL model. This results in a
number of technical challenges whose solution we will
describe.

• 19 •

20 • Implementing an advanced access control model on Linux

2 File Permission Models

This section describes and compares the main file per-
mission models in use today: the standard POSIX file
permission model and the widely supported POSIX
ACLs on the UNIX side, Windows ACLs on Windows,
and NFSv4 ACLs, a hybrid between these two major
approaches.

2.1 The POSIX File Permission Model

The traditional file permission model implemented by
all UNIX-like operating systems including Linux fol-
lows the POSIX.1 standard [7]. The standard can be
thought of as a “contract” between application programs
and the operating system: POSIX.1 defines the mech-
anisms available to portable applications and specifies
how compliant operating systems will react. Applica-
tion programs can rely on the POSIX.1 behaviors; this
is of major importance to system security.

POSIX.1 distinguishes between read (r), write (w), and
execute/search (x) access. The read permission allows
to read a file and directory, the write permission allows
to write to a file and create and delete directory entries,
and the search/execute permission allows to execute a
file and access directory entries.

As explained in POSIX.1 Base Definitions, each file
system object is associated with a user ID, group ID, and
a file mode which includes three sets of file permission
bits. A process that requests access to a file system ob-
ject is classified into one of the three categories owner,
group, and other depending on its effective user ID, ef-
fective group ID, and supplementary group IDs. This
so-called file class determines which set of permissions
determine if the requested access is granted. The ac-
cess is granted if the set of permissions associated with
the file class includes the permissions needed for the re-
quested access, and otherwise denied. Figure 1 depicts
this graphically.

To give an example, assume that a process tries to open a
file for read access and the file permission bits as shown
by the ls command are rw-r-----, granting read and
write access to the owner class and read access to the
group class and no access to the other class. The access
is granted if the effective user ID of the process matches
the user ID of the file, or if the effective group ID or any
of the supplementary group IDs of the process match

the group ID of the file; in all other cases, the access is
denied.

The file permission bits are usually set so that the group
class has the same or fewer permissions than the owner
class, and the other class has the same or fewer permis-
sions than the group class. However, other values like
-w-r-----, which grants write access to the owner
class and read access to the group class, can also be
used. Because a process can only be in one file class
at any one time, these file permission bits do not allow
any process to get read and write access simultaneously.

While this model is flexible enough for a large number
of real-world scenarios, the three permissions and three
possible roles of processes can become a burden or be
too limiting. For example, when people form an ad-hoc
team which the operating system does not know about,
they will have difficulties with sharing files in this team:
the file permission model will not allow them to grant
each other access to files without granting others out-
side this group access as well. The system administrator
can help by creating a new group, but this administrative
overhead is undesirable, and the number of groups can
grow unreasonably large.

In awareness of these limitations, the POSIX.1 stan-
dard defines that the file group class may include other
implementation-defined members, and allows additional
and alternate file access control mechanisms:

• Additional file access control mechanisms may
only further restrict the access permissions defined
by the file permission bits.

• Alternate file access control mechanisms may re-
strict or extend the access permissions defined by
the file permission bits. They must be enabled ex-
plicitly on a per-file basis (which implies that no al-
ternate file access control mechanisms may be en-
abled for new files), and changing a file’s permis-
sion bits with the chmod system call must disable
them.

Many texts on the UNIX operating system describe the
POSIX.1 file permission model in more detail including
Advanced Programming in the UNIX(R) Environment
[15].

2010 Linux Symposium • 21

Figure 1: The POSIX.1 File Permission Model

2.2 POSIX.1e Access Control Lists

As we have seen in the previous section, the POSIX.1
file permission model only uses the file user ID and file
group ID to distinguish between users; there is no way to
grant permissions to additional users or groups. POSIX
Access Control Lists (ACLs)1 remove this restriction.
Each file system object is associated with a list of Ac-
cess Control Entries (ACEs), which define the permis-
sions of the file owner ID, the file group ID, additional
users and groups, and others.

In the usual POSIX ACL text form, the user:: entry
stands for the file user ID, the group:: entry stands
for the file group ID, and the other:: entry stands for
others. Further, user:<name>: entries stand for ad-
ditional users and group:<name>: entries stand for
additional groups with the specified names.

In POSIX.1 terms, POSIX ACLs are an additional file
access control method. The Working Group has also
made use of the provision that the file group class may
include other implementation-defined members by as-
signing the additional user and group entries to this
class. This raises the following questions:

1. As an additional file access control mechanism,
POSIX ACLs may only further restrict the access
permissions defined by the file permission bits.
But since the additional user and group entries are
members of the file group class, what if they grant

1POSIX.1e [8] was never ratified as a standard. The POSIX ACL
implementations found on UNIX-like operating systems are based
on drafts of the POSIX.1e Working Group.

permissions beyond the file group class permis-
sions?

The Working Group has answered this question by
defining that the file group class permissions act as
an upper bound or “mask” to the group class. An
entry in the group class may include permissions
which are not in the file group class permissions,
but only permissions which are in the entry as well
as in the file group class permissions are effective.

2. If the file group class permissions continue to de-
fine the permissions of the file group ID, how can
additional users and groups be granted more per-
missions than the file group ID, since by definition
of additional file access control mechanisms, the
file group class cannot have permissions beyond
the file group class permissions?

This question has been answered by defining that
the file group class permissions no longer define
the file group ID permissions. Instead, in POSIX
ACLs, the group:: entry stands for the file group
ID, and the new mask:: entry stands for the file
group class.2

The file group ID entry remains a member of the
file group class.

Figure 2 shows the relationship between file classes,
ACEs, and the file permission bits: the file owner class
contains exactly one ACE, the file group class contains

2If an ACL contains no entries for additional users or groups, the
group class only contains a single entry. In this case, the Working
Group has defined that the group:: entry shall continue to refer to
the file group class permission bits and no mask:: entry shall exist,
resulting in the same behavior as without POSIX ACLs.

22 • Implementing an advanced access control model on Linux

Figure 2: POSIX.1e Access Control Lists

one or more ACEs, and the file other class again con-
tains exactly one ACE.

The open-headed arrows in Figure 2 show how ACEs
and the file permission bits are kept in sync: per defini-
tion, the user:: entry and owner class, mask:: en-
try and group class, and other:: entry and other class
file permission bits are kept identical; changing the ACL
changes the file permission bits and vice versa.

As an example, consider the following POSIX ACL
as shown by the getfacl utility (line numbers added by
hand):

1 # file: f
2 # owner: lisa
3 # group: users
4 user::rw-
5 user:joe:rwx #effective:rw-
6 group::r-x #effective:r--
7 mask::rw-
8 other::---

The first three lines indicate that the file is called f, the
file user ID is lisa, and the file group ID is users.
Line 4 shows that the owner, Lisa, has read and write
access. Line 5 shows that Joe would have read, write,
and execute access, but the file mask in line 7 forbids ex-
ecute access, so Joe effectively only has read and write
access. Line 6 shows that the group Users would have
read and execute access, but effectively only has read
access. Finally, line 8 shows that others have no access.

In addition to these “normal” ACLs, POSIX.1e also de-
fines so-called default ACLs which have the same struc-
ture as “normal” ACLs. When a file system object is

created in a directory which has a default ACL, the de-
fault ACL defines the initial value of the object’s “nor-
mal” ACL and, if the new object is a directory, also the
object’s default ACL. Default ACLs have no effect after
file creation.

2.3 Windows ACLs

Before Windows NT, Windows did not have an ACL
model and permissions could only be attached to an
entire exported directory tree (aka share). Other com-
panies tried to fill this gap by inventing additional file
permission schemes [14]. With the introduction of the
NTFS filesystem in 1993, Microsoft introduced a new
ACL based file permission model, commonly referred
to as Windows ACLs or CIFS ACLs. Its key properties
are:

• Windows ACLs are used to control access to a va-
riety of OS objects in addition to filesystem ob-
jects, e.g. mutexes, semaphores, window system
objects, and threads. Here we are concerned only
with ACLs on filesystem objects.

• Controlled Windows objects have two ACLs, the
DACL (Discretionary ACL) and SACL (System
ACL). The SACL can only be edited by privileged
users, and is used to implement logging of file ac-
cesses (or failures to access). Here we are con-
cerned only with DACLs.

• Each filesystem object is owned by a Security Iden-
tifier (SID), a variable-length unique binary identi-
fier which can refer to either a user or a group.

2010 Linux Symposium • 23

• Each Windows ACE contains a mask of 14 differ-
ent permission bits, see Table 1 for a summary and
File and Folder Permissions [2] on Microsoft Tech-
Net for details.

• Windows ACEs are one of three types: Access-
Denied (used in a DACL to explicitly deny ac-
cess), Access-Allowed (used in a DACL to ex-
plicitly grant access), and System-Audit (used in
a SACL to cause an entry to be made in the system
security log). We shall refer to these by the short
forms DENY, ALLOW, and AUDIT respectively.

• The order in which permissions are granted and
denied in Windows ACLs matters. ACEs are pro-
cessed from top to bottom until all requested per-
missions have been granted, or a requested permis-
sion has been explicitly denied.

• Each ACE contains a SID which identifies the user
or group that the ACE refers to. There is no way
to tell user from group ACEs. There are also some
special SIDs with special semantics.

• The owner of a file can be explicitly mentioned in
an ACE, and implicitly mentioned in an inherit-
only ACE.3 However, there is no way to construct
an ACE that always applies to the file’s current
owner even if the owner is changed.4

• A Windows ACL entry can apply to the special
SID Everyone, which includes the owner and
all users and groups explicitly mentioned in other
ACL entries. The POSIX.1 concept of file classes,
where a process is classified into the owner, group,
and other classes and cannot obtain permissions
which go beyond the permissions of its class, does
not exist, but DENY entries can be used to explicitly
deny some permissions.

• Windows supports inheritance of permissions
at file create time, and since Windows 2000, a
feature called “Automatic Inheritance.” With
Automatic Inheritance, changes to the permis-
sions of a directory can propagate to all files
and directories below that directory. Create time
inheritance and Automatic Inheritance use as
a number of ACE flags (INHERITED_ACE,

3using the special Creator Owner SID
4not even using the special Owner Rights SID which appeared in

Windows Vista [4]; such ACEs are actually disabled when the file’s
ownership changes.

INHERIT_ONLY_ACE, CONTAINER_
INHERIT_ACE, OBJECT_INHERIT_ACE,
and NO_PROPAGATE_INHERIT_ACE).

2.4 NFSv4 ACLs

Up to version 3, the NFS protocol was mainly UNIX
oriented, and its file permission model was limited to
exposing POSIX file modes (in NFS terminology: the
mode attribute) over the network. This created the im-
plicit assumption of POSIX-like behavior.

Version 4 broke with the protocol’s legacy and intro-
duced a new ACL model based on Windows ACLs.
The mode attribute was initially deprecated in favor of
ACLs; more recent updates to the protocol re-endorsed
the mode attribute and clarified some of the interactions
between mode and ACLs (but some inconsistencies still
remain).

The key properties of the NFSv4 ACL model are:

• NFSv4 [5] supports the same 14 permissions
as Windows. NFSv4.1 [6] adds two addi-
tional permissions, ACE4_WRITE_RETENTION
and ACE4_WRITE_RETENTION_HOLD, which
have no equivalent in Windows or POSIX ACLs.

• The ALLOW and DENY ACE types are supported,
and optionally also the AUDIT and ALARM types.

• The NFSv4 and Windows permission check algo-
rithms are equivalent.

• NFSv4 uses principal strings modelled on Ker-
beros for identifying users and groups, e.g.
fred@example.com. User and group ACEs are
distinguised by an ACE flag.

• Each file system object is owned by a user, and
has an owning group. The special OWNER@ prin-
cipal refers to the current owner, and the special
GROUP@ principal refers to the current owning
group of a file, even when the owner or owning
group changes.

• The special EVERYONE@ principal refers to Every-
one, which includes the owner and all users and
groups explicitly mentioned in other ACL entries.

24 • Implementing an advanced access control model on Linux

• NFSv4 recognizes that there is a relationship be-
tween the mode attribute and the ACL, but in-
stead of connecting this to the POSIX file permis-
sion model and sticking to the same requirements,
NFSv4.1 makes up its own special rules for up-
dating the ACL when the mode changes, and vice
versa. These rules are not fully compatible with
POSIX.1 or POSIX.1e.

• NFSv4 supports inheritance of permissions at file
create time. NFSv4.1 adds support for Automatic
Inheritance.

2.5 ACL Model Differences

The various ACL models differ in a number of important
details.

• POSIX1.e entries can only allow access, i.e.
ALLOW semantics. Windows and NFSv4 entries
can either ALLOW or DENY access. This provides
considerably more expressive power (albeit at the
cost of complexity).

• The order of evaluation of POSIX.1e entries is not
significant, as all the entries are additive. In Win-
dows and NFSv4 ACLs, entries can deny access,
and thus their order is significant.

• The permission bits in POSIX.1e entries are quite
simple, with only 3 bits defined. Windows has
a total of 14 permission bits, most of which af-
fect a smaller number of actions. NFSv4 follows
Windows closely (even when the permission bits
make no sense), but NFSv4.1 adds two more per-
mission bits (ACE4_WRITE_RETENTION_HOLD
and ACE4_WRITE_RETENTION) which have no
equivalent anywhere else.

• POSIX.1e and NFSv4 ACEs have state which de-
termine whether the ACE refers to a user or a
group, because in POSIX these are strictly differ-
ent namespaces. Windows ACEs contain only a
SID, which might refer to either a user or a group.

• The POSIX.1e model reuses the POSIX.1 concept
of process file classes, where a process is classi-
fied into the owner, group and other classes. The
Windows model has no precise equivalent to any
of these classes. A Windows ACE can apply to Ev-
eryone, but unlike the POSIX “other” class, that

includes the owner and all users explicitly men-
tioned in other ACEs. The NFSv4 model compro-
mises between the two, defining special OWNER@
and GROUP@ principals with the POSIX semantics,
and EVERYONE@ with the Windows semantics.

• The possible existance of DENY entries in Win-
dows and NFSv4 models, and the differences in
file class boundaries, also complicate the permis-
sion algorithm compared to POSIX.1e. The more
complex algorithm must track both allowed and de-
nied masks.

• The POSIX.1e model allows for inheritance of
ACLs from a parent directory at the time when a
filesystem object is created, using a separate “de-
fault ACL” stored on the parent directory. By con-
trast, the Windows, NFSv4 models combine the ac-
tual and default ACLs into one, with extra flags on
each ACE to indicate whether it is to be inherited
or not, and whether it is to be used only for inheri-
tance.

• The POSIX.1e model has no explicit support for
recursive modifications of ACLs on existing trees;
like chmod-R this is expected to proceed entirely
in a userspace utility which recurses over a tree and
modifies ACLs. The Windows and NFSv4 models
also rely on a userspace utility but have more com-
plex ACE propagation algorithms (Automatic In-
heritance) which need some extra bits stored on the
ACL. The NFSv4 standard forgot these bits, and
they only appear in NFSv4.1.

• In addition to the ALLOW and DENY types of en-
tries, the Windows and NFSv4 models allow for
AUDIT and ALARM entries. In Windows, these en-
tries trigger system management side effects. In
NFSv4, their meaning is undefined.

• The POSIX.1e model identifies users and groups
using traditional UNIX user and group ID num-
bers. The Windows model uses SIDs. which are
something like binary hierarchically scoped user
and group IDs and provide a single namespace
for both users and groups. The NFSv4 model
uses principal strings modelled on Kerberos, e.g.
fred@example.com.

2010 Linux Symposium • 25

3 Why We Need a New ACL Model

There are two main reasons why we consider new ACL
model for Linux to be necessary.

Firstly, while POSIX.1e is the current default ACL
model on Linux, and works well, its power and expres-
siveness is limited by its small set of permission bits and
additive ALLOW-only semantics. Subtractive concepts
like "grant read permission to all of the accounting de-
partment, but not to the trainees" are difficult to achieve
and have to be painfully approximated. Windows can
express these neatly and concisely, and we feel this will
be useful to Linux system administrators.

Secondly, in a file serving scenario, there is a signifi-
cant interface mismatch between POSIX ACLs and the
ACL models expected or provided by Windows sys-
tems. This mismatch makes interoperability between
Linux and Windows machines unnecessarily difficult,
requiring the Linux-side software to perform complex,
lossy, and potentially insecure mappings backwards and
forwards between the models.

When files are available through different channels (e.g.
Samba and NFS on the same Linux server) with differ-
ent approaches to the ACL issue, there is the potential
for users to be able to bypass intended access controls.

Even in the homogeneous case when a Linux client
mounts a filesystem via NFSv4 from a Linux server, and
both Linux systems understand POSIX ACLs, the ACL
model enforced by the NFSv4 protocol requires two dif-
ficult mappings in order to transmit an ACL on the wire.
The Linux NFS client presents ACLs using different for-
mats and utilities than those used for the local filesystem
on the Linux server, which leads to unnecessary confu-
sion.

We need a solution which makes the ACL models of
the client, the server and the protocol as similar as pos-
sible, so that mappings between them are much eas-
ier and safer. It should also provide a single point of
ACL enforcement for all protocols and for local appli-
cations, and consistent management tools on the client
and server.

4 Rich ACLs

To bring together the disparate models and address inter-
operability issues, we propose a new ACL mechanism
for Linux called Rich-acl.

4.1 Design Principles

The proposed new ACL model uses NFSv4 ACLs at its
core. Unlike NFSv4 and Windows ACLs, it identifies
users and groups by their numeric UNIX IDs. This al-
lows access decisions to be made for all Linux processes
without having to translate identifiers to their local form
first.

The ALLOW and DENY ACE types are supported; sup-
port for AUDIT and ALARM type ACEs might make
sense to add in the future.

Rich-acl supports the same 14 permission bits as NFSv4
(three of which have a dual meaning and mnemonic for
files and directories) plus the two additional write reten-
tion permissions of NFSv4.1. The permissions have the
following meaning:

• READ_DATA, WRITE_DATA, APPEND_DATA:
Read a file, modify a file, and modify a file by ap-
pending to it only.

• LIST_DIRECTORY, ADD_FILE, ADD_
SUBDIRECTORY: List the contents of a di-
rectory, add files, and add subdirectories.

• DELETE_CHILD: Delete a file or subdirectory
from a directory.

• EXECUTE: Execute a file, traverse a directory.

• READ_ATTRIBUTES: Read the stat information
of a file or directory.

• READ_ACL: Read the ACL of a file or directory.

• SYNCHRONIZE: Synchronize with another thread
by waiting on a file handle.

• DELETE: Delete a file or directory even without
the DELETE_CHILD permission on the parent di-
rectory.

• WRITE_ATTRIBUTES: Set the access and modi-
fication times of a file or directory.

• WRITE_ACL: Set the ACL and POSIX file mode
of a file or directory.

• WRITE_OWNER: Take ownership of a file or direc-
tory. Set the owning group of a file or directory to

26 • Implementing an advanced access control model on Linux

the effective group ID or one of the supplementary
group IDs.5

• READ_NAMED_ATTRS, WRITE_NAMED_
ATTRS: Read and write Named Attributes.
Named Attributes neither refer to Windows
Alternate Data Streams nor to Linux Extended
Attributes. These permissions will be stored, but
have no further effect.

• WRITE_RETENTION, WRITE_RETENTION_
HOLD: Set NFSv4.1 specific retention attributes.
These permissions will be stored, but have no
further effect.

Some of the Rich-acl permissions are a subset of a
POSIX permission; others go beyond what the file per-
mission bits can grant. Table 1 shows a complete map-
ping between Rich-ACL and POSIX permissions:

• The READ_DATA and LIST_DIRECTORY per-
missions map to the POSIX Read permission,
the WRITE_DATA, APPEND_DATA, DELETE_
CHILD, ADD_FILE, and ADD_SUBDIRECTORY
permissions map to the POSIX Write permission,
and the EXECUTE permission maps to the POSIX
Execute/Search permission. These permissions fit
the concept of an additional file access control
mechanism.

• The READ_ATTRIBUTES, READ_ACL, and
SYNCHRONIZE permissions are permissions
which cannot be denied under POSIX. Denying
these operations could cause problems with POSIX
applications, so we always grant these permissions
no matter what the ACL says (see section 5.4).

• The DELETE, WRITE_ATTRIBUTES,
WRITE_ACL, and WRITE_OWNER permissions
denote rights which go beyond the POSIX per-
missions, and the READ_NAMED_ATTRIBUTES,
WRITE_NAMED_ATTRIBUTES, WRITE_
RETENTION, and WRITE_RETENTION_HOLD
permissions denote rights which have no equiva-
lent in Linux. These eight permissions can only be
enabled as part of an alternate file access control
mechanism.

5Also see the setfsuid(2) and setfsgid(2) Linux manual pages.

In addition to defining how the permissions of the two
models map onto each other, we need to define how pro-
cesses are classified into the owner, group, and other
classes; this determines which file permission bits af-
fect which processes. We use the following rules analo-
gously to POSIX ACLs:

1. Processes are in the owner class if their effective
user ID matches the user ID of the file.

2. Processes are in the group class if they are not in
the owner class and their effective group ID or one
of the supplementary group IDs matches the group
ID of the file, the effective user ID matches the user
ID of an ACE, or the effective group ID or one of
the supplementary group IDs matches the group ID
of an ACE.

3. Processes are in the other class if they are not in the
owner or group class.

Finally, POSIX requires that after creating a new file or
changing a file’s permission bits with the chmod system
call, processes are not granted any permissions beyond
the file permission bits of their file class. This require-
ment can be implemented in different ways:

1. The ACL can be replaced by an ACL which grants
the equivalent of the file permission bits to the
owner, the owning group, and others.6

2. The ACL can be changed so that it does not
grant any permissions beyond the file permission
bits. This may require removing permissions from
ACEs. In addition, if the owner class has fewer
permissions than the group class or the group class
has fewer permissions than the other class, addi-
tional DENY ACEs may be needed.7

3. The ACL can be left unchanged; in this case, the
access check algorithm must take both the ACL
and the file permission bits into account, and only
grant permissions which are granted by both mech-
anisms.

6NFSv4 ACLs on IBM GPFS and JFS2 do this, Sun/Oracle ZFS
offers this as an option.

7SUN/Oracle ZFS tries to do this by default, but the documented
behavior [10] does not always lead to the correct result.

2010 Linux Symposium • 27

Permission Bit POSIX Mapping
READ_DATA (= LIST_DIRECTORY) Read
WRITE_DATA (= ADD_FILE) Write
APPEND_DATA (= ADD_SUBDIRECTORY) Write
DELETE_CHILD Write
EXECUTE Execute/Search
READ_ATTRIBUTES Always Allowed
READ_ACL Always Allowed
SYNCHRONIZE Always Allowed
DELETE Alternate
WRITE_ATTRIBUTES Alternate
WRITE_ACL Alternate
WRITE_OWNER Alternate
READ_NAMED_ATTRS Alternate (No Effect)
WRITE_NAMED_ATTRS Alternate (No Effect)
WRITE_RETENTION Alternate (No Effect)
WRITE_RETENTION_HOLD Alternate (No Effect)

Table 1: Mapping Between Rich-ACL and POSIX Permissions

We have chosen a variation of approach 3 for Rich-acls
because it does not require complicated ACL manipu-
lations, and is a consequent adaptation of the masking
mechanism already found in POSIX ACLs, which has
already proven itself.

The need for a variation to approach 3 becomes obvi-
ous when considering that the file permission bits are
limited to the Read, Write, and Execute/Search permis-
sions, and we would end up without a way to explicitly
enable any of the alternate rich-acl permissions.

To get around this restriction, we introduce the new con-
cept of file masks:

• Each file class (owner, group, and other) is associ-
ated with a file mask which contains a set of rich-
acl permissions.

• When the file permission bits are changed, each file
mask is set to the rich-acl permissions which cor-
respond to the file permission bits of its class.

• The file masks can be changed explicitly to include
alternate rich-acl permissions. Changing the file
masks will also change the file permission bits.

• The access check algorithm grants an access if the
rich-acl grants the access, and the file mask match-
ing the process also includes the reuested rich-acl
permisssions.

Figure 3 shows the relationship between file classes, the
ACL, the file masks, and the file permission bits in rich-
acls.

4.2 Specific Changes

To achieve the above principles, we made the following
code changes.

• Modify the kernel VFS interface to allow filesys-
tems optionally to exert more control over whether
a process is allowed to create or delete filesystem
objects. The rich-acl permission algorithm requires
more information in these two cases than either the
POSIX or POSIX.1e models do.

• Define a machine-independent binary encoding of
a rich-acl ACL, and use the Linux extended at-
tribute (xattr) mechanism to store encoded rich-
acl ACLs on filesystem objects. The same en-
coding is used in the filesystem and on both the
NFS client and server (which is not true of the cur-
rent Linux NFS ACL code). The attribute used is
system.richacl.

• Provide an in-kernel library for manipulating
ACLs. This includes creating and destroying
ACLs, performing permission checks, calculating
a file mode from an ACL and applying a new mode

28 • Implementing an advanced access control model on Linux

Figure 3: Rich Access Control Lists

to an ACL. and encoding an ACL to an xattr and
decoding an ACL from a xattr.

• Use the kernel library to enhance the ext4 filesys-
tem to store, retrieve and enforce the new per-
mission model. A new ext4 superblock option
richacl, settable with the tune2fs utility, is
defined to control whether rich-acls are enabled.

• Use the kernel library to enhance the NFS client
and server to store and retrieve rich-acl ACLs
(enforcement is done in the server-side backing
filesystem, not in NFS code). The server-side con-
version between the rich-acl kernel in-memory for-
mat and the NFS wire format is much simpler than
with POSIX.1e ACLs.

• Provide a userspace library for manipulating
ACLs. It is similar to the kernel library, except that
it does not provide a permission check algorithm.

• Use the userspace library to provide a command-
line utility setrichacl to allow users to store,
retrieve, and manipulate ACLs on files and directo-
ries (loosely equivalent to chmod and ls).

One of the advantages of this approach is consistency of
use: the same tools can be used to examine and manipu-
late rich-acl ACLs on the NFS client and server, as well
as for local applications.

Furthermore, with the rich-acl model ACLs are stored
and enforced consistently and in one place: the server-
side backing filesystem. This prevents users being able
to evade access control by using different access tech-
niques, such as logging into the server or using NFS in-
stead of CIFS.

The code is available in two git repositories, kernel [12]
and userspace [13]. There is also a patch for tune2fs
[11].

5 Further Considerations

5.1 Standards

The text of the NFSv4 standard, as it applies to ACLs,
has undergone several revisions and clarifications. The
initial version appears to have been the result of a purely
theoretical design exercise and not of implementation
experience. Subsequent versions have had progressively
fewer flaws and ambiguities, but some difficulties re-
main.

The behaviour of Windows ACLs is well documented
by Microsoft. Sometimes the documentation is accu-
rate; sometimes experiment is required to determine the
true behaviour.

5.2 Multiple group entries

POSIX allows a user to be a member of multiple groups.
The POSIX.1e model allows access if any one of the
groups that the user belongs to, is allowed access. In
contrast, rich-acl ACEs are processed in order. If the
requested access mask bit matches the access mask bit
present in a DENY ACE, then the access is denied. Each
ACE is processed until all the bits of the requested ac-
cess mask are allowed. This implies that when mapping
a POSIX ACL to rich-acl we need to impose an order-
ing constraint on ACEs, such that ACEs which ALLOW
access to any group must preceed ACEs which DENY
access to any group.

2010 Linux Symposium • 29

5.3 OTHER vs EVERYONE@ ACEs

One of the major differences between the POSIX.1e
model and the rich-acl model is that the rich-acl
EVERYONE@ includes both user and group classes,
whereas the POSIX.1e OTHER class excludes user and
group classes. When mapping a POSIX.1e ACL to a
rich-acl, the OTHER ACE will be mapped to a trailing
ALLOW EVERYONE@ ACE, but to limit it’s effect that
ACE may need to be preceeded with one or more DENY
ACEs which deny some access to specific groups.

5.4 Permissions which are always enabled

The NFSv4 ACL model has some permission bits which
control actions which are always allowed under POSIX,
such as ACE4_READ_ATTRIBUTES for reading file
attributes ACE4_READ_ACL for reading the ACL itself.
To limit impact on the Linux code (for example, by in-
troducing new error cases in complex and critical code
paths) and on existing POSIX applications we have cho-
sen not to enforce these permission bits in the rich-acl
model. In line with our design goals, ACEs which men-
tion these permission bits will be accepted and stored,
but the permission bits will have no effect.

One effect of this choice is that the NFS server will
successfully complete a SETATTR operation which sets
an ACL containing an ACE intended to DENY these
permissions, despite not being able to accurately en-
force the intended effect of the ACE. Such behaviour
is prohibited by language in the NFSv4.1 RFC [6],
which specifies that the NFS server must return the
NFS4ERR_ATTRNOTSUPP error in this case.

Our experiments show that it is very easy for a user us-
ing the Windows permission editor GUI to set such an
ACE, as an unintended side effect of the common id-
iom of denying another user the ability to read file data.
This is due to the editor having “basic” and “advanced”
modes; in the basic mode the user is presented with
abstracted permissions like Read which are amalgams
of multiple underlying permissions. So if our imple-
mentation were to strictly obey the RFC then Windows
users would be unnecessarily inconvenienced and pos-
sibly Windows applications might be broken.

5.5 Sticky bit and capabilities

When describing the POSIX model above, we did not
mention some of the more complex corners of the

model. To meet our design goal of preserving ex-
pected POSIX behaviour, the rich-acl permission algo-
rithm needs to take these into account.

The POSIX sticky(t) bit is used in the file mode of a di-
rectory to change the permission check for deleting files
in the directory. It is usually employed to allow multi-
ple users to share the /tmp directory in such a way that
each user can delete only her own files. Such behaviour
could be approximated with a well designed ACL on the
/tmp directory; however our design goal meant that we
need to preserve the behaviour of the sticky bit regard-
less of the presence of ACLs. A further reason is the
security risk involved with perturbing the behaviour of
/tmp.

POSIX defines capabilities CAP_DAC_OVERRIDE and
CAP_DAC_READ_SEARCH which allow privileged
processes to gain access regardless of the results of an
access control check (with some limits). Another ca-
pability, CAP_FOWNER, allows privileged processes to
gain access normally allowed only to the owner of an
object and not subject to the POSIX DAC controls. Of
course, CAP_FOWNER interacts with the implementa-
tion of the sticky bit.

5.6 Migration

Many filesystems using POSIX ACLs are already de-
ployed. Therefore, in order to enable rich-acl on
an existing Linux file system, we need to provide a
mechanism for migrating the filesystem from existing
POSIX.1e ACLs to rich-acl ACLs.

The current design has a two-step conversion process:

• In the first step, the kernel filesystem code con-
structs a temporary rich-acl ACL on the fly when
an ACL on a filesystem object is required (for
a permissions check or an xattr fetch), and the
filesystem has the richacl option enabled with
tunefs, and the object has no rich-acl ACL
stored, and the object has a POSIX.1e ACL stored.
Once the richacl option is enabled, objects in
the filesystem appear to have both a POSIX.1e
ACL and a functionally equivalent rich-acl ACL.

• The converted ACL is discarded after use, and not
written back to the filesystem object. Hence we
need a second step to complete the conversion: the

30 • Implementing an advanced access control model on Linux

setrichacl utility reads the temporary rich-acl
from the xattr and writes the same bytes back to
the xattr, causing the filesystem to make the rich-
acl permanent on disk. As a side effect of setting
the rich-acl xattr, the kernel deletes the POSIX.1e
ACL xattr.

The advantage of this technique is that the filesystem
is immediately available with functioning rich-acls after
the richacl option is enabled without requiring any
modification of the on-disk metadata. This also allows
experimentally enabling rich-acls on a filesystem in or-
der to test application compatibility, enabling rich-acls
on a readonly filesystem, and more easily fine-tuning
the conversion algorithm used in the user-space utility
used if needed.

Note that migrating a filesystem back from rich-acls to
POSIX.1e ACLs is not supported once the rich-acls are
made permanent on disk, as converting in that direction
is usually lossy.

6 Open Issues / Future Work

Rich-acls are usable today by kernel developers and
early adopters, but there is work remaining to be done.

• Use the userspace rich-acl library to enhance the
Samba server to store and retrieve rich-acl ACLs
(enforcement is done in the server-side backing
filesystem, not in Samba code). The conversion be-
tween the rich-acl userspace in-memory format and
the CIFS wire format is much simpler than with
POSIX.1e ACLs. This could be based on the exist-
ing SGI [9] patch.

• Use the kernel rich-acl library to enhance the smbfs
client to store and retrieve rich-acl ACLs.

• The ls program should indicate those filesystem
objects which have rich-acls, for example by show-
ing a + sign.

• The find program should be aware of ACLs, at
the very least by providing a predicate which tests
whether an object has a rich-acl. Even better would
be predicates to test more subtle effects of rich-
acls.

• The setrichacl utility should be updated to
provide a convenient one-line command to per-
form the second step in the process of migrating a
filesystem from POSIX.1e ACLs to rich-acl ACLs.
In this mode it would traverse the filesystem tree,
fetching the rich-acl xattr and setting it back again,
causing the rich-acl ACL to become permanent on
disk. Currently the program must be invoked twice
per file or directory.

• The GNOME and KDE desktops need GUI appli-
cations written to allow users to display and edit
rich-acls on filesystem objects without resorting to
the command-line interface.

• The issue of user identity is not completely re-
solved. Linux, NFSv4 and Windows all use dif-
ferent unique identifiers for users. Rich-acls use
Linux user ids, which require mapping to and from
Windows SIDs or NFSv4 principals on demand.
The mechanisms for such mappings can be awk-
ward and slow. It may be useful to investigate stor-
ing SIDs and principals in the filesystem.

• It might be useful to implement Windows/NFSv4
SACLs and the AUDIT and ALARM ACE types.

• The Linux kernel NFSv4 server places a smaller
limit on the maximum size of NFSv4 ACLs than
does either the rich-acl implementation or the
NFSv4 standard. Fixing this properly requires sig-
nificant surgery to the NFSv4 XDR code.

• The setrichacl utility does not yet perform
Automatic Inheritance.

• The POSIX API does not provide an interface for
an application to atomically create a file or other
filesystem object with a given set of extended at-
tributes; this needs to be performed as two separate
actions. Both the CIFS and NFSv4 protocols do
however provide such an ability. This creates a race
condition where a filesystem object may briefly
have an unintended ACL and be less secure than
the application expected. Such an interface could
be provided to allow the Samba server to avoid the
race.

• The POSIX access function and the NFSv4
ACCESS operation could be enhanced to allow a
Rich-acl-aware application to test for more fine-
grained access types.

2010 Linux Symposium • 31

• Windows Vista introduced a feature that allows to
deny file owners the Read Permissions and Change
Permissions permissions which they are otherwise
implicitly granted [4]; support for this has not been
implemented, yet.

7 Conclusion

The demand for improved interoperability in modern,
mixed-platform environments is increasing over the
years. On UNIX-like systems, the most widely avail-
able kind of ACLs is POSIX ACLs, and they will remain
in that role for some time to come. Still, POSIX ACLs
have proven unsuitable for addressing the interoperabil-
ity challenges we are facing today.

In this paper we have discussed the many goals that
a better, more interoperable ACL model should meet.
The proposed new model meets those goals. A lot of
work still remains to be done at all levels until end users
will be able to reap the benefits, but all the key building
blocks are there already.

8 Acknowledgements

The authors would like to thank IBM, Novell, and SGI
for supporting this work and its predecessors at various
times. We’re also grateful for technical support from
various members of the NFS Working Group, and the
NFS and CIFS communities. David Disseldorp has re-
viewed this paper.

Legal Statement

Copyright c© 2010 IBM. Copyright c© 2010 Novell, Inc.
Copyright c© 2010 Greg Banks.

This work represents the view of the authors and does not
necessarily represent the view of IBM or Novell or Evostor.

IBM and the IBM logo are trademarks or registered trade-
marks of International Business Machines Corporation in the
United States and/or other countries.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in all
countries in which IBM operates.

This document is provided “AS IS,” with no express or im-
plied warranties. Use the information in this document at
your own risk.

References

[1] IBM Corp. Working with filesystems using
NFSV4 ACLs. http://www.ibm.com/
developerworks/aix/library/
au-filesys_NFSv4ACL/index%.html.

[2] Microsoft Corp. File and folder permissions.
http://technet.microsoft.com/
en-us/library/cc732880.aspx.

[3] Microsoft Corp. How security descriptors and
access control lists work.
http://technet.microsoft.com/
en-us/library/cc781716.aspx.

[4] Microsoft Corp. Security Identifiers (SIDs) new
for Windows Vista. http:
//technet.microsoft.com/en-us/
library/cc749445%28WS.10%29.aspx.

[5] IETF Network Working Group. RFC 3530:
Network File System (NFS) version 4 protocol.
http:
//tools.ietf.org/html/rfc3530.

[6] IETF Network Working Group. RFC 5661:
Network File System (NFS) version 4 minor
version 1 protocol. http:
//tools.ietf.org/html/rfc5661.

[7] The Open Group. Portable Operating System
Interface.
http://www.unix.org/version3/.

[8] The Open Group. What could have been IEEE
1003.1e/2c. http:
//wt.tuxomania.net/publications/
posix.1e/download.html.

[9] Silicon Graphics Inc. Native NFSv4 ACLs for
Linux XFS & NFS. http://oss.sgi.com/
projects/nfs/nfs4acl/.

32 • Implementing an advanced access control model on Linux

[10] Sun Microsystems Inc. Solaris ZFS
administration guide. http://dlc.sun.
com/pdf/819-5461/819-5461.pdf.

[11] Aneesh Kumar K.V. Rich-acl e2fsprogs patch.
http://kernel.org/pub/linux/
kernel/people/kvaneesh/richaclv1/
e2fsprogs/%.

[12] Aneesh Kumar K.V. Rich-acl kernel git repo.
http://git.kernel.org/?p=linux/
kernel/git/kvaneesh/
linux-richacl.git;a=%summary.

[13] Aneesh Kumar K.V. Rich-acl userspace git repo.
http://git.kernel.org/?p=fs/acl/
kvaneesh/acl.git;a=summary.

[14] Novell, Inc. Netware 6 trustee rights: How they
work and what to do when it all goes wrong.
http:
//support.novell.com/techcenter/
articles/ana20030202.html.

[15] W. Richard Stevens. Advanced Programming in
the UNIX(R) Environment. Addison-Wesley, June
1991.

Consistently Codifying Your Code: Taking Software Development to the
Next

Keith Bergelt
Your affiliation

your-address@example.com

Abstract

Keith Bergelt (kbergelt@openinventionnetwork.com)

Consistently Codifying Your Code: Taking Software
Development to the Next Level

Over the years, sophisticated systems have been put in
place to monitor software development and ensure that
code integrity is maintained. Software developers ex-
pect to regularly use a revision control system such Git,
CVS or SVN as part of their endeavors.

One step that has historically been missing as a routine
part of the development process is the codification of
invention. Software developers continuously innovate.
Due to a number of factors, these new innovations un-
fortunately have often failed to be published in a way
that facilitates the ongoing protection of individual and
community rights to these inventions.

In order to improve the documentation of invention and
lessen the ability of companies and patent trolls to lever-
age intellectual property against open source companies,
as a community we must begin to capture invention reg-
ularly and in real time.

Keith Bergelt, CEO of Open Invention Network, a com-
pany formed by IBM, NEC, Novell, Philips, Red Hat
and Sony to enable and defend Linux, will share his in-
sights into ways that companies can capture and codify
invention at the time of development, ensuring that in-
novation is documented and leveraged in a manner so
that the entire open source community will benefit.

• 33 •

34 • Consistently Codifying Your Code: Taking Software Development to the Next

Developing Out-of-Tree Drivers alongside In-Kernel Drivers

Jesse Brandeburg
LAN Access Division, Intel Corporation
jesse.brandeburg@intel.com

Abstract

Getting your driver released into the kernel with a GPL
license is promoted as the holy grail of Linux hardware
enabling, and I agree. That said, producing a qual-
ity GPL driver for use in the entire Linux ecosystem
is not a task for the faint of heart. Releasing an Eth-
ernet driver through kernel.org is one delivery method,
but many users still want a driver that will support the
newest hardware on older kernels.

To meet our users’ requirements for more than just hard-
ware support in the latest kernel.org kernel, we in Intel’s
LAN Access Division (LAD) developed a set of coping
strategies, processes, code, tools, and testing methods
that are worth sharing. These learnings help us reuse
code, maintain quality, and maximize our testing re-
sources in order to get the best quality product in the
shortest amount of time to the most customers. While
not the most popular topic with core kernel developers,
out-of-tree drivers are a necessary business solution for
hardware vendors with many users. Our Open Source
drivers generally work with all kernel releases 2.4 and
later, and I’ll explain many of the details about how we
get there.

1 Introduction

This paper’s goal is to lay out a roadmap for others to
use in order to streamline the out-of-tree development
process. Since many developers are able to live solely
in the kernel, a secondary goal is to expose some of
the business realities that our product group has to cope
with, and the solutions we have developed.

Our business goal is simple: Sell hardware. This hard
reality guides many of our decisions. To do this, we
enable drivers for as many users and operating systems
as possible. In an ideal world we would have unlim-
ited resources, and a fully staffed development and test-
ing team with plenty of idle time, but instead we have

to make do with busy developers, constrained testing
resources, and of course business and customer needs.
As such, we’ve developed tricks and common practice
within our code and development process in order to
maximize the number of Operating Systems supported.

Intel R© Wired Ethernet developers actively maintain
multiple (eight) drivers in the kernel, and strive to be
good open-source contributors and supporters while still
creating an out-of-tree driver, i.e. we are not the enemy.

2 Reasons You Might Need an Out-of-tree
Driver

Business Need

Our software support opens new business opportunities
for network hardware sales by leveraging the (awesome)
environment of the Open Source community and ven-
dors. We sample silicon and boards months before we
ship, and need something to deliver to customers to al-
low them to test.

We avoid a lot of thrash and introduction of last minute
OS support requirements from hardware vendors by
having a tested and ready “out-of-tree” driver that OEM
system integrators and vendors can use to ship our hard-
ware. We also make our out-of-tree drivers available
via e1000.sourceforge.net in the e1000 project,
and on intel.com.

Provide More Complete Hardware Support

Customers are happier if our hardware works in every
kernel they might use right out of the box.

No Pre-announcing Hardware

We are unable to ship driver support to the kernel for
hardware that either hasn’t shipped or won’t ship “real
soon now.” We try not to give up any competitive ad-
vantage we might achieve by not informing our com-
petitors of our plans. The out-of-tree driver allows for

• 35 •

36 • Developing Out-of-Tree Drivers alongside In-Kernel Drivers

a testable and feature rich launch of hardware with sup-
porting drivers, even if the driver hasn’t made it all the
way through net-next into the upstream kernel. It also
means we have something to ship on the software CD
“in the box.”

Users on Old Kernels

Some customers are using 2.4 kernels (still) in produc-
tion. This creates a bit of a headache for drivers like
ixgbe that have many new features that depend on newer
kernels. For operating systems and kernels this old we
have a policy of “just make it work” which is generally
all that is required. Some customers upgrade to the latest
and greatest system and network hardware but will not
or cannot upgrade their OS for their own business rea-
sons. For example, we have met enterprise customers
who have an application that will not run on any OS
newer than RedHat Enterprise Linux 3. However, Red-
Hat is still supporting RHEL3, at least for now. In our
case the right thing to do here is follow the lead of the
OS Vendor and try to provide basic support. In some
cases, only new hardware is available to replace exist-
ing failing hardware, forcing users to upgrade hardware
while keeping their existing infrastructure and certifica-
tions in place.

Silicon Validation

One of the tasks we have as driver developers is to val-
idate that the silicon we ship will work with our driver
code as well as validating new silicon features. This
often needs a lot of “non-production” code to be de-
veloped and we do that development in our out-of-tree
driver, usually on a branch.

Dirty Laundry

The out-of-tree driver source contains many comments
and even some code that is never published, that al-
low us to reference internal bug tracking databases, in-
vestigation notes, and debug code (possibly for silicon
validation.) There is no value in shipping this code to
the open source community and the process of building
source allows us to maintain higher quality code, while
still having the functionality in the code that we need.

3 Implementation

Shared Code

Our definition of “shared code” is code that is usable un-
der multiple operating systems, with a non-encumbering
license. In our environment we have factored out the
code that supports functions/features common to all
driver hardware tasks like initialization, reset, link man-
agement, etc.

The shared code makes up almost 10,000 lines of code
(out of 24,961) in our current ixgbe driver. It is shared
across multiple OS drivers, including Linux, FreeBSD,
Windows drivers (all versions), Windows Testing tools
(control panel), Manufacturing/Test tools, as well as
customers.

In order to do such a thing without GPL violations, we
maintain exclusive copyright to the shared code files,
allowing us to release the code with any license we (as
the exclusive copyright holder) need. Another option
would be to dual license the code, but this has some legal
implications that we weren’t interested in dealing with,
and that are beyond this paper’s scope.

When we design this code for a family of silicon, we
use function pointers to cover the initialization and setup
sections that might have differing implementations for
each release of silicon.

This code has #defines that are typically negatively de-
fined to allow drivers that don’t want to compile in sup-
port for a given piece of hardware to strip all the unused
code from their driver build. The code typically looks
like:

#ifndef NO_NNN_HARDWARE_SUPPORT

/* some code specific to NNN */

#endif

We also use #defines to mark pre-release sections of
code for new hardware or feature support, allowing us
to control the driver/features and hardware implemented
for a particular driver build. Often for cleanliness of the
code those #defines are removed after hardware or the
feature first ships.

Some of the other advantages to sharing pieces of the
driver initialization code are: More consumers of the
code means more developers available to work bugs;
more testing coverage because the shared code gets used
repeatedly. This maximizes limited testing and develop-
ment resources to achieve the most productivity.

2010 Linux Symposium • 37

Build the Code

Our drivers’ code base is actually built via a Makefile.
The Makefile takes several passes over the code. The
major innovation is using unifdef.c from the kernel to
clean out #defines and code that we don’t want included.
This is done via a list of #defines in the Makefile that
declare which code we want to keep or strip. Using
this method we implement our new hardware support,
allowing us the flexibility to add/remove new hardware
to a particular driver build right up to the ship date. Af-
ter the hardware and software support ships for a given
release, we typically leave in #defines for hardware sup-
port that we might want to discard to reduce code size
(as above), but remove #defines that we might have used
for new hardware support in the base driver portion of
the code. The assumption here is that once the driver
supports a given piece of hardware it always will. An-
other advantage of this build process is that the driver
source can be branched and stabilized with a particular
set of hardware and features supported, without the code
forking from the mainline development.

Create New Drivers

One of the lessons we’ve learned is that a driver should
not have endless hardware revisions added to it. It cre-
ates too much regression testing load, and new hardware
support too often breaks existing functionality. While it
is immensely seductive to reuse all the code in a driver,
experience has shown us that driver code is typically
brittle. Our conclusion is that whenever possible create
a new driver for "the next generation" of silicon. This
of course creates more work and more code to maintain.
This is an issue that we are continuing to struggle with,
but we believe is the correct way forward.

Coding Style

We allow ONLY Linux kernel style for the “shared
code” files. In the kernel, there is a Documenta-
tion/CodingStyle file and we have implemented an in-
ternal process that requires the shared code (and our
drivers’ core code) to conform to the that document.
This causes some discussion among the differing soft-
ware camps, but saves many headaches in the long run.
This is especially useful when keeping code in the out-
of-tree and in-kernel drivers the same.

Internal Maintainers

We have implemented mailing lists and automated
check-in notification emails that encourage and ease

peer review of code. In particular for our shared code
we have a single committer that is the only user allowed
to commit changes. This guarantees code goes through a
minimum level of review by the maintainer before com-
mit to ensure process is followed and that code meets
requirements. This has prevented many hours of pain
and suffering of developers having to fix bugs or quality
issues other users introduce to the shared code.

Consistent External Maintainer Interface

The internal development of the out-of-tree driver is
typically followed by changes for the in-kernel driver,
which are all pushed through our primary maintainer.
Over the past several years we’ve developed and re-
fined a relationship with the maintainers of the network-
ing stack and networking drivers. Having a single per-
son that is our contact with the maintainers guarantees
consistent communication, process, and dramatically in-
creases our chances of getting patches accepted. Jeff
Kirsher’s paper in other proceedings of the 2010 Linux
Symposium explains this in greater detail.

Patch All the Time

We’ve consistently been asked by the upstream main-
tainers to not "patch bomb" the lists every 6-12 weeks.
We’ve also found that during development the best way
to do kernel (upstream) patches is to immediately intro-
duce any change made to our out-of-tree driver to our
internal kernel patch process. We have eased this pro-
cess by mimicking the kernel development process in-
ternally. We use internal mailing lists, an internal patch-
work server, and internal git servers. A developer who
has just created a patch for the out-of-tree code is in the
perfect position (just the right knowledge) to create the
kernel patch for the same change. The developer creates
the patch, typically uses stgit to email it to the list, and
then the patch is tracked in patchwork through testing
and then eventual submittal via email to the networking
maintainer.

Kernel Compatibility Layer

We follow a similar model that is used by libata to pro-
vide backport compatibility to some distribution ker-
nels. Our Ethernet driver kcompat.h and kcompat.c files
allow for “upstream” looking core driver code which
works on older kernels (yes it’s GPL, so you can use it
too.) When combined with strategically placed #defines
in our driver core code, our drivers can compile and load

38 • Developing Out-of-Tree Drivers alongside In-Kernel Drivers

on almost all 2.4 and 2.6 kernel versions. Of course #de-
fines for certain OS capabilities are unavoidable and end
up breaking up mainline source with #ifdefs, but using
flags in the driver to advertise driver/hardware features
and capabilities can minimize the “#ifdef thrash.”

4 Version Control

Our current infrastructure uses CVS but we could easily
switch to any other version control system that has a suf-
ficient ecosystem to allow easy cross platform (aka Win-
dows) development. The large features that we rely on
version control to provide are branching, tagging, and
change tracking. We have taken great pains to enforce
adherence to committing only a single change at a time.

Nightly Labels - auto-builds

We have recently started the nightly process of auto-
matic labeling and building of certain components of
our software. The shared code is built in both a DOS
and UNIX linefeed version. The drivers then consume
that “built” version in our build tool when the “check-
out” is prepared before a driver source build. Finally
the source is built on a Linux machine via make, and
compile tested on several different distributions.

Reproducible Build Process

One of the benchmarks for our process is reproducible
builds. We take steps to make sure that any given build
can be rebuilt in the future should something go wrong.
We periodically make practice runs to prove it is work-
ing.

5 Pitfalls

Kernel standards can conflict with internal require-
ments

One of the issues we ran into is that the kernel commu-
nity requested e1000e use C99 initializers for function
pointers. We made that change, but it required our in-
kernel driver to fork from the internal shared code be-
cause C99 syntax doesn’t work with DOS compilers.

GPL concerns

We must maintain exclusive copyright in order to multi-
license the shared code. We can’t take in code changes

to our shared code, when submitted against GPL
source, unless we transfer copyright or rewrite code and
counter-propose to maintain authorship/copyright. We
don’t expect everyone to understand our licensing con-
cerns, but we do try to offer changes and alternatives to
patches on the list that allow us to maintain our copy-
right and still not allow too much drift between our out-
of-tree shared code and the kernel version.

Distributions and Backports

Backports typically come from upstream changes only,
which means that the distribution engineers are often re-
inventing the wheel we’ve already created in our stand-
alone driver.

In all fairness Novell has a great KMP (kernel module
package) model that allows us to provide them a driver
from our out-of-tree code that they build and provide to
users.

Bug fixes often go into distributions but sometimes
don’t make it upstream. Even when they do make it
upstream, it is difficult to track what is required to be
changed in the out-of-tree driver.

What to Test?

Pre-production

Pre-production testing tests mostly the out-of-tree
driver, looking for hardware bugs and verifying
driver functionality. If we had unlimited time and
resources we would ideally make the driver back-
port for the distribution, and then test. Often dis-
tribution code submittal windows are closed before
we have final silicon, and yet the silicon will ship
before the distribution in question.

Early Release

Early (before release of the hardware) kernel sub-
mittal often has just basic functionality. Testing
this gives you a warm fuzzy feeling and can be
the basis of the initial kernel submittal, and so is
a worthwhile effort.

Distributions

Testing our driver that is included in the distribu-
tion is the hardest because they likely don’t even
have hardware support yet for the device you’re

2010 Linux Symposium • 39

testing. The distribution is assumed to have basi-
cally the same driver that is upstream, but in prac-
tice because of the backporting the distribution has
to do, the driver is an actual fork. The confusion
due to differing version numbers in drivers must be
managed in some way or another. In our case we
add -kN to our version numbers for drivers submit-
ted to the kernel. In addition we also ask the dis-
tributions if they make any changes to our driver to
update the -kN to the next odd value, with the goal
of having in-kernel drivers have all even numbers
for N, i.e. 2,4,6, and distribution backports would
hopefully have odd values of N, i.e. 1,3,5.

Limitations to This Path

Double work

Most driver changes must be made once to the in-
ternal version and once to the kernel version. After
that, changes to the distribution drivers need to be
initiated and tracked through the relevant methods.

Upstream vs Out-of-tree

Keeping the drivers in sync is a significant effort.
Our solution is diligence, patience, and a signif-
icant time and resource commitment. The whole
team participates in the open source community via
monitoring mailing lists and submitting patches.

6 Common Questions

Why not release code earlier?

We have: 82599 driver released 4 weeks before general
hardware availability. 82580 driver released November
7 2009, at least 8 weeks before general hardware avail-
ability.

Why not develop in the open?

By this, I believe the question to be "why don’t we have
a public git tree?" We push patches upstream as soon
as they are ready. Developing in a public git repository
only allows us to target one kernel version, and our re-
quirements include other delivery vehicles besides the
upstream kernel.

How come you don’t just develop for the upstream
kernel?

Our customers demand support in older kernels, not just
the upstream kernel driver.

Why don’t you use a “real” version control system?

We’d like to use GIT, but training Windows, BSD de-
velopers, technical marketing engineers, and software
configuration management engineers to use GIT is a big
effort. In short, we’re working on it but don’t expect
quick changes.

7 Conclusion

Developing in-kernel and out-of-tree drivers can be
done with a common source base and a minimum of
work. This paper shows some of the methods and prac-
tices Intel Wired Ethernet developers utilize. We wel-
come any follow-up questions and discussion either di-
rectly to the author or on our public email list.

e1000-devel@lists.sourceforge.net

40 • Developing Out-of-Tree Drivers alongside In-Kernel Drivers

Open Source Governance: An Approach

Art Cannon
Your affiliation

your-address@example.com

Abstract

• 41 •

42 • Open Source Governance: An Approach

Database on Linux in a virtualized environments over NFS

Bikash Roy Choudhury
Your affiliation

your-address@example.com

Abstract

• 43 •

44 • Database on Linux in a virtualized environments over NFS

KVM for ARM

Christoffer Dall and Jason Nieh
Columbia University

{cdall,nieh}@cs.columbia.edu

Abstract

As ARM CPUs grow in performance and ubiquity
across phones, netbooks, and embedded computers, pro-
viding virtualization support for ARM-based devices
is increasingly important. We present KVM/ARM, a
KVM-based virtualization solution for ARM-based de-
vices that can run virtual machines with nearly unmod-
ified operating systems. Because ARM is not virtualiz-
able, KVM/ARM uses lightweight paravirtualization, a
script-based method to automatically modify the source
code of an operating system kernel to allow it to run
in a virtual machine. Lightweight paravirtualization is
architecture specific, but operating system independent.
It is minimally intrusive, completely automated, and re-
quires no knowledge or understanding of the guest oper-
ating system kernel code. By leveraging KVM, which is
an intrinsic part of the Linux kernel, KVM/ARM’s code
base can be always kept in line with new kernel releases
without additional maintenance costs, and can be easily
included in most Linux distributions. We have imple-
mented a KVM/ARM prototype based on the Linux ker-
nel used in Google Android, and demonstrated its ability
to successfully run nearly unmodified Linux guest oper-
ating systems.

1 Introduction

To provide the benefits of virtualization to Linux users,
Kernel Virtual Machine (KVM) has been included in
Linux starting with kernel version 2.6.20. Its tremen-
dous success is in large part due to its open-source distri-
bution and its relative simplicity compared to other ap-
proaches. This simplicity is achieved by leveraging the
functionality already provided by the Linux kernel, and
relying on some level of hardware virtualization sup-
port. KVM runs on a wide range of architectures, cur-
rently providing full support for x86 and PowerPC, and
experimental support for Itanium (ia64) and s390. The

x86 and ia64 implementations rely on hardware virtual-
ization extensions and the PowerPC and s390 architec-
tures are virtualizable.

Unfortunately, KVM does not support the ARM archi-
tecture, which is increasingly ubiquitous. While ARM is
known for excellent power consumption, small die size,
and compact code, recent CPUs based on the ARM ar-
chitecture are also quite powerful, and are being incor-
porated in growing numbers into a wide range of prod-
ucts. Mobile phones are almost exclusively based on
ARM, and ARM-based tablets and laptops with 3G con-
nections are increasing in popularity. Users increasingly
expect these devices to be able to perform a multitude
of tasks, including browse the Internet, play games, and
run thousands of other applications from an online ap-
plication store. ARM Linux is becoming more impor-
tant with the introduction of several Linux-based dis-
tributions targeting mobile and embedded ARM-based
devices, Google Android being one of them.

The key challenge in providing virtualization on ARM
is that the ARM architecture is not virtualizable. A vir-
tualizable architecture would allow a virtual machine to
directly execute on the real hardware while guaranteeing
that the virtual machine monitor (VMM) retains control
of the CPU. This is done by running the operating sys-
tem in the virtual machine, the guest operating system,
in non-privileged mode while the VMM runs in priv-
ileged mode. ARM is not virtualizable because there
are a number of sensitive instructions, used by operat-
ing systems, which do not generate a trap when executed
in non-privileged mode. Their behavior is either unpre-
dictable or they behave differently, causing an operating
system that uses these sensitive instructions to not run
correctly if run in a virtual machine directly executed
on the real hardware. There is also no hardware virtual-
ization support on ARM. The result is that ARM CPU
and memory virtualization are difficult.

We present KVM for ARM (KVM/ARM), a KVM-
based virtualization solution for ARM that runs nearly

• 45 •

46 • KVM for ARM

unmodified operating system instances in virtual ma-
chines. KVM/ARM retains the simplicity of the KVM
architecture in the absence of ARM hardware virtual-
ization support by introducing lightweight paravirtual-
ization. Lightweight paravirtualization is a script-based
method to automatically modify the source code of the
guest operating system kernel to issue calls to KVM in-
stead of issuing sensitive instructions to enable a trap-
and-emulate virtualization solution. Lightweight par-
avirtualization is architecture specific, but operating sys-
tem independent. It is completely automated and re-
quires no knowledge or understanding of the guest op-
erating system kernel code. This is in stark contrast
to traditional paravirtualization, which is both archi-
tecture and operating system dependent, requires de-
tailed understanding of the guest operating system ker-
nel to know how to modify its source code, and then re-
quires ongoing maintenance and development to main-
tain heavily modified versions of operating systems that
can be run in virtual machines.

This paper presents the design and implementation of
KVM/ARM. Section 3 describes KVM/ARM CPU vir-
tualization using lightweight paravirtualization. Sec-
tion 4 describes KVM/ARM memory virtualization.
Section 5 describes the current implementation status
of KVM/ARM and ideas for improvement. Finally, we
present some concluding remarks.

2 Related work

Virtualization has been around since the of the
1970s [6], but re-emerged in the 1990s as commod-
ity x86 hardware became fast enough to run multiple
operating systems simultaneously. The x86 architec-
ture was previously not virtualizable since many sen-
sitive instructions did not trap when executed in non-
privileged mode [1]. Emulation could be used where
each guest instruction is interpreted in software, but this
is too slow for practical use. To overcome this problem,
VMware [13] introduced efficient dynamic binary trans-
lation mechanisms to translate sensitive instructions to
other instructions to enable x86 virtualization with low
performance overhead. However, the dynamic binary
translation mechanisms are not easy to implement, re-
sulting in a complex solution that is likely to be too
heavyweight to use for more resource-constrained mo-
bile devices such as smartphones. Xen [5] used paravir-
tualization [17] to provide x86 virtualization, in which
guest operating systems are extensively modified by

hand to use a rich set of hypercalls in lieu of sensitive
instructions. However, paravirtualization cannot run ex-
isting unmodified operating systems, and the modifica-
tions are extensive enough that supported guest operat-
ing systems lag significantly behind the latest available
unmodified operating system versions.

Intel and AMD have recently begun equipping x86
CPUs with native hardware virtualization support, In-
tel VT [9] and AMD-V [2], respectively. A new CPU
guest mode is provided for running virtual machines
such that sensitive instructions automatically trap so
they can be handled by a VMM, and nested page tables
provide hardware translation between physical memory
addresses perceived by the guest operating system and
host physical addresses on the real hardware through
a data structure managed by the VMM. KVM lever-
ages hardware virtualization support for x86 CPUs to-
gether with existing Linux kernel functionality to pro-
vide a relatively simple virtualization solution compared
to VMware and Xen. KVM implements a simple kernel
module, which provides full native virtualization sup-
porting completely unmodified guest operating systems.
Unfortunately, no such hardware virtualization support
exists for ARM. KVM/ARM is designed to preserve the
simplicity of KVM as much as possible while enabling
virtualization support on a non-virtualizable architec-
ture.

The growing ubiquity of ARM CPUs and continued ad-
vances in their performance have spurred various ef-
forts to provide virtualization on ARM. Several com-
mercial solutions are being developed, including VLX
for ARM by VirtualLogix [15], OKL4 Microvisor by
OK Labs [11], MVP by VMware [16], and INTEGRITY
secure virtualization by Green Hills [7]. None of these
solutions are open-source and all of them require par-
avirtualization.

Xen ARM [8] is the only other open-source ARM virtu-
alization approach available. Xen paravirtualization re-
quires access to guest operating system source code and
maintenance of changes to each version of the source
tree. The price of paravirtualization is increased main-
tenance cost and more limited availability in terms of
supported guest operating system versions. For exam-
ple, Xen ARM requires modifying by hand approxi-
mately 4500 lines of code in the guest operating sys-
tem [14]. The most recent kernel version it can sup-
port in a guest operating system is a modified Linux
2.6.11 kernel, a relatively old version of Linux. In con-

2010 Linux Symposium • 47

trast, KVM/ARM’s lightweight paravirtualization re-
quires minimal modifications to guest operating sys-
tems, and those modifications are simple enough that
they can be completely automated by a script. This
makes it relatively easy for KVM/ARM to support more
recent versions of guest operating systems.

3 CPU virtualization

Virtual machines must not be allowed to access the priv-
ileged state of the physical CPU and thereby gain un-
wanted control of hardware resources. Therefore, guest
operating systems must always run in a non-privileged
mode. The non-privileged mode on ARM is called user
mode.

Popek and Goldberg [12] define sensitive instructions
as the group of instructions where the effect of their ex-
ecution depends on the mode of the processor or the lo-
cation of the instruction in physical memory. A sensi-
tive instruction is also privileged if it always generates
a trap, when executed in user mode. The VMM can
only guarantee correct guest execution without the use
of dynamic translation if all sensitive instructions are
also privileged. In other words, an architecture is vir-
tualizable if and only if the set of sensitive instructions
is a subset of the set of privileged instructions. If that
is the case, the VMM can be implemented using a clas-
sic trap-and-emulate solution. Unfortunately, ARM is
not virtualizable as the architecture defines both sensi-
tive privileged instructions and sensitive non-privileged
instructions.

The sensitive privileged instructions defined by the
ARM architecture are the coprocessor access instruc-
tions which are used to access the coprocessor inter-
face. There is no such thing as a physical coprocessor,
but the semantics are used merely to extend the instruc-
tion set by transferring data between general purpose
registers and registers belonging to one of the sixteen
possible coprocessors. The architecture always defines
coprocessor number 15 which is called the system con-
trol coprocessor and controls the virtual memory sys-
tem. Specific implementations of the ARM architecture
can define other coprocessors to allow software to ac-
cess special hardware or otherwise leverage additional
hardware logic. For instance, coprocessor 14 is often
used to access floating point hardware. The coprocessor
access instructions are: CDP, LDC, MCR, MCRR, MRC,
MRRC, and STC. These instructions do not have to be

handled specially as they trap when they are executed in
user mode. When that happens, KVM/ARM catches the
trap and emulates the sensitive privileged instruction in
software.

The ARM architecture also defines sensitive non-
privileged instructions which cannot be handled using
just trap and emulate because they do not trap. These
instructions deal with processor modes, status registers,
and memory accesses that depend on CPU mode.

Processor mode instructions relate to ARM’s 7 proces-
sor modes: user mode and 6 privileged modes.1 Each
mode has a number of banked registers, which means
that, for instance, register 13 points to a different physi-
cal register in supervisor mode than in user mode.2 Spe-
cific versions of load/store multiple instructions access
user mode registers even when the processor is in a priv-
ileged mode. When executed in user mode, these in-
structions do not trap and are therefore sensitive and
non-privileged. These instructions are the LDM(2) and
STM(2) instructions.

Status register instructions relate to special ARM sta-
tus registers. ARM processors have a special regis-
ter called the Current Program Status Register (CPSR),
which specifies the current mode of the CPU and other
state information. Some of the bits in the CPSR are priv-
ileged, such as the mode bits, and some are accessible
in user mode. Five of the privileged modes also have a
banked Saved Program Status Register (SPSR), which
contains a copy of the user mode CPSR as it was when
the processor entered the privileged mode.3. The sta-
tus register access instructions CPS,MRS,MSR,RFE,
SRS read and write the CPSR and the SPSR. Writes
to privileged bits are ignored when the CPU is in user
mode and access to the SPSR is unpredictable in user
mode. Further, almost all data processing instructions
exist in a special mode, which replaces the content
of the CPSR with that of the SPSR. These instruc-
tions are denoted by appending an S to the instruc-
tion name: ADCS, ADDS, ANDS, BICS, EORS, MOVS,
MVNS, ORRS, RSBS, RSCS, SBCS, and SUBS. Like-
wise, the LDM(3) instruction replaces the content of

1See pages A2-3 to A2-5 in the ARM Architecture Reference
Manual [3] for more information

2The differences between the privileged modes only concern the
banked registers and can be ignored throughout this paper.

3Actually, the CPSR is only copied to the SPSR when entering
privileged mode through exceptions and not when manually switch-
ing modes

48 • KVM for ARM

the CPSR with that of the SPSR in addition to loading
multiple registers. The behavior of these instructions is
unpredictable when executed in user mode and the in-
structions are therefore all sensitive and non-privileged.

Memory access instructions that depend on CPU mode
relate to access protection. The virtual memory system
on ARM processors uses access protection bits to limit
access to memory depending on the CPU mode. Regular
memory accesses are not sensitive according to Gold-
berg and Popek, as they will trap when executed in a less
privileged mode (reduced memory access rights). How-
ever, the architecture defines a number of instructions
that access memory using user mode access permissions
even though the CPU is in a privileged mode. These
instructions are called Load/Store with translation and
there are four of them: LDRBT, LDRT, STRBT, and
STRT. When executed in user mode, these instructions
behave as regular memory access instructions. Thus
the effect of executing these instructions depends on the
mode of the processor and the instructions do not trap
due to memory access violations. They are therefore
sensitive and non-privileged.

3.1 Lightweight paravirtualization

To avoid the problems with sensitive non-privileged
instructions, we modify the guest kernel source code
slightly. We do not have to worry about user space soft-
ware as user space applications will execute in the same
CPU mode as if they were executing directly on a physi-
cal machine. Sensitive instructions are not generated by
standard C-compilers and are therefore only present in
assembler files and inline assembly.

We modify the guest kernel source code using an auto-
mated scripting method. The script is based on regular
expressions and has been tested on a number of kernel
versions with success. The script supports inline assem-
bler syntax, assembler as part of preprocessor macros,
and, assembler macros.

It works by replacing sensitive non-privileged instruc-
tions with trap instructions and emulating the sensitive
instruction in software when handling the trap. How-
ever, KVM/ARM must be able to retrieve the original
sensitive instruction including its operands to be able
to emulate the sensitive instruction when handling a
trap. We experimented with inserting the trap instruc-
tion immediately before the sensitive instruction, but

this caused problems with PC-relative addressing and
fix-up tables.4 To avoid the need to manually fix the
patched code, we defined an encoding of all the sensi-
tive non-privileged instructions and their operands into
trap instructions.

The SWI instruction on ARM always traps and is nor-
mally used for making system calls. The instruction
contains a 24-bit immediate field (the payload), which
we can use to encode sensitive instructions. Unfortu-
nately, the 24 bits are not quite enough to encode all the
possible sensitive non-privileged instructions and their
operands. However, all coprocessor access instructions
trap if they access an undefined coprocessor. If we
specify coprocessors zero through seven, which are not
defined by the ARM architecture, all the coprocessor
access functions will trap regardless of their operands.
The coprocessor access instructions use 24 bits for their
operands, which we can also leverage to encode the sen-
sitive non-privileged instructions.

The VMM needs to be able to distinguish between guest
system calls and traps for sensitive instructions. We
make the assumption that the guest kernel does not make
system calls to itself. Under this assumption, we simply
interpret the payload if the virtual CPU is in privileged
mode and emulate the encoded instruction. If the virtual
CPU is in user mode, we consider the SWI instruction a
system call made by guest user space to the guest kernel.

The ARM architecture defines 24 sensitive non-
privileged instructions in total. We encode the instruc-
tions by grouping them in 15 groups; some groups con-
tain many instructions and some only contain a single
instruction. The upper 4 bits in the SWI payload in-
dexes which group the encoded instruction belongs to
(see Table 1). This leaves us 20 bits to encode each type
of instruction. Since there are 5 status register access
functions and they need at most 17 bits to encode their
operands, they can be indexed to the same type and be
sub-indexed using additional 3 bits. There are 12 sensi-
tive data processing instructions and they all use register
15 as the destination register and they all always have
the S bit set (otherwise they are not sensitive). We in-
dex them in two groups: one where the I bit is set and
one where it’s clear. In this way, the data processing
instructions need only 16 bits to encode their operands

4Fix-up tables is a method used by the kernel to verify access on
copy to and from user space operations. It uses offsets to the PC
linked at a special section and added to the PC on memory access
violations.

2010 Linux Symposium • 49

leaving us 4 bits to sub-index the specific instruction out
of the 12 possible. The sensitive load/store multiple and
load/store with translation instructions are using 12 of
the remaining 13 index values as can be seen in Table 1.

Index Group / Instruction
0 Status register access instructions
1 LDM (2), P-bit clear
2 LDM (2), P-bit set
3 LDM (3), P-bit clear and W-bit clear
4 LDM (3), P-bit set and W-bit clear
5 LDM (3), P-bit clear and W-bit set
6 LDM (3), P-bit set and W-bit set
7 STM (2), P-bit set
8 STM (2), P-bit clear
9 LDRBT, I-bit clear

10 LDRT, I-bit clear
11 STRBT, I-bit clear
12 STRT, I-bit clear
13
14 Data processing instructions, I-bit clear
15 Data processing instructions, I-bit set

Table 1: Sensitive instruction encoding types

In Table 1 only the versions of the load/store instruc-
tions with the I-bit clear are defined. This is due to a
lack of available bits in the SWI payload. We encode
the versions with the I-bit set using the coprocessor ac-
cess instruction. When the I-bit is set, the load/store
address is specified using an immediate value which re-
quires more bits than when the I-bit is clear. Since the
operands for coprocessor access instructions use 24 bits,
we can use 2 bits to distinguish between the 4 sensitive
load/store instructions. That gives us 22 bits to encode
the instructions with the I-bit set, which is exactly what
is needed.

We illustrate the implementation of our solution by an
example. Consider this code in arch/arm/boot/
compressed/head.S:

mrs r2, cpsr @ get current mode
tst r2, #3 @ not user?
bne not_angel

The MRS instruction in line one is sensitive, since when
executed as part of booting a guest, it will simply return
the hardware CPSR. However, we must make sure that

it returns the virtual CPSR instead. Thus, we replace it
with a SWI instruction as follows:

swi 0x022000 @ get current mode
tst r2, #3 @ not user?
bne not_angel

When the SWI instruction in line one above generates
a trap, KVM/ARM loads the instruction from memory,
decodes it, emulates it, and finally returns to line two.

The approach differs from Xen’s paravirtualization solu-
tion in that it requires no knowledge of how the guest is
engineered and can be applied automatically on any OS
source tree compiled by GCC. For instance, Xen defines
a whole new file in arch/arm/mm/pgtbl-xen.c,
which contains functions based on other Xen macros to
issue hypercalls regarding memory management. Calls
to these functions are placed instead of existing kernel
code through the use of preprocessor conditionals many
places in the kernel code. The presented solution com-
pletely maintains the original kernel logic, which dras-
tically reduces the engineering cost and makes the solu-
tion more suitable for test and development of existing
kernel code.

3.2 Exceptions

An exception to an ARM processor is a common term
for traps and interrupts. Traps are caused by software
issuing an instruction that traps and interrupts are gen-
erated externally by hardware events. Common for all
of them are that when they occur, the processor changes
to a privileged mode and jumps to a predefined virtual
memory address. The ARM architecture defines the ex-
ceptions shown in Table 2. It is configurable at run-time
whether the low or high address shown in the table are
used.

The reset exception occurs when the physical reset pin
on the processor is asserted. Undefined exceptions
happen when an unknown op-code is used for an in-
struction or when software in user mode try to access
privileged coprocessor registers or when software ac-
cess non-existing coprocessors. Software interrupt ex-
ceptions happen when SWI instructions are executed.
Prefetch and data abort exceptions happen when the
processor cannot fetch the next instruction or complete
load/store instructions, respectively. These exceptions

50 • KVM for ARM

Exception Low addr. High addr.
Reset 0x00000000 0xffff0000
Undefined 0x00000004 0xffff0004
Software interrupt 0x00000008 0xffff0008
Prefetch abort 0x0000000c 0xffff000c
Data abort 0x00000010 0xffff0010
Interrupt 0x00000018 0xffff0018
Fast-interrupt 0x0000001c 0xffff001c

Table 2: ARM exceptions overview

are either caused by missing page table entries or by
memory protection violations. Interrupt and fast inter-
rupts are caused by external hardware asserting a pin on
the processor.

ARM operating systems must configure the exception
environment before any exceptions occur. ARM pro-
cessors have interrupts disabled at power on. During the
boot process, the operating system makes sure not to
generate any traps as these would cause unpredictable
behavior. After the OS sets up page tables and enables
virtual memory, it makes sure to map an exception vec-
tor page into 0xffff0000 (if high vectors are used). Only
then it enables interrupts and starts generating traps. The
instructions at the specific addresses in Table 2 are usu-
ally branch instructions to more or less complex handler
functions.

When the guest runs, it is likely going to use almost the
entire virtual address space. Especially if we are run-
ning the same guest and host OS, there is clearly going
to be a conflict. Therefore, VMs execute in their own
separate address space. The only host pages mapped in
the VM address space are the exception vector page and
the shared page. We explain the shared page in more
details in Section 4.2.

When the CPU is executing guest code, the only way for
KVM/ARM to regain control is through an exception.
Unfortunately, we cannot use the host kernel exception
handlers to handle exceptions when running the guest,
but we have to write our own handlers. The KVM/ARM
exception handlers are mapped at the exception vec-
tor page address in the VM’s address space and are
designed to re-enter the host kernel address space and
return to host kernel code when an exception occurs.
KVM/ARM then examines the guest exit reason and
performs required emulation before resuming guest ex-
ecution.

The above approach differs significantly from KVM on
x86, which is based on hardware virtualization support.
With hardware virtualization support, the exit path from
guest execution is not through normal exceptions. In-
stead, the hardware automatically changes segment reg-
isters and thereby changes the address space back to
the host kernel and resumes execution after the origi-
nal world switch instruction. Software can then simply
read a special register to determine the guest exit reason.

When KVM/ARM handles a hardware interrupt, it
needs to run the host kernel hardware interrupt han-
dler. If the host kernel handler is not run, the host ker-
nel may miss important hardware events such as timer
ticks or network packets. The host kernel interrupt han-
dler queries the interrupt controller to find out what hap-
pened and manages the device that caused the interrupt
as necessary. However, since we want to run the host
kernel handler after the actual hardware interrupt went
off, we are entering the host handler differently than
usual. Unfortunately, it’s not just a matter of a simple
function call as the host kernel handler expects a certain
state of the stack and CPU registers when the handler is
called. KVM/ARM sets up a state exactly as it would
have been if the host kernel interrupt handler had han-
dled the interrupt directly, and executes the host kernel
handler.

We note that in the typical use of KVM the guest ker-
nel never needs to handle interrupts as a result of hard-
ware interrupts. The guest kernel will only be exposed
to emulated devices. Interrupts from emulated devices
are generated by software and artificially injected into
the guest. When this happens, or when we need to in-
ject a trap to the guest (e.g. guest user space issues a
system call to the guest kernel) an address space con-
flict can occur.

Suppose the guest is using the high address for the
exception vector page and the host is also using the
high address to handle actual hardware exceptions. The
two physical frames can obviously not be mapped at
the same virtual address during guest execution, and
the KVM/ARM exception vector page must always be
mapped, since otherwise there is no way for the host
kernel to regain control of the system. When the guest
kernel is about to handle an exception, it will trap on the
instruction memory access permissions, since the guest
does not have access to the KVM/ARM exception vec-
tor page. In this case we simply tell the hardware to use
the low vector addresses and map the KVM/ARM ex-

2010 Linux Symposium • 51

ception page at that address instead. If later the guest
needs to access the low vector address for other pur-
poses, we simply tell the hardware to use the high vector
addresses again. Switching the vector location is a very
simple operation and involves only writing to a copro-
cessor register and invalidating a few TLB entries and
cache lines.

The exception handlers used by KVM/ARM are com-
piled as a part of KVM and get linked at an unknown ad-
dress. When a VM is created in KVM/ARM, the excep-
tion handlers are relocated from the address they were
linked at to a newly allocated exception vector page be-
longing to that VM. Due to limited width of the immedi-
ate fields in ARM instructions even assembler code can
generate binary code, which cannot simply be copied to
a new location as it may reference data at specific ad-
dresses. Therefore the exception handler code is writ-
ten in location-independent assembly. For instance, the
following instruction would generate a load from a PC-
relative address, which would not be easy to detect when
relocating the code:

code_start:
ldr lr, =0xffff1000
...

code_end:

Instead, we write the code like the following, which
loads the 32-bit immediate value from a local label rel-
ative to the PC. When we relocate the code segment we
copy the code until the code_end label, which will in-
clude the data value:

code_start:
ldr lr, 1f
...

1: .word 0xffff1000
code_end:

4 Memory virtualization

Virtual machines need access to any part of the virtual
address space they desire. But we cannot simply al-
low the guest OS to manage the physical memory or the
MMU, as the host OS must retain control over physi-
cal memory and be protected from the guest at all times.
Therefore, the memory must be virtualized.

The memory system on ARM exists in two flavors: one
without an MMU (replaced by a Memory Protection
Unit (MPU)) and one with an MMU. The latter trans-
lates virtual to physical addresses in hardware using a
rather flexible two-level page table layout. The pre-
sented solution is developed for systems with an MMU.
MMU-less cores are usually used in extremely simple
embedded systems where virtualization may be of less
importance anyway.

Memory virtualization introduces a new address space:
guest physical addresses. Guest physical addresses are
the addresses that the guest thinks represent physical
memory addresses. However, since the memory is virtu-
alized they are simply offsets into the memory region al-
located to the guest. Guest page tables, which are man-
aged by the guest kernel, translate from guest virtual ad-
dresses to guest physical addresses and can therefore not
be used for address translation by the MMU. The guest
physical addresses must first be translated to host physi-
cal addresses (also called machine addresses)5. See Fig-
ure 1 for an illustration of the address spaces.

KVM process
Virtual Memory

Guest physical

Guest virtual

Host kernel Guest memory

Machine memory

Figure 1: KVM address spaces

4.1 Shadow page tables

Shadow page tables are data structures managed by
KVM/ARM, which are used by the hardware to trans-
late from guest virtual addresses to machine addresses
during guest execution.

5Recent hardware support for virtualization include technologies
called Nested Page Tables or Extended Page Tables. These technolo-
gies add an extra translation table, which translates guest physical
addresses to machine addresses in hardware.

52 • KVM for ARM

When a new shadow page table is allocated, two spe-
cial entries are always created and the rest of the table
is left blank. The two special pages are the shared page
explained in Section 4.2 and the exception vector page
discussed in Section 3.2. If the guest tries to access any
page other than the two just mentioned, a page fault oc-
curs.

Guest pages are mapped into shadow page tables on de-
mand, when KVM/ARM handles page faults occurring
in VMs. The custom KVM/ARM exception handler will
determine the virtual address which caused the fault and
create an appropriate mapping in the shadow page table.
Such a mapping must translate from the fault address to
a machine address. KVM/ARM translates the fault ad-
dress into a guest physical address by walking the guest
page tables in software. The guest physical address is
then translated to a host virtual address through archi-
tecture independent KVM functionality and finally the
host virtual address is translated to a machine address by
using standard kernel virtual memory translation func-
tions.

ARM level-1 page table entries can be either section de-
scriptors, pointers to coarse page tables or pointers to
fine page tables. Coarse and fine page tables are com-
monly referred to as level-2 tables. Sections is a way
to map a 1MB virtual memory region to a correspond-
ing 1MB of contiguous physical memory. Coarse page
table entries map pages of either 64KB (large pages),
4KB (small pages) or 1KB (tiny pages). Linux uses
almost exclusively coarse page tables with pointers to
4KB small pages.

The entries in the shadow page tables should generally
be of the same type as the entries in the guest page ta-
bles. However, this may not be possible when the guest
uses section descriptors. Since Linux operates with a
4KB page size and KVM/ARM requests physical mem-
ory pages from Linux user pages, we cannot guaran-
tee 1MB contiguous free physical memory on the host.
Therefore, all shadow page table entries use 4KB small
page mappings. This approach causes no loss in func-
tionality, but it may affect performance negatively. The
reason is that section descriptors only occupy a single
entry in an ARM TLB, where a similar mapping of a
1MB area based on 4KB small pages occupy 256 TLB
entries.

When the guest modifies page tables, KVM/ARM must
also update the shadow page table. For instance, if the

guest kernel uses copy-on-write, it will change the map-
ping on the first write to the COW section. Fortunately,
the guest must invalidate the TLB when changing page
tables. TLB invalidation is a privileged operation so
KVM/ARM will catch the operation. When it happens,
KVM/ARM simply re-initializes the shadow page table
to only contain the shared page and the exception page
and maps in the updated entries on demand.

4.2 Shared page and world switches

The shared page mentioned above is, as the name sug-
gests, a page which is shared between the host and the
guest. It is always mapped at the same address in the
host kernel as in the guest kernel and it is used to per-
form world switches. The reason why we need a shared
page is that guests execute in completely separate ad-
dress spaces from the host and the ARM architecture
requires that a change of address spaces is done from a
page mapped at the same virtual address in both the pre-
vious and new address space - otherwise the behavior is
unpredictable.

The shared page is mapped such that the guest can-
not access the page and any reads or writes from or
to the page will generate a page permission fault. If
that happens, KVM/ARM must map the shared page
at a different virtual address in both the host and the
guest and map a guest page at the fault address instead.
By doing so, the existence of the shared page is hid-
den from the guest OS. For Linux guests we take ad-
vantage of the reserved memory region in ARM Linux
(see Documentation/arm/memory.txt for more
info).

The shared page is structured as shown in Figure 2.
The code contains two entry points: __vcpu_run and
__exception_return. The first is used to switch
to the guest and the second is called from the custom
exception handlers to restore the host environment after
an exception occurs. The data in the top of the page is
needed to complete world switches. For instance, when
switching to the guest, the code in the shared page reads
the base physical address of the active level-1 page ta-
ble from a special register called the Translation Table
Base Register (TTBR) and stores the value at the top
of the shared page. The data section also contains the
physical base address of the shadow page tables and
the world switch code writes this value to the hardware
TTBR. After the page tables have been switched, the

2010 Linux Symposium • 53

stack pointer is no longer valid as the kernel stack loca-
tion is no longer mapped to the right physical memory.
Therefore we reserve 2K from the top of the shared page
for the stack.

data
0

4K

code

stack
sp

Figure 2: Shared page layout

Because KVM is compiled and distributed as a mod-
ule, and because we want to be able to run multiple
guests simultaneously6, and because we may not know
the shared virtual address at compile time, the code on
the shared page can not be linked directly by the ker-
nel. Instead, a shared page is allocated per VM, and
the world switch code is relocated to the correspond-
ing shared page. Like the code for the exception vector
page, the code for the shared page is written in position-
independent assembly to make it relocatable.

4.3 Memory protection

Memory protection on ARM works through two con-
cepts: Domains and Access Permissions. These fea-
tures are used by traditional ARM operating systems to
protect for instance kernel memory from user space ap-
plications and to implement features such as copy-on-
write.

There are 16 domains on ARM - domain 0 to 15. Each
level-1 page table entry describes a 1MB virtual address
region. The level-1 entries contain a 4-bit value denot-
ing which domain the 1MB address region belongs to.
Each domain can be in one of the following three modes:

• No access

• Client

• Manager

6Since the data on the shared page belongs to the specific VM,
the shared page cannot be shared across VMs

If a page belongs to the no access domain, all accesses
to that page will generate faults. If a page belongs to
an administrator domain, all accesses will succeed. Fi-
nally, if a page belongs to a client domain, the access
permissions on page table entries are checked.

The access permissions define permissions depending
on the privilege level of the CPU. In Table 3 we show
the possible access permissions for normal memory on
ARMv5.

AP[1:0] Privileged User
0b00 No access No access
0b01 Read/write No access
0b10 Read/write Read only
0b11 Read/write Read/write

Table 3: Access permission settings

Since the guest will always run in user mode,
KVM/ARM must translate the guest page access per-
missions to a value resulting in the same level of pro-
tection on the shadow page tables. For example, if the
guest page tables allow read/write access in privileged
mode but no access in user mode, and the VM is in
privileged mode, the shadow page table access permis-
sions must use read/write for user mode. When the VM
changes CPU mode, KVM/ARM updates access per-
missions on shadow page table entries correspondingly.
See Table 4 for the translation scheme used to translate
between guest access permissions and shadow access
permissions.

Domains are essentially easy to handle in shadow page
tables, since their settings can simply be copied from
the guest page tables and used on the shadow page ta-
bles. However, the shared page and the exception vector
page must always have read/write privileged access and
no user mode access, in order to protect the host from
the guest. Consequently these pages must be mapped
using a client domain. Since the domain is specified for
a 1MB virtual address space range, a single level-1 page
table entry can specify the domain for both pages be-
longing to the guest and for the exception vector page
or the shared page or both. In this case, KVM/ARM
changes the level-1 page table entry domain to a client
domain and modifies access permissions on the shadow
page table entries in the same 1MB address range to cor-
respond to the guest domain setting.

54 • KVM for ARM

Guest page table permissions Shadow page table permissions
Guest mode Priv. User AP Priv. User AP
User

NA NA 00 RW
NA 01

Priv. NA 01
User

RW NA 01 RW
NA 01

Priv. RW 11
User

RW RO 10 RW
RO 10

Priv. RW 11
User

RW RW 11 RW
RW 11

Priv. RW 11

Table 4: Access permission translation from guest to shadow page tables

5 Implementation status

The presented work is based on the 2.6.27 kernel run-
ning on the Google Android emulator, which emulates
the ARMv5 architecture (specifically an arm926E core)
on a custom “Goldfish” platform. The emulator pro-
vided us with a very convenient development environ-
ment as it supports GDB debugging of kernel code.

The solution successfully boots a Linux kernel with a
simple user space init environment. We can run small
programs although with poor performance. This was
not surprising, as the implementation has not been op-
timized for performance. Instead, the work has been
focused on correct functionality and full support for all
architecture features. As a consequence many features
have been implemented naively, which eased debugging
and code clarity and performance optimizations have
been postponed for future work.

The VM supports the devices on a standard ARM in-
tegrator development platform. Theoretically, since all
devices are memory-mapped on ARM and thereby com-
municate with QEMU using the same functionality, all
devices should work once a single device works. How-
ever, there may be timing constraints which requires
the use of paravirtualized drivers, coalesced MMIO or
something completely different.

The MMU emulation does not support tiny pages. The
reason is simply that we have not come across a guest
using them yet. Further, the use of tiny pages is depre-
cated from ARMv6 and forward.

We are currently working on ARMv6 and ARMv7
support. The ARMv6 work is done on the HTC

Dream G1 developer phone which is equipped with a
ARM1136EJ-S core. The ARMv7 work is done on Bea-
gleBoards which feature Cortex-A8 cores. The majority
of this work consists of supporting the new page table
formats introduced in ARMv6, supporting processor-
specific cache and TLB manipulation functions, ensur-
ing cache coherency on shared data, and adding emula-
tion code to support a few instructions added in ARMv6
such as SRS and RFE.

Additionally we are also taking steps to improve the per-
formance of the system. Specifically, we are taking ad-
vantage of new ARMv6 features to reduce the world
switch costs. ARMv6 and newer supports physically
tagged caches, which in part avoids the need to flush
caches on world switches. Further, ARMv6 supports
tagging of TLB entries with Application Space Identi-
fiers (ASIDs), which allows several TLB entries with
the same virtual address, but belonging to different ad-
dress spaces, to reside in the TLB at the same time. By
using ASIDs we can avoid TLB invalidations on world
switches. Finally, we are also experimenting with other
performance improvements such as removing unneces-
sary memcopies, caching shadow page tables and more.

ARM TrustZone[4] is a security technology available in
a number of recent processors from ARM and is the
closest thing to hardware support for virtualization on
ARM. In contrast to the latest versions of x86 hard-
ware virtualization extensions, TrustZone does not sup-
port memory virtualization and TrustZone does not pro-
vide functionality making it easier to decode sensitive
instructions for emulation. We plan to further investi-
gate the benefits and options for using TrustZone with
KVM/ARM. PikeOS by SYSGO is an ARM hypervi-
sor targeted towards security critical real-time systems.

2010 Linux Symposium • 55

PikeOS is based on TrustZone [7] and thereby limited to
processors with programmable TrustZone support. Un-
fortunately there are no technical details available on
how their solution is engineered in details.

We hope to get the solution included as part of the main-
line kernel and QEMU source trees. The solution hardly
modifies any code outside the KVM module and even
inside KVM there are very few changes to the architec-
ture independent code.

6 Conclusions

We have presented KVM/ARM, the first working open-
source ARM virtualization solution based on KVM.
Although ARM is not virtualizable, we show how
lightweight paravirtualization can be used to automat-
ically enable commodity operating systems to run in
a KVM/ARM virtual machine. The approach is min-
imally intrusive and requires no knowledge or under-
standing of commodity operating system code, mak-
ing it relatively easy for KVM/ARM to support more
recent versions of commodity operating systems. By
building on KVM, KVM/ARM can enjoy the same ben-
efits of KVM, including having its code base kept in
line with new kernel releases without additional main-
tenance costs and being easily included in most Linux
distributions. We have implemented a KVM/ARM pro-
totype based on the Linux kernel used in Google An-
droid and have demonstrated its ability to successfully
run nearly unmodified Linux guest operating systems.

Our KVM/ARM implementation work has benefited
from community support and improvements are ongo-
ing. Newer versions of the ARM architecture pro-
vide features to improve KVM/ARM and bring virtu-
alization to embedded devices, smartbooks, and mobile
phones in the future. For more information about the
project or to get involved, please refer to the project wiki
at: https://wiki.ncl.cs.columbia.edu/
wiki/index.php/AndroidVirt:MainPage.

7 Acknowledgments

Hollis Blanchard, Alexander Graf, and Oren Laadan
provided many helpful suggestions in implementing and
debugging KVM/ARM. This work was supported in
part by NSF grants CNS-0914845 and CNS-0905246,
and AFOSR MURI grant FA9550-07-1-0527.

References

[1] Keith Adams and Ole Agesen. A Comparison of
Software and Hardware Techniques for x86
Virtualization. In ASPLOS-XII: Proceedings of
the Twelfth International Conference on
Architectural Support for Programming
Languages and Operating Systems, pages 2–13,
2006.

[2] AMD Virtualization (AMD-VTM) Technology.
http://sites.amd.com/us/business/
it-solutions/virtualization/
Pages/amd-%v.aspx.

[3] ARM Ltd. ARM Architecture Reference Manual
(ARM DDI 0100I), 2005.

[4] ARM Ltd. TrustZone Security White Paper,
2010. http:
//infocenter.arm.com/help/topic/
com.arm.doc.prd29-genc-009492c/
PRD%29-GENC-009492C_trustzone_
security_whitepaper.pdf.

[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the
Nineteenth ACM Symposium on Operating
Systems Principles, pages 164–177, 2003.

[6] Robert P. Goldberg. A Survey of Virtual Machine
Research. IEEE Computer, 7(6):34–45, 1974.

[7] Green Hills Software Inc. White paper: Integrity
Secure Virtualization for ARM, 2010.
http://www.ghs.com/ds/index.php?
ds=integrity_virt_ARM.

[8] J-Y. Hwang, S-B. Suh, S-K. Heo, C-J. Park, J-M.
Ryu, S-Y. Park, and C-R. Kim. Xen on ARM:
System Virtualization using Xen hypervisor for
ARM-based Secure Mobile Phones. In Fifth IEEE
Consumer Communications and Networking
Conference, pages 257–261, 2008.

[9] Intel R©Virtualization Technology (Intel R©VT).
http://www.intel.com/technology/
virtualization/technology.htm.

[10] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin,
and Anthony Liguori. kvm: The Linux Virtual

56 • KVM for ARM

Machine Monitor. In OLS 2007: Proceedings of
the Linux Symposium, pages 225–230, 2007.

[11] Open Kernel Labs. OKL4 Microvisor.
http://www.ok-labs.com/products/
okl4-microvisor.

[12] Gerald J. Popek and Robert P. Goldberg. Formal
Requirements for Virtualizable Third Generation
Architectures. Communications of the ACM,
17(7):412–421, 1974.

[13] Mendel Rosenblum and Tal Garfinkel. Virtual
Machine Monitors: Current Technology and
Future Trends. IEEE Computer, pages 39–47,
2005.

[14] Sang-bum Suh. Presentation: Secure Architecture
and Implementation of Xen on ARM for Mobile
Devices, 2007. http://www.xen.org/
files/xensummit_4/Secure_Xen_ARM_
xen-summit-04_07_Su%h.pdf.

[15] VirtualLogix. Real-time Virtualization for
Conencted Devices.
http://www.virtuallogix.com/
solutions/product/arm.html.

[16] VMware. VMware Mobile Virtualization
Platform, Virtual Appliances for Mobile phones.
http:
//www.vmware.com/products/mobile/.

[17] Andrew Whitaker, Marianne Shaw, and Steven D.
Gribble. Denali: Lightweight Virtual Machines
for Distributed and Networked Applications.
Technical Report 02-02-01, University of
Washington, 2002.

UBI with Logging

Brijesh Singh
Samsung, India

brij.singh@samsung.com

Rohit Vijay Dongre
Samsung, India

rohit.dongre@samsung.com

Abstract

Flash memory is widely adopted as a novel non-
volatile storage medium because of its characteristics:
fastaccess speed, shock resistance, and low power con-
sumption. UBI - Unsorted Block Images, uses mecha-
nisms like wear leveling and bad block management to
overcome flash limitations such as “erase before write”.
This simplifies file systems like UBIFS, which depend
on UBI for flash management. However, UBI design
imposes mount time to scale linearly with respect to
flash size. With increasing flash sizes, it is very im-
portant to ensure that UBI mount time is not a linear
function of flash size. This paper presents the design
of UBIL: a UBI layer with logging. UBIL is designed
to solve UBI issues namely mount time scalability &
efficient user data mapping. UBIL achieves more than
50% mount time reduction for 1GB NAND flash. With
optimizations, we expect attach time to reduce up to
70%. The read-write performance of UBIL introduces
no degradation; a more elaborate comparison of results
and merits of UBIL with respect to UBI are outlined in
the conclusion of the paper.

1 Introduction

Flash memories are extensively used in embedded sys-
tems for several remarkable characteristics: low power
consumption, high performance and vibration tolerance.
However flash storage has certain limitations namely
“erase before write”, write endurance, bad blocks. The
block of a flash memory must be erased before writ-
ing again. Besides, each block has limited erase en-
durance; the block can be erased for a limited number
of times. Traditional applications need software assis-
tance to overcome these limitations.

There are two common approaches to deal with the flash
limitations. Firstly, a flash translation layer (FTL) that
does transparent flash management. It gives a generic

disk interface. The traditional file systems like ext2,
FAT work unchanged. This approach limits optimiza-
tions as file systems are not flash aware.

Second approach uses flash file system. Flash file sys-
tems, like JFFS [1], YAFFS [2], are designed to han-
dle flash limitations. In this approach, every flash file
system address flash limitations. It is ideal to address
them in separate flash layer. This leads us to the third
approach. A flash aware file system that can co-operate
with a software layer for optimum flash usage. UBI [3]
is a software layer designed to follow this approach.

UBI is a flash management layer which also provides
volume management. A UBI volume can be a static vol-
ume or a dynamic volume. For flash management, UBI
provides following functionalities.

• Bad block management

• Wear leveling across device

• Logical to Physical block mapping

• Volume information storage

• Device information

2 Related Work

UBI was developed in 2007. UBI gives logical block
interface to the user; each logical erase block (LEB) is
internally associated with a physical erase block (PEB).
This association is called “Erase Block Association
(EBA)”. EBA information of each PEB is stored in VID
header. VID header of a physical block resides in the
same block. Apart from this, UBI also stores EC header
in each physical block; EC header stores erase count
of the block. Typical UBI block structure is shown in
Figure 1. Initialization of UBI demands processing of
both headers from every block. UBI scans complete
flash in order to build in-RAM block associations. This

• 57 •

58 • UBI with Logging

introduces a scalability problem. UBI’s initialization
time scales linearly with respect to flash size; increase
in flash size increases mount time of UBI. With flash
sizes increasing up to several GB’s, it is very important
to ensure that UBI mount time is not a linear function of
flash size.

Data

VID Header

EC Header

Physical Block

Figure 1: UBI Physical Block Structure

Lei et al. [4] proposed Journal-based Block Images (JBI)
which focuses on reducing number of write operations
and flash space requirement. To achieve this, JBI uses
fragmented mapping table and journal system. Limited
work has been carried out to reduce mount time of UBI.
To address mount time scalability issue, it is important
to avoid scan of complete flash. Possible solution to this
problem is to store mapping information in fixed group
of blocks on flash.

3 UBIL: UBI with Log

In this paper we present UBIL: “UBI with Log”, to ad-
dress mount time scalability issue. In order to reduce
initialization time, UBIL stores block mapping informa-
tion to the flash. This design consists of super block,
commit block and EBA log. Super block which stores
location information for commit block and EBA Log,
is stored at fixed physical location. Commit block is a
snapshot of valid UBI block mapping. EBA Log is a dif-
ference between present state and last commit. Commit
and EBA Log can move anywhere in flash. Hence these
blocks are wear-leveled.

3.1 Super Block (SB)

Super block is stored at two erase blocks in flash. First
super block instance is present in first good erase block
and second instance is present in last good erase block.
The two instances of super block are not mirror of each
other. Instead, only one of them contains valid super
block entry. Every super block entry occupies page size

of flash. To update super block, instead of erasing and
writing the block, we log the super block. It means, any
update to super block is written in one of the physical
blocks.

Super block is written alternatively to one of the two
copies (like ping-pong table). As shown in figure, first
super block entry ‘Entry0’ is written on first block, SB0.
Next entry ‘Entry1’ is written to second super block
SB1. Subsequent entries Entry2, Entry3. . . are written
alternatively in each block. This gives advantage over
mirroring as space is not wasted. Also this improves
lifetime of physical blocks reserved for super block.

SB Header

Entry1

Entry3

SB0 SB1

Tail

SB Header

Entry0

Entry2

Entry4

Figure 2: Super Block Update Sequence

While reading super block, we scan through super
blocks and find latest written entry, which is a valid su-
per block entry. In Figure 2, valid super block entry is
pointed as tails. Writing super block entry may fail. In
such situations, other instance of super block contains
valid entry.

3.2 Commit block (CMT)

Commit contains mapping information. Size of commit
is decided at the time of Ubinize. Depending on parti-
tion size, commit may span up to multiple PEBs. Com-
mit information is crucial. Hence two mirror copies of
commit are maintained. Even if one of the copies is cor-
rect, it is possible to recover the commit. For clean de-
tach, UBI uses commit information during subsequent
attach. In case of failure replay of EL is done to restore
latest state. Super block contains two map information
of commit; present commit and future commit. During
commit process, list of future commit blocks in super
block is updated first. Then commit is written to these
blocks. On successful completion, super block is up-
dated replacing present commit by new commit. Hence
commit operation is atomic and tolerant to power fail-
ure. If commit is incomplete during detach, all the failed

2010 Linux Symposium • 59

commit blocks are recovered and given for garbage col-
lection. EL becomes invalid after commit. New empty
log is initialized during commit.
Note: UBIL gives option of compressing CMT. This de-
creases average read/write time of CMT.

3.3 EBA Log (EL)

EBA log contains mapping information of each physi-
cal erase block updated after last commit. Hence EL is
difference between last commit and present UBI state.
Each EL entry contains “EC and VID header” of a phys-
ical erase block. EL may contain valid and invalid en-
tries. When EL gets full, only valid entries are written
to the commit. After successful commit, old EL is in-
valid and fresh log is created. This operation is done by
reserving new PEBs for EL and handing over old PEBs
for garbage collection.
Note: It is possible to configure number of blocks allo-
cated to EL at compile time.

4 UBIL: Initialization

Layout

Volume

SB

Logged

Layout

Volume EBA

Log

Commit 1SB 1 Commit 2 SB 2

SB
EBA EBA

Logged

VTBL1 VTBL2 EBA Log

Figure 3: UBIL Flash Layout

UBIL flash layout is shown in Figure 3. UBIL ini-
tialization starts with reading super block and finding
latest super block entry. Super block locates CMT
and EL. For good detach, initialization involves read-
ing CMT. For bad detach, some of mapping informa-
tion may be present in EL. Hence, initialization involves
reading CMT and replaying EL. After successfully read-
ing CMT and EL, other sub-systems of UBIL are initial-
ized. This includes volume initialization, wear-leveling
initialization and EBA initialization. During initializa-
tion if one of CMT, SB or EL shows recoverable read
errors, UBIL initialization proceeds. In this case, after
successful initialization of all sub-systems, commit pro-
cess is called. This guarantees that, CMT is moved to
safer erase block, less vulnerable for corruption. Due
to removal of scanning, UBIL initialization time is very
less as compared to UBI. Steps followed in UBIL ini-
tialization are outlined below.

1. Find latest super block by finding tail of super
block.

(a) If the tail is bad (power cut happened while
writing super block) the other super block
PEB contains valid super block entry.

2. Locate CMT, EL blocks from super block.

3. Generate latest snapshot of UBI.

(a) Read CMT.

(b) Apply EBA Log.

4. If previous commit has failed, recover reserved
blocks for commit.

5. Initialize Volumes.

6. Initialize Wear leveling.

7. Initialize EBA information.

5 Performance Measurement

We have compared performance of UBIL against UBI
on SLC NAND flash. Mount time performance and
read-write performance tests were conducted. Tests
were performed on Apollon board with OMAP 2420
chipset having 64 MB RAM. We tested UBIL with
Linux kernel 2.6.33.

5.1 Mount time performance

UBI attach time increases linearly to partition size. This
is due to scanning of complete flash. In case of UBIL,
commit size increases with increase in flash size. Caus-
ing UBIL attach time to increase marginally. But this
increase is very minimal in comparison to UBI. Mount
time performance comparison is shown in Figure 4. It
is evident that UBIL performs far better than UBI. As
partition size increases, UBIL performs better than UBI
in terms of attach time. UBIL achieves more than 50%
attach time reduction for 1 GB NAND flash.

As partition size increases, UBIL performance better
than UBI in terms of attach time. UBIL achieves more
than 50% attach time reduction for 1GB NAND flash.

60 • UBI with Logging

0.5

1

1.5

2

200 400 600 800 1000 1200

M
ou

nt
 T

im
e

(s
ec

)

Partition Size (MB)

Mount Peformance

UBI
UBIL

Figure 4: Mount Performance : UBIL vs UBI

5.2 Read-Write Performance

This test measures actual file system read-write perfor-
mance. For performing this test we used Iozone running
on partition mounted with UBIFS. In read-write test we
performed sequential and random read-write tests. Per-
formance measurements are given in Table 5.2. It can
be inferred from table that there is no significant effect
on read-write performance. This is because, UBIL EL
writing frequency is same as meta data write frequency
of UBI.

Table 1: IO Performance
Operation UBI UBIL

(MB/s) (MB/s)
Read 6.33 6.33
Write 3.49 3.71

Re-read 6.33 6.33
Re-write 3.39 3.64

6 Conclusion and Future Work

In this paper we presented UBIL to effectively deal with
mount time scalability issue of UBI. While UBI stores
mapping information across flash, we maintained map-
ping information at one place. This significantly re-
duce mount time by avoiding full flash scan. Bedsides
UBIL, do not perform any extra read-write operation,

causing read-write performance comparable to UBI. As
discussed in results, Our approach reduces mount time
by 50% without affecting read-write performance.

Commit process can be optimized in future by writing
EBA mappings directly to the flash. As per present
UBIL design, super block is written at fixed location.
These blocks are not wear-leveled. Super block han-
dling can be improved by using block chaining scheme
as discussed in JFFS3 [6] design.

References

[1] D. Woodhouse, JFFS: The Journaling Flash File
System, In Proceedings of 2001 Linux
Symposium, Ottawa, Canada, July 25-28, 2001

[2] YAFFS: Yet Another Flash File System,
http://www.yaffs.net

[3] T. Gleixner, F. Haverkamp, A. Bityutskiy,
UBI-Unsorted Block Images, http://www.linux-
mtd.infradead.org/doc/ubidesign/ubidesign.pdf

[4] Lei Jiao, Y. Zhang, W. LinJournal-based Block
Images for Flash Memory Storage Systems, The
9th International Conference for Young Computer
Scientists, pp. 1331-1336, 2008

[5] D. Woodhouse, Memory Technology Device
(MTD) Subsystem for Linux, http://www.linux-
mtd.infradead.org/doc/general.html, Feb
2010

2010 Linux Symposium • 61

[6] A. Bityutskiy, JFFS3 Design Issues, Version 0.25,
http://www.linux-
mtd.infradead.org/doc/JFFS3design.pdf, Oct
2005

[7] Brijesh Singh, Rohit Dongre, UBIL Performance
Log for NAND,
http://git.infradead.org/users/brijesh/ubil_results
/blob/HEAD:/nand_mount_ti me.pdf

[8] Brijesh Singh, Rohit Dongre, UBIL- UBI with
Log, Source code,
http://git.infradead.org/users/brijesh/ubi-2.6.git

62 • UBI with Logging

Looking Inside Memory
Tooling for tracing memory reference patterns

Ankita Garg, Balbir Singh, Vaidyanathan Srinivasan
IBM Linux Technology Centre, Bangalore

{ankita, balbir, svaidy}@in.ibm.com

Abstract

Memory is a critical resource that is non-renewable and
is time consuming to regenerate by reclaim. While there
are several tools available to understand the amount of
memory utilized by an application, there is presently lit-
tle infrastructure to capture the physical memory refer-
ence pattern of an application on a live system. This
knowledge would enable the software developers and
hardware designers to not only understand the amount
of memory used, but also the way the references are laid
out across RAM. The temporal and spatial reference pat-
terns can provide new insights into the benchmark char-
acteristics, which would enable memory related opti-
mizations. Additional tools could be developed on top to
extract useful data from the reference information. For
example, a tool to understand the working set size of an
application, and how it varies with time. The data could
also be used to optimize the application for NUMA sys-
tems. Kernel developers could use the data to check
fragmentation and generic data placement issues.

In this paper, we introduce a memory reference instru-
mentation infrastructure in the Linux kernel that is built
as a kernel module, on top of the trace framework. It
works by collecting memory reference samples from
page table entries at regular intervals. The data obtained
is then post processed to plot various graphs for visual-
ization. In this paper, we would provide information on
the design and implementation of this instrumentation,
along with the challenges faced by such a generic mem-
ory instrumentation infrastructure. We will demonstrate
few additional tools built on this infrastructure to obtain
interesting data collected from several benchmarks. The
target audience are people interested in kernel based in-
strumentation, application developers and performance
tuning enthusiasts.

1 Introduction

Typically, application developers are abstracted from the
physical view of the memory by the memory manage-
ment subsystem of the operating system. An application
would request for memory using several well-defined
APIs, which is then serviced by the operating system.
The OS uses sophisticated algorithms to ensure that
the memory allocation for a particular application takes
place from the most appropriate location, for example,
on a NUMA system, memory requests should be satis-
fied from a local node to reduce overhead in accessing
remote memory. However, a developer looking for op-
timizations, can greatly benefit by having a good under-
standing of the way the memory is being used by the ap-
plication. Finding a program’s memory usage on Linux
is complex. However, utilities like ps,free, vmstat,
and proc filesystem interfaces like /proc/meminfo
etc, provide a goof estimate of the various memory us-
age statistics.

Most of the existing tools, however, generally only pro-
vide information about the memory usage statistics of
an application and/or system. There is very little infor-
mation available on the way the memory is being refer-
enced or the classification of accesses into kernel, user
and buffers. Also, it is difficult to obtain read/write ac-
cess patterns. All this information can however be ob-
tained from hardware simulation but at a much slower
speed. The infrastructure we propose here enables gath-
ering the above missing pieces of information on a live
system, running real-world applications.

2 Memory Organization

Memory is typically organized in a hierarchical manner
in modern systems to have the right balance of access
speed and cost. Accesses to memory addresses or pages
are first looked up in TLBs (or page tables) to get the

• 63 •

64 • Looking Inside Memory

physical address (which is needed for physically tagged
cache) and then searched in several levels of caches (L1,
L2 and/or L3). If the addresses are not found, then the
right cache line is looked up in the main memory and
loaded into the cache and registers for use. A hierar-
chy of page tables or similar address translation mech-
anisms are used by the hardware memory management
unit (MMU) in the processor to map a virtual address to
a physical address in memory. On most architectures,
a page table entry (PTE) consists of mainly the page’s
physical address, and other attributes like access permis-
sions and a referenced or accessed bit. The processor
sets this bit when the page is accessed. Once set, the pro-
cessor itself does not clear the bit. Software is expected
to clear this bit to record new accesses. PTE also typ-
ically contains another bit called the dirty or changed
bit, which indicates whether a page has been written to
or not.

Memory pages can be broadly classified into :

• Kernel pages – This corresponds to the kernel code
including device drivers and its data

• User pages – The application pages (both code and
data)

• Page cache or buffer pages – Indirectly used by ap-
plications (unless mapped)

3 Memory Reference Pattern Instrumentation
Infrastructure

The objective of the instrumentation is to track refer-
ences to every page of memory over a given time inter-
val. As explained before, memory is referenced using
the page tables. Using these page table entries, memory
references could be tracked in a number of ways.

3.1 Tracking Page Faults

One of the approaches to capture references is to modify
the PTE entries such that a page fault is generated at ev-
ery access. The fault could then be handled in a custom
page fault handler routine. This could be achieved fairly
easily for user pages. One could also use this data to find
the exact task/routine referencing the memory. The ref-
erence data obtained thus would be very accurate. How-
ever, the disadvantages of the approach out-weigh the
benefits:

• Page fault for every memory reference would slow
down the system tremendously, resulting in diffi-
culty in running long-running, real-world bench-
marks and also interfere with the benchmark ex-
ecution itself.

• Reference data obtained would be voluminous and
cumbersome to post process unless this level of ac-
curacy is needed

• Complex to capture kernel page reference pattern
with this approach, as all the kernel pages are
present in memory and not demand paged in or out.
Most parts of the kernel will expect the translation
to be available and do not expect a page fault.

Alternatively, to get an estimate of the reference pat-
tern and to reduce the overhead, we could periodically
reclaim or unmap several pages and follow what gets
faulted in. Also, by setting up a trace event in the page
fault handler (to be triggered occasionally) and forcing
reclaim to reduce the RSS, we can get information on
the address range of pages that are being referenced by
an application. However, this technique would not be
useful in getting system-wide memory reference data.
While this approach can estimate the RSS and virtual
address range, it cannot estimate the per-page reference
rate over a short sampling interval compared to just sam-
pling the page reference bit as explained below in sec-
tion 3.3

3.2 Performance Counters

Performance counters are special hardware registers
available on most modern platforms. These registers
keep a track of the count of certain types of hardware
events, like, instructions executed, cache misses suf-
fered, or branches mis-predicted. Since the counting is
done in the hardware, it does not slow down the kernel
or applications. The Linux Performance Counter sub-
system provides an abstraction of these hardware capa-
bilities, which would work depending on the support in
the underlying hardware platform.

We could use the hardware cache miss counter to ap-
proximate the memory accesses, since a cache miss im-
plies a memory reference. However, the absolute num-
ber of cache misses does not reflect the distribution of
physical memory accesses, as a memory reference could
happen without a miss as well (when the page is in

2010 Linux Symposium • 65

cache). Besides, as noted before, it might not be pos-
sible to use this approach on platforms with no such
counter. Further, it might not be possible to classify ac-
cesses into read/write.

3.3 Sampling Using PTE Reference bit

As explained in section 2 the referenced bit of the PTE
tracks references to pages. In this method we adopt a
sampling based approach, in which, at every sampling
interval, we scan all the PTEs, looking for all the ref-
erence bits that were set to one since the previous sam-
pling interval, indicating that those pages were accessed.
We make a note of all such PTEs, along with their phys-
ical addresses. The reference bit is then cleared1, to en-
able data capture for the next sampling interval. This
process is repeated at every sampling interval. The par-
ticular page tables that are scanned define the type of
pages that were referenced. For user space page refer-
ences, the page tables of either a given task or of all
the tasks are sequentially scanned for the reference bits
To capture kernel page reference pattern, different ap-
proaches are needed for different platforms. On x86 sys-
tems, the pgd field in struct mm of the init_task
points to the kernel page table directory. Using this
pointer, the kernel page tables can be walked in a man-
ner similar to user space pages. However, on Power
platform, the page tables are handled differently. The
hypervisor maintains a hash table of the page table en-
tries. The entries corresponding to the kernel are bolted
in the hash table. For every address, a key is generated,
called vsid, that is used to hash into the table to obtain
the PTE.

It is important to note here that if page access is served
from the hardware cache, the reference bit in the PTE
would still be set by the hardware and not strictly based
on cache miss and memory access.

3.4 Design Overview

We have adopted the approach described in section 3.3
in our implementation. It can be easily seen that if
the data is captured for every single page in the sys-
tem, a lot of memory would be consumed in just cap-
turing the information and also would pose difficulties

1The disadvantage of this approach is that it could interfere with
the LRU algorithm that the reclaim subsystem uses. We therefore
run these tests in a system that has sufficient memory to not enforce
reclaim of pages, while we run our tracing framework

Seq ID Phys Addr Kernel User Page Cache R/W

Figure 1: Output Data Format

in post-processing. Thus, instead of gathering data for
every page, we group the pages in chunks and collect
data for the group instead of individual pages. If any
page within a group was accessed, the entire group of
pages is marked as having been accessed in a particu-
lar sampling interval. On Power systems, we use the
logical memory blocks (LMBs) as a means to group
pages. LMBs are groups of contiguous memory, usually
of 64MB or 128MB (tunable), that the hyperviser uses
to give out memory to the partitions. On x86 systems
however, there is presently work in progress [5] to create
a notion of LMBs, in the absence of which, contiguous
pages are internally grouped for the purpose of collect-
ing data. The granularity of this group determines the
accuracy of the reference pattern captured. The smaller
the group size, the more accurate the data.

At every sampling interval, the data that is captured is
illustrated in Figure 1

The sequence id is a unique identifier associated
with a sampling interval. The physical address
corresponds to the physical address of the first page in
a given group. The next three fields, kernel, user
and page cache, indicate the count of the number
of pages referenced in each types of page within the
group. This helps in estimating the working set size of
an application and also how it varies with time. We can
derive more information by classifying the references
into kernel, page cache or user pages. The last fields,
read and write, indicate the number of pages in
the group that had reads and writes, which is detected
using the dirty or the changed bit in the PTE.

By default, the page tables of all the processes in the sys-
tem are scanned for references, in addition to the kernel
page tables. The user can also specify the pid of a task
for restricting the PTE scanned.

3.5 perf Integration

To make it easy to use the memory reference pattern
tracing infrastructure, we have integrated it with the
perf(1) [2] framework. A trace event called memref

66 • Looking Inside Memory

memref-2680 [005] 3549.112460: memref_log_data: 1230 268435456 12 0 0 1
memref-2680 [005] 3549.112461: memref_log_data: 1230 301989888 20 0 0 0
memref-2680 [005] 3549.112461: memref_log_data: 1230 335544320 0 0 0 3
memref-2680 [005] 3549.112462: memref_log_data: 1230 369098752 0 56 0 0
memref-2680 [005] 3549.112462: memref_log_data: 1230 402653184 0 10 0 1
memref-2680 [005] 3549.112463: memref_log_data: 1230 436207616 19 34 0 0
memref-2680 [005] 3549.112463: memref_log_data: 1230 469762048 0 0 0 3
memref-2680 [005] 3549.112464: memref_log_data: 1230 503316480 0 45 0 0

Figure 2: memref, integration with perf

is defined, which when enabled, starts capturing the
reference pattern data. The pid is specified by echo-
ing a value in the memref_pid file, created under the
tracing directory. The binary data obtained can then
be post-processed to obtain useful information, as dis-
cussed in the next subsection. Figure 2 shows a sample
output from the memref trace event.

The first 3 columns indicate the process running,
CPU number and time when the trace was captured.
memref_log_data is the name of the trace event.
Fifth column indicates the sequence number associated
with the particular sampling interval. The next column
indicates the physical address (corresponds to the start
of the page group or a LMB). The next three columns
are for kernel, user and page cache respectively. The
value of the column indicates the number of pages of
a particular type referenced with the group. The last
column provides information on whether the access was
read (0), write(1) or none (2). Also, within a group,
there would be both reads and writes. However, here
we trade off accuracy for the ease of data capture, by
marking the whole group as having write reference.

3.6 Data Representation

The data obtained, either in raw binary or ASCII format,
needs to be post-processed to obtain useful information
about the reference pattern. A few useful representa-
tions of the data are as follows:

• Temporal Reference Pattern – With sampling time
plotted on the X-axis and the total number of LMBs
referenced on the Y-axis, we get the temporal refer-
ence pattern plot, which indicates the total amount
of memory referenced at a particular time.

• Spatial Reference Pattern – The spatial reference
plot indicates the number of times a given LMB
was referenced over the period for which the data
was collected. The LMBs are plotted on the X-axis

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30

T
ot

al
 N

o.
 o

f L
M

B
s

re
fe

re
nc

ed
 (

si
ze

 =
 6

4M
B

)

Sample Number

Temporal Span of Memory References

Figure 3: Temporal Reference Pattern for pagetest

and the reference count on the Y-axis. The plot also
helps in understanding how the memory accesses
are laid out in the RAM.

• Working Set Size – The working set size of any
process is defined as the set of all pages referenced
by it in a given time interval. From the instrumenta-
tion data, we can compute the working set size of a
process for a given sampling interval, by summing
up the total number of pages referenced in each
group of pages within that sampling interval, for
a particular type of reference. Assuming that the
page references are stable across sampling interval,
one could extend it further by grouping samples to
form a large time interval for computing working
set size. It is important to note here that if a page is
being referred to by both user and the kernel space,
the kernel and user references would be accounted
for separately for that page.

4 Data Verification

In order to verify the functionality of the framework, we
obtain the memory reference pattern for the pagetest
program. Pagetest allocates a chunk of memory, as
specified by the user, using either malloc, anonymous
mmap, file mmap or shared memory. It then performs
either a write or a read operation on every single
page that was allocated, for a specified number of itera-
tions. To verify that the instrumentation indicates all the
memory touched by the program as having been refer-
enced, we tweak the test program to make it sleep for a

2010 Linux Symposium • 67

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 5 10 15 20 25 30

T
ot

al
 N

o.
 o

f P
ag

es
 R

ef
er

en
ce

d
(6

4k
)

Sample Number

Temporal User Memory Reference Pattern

Figure 4: Temporal User Memory Reference Pattern for
pagetest

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30

T
ot

al
 N

o.
 o

f P
ag

es
 R

ef
er

en
ce

d
(6

4k
)

Sample Number

Temporal Kernel Memory Reference Pattern

Figure 5: Temporal Kernel Memory Reference Pattern
for pagetest

fixed amount of time after every iteration of touching all
the pages. We run the instrumentation in parallel, at an
interval that ensures that the reference data is captured
after an iteration of pagetest is complete or in be-
tween iterations. This ensures that the instrumentation
does not interfere with the reference information of the
benchmark (solely for the purpose of verification). We
run the benchmark to allocate 3GB of memory using
malloc. We let the program run for 10 iterations. The
temporal reference pattern span is as shown in Figure 3.

From the graph we can see that there are 10 spikes, with
a height of about 52 LMBs, corresponding to the 10 it-
erations and usage of 3GB in each iteration. Flat lines
at the bottom indicate periods when the benchmark was
sleeping and no references were generated to its pages.
We also verify the data obtained regarding classification

 0

 50

 100

 150

 200

 250

 300

 5 10 15 20 25 30

T
ot

al
 N

o.
 o

f P
ag

es
 R

ef
er

en
ce

d
(6

4k
)

Sample Number

Temporal Page Cache Reference Pattern

Figure 6: Temporal Page Cache Memory Reference Pat-
tern for pagetest

of accesses into user, kernel and page cache. Figure 4
indicates the number of user pages accessed in a given
sampling interval. About 49165 pages (each of size 64k)
were marked as being referenced. This equals 3GB.
Similarly, Figure 5 and Figure 6 indicate the number of
kernel and page cache pages that were referenced re-
spectively. Both the kernel and page cache account for
less than 2MB of references each.

5 Errors & Approximations

The proposed method of aggregating memory reference
patterns has known approximations and errors as de-
tailed below:

• Effect of cache hierarchy – The primary mecha-
nism through which the reference pattern is aggre-
gated is the reference bit in the hardware memory
management unit’s page table entry. This bit is up-
dated (or set) whenever there is a memory access
to the region translated by this page. That region of
memory could have been in the caches as well. Ba-
sically the reference bit is updated independent of
whether the actual access was a cache hit or a cache
miss. Hence if we have been looking to model bus
traffic or traffic at memory controller level, then
this metric needs to be correlated with last level
cache miss counts to get a reasonable estimate.

• Effect of sampling – As described earlier, this
method is based on periodic sampling and hence
the resolution of information obtained depends on

68 • Looking Inside Memory

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 200 400 600 800 1000 1200 1400 1600

W
S

S
 (

kB
)

Sample Number

Working Set Size (User)

Figure 7: User Memory Working Set Size of kernbench
with 64 threads

the sampling interval. There are severe constraints
in the lower bound of the sampling interval. Based
on the size of the system and amount of data to
be collected, the sampling interval may have to be
larger leading to further approximation of the ref-
erence data. However one can assume that refer-
ences with high temporal and spatial locality will
most likely be cached and hence will not actually
hit the bus and memory chips, leaving scope for
optimization.

• Missing reference information – The memory re-
gions used to store the page tables themselves may
not be marked as referenced by the MMU hard-
ware, though they may have significant reference
rate. Similarly, IO DMA activities and other di-
rect memory manipulation that does not traverse
the processor MMU unit may not have been cap-
tured.

6 Sample Use Cases

The reference pattern information can be useful in sev-
eral scenarios. Below we present information on some
sample use cases for the different type of data obtained.

6.1 Working Set Size of an Application

Working Set Size (WSS) of an application is the amount
of memory that is required to be present in the main

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 200 400 600 800 1000 1200 1400 1600

W
S

S
 (

kB
)

Sample Number

Working Set Size (Kernel)

Figure 8: Kernel Memory Working Set Size of kern-
bench with 64 threads

memory at any time during its execution. The work-
ing set size could vary at different times of execution,
depending on the application design and the amount of
data being worked upon. If the WSS for an application
is much bigger than the memory present on the system,
some of the application pages would be swapped out to
accommodate newer pages. This could lead to reduced
performance as the swapping activity increases.

Accurately finding out the total memory that is being
used by a process is complex. There is very little tool-
ing that exists which can indicate the WSS of an ap-
plication. An estimate of the instantenous WSS of an
application could be obtained using the memory refer-
ence pattern data. The WSS information can be derived
from the data about the number of pages accessed within
a sampling interval. Ideally, the sum of the total num-
ber of kernel, user and page cache pages would be the
WSS of the application for a given period. However, we
present the data for each category separately, to high-
light the capability of the framework. Figure 7, Fig-
ure 8 and Figure 9 show the WSS we obtained for the
kernbench benchmark, running 64 threads on a ma-
chine with 16GB RAM and 8 processors. The WSS for
user memory remains below 1MB for most times, how-
ever, hits a maximum of about 250MB. On the other
hand, the maximum amount of kernel memory refer-
enced is around 150-160KB, throughout the benchmark
execution time. Page Cache memory references consti-
tute to most of the memory references, the maximum
instantaneous WSS being slightly over 500MB. This in-

2010 Linux Symposium • 69

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 200 400 600 800 1000 1200 1400 1600

W
S

S
 (

kB
)

Sample Number

Working Set Size (Page Cache)

Figure 9: Page Cache Memory Working Set Size of
kernbench with 64 threads

dicates that if the performance of kernbench has to be
improved from memory perspective, its the optimiza-
tions in the page cache layer that would have the biggest
impact. Besides, this information also indicates that
if 64 threads of kernbench are to be run on this plat-
form, maximum memory requirement would be atleast
500MB, for minimal performance impact.

Contrast this observation with the graphs in Figure 10,
Figure 11 and Figure 12, which corresponds to kern-
bench run with only 16 threads on the same machine.
It can be seen that the time taken for the benchmark is
almost 50% more than the previous run. The amount of
kernel memory referenced remains the same. User and
page cache memory referenced are below 40MB.

6.2 Usage of Large pages

A virtual address in the virtual memory is translated into
the physical address by a combination of hardware and
software operations. A page is the smallest entity of ad-
dress translation. Page tables store the mapping of vir-
tual addresses to physical page addresses. There is some
overhead involved in a single page translation. The to-
tal number of translations required for a program de-
pends on the number of pages that are accessed by it.
The overhead increases as the number of pages accessed
are increased. Translation Lookaside Buffers (TLB) are
used to reduce the overhead, by caching the frequently
used page table entries. Depending on the workload, the
TLB may not be sufficient to cache all the translations

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 500 1000 1500 2000 2500 3000

W
S

S
 (

kB
)

Sample Number

Working Set Size (User)

Figure 10: User Memory Working Set Size of kern-
bench with 16 threads

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000

W
S

S
 (

kB
)

Sample Number

Working Set Size (Kernel)

Figure 11: Kernel Memory Working Set Size of kern-
bench with 16 threads

70 • Looking Inside Memory

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 500 1000 1500 2000 2500 3000

W
S

S
 (

kB
)

Sample Number

Working Set Size (Page Cache)

Figure 12: Page Cache Memory Working Set Size of
kernbench with 16 threads

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Sample Number

0

5

10

15

20

25

30

35

40

No
 o

f L
M

Bs
 a

cc
es

se
d

(L
M

B
si

ze
 =

 6
4M

B)

Figure 13: Temporal Reference Pattern for a JAVA
Benchmark

needed by the application. Large page [4] support was
thus developed to improve the performance for such ap-
plications. Large pages enable fewer TLBs to translate
larger address ranges, thus allowing more entries to fit
into the TLBs.

Use of large pages benefits applications that have a
dense memory reference pattern. If the workload refer-
ence pattern is very sparse and making a small number
of references, usage of large pages might in fact neg-
atively impact performance, depending on the number
of large page entries supported by the TLB and also
due to memory fragmentation. Thus, the memory ref-
erence pattern would enable the application developer
to estimate if the usage of large pages would yield per-
formance improvement. Figure 13 indicates the tempo-

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200 1400 1600

N
o.

 o
f L

M
B

s
(L

M
B

 s
iz

e
=

 6
4M

B
)

Sample No.

Temporal Reference Pattern

Figure 14: Temporal Reference Pattern for kernbench
run with 64 threads

ral reference pattern of a JAVA benchmark. The graph
shows a dense reference pattern and on an average, the
memory reference span is about 10 LMBs, which equals
about 640MB of memory. Thus, it can be inferred that
this benchmark could benefit from usage of large pages.

As an example of an application that would not bene-
fit from using large pages is kernbench. From the Fig-
ure 14, we see that its reference pattern is not dense and
varies with time. Usage of large pages could potentially
lead to memory fragmentation. This is a hypothetical
analysis, but could serve as a good starting point when
analyzing benchmark performance issues.

6.3 Understanding Memory Usage in NUMA Sys-
tems

On a NUMA system, memory allocation becomes
slightly more complex due to the presence of local and
remote node. There are a number of NUMA policies
that determine where the memory for a particular pro-
cess will be allocated from. For example, by default,
memory is allocated on the node of the CPU that trig-
gered the allocation. It is important to determine which
NUMA allocation policy works best for a given appli-
cation, since a wrong policy could lead to performance
degradation as there is an additional overhead incurred
when accessing memory from a remote node. The mem-
ory reference instrumentation framework can aid in un-
derstanding the way memory is utilized by an applica-
tion on a NUMA system. Figure 15 indicates the spa-
tial reference plot for kernbench, run on a JS22 blade

2010 Linux Symposium • 71

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

T
ot

al
 N

o.
 o

f S
am

pl
es

 in
 w

hi
ch

 r
ef

er
en

ce
d

LMB Number (size = 64MB)

Spatial Memory Reference Pattern

Figure 15: Without NUMA Biasing: Spatial Memory
Reference Pattern of kernbench

POWER6 blade, which had 16GB of RAM (8GB on
each node). The LMB size used was 64MB. Thus, about
128 LMBs correspond to one NUMA node. It can be
seen that the memory references come from both the
NUMA nodes. Figure 16, Figure 17 and Figure 18 show
the way references are spread across for user, kernel
and page cache memory. However, when kernbench
threads were tied to processors belonging to only a sin-
gle NUMA node, we can see from Figure 20 that the
user memory references originate from that node only.
However, kernel and page cache references still spread
across the nodes, as seen from Figure 21 and Figure 22,
still giving an overall memory reference pattern as in
Figure 19, similar to the one in Figure 15.

Today, one could use numastat[1] to obtain
information on NUMA access statistics that are ob-
taied from hardware and maintained by the kernel,
like numa_hit, numa_miss, local_node,
other_node, etc. When an application is run in iso-
lation, these counters would be a representative of the
application itself. Also, /proc/<pid>/numa_maps
gives information about how the process user pages
are laid out across the NUMA nodes. However, with
the help of the proposed instrumentation, we can
also classify the NUMA accesses to kernel, user and
page cache and also into read/write accesses. Such
information would prove helpful to developers, chasing
the cause of peculiar benchmark performance issues on
NUMA platforms. This also serves as an effective tool
to evaluate NUMA policy implementation in the Linux
kernel.

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300

T
ot

al
 N

o.
 o

f S
am

pl
es

 in
 w

hi
ch

 r
ef

er
en

ce
d

LMB Number (size = 64MB)

Spatial User Memory Reference Pattern

Figure 16: Without NUMA Biasing: Spatial User Mem-
ory Reference Pattern of kernbench

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

T
ot

al
 N

o.
 o

f S
am

pl
es

 in
 w

hi
ch

 r
ef

er
en

ce
d

LMB Number (size = 64MB)

Spatial Kernel Memory Reference Pattern

Figure 17: Without NUMA Biasing: Spatial Kernel
Memory Reference Pattern of kernbench

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

T
ot

al
 N

o.
 o

f S
am

pl
es

 in
 w

hi
ch

 r
ef

er
en

ce
d

LMB Number (size = 64MB)

Spatial Page Cache Memory Reference Pattern

Figure 18: Without NUMA Biasing: Spatial Page Cache
Memory Reference Pattern of kernbench

72 • Looking Inside Memory

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

T
ot

al
 N

o.
 o

f S
am

pl
es

 in
 w

hi
ch

 r
ef

er
en

ce
d

LMB Number (size = 64MB)

Spatial Memory Reference Pattern

Figure 19: Biased to a NUMA Node: Spatial Memory
Reference Pattern of kernbench biased to one NUMA
node

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

T
ot

al
 N

o.
 o

f S
am

pl
es

 in
 w

hi
ch

 r
ef

er
en

ce
d

LMB Number (size = 64MB)

Spatial User Memory Reference Pattern

Figure 20: Biased to a NUMA Node: Spatial User
Memory Reference Pattern of kernbench biased

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

T
ot

al
 N

o.
 o

f S
am

pl
es

 in
 w

hi
ch

 r
ef

er
en

ce
d

LMB Number (size = 64MB)

Spatial Kernel Memory Reference Pattern

Figure 21: Biased to a NUMA Node: Spatial Kernel
Memory Reference Pattern of kernbench

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

T
ot

al
 N

o.
 o

f S
am

pl
es

 in
 w

hi
ch

 r
ef

er
en

ce
d

LMB Number (size = 64MB)

Spatial Page Cache Memory Reference Pattern

Figure 22: Biased to a NUMA Node: Spatial Page
Cache Memory Reference Pattern of kernbench

7 Challenges

The goal of the instrumentation is to ensure that the data
is captured with minimal impact on performance and no
interference with the benchmark data. Some of the chal-
lenges that we faced are as follows:

• Missing information in Software – It is important
to understand that memory references, either from
caches or from main memory, are transparent and
concurrent to the operating system. Due to this,
the precise count of the number of times a partic-
ular page was referenced cannot be obtained from
software. Hardware support in the form of coun-
ters that maintain a per-page reference data could
improve the accuracy, as in System-Z [3]. Thus,
from inside the software, we can only obtain infor-
mation about whether a page was referenced or not
within a sampling interval.

• Indeterminate run time of the instrumentation –
The size of the kernel page table remains almost
a constant during system runtime. Thus the time
taken to scan it also remains a constant. However,
the amount of time taken to scan the user page ref-
erences is directly proportional to the number of
processes active and their memory footprint. The
larger the number of such processes, or larger their
memory footprints, the greater the time required to
collect the reference samples and vice versa. As a
result, the run time of the scanning framework in-
creases, leading to fewer samples being collected.

2010 Linux Symposium • 73

The data thus obtained may not be a true represen-
tation of the actual memory reference pattern.

• Concurrent execution of software and instrumenta-
tion – The reference data that is being obtained is
simultaneously being updated or changed by soft-
ware running on other CPUs. This also has an
effect on the software where one of the software
threads are delayed due to reference collection ker-
nel thread thereby potentially delaying other soft-
ware and affecting normal program execution like
inducing lock contention.

8 Future Enhancements

Based on the limitations and challenges listed above, we
have a good list of things to work on. Potential future
improvements are:

• Compress or reduce data that is logged – Basi-
cally use simple encoding techniques to reduce the
amount of memory used and data transferred to
user space.

• Adaptively sample interesting areas of memory –
Start with scanning full memory and page tables,
but if we can quickly figure out the stale areas, i.e,
memory areas that are rarely being accessed, we
can make a note of them and scan them less fre-
quently. We keep updating our statistics of such
areas.

9 Conclusions

The rapidly developing Linux runtime tracing frame-
work enables low overhead, complex and intrusive
instrumentation to get interesting data and facilitate
deeper insights into application behavior. Application
memory reference tracing is one example where a com-
bination of known techniques can be easily packaged
and aptly used to get new insights into the way memory
is accessed by an application, that could lead to opti-
mizations.

10 Acknowledgements

The authors wish to thank their team at Linux Technol-
ogy Centre, IBM and the management for their encour-
agement and support during the creation of the instru-
mentation framework and the paper. We would like to

thank all colleagues who reviewed the patches and gave
valuable feedback. Special thanks to Dipankar Sarma
for his guidance all throughout.

The authors wish to thank the IBM management who
generously provided an opportunity to work on this fea-
ture and paper, without which its presentation at the
Linux Symposium 2010 wouldn’t have been possible.

11 Legal Statement

c©International Business Machines Corporation 2010. Per-
mission to redistribute in accordance with Linux Symposium
submission guidelines is granted; all other rights reserved.

This work represents the view of the author and does not nec-
essarily represent the view of IBM.

IBM, IBM logo, ibm.com are trademarks of International
Business Machines Corporation in the United States, other
countries, or both.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in all
countries in which IBM operates.

INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EX-
PRESS OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not al-
low disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.
This information could include technical inaccuracies or ty-
pographical errors. Changes are periodically made to the in-
formation herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) de-
scribed in this publication at any time without notice.

References

[1] numastat. Linux kernel Documentation,
src/linux/Documentation/numastat.txt.

74 • Looking Inside Memory

[2] Performance counter frameowrk for linux.
http://perf.wiki.kernel.org/.

[3] System z performance counters. .

[4] Large page support in the linux kernel, August
2002. http://lwn.net/Articles/6969/.

[5] Use lmb with x86, June 2010.
http://lkml.org/lkml/2010/6/16/32.

Dynamic Binary Instrumentation Framework for CE Devices

Alexey Gerenkov
SRC Moscow, Samsung Electronics
a.gerenkov@samsung.com

Sergey Grekhov
SRC Moscow, Samsung Electronics

grekhov.s@samsung.com

Jaehoon Jeong
SAIT, Samsung Electronics

hoony_jeong@samsung.com

Abstract

Developers use various methods and approaches to find
bugs and performance bottlenecks in their programs.
One of the effective and widely used approach is appli-
cation profiling by dynamic instrumentation. There are
many various tools based on dynamic instrumentation.
Each tool has its own benefits and limitations what of-
ten forces developers to use several of them for profiling.
For example, in order to use Kprobe-based [1] Sys-
temtap [2] tool developers need to write instrumenta-
tion script using special language. To use Dyninst [3]
profiling library developers need to write instrumenting
programs in C++. Thus each tool realizes its own pro-
filing technology. Additionally various profiling tools
produce output data in their own formats and those for-
mats are incompatible. Thus two above problems sig-
nificantly increase complexity of debugging.

In this paper we describe unique dynamic binary instru-
mentation engine concept which is used in our moni-
toring tool — System-Wide Analyzer of Performance
(SWAP). This tool has modular open architecture and
API which allow integrating various tools for provid-
ing powerful instrumentation and analysis framework
for developers. Dyninst and Kprobe-based instru-
mentation engines are integrated into SWAP framework
and used in a similar way. Modular structure of SWAP
can be extended with other instrumentation and analysis
methods by easy way. Also SWAP has several levels of
API: instrumentation API, connection API, control API,
user interface API and monitoring language framework
API. This multilevel API architecture allows develop-
ers to re-use SWAP functionality and embed it into their
own solutions. All above mentioned SWAP advantages
essentially simplify debugging profiling process for em-
bedded software.

1 Introduction

During the last decade computer market has been shift-
ing its focus from PCs to consumer electronic devices
that have made great steps in increasing their function-
ality. Now CE embedded systems can provide wide set
of capabilities for user. Devices interact directly with
consumers and quality of their work influence manu-
facturer’s brand greatly. So bugs and ineffectiveness of
software are very critical for CE products. It is agree-
able that Linux has become popular as a platform for
modern embedded systems. However, it still has issues
to be solved due to limited resources (i.e. CPU power
& memory size) and absence of network interface in
the embedded environment. Linux developers use var-
ious methods and approaches to find bugs and perfor-
mance bottlenecks in their programs. One of the effec-
tive and widely used approach is application profiling
by dynamic instrumentation.

There are a number of tools based on dynamic instru-
mentation for *nix systems. Every tool has its own list
of supported features that can be split into the following
categories:

• Supported operating systems, kernel versions;

• Supported processor architectures;

• Instrumentation capability (functions entries/exits,
functions bodies, certain types of instructions etc.);

• Type of collected information (variables, stack,
user or kernel space data etc.);

• Instrumentation overhead;

• Format of collected profiling data;

• 75 •

76 • Dynamic Binary Instrumentation Framework for CE Devices

Set of features supported by particular tool is limited,
and the list of features provided by tool determines its
advantages and disadvantages for developers. For ex-
ample, well-known Kprobe-based tool Systemtap
which provides powerful script language for dynamic
instrumentation does not support MIPS architecture.
Another well-known tool LTTng [4] supports great set
of architectures (including MIPS), but its instrumen-
tation capabilities are limited by hooks inserted into
source code.

Since every tool has limited set of supported features
developers should often make choice what tool to use
in certain circumstances. The problem of choosing a
suitable tool for dynamic instrumentation and profiling
is widely discussed over the technical forums in the in-
ternet, Recently a comparison report [5] has been pub-
lished for the tools mentioned above and DTrace [6],
another instrumentation tool for Solaris, Mac OS X,
BSD and QNX. All those discussions and comparison
report were intended to provide developers with sum-
marized view of available profiling functionality on dif-
ferent platforms.

As it was mentioned above features provided by single
tool can be insufficient for developers, so it is reasonable
to consolidate the advantages of multiple tools simulta-
neously to perform one experiment: typical case which
usually requires the using of several tools is instrument-
ing both user and kernel space. But using several tools
on CE devices is not quite convenient due to the follow-
ing reasons:

• Some tools can not be executed on CE devices in
standalone mode, due to device resource limita-
tions, so experiments which need to run multiple
tools simultaneously can not be performed;

• Not all tools support host-target architecture which
is preferable for resource limited CE devices, so
experiments which need to run multiple tools si-
multaneously can not be performed;

• Using multiple tool complicates instrumentation
process, because instrumentation scripts/programs
needs to be written for several tools;

• All tools have different format of collected data,
so additional scripts/programs are needed to bring
different output data to one format which can be
used for analysis;

• Quite often data, collected using several tools,
should be merged and synchronized in order to cre-
ate ordered sequence of events which reflects the
essence of experiment;

All above problems significantly increase complexity of
profiling using multiple tools.

Let’s consider the following example (see Figure 1)
of profiling programs using multiple tools. Devel-
oper wants to analyze how many page faults are gen-
erated by memory accesses made by considered pro-
gram and if it is possible to find access patterns which
can be optimized. For this experiment developer needs
to profile all memory access made by his program
and all calls to do_page_fault kernel function.
To instrument memory accesses he uses well-known
tool — Dyninst, to instrument do_page_fault
Systemtap is used. In order to use Dyninst en-
gineer has to write special instrumentation program in
C++, compile it and link with Dyninst library. For us-
ing Systemtap developer needs to write instrumenta-
tion script using special language. After gathering nec-
essary data by both tools one needs to take care about
merging data sets after experiment. This is not enough
convenient for developer because of to perform data
analysis developer needs to create a analyzing script
which needs to parse data and represent it as objects
for further processing. Finally, all these actions can
be available if and only if CE device has enough re-
sources for instrumenting the considered application in
standalone mode. Otherwise, one should take care about
remote instrumentation using typical host-target model.

Thus, using Universal Instrumentation Engine could
significantly simplify using multiple dynamic instru-
mentation tools (see Figure 2):

• Instead of working with several separate tools de-
veloper uses universal instrumentation API which
helps to avoid writing handlers with different lan-
guages and perform several linking/compiling pro-
cedures;

• Universal Instrumentation API encapsulates
unique instrumentation technique for each tool
and provides a unified method of using each DBI
engine;

2010 Linux Symposium • 77

Systemtap
text script

C++ source file

systemtapGCC

Instrument and
run program

Output data 1 Output data 2

GCC

dyninst

Instrument and
run program

Compile handlers
Compile
and link

with dyninst
library

Separate buffers

Format
depends on

handlers
written

in pseudo C

Format
depends on

handlers
written

in C/C++

Figure 1: Using Multiple Instrumentation Tools

• Universal engine provides requested dynamic in-
strumentation in standalone or remote mode using
as less resources for multiple tools as possible;

• All handlers of multiple tools are written similarly
in sense of output data format, so the collected
trace of events will be, firstly, saved in unified
data format and, secondly, provided in a merged
state, thus avoiding developer from taking care of
problems regarding parsing/merging different for-
mat data;

This approach eliminates disadvantages of process
of using multiple instrumentation engines described
above. Universal engine integrates several instrumen-
tation methods in order to provide developer with abil-
ity to run his instrumentation scenarios using several
methods through one universal interface. It also pro-
vides gathered data in unified format what simplifies
post-mortem data analysis.

2 Framework Description

In this paper we describe unique dynamic binary instru-
mentation engine concept which is used in our moni-
toring tool — System-Wide Analyzer of Performance
(SWAP). This tool was designed for profiling of user and
kernel space software on embedded Linux systems. It

provides extensible framework for system profiling and
analysis of gathered data. It uses dynamic instrumenta-
tion technique for collecting data about system behavior.
SWAP integrates several instrumentation tools and pro-
vides developers with ability to use multiple tools for
profiling applications on CE devices. It has open mod-
ular design which allows other tools (e.g. front-ends,
GUIs) to re-use its functionality. To fit the needs of
various embedded platforms SWAP also supports host-
target communication concept and standalone mode of
operation when there is no connection to host. Finally,
it provides a simple and convenient toolkit for post-
mortem data analysis based on Python scripts which can
be easily extended on the needs of user.

2.1 Architecture

In general profiling of applications consists of the fol-
lowing steps:

1. Developer specifies probing points and handlers
which should be attached to those points;

2. Instrumentation engine resolves probing points in
application binary and prepares instrumentation
code to be inserted into application;

3. Instrumentation code is transferred to target in case
of host-target architecture;

78 • Dynamic Binary Instrumentation Framework for CE Devices

1st method:
Instrument and

run program

Output data

2nd method:
Instrument and

run program

3rd method:
Instrument and

run program

Universal
Instrumentation

API

Universal Engine

User

Single buffer
for all methods

Figure 2: Universal Instrumentation Engine

4. Engine inserts instrumentation code into applica-
tion and runs it if necessary;

5. Profiling data are collected by instrumentation han-
dlers;

6. Engine removes instrumentation code;

7. Collected data is transferred from target to host in
case of host-target architecture;

8. Collected data are stored in intermediate storage;

9. Developer analyzes collected data;

SWAP has open modular architecture (see Figure 3)
which allows developers to re-use it for building their
own tools. SWAP instrumentation framework consists
of the following main components which implement
above profiling scenario for embedded devices and pro-
vide the full set of capabilities for dynamic instrumen-
tation and further data analysis:

• Instrumentation Engine. This is essential compo-
nent of SWAP instrumentation framework which
fully implements the functionality of described
above Universal Instrumentation Engine. It pro-
vides API for instrumentation of user and ker-
nel space functions using various instrumentation
methods. It allows to instrument entry/exit and

body of specified functions. Also it provides
API to configure and control profile data collec-
tion. It consists of two parts: host and target.
Host Instrumentation Engine performs step 2 from
above scenario. It prepares data necessary for in-
strumentation, for example, resolves function ad-
dresses and prepares instrumentation code to be
inserted. Target Instrumentation Engine performs
steps 3 and 4 from above scenario. It does es-
sential work: inserts instrumentation into applica-
tion/kernel and collects data. Currently engine in-
tegrates two instrumentation methods: Kprobe-
based and Dyninst-based. For kernel instrumen-
tation Kprobe-based method is used. For user
space Kprobe or Dyninst methods are used de-
pending on what program points should be instru-
mented (e.g. functions or memory access instruc-
tions).

• Communication Agent. This component provides
API for connecting to target and transferring com-
mands and responses to target and obtaining col-
lected data from target. It consist of two parts: host
and target. The component encapsulates SWAP tar-
get communication protocol. This component is
used by instrumentation engines to control instru-
mentation process and data transfer. In standalone
mode this component is not used.

2010 Linux Symposium • 79

• Collected Data Storage. This is storage for col-
lected data. It stores collected data and provides ef-
fective methods for retrieval of collected informa-
tion when data are analyzed. SWAP supports sev-
eral modes of data collection: normal mode when
all data are collected on target and after experiment
they are transferred to host and continuous mode
when data are transferred to host continuously as
they appear. These two modes allows to user to
choose optimal data collection policy for his ex-
periment. Normal mode has less overhead for tar-
get, but it is limited by size of buffer on target for
collected data. So in normal mode amount of pro-
filed data are limited by size of buffer on target.
Continuous transfer mode has no such limitation.
Buffer is used as intermediate storage before data
are transferred to host. But this mode has greater
overhead because of data transmission.

• Data Analyzing Framework. As a final step of re-
solving considered problem, SWAP provides to de-
velopers analyzing framework which allows easy
data manipulating and analyzing. This component
provides framework with API for loading, parsing
and analyzing data kept in Collected Data Storage.
Developers can easily extend this framework and
reuse its components in their own analyzing scripts
written in SWAP Python-based language.

The described components cover all basic functionality
needed for monitoring with help of dynamic instrumen-
tation: ability to instrument kernel space and user space,
ability to use standalone mode or host-target model,
ability to save collected data in unified format and, fi-
nally, perform data analysis for understanding consid-
ered behavior of the CE device. Let’s consider general
SWAP profiling scenario in details (see Figure 3):

• Upon user actions SWAP GUI configures instru-
mentation and starts it via instrumentation API pro-
vided by engine. Instrumentation configuration in-
cludes functions to be instrumented, size of buffer
for collected data etc;

• Host instrumentation engine prepares information
necessary for profiling, connects to target via host
communication agent and sends data to target;

• Instrumentation agent on target inserts instrumen-
tation code into application and starts it if neces-
sary;

• Data collection started;

• When user stops data collection (via SWAP GUI)
collected data are transferred back to host via com-
munication agents and saved in data storage;

• Then when user wants to visualize results of pro-
filing SWAP GUI uses analyzing scripts based on
Data Analyzing Framework to calculate and repre-
sent various statistics;

• SWAP visualizes results;

2.2 Instrumentation API

As it was mentioned above SWAP instrumentation en-
gine provides to developers universal instrumentation
API. This API provides common way for profiling pro-
grams using different instrumentation methods. As it
was said before currently there are two methods are sup-
ported by SWAP: Kprobe-based and Dyninst-based.
This API provides general set of functions which does
not depend on underlying instrumentation engine. API
allows to:

• Add/remove probe for specified kernel function.
Kernel function probes trace entry and exit from
functions;

• Add/remove probe for specified user space appli-
cation’s function. User space function probes trace
entry and exit from functions;

• Add/remove probe inside functions. Function body
probes trace execution of instruction at specified
address inside functions;

• Add/remove memory access probe inside func-
tions. Memory access probes trace execution of
memory access instructions inside functions;

• Configure target buffer size;

• Set filters by process IDs and names;

• Define conditions for data collection start and end;

• Start and stop profiling process;

• Retrieve list of libraries used by application;

• Retrieve list of application/library functions;

• Retrieve list of kernel functions;

• Configure data transfer mode for host-target model
(one-time or continuous);

80 • Dynamic Binary Instrumentation Framework for CE Devices

Target Instrumentation Engine

Host Instrumentation Engine

Host Communication
Agent

Dyninst Host
Agent

Symbolic Info
Library

Instrumentation commands

Dyninst
Instrumentation

Agent

Kprobe
Instrumentation

Agent

D
a
t
a

B
u
f
f
e
r

data

data

Data Analysis
Framework

SWAP GUI 3rd party GUIs

SWAP
Analyzers

3rd party
 Analyzers

GUIs

API
calls

results

EthernetRS232 USB

Data Packets

Target Communication
Agent

EthernetRS232 USB

Instrumentation
commands

HOST

TARGET

Kprobe Host
Agent

Collected
data

storage

Collected Data

Figure 3: SWAP Architecture

3 Profiling With SWAP

There are several ways in which developers can use
SWAP instrumentation framework for profiling:

• They can use it as library in order to build their own
tools on top of the engine;

• Developers can use SWAP GUI front-end itself for
instrumentation, control and visualization of re-
sults;

As it was described earlier SWAP instrumentation en-
gine is universal instrumentation engine which inte-
grates several instrumentation tools (see Figure 4).
SWAP GUI follows general approach of building tools
on top of SWAP instrumentation engine. It uses it as
shared library. Also it extends SWAP data analyzing
framework with a set of own scripts which analyze col-
lected data and produce data for visualization of various

statistics. Let’s see how SWAP solves problems raised
by usage of multiple tools. We will consider exam-
ple described in introduction where memory accesses
and do_page_fault kernel function should be in-
strumented for the same application behavior (developer
wants to analyze how many page faults are generated by
memory accesses made by considered program and if
it is possible to find access patterns which can be opti-
mized).

Steps which should be performed to instrument program
using multiple tools Systemtap and Dyninst:

1. Write Systemtap script for kernel functions in-
strumentation using a built-in language;

2. Compile written handlers for kernel functions;

3. Instrument kernel functions and run considered
program;

4. Collect and save essential data;

2010 Linux Symposium • 81

C++ source file

Output data

GCC

Universal Engine

Instrument
via KProbe

Instrument
via Dyninst

Analyzer

Results prepared
for visualization

One file for
all platforms

Compile and link
with engine library

Single
buffer
for all

methods

Figure 4: SWAP Profiling Scheme

5. Write C++ program which uses Dyninst for in-
strumentation of memory accesses;

6. Compile and link considered program with
Dyninst library;

7. Run instrumented program second time;

8. Collect and save essential data;

9. Merge data collected by both tools;

10. Write program/script for data analysis, including
data parser, data analysis itself and formatted out-
put information;

In comparison with previous procedure, developer
should perform much less steps to instrument program
using SWAP:

1. Write C++ program which uses SWAP engine for
instrumentation of memory accesses and kernel
functions using two or more DBI engines simul-
taneously;

2. Compile and link considered program with engine
library;

3. Run program only one time;

4. Collect and save essential data using standalone
mode or host-target mode;

5. Write program/script for data analysis itself, avoid-
ing time consuming development of data parsing
and formatting of output information;

As it can be easily seen, in this example, SWAP instru-
mentation procedure:

82 • Dynamic Binary Instrumentation Framework for CE Devices

• is more simple, universal and resource saving due
to unified approach for instrumentation needs less
compilations/linking of instrumentation handlers;

• produces synchronized data which do not need
merging due to simultaneous use of two or more
DBI engines;

• provides more correct conditions of experiment
due to one-time launch of considered program;

• allows perform considered experiment under host-
target mode or standalone mode, thus extending
abilities under strict hardware conditions (lack of
memory for saving data or unavailable network
connection);

• avoids developer of implementing data parsing dur-
ing data analysis, thus giving ability to concentrate
on analysis itself;

In more complex instrumentation scenarios developer
may spend significant time for writing Systemtap
script and Dyninst-based tool.

4 Conclusion

There are a number of instrumentation tools which have
their advantages and disadvantages. There is no ideal
tool which will satisfy all developer’s needs. So devel-
opers have to duplicate and maintain their instrumenta-
tion scenarios in various forms which are supported by
every tool.

In this paper we presented our tool SWAP which is built
on top of universal profiling framework which can be
extended by users analyzing modules. SWAP frame-
work makes use of universal instrumentation engine
concept in order to integrate functionality of several in-
strumentation tools and provide developers with uni-
versal and effective way of profiling programs on vari-
ous embedded platforms using different instrumentation
methods and analyzing collected profiling data.

References

[1] William E. Cohen, Gaining insight into the Linux
kernel with Kprobes, RedHat Magazine, Issue#5,
March 2005

[2] Frank Ch. Eigler. Problem solving with
systemtap. In Proceedings of the Ottawa Linux
Symposium 2006, 2006.

[3] Giridhar Ravipati, Andrew R. Bernat, Nate
Rosenblum, Barton P. Miller and Jeffrey K.
Hollingsworth, Toward the Deconstruction of
Dyninst, Technical Report, Computer Sciences
Department, University of Wisconsin, Madison,
2007.

[4] Mathieu Desnoyers, and Michel R. Dagenais, The
LTTng tracer: A Low Impact Performance and
Behavior Monitor for GNU/Linux, Linux
Symposium Proceedings, Volume 1, Ottawa,
Ontario, 2006.

[5] Systemtap, Dtrace, LTTng Comparison.
http://sourceware.org/systemtap/
wiki/SystemtapDtraceComparison

[6] Richard McDougall, Jim Mauro, and Brendan
Gregg, Solaris Performance and Tools: Dtrace
and Mdb Techniques for Solaris 10 and
Opensolaris, Prentice Hall, 2006.

Prediction of Optimal Readahead Parameter in Linux by Using
Monitoring Tool

Ekaterina Gorelkina
SRC Moscow, Samsung Electronics
e.gorelkina@samsung.com

Sergey Grekhov
SRC Moscow, Samsung Electronics

grekhov.s@samsung.com

Jaehoon Jeong
SAIT, Samsung Electronics

hoony_jeong@samsung.com

Mikhail Levin
SRC Moscow, Samsung Electronics

m.levin@samsung.com

Abstract

Frequently, application developers face to the hidden
performance problems that are provided by operating
system internal behavior. For overriding such problems,
Linux operation system has a lot of parameters that can
be tuned by user-defined values for accelerating the sys-
tem performance. However, in common case evaluating
of the best system parameters requires a very time con-
suming investigation in Linux operating system area that
usually is impossible because of strong time limitations
for development process.

This paper describes a method that allows any applica-
tion developer to find the optimal value for the Linux
OS parameter: the optimal maximal read-ahead win-
dow size. This parameter can be tuned by optimal
value in easy way that allows improving application per-
formance in short time without getting any knowledge
about Linux kernel internals and spending a lot of time
for experimental search for the best system parameters.

Our method provides the prediction of optimal maximal
read-ahead window size for Linux OS by using the mon-
itoring tool for Linux kernel. Scenario of our method
using is very simple that allows obtaining the optimal
value for maximal read-ahead window size for the sin-
gle application run. Our experiments for Linux 2.6 show
that our method detects an optimal read-ahead window
size for various real embedded applications with ade-
quate accuracy and optimization effect can be about a
few and even a few dozen percents in comparison to de-
fault case. The maximal observed optimization effect
for accelerating the embedded application start-up time
was 59% in comparison to default case.

Taking into account these facts the method proposed in

this paper has a very good facilities to be widely and
simply used for embedded applications optimization to
increase their quality and effectiveness.

1 Introduction

In modern computing systems high performance disk
drive systems very often have a serious problem related
with its performance, effectiveness and speed. Usu-
ally the disk input-output (I/O) performance is related
with time which needs to mechanical parts of the disk to
move to a location of the data storing. This time usually
defines the time delays in the data extraction. Operating
systems incorporate disk read-ahead cache to minimize
the time delays. Typically, the data from the disk are
buffered in a memory with a relatively fast access time.
If requested data is already reside in the cache mem-
ory, the data can be transferred directly from the cache
memory to the requester. In result the performance is in-
creased because the access to data from the cache mem-
ory is substantially faster than the access from the disk
drive [1].

Very often such cache can be sufficiently effective. But
sometimes it can produce the low system performance.
This relates with the sensitivity of the read-ahead cache
to cache hit statistics [2]. A read-ahead cache having
a low hit rate may perform more poorly than an un-
cached disk due to caching overhead and queuing de-
lays, among others. This problem is especially impor-
tant to be solved for embedded systems, because they
usually have less memory and slow CPUs than servers
and workstations.

Performance of read-ahead subsystem can be controlled
by its main parameter - maximal read-ahead window

• 83 •

84 • Prediction of Optimal Readahead Parameter in Linux by Using Monitoring Tool

size: the maximum amount of data which can be read-
ahead from block device. The performance of each ap-
plication that is running under management OS depends
on the performance of read-ahead cache. Thus, using
optimal maximal read-ahead window size value for the
current application can improve performance of this ap-
plication significantly. Typically, the finding the opti-
mal maximal read ahead window size for target applica-
tion consists of the following steps: (1) tune operating
system by current maximal read-ahead window; (2) re-
boot the system; (3) run the target application; (4) mea-
sure the time of execution of target application. These
steps should be repeated several times for various maxi-
mal read-ahead window sizes until the optimal value of
read-ahead window size will be found. The main dis-
advantage of such method is too much time that should
be spent for finding the optimal value of maximal read-
ahead window size. Thus, finding the optimal value of
maximal read-ahead window size during single applica-
tion run could significantly improve the performance of
target application and save a lot of machine and human
resources.

2 Method Overview

The suggested technique consists of the following steps:
(1) user should collect data from the application and
OS during application execution by monitoring tool for
Linux kernel one time; (2) monitoring tool analyzes col-
lected data and evaluates optimal maximal read-ahead
window size automatically; (3) user can access evalu-
ated optimal read-ahead window size value via moni-
toring tool user interface. Thus, in comparison to man-
ual method of finding optimal read-ahead window size
and other existing methods (see [11], [12], [13] for de-
tails), the suggested method has the following advan-
tages: (1) determines optimal maximal read-ahead win-
dow size value during single run of application that is
to be optimized; (2) uses existing read-ahead subsystem
without any changes.

This method is designed to be used as a module of a
monitoring tool such as SWAP - System-Wide Analyzer
of Performance developed by Samsung Research Cen-
ter (SRC) in Moscow. The initial version of SWAP
was developed in 2006 and uses functional interfaces of
Kprobe for providing dynamic instrumentation of Linux
kernel for ARM and MIPS architecture. Next revision
of SWAP tool was developed in SRC in 2007. This re-
vision allowed collecting traces from predefined func-

tions in Linux kernel that contains general information
of system characterization. The current SWAP revision
can monitor both kernel and application levels of the
Linux system. It provides evaluation of a set of impor-
tant system characteristics for main Linux subsystems
(such as Memory Management, Process Management,
File System and Network). Additional, current revision
of SWAP has some automatic performance analysis fea-
tures such as trace comparison, automatic bottleneck re-
gion localization, etc.

We have integrated our method into SWAP framework
because SWAP satisfies to all necessary requirements of
our method.

2.1 General Idea

We suggest that optimal solution can be obtained by
minimization of the following two characteristics: the
number of requests to the block device and the amount
of pages that were forced to read by target application,
but were not used.

The big value of maximal read-ahead window size pro-
vides minimization of the first characteristic – number
of requests to the block device. However, in common
situation the big value of maximal read-ahead window
size provides reading a lot of pages from block device
that are not used by application. In the other words the
big value of maximal read-ahead window size makes OS
performs a lot of unnecessary job that is very time con-
suming. It is obvious that application performance de-
grades because of such OS behavior.

The small value of maximal read-ahead window size
provides minimization of the second characteristic – the
amount of pages that were forced to read by target ap-
plication, but were not used. However, in this case op-
timization effect of read-ahead cache is decreased be-
cause of a lot of application requests for memory pages
invoke the requests to the block device instead of re-
quests to the read-ahead cache.

Thus, to reach the optimal OS behavior for current ap-
plication we need to obtain such maximal read-ahead
window size value that provides minimization of both
characteristics simultaneously.

2.2 Collected Data

The first step of our method requires collecting the im-
portant information about application behavior during

2010 Linux Symposium • 85

execution for future analyzing and evaluating the result.
For these purposes, it is necessary to monitor the ac-
cesses to the memory that has been performed by appli-
cation. SWAP has ability for tracking memory accesses
and organizing them in trace that allows estimating the
following aspects: 1) the total number of accessed mem-
ory pages, loaded from block device; 2) the addresses of
accessed memory pages and their source (loaded from
block device or not); 3) the order of accesses.

Notice, that our method requires the single application
run only for gathering the monitoring information for
evaluation of the optimal values of maximal read-ahead
window size.

2.3 Analysis of Collected Data

According to the basic idea, two following values should
be minimized simultaneously:

• F - number of requests to the block device;

• G - number of pages that were forced to read by
target application, but were not used.

Both values - F and G - can be evaluated according to
the information about memory pages that have been ac-
cessed by application.

Our method performs the emulation of read-ahead pro-
cedure for obtaining the required parameters for resolv-
ing the minimization problem. Linux 2.6 read-ahead
cache has a complex behavior: after each request to
the page from block device, some additional follow-
ing pages are loaded into read-ahead cache. Number
of additional pages is less or equal to the maximal read-
ahead window size value. During emulation of read-
ahead cache behavior we simplify the real OS behavior:
we consider that the number of additional pages that are
loaded into read-ahead cache is equal to the size of read-
ahead window (see Figure 1).

This emulation procedure allows determine those pages
can be potentially loaded into read-ahead cache for any
predefined maximal read-ahead window size value. Ac-
cording to this information it is possible to evaluate the
number of requests to the block device F . Thus, the
number of requests to the block devices F can be de-
scribed as a function:

Application

Memory

1 2 3 4 3 1 2 3 4 4 1 1

1

2

3

4

Read−ahead window Read−ahead window

Pages which were accessed by application and were
read directly from block device, without read−ahead

Pages which were accessed by application and were
read from block device via read−ahead cache

Pages which were read from block device into read−ahead
cache and were not used by application

Pages which were not used by application

Figure 1: Read-ahead emulation procedure

F = Rrn(Ma,Rws) (1)

where Rrn is the number of requests to the block device,
Ma is number of memory accesses that requires map-
ping pages from block device and Rws is the maximal
read-ahead window size.

The value of G that describes the number of pages that
were forced to read by target application, but were not
used, can be evaluated by taking into account the fol-
lowing peculiarities of Linux 2.6 read-ahead cache be-
havior:

• each read-ahead request produces a read opera-
tion for page from block device, which will not be
placed in read-ahead cache;

• each read-ahead request additionally produces Rws
read operations for pages from block device

Thus, the total amount of pages that were read from
block devices within the performed read-ahead emula-
tion can be expressed as a following function g:

g = Rrn∗Rws+Rrn (2)

Since the collected information on memory accesses
provides information about total amount of pages re-
quested by application, it is suitable to define the value
of G (see Fig. 1) as follows:

G = Rrn∗Rws+Rrn−Tap(Ma) (3)

86 • Prediction of Optimal Readahead Parameter in Linux by Using Monitoring Tool

Here Tap is a total amount of pages from block device
requested by application. Thus, we define G as a differ-
ence between the number of pages that have been really
read from the block device as a result of the read-ahead
cache behavior and the number of requested pages.

Notice that both functions F and G depend on two ar-
guments, namely on the collected information on mem-
ory accesses (Ma) and on the read-ahead window size
(Rws). The first argument Ma can be considered as a
constant since the problem of performance optimization
is solved for some fixed behavior of target application.
Hence, both characteristics are the functions of a single
argument - maximal read-ahead window size (Rws). It
is possible to obtain different emulated values for both
characteristics by varying Rws value.

According to the basic idea of the method the minimiza-
tion problem for functions F and G should be solved.
Both functions F and G reach their minimum value
in extreme points satisfying to the following necessary
conditions:

∂F
∂Rws = 0

(4)
∂G

∂Rws = 0

Since functions F and G depend on one variable Rws,
we have a redefine system of two equations. To solve
this incorrect problem [3], we change searching of ex-
act solution of the redefine system of two equations by
searching of its quasi-solution satisfying to solution of
the following minimization problem:

minRws{F2(Rws)+G2(Rws)} (5)

This minimization problem can be rewritten also as fol-
lows:

minRws{Rrn2 +[Rrn∗ (Rws+1)−Tap]2} (6)

Here we call an expression in figure brackets as a
coe f f iciento f optimality:

Copt = {Rrn2 +[Rrn∗ (Rws+1)−Tap]2} (7)

It is easily to see that there are two limiting values for
Rws which gives trivial solution exact for G:

1. Rws = 0, in that case each page, accessed by applica-
tion is read from block device and none of the pages are
read into read-ahead cache. In this case Rrn is equal to
Tap. Thus, G is always equal to 0.

And for F :

2. Rws = total amount of memory in computing system.
In this case, after first access to the page with minimal
address, all pages will be read into read-ahead cache.

Notice, when function F has the minimal value, then
function G has the maximal value and vice versa. Both
mentioned limited values of Rws allow restricting the set
of possible values of Rws.

The minimization problem can be solved by the exhaus-
tive search. However, during test period it is was noted
that minimized expression is a function with one turn-
ing point - the point of minimum. We use the itera-
tive method for speeding up the search: we emulate the
read-ahead cache behavior for different values of maxi-
mal read-ahead window size Rws and choose such Rws
value that makes a coefficient of optimality (7) becomes
minimal.

3 Experimental Data

Using SWAP monitoring tool with our optimization
method we collected several sample traces for embed-
ded boards with running applications considered below.
The appropriate results obtained in our experiments are
also presented and discussed. For measuring inaccu-
racy of our method we use the following technique: the
optimization percentage of optimal maximal read-ahead
window size (found by hands) and quasi-optimal maxi-
mal read-ahead window size (proposed by our method)
are measured (with comparison to default maximal read-
ahead window size); the difference between optimal
percentage and quasi-optimal percentage gives us the
“amount” of missed optimizations. For example, the
start-up of application for default Rws = 255 equals to
34.9 seconds; for quasi-optimal Rws = 2 equals to 14,5
seconds; for optimal Rws = 1 equals to 14 seconds. The
optimization percentage of quasi-optimal Rws in com-
parison with default Rws is 58.45%. The optimization
percentage of optimal Rws in comparison with default
Rws is 59.88%. The difference between optimal and
quasi-optimal solutions is (59.88%−58.45%) = 1.43%.

2010 Linux Symposium • 87

Environment Details
Board DTV_x260, MIPS-based

Kernel version 2.6.10
Application Digital TV

management
software (exeDSP)

Initial read-ahead 255 pages
window size
Performance SWAP

measurement tool
Base for memory access do_page_fault()

event information SWAP event

Table 1: Characteristics of DTV_x260 board and
exeDSP application

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5000000

10000000

15000000

20000000

25000000

Read−ahead window size

C_opt

Figure 2: Copt for application exeDSP. Quasi-optimal
solution (point of minimum of Copt) Rws = 1 is marked
with star

3.1 Digital TV Management Application

The experiment consisted of optimizing the start-up pro-
cedure of application textitexeDSP (digital TV manage-
ment software) which supervises digital TV board (DTV
x260): the time of full initialization should be decreased
as much as possible.

The diagnosis of our method (implemented in SWAP)
was the following: quasi-optimal size of maximal read-
ahead window Rws is equal to is 1 (see Figure 2).

The performance was measured manually for the fol-
lowing values of read-ahead window size enumerated in
Table 2.

We can see that minimum is reached for Rws = 1 page

Read-ahead Time of startup, seconds
Window Size
(Rws), pages

0 14.2
1 14
2 14.5
3 16
4 18.4
5 23
15 26.5

255 (default) 34.9

Table 2: Runs of exeDSP application on DTV_x260
board

0 1 2 3 4 5
0

Read−ahead window size

5

10

15

20

25

30

35

40

15 255

Time, seconds

Figure 3: Start-up time for application exeDSP. Quasi-
optimal solution is marked with star. Optimal solution
Rws = 1 is marked with square

(see Figure 3). Optimal read-ahead window size is
Rws = 1.

The difference of start-up time between default read-
ahead (255 pages) and optimal read-ahead suggested by
our method (1 page) is about 20.9 seconds or about 59%
from default start-up time. The difference between op-
timal and quasi-optimal solutions is 0%, because quasi-
optimal and optimal solutions are coincided.

3.2 Web Browser

The experiment consisted of optimizing the start-up pro-
cedure of FireFox (web browser) on multimedia board
MVL2443: the time of full initialization should be de-
creased as much as possible.

88 • Prediction of Optimal Readahead Parameter in Linux by Using Monitoring Tool

Board MVL2443,
ARM based

Kernel version 2.6.16
Application Firefox

Initial read-ahead window size 7

Table 3: Characteristics of MV2443 board and Firefox
application

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10000000

20000000

Read−ahead window size

C_opt

30000000

40000000

50000000

60000000

Figure 4: Copt for application FireFox. Quasi-optimal
solution (point of minimum of Copt) Rws = 2 is marked
with star

The diagnosis of our method (implemented in SWAP)
was the following: quasi-optimal size of read-ahead
window Rws is equal to 2 (see Figure 4).

The performance was measured manually for the fol-
lowing values of read-ahead window size enumerated in
Table 4.

We can see that minimum is reached Rws = 3 pages (see
Figure 5). Optimal read-ahead window size is Rws = 3.
The difference of start-up time between default read-
ahead (15 pages) and quasi-optimal read-ahead sug-
gested by our method (2 pages) is about 5.8 seconds or
about 7.34% from default start-up time. The difference
of start-up time between default read-ahead (15 pages)
and optimal read-ahead found by hands (3 pages) is
about 6.3 seconds or about 7.97% from default start-up
time. The difference between optimal and quasi-optimal
solutions is (7.97%−7.34%) = 0.65%.

3.3 MP3 player

The experiment consisted of optimizing the file load-
ing procedure of MadPlay MP3 player on the board

Read-ahead Time of startup, seconds
Window Size
(Rws), pages

0 75
1 73.1
2 73.2
3 72.7
4 73.5
5 74.5
7 79

15 (default) 79
31 81

Table 4: Runs of Firefox application on MV2443 board

0 1 2 3 4 5

Read−ahead window size

68

70

72

74

76

78

80

7 15

Time, seconds

31

82

Figure 5: Start-up time for application FireFox. Quasi-
optimal solution is marked with star. Optimal solution
Rws = 3 is marked with square

OMAP5912OSK: the time of playback with null output
device should be decreased as much as possible.

The diagnosis of our method (implemented in SWAP)
was the following: quasi-optimal size of read-ahead
window Rws is equal to 2 (see Figure 6).

The performance was measured manually for the fol-
lowing values of read-ahead window size enumerated in
Table 6.

We can see that minimum is reached for value Rws =
3 (see Figure 7). Optimal read-ahead window size
is Rws = 3. The difference of start-up time between
default read-ahead (15 pages) and quasi-optimal read-
ahead suggested by our method (2 pages) is 0.5 seconds
or about 4.70% from default start-up time. The differ-
ence of start-up time between default read-ahead (15

2010 Linux Symposium • 89

Board OMAP2912OSK
ARM based

Kernel version 2.6.10
Application MP3 Player (Madplay)

Initial read-ahead
window size 15

Table 5: Characteristics of OMAP5912 OSK board and
MadPLay application

Read-ahead Time of startup, seconds
Window Size
(Rws), pages

0 10.66
2 10.13
3 10.09
4 10.17
5 10.17
6 10.23
7 10.31
8 10.31

15 (default) 10.63
19 10.73
31 10.95

Table 6: Runs of MadPLay application on OMAP5912
OSK board

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

Read−ahead window size

C_opt

50000

100000

150000

200000

250000

300000

350000

400000

Figure 6: Copt for application MadPlay. Quasi-optimal
solution (point of minimum of Copt) Rws = 2 is marked
with star

0 2 3 4 5

Read−ahead window size

9.6

9.8

10

10.2

10.4

10.6

10.8

7 15

Time, seconds

31

11

6 8 19

11.2

Figure 7: Time of input file loading for application Mad-
Play. Quasi-optimal solution is marked with star. Opti-
mal solution Rws = 3 is marked with square

pages) and optimal read-ahead found by hands (3 pages)
is 0.54 seconds or about 5.07% from default start-up
time. The difference between optimal and quasi-optimal
solutions is (5.07%−4.70%) = 0.37%.

4 Conclusion

We have presented a new method for automatic evalua-
tion of optimal value for single Linux tunable parameter:
maximal read-ahead window size. Tuning of this Linux
parameter by obtained value can improve performance
of embedded application significantly. Our method is
simple to use and requires single run of application for
evaluation of all necessary characteristics. It does not

90 • Prediction of Optimal Readahead Parameter in Linux by Using Monitoring Tool

require any additional knowledge in system or optimiza-
tion areas and can be used by any application developer
who wants to increase performance of his application by
reducing hidden performance bottlenecks in Linux op-
erating system. Due to its advantageous characteristics,
this method can be widely used for optimization of em-
bedded systems to increase their quality and effective-
ness.

References

[1] Daniel P. Bovet, Marco Cesati, Understanding the
Linux Kernel, Third Edition, O’Reilly Media,
2006.

[2] Linux kernel source files
(http://kernel.org).

[3] V. A. Morozov, Regular Solution Methods of
Non-Correct problems, Nauka, Moscow, 1987.

[4] James R. Larus and Eric Schnarr, Computer
Sciences Department, University of Wisconsin,
Madison, EEL: Machine-Independent Executable
Editing. (ftp://ftp.cs.wisc.edu/wwt/
pldi95_eel.ps).

[5] Amitabh Srivastava, Alan Eustace, ATOM: A
System for Building Customized Program
Analysis Tools.

[6] Ted Romer, Geoff Voelker, Dennis Lee, Alec
Wolman, Wayne Wong, Hank Levy, and Brian
Bershad, University of Washington, Brad Chen,
Harvard University, Instrumentation and
Optimization of Win32/Intel Executables Using
Etch.(http:
//etch.cs.washington.edu/
etch-usenixnt/etch-usenixnt.html).

[7] Ananth Mavinakayanahalli, Prasanna
Panchamukhi, Jim Keniston, Anil
Keshavamurthy, Masami Hiramatsu, Probing the
guts of Kprobes, Ottawa Linux Symposium,
pp.101-114, July 2006.

[8] Frank Ch. Eigler, RedHat, Problem Solving With
Systemtap. (http://sourceware.org/
systemtap/wiki/OLS2006Talks?
action=AttachFile&do=get&target=
problem-solving-with-stap.pdf).

[9] David J. Pearce, Paul H.J. Kelly, Tony Field, Uli
Harder, Imperial College of Science, Technology
and Medicine, London, GILK: A dynamic
instrumentation tool for the Linux Kernel.

[10] Giridhar Ravipati, Andrew R. Bernat, Nate
Rosenblum, Barton P. Miller and Jeffrey K.
Hollingsworth, Toward the Deconstruction of
Dyninst, Technical Report, Computer Sciences
Department, University of Wisconsin, Madison
(ftp:
//ftp.cs.wisc.edu/paradyn/papers/
Ravipati07/SystemtabAPI.pdf).

[11] US5809560, Adaptive read-ahead disk cache.

[12] US2005154825A1, Adaptive file read-ahead
based on multiple factors.

[13] US2003115410A1, Method and apparatus for
improving file system response time.

Unprivileged login daemons in Linux

Serge Hallyn
IBM

serge@hallyn.com

Jonathan T. Beard
GeekNet / Sourceforge
jbeard@geek.net

Abstract

Login daemons require the ability to switch to the userid
of any user who may legitimately log in. Linux provides
neither a fine-grained setuid privilege which can be tar-
geted at a particular userid, nor the ability for one priv-
ileged task to grant another task the setuid privilege. A
login service must therefore always run with the ability
to switch to any userid.

Plan 9 is a distributed operating system designed at Bell
Labs to be a next generation improvement over Unix.
While it is most famous for its central design princi-
ple - everything is a file - it is also known for simpler
userid handling. It provides the ability to pass a setuid
capability - a token which may be used by a task owned
by one userid to switch to a particular new userid only
once - through the /dev/caphash and /dev/capuse files.
Ashwin Ganti has previously implemented these files in
Linux. His p9auth device driver was available for a time
as a staging driver. We have modified the concepts ex-
plored in his initial driver to better match Linux userid
and groups semantics. We provide sample code for a
p9auth server and a fully unprivileged login daemon.
We also present a biased view of the pros and cons of
the p9auth filesystem.

1 Introduction

For the past fifteen years, the Computer Security In-
stitute has surveyed security practitioners and govern-
ment and private institutions regarding security breaches
and cybercrime [14]. In 2008, they surveyed 522 re-
spondents with an average annual loss report just un-
der $300,000. From 2004 through 2008, the number
of respondents reporting unauthorized access (including
privilege escalation) as a component of their reported
attacks remained approximately a third. Similarly, in
the mobile computing and console gaming arenas, jail-
breaks through privilege escalation remain one of the

leading security concerns for these platforms. As Linux
forms the core operating system for a growing number
of these devices [5], a solution that greatly reduces or
eliminates opportunities for privilege escalation would
represent a potential savings worth tens or hundreds of
millions – at least from a comparison of potential losses
due privilege escalation as described above.

One avenue to privilege escalation is the exploitation
of flaws in privileged programs. For instance, a buffer
overflow in the ping program might allow a regular
unprivileged user to pass specific data as an argument
to ping, invoking a shellcode resulting in a root shell.
Therefore, it is a laudable goal to reduce the number of
programs which need to run privileged.

We begin by reviewing the current design of login
servers in Linux. We present two ways in which Linux
could be extended to support making these login servers
unprivileged. For the first, we provide sample code for
both the privileged and unprivileged servers. We dis-
cuss the pros and cons of both approaches, in the hopes
of raising a discussion on the merits of supporting one
of the designs upstream.

2 Login services in Linux

Throughout this paper, familiarity with the user [11] and
privilege [7] mechanisms of Linux is assumed. Tasks
are owned by a numerical user ID and one or more nu-
merical group IDs. These numerical IDs are known
in userspace by textual names. Tasks also carry three
sets of privileges which for historical reasons are called
“POSIX capabilities” or just “capabilities”. We usu-
ally say a task has some privilege if that privilege is in
the task’s “effective” set, in which case the task is al-
lowed to escape certain access checks or perform sen-
sitive tasks. For instance, the CAP_DAC_OVERRIDE

privilege allows a task to read other users’ private files
and CAP_SYS_BOOT allows a task to reboot the system.
Usually, user IDs and privileges are linked, and user ID

• 91 •

92 • Unprivileged login daemons in Linux

0 is special in that its privilege sets are full, while privi-
lege sets for other user IDs are by default empty.

Tasks in Linux can switch user IDs in two ways. One
is to execute a file with the “setuid bit” set. This bit
indicates that when the file is executed, the “effective”
user ID should be set to that of the file owner. The “real”
user ID remains unchanged. The other way is to use the
setuid family of system calls. This can be used by
unprivileged tasks to switch values between the effective
and real (and another, called “saved”) user IDs. To set
a user ID to an entirely new value requires the CAP_

SETUID privilege. The changing of primary group IDs
is analogous. Changing the set of auxiliary group IDs
(for which there is no analogy with user IDs) always
requires the CAP_SETGID privilege.

A simple login service in Linux can be structured as in
Figure 1. The login daemon, running with process ID
(PID) 300 waits for a username to be entered on its ter-
minal, /dev/tty. Generally it then asks for a password
on the same terminal. It can verify the validity of the
password by checking hashed entries in /etc/passwd

or /etc/shadow. If the password is valid, then the lo-
gin task finds the user’s default auxiliary groups, pri-
mary group ID, and user ID, switches to these creden-
tials, and executes the user’s default shell. The user now
has a shell running with his credentials on /dev/tty.

Figure 1 also shows communication between login and
PAM [15]. PAM is a set of libraries which offer au-
thentication and session management services and ease
system-wide configuration through a single set of con-
figuration files. While these are great advantages over
the alternative of each service implementing their own
authentication and session management, library func-
tions execute with the credentials of their caller. There-
fore PAM does not help with reducing the amount of
privilege required for login daemons to perform their
authentication and to switch user IDs.

The principle of privilege separation [13] advises that a
privileged program be structured so that privileged op-
erations are pushed out into small, easier to verify, privi-
leged helpers, each serving precisely one purpose. Then
the bulk of the program can run without privilege. Fig-
ure 2 shows how the privilege-separate OpenSSH server
manages to prevent the user from directly interacting, at
any time, with a privileged process. A privileged parent
process communicates with an unprivileged child run-
ning as an unused user ID (usually “ssh”). The child

passes authentication communications to the parent and,
if they are correct, then the parent ends the first unprivi-
leged child and forks a new child which calls setresgid()
and setresuid() to drop privilege and assume the authen-
ticated user’s identity.

While this can make successful privilege escalation at-
tacks far less likely by reducing the types of messages
which an attacker can cause to be sent to the privileged
task, it does not completely eliminate attacks. While
privilege is kept further away from the unprivileged
user, the number of programs running with privilege are
not reduced. The implementation of each login service
is also greatly complicated.

3 Credentials passing

Unix domain sockets in Linux support the ancillary
messages SCM_RIGHTS and SCM_CREDENTIALS.
The first allows passing an open file descriptor to a tar-
get task. The second allows passing the sending task’s
credentials (user ID, group ID and PID) so the receiv-
ing task can verify the sender’s identity. Alan Cox
has proposed a new ancillary message type, which we
call SCM_AUTH, which any task may use to convey
the right for the recipient to switch to its own creden-
tials. Such a feature could provide interesting new fea-
tures, such as one unprivileged user granting another un-
privileged user the temporary credentials needed to de-
bug an environment problem for the first. Even a sys-
tem service which is partially privileged (but without
CAP_SETUID) or unprivileged could make use of this
feature to act on behalf of its clients.

This proposal also elicited discussion about a related,
less dangerous ancillary message for passing only audit
credentials. These could be used to augment audit mes-
sages with the credentials of a client on whose behalf a
back-end server was acting. This would make the audit
messages more informative than if they carry only the
server’s credentials.

3.1 Unprivileged login based upon SCM_AUTH

The SCM_AUTH ancillary message type would facil-
itate the implementation of unprivileged login clients
in Linux. A simple architecture for such a system is
shown in Figure 3. A single privileged daemon can
serve all unprivileged login servers. The login servers

2010 Linux Symposium • 93

login

300

PAM

root

300

setgid

setuid
exec

bash

joe

Figure 1: Simple login design using setuid.

PAM 300

root

sshd

301

ssh

sshd bash

300

root

sshd

302

exec
setuid
fork

joe

Figure 2: Login using privilege-separated OpenSSH.

act as a proxy to facilitate the communication allow-
ing a user to authenticate his identity to the privileged
server. Once satisfied of the user’s identity, the priv-
ileged server forks a new task which establishes for
itself the user’s desired credentials using the standard
setresgid, setgroups and setresuid system
calls. It then passes a SCM_AUTH message to the login
daemon, which uses a new accept_id system call to
assume these received credentials. The login process
can now proceed calling the user’s login shell as it nor-
mally would after having explicitly called setuid if it
had been running with privilege.

3.2 Security Considerations

When POSIX capabilities were first introduced, file ca-
pabilities remained unimplemented. In a POSIX capa-

bility system, file execution causes a task’s permitted
capability set to be recalculated. Any capabilities which
end up in that set must be active in one of the executable
file’s capability sets. Therefore, without file capabilities,
no task can have permitted capabilities after executing a
file. As a way to achieve non-root partially privileged
tasks, capsetp was implemented as a Linux-specific
way to grant capabilities to another task [9]. Doing so
required the CAP_SETPCAP privilege. However, the
ability to grant privileges to another task was deemed so
unsafe that the CAP_SETPCAP capability was placed in
the system-wide capability bounding set, so that effec-
tively no one was ever able to employ it.

Likewise, passing credentials over a UNIX socket could
be seen as too dangerous a way to spread privileges and
access rights. It particularly spreads the risk of any pro-

94 • Unprivileged login daemons in Linux

luser

/dev/tty

bash

luser

300

kernel

userspace

PAM factotum

login

login

300

/dev/tty

login
300

/dev/tty

granter
301

luser

login

fork

use_auth
exec

setuid

root

150

Figure 3: Login design using SCM_AUTH.

gram running with CAP_SETUID, since any task which
may arbitrarily set its user ID can then pass the result-
ing credentials along to any other task. It also makes a
Trojan even more dangerous. The Trojan now does not
need to immediately do its damage, open a back door,
release the information it targets, or hide a task which
it creates with the victim’s credentials. Instead, it can
simply transfer the conquered credentials to the attacker
who can stash them away for later. This could be unde-
tectable.

One part of a defense against such a situation is notion
of a timeout on the passed credentials. This could help
prevent the tokens being too liberally passed around, ac-
cidentally inherited by an untrusted child task, or simply
stashed away as a long term privilege token for later use.
Analysis of used and stashed tokens could also help mit-
igate the dangers. Both the sending and the use of tokens
should obviously be audited. Additionally, a list of sent
but unused tokens and details on the sending and receiv-
ing tasks should be available, possibly through a /proc
interface.

4 The p9auth filesystem

Ashwin Ganti implemented [6] a device driver for Linux
which implemented the Plan 9 “capability 1 device” [2].
Briefly, an unprivileged login client persuades a privi-
leged daemon that it is authorized to change to a particu-
lar user ID. The privileged daemon writes to the /dev/
caphash device a token consisting of the client’s cur-
rent user ID and the authorized new user ID joined

1Capability here is used in its classical sense, not as the unfortu-
nately chosen pseudonym for a privilege.

together with a special separating character (’@’) and
hashed with a random string. This token is then ap-
pended by the kernel to a list of such hashes. The
daemon communicates the random string to the client,
which can then use the token by writing the unhashed
values (old user ID, new user ID, and random value,
separated by ’@’) to /dev/capuse. This causes the
client’s real and effective user IDs to be changed. Since
this was a proof of concept, some shortcuts were taken.
For instance, the saved user ID is not updated 2, the pri-
mary and auxiliary groups remain unchanged, and the
filesystem user ID (fsuid), which is used for filesystem
accesses and by convention mirrors all effective user ID
changes, is not updated.

We have changed the Linux p9auth semantics to better
suit the Linux user and group behavior and simplify us-
age. The p9auth setuid capability now contains the orig-
inal user ID, new user ID, a new primary group, and a
list of auxiliary groups. Upon presenting a valid capa-
bility, a task’s real, saved, effective, and filesystem user
and group IDs are all assigned to the new values. While
different effective and real user IDs can be useful for ap-
plications to get things done, a newly logged-in process
needs a simple, sane, and useful initial set of credentials.
We have also changed from a device interface to a more
standard one using a custom filesystem. We have also
implemented a timeout on setuid capabilities, placed a
limit on the number of unused capabilities stored in the
kernel, and made the implementation user namespace
aware as will be discusssed later.

Figure 4 shows how login services can be structured

2This may be intended as a feature to increase flexibility at the
cost of more complicated users.

2010 Linux Symposium • 95

luser

luser

luser

bash
300

PAM root

login

login

300

login
300

joe

cred_grant cred_use
backend

exec

Figure 4: Login design using p9auth setuid tokens.

with the new p9auth filesystem. A single privileged
backend service, called p9auth, can serve all login
clients, and need never interact directly with users. An
unprivileged login client, perhaps running with user ID
“login”, interacts with the user and passes the commu-
nication for an authentication protocol between the ter-
minal and the privileged p9auth service. This service
itself uses PAM for the actual authentication. Assum-
ing authentication succeeds, p9auth looks up the ini-
tial credentials for the new user and creates a random
string (XYZ) and a p9auth capability token which looks
something like 121@1001@1001@0 In this example
user ID 121 may switch to user ID 1001, primary group
1001, and no auxiliary groups. P9auth hashes the ca-
pability token with the random string and writes that
to the cred_grant file in the p9auth filesystem. It
also passes the token and the random string to the user.
The user then passes 121@1001@1001@0@XYZ to the
cred_use file to effect the change of credentials.

From a higher level, we see that, as with SCM_AUTH an-
cillary messages, an unprivileged login client was made
possible by providing a way for the ability to switch
user IDs to be sent between tasks. In this case, one iso-
lated privileged task can send to unprivileged console-
or network-facing tasks tokens representing the ability
to switch to a particular user ID.

4.1 A proof of concept p9auth service

Our goal is for a single p9auth service to serve all un-
privileged login servers. For simplicity, it will commu-
nicate with them over a Unix file socket. Given that
secrets like passwords will be sent over this socket, the
communication protocol should begin with the p9auth

service proving its own identity to the unprivileged lo-
gin daemon. Details of such an algorithm are outside the
scope of this paper, but could be based on a certificate
or public key pair for the p9auth daemon.

A proof of concept (POC) implementation of a p9auth
server and an unprivileged login client can be found
at github [?] 3. It is based upon the p9auth filesys-
tem patchset which as of this writing was out of tree,
and can be found at [?]. Since the userspace code
is POC and does not implement server authentication,
the client, called frontend and shown as pseudo
code in Figure 5, simply connects to the Unix socket
/var/run/factotum and assumes it is talking to
the valid backend server. It writes its current user ID and
desired new username, then serves as a PAM relay until
it receives the desired setuid token in a messages begin-
ning with “FINAL: ”. It then writes that token to the
cred_use file in the p9auth filesystem. That write
triggers a callback in the kernel which effects the group
and user ID changes. Finally, it executes the user’s spec-
ified shell to complete the login.

The privileged server, called backend and shown in
Figure 6, listens on the Unix socket for requests from
login clients. It uses the sock_conv() conversation
function (based on an example by Andrew Morgan [?])
to allow PAM, called with privilege by backend and
guided by the system’s PAM configuration file /etc/
pam.d/factotum, to perform the actual authentica-
tion.

Assuming the PAM authentication succeeds, backend

3Note that this is purely a proof of concept, and not intended to
be used as-is. For instance, the client does not currently clear the
environment before executing the login shell.

96 • Unprivileged login daemons in Linux

void client(int sfd)
{

sprintf(buf, "olduid %d\nusername %s\n", getuid(), username);
write(sfd, buf, strlen(buf)+1);
while (1) {

read(sfd, buf, MAXLINE);
if (strncmp(buf, "FINAL: ", 7) == 0) {

break;
...

} else if (strncmp(buf, "ECHO: ", 6) == 0 ||
strncmp(buf, "NOECHO: ", 8) == 0) {
/∗ get_input reads a user’s response ∗/
get_input(buf, buf[0] == ‚E‚);
write(sfd, buf, strlen(buf)+1);

}
}
cfd = open("/mnt/p9auth/cred_use", O_WRONLY);
p = buf + 7;
write(cfd, p, strlen(p));

shell = getpwnam(username)−>pw_shell;
execl(shell, shell, NULL);

}

Figure 5: Pseudo code for unprivileged p9auth login client.

generates a random string and a login token as described
in Section 4, writing the encrypted hash of the login to-
ken with the random string to the cred_grant file and
passing the concatenated token and random string to the
client.

The p9auth filesystem is user-namespace-aware. Any
setuid tokens granted by a particular privileged p9auth
server are tied to that server’s user namespace. There-
fore, a p9auth server in a container cannot be used to
bypass the host’s p9auth server. At the same time, since
each container will have its own /var/run directory
and therefore its own /var/run/factotum socket,
any properly configured container will be able to offer
its own privileged p9auth server for use within the con-
tainer.

4.2 Security Considerations

As with credentials passing, we must consider whether
the ability to grant the ability to switch to new cre-
dentials with the p9auth concept should raise the same
concerns as did transferring POSIX capabilities using

capsetp. Just as with granting capabilities to third
parties, we essentially have a privileged task which is
allowed to grant to other tasks the privilege to switch
to new user IDs. This is especially true since on most
systems, by default, switching to the root user ID also
raises all capabilities.

However, this concern is predicated on the risk of
spreading privileges because p9auth can authorize a
change of the user ID for an existing process. In fact,
the opposite case is true and is described in the exam-
ple below. First, assume that some unprivileged pro-
cess, PID 3451, improperly manages to get p9auth to
authorize its setuid to 0. This is no worse than if the
same process tricks a privileged login service into fork-
ing a new process with user ID 0, running a binary spec-
ified by the malicious process. Additionally, since a sin-
gle privileged p9auth service allows us to remove the
CAP_SETUID capability from all privileged login ser-
vices, like su, sudo, login, sshd, ftp, etc. By running
those services completely unprivileged, this approach
actually greatly decreases the amount of potentially vul-
nerable privileged code.

2010 Linux Symposium • 97

void handle_client(int clientfd)
{

read(clientfd, buf, MAXLINE);
sscanf(buf, "olduid %d\nusername %s\n", &olduid, username);
/∗
∗ validate() performs PAM authentication and returns
∗ the password entry (struct passwd ∗pe) for username.
∗/

struct passwd ∗pe = validate(clientfd, username);

/∗
∗ readgroups() places all username’s auxiliary groups
∗ into gid_t ∗groups
∗/

numgroups = readgroups(username, pw−>pw_gid, &groups);

/∗
∗ make_token places the string
∗ olduid@newuid@newgrp@numgroups@grp1@...@grpn
∗ into char ∗token
∗/

make_token(token, olduid, pe, numgroups, groups);

/∗ generate a hash of the token and hand that to the kernel ∗/
len = generate_hash(token, hash, randstr);
capfd = open("/mnt/p9auth/cred_grant", O_RDWR);
write(capfd, hash, len);

/∗ write the token and the random string to the client ∗/
sprintf(clientstr, "FINAL: %s@%s", token, randstr);
write(clientfd, clientstr, strlen(clientstr)+1);

}

Figure 6: Pseudo code for p9auth backend.

Another advantage of the approach is that in a com-
pletely converted system we may have the init dae-
mon fork off the p9auth service early and then drop
CAP_SETUID from its capability bounding set, so that
all other privileged daemons will not be able to ex-
pose the system to CAP_SETUID empowered rootkit
exploits.

5 Other privilege needs

While the above designs, and the POC implementation
of the p9auth-based unprivileged login daemon suffice
for simple cases, some sites require additional setup

at login. That setup itself may require privilege. For
instance, in order to provide polyinstantiated directo-
ries, login session to an LSPP [3] system may require
a private mounts namespace and custom directories to
be mounted according to their privilege level. User
joe logged in as “secret” sees a different /tmp than
the same user logged in as “unclassified”. Other sites
may require a Smack [16] label to be specified at login,
which requires the CAP_MAC_ADMIN privilege. Still
other sites may wish to set up an initial inheritable capa-
bility set [7], which requires the login daemon to have
CAP_SETPCAP.

These obstacles ought not be insurmountable. For in-

98 • Unprivileged login daemons in Linux

stance, it it is hoped that both creating private names-
paces and directory mounting will eventually be allowed
for unprivileged users. The specification of Smack la-
bels and initial capabilities could be added as extensions
to the p9auth token specification, while the SCM_AUTH
ancillary message could well represent full credentials,
including security labels. Finally, while these designs
remove the need for CAP_SETUID and CAP_SETGID
from login daemons, other file capabilities can be added
to the login daemon binaries if needed. Upon the ex-
ecution of the login shell, the effective and permitted
capabilities will be recalculated, so while it would be
preferable to have the login daemon entirely unprivi-
leged, some capabilities could be enabled if needed.

More generally, a reliable way must be found to set
appropriate initial LSM (security) contexts upon login.
Proper behavior will differ per LSM. TOMOYO con-
texts are meant to purely reflect the history of executed
files, so a TOMOYO context should likely not be pass-
able with SCM_AUTH or p9auth. SELinux contexts are
the results of domain transitions initiated by execution
of carefully designated “entry points”. The login dae-
mons can remain unprivileged, but their execution can
trigger entry into a domain which can select an initial se-
curity context for the user’s session. For POSIX capabil-
ities, it would seem desirable to avoid the need to grant
CAP_SETPCAP to an unprivileged login daemon by al-
lowing the privileged backend daemon to specify an in-
heritable capability set. Passing permitted and effective
capabilities may be found to have uses for non-login ap-
plications of SCM_AUTH, but is not useful for login dae-
mons. We therefore may well want only the inheritable
set to be specified. Smack contexts are generally set by
userspace, but require the CAP_MAC_ADMIN capabil-
ity to set, and therefore should not be trivially change-
able, although allowing tasks with CAP_MAC_ADMIN
to transfer their Smack label along with their credentials
may be desirable.

Since LSMs may vary in how they treat the security
context passed through SCM_AUTH or granted through
p9auth, it seems prudent to provide a new LSM [?] hook
which processes a set of initial and intended credentials,
and produces the final LSM context for the login ses-
sion.

6 Conclusion

Exploitation of bugs in privileged programs can allow
an unprivileged user to illegitimately escalate privilege,

and can serve as the second step in an outsider attack
which begins with hijacking of a local unprivileged ac-
count. To reduce the potential for such attacks, it is de-
sirable to reduce the amount of code which must run
with privilege. We have presented two ways in which
Linux can be extended to support unprivileged login
daemons.

Both the SCM_AUTH and p9auth designs remove the
need for login services to run with CAP_SETUID and
CAP_SETGID privileges, concentrating privilege in-
stead in a single system-wide authentication service.
Without this support, each service needing to switch
user IDs needs to be installed with the privilege to
switch to any user ID. In that case, it requires constant
vigilance and multiple redundancy to limit the privilege
granted to the immediate user-facing terminal program
– with every single instance being a potential oversight
leading to exploit. With this support, the number of
programs requiring privilege is reduced, and with it the
gross odds of a successful privilege escalation attack.

7 Legal Statement

This work represents the view of the authors and does
not necessarily represent the view of IBM.

IBM is a registered trademark of International Business
Machines Corporation in the United States and/or other
countries.

UNIX is a registered trademark of The Open Group in
the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.

8 Acknowledgments

The authors would like to thank Ashwin Ganti for writ-
ing the original p9auth capability device, Greg Kroah-
Hartman for the drivers staging tree and for hosting the
p9auth driver, and Alan Cox for once again providing an
interesting new insight into a proposed design.

2010 Linux Symposium • 99

References

[1] Alan Cox. Regarding add p9auth driver, http://
lkml.org/lkml/2010/4/21/88, Apr 21 2010.

[2] Russ Cox, Eric Grosse, Rob Pike, Dave PResotto, Sean
Quinlan, "Security in Plan 9", Proceedings of the 2002
Usenix Security Symposium, San Francisco.

[3] Janak Desai, George Wilson and Chad Sellers. Extend-
ing SELinux to meet LSPP data import/export require-
ments, Proceedings of the 2006 Security Enhanced
Linux Symposium, March 2006.

[4] Chris Friedhoff. POSIX Capabilities and File POSIX
Capabilities, http://www.friedhoff.org/
posixfilecaps.html.

[5] C. Gallen. Linux to Be the Fastest-Growing Smartphone
OS over the Next 5 Years ABI Research. August 2007.
http://www.abiresearch.com/press/922.

[6] Ashwin Ganti. Plan 9 authentication in Linux, Operat-
ing Systems Review 42(5): 27-33 (2008).

[7] Serge E. Hallyn and Andrew G. Morgan. Linux Capa-
bilities: making them work, Proceedings of the Ottawa
Linux Symposium, July 2008.

[8] Linux man-pages project. Capabilities.7 man
page, http://linux.die.net/man/7/
capabilities.

[9] Andrew Morgan. capsetp(3) manpage, http://
linux.die.net/man/3/capsetp.

[10] C. Ozancin. Securing the linux environment: Programs
that need root access. pages 42âĂŞ45, March/April
2001.

[11] Dan Tsafrir and Dilma Da Silva and David Wagner. The
Murky Issue of Changing Process Identity: Revising
“Setuid Demysitified.”, Linux Journal.

[12] J. Saltzer and M. Schroeder. The protection of informa-
tion in computer systems. Fourth ACM Symposium on
Operating System Principles (October 1973).

[13] N. Provos, M. Friedl, and P. Honeyman. Preventing
Privilege Escalation Security ’03 Paper, USENIX Se-
curity ’03 Technical Program, 2003.

[14] R. Richardson. 2008 CSI Computer Crime & Security
Survey. Computer Security Institute. 2008.

[15] Vipin Samar, "unified Login with Pluggable Authen-
tication Modules (PAM)," Proceedings of the Third
ACM Conference on Computer Communications and
Security, March 1996, New Delhi, India.

[16] Casey Schaufler. Smack and the Application Ecosystem,
http://linuxplumbersconf.org/2009/
slides/Casey-SmackPlumbers2010.pdf.

[17] Ylonen, T., "SSH-Secure Login Connections Over the
Internet", 6th USENIX Security Symposium, pp 37-42.
San Jose, CA, July 1996.

100 • Unprivileged login daemons in Linux

Twin-Linux: Running independent Linux Kernels simultaneously on
separate cores of a multicore system

Adhiraj Joshi
LinSysSoft Technologies

adhiraj@linsyssoft.com

Swapnil Pimpale
LinSysSoft Technologies

swapnilp@linsyssoft.com

Mandar Naik
LinSysSoft Technologies

mandarn@linsyssoft.com

Swapnil Rathi
LinSysSoft Technologies

swapnilr@linsyssoft.com

Kiran Pawar
LinSysSoft Technologies

kiranp@linsyssoft.com

Abstract

There are three classes of common consumer and en-
terprise computing - Server, Interactive and Real-Time.
These are characterized respectively by the need to ob-
tain highest throughput, sustained responsiveness, and
hard real-time guarantees. These are contradictory re-
quirements hence it’s not possible to implement an op-
erating system to achieve all these goals. Most operating
systems are designed towards serving only one of these
classes and try to do justice to the other two classes to a
reasonable extent.

We demonstrate a technique to overcome this limitation
when a single hardware box is required to fulfill multiple
of these computing classes. We propose to run differ-
ent copies of kernels simultaneously on different cores
of a multi-core system and provide synchronization be-
tween the kernels using IPIs (Inter Processor Interrupts)
and common memory. Our solution enables users to run
multiple operating systems each one the best for its class
of computing. For ex., using our idea we can configure a
quad core system with 2 cores dedicated for server class
computing (database processing), 1 core for UI applica-
tions and remaining 1 core for real-time applications.

This idea has been used in the past, primarily on non-
x86 processors and custom designed hardware. Our pro-
posal opens the doors of this idea to the off-the shelf
hardware resources. We present Twin-Linux, an imple-
mentation of this scenario for 2 processing units using
Intel-Core-2-Duo system. This idea finds applications
in - Filers,Intelligent Switches, Graphics Processing En-
gines, where different types of functions are performed
in a pipelined manner.

1 Introduction

Consider an application that requires huge data compu-
tations and responsiveness simultaneously. In this case,
an operating system with server kind of computing will
only be able to handle data processing part and it lacks
in responsiveness. while realtime system will be able to
handle responsiveness but throughput will be very low.
Hence there is a need to provide different operating sys-
tem environment within the same hardware box.

We have implemented this concept on a Intel Core 2
Duo architecture. In current scenario (On a Intel Core
2 Duo system), there are two cores (processors) on a
single chip, a SMP Kernel and a single copy of RAM.
In normal case, a single copy of kernel boots up on
core 2 duo machines in SMP (Symmetric Multi Pro-
cessing) mode. At the boot time one of the cores
boots the Linux Kernel and other keeps spinning till
the Kernel boots up. The booting core is termed as
the BSP(Bootstrap Processor) while the other cores are
termed as the APs(Application Processor). After the
booting process scheduler assigns the task to both cores
in parallel so that there could be simultaneous execution
of different threads on respective cores.

By replicating kernel code and by making performance
boundaries explicit, Twin-Linux removes the kernel as
a bottleneck to scaling up performance in large multi-
processor systems. Each kernel loaded on the cores is
composed of a scheduler, a memory manager and code
to coordinate communication between other kernels.

The rest of the paper is organized as follows: Section 2
provides background of SMP systems. Details of pro-
cessor classification, ACPI tables and IPI messages are

• 101 •

102 • Twin-Linux: Running independent Linux Kernels simultaneously on separate cores of a multicore system

covered in section 2. Section 3 covers the motivation
behind the project and the innovation of Twin-Linux.
Section 4 covers the Twin-Linux design. It covers the
implementation details and the algorithms used to lo-
cate the MADT and IPI communication. It provides an
insight into the issues involved in loading the kernel on
the respective cores. A concise description of the ap-
plications and marketability of the project is included in
Section 5. Finally section 6 summarizes the conclusions
of the project and the last section lists the References.

2 Features of SMP Systems

2.1 Processor Classification

The Intel Specification classifies Processors into two
types: the bootstrap processor (BSP) and the application
processors (AP). The BSP is chosen by the hardware or
by the BIOS in conjunction with the hardware. The BSP
is responsible for initializing the system and for booting
the operating system.

The BSP executes the BIOS’s boot-strap code to con-
figure the APIC environment, sets up system-wide data
structures, and starts and initializes the APs. When the
BSP and APs are initialized, the BSP then begins ex-
ecuting the operating-system initialization code. Fol-
lowing a power-up or reset, the APs complete a mini-
mal self-configuration, then wait for a startup signal (a
SIPI message) from the BSP processor. Upon receiving
a SIPI message, an AP executes the BIOS AP configu-
ration code, which ends with the AP being placed in halt
state. APs are activated only after the operating system
is up and running. Once the MP operating system is up
and running, the BSP functions as an AP.

2.2 ACPI Tables

For a multiprocessor system, the BIOS performs the fol-
lowing functions :

• Pass configuration information to the operating
system that identifies all processors and other mul-
tiprocessing components of the system.

• Initialize all processors and the rest of the multi-
processing components to a known state.

The BIOS fills the ACPI system description tables and
hands over the control to the Boot loader. In a mul-
tiprocessor system, multiple local and I/O APIC units
operate together as a single entity, communicating with
one another over the ICC bus. The APIC units are col-
lectively responsible for delivering interrupts from in-
terrupt sources to interrupt destinations throughout the
multiprocessor system.

The local APIC units also provide interprocessor in-
terrupts (IPIs), which allow any processor to interrupt
any other processor or set of processors. There are
several types of IPIs. Among them, the INIT IPI and
the STARTUP IPI are specifically designed for system
startup and shutdown. Each local APIC has a Local Unit
ID Register and each I/O APIC has an I/O Unit ID Reg-
ister. The ID serves as a physical name for each APIC
unit. It is used by software to specify destination infor-
mation for I/O interrupts and interprocessor interrupts,
and is also used internally for accessing the ICC bus.

0
1
2
3
4
5
6
7
8
9
11
10
12
13
14
15

0
1
2
3
4
5
6
7
8
9
11
10
12
13
14
15

I/O
APIC

I/O
APIC

Interrupt
requests

Interrupt
requests

ICC Bus

Local
APIC

1

Local
APIC

2

Local
APIC

3

CPU
1

CPU
2

CPU
3

BSP AP1 AP2

Figure 1: SMP System with APIC Configuration

2.3 Using INIT IPIs

The primary local APIC facility for issuing IPIs is the
interrupt command register (ICR). INIT IPI is an Inter-
processor Interrupt with trigger mode set to level and
delivery mode set to “101” (bits 8 to 10 of the ICR).

The ICR consists of the following fields :

2010 Linux Symposium • 103

• Vector: The vector number of the Interrupt being
sent.

• Delivery Mode: Specifies the type of IPI to be sent.
This field is also know as the IPI message type
field.

101 – INIT IPI message to all the local APICs in
the system to set their arbitration IDs to the values
of their APIC Ids, the level flag must be set to 0 and
trigger mode flag to 1.

110 – Start Up IPI Sends a special “start-up” IPI
(called a SIPI) to the target processor or processors.
The vector typically points to a start-up routine that
is part of the BIOS boot-strap code

• Destination Mode:

• Delivery Status (Read Only)

• Level

• Trigger Mode

• Destination Shorthand

• Destination

An INIT IPI is an IPI that has its delivery mode set
to RESET. Upon receiving an INIT IPI, a local APIC
causes an INIT at its processor. The processor resets its
state, except that caches, floating point unit, and write
buffers are not cleared. Then the processor starts execut-
ing from a fixed location, which is the reset vector loca-
tion. To cause the processor to jump to a different loca-
tion, the INIT IPI must be used as part of a warm-reset.
By putting an appropriate pointer in the warm-reset vec-
tor, setting the shutdown code to 0Ah, then causing an
INIT, the BIOS (or the operating system) can cause the
current processor to jump immediately to any location.

2.4 Using Startup-IPIs

STARTUP IPIs are used with systems based on Intel
processors with local APIC versions of 1.x or higher.
These local APICs recognize the STARTUP IPI, which
is an APIC Interprocessor Interrupt with trigger mode
set to edge and delivery mode set to “110” (bits 8
through 10 of the ICR).

The STARTUP IPI causes the target processor to start
executing in Real Mode from address 000VV000h,

where VV is an 8-bit vector that is part of the IPI mes-
sage. Startup vectors are limited to a 4-kilobyte page
boundary in the first megabyte of the address space.

For an operating system to use a STARTUP IPI to wake
up an AP, the address of the AP initialization routine
(or of a branch to that routine) must be in the form of
000VV000h. Sending a STARTUP IPI with VV as its
vector causes the AP to jump immediately to and begin
executing the operating system’s AP initialization rou-
tine.

3 Twin-Linux Applied

Consider a network services application. We describe
the performance benefits that can be realized from the
utilization of multiple processing cores for the applica-
tion.

Functional pipelining is a technique that sub-divides ap-
plication software into multiple sequential stages and as-
signs these stages to dedicated execution cores. Pipelin-
ing can increase locality of reference since each execu-
tion core runs a subset of the entire application, poten-
tially increasing the cache hit rate.

In case of a 2-core system, we can have one core dealing
with the network I/O requests that will process them par-
tially and the other core will handle all the disk I/Os and
remaining processing. Thus the first kernel will handle
the networking part where it accepts requests from other
systems, processes them partially for the other core and
then the other kernel takes care of the storage part and
processes those requests completely (as shown in the
Figure 2). Distributing network processing to multiple
cores can be achieved using multiple network interfaces
(NICs) on a system, or affinitizing interrupts of NICs
to different cores. This approach can be generalized to
apply to other types of network connections between
devices such as IPSec flows or IP header compression
contexts. Since there is typically little or no locality of
reference between different traffic flows like these, re-
ducing the number of different traffic flows processed
by each core can improve cache efficiency. Each execu-
tion core services a subset of the flows which confines
memory accesses to a smaller set of memory addresses
and potentially increases cache efficiency.

104 • Twin-Linux: Running independent Linux Kernels simultaneously on separate cores of a multicore system

3.1 Innovation

Multi-core Processors have been adopted in various
computer systems from commodity machines to embed-
ded systems. To utilize these multi-core machines more
efficiently, a promising way is to run multiple applica-
tions on one machine or share resources among different
users. In such a situation, instead of using a single op-
erating system, we can run multiple operating systems
each one the best for its class of computing. This ben-
efits the applications which demand different operating
system environments.

This approach is the first of its kind and is most suitable
for computation-intensive and responsive applications.
This idea can be easily scaled for quad core and eight
core architectures with minimal modification.

IPIsCore 0 Core 1

Network driver Storage driver

RAM

Communication among
2 cores

Incoming request

ACK / return path

Disks

Figure 2: Twin-Linux applied to Filers

4 Design

4.1 Implementation Details

In the current scenario, The BIOS (Basic Input/Output
System) selects the Bootstrap Processor (BSP) from a

set of processors and the rest are Application Proces-
sors. The BIOS, initially, puts the APs in halted state,
so that they do not try to execute the same BIOS code
as the BSP. The BSP performs all the booting sequence
and loads the Operating System after the POST (Power
On Self Test). When the control is handed over to the
boot loader, GRUB (GRand Unified Boot loader) in our
case, only the BSP is active whereas the APs are in a
halted condition with interrupts disabled. This means
that the AP’s local APICs are passively monitoring the
APIC bus and will react only to INIT or STARTUP in-
terprocessor interrupts (IPIs).

In our project, the GRUB code is modified in such a
way that it will bring up all the APs unlike the normal
scenario where only the BSP is up and the APs are in
a halted state. Thus we provide SMP support to GRUB
making it SMP compatible.

Our project involves the following steps::

4.1.1 Locating and Parsing the MADT (Multiple
APIC Description Table)

The MADT is one of the ACPI (Advanced Configura-
tion and Power Interface) tables which furnish informa-
tion about Multiple Processors.

After locating the Root System Description Pointer
(RSDP) structure, we locate the Root System Descrip-
tion Table (RSDT) or the Extended Root System De-
scription Table (XSDT) using the physical system ad-
dress supplied in the RSDP. The MADT is then located
by walking through the RSDT. The MADT contains the

• Header

• Local APIC Address

• List of APIC Structures - This list contains all of
the I/O APIC, Local APIC, Interrupt Source Over-
ride, Non-Maskable Interrupt Source, Local APIC
NMI Source, Local APIC Address Override struc-
tures needed to support the platform. The APIC
structures are searched for identifying the number
of processors and their respective Local APIC IDs.

2010 Linux Symposium • 105

Figure 3: Overview of ACPI Tables

We obtain the Processor ID and the Processor Local
APIC ID from the Processor Local APIC Structure
which has the following format:

Figure 4: Processor Local APIC structure

4.1.2 Bringing up the APs

The APs will be activated by sending the IPIs using the
local APIC IDs of the APs. We follow the “Univer-
sal Algorithm” for awaking the Application Processors
mentioned in the Intel Multiprocessor Specification Ver-
sion 1.4.

Figure 5: Universal Algorithm

The following pseudo code Broadcasts an INIT-SIPI-
SIPI IPI sequence to wake up and initialize the APs:

Figure 6: INIT-SIPI-SIPI IPI sequence

106 • Twin-Linux: Running independent Linux Kernels simultaneously on separate cores of a multicore system

4.1.3 Loading Kernel on the APs

After bringing up all the APs, independent copy of the
kernel will be loaded on each of them. Before loading
of the kernel on the individual cores, following issues
are taken care of:

1. Division of RAM:

The RAM memory will be divided symmetrically
according to the number of cores available, in our
case, two. Thus, For a Intel Core 2 Duo processor
running at 2.66 GHz with 2 GB RAM , Each kernel
will be given 1 GB RAM memory and some prede-
fined shared memory will be reserved for IPI com-
munication. The similar approach can be followed
for multi-core systems with some extensions.

2. Disabling SMP support:

The SMP support needs to be disabled before load-
ing of the kernels otherwise the kernel would also
attempt to wake up the application processors.

3. Sharing the Hardware:

One kernel will mask all PCI devices and other ker-
nel will mask all the PCI-X devices. Both kernels
will get one network adapter each (one PCI and
other gets PCI-E cards) so that both are connected
to the network.

4. User access to the OS:

The video RAM will be divided into two halves so
that the one kernel displays messages in the upper
half and the other one uses the lower half for dis-
play.

5. Communication between Application processors:

Communication between APs will be done through
IPIs (Inter-Processor Interrupts) and some prede-
fined common memory.

5 Applications

The project can be deployed in Linux environment for
Intel core 2 duo architecture to efficiently utilize both
the cores simultaneously.

Examples of systems where this method works are - fil-
ers (storage devices), SCSI targets, and graphics pro-
cessing engines.

Intelligent switches: Intelligent switches do the job of a
regular switch and filtering the data being transmitted.
Filtering of data could be for identifying security threats
or masquerading. This requires a combination of two
classes of computing - real time computing for switch
functionality (control plane) and server computing for
filtering (data plane). Building an efficient switch us-
ing a single operating system kernel running on mul-
tiple cores could be a challenging task. The resultant
switch may either waste computing resources or may
not provide adequate responsiveness to connected de-
vices. This situation can be improved with our proposal
to run an operating system suitable for control plane on
a single core while the rest of the cores run another op-
erating system suitable for heavy server class computing
in data plane.

6 Road Ahead

6.1 Enhancements

In future this idea can be implemented for architectures
other than x-86 and for different boot loaders. This idea
can be easily scaled for quad core and eight core archi-
tectures with minimal modification.

6.2 Conclusion

We suggested Twin-Linux an approach of running in-
dependent Linux kernels on multiple cores simultane-
ously. This approach opens the doors of mixed kind of
computing to the x86 and open-source community. It
enables users to run applications that require different
operating system environments. It also provides separa-
tion of multiple environments for users. In addition, it
reduces contention in operating systems kernels by re-
ducing the synchronization costs.

It extensively takes advantage of the abundance of cores
of multi-core systems. This project is a working proto-
type for systems which demand a combination of data-
processing, real-time processing and UI processing. It
also provides SMP support to GRUB.

References

[1] Intel’s MP specification Version 1.4 [Online]
Available http:
//www.intel.com/design/archives/
processors/pro/docs/242016.htm

2010 Linux Symposium • 107

[2] Intel’s ACPI specification Revision 4.0 [Online]
Available
http://acpi.info/spec40.htm

[3] Intel’s 64 and IA-32 Architectures Software
developer manual Volume 3A [Online] Available
http://www.intel.com/products/
processor/manuals/

[4] Intel Architecture Software Developers Manual
Volume2: Instruction Set Reference [Online]
Available http:
//developer.intel.com/design/
pentiumii/manuals/243191.htm

[5] Prof. Godfrey C. Muganda, North Central
College, Intro to GNU Assembly Language on
Intel Processors [Online] Available
scr.csc.noctrl.edu/courses/
csc220/asm/gasmanual.pdf

[6] Danel P. Bovet, Marco Cesati, Understanding The
Linux Kernel

[7] Robert Love, Linux Kernel Development

108 • Twin-Linux: Running independent Linux Kernels simultaneously on separate cores of a multicore system

VirtFS—A virtualization aware File System pass-through

Venkateswararao Jujjuri
IBM Linux Technology Center

jvrao@us.ibm.com

Eric Van Hensbergen
IBM Research Austin

bergevan@us.ibm.com

Anthony Liguori
IBM Linux Technology Center
aliguori@us.ibm.com

Badari Pulavarty
IBM Linux Technology Center

badari@us.ibm.com

Abstract

This paper describes the design and implementation of
a paravirtualized file system interface for Linux in the
KVM environment. Today’s solution of sharing host
files on the guest through generic network file systems
like NFS and CIFS suffer from major performance and
feature deficiencies as these protocols are not designed
or optimized for virtualization. To address the needs of
the virtualization paradigm, in this paper we are intro-
ducing a new paravirtualized file system called VirtFS.
This new file system is currently under development and
is being built using QEMU, KVM, VirtIO technologies
and 9P2000.L protocol.

1 Introduction

Much research has focused on improving virtualized
disk and network device performance, and indeed, mod-
ern hypervisors like KVM have been able to obtain good
performance as a result and are now a viable alterna-
tive to bare metal systems. Through the introduction
of higher level interfaces for guests to interact with a
hypervisor, we believe it is possible to obtain better per-
formance than bare metal in consolidated workloads [8].

This paper explores an example of one such interface,
VirtFS. VirtFS introduces a paravirtual file system driver
based on the VirtIO [13] framework. This interface
presents a number of unique advantages over the tradi-
tional virtual block device. The majority of applications
(including most hypervisors) prefer to interact with an
Operating System’s storage API through the file system
interfaces instead of dedicated disk storage APIs. By
paravirtualizing a file system interface, we avoid a layer
of indirection in converting guest application file system

operations into block device operations and then again
into host file system operations.

In addition to performance improvements over a tradi-
tional virtual block device, exposing guest file system
activity to the hypervisor provides greater insight to the
hypervisor about the workload the guest is running. This
allows the hypervisor to make more intelligent decisions
with respect to I/O caching and creates new opportuni-
ties for hypervisor-based services like de-duplification.

In Section 2 of this paper, we explore more details about
the motivating factors for paravirtualizing the file sys-
tem layer. In Section 3, we introduce the VirtFS design
including an overview of the 9P protocol, which VirtFS
is based on, along with a set of extensions introduced
for greater Linux guest compatibility.

Section 4 describes the implementation of VirtFS within
QEMU and within the Linux Kernel’s v9fs file system.
Section 5 presents our initial performance evaluation.

2 Motivation

Virtualization systems have historically focused on pro-
viding the illusion of access to underlying hardware de-
vices (either by emulating the physical device interface
or through a paravirtualization API). Within Linux, the
de facto standard for paravirtual I/O communication is
the VirtiIO subsystem. At the time of this writing, the
mainstream Linux kernel had VirtIO devices for con-
sole, disk, and network as well as a PCI passthrough
device and a memory ballooning device.

2.1 Paravirtual Application and System Services

What has been largely ignored within the mainstream
virtualization community is the opportunity for raising

• 109 •

110 • VirtFS—A virtualization aware File System pass-through

the level of interface from the physical device layer to
higher-level system and even application services. Such
an approach has been used within academic and re-
search communities in the implementation of microker-
nels [1], exokernels [4], multikernels [14], and satel-
lite kernels [9]. Enabling paravirtualization of appli-
cation and system services can provide a hybrid envi-
ronment leveraging the security, isolation, and perfor-
mance properties of microkernel-class systems within
more general purpose operating systems and environ-
ments.

There are a number of reasons favoring the use of par-
avirtualized system services versus emulated or paravir-
tualized devices. One of the more compelling arguments
is a higher degree of information available about what
the guest system (or the guest system’s user) is trying to
do. For instance, within a desktop configuration, the hy-
pervisor can provide a frame buffer device for graphics,
but if we move the interface up a level we can provide
paravirtualized access to the hosts windowing system
(whether that windowing system is implemented by the
operating system or an application infrastructure). This
would allow applications within the guest to open new
windows on the user’s desktop versus within a frame
buffer on the desktop. The difference is perhaps sub-
tle in this example, but provide a dramatically different
experience from the user’s perspective.

Similarly, instead of virtualizing the network device,
the hypervisor can provide a paravirtualized interface
to the host IP stack. This eliminates complex config-
uration issues surrounding setting up network-address-
translation, bridging devices, and so forth. Guest appli-
cations using sockets just use the host’s TCP/IP stack di-
rectly. Such an approach works well for services which
the host is already managing multiplexing for multiple
applications (such as graphics, networking, audio, etc.).

An alternative to providing a paravirtualized server
would be to use an existing distributed resource access
protocol (such as X11 for graphics, PPTP for network-
ing, etc) over a virtualized network device. Such an ap-
proach encounters a number of problems. First, it re-
quires both the host and the guest have configured net-
works, and that the servers and clients be configured to
connect to each other. Assuming that you aren’t using
a dedicated virtual network device for this communica-
tion you then incur a number of security concerns and
potential sources for performance interference. Assum-
ing one solves all of those problems, there is also the

issue of the additional overhead of encapsulating ser-
vice requests in TCP/IP which is completely unneces-
sary considering it is very unlikely that you will drop
packets between guests and host, with much more effec-
tive flow-control being capable in such a tightly coupled
system.

By contrast, a paravirtual interface provides a dedicated
(performance and security isolated) channel, precon-
nected between guest and host (no configuration nec-
essary), which doesn’t incur any of the overheads of ar-
bitrary and unnecessary encapsulation which going over
a network (particularly a TCP/IP network) incurs. Ad-
ditionally, the tighter binding of a paravirtual API may
allow sharing optimizations and management simplifi-
cation which is unavailable on either a device based or
network based interface.

2.2 Paravirtual File Systems

File systems are a particularly good target as a paravir-
tual systems service. In addition to the points made
above, the properties of how file systems are used, man-
aged, and optimized by an operating system make them
ideal candidates.

One of the principle problems with virtualized storage
in the form of virtual disks is that data on the disk can
not be concurrently accessed by multiple guests (or in-
deed even by the host and the guest) unless the disk is
read-only. This is because of the large amount of in-
memory state maintained by traditional disk file systems
along with the aggressive nature of the Linux dcache
and page cache. Read/write disk access can only be
accomplished through exclusive access or when negoti-
ated by a secondary protocol. The Linux storage caches
introduce another level of inefficiency, caching indepen-
dent copies of the disk block on both the host and the
guest.

If we use a traditional distributed file system (such as
NFS or CIFS) over a virtualized network device to ac-
cess storage, we run into the configuration, manage-
ment, and encapsulation overheads mentioned previ-
ously. We also encounter problems with two manage-
ment domains for the purposes of user ids, group ids,
ACLs, and so forth. The distributed file systems also
incur the double-cache behavior of the virtual disks.
The other problem is that many distributed file systems
impose their own file system semantics on operations,

2010 Linux Symposium • 111

which may be different from the behavior expected from
a disk file system.

2.3 Application Use Cases

Perhaps the most straightforward application of a par-
avirtualized file system is to replace the virtual disk as
the root file system. When the system boots, the bun-
dled ram disk simply connects to an appropriately la-
beled VirtFS volume to retrieve the root volume. Such
an approach would allow host-based stackable file sys-
tems to be used for rapid cloning, management, and up-
date [10].

In addition to root file systems, the paravirtual file sys-
tem can be used to access a shared file system coher-
ently from several guests. It can also be used to provide
guest to guest file system access. Additionally, it could
be used to access synthetic file systems on the host or
other guests in order to access management and control
interfaces.

Another use case, which we utilized as part of the Li-
bra [2] and PROSE [15] projects is to provide file sys-
tem offload API for applications running within a Lir-
baryOS. In such instances, the application is only run-
ning on top of a very thin OS interface which doesn’t
itself contain system services such as a disk file sys-
tem or network stack. These services are obtained re-
motely through forwarding I/O requests (at a file system
or socket level) to a server running on the host.

Finally we would like to refer to the use cases of the
cloud environment. In a cloud environment where mul-
tiple guests share resources on a host, portions of the
host file systems can be exported and VirtFS mounted
on guests giving a secure window of host file systems
on the guest. This gives guests more like a local file
system interface to portions of host file system. VirtFS
also could be very useful to provide a secure way to pro-
vide storage services to different customers from a sin-
gle host filesystem. This also helps to take advantage of
various file system features like de-dup, snapshots etc.

3 Design

VirtFS provides functionality that is somewhat similar
to a traditional network file systems (NFS/CIFS). The
QEMU server elects to export a portion of its file system

Figure 1: VirtFS block diagram

hierarchy, and the client on the guest mounts this using
9P2000.L protocol. Guest users see the mount point just
like any of the local file systems, while the reads and
writes are actually happening on the host file system.

Figure 1 shows the high level VirtFS anatomy. Server is
part of QEMU and client is part of the guests kernel. The
protocol is exchanged between the client and the server
over VirtIO transport (section 3.5). Server running in the
user mode opens up potential for direct communication
with the fileserver API (section 6.4).

The major difference between a traditional network file
system and VirtFS is its simplicity and optimization to
the KVM environment. Our approach is to leverage a
light-weight distributed file system protocol directly on
top of a paravirtualized transport in order to remote of-
fload elements of the Linux VFS API to a server run
on the virtualization host (or within another partition).
In order to expedite implementation, we selected a pre-
existing distributed file system which closely matched
our desired approach 9P, and provided a virtualization
specific transport interface for it through VirtIO. We
are extending the 9P protocol to better match the Linux
VFS API. The 9P protocol [3], originally developed as

112 • VirtFS—A virtualization aware File System pass-through

part of the Plan 9 research operating system from Bell
Labs [11], and incorporated as a network based dis-
tributed file system within the mainline Linux kernel
during the 2.6.14 release [6].

3.1 Plan 9 Overview

Plan 9 was a new research operating system and associ-
ated applications suite developed by the Computing Sci-
ence Research Center of AT&T Bell Laboratories (now
a part of Lucent Technologies), the same group that de-
veloped UNIX , C, and C++. Their intent was to ex-
plore potential solutions to some of the shortcomings of
UNIX in the face of the widespread use of high-speed
networks to connect machines. In UNIX, networking
was an afterthought and UNIX clusters became little
more than a network of stand-alone systems. Plan 9 was
designed from first principles as a seamless distributed
system with integrated secure network resource sharing.

Plan 9s transparent distributed computing environment
was the result of three core design principles which per-
meated all levels of the operating system and application
infrastructure:

1. develop a single set of simple, well-defined inter-
faces to services

2. use a simple protocol to securely distribute the in-
terfaces across any network

3. provide a dynamic hierarchical structure to orga-
nize these interfaces

In Plan 9, all system resources and interfaces are repre-
sented as files. UNIX pioneered the concept of treating
devices as files, providing a simple, clear interface to
system hardware. Plan 9 took the file system metaphor
further, using file operations as the simple, well-defined
interface to all system and application services. The
benefits and details of this approach are covered in great
detail in the existing Plan 9 papers [12].

3.2 9P Overview

9P represents the abstract interface used to access re-
sources under Plan 9. It is somewhat analogous to the

VFS layer in Linux. In Plan 9, the same protocol op-
erations are used to access both local and remote re-
sources, making the transition from local resources to
cluster resources to cloud resources completely trans-
parent from an implementation standpoint. Authenti-
cation is built into the protocol, and the protocol itself
may be run over encrypted and digested transports. It is
important to understand that all 9P operations can be as-
sociated with different active semantics in synthetic file
systems. Traversal of a directory hierarchy may allocate
resources, or set locks. Reading or writing data to a file
interface may initiate actions on the server, such as when
a file acts as a control interface. The dynamic nature
of these synthetic file system semantics makes caching
dangerous and in-order synchronous execution of file
system operations a desirable default. For an example
of the potential difficulties, think of interacting with the
proc or sysfs file systems in Linux over a cached file
system mount where some of the data can be dozens of
seconds out of date with the actual state on the server.

The 9P protocol itself requires only a reliable, in-order
transport mechanism to function. It is commonly used
on top of TCP/IP, but has also been used over RUDP,
PPP, and over raw reliable mechanisms such as the PCI
bus, serial port connections, and shared memory.

The base 9P protocol is based on 12 paired protocol op-
erations (each with a request and response version) and
a special error response which is used to notify the client
of problems with a request. They are made up of pro-
tocol accounting operations (version, authentication, at-
tach, flush), file operations (lookup, create, open, read,
write, remove, close), and meta-data operations (set at-
tributes, get attributes). The nature of the operations
is strict balanced RPC (each request gets a single re-
sponse). The protocol is stateful, requiring the server
to maintain certain aspects of the state of session and
outstanding transactions. The protocol has provisions
for supporting multiple outstanding transactions on the
same transport and can be run in synchronous or asyn-
chronous modes (depending on the implementation of
the client and the server).

As mentioned previously, the 9P file system was added
to the 2.6.14 mainline linux kernel with support for
TCP/IP and named pipe transports (such that it could
be used to access user-space file systems). Later, in
2.6.x the transport interfaces were modularized to al-
low for alternative transports to be plugged into the 9P
client. In 2.6.x an RDMA interface was added by Tom

2010 Linux Symposium • 113

Tucker support infiniband, and in 2.6.x fscache support
was added by Abhishek Kulkarni. It currently has the
distinction of being the distributed file system imple-
mented with the fewest lines of code in the Linux kernel.

3.3 9P Extensions

The 9P protocol was originally designed specifically for
the Plan 9 operating system, and as such implements a
subset of the rich functionality of the Linux VFS layer.
Additionally, it has slightly different definitions for cer-
tain parameters (such as permissions, open-mode, etc.).
It also takes a different approach to user and group man-
agement, using strings instead of ids.

In order to adapt 9P to better supporting POSIX dur-
ing the Linux port, the protocol was extended with the
9P2000.u (for unix) version. This protocol version pro-
vided support for numeric user and group ids, provided
additional mode and permission bits as well as an ex-
tended attributes structure in order to be POSIX compli-
ant, and augmented existing operations to support sym-
links, links, and creation of special files.

The .u protocol has been used for the past several years,
but had a number of deficiencies. It did not include
full support for Linux VFS operations. Notably absent
was support for quotas, extended attributes, and lock-
ing. Furthermore, its overloading of existing operations
to provided extended functions made developing servers
and clients to support 9p2000.u problematic, and no par-
tial support for 9p2000.u was possible due to differences
in the size of operation protocol messages and ambigu-
ous definitions of extension fields.

In response to these deficiencies, a new approach to of-
fering extensions to the protocol was developed. While
core protocol elements (such as size prefixed packets,
tagged concurrent transactions, and so forth) remain the
same, extended features will get their own operations in
a complimentary op-code space to the existing prtoocol.
The Linux binding for 9P, titled 9P2000.L, will be the
first approach at such an extension and will be aimed at
addressing the .u deficiencies while making the protocol
address a larger subset of the functionality provided by
Linux.

As stated previously, The new 9P2000.L extension will
will exist in a complimentary op-code name space – that

is to say operation identifiers will not overlap with ex-
isting operations, and all extensions will use new op-
erations as opposed to changes to existing operations.
Alternate extension op-codes spaces may be negotiated
by optional postfixes during version negotiation – but
every effort will be made to keep operations within the
existing name space. It was also decided that all exten-
sions should be treated as optional, servers which dont́
wish to implement them (or any subset of them) simply
returns error – well behaved clients will fall back to the
core 9P2000 operations.

3.4 KVM and QEMU

KVM is a set of Linux kernel modules that allows a
userspace process to execute code in a special process
mode. On x86, this is often referred to as compressed
ring 0. Much like vm86 syscall, this mode allows a
userspace program to trap interesting events such as I/O
operations.

QEMU uses the interfaces provided by KVM to imple-
ment full system virtualization emulating standard PC
hardware such as an IDE disk, VGA graphics, PCI net-
working, etc. In the case of KVM, any I/O requests a
guest operating system makes are intercepted and routed
to the user mode to be emulated by the QEMU pro-
cess [7].

3.5 VirtIO Transport

VirtIO is a paravirtual IO bus based on a hypervisor neu-
tral DMA API. With KVM on x86, which is the dom-
inant platform targetted by this work, the underlying
transport layer is implemented in terms of a PCI device.

A PCI device is used to enable support for the widest va-
riety of guests since all modern x86 operating systems
support PCI. The VirtIO PCI implementation makes ex-
tensive use of shared memory. This includes the use of
lockless ring queues to establish a message passing in-
terface and indirect reference to scatter/gather buffers to
enable zero-copy bulk data transfer.

These properties of the VirtIO PCI transport allow
VirtFS to be implemented in such a way that guest
driven I/O operations can be zero-copy. This is a key ad-
vantage of VirtFS compared to using a network file sys-
tem which would always require at least one (but usually
more) data copies.

114 • VirtFS—A virtualization aware File System pass-through

4 Implementation

4.1 Details of the Implementation of VirtFS server
in QEMU

Making the VirtFS server part of QEMU is a very nat-
ural design decision. KVM+QEMU+VirtIO presents an
ideal platform for the VirtFS server where it can effi-
ciently interact with the guest providing one of the effi-
cient paravirtual network file system interfaces. VirtFS
server is facilitate in QEMU by defining two types of
devices.

One is virtio-9p-pci device, and this will be used to
transport protocol messages and data between the host
and the guest. Second one is fsdev device, this is used
to define the export file system characteristics like file
system type, security model (section 4.2)

A typical usage of QEMU to export a file system is:

-fsdev local,id=exp1,path=/tmp/,security_model=mapped
-device virtio-9p-pci,fsdev=exp1,mount_tag=v_tmp

On the client it can be mounted with:

$ mount -t 9p -o trans=virtio v_tmp /mnt

4.2 Security Model

Security is one of the most important aspects of the file
system design and it needs to be handled with care to
cater specific needs of the exploiters. There are two ma-
jor use cases that can make use of this new technology
and their security requirements are quite different. One
demands a complete isolation of guest user domain from
that of the hosts hence practically eliminating any se-
curity issues related to setuid/setgid and root. This is a
very practical use case for certain classes of cloud work-
loads where multi-tenancy is a requirement. A complete
isolation of user domain can practically make two com-
peting customers share the same file system.

The other use case is playing along with the traditional
network file-serving methodologies like NFS and CIFS
by sharing user domains of the host and guest. This
method edges out by offering flexibility to export the
same file system through other network file systems
along with VirtFS.

Linux being POSIX complaint, offers a simple yet pow-
erful file system permission model: Every file system

object is associated with three sets of permissions that
define access for the owner, the owning group, and for
others.

Each set may contain Read (r), Write (w), and Execute
(x) permissions. This scheme is implemented using only
nine bits for each object. In addition to these nine bits,
the Set User Id, Set Group Id, and Sticky bits are used
for number of special cases.

Although this traditional model is sufficient for most of
the use cases, it falls short of satisfying the needs of
the modern world. The need for more granular permis-
sions eventually resulted in a number of Access Control
List (ACL) implementations on UNIX like Posix ACLs,
Rich ACLs, NFSv4 ACLs etc. These ACL models were
developed for specific needs and has very limited degree
of commonality. This poses a major challenge for net-
work file systems as it may have to support wide variety
of file systems with different ACL models [5].

VirtFS, being one of the first file systems in the genre
of paravirtual file systems need to consider all options
and use cases. This type of file systems need to play a
dual role, where it should be a viable alternative to net
work file systems like NFS and CIFS, and also it needs
to fill-in the new space where it should provide special
optimizations and considerations for the needs of guest
operating systems. To address these special needs and
the use cases explained above, we came up with two
types of security models for VirtFS: the mapped security
model and the passthrough security model. QEMU ad-
ministrator picks a model at the start-up and is expected
to stick with that.

4.2.1 Security model: mapped

In this security model, VirtFS server intercepts and maps
the file object create and get/set attribute requests. Files
on the fileserver will be created with VirtFS server’s
(QEMU) user credentials and the client-user’s creden-
tials are stored in extended attributes. On the request
to get attributes, server extracts the client-user’s cre-
dentials from extended attributes and sends them to the
client. Since the files are created on the fileserver with
QEMU credentials, this model keeps the guests user do-
main completely isolated from the host’s user domain.
Host view shows QEMU as the owner of all files created
by any user(including root) on the guest hence provides
complete isolation and security.

2010 Linux Symposium • 115

The access permissions for user attributes are defined
by the file permission bits. The file permission bits of
regular files and directories are interpreted differently
from the file permission bits of special files and sym-
bolic links. For regular files and directories the file per-
mission bits define access to the file’s contents, while
for device special files they define access to the device
described by the special file. The file permissions of
symbolic links are not used in access checks. These
differences would allow users to consume file system
resources in a way not controllable by disk quotas for
group or world writable special files and directories. For
this reason, extended user attributes are only allowed for
regular files and directories only.

Given that the user space extended attributes are avail-
able to regular files only, special files are created as reg-
ular files on the fileserver and appropriate mode bits are
added to the extended attributes. This method presents
all special files and symlinks as regular files on the file-
server while they are represented as special files on the
guest mount.

On Host:
ls -l
drwx------. 2 virfsuid virtfsgid 4096 2010-05-11 09:19 adir
-rw-------. 1 virfsuid virtfsgid 0 2010-05-11 09:36 afifo
-rw-------. 2 virfsuid virtfsgid 0 2010-05-11 09:19 afile
-rw-------. 2 virfsuid virtfsgid 0 2010-05-11 09:19 alink
-rw-------. 1 virfsuid virtfsgid 0 2010-05-11 09:57 asocket1
-rw-------. 1 virfsuid virtfsgid 0 2010-05-11 09:32 blkdev
-rw-------. 1 virfsuid virtfsgid 0 2010-05-11 09:33 chardev

On Guest:
ls -l
drwxr-xr-x 2 guestuser guestuser 4096 2010-05-11 12:19 adir
prw-r--r-- 1 guestuser guestuser 0 2010-05-11 12:36 afifo
-rw-r--r-- 2 guestuser guestuser 0 2010-05-11 12:19 afile
-rw-r--r-- 2 guestuser guestuser 0 2010-05-11 12:19 alink
srwxr-xr-x 1 guestuser guestuser 0 2010-05-11 12:57 asocket1
brw-r--r-- 1 guestuser guestuser 0, 0 2010-05-11 12:32 blkdev
crw-r--r-- 1 guestuser guestuser 4, 5 2010-05-11 12:33 chardev

Most of the file systems offer only one block for ex-
tended attributes. This limitation curbs the use of ex-
tended attributes to stored the target link location. Un-
der this model, target link location is store as file data
using write() and readlink reads it back through read()

On Guest:
ls -l asymlink
lrwxrwxrwx 1 root root 6 2010-05-11 12:20 asymlink -> afile

On Host:
ls -l asymlink
-rw-------. 1 root root 6 2010-05-11 09:20 asymlink
cat asymlink
afile
#

Just like any security model, this has its own advantages
and limitations. One of the main strength and weakness

of this model is, the host file system will be VirtFSized.
While the guest doesn’t see any difference, host users
and tools need to understand the security model to use
the file system credentials on the host. This is a strength
because it completely isolates the guest users address
space, it allows the server to run as a non-privileged
user, hence it involves no issues of root-squashing or se-
tuid issues. Hence this security model makes it perfect
for the guest to run in its own security island.

4.2.2 Security model: Passthrough.

In this security model, VirtFS server passes down all re-
quests to the underlying file system. File system objects
on the fileserver will be created with client-user’s cre-
dentials. This can be done by setting setuid()/setgid()
during creation or chmod/chown immediately after cre-
ation. At the end of create protocol request, files on the
fileserver will be owned by client-user’s credentials.

On Host:

grep 611 /etc/passwd
hostuser:x:611:611::/home/hostuser:/bin/bash

ls -l
-rwxrwxrwx. 2 hostuser hostuser 0 2010-05-12 18:14 file1
-rwxrwxrwx. 2 hostuser hostuser 0 2010-05-12 18:14 link1
srwxrwxr-x. 1 hostuser hostuser 0 2010-05-12 18:27 mysock
lrwxrwxrwx. 1 hostuser hostuser
5 2010-05-12 18:25 symlink1 -> file1

On Guest:
$ grep 611 /etc/passwd
guestuser:x:611:611::/home/guestuser:/bin/bash

$ ls -l
-rwxrwxrwx 2 guestuser guestuser 0 2010-05-12 21:14 file1
-rwxrwxrwx 2 guestuser guestuser 0 2010-05-12 21:14 link1
srwxrwxr-x 1 guestuser guestuser 0 2010-05-12 21:27 mysock
lrwxrwxrwx 1 guestuser guestuser 5 2010-05-12 21:25 symlink1 -> file1

This model lets the host tools understand the filessytem,
and statistics collection and quotas enforcement will be
easier. But this needs the server to run as a privileged
user (root) and also exposes root/setuid security issues
just like NFS

4.2.3 ACL Implemenation

Access Control Lists (ACLs) steps in where the tradi-
tional mode bits security model is not sufficient. ACLs
allow fine grained control by the assignment of permis-
sions to individual users and groups even if these do not
correspond to the owner or the owning group. Access
Control Lists are a feature of the Linux kernel and are
currently supported by many common file systems and

116 • VirtFS—A virtualization aware File System pass-through

its support is crucial with the wide spread usage of file
sharing among heterogeneous systems like Linux/Unix,
and Windows. While ACLs are an essential part of com-
prehensive security scheme, the lack of universal stan-
dards often make the design complex and complicated
and VirtFS is not an exception.

At the time of writing this paper, we are still at the
design stage of implementing the following aspects of
ACL.

A newly created file system object inherits ACLs from
its parent directory. The common practice is a non-
directory object inherits the parent default ACLs as its
access ACLs and directory object inherits parent default
ACLs as its default ACLs. To make things little more
complicated, there are no standards on the inheritance
algorithm and they differ for each ACL model.

In adition to the gid/uid/mode-bits, ACLs of the file sys-
tem object will be checked before granting the request-
ing access to a file system object. This checking can
be done either on the client or on the server. If the en-
forcement is on the server, it need to have the context of
the client-user’s credentials, which makes the protocol
very bulky. For this reason it becomes a natural choice
to have permission checks at the client.

We are leaning towards supporting at least NFSv4 level
ACLs and employing client to do the ACL enforcement
while the ACL inheritance is servers job. The server can
choose to delegate it to the fileserver.

4.3 Current state of the project

At the time of writing this paper, the project is ac-
tively being worked on with a team of seven IBM en-
gineers and the community is just starting to get ex-
cited. Several patches has been posted to the com-
munity mailing lists. Client side patches are being
posted to the v9fs-developer@lists.sourceforge.net list
and server side patches are being posted to the qemu-
devel@nongnu.org list.

QEMU community blessed the project by accepting the
VirtFS server feature patch set into the mainline. This is
a significant milestone for the project. A patch set intro-
ducing the security model as explained above is also on
the mailing list awaiting acceptance. We are also work-
ing towards allowing a more asynchronous model for

the QEMU server which should boost performance sig-
nificantly.

On the client side, the team has contributed dozens of
patches to the 9P client of the Linux kernel. We are ac-
tively working on fixing pre-exisitng bugs and defining
the 9P2000.L protocol extension. As mentioned above,
the main intent and focus of this new protocol extension
is to define an efficient Linux friendly protocol. In this
process, we are contributing to the improvement and sta-
balization of the 9P client as a whole.

5 Performance

As mentioned earlier, VirtFS is intended to be the net-
work file system specialist in the virtualization world.
By the virtue of its design VirtFS is expected to yield
better performance compared to its alternatives like
NFS/CIFS. Though we are just getting started, lot of
focus is given to the performance aspect of the imple-
mentation and the protocol design. This section covers
the initial performance evaluation and comparisons with
its counterparts.

5.1 Test Environment

The following test environment is used for the perfor-
mance evaluation.

Host: 8 CPU 2.5GHz Intel Xeon server, 8 GB of
memory, Qlogic 8Gb fiber channel controller, 24 disks
JBOD. 2.6.34-rc3 kernel, mainline qemu.

Guest: 2 vCPU, 2GB memory running 2.6.34-rc3 ker-
nel.

The following configuration is used for gathering per-
formance numbers:

Configuration-1: Sequential read and write perfor-
mance of VirtFS in comparison to NFS and CIFS. In
this configuration, file system is mounted on the host
and guest accesses the file system through VirtFS, NFS
or CIFS.

Configuration-2: Sequential read and write perfor-
mance of VirtFS in comparison to block-device perfor-
mance. In this configuration, guest directly accesses the
file system on the block device.

2010 Linux Symposium • 117

Setup

• For comparisons with blockdev, each block de-
vice is exported to guest as a block device
(cache=writethrough). Filesystem is not mounted
in the host and its mounted only on the guest for
this testing.

• Each filesystem is stripped across 8 disks to elimi-
nate single disk bottlenecks. 3 such filesystems are
used for the performance analysis.

• Each filesystem is mounted in the host and ex-
ported (using defaults) to the guest over virtio-net.

• Filesystems are un-mounted, remounted and re ex-
ported before each read test to eliminate host level
pagecache.

Commands

Used simple "dd" tests to simulate sequential read and
sequential write patterns.

Write:
dd if=/dev/zero of=/mnt/fileX bs=<blocksize>
count=<count>

Read:
dd if=/mnt/fileX of=/dev/null bs=<blocksize>
count=<count>

blocksize - 8k, 64k, 2M.
count = number of blocks to do 8GB worth of IO.
All the tests are conducted in the guest with various IO
block sizes.

5.2 VirtFS, NFS and CFS comparison

Figure-2 compares sequential read performance of
VirtFS at various block sizes against NFS and CIFS.
VirtFS clearly outperforms NFS and CIFS at all block
sizes

Figure-3 compares sequential write performance of
VirtFS at various block sizes against NFS and CIFS.
Again, as expected VirtFS outperforms NFS and CIFS
at all block sizes.

Figure 2: Comparing Sequential Read among
VirtFs/NFS/CIFS

Figure 3: Comparing Sequential Write among
VirtFs/NFS/CIFS

5.3 VirtFS, block device comparison

Figure-4 compares sequential read performance of
VirtFS against local file system access by block device.
At the time of writing this paper, VirtFS doesn’t seem
to scale well with number of file systems. This is due
to single threaded implementation of VirtFS server in
QEMU. Currently efforts are underway to convert it to
multi threaded implementation.

Figure-5 compares sequential write performance of
VirtFS against the block device access. As these are not
synchronous writes, VirtFS is able to scale very well by
taking advantage of the host and guest page caches.

118 • VirtFS—A virtualization aware File System pass-through

Figure 4: Comparing Sequential Read between VirtFs
and Block device

Figure 5: Comparing Sequential Write between VirtFs
and Block device

6 Next Steps

6.1 Complete 9P2000.L

Defining an optimal and efficient protocol that is well
suited for Linux’s needs is our current focus. Imple-
menting the defined 9P2000.L protocol messages both
on the client and server and getting them into mainline
will be our immediate priority. We are aiming to make
the prototype available for early adopters and exploiters
as quickly as possible and also plan for next releases
with more advanced features.

6.2 Security

ACL implementation for network file systems is always
a challenge as the server need to support different file
systems with different ACL models. It becomes more
complicated for VirtFS as we are supporting two dif-
ferent security models as mentioned above. The Linux
kernel supports POSIX ACLs only but we are planning
on supporting NFSv4 level ACLs. This may throw more
challenges on the way.

6.3 Page Cache Sharing

Reading a file on the network file system mount on the
guest makes the host to read the page onto its cache,
send the data over the protocol to guests page cache be-
fore it is consumed by the user. In the case KVM, both
host and guest are running on the same hardware and are
using same physical resources. That means the page-
cache block is being duplicated in different regions of
the memory. One could extrapolate this problem to the
worst case scenario where almost half of the system’s
page cache is wasted in duplication. We need to come up
with a method where the host and guest share the same
physical page. This eliminates the need for data copy
between guest and host and provide better data integrity
and protection to the application yielding extreme per-
formance benefits. Sharing pages between two operat-
ing systems is challenging as we can run into various
locking and distributed caching issues.

6.4 Interfacing with File system APIs

A user space server has an unique opportunity where
it can interact directly with the file system API instead

2010 Linux Symposium • 119

of going through the system call/VFS interface. VirtFS
server, being a user space server can be modeled to plug
directly into the fileservers API if one is available. This
opens up speciality features offered by the fileserver to
the guest through VirtFS and hence gives an opportu-
nity to give a true pass-through representation of the file-
server. Simply put, this effort should provide a layer of
indirection between the third party/specialized file sys-
tems on the host and virtual machines, enabling any ap-
plication dependent on the special features of these file
systems to run on the guests VirtFS mount.

7 Conclusions

In this paper we have motivated and described the devel-
opment of a paravirtual system service, namely VirtFS.
We have described its integration into KVM/QEMU and
the Linux kernel, and discussed both its underlying pro-
tocol and the changes we are making to that protocol to
improve its support for Linux VFS features. We have
described few different use cases and included a dis-
cussion of different security models for deploying this
paravirtual file systems in cloud environments. Finally,
we have shown that our initial work has superior per-
formance to the use of conventional distributed file sys-
tems and even reasonable performance when compared
to the use of a paravirtualized disk. As described in the
next steps (section 6) we plan on continuing the devel-
opment to improve performance, stability, security, and
features. It is our belief that as virtualization continues
to becomes more pervasive, paravirtual system services
will play a larger role – perhaps completely overtaking
paravirtual devices and device emulation.

8 Acknowledgements

We would like to thank Sripathi Kodi for his valuable
review comments.

We would like to thank Jim Garlick for his contributions
to 9P2000.L. We’d also like to thank Ron Minnich and
Latchesar Ionkov who have provided valuable feedback
as well as being th eco-maintainers of the 9P subsystem
in Linux. We’d also like to thank all those members
of the Linux kernel development community who have
contributed patches to the 9p base infrastructure we are
leveraging.

References

[1] Mike Accetta, Robert Baron, William Bolosky,
David Golub, Richard Rashid, Avadis Tevanian,
and Michael Young. Mach: A new kernel
foundation for unix development. pages 93–112,
1986.

[2] Glenn Ammons, Jonathan Appavoo, Maria
Butrico, Dilma Da Silva, David Grove, Kiyokuni
Kawachiya, Orran Krieger, Bryan Rosenburg,
Eric Van Hensbergen, and Robert W. Wisniewski.
Libra: a library operating system for a jvm in a
virtualized execution environment. In VEE ’07:
Proceedings of the 3rd international conference
on Virtual execution environments, pages 44–54,
New York, NY, USA, 2007. ACM.

[3] Bell-Labs. Introduction to the 9p protocol. Plan 9
Programmers Manual, 3, 2000.

[4] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: an operating system architecture for
application-level resource management. In SOSP
’95: Proceedings of the fifteenth ACM symposium
on Operating systems principles, pages 251–266,
New York, NY, USA, 1995. ACM.

[5] Andreas Grunbacher. Posix access control lists on
linux. USENIX paper - Freenix track, 2003.

[6] Eric Van Hensbergen and Ron Minnich. Grave
robbers from outer space using 9p2000 under
linux. In In Freenix Annual Conference, pages
83–94, 2005.

[7] M. Tim Jones. Discover the linux kernel virtual
machine - learn the kvm architecture and
advantages.

[8] Anthony Liguori and Eric Van Hensbergen.
Experiences with content addressable storage and
virtual disks. In In Proceedings of the Workshop
on I/O Virtualization (WIOV), 2008.

[9] Edmund B. Nightingale, Chris Hawblitzel, Orion
Hodson, Galen Hunt, and Ross Mcilroy. Helios:
Heterogeneous multiprocessing with satellite
kernels. In In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles,
2009.

120 • VirtFS—A virtualization aware File System pass-through

[10] Fabio Oliveira, Gorka Guardiola, Jay A. Patel,
and Eric Van Hensbergen. Blutopia: Stackable
storage for cluster management. In CLUSTER,
pages 293–302, 2007.

[11] Rob Pike, Dave Presotto, Sean Dorward, Bob
Flandrena, Ken Thompson, Howard Trickey, and
Phil Winterbottom. Plan 9 from Bell Labs.
Computing Systems, 8(3):221–254, Summer
1995.

[12] Rob Pike, Dave Presotto, Ken Thompson, Howard
Trickey, and Phil Winterbottom. The use of name
spaces in plan 9. SIGOPS Oper. Syst. Rev.,
27(2):72–76, 1993.

[13] Rusty Russel. virtio: towardsa a de-facto standard
for virtual I/O devices. In Operating Systems
Review, 2008.

[14] Adrian Schupbach, Simon Peter, Andrew
Baumann, Timothy Roscoe, Paul Barham, Tim
Harris, and Rebecca Isaacs. Embracing diversity
in the barrelfish manycore operating system. In In
Proceedings of the Workshop on Managed
Many-Core Systems, 2008.

[15] Eric Van Hensbergen. P.R.O.S.E.: partitioned
reliable operating system environment. SIGOPS
Operating Systems Review, 40(2):12–15, 2006.

Taking Linux Filesystems to the Space Age: Space Maps in Ext4

Saurabh Kadekodi
Spring Computing Pvt. Ltd.

saurabhkadekodi@gmail.com

Shweta Jain
Clogeny Technologies Pvt. Ltd.
atewhs.jain@gmail.com

Abstract

With the ever increasing filesystem sizes, there is a
constant need for faster filesystem access. A vital re-
quirement to achieve this is efficient filesystem metadata
management.

The bitmap technique currently used to manage free
space in Ext4 is faced by scalability challenges owing to
this exponential increase. This has led us to re-examine
the available choices and explore a radically different
design of managing free space called Space Maps.

This paper describes the design and implementation of
space maps in Ext4. The paper also highlights the limi-
tations of bitmaps and does a comparative study of how
space maps fare against them. In space maps, free space
is represented by extent based red-black trees and logs.
The design of space maps makes the free space informa-
tion of the filesystem extremely compact allowing it to
be stored in main memory at all times. This significantly
reduces the long, random seeks on the disk that were
required for updating the metadata. Likewise, analo-
gous on-disk structures and their interaction with the
in-memory space maps ensure that filesystem integrity
is maintained. Since seeks are the bottleneck as far as
filesystem performance is concerned, their extensive re-
duction leads to faster filesystem operations. Apart from
the allocation/deallocation improvements, the log based
design of Space Maps helps reduce fragmentation at the
filesystem level itself. Space Maps uplift the perfor-
mance of the filesystem and keep the metadata manage-
ment in tune with the highly scalable Ext4.

1 Introduction

Since linux kernel 2.6.28, Ext4 has been included in the
mainstream and has become the default filesystem with
most distributions. In a very short span of time, it has

grown in popularity as well as stability. Over its prede-
cessor Ext3, Ext4 brings many new features like scala-
bility, delayed allocation, multiple-block allocation, im-
proved timestamps[1] among others. One of its most
important features is its use of extents.

1.1 Impact of extents

An extent is a combination of two integers, the first is
the start block number and the second is the number of
contiguous physical blocks ahead of the start block.

Start
block no.

Length

Figure 1: Extent

Inodes in Ext4 no longer use the indirect block mapping
scheme. Instead they have extents which are used to
denote range of contiguous physical blocks owned by a
file. Huge files are split into several extents. Four ex-
tents can be stored in the Ext4 inode structure directly
and if more extents are required (eg. in case of very
large, highly fragmented or sparse files) they are stored
on disk in the form of an Htree. Extents offer multi-
ple advantages. With extents, the amount of metadata to
be written to describe contiguous blocks is much lesser
than that required by the double/triple indirect mapping
scheme. This results in improved performance for se-
quential read/writes. They also greatly reduce the time
to truncate a file as also the CPU usage[2]. Moreover,
extents encourage continuous layouts on the disk, re-
sulting in lesser fragmentation[4]. Extents have been
shown to bring about a 25% throughput gain in large se-
quential I/O workloads when compared with Ext3. Tests
conducted using the Postmark benchmark, which simu-
lates a mail server, with creation and deletion of a large

• 121 •

122 • Taking Linux Filesystems to the Space Age: Space Maps in Ext4

number of small to medium files also showed similar
performance gain[2][10].

The crux of features like delayed allocation and persis-
tent preallocation is the extent. Preallocation deals with
pre-allocating/reserving contiguous disk blocks for a file
without actually writing to them immediately. Due to
this, the file remains in a more contiguous state, enhanc-
ing the read performance of the filesystem. Moreover,
it also helps in reducing fragmentation to a great extent.
With preallocation, the applications are assured that they
will always get the space they need, avoiding situations
where the filesystem gets full in the middle of an impor-
tant operation[4].

With delayed allocation, block allocations are post-
poned to page flush time, rather than writing them to
disk immediately. As a result there are no block alloca-
tions for short lived files, and several individual block
allocation requests can be clubbed into one request[2].
Since the exact number of blocks required are known
at flush time, the allocator tends to assign a contiguous
chunk rather than satisfy short term needs, which prob-
ably would have split the file.

1.2 Extents in free space management

Ext4 also introduced extents in its free space manage-
ment technique. To avoid changing the on-disk layout,
extents were maintained only in-memory, eventually re-
lying on the on-disk bitmap blocks. One of the problems
faced by the Ext3 block allocator, which allocated one
block at a time, was that it did not perform well for high
speed sequential writes[5]. Alex Tomas addressed this
problem and implemented mballoc - the multiple block
allocator. Mballoc uses the classic buddy data structure.

Whenever a process requests for blocks, the allocator
refers the bitmap to find if the goal block is available
or not. After this point is where the traditional balloc
and mballoc differ. Balloc would have returned the sta-
tus of just one block and this would have continued for
every block that the process requires. Mballoc, on the
other hand constructs a buddy data structure as soon as
it fetches the bitmap in memory. Buddy is simply an
array of metadata, where each entry describes the status
of a cluster of nth power of 2 blocks, classified as free
or in use[5]. After the allocator confirms the availability
of the goal block from the bitmap, it refers the buddy to
find the free extent length starting from the goal block,

and if found, returns the extent to the requesting pro-
cess. In case the extent is not of appropriate length, the
allocator continues to search for the best suitable extent.
If after searching for a stipulated time, a larger extent is
not found, then mballoc returns the largest extent found
in that search.

Both, the bitmap and the buddy are maintained in the
page cache of an in-core inode[3]. Before flushing the
bitmap to disk, information from the buddy is reflected
in the bitmap and the buddy is discarded.

The bitmap and buddy combination enabled mballoc to
speed up the allocation process. The combination of de-
layed allocation and multiple block allocation have been
shown to significantly reduce CPU usage and improve
throughput on large I/O. Performance testing shows a
30% throughput gain for large sequential writes and 7%
to 10% improvement on small files (e.g., those seen in
mail-server-type workloads)[2]. The credit for this goes
to mballoc’s ability to report free space in the form of
extents. However, this mechanism still raises certain is-
sues:

1. Even though the buddy scheme of Ext4 is more
efficient at finding contiguous free space than the
bitmap-scanning scheme of Ext3, the overhead of
fetching and flushing bitmaps is still involved. Up-
dating the bitmaps in-memory is fast, seeking and
fetching them is the bottleneck.

2. Initializing the buddy bitmaps entails some cost[3].
Every time a bitmap is fetched into memory, there
is an extra overhead of constructing the buddy.

3. Usually, only one structure is used to define the free
space status of the filesystem. However in case of
mballoc, both the buddy and the bitmap are used.
Both these structures have to be updated on ev-
ery allocation/deallocation. This introduces redun-
dancy.

4. The buddy technique consumes twice the amount
of memory as compared to only bitmaps. Thus,
lesser number of bitmaps can reside in memory, re-
sulting in more seeks.

5. Whenever preallocation has to be discarded, there
is a comparison done between the buddy and the
on-disk bitmaps. The on-disk bitmaps need to be
referred to find out the exact chunk of space uti-
lized. This leads to even more seeks.

2010 Linux Symposium • 123

6. Finally, when a filesystem has significantly aged,
the buddy structure will be of little use as the avail-
able disk space may hardly be available contigu-
ously. In such cases we currently have to rely on
the primitive bitmap technique which is inefficient
and slow.

The above points clearly indicate that optimizations are
possible in the Ext4 block allocator. Something like an
in-memory list for more optimal free extent searching,
would further assist mballoc[3].

The underlying phenomenon of the success of extents, is
that the filesystem usually deals with blocks in chunks,
unlike inodes which are dealt with individually. Cre-
ation/deletion of files/directories mostly involves deal-
ing with chunk of blocks. It thus seems natural to repre-
sent their free space status, also in the form of chunks.
We take this idea further and explore a technique that is
based entirely on extents. This technique is called Space
Maps.

2 Design Details

In implementing this technique, there is a change to
Ext4’s on-disk layout. In Ext4 without space maps,
for 4K block size, each 128MB chunk is called a
blockgroup and each blockgroup has a bitmap. For
space maps, we have combined a number of such block
groups, amounting to 8GB space, calling it a metablock-
group, and each metablockgroup has a space map. The
8GB size is the default size of a metablockgroup for a
4K block size filesystem. The metablockgroup size is
tunable at mkfs time.

Block group 1

S
p
a
c
e
M

a
p

Block group 2 Block group 3 Block group n

Block group 1

B
it
m

a
p

B
it
m

a
p

Block group 2

B
it
m

a
p

Block group 3

B
it
m

a
p

Block group n

1 meta-blockgroup

With space maps

Figure 2: Metablockgroup

A space map consists of a red-black tree and a log. The
nodes of the tree are extents of free space, sorted by off-

set and the log maintains records of recent allocations
and frees. The tree and the log together provide the free
space information.

Space Map

2350 | 100 F

500 | 260 F

760 | 150 A

0 | 20 F

Log

1730 | 560

1020 | 320

30 | 450 1500 | 100

2435 | 246

2800 | 200

RB-Tree

Figure 3: Structure of space maps

Bitmaps have a linear relationship with the size of the
filesystem. This is not true with extent based tech-
niques. Their size changes dynamically depending on
the state of the filesystem. The tree has as many nodes
as there are number of free space fragments (holes) in
the metablockgroup. An experiment was conducted to
get an idea of the space required by the space maps.
E2freefrag[9] (a free space extent measuring utility) was
executed on a 12GB Ext3 partition which was more
than 90% full. Totalling the extents of various sizes,
there were in all 1175 extents. Ext3 is good at avoid-
ing fragmentation, but Ext4 is even better. Even then,
as a safe cut-off mark, let us assume 2000 fragments in
one metablockgroup i.e. 8GB, and calculate the space
required for space maps. Here, one space map would
require 2000 entries * 20 bytes per tree node entry = ap-
proximately only 40KB for the tree and let us keep aside
8KB for the log. Hence, space maps consume 48KB for
1 metablockgroup. This means that for an 8TB filesys-
tem, where bitmaps would have required 256MB, space
maps require merely 48MB i.e. only around 1/5th of the
space required for bitmaps. This significant reduction in
size enables space maps to reside entirely in memory at
all times. To find free space, the allocator has to refer
only the in memory structures and update them. This
eliminates the huge I/O traffic from reading and writing
bitmaps, which resulted from the fact that only a limited
number could reside in memory at any given time.

The space maps are initialized at mkfs time. When the

124 • Taking Linux Filesystems to the Space Age: Space Maps in Ext4

filesystem is mounted, each space map is read into mem-
ory. They persist in memory for the duration that the
filesystem remains mounted. During this period they
keep their interaction with on-disk structures to a min-
imum, such that filesystem integrity is maintained. On
unmounting, space maps are flushed back to disk.

The detailed description of the tree and the log along
with a reasoning of why they are chosen is given below.

2.1 In-memory structures

2.1.1 Red black tree

The red black tree[7] of the space map, as described
above, consists of nodes which are extents of free space,
sorted by offset. The red black property of the tree helps
the tree adjust itself if it is skewing to any one side. This
limits the height of the tree making searches efficient.
The tree is the primary structure denoting the free spaces
in a particular metablockgroup, while log is a secondary
structure, temporarily noting recent operations.

Start
block no.

Length rb_node

12 bytes4 bytes4 bytes

Figure 4: In-memory tree node

The tree node is 20 bytes in size. The start block num-
ber is relative to the first block of the metablockgroup
to which the space map belongs. Hence, just 4 bytes
suffice for the start block number and length fields.

2.1.2 Log

The log being an append-only structure, insertions to the
log are very fast. Thus all operations are initially noted
in the log, and then depending on their nature, they are
either reflected in the tree instantly or in a delayed man-
ner. The log assists the RB tree in maintaining a consis-
tent state of the filesystem. Another reason for choosing
the log is its ability to retain frees. In bitmaps, once the
requested deallocation was performed, the freed space
was forgotten. Due to this, an allocation following the
free would be searched completely independent of the

recently done free. This involved the tedious task of
searching the bitmaps again, possibly from a completely
different part of the platter. Moreover this also increased
the chances of holes in the filesystem. In such a situ-
ation, the log acts as a scratchpad noting the recently
done frees which can directly be used to satisfy the up-
coming allocation requests, if any. Additionally, as allo-
cations following frees fill up the recent frees from the
log itself they help reduce holes in the filesystem. The
working section along with an example will explain the
behaviour of the log in much more detail.

Start
block no.

Length Flags

4 bytes4 bytes 1 byte

Figure 5: In-memory log entry

As each space map has a log, here too the start block
number is relative to the start of the metablockgroup.
The flags field is one byte with one of its bits denoting
the type of the operation viz. allocation or free. Thus, a
log entry is totally 9 bytes.

2.2 On-disk structures

2.2.1 Tree

For persistence across boots, the in-memory tree is
stored on disk as an array of extents. At mount time,
the extents from the on-disk tree are read to form the
in-memory tree. The on-disk tree is updated only under
two circumstances; when the filesystem is unmounting
or when the on-disk log gets full.

Start
block no.

Length

4 bytes4 bytes

Figure 6: On-disk tree node

As shown in the preceeding figure, one on-disk tree en-
try consists of just one extent. Its size is 8 bytes.

2010 Linux Symposium • 125

2.2.2 Log

To avoid inconsistency in case of a crash, the operations
noted in the in-memory log are also noted in the on-disk
log in a transactional manner. As the log is an append-
only structure only the last block of the on-disk log is
required in memory. The exact operation is discussed in
detail in the working of the technique.

Start
block no.

Length Flags

4 bytes4 bytes 1 byte

Figure 8: On-disk log entry

The on-disk log structure is same as that of the in-
memory log.

3 Working

3.1 Allocation

The first flowchart outlines the allocation procedure.

3.2 Deallocation

The second flowchart explains the process of freeing
space.

Process Allocator Log RB-tree

Issues command
to allocator

Start

Issues command
to search log

Can request
be

satisfied
by the log?

Sync log with
the tree

Make entry
in the log

Search
the tree

Is space
available?

Return
allocated space

Stop

Go to next
space map

Yes

No

No

Yes

Figure 7: Allocation flowchart

126 • Taking Linux Filesystems to the Space Age: Space Maps in Ext4

Process Allocator Log

Issues command
to free space

Start

Make log
entry

Stop

Issues command
to free space

Figure 9: Free flowchart

The example below better illustrates the working of the
system:

• Consider a newly made filesystem. As explained
earlier, the log (left figure) is empty and the tree
(right figure) consists of a single node. For the sake
of this example, let us assume that a metablock-
group consists of 5000 blocks. The single node of
the tree indicates that the entire metablockgroup is
free.

Initial
condition

=
log

empty

0 | 5000

Figure 10: First scenario

• Suppose a process requests for 100 blocks. In this
case, the allocator first searches the in-memory log
of the goal metablockgroup for any recently done
free operations that can satisfy the request. Since
the log is empty, the tree is searched. As it is able to
find a suitable extent, the process is allocated 100
blocks starting from, say, block number 0. Corre-
sponding entries are made in the in-memory and

on-disk logs in a single transaction. Note that nei-
ther logs are synced with the trees immediately.

0|100 A 0 | 5000

Figure 11: Second scenario

• Now, suppose there is a request for allocation of
150 blocks. As there is no entry in the log that can
satisfy the request, the tree has to be searched. But
since the tree does not reflect the updated state of
the filesystem, we first need to sync the in-memory
log with the in-memory tree. The in-memory log
is then nullified. Here, the on-disk log is not syn-
chronized with the on-disk tree as it would result
in rewriting the entire on-disk tree. Writing the
entire tree to disk every time any operation takes
place would result in a lot of unnecessary writes
to the filesystem. The beauty of this design is that
as the on-disk structures are meant only to main-
tain space maps across boots, and are not referred
for any allocation/deallocation, it suffices to just
make a note of the operations somewhere on disk.
The log serves this purpose. Hence, only the last

2010 Linux Symposium • 127

block of the append-only on-disk log needs to be
in memory at all times to which we append en-
tries of operations. Assume that the allocator as-
signs 150 blocks starting from block number 450.
Entries in the logs are made accordingly. Even if
the in-memory structures and on-disk structures are
different, the in-memory log + in-memory tree =
on-disk log + on-disk tree; thus maintaining con-
sistency. If there is a crash at this point, replaying
the on-disk log onto the on-disk tree will give us
the exact state of the filesystem as it was before the
crash.

0|100 A

450|150 A
100 | 4900

Figure 12: Third scenario

• Another allocation request of 200 blocks is tackled
in a similar fashion.

450|150 A

600|200 A

100 | 350

600 | 4400

Figure 13: Fourth scenario

• Suppose now there is a request to free 150 blocks
starting from block number 650. For a free request,
ideally, there should be no need to search anything
at all. All that is required is that the free space man-
ager is informed about the blocks that are freed.
Here, the bitmap technique faces a problem. In
bitmaps, the specific bits of the particular bitmap
block (in whose block group the file resided) are
to be nullified. This causes a lot of seeks. This is
where the log plays its most important role. The
fastest way of informing space maps about a free
is simply appending an entry to the logs. That
is exactly what happens in space maps. So here,

only the logs are updated with the entry suggest-
ing that 150 blocks from block number 650 are
freed. This maintains perfect locality of appends
and results in very fast, virtually seekless opera-
tions. Furthermore, the deletion of a large, sparse
or fragmented file requires many bitmaps to reside
in memory. As against this, in space maps only the
last block of the on-disk log (to which the appends
are to be made) needs to be in memory. Hence, for
an 8GB metablockgroup, where in the worst case
(i.e. if the file/directory being deleted had occu-
pied blocks in all 64 block groups comprising that
metablockgroup) the bitmap technique would have
required fetching all 64 bitmap blocks in memory,
space maps require only 1 block (viz. the last block
of the on-disk log) in memory. This not only re-
duces the memory consumption but also speeds up
deallocation process.

600|200 A

650|150 F

100 | 350

600 | 4400

Figure 14: Fifth scenario

• Suppose there is another request for 150 blocks. In
this case, the in-memory log does have a recent free
which can satisfy the request. The 150 blocks are
allocated from the log itself. This not only prevents
another sync with the tree and a scan of the whole
tree for an appropriate chunk, but also fills up a
hole, thereby reducing potential free space frag-
mentation. The two entries for allocation and free
are purged in the log itself.

600|200 A

650|150 F

650|150 A

100 | 350

600 | 4400

Figure 15: Sixth scenario

All further allocations and deallocations continue to

128 • Taking Linux Filesystems to the Space Age: Space Maps in Ext4

happen in the above-mentioned way.

Since logs are append-only, they can keep on filling in-
definitely. The log sizes cannot be kept infinite and thus
the design has to incorporate the handling of logs get-
ting filled up completely. Consider the following two
scenarios:

• In-memory log gets full. In this case, before the
next entry to the log is made, the log is synchro-
nized with the in-memory tree and nullified. Thus,
the filesystem is still consistent.

• On-disk log gets full. In this case, the in-memory
log is first synchronized with the in-memory tree.
The in-memory tree showing the then most up-to-
date condition of the filesystem overwrites the on-
disk tree. After this, both the logs are nullified.

4 Evaluation

Space maps were put to test using some standard bench-
marks. In the tests below, Ext4 (as of kernel 2.6.33.2)
is compared with Ext4 (of the same kernel version) with
space maps implemented. To really stress the alloca-
tor, the tests were conducted on a 50GB partition with
memory size as 384MB. Also the filesystem was made
with 1K block size to increase the number of bitmaps to
simulate the behaviour of large filesystems.

4.1 Small file handling using postmark

Postmark[10] is a tool that simulates the behaviour of
a web server, typically a mail server. Thus its tests in-
volves creation and deletion of a large number of small
files. In the test below, postmark was run 5 times. Each
time 100000 files were added to the previous test, start-
ing with 100000 files.

Number of small files

W
ri
te

s
 (

M
B

/s
e

c
)

100000 200000 300000 400000 500000

5

10

15

20

25

30

Bitmaps Space Maps

Figure 16: Graph of postmark

As predicted, better extents result in faster file writes.
There is a stark difference in the speed of allocation ini-
tially between space maps and bitmaps, but the differ-
ence gradually reduces as the number of files goes up.
Even then, at all times space maps allocation speed is
higher than that of bitmaps.

4.2 Simultaneous small file and large file creation

Mballoc has the ability to treat large and small files dif-
ferently. In order to stress mballoc, a test was conducted
in which 5 linux kernels were untarred in different di-
rectories and 5 movie files (typically in the range of
700MB) were copied simultaneously. Operations like
these jumble the allocator with large file and small file
requests at the same time. In such scenarios, mballoc
tends to make a lot of seeks. This is evident from the
results below. The following statistics were taken when
performing the tests on a newly made filesystem. The
tool used below to measure seek count is called seek-
watcher[8] by Chris Mason. It uses the output of the
blktrace[11] utility and constructs a graph with time on
the x-axis. It uses matplotlib to build the graphs.

2010 Linux Symposium • 129

Figure 17: Stress test seek comparison run 1

Figure 18: Stress test seek comparison run 2

Figure 19: Stress test seek comparison run 3

Figure 20: Stress test seek comparison run 4

Figure 21: Stress test seek comparison run 5

The above test was conducted 5 times consequtively. As
clearly visible in all the operations the seek count when
allocation was done using space maps is less than half
of the seeks required by the Ext4 that used bitmaps.

4.3 Free space fragmentation using e2freefrag

The following test measures the number and size of the
fragments of free space in the filesystem. The test is just
an extension to the previously performed simultaneous
large and small file creation executed a total of 7 times.
Fragmentation was measured at the end of each itera-
tion. In Ext4 with bitmaps, we measure this attribute
with e2freefrag[9], whereas in Ext4 with space maps,
extents were nothing but the nodes of the trees. As clear
below, the number of free space fragments of the filesys-
tem go on reducing as the filesystem fills up. This is
because the nodes of the tree get filled very efficiently
resulting in lesser nodes, and thus lesser fragments.

 0

200

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5

Number of runs of the test

Bitmaps Space maps

T
o

ta
l
n

u
m

b
e

r
o

f
fr

e
e

 s
p

a
c
e

 f
ra

g
m

e
n

ts

6 7

89%77%64%52%39%26%13%

Filesystem usage

Figure 22: Graph of number of free space fragments

After having seen the number of fragments, let us have
a look at the nature of the fragments in terms of their

130 • Taking Linux Filesystems to the Space Age: Space Maps in Ext4

size. In general, the larger the extents of free space, the
more chances of a future file residing contiguously on
disk. The results show that even when the filesystem is
89% full, the extents of free space greater than 1GB are
around 74%, whereas in bitmaps it falls down drastically
to 36%. This confirms that the more extent oriented in-
formation is available, the more efficiently allocations
can be carried out with minimum free space fragmenta-
tion.

100

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5

Number of runs of the test

Bitmaps Space maps

P
e

rc
e

n
ta

g
e

 o
f

fr
e

e
 s

p
a

c
e

 e
x
te

n
ts

b
e

tw
e

e
n

 1
G

B
 a

n
d

 2
G

B

6 7

89%77%64%52%39%26%13%

Filesystem usage

Figure 23: Graph of e2freefrag

4.4 File fragmentation using filefrag[12]

As stated earlier, the allocator tends to give better and
more contiguous space to files if it recieves better ex-
tents. The graph below completely supports the claim.
To measure the effects of file fragmentation, a test was
conducted which involved copying of large 1GB files to
a 10GB partition. The partition was made using the de-
fault flexible block group parameter of 16 block groups.
Even then, the average number of fragments shown by
files allocated using space maps are 1/5th of those allo-
cated using bitmaps.

120

0

10

20

30

40

50

60

70

80

90

100

110

1 2 3 4

Space mapsBitmaps

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
fr

a
g

m
e

n
ts

 o
f

th
e

 f
ile

Number of runs of the test

96%72%48%24%

Filesystem usage

Figure 24: Graph of filefrag

5 Other benefits

• During mkfs, until the new uninitialized block
groups feature was incorporated, all the bitmaps
had to be invalidated to indicate that the entire
filesystem was free. With uninitialized block
groups you can now just set a field in the group de-
scriptors indicating that the bitmap for this block
group is invalid[2]. The actual bitmap block is
nullified only when it is about to be used. This
has significantly sped up the process of format-
ting Ext4. With space maps, the mkfs process
involves just the entry of 1 node per metablock-
group indicating that the entire metablockgroup is
free. This is as fast as the uninitilized block groups
feature if not faster, as there are lesser number of
metablockgroups than the group descriptors in a
filesystem. Along with that, this completely takes
care of marking the entire metablockgroup free as
against just the invalidation in the group descriptor.
So there is no extra operation required before using
the particular metablockgroup for the first time and
it is completely ready for usage.

• If the filesystem is made with 1K block size, then
there are 16 times more bitmaps than the same
filesystem made with the default 4K block size.
Even in this case, as the space maps parameter for
size of metablockgroup is tunable, the number and
size of space maps can remain the same.

2010 Linux Symposium • 131

• Ext4 has done remarkably well to avoid fragmen-
tation mainly due to the use of persistent prealloca-
tion. Even though this is the case, when the inode
preallocation runs out of preallocated space, it may
have to place a part of the file at a different off-
set. While doing this, fast access to flexible extents
(extents not limited by block group size and/or not
just as powers of 2) of free space eases the job of
the allocator and results in lesser file fragments.

• Intelligent allocator heuristics will result in the re-
duction of the size of the tree as the filesystem goes
on filling up. This will in-turn increase the alloca-
tion speed as tree lookups will be faster.

6 Limitations

• Every time the filesystem is mounted, the on-disk
trees are read and the RB tree is constructed. This
is time consuming as compared with the current
bitmap technique as nothing has to be initialized
with respect to bitmaps. Also while umounting,
the trees have to again be traversed and stored onto
disk in the form of a list of extents. That too is more
time consuming as compared with the current sce-
nario.

• In cases of extreme fragmentation (say every alter-
nate disk block is empty) the memory consump-
tion due to space maps will be higher than that of
bitmaps.

7 Future enhancements

• One of the further optimizations could be the in-
telligent separation of the space maps based on file
sizes. If we have separate space maps for large and
small files, then the log entries in those space maps
(for frees) will be of similar nature. Thus more al-
location requests can be satified by the log itself
without having to rely on the tree. This will result
in maximum utilization of the log design.

• Another enhancement can be in designing a more
efficient log. Currently, the log is simply an array
of extents. Advanced data structures can enable
much faster lookups of the log, resulting in even
faster allocations/deallocations.

8 Related work

8.1 Space maps in ZFS

The concept of Space Maps is not new. ZFS, a solaris
filesystem, also has the idea of space maps but the mech-
anism of implementation varies. Each virtual device on
ZFS is divided into metaslabs, each having its own space
map. Metaslab of ZFS is analogous to the metablock-
group of Ext4. However, in case of ZFS, space map
is simply a log of allocations and frees as they happen.
Due to the use of the log, ZFS also benefits from the
perfect locality of appends. Appends are made for allo-
cations as well as frees.

Whenever the allocator wants to search for free space
in a particular metaslab, it reads its space map and re-
plays the allocations and frees into an in-memory AVL
tree of free space, sorted by offset. At this time, it also
purges any allocation-free pairs that cancel out. The on-
disk space map is then overwritten with this smaller, in-
memory version[6].

8.2 Comparison with space maps in Ext4

• In ZFS, space map is nothing but an on-disk log
of allocations and frees. Also, an AVL tree is used
which is the only in-memory structure. As against
this, the Ext4 implementation has an RB tree along
with an in-memory log helping reduce fragmenta-
tion and speed-up deallocations.

• Another difference is that the ZFS allocator has to
update the tree for each and every request whether
it is an allocation or a free. There can be cases
when the entire tree needs to be reshuffled often.
In a case where there are allocations following sev-
eral frees and if the allocations can be satisfied by
the recent frees, the Ext4 space maps can answer
the request from the in-memory log itself instead
of having to sync the tree time and again.

9 Conclusion

Space Maps demonstrate all the qualities essential for
supporting fast free space allocation and deallocation in
large filesystems common today. Finding free space can
now be done entirely in memory and requires very lit-
tle involvement of the disk. Space maps provide great

132 • Taking Linux Filesystems to the Space Age: Space Maps in Ext4

scalability and are proved to maintain filesystem consis-
tency. We believe that improvements in space maps will
further bring in optimizations and lift the current perfor-
mance of this technique even higher.

10 Acknowledgements

We wish to thank the following people for their contri-
butions; Ms. Pavneet Kaur, who shared her thoughts
during the development of space maps. Mr. Anuj
Kolekar who assisted during the testing phase. Mr.
Kalpak Shah, our mentor whose ideas and timely crit-
icism helped us bring this to fruition. Mr. Jeff Bonwick,
who laid the seed of the idea. Last, but not the least, we
wish to thank the anonymous reviewers, who patiently
read our paper and gave us valuable inputs which helped
make significant improvements in this paper.

References

[1] Mathur A., Cao M., Bhattacharya S., Dilger A.,
Tomas A and Viver L., The New ext4 filesystem:
current status and future plans. (2007) [Online]
Available: http://ols.108.redhat.com/
2007/Reprints/mathur-Reprint.pdf

[2] Avantika Mathur, Mingming Cao and Andreas
Dilger, ext4: the next generation of the ext3 file
system (2007) [Online] Available: http:
//www.usenix.org/publications/
login/2007-06/openpdfs/mathur.pdf

[3] Aneesh Kumar K.V, Mingming Cao, Jose R
Santos and Andreas Dilger, Ext4 block and inode
allocator improvements (2008) [Online]
Available: http://www.linuxsymposium.
org/archives/OLS/Reprints-2008/
kumar-reprint.pdf

[4] Ext4 (2010) [Online] Available:
http://kernelnewbies.org/Ext4

[5] Mingming Cao, et.al. State of the Art: Where we
are with the Ext3 filesystem (2005) [Online]
Available:
http://www.linuxsymposium.org/
2005/linuxsymposium_procv1.pdf

[6] Jeff Bonwick, Space Maps (2007) [Online]
Available: http://blogs.sun.com/
bonwick/entry/space_maps

[7] Rob Landley, Red-black tree Available: Linux
kernel documentation

[8] Chris Mason, Seekwatcher [Online] Available:
http://oss.oracle.com/~mason/
seekwatcher

[9] Rupesh Thakare, Andreas Dilger, Kalpak Shah,
e2freefrag [Online] Available: http:
//manpages.ubuntu.com/manpages/
lucid/en/man8/e2freefrag.8.html

[10] Jeffrey Katcher, PostMark: A New File System
Benchmark [Online] Available: http:
//communities.netapp.com/servlet/
JiveServlet/download/2609-1551/
Katcher97-postmark-netapp-tr3022.
pdf

[11] Jens Axboe, Alan D. Brunelle and Nathan Scott,
blktrace User Guide [Online] Available: http:
//pdfedit.petricek.net/bt/file_
download.php?file_id=17&type=bug

[12] Theodore Tso, filefrag Available: Linux kernel
documentation

Mobile Simplified Security Framework

Dmitry Kasatkin
Nokia Corporation

dmitry.kasatkin@nokia.com

Abstract

Linux kernel has already several security frameworks
such SELinux, AppArmor, Tomoyo and Smack. After
some studies we found out that they are not very suitable
for mobile consumer devices such as mobile phones.
They either require too complicated administration or do
not really provide any security API, which can be used
by applications providing services to verify credentials
of their clients, and then decide if a particular client can
access the provided service or not.

In this paper we present a new platform security frame-
work developed by the Maemo security team specifi-
cally for mobile devices. The key subsystem of the Mo-
bile Simplified Security Framework is the Access Con-
trol framework, which is used to bind privileges (re-
source tokens) to the application when the application
is starting. Using a special API, different entities are
able to verify possession of those resource tokens and
allow/disallow access to protected resources. If any of
the applications require an access to protected resources,
a Manifest file with the credential request should be in-
cluded in the package providing the application. The
Manifest file is also used to declare new credentials,
which are provided by an application coming from the
package.

1 Introduction

The scope of this paper is to describe Mobile Simplified
Security Framework (MSSF). This security framework
has been developed specifically to be suitable for mobile
consumer electronics devices such as smartphones.

Smartphones usually have limited resources such as
memory, CPU power, and power supply, but at the same
time have a network connectivity and allows the user to
download and install applications. Malicious applica-
tions can pose a threat to the security of the system.

Platform security mechanisms must provide following:

• Protect the user.
It must not be possible for malicious application to
corrupt or steal the device owner’s personal data.
Also malicious application must not be able to mis-
use the device and incur costs by sending sms to
pay numbers. If device is stolen, it should not be
possible to access the user’s private data.

• Protect the device.
Device functionality and reliability must satisfy
specification requirements. It must not be possi-
ble to change critical device parameters. Changing
RF, WiFi values can cause device malfunctioning
and violate regulatory requirements.

• Protect the business.
Phones are sold via different channels. Operators
often subsidize devices. Breaking a SIM/Subsidy
lock immediately mean lose of business. Operators
want product customization - certain applications
and service should only be available on its devices,
and possibly limit what can be installed on the de-
vice.

• Enable new services.
Providing services such as Music Store or Ap-
plication Store requires device to support copy-
protection. Services like mobile payments and
billing requires secure handling of customer data.

Comparing to personal computers where users have
more control over the device and often prepared to per-
form administrative tasks, mobile device users do not
expect that they need to make complicated configuration
of the device. That requires security framework to pro-
vide protection without additional maintenance effort
and to allow applications coming from different sources
to get access to protected resource in controlled manner.

• 133 •

134 • Mobile Simplified Security Framework

2 Existing Linux Security Frameworks

Linux kernel has already several security frameworks
such as SELinux, Smack, Tomoyo. While provid-
ing Mandatory Access Control (MAC) implementation,
they do not provide end-to-end solution for security, tak-
ing into account also software distribution and develop-
ers ecosystem. Here we provide some reasons why we
decided to develop our own security framework.

2.1 Traditional Unix DAC

Unix DAC is a classical access control model which is
based on restricting access to objects based on identity
of the subjects and groups to which they belong. The
main difficulty to use Unix DAC is a lack of process
based access control.

Mobile device is normally a single user device where
all processes are either running under root account or
the same user account. Processes with the same user
ID have unlimited access to the resources of each other.
This pose a threat that malicious application can corrupt
or steal the data of other applications.

The way to work around this issue is to run processes
under different users accounts and groups. But this ap-
proach is not generic and requires administrative work
to maintain needed information.

2.2 SELinux

SELinux is LSM-based MAC implementation [1].
SELinux is very powerful, but requires very complex
and centralized policy administration. That is not prob-
lem for the servers which are usually centrally admin-
istered by professional people. Required administration
effort makes it very complicated to use in smartphone
platform.

2.3 Smack

Simplified Mandatory Access Control Kernel (SMACK)
is LSM-based, relatively simple MAC implementation
as alternative to SELinux [2]. It’s operational logic is
simple: labels are attached to system components and
access rules between the labels are defined by the system
administrator. SMACK provides primitive security API,
but doesn’t provide the application enough granularity
to provide detailed access control.

Figure 1: Security Frameworks Layers

2.4 Tomoyo

Tomoyo is a lightweight MAC implementation [3] . It
performs pathname-based access control. TOMOYO
utilizes "process invocation history" and requires ad-
ministrative actions on the target system.

3 Mobile Simplified Security Framework

Mobile simplified security framework (MSSF) is a set
of mechanisms to protect entire platform consisting of
following layers (Figure 1):

• Chipset security.
Provides secure cryptographic services for OS
level security.

• Integrity protection.
Ensure protection of TCB, applications and data.
Provides protection against offline attacks.

• Access Control.
Limits application access to critical resources. Pro-
vides protection against runtime attacks.

• Application privacy protection. Provides integrity
and confidentiality protection for applications and
services. Provides protection against offline at-
tacks.

Security Framework relies on the secure software distri-
bution model. The goal of Secure SW distribution is to
ensure the authentication of a SW’s source.

2010 Linux Symposium • 135

4 Chipset Security

4.1 Features

Chipset security is the key subsystem on which whole
security framework relies on. It provides tamper-
resistant securure services and serves the same pur-
pose as Trusted Platform Module (TPM) [4] or Mobile
Trusted Module (MTM) [5]. It includes:

• Root symmetric devices specific key.
The root symmetric device specific key is unique
one-time programmable (OTP) key, which is used
to derive keys used for local cryptography opera-
tions. It is also used to derive a unique public iden-
tifier of the device.

• Root public key.
The root public key is OTP key and is used to verify
that software components are coming from trusted
source.

• Provides trusted boot (chain of trust).
Root public key is used to verify integrity of the
bootloader and SW image.

• Secure services.
Secure key management and cryptography ser-
vices.

• Provides Secure Execution Environment (SEE).
SEE consists of secure ROM and RAM which is
isolated from reset of the system. It allows execu-
tion of integrity protected applications, which can
utilize secret device keys and provide specific se-
cure services for the OS. Protected applications are
needed by Protected Storage and DRM framework.

4.2 Operation modes

Nokia MeeGo 1.0 N device will have two operation
modes: normal and open mode.

Devices shipped by Nokia come with original Nokia
SW having device configured for normal mode Security
functionality such as access control and integrity pro-
tection are enabled and enforced. Applications and ser-
vices are able to use device keys and cryptographic ser-
vices. In normal mode authorized applications are given

access to copy protected content. Unauthorized modifi-
cation of the security policy is impossible.

Developers who want to have unrestricted access to the
platform resource, might turn the device into open mode
by flashing an ”open mode” image.

Open mode is mostly needed only for low-level develop-
ment and deep device customization. Ordinary applica-
tion developers test their applications with normal mode
as well. Open mode provides the same functionality as
in normal mode except that there is no access to copy
protected content. In open mode image security is en-
forced but allows developers to modify the policy and to
allow their applications to access more device resources
without the need of application certification process. In
open mode it is possible to use own kernel. However
in open mode, chipset security generates different keys
which are incompatible with normal mode keys. This
makes it impossible to get an access to copy protected
content.

4.3 Boot process

Boot process is shown on figure 2.

Bootloader image is verified with Root Public key.

If bootloader verification fails, device is automatically
resetted.

In the case when kernel verification fails, device either
restarted or booted to open mode. If device is SIM
locked, it is not allowed to boot into open mode unless
explicitly allowed by the device customization.

5 Integrity Protection

MSSF has an integrity protection subsystem called Val-
idator, which protects the integrity of kernel modules,
executables and libraries and data files. The primary
goal is to protect integrity of SW components which be-
longs to Trusted Computing Base (TCB). Trusted Com-
puting Base includes all hardware, firmware and soft-
ware components that are critical to the security of the
entire platform.

The integrity subsystem is shown on Figure 3.

Validator is implemented as LSM kernel module and is
based on the DigSig project [7]. The difference is that

136 • Mobile Simplified Security Framework

Figure 2: Boot process

Figure 3: Integrity Protection Subsystem

instead of using ELF header, device maintains a refer-
ence hash list (/var/lib/mssf/refhashlist) of
all protected binaries. Integrity of the reference hash list
is also protected by the device signature.

Reference hash list includes SHA1 hash of the file, file
attributes, and AC related data.

Debian package contains sha1 hashes of all executables
and important data files. Package manager updates ref-
erence hash list upon package installation, removal or
upgrade.

Use of single reference hash list instead of ELF signed
binaries and EA has certain advantages. It allows to
have protection for scripts and data files, which do not
have ELF header. It does not require to verify integrity
of EA itself for every file using digital signatures. In-
tegrity verification of reference hash list is more mobile
device friendly. Also EA is a subject to offline removal
attack, which cannot be detected.

Installation includes following steps:

1. Package Manager installs new binaries and updates
reference hash list.

2. Validator loader loads new or updated hash list into
the kernel.

3. Validator calculates and compares hash and file at-
tributes upon execve() call. It also verifies hashes
of shared libraries upon mmap() call.

Integrity protection policy defines action when integrity
verification fails. Currently it only blocks the execution.

Validator also has a support for integrity protection of
non-modifiable data files. That is used for protection of
critical configuration files.

Source code of this module is located in:
linux/security/mssf/validator

6 Access Control

6.1 Introduction

Access Control framework provides runtime protection.

We had following design goals for access control:

2010 Linux Symposium • 137

• Process-based access control to protected re-
sources.

• Minimal changes to the default Linux model.

• No need for centralized security policy administra-
tion.

Access control framework includes following compo-
nents:

• Manifest file.
Manifest file is included to the package and con-
tains a list of executables and its credentials.

• Device Security Policy.
Located on the device and defines repository trust
level and credentials, which can be granted to pack-
ages coming from that repository.

• Credentials Policy.
It is a file which contains mapping of credentials
to executables. Package Manager updates this file
when packages are installed, upgraded or removed.

• Package Manager.
In addition to installing the application, Package
Manager updates Credentials Policy database.

• Credentials Policy loader.
It is called during boot to read and import creden-
tials policy into the kernel.

• Credentials Manager.
Provides credentials management and assignment
to the process. It is implemented as a set of kernel
modules (see Implementation Details).

6.2 Credentials

Access control in Linux is based on credentials. Con-
ventional credentials in Linux are UIDs, GIDs and
POSIX capabilities.

MSSF access control framework uses term protected
resource to denote any virtual object which represents
some functionality or data, such as tasks, files, sockets,
devices.

MSSF access control framework extends credential set
with resource tokens and application identifier.

6.2.1 Resource Tokens

Each protected resource is assigned a resource token,
which is just a string representation of the resource, for
example Cellular, UserData. Other security frameworks
often use the term ”label”.

Applications or services need to declare requested or
provided resources. For that purpose, package, which
hosts those executables, must include the Manifest file.

Resource tokens can either be global or package spe-
cific. Global tokens comes from special package. Pack-
age specific tokens are declared as pkgname::token.

Access Control model does not define subject labels, ob-
ject labels and access control rules, such as ’subjectlabel
objectlabel access’, but resource tokens play the role of
both subject and object labels. Resource tokens are as-
signed to the process subjective context upon startup.
Enforcement mechanism just needs check if a process
possess a token.

Rules are not enforced by MSSF access control model
automatically, but processes need to perform enforce-
ment manually when task is being accessed by retriev-
ing client tokens. Currently supported access method is
via Unix domain sockets.

API is provided to get credentials of the process.

6.2.2 Application identifier

Application identifier is used to derive application spe-
cific keys (see Privacy Protection). Application identi-
fier is defined as:

AppID =
{SourceID, Package Name, Application Name}

for example {ovi.com, CoolTools, AddressBookPlu-
gIn}.

Application name is defined in manifest file.

Application identifier has following properties:

• Unforgeable & Trustworthy.
SourceID is defined in Device Security Policy and
protected by repository keys.

138 • Mobile Simplified Security Framework

• Unique.
System can only have one package with the same
name.

• Persistant.
It remains the same between reboots, application
updates, and for different instances of the same ap-
plication.

6.3 Device Security Policy

Software packages are distributed via Debian-like
repositories. Repository contains a package list, which
is signed with repository private key and verified by the
package manager using repository public key. Package
based signing using PGP and X.509 is also supported.

The purpose of the Device Security Policy is to de-
fine repository trust level and credentials, which can be
granted to packages coming from that repository.

Device Security policy contains entries which have fol-
lowing format:
{SourceID : Trust Level : Public Key : Allowed cre-
dentials}, where:

SourceID is a meaningful name for the origins of the
repository, for example in a form of domain name.

Trust Level is an ordinal number and defines reposi-
tory ranking. During update, package can only
be updated from repository which has the same or
higher trust level. It will prevent possibility for
some 3rd party repositories by mistake or on pur-
pose to replace trusted package with untrusted one.

Allowed credentials is a list of credentials, which can
be granted by this repository.

Public Key is a repository public key which is used to
verify repository package list.

Example of policy entry can look like:
{nokia.com : 1 : ABCDEF : UserData, Cellular}.

Package Manager uses device security policy when
packages are installed or upgraded. Granted credentials,
which is added to the Credentials Policy, are the result of
’intersection’ operation over credentials set from Man-
ifest file and security policy. Only allowed credentials
are added to the Credentials Policy.

Figure 4 shows the concept of distribution model.

Figure 4: SW Distribution Model

6.4 Manifest File

If an application requests or provides some credentials,
the package is expected to ship with the Manifest file
<package>.mssf with description of credentials.

Package manager updates Credentials Policy based on
the manifest file and constraints from the device security
policy as described in the previous section.

Manifest file is written in XML and defines following
tags:

• <request>
requested credentials

• <provide>
provided credentials

• <credential name="credential name">
credential name

• <for path="path">
absolute path to the program executable

• <dbus name="dbus service name">
D-bus service name

• <bus="bus type">
D-bus type (system or session)

• <own="credential name">
Credential to bind to a specific d-bus service name

• <interface name="interface name">
D-Bus interface name

6.4.1 Manifest file for client-server example

In the example bellow, server defines resource token
UserData, which is needed by the client to access the
server.

2010 Linux Symposium • 139

<mssf>
<provide>

<credential name="UserData"/>
</provide>

</mssf>

In the example bellow client declares that it requires a
token UserData and Cellular

<mssf>
<request>

<credential name="UserData"/>
<credential name="Cellular"/>
<for path="/usr/bin/userdatamanager">
<for path="/usr/bin/userdataclient">

</request>
</mssf>

In this example both applications userdatamanager
and userdataclient will get the same credentials.

6.4.2 Manifest file for traditional credentials

Manifest file can be used also to assign conventional cre-
dentials such as UID, GID and POSIX capabilities.

<mssf>
<request>

<credential name="UID::email"/>
<credential name="GID::email"/>
<credential name="CAP::cap_sys_rawio"/>
<for path="/usr/bin/mssf-dbus-server"/>

</request>
</mssf>

6.4.3 Manifest file for policy update

Manifest file is also used to update device security pol-
icy. Policy update is done via the special authorized
package.

<mssf>
<domain name="MyDomain" rank="30">

<allow>
<credential match="*"/>
<deny>

<credential name="drm"/>
</deny>

</allow>
<origin>
<keyinfo>
mQGiBE...O6XB

</keyinfo>
</origin>

</domain>
</mssf>

6.4.4 Manifest file for DBUS

We implemented a DBUS extension which uses creden-
tials API to verify client credentials. Manifest file may
have dbus specific tags, which are used by the Package
manager to generate DBUS policy.

Manifest file for DBUS-server is shown on Figure 5.

Generated DBUS policy file is shown on Figure 6.

DBUS client uses the same manifest file as with peer-
to-peer access control (Figure 7).

6.5 Package Installation

Installation of new applications and services is done via
packages (Figure 8).

Package installation includes following steps:

1. Package arrives to the Package Manager together
with Manifest file.

2. Package Manager checks the Device Security pol-
icy for the information.

3. Package Manager updates the Credentials Policy
according to the ”Intersection rule”.

4. Package Manager possibly updates D-Bus policy.

5. Package Manager updates runtime credentials pol-
icy in the kernel.

6.6 Startup

Startup process is shown on Figure 9.

1. At a boot, Credentials Policy loader reads Creden-
tials Policy and loads it into the kernel.

140 • Mobile Simplified Security Framework

<mssf>
<provide>

<credential name="access"/>
<dbus name="com.meego.mssf.example" own="mssf-dbus-server" bus="session">

<node name="/">
<interface name="mssf.Example">

<annotation name="com.meego.secure.Access" value="access"/>
</interface>

</node>
</dbus>

</provide>
<request>

<for path="/usr/bin/mssf-dbus-server"/>
</request>
</mssf>

Figure 5: DBUS server manifest

Figure 8: Package instllation Figure 9: Startup

2010 Linux Symposium • 141

<busconfig>
<policy context="default">

<deny own="com.meego.mssf.example"/>
</policy>
<policy creds="mssf-dbus-server::mssf-dbus-server">

<allow own="com.meego.mssf.example"/>
</policy>
<policy context="default">

<deny send_destination="com.meego.mssf.example" send_interface="mssf.Example"/>
<deny receive_sender="com.meego.mssf.example" receive_interface="mssf.Example"/>

</policy>
<policy creds="mssf-dbus-server::access">

<allow send_destination="com.meego.mssf.example" send_interface="mssf.Example"/>
<allow receive_sender="com.meego.mssf.example" receive_interface="mssf.Example"/>

</policy>
</busconfig>

Figure 6: DBUS policy

<mssf>
<request>

<credential name="mssf-dbus-server::access"/>
<for path="/usr/bin/mssf-dbus-client"/>

</request>
</mssf>

Figure 7: DBUS client manifest

2. Upon application startup, Policy Manager modifies
process’ credentials according to the received cre-
dentials.

3. File AC.
Validator checks process credentials using kernel
API.

4. D-Bus.
D-Bus daemon checks client credentials using lib-
creds (see DBUS Integration).

5. Client-server.
Application checks client credentials using lib-
creds.

6.7 Credentials APIs

When a client issues a request to a server, the server may
wish to check whether the client is authorized for the re-
quested operation. It is done using the libcreds library,

which gives the server a way to read the credentials of
the client process and to permform the desired credential
checks.

Kernel credentials API is also available.

Example of using API is shown on Figure 10.

creds_str2creds() converts token string to internal for-
mat.

creds_getpeer() retrieves credentials of the client pro-
cess.

creds_have_p() checks if the client process has re-
quired credential.

6.8 DBUS support

6.9 File System Access Control

Debian packages often contain installation scripts which
runs under the root. It allows them to modify any files

142 • Mobile Simplified Security Framework

creds_value_t value;
creds_type_t type;
require_type = creds_str2creds("UserData", &require_value);
fd = accept(sockfd, &cli_addr, &clilen);
ccreds = creds_getpeer(fd);
allow = creds_have_p(ccreds, require_type, require_value);
if (allow)

write(fd, MESSAGE("GRANTED\n"));
else

write(fd, MESSAGE("DENIED\n"));

Figure 10: Code example

on the system which can make device unusable. In order
to prevent that is necessary to protect access to certain
files and folders.

Validator reference hash list also contains list of tokens,
required to access files and folders. Validator uses re-
source tokens kernel API to verify process’s permission
to access the file.

6.10 Kernel implementation details

Credentials Manager is implemented as set of kernel
modules: restok, credp, and creds.

6.10.1 restok

restok module provides a persistent mapping of strings
to unique dynamically assigned identifier numbers.

The generated identifiers are used as supplementary
group numbers in the task structure and provide ad-
ditional, dynamically configured credentials for pro-
cesses. An access to service is protected by requiring a
presence of specific credential in the task context (sup-
plementary groups).

Although these numbers are used as supplementary
groups, they are not persistent and cannot be used as
file system groups in permanent storage.

Once the string has been assigned an identifier, this
assignment cannot be changed while restok module is
loaded. If the module is compiled into the kernel, the
assignments are permanent until the next boot.

To provide different name spaces, the strings form a for-
est of trees. The string corresponding the identifier, is

the path from the ground up to the node that defines the
identifier. Within the path "::" is used as a separator.

The module creates a special default tree with an empty
string as a name of the root. A string without any "::" is
assumed to be a direct child of this default root. For any
other identifiers, the string must be a full path from one
of the roots to the defining node.

The above rule would make it impossible to address any
other root nodes. Thus, the module implements a special
case, where a string containing "name::name" collapses
into "name". Some examples:

foo -> "::foo" (symbol under default root)
foo::foo -> "foo" (root level symbol, different from pre-
vious)
foo::foo::foo -> "foo" (a repeated name is reduced to
single instance)
::foo -> "::foo"
:: -> "" (= default root)

The purpose of the "default root" is to provide appli-
cations a place to define simple symbols, which do not
conflict with the root names, which are used for identi-
fying different name spaces.

The string used in resolving an identifier (function
’restok_locate’) is always a full path or a string under
the default root.

Strings are defined one level at a time (function
’restok_define’). The identifier of the parent must be
supplied. A zero as parent creates a new root.

A malicious application could create a huge number of
mapped strings. This is the only reason for limiting the
capability of creating new mappings.

2010 Linux Symposium • 143

For debugging purposes, restok can be compiled as a
module, but real usage requires that it is built in.

Source code of this module is located in:
linux/security/mssf/restok

6.10.2 credp

credp module provides credentials management and as-
signment to the process.

This module maintains a runtime credentials policy,
which is a mapping of credentials to an executable or
identifier. The module provides a user space API via se-
curityfs entry /sys/kernel/security/credp/policy, which
is used by tools to add and remove rules from the run-
time policy. When adding a new rule, kernel performs
translation of resource token strings to identifiers using
kernel API provided by the restok module.

Credentials Policy database is located in the
/var/lib/mssf/restok/restok.conf file. During boot,
the policy loader mssf-loader reads rules from the
policy database and imports them into the kernel. Upon
installing a new package, package manager, in addition
to updating the policy database, imports new rules into
the kernel.

To perform credentials assignment, the credp mod-
ule registers a hook that is called when new ex-
ecutable is about to be started. To achieve
that, we implemented a small patch for secu-
rity/commoncap.c:cap_bprm_set_creds(), which al-
lows modules to register credentials assigner operations.

Operations has apply() function, which is called from
cap_bprm_set_creds() upon executables startup via ex-
ecve.

Source code of this module is located in:
linux/security/mssf/credp

6.10.3 creds

creds module provides an API for user space ac-
cess control in client/server architecture. The mod-
ule provides a user space API via securityfs entry
/sys/kernel/security/creds/read, which is used by lib-
creds library.

This module gives the server a way to read the creden-
tials of the client process and to perform the desired cre-
dential checks. Because this is targeted for access con-
trol, the returned credentials are the *effective* creden-
tials.

Without this service, getting information about the cre-
dentials of another process, is only possible by parsing
the "/proc/<pid>/status" content, which is fragile to for-
mat changes and it only provides maximum of 32 sup-
plementary groups.

In addition to credentials retrieval, this also provides
translations between string and numeric values of cre-
dentials. Currently only capabilities names need to be
provided and handled by the kernel.

If a companion module ’restok’ is compiled, this pro-
vides a gateway for translations of symbols defined
there. The restok defined symbols are currently mapped
into credentials via use of supplementary groups. Other
mappings, like defining a totally new credential type for
those, are possible in future.

Source code of this module is located in:
linux/security/mssf/creds

7 Privacy Protection

7.1 Protected Storage

Protected Storage provides protection against offline at-
tacks.

Mobile device can be lost or stolen. For that reason it
may be a good idea to store sensitive data such as con-
tacts in encrypted form.

Also some security related configuration data such as
security policies, credentials policy, reference hash list,
certificates, and other configuration data requiring pro-
tection against unauthorized modifications.

For that purpose MSSF provides Protected Storage ser-
vice. Protected storage can be global (G), private (P) or
shared between applications (S). It can be used for in-
tegrity protection (s) or also for confidentiality (e) pro-
tection.

Protected storage implementation uses chipset crypto-
graphic services, and is based on application id and re-
source tokens.

144 • Mobile Simplified Security Framework

Global Private Shared
Signed Gs Ps Ss

Encrypted Ge Pe Se

Table 1: Protected Storage types

Private storage uses an application specific key, which is
derived from an application id: K(device key, AppID).
Global and Shared storages use a shared key, which is
derived from a resource token: K(device key, Resource
Token). Keys are device specific and ensure copy pro-
tection.

If the protected storage is based on a resource token,
only those applications that have the resource token can
manipulate the store. If the protected storage is based
on an application id, only those binaries that share the
same application id can manipulate the store.

Applications need to use special API in order to use pro-
tected storage.

7.2 Security FS

In order to provide easy-to-use protected storage for
such applications, where it doesn’t make sense to use
proprietary API, MSSF provides a FUSE-based user
space file system for similar functionality through the
normal POSIX file handling API.

This means in practice that the encryption is transpar-
ent for each application, in a similar way with a nor-
mal block-device (disk partition) encryption. But unlike
with partition-wide encryption, applications cannot see
and/or decrypt each other’s files unless they have proper
credentials, regardless of whether they are running in the
same or different user-id.

Manifest file is extended to describe mount points and
type of the storage.

Security FS is under heavy development now.

8 Performance

MSSF has slight effect on system performance. Boot
time, application startup, runtime performance are af-
fected.

8.1 Integrity protection

Integrity protection (Validator) has most significant im-
plication to system performance. Binary startup time in-
creases, because Validator needs to calculate the SHA1
hash. Verification is done only when binary is loaded
for the first time.

Performance of Validator is heavily depends on use and
performance of SHA1 HW accelerator. Nokia MeeGo
1.0 N device has SHA1 HW accelerator which is, ac-
cording to our measurements, quite CPU and power ef-
ficient. In our case, application startup time increases by
5 to 10%, and total boot time by 2 to 3%.

8.2 Access Control

Performance penalties given by Access Control frame-
work is insignificant.

Credentials Policy is loaded during boot and requires
time insignificant to the total boot time.

Access Control affects application startup time, because
Credentials Manager needs to find a policy, and to as-
sign credentials if one exists. It increases startup time
by 2.5% (or 6ms in our case).

9 Conclusions and Future work

Mobile Simplified Security Framework is a comprehen-
sive, light-weight alternative to heavy security frame-
works for mobile devices. Secure SW distribution
model is a important part of MSSF end-to-end security
model.

Latest Linux kernel provides integrity subsystem called
IMA [6], but verification module (EVM) has not been
integrated yet. We will consider possibility to use it
when all components are available in the kernel.

MSSF Access Control has similarities to SMACK and
we currently investigating possibility for co-operation.

MSSF project can be found on [8]. There libraries, tools
and patches for the Linux kernel can be found.

2010 Linux Symposium • 145

10 Acknowledgements

I would like to thank my Nokia colleagues Ilhan Gurel,
Vesa Jaaskelainen, Janne Karhunen, Markku Kylanpaa,
Juhani Makela, Janne Mantyla, Elena Reshetova, and
Markku Savela for some material, suggestions and re-
view of the article.

References

[1] SELinux - Security Enhanced Linux,
http://www.nsa.gov/research/
selinux/index.shtml

[2] SMACK - Symplified Mandatory Access Control
Kernel for Linux,
http://schaufler-ca.com/

[3] TOMOTYO Linux - MAC implementation for
Linux,
http://tomoyo.sourceforge.net/

[4] Trusted Computing Group, TPM main
specification, https:
//www.trustedcomputinggroup.org/
specs/TPM/

[5] TGG Mobile Trusted Module specification, 2006,
https:
//www.trustedcomputinggroup.org/
specs/mobilephone/

[6] Linux kernel integrity subsystem,
http://linux-ima.sourceforge.net/

[7] DigSig project,
http://disec.sourceforge.net/

[8] Mobile Simplified Security Framework Project,
http://meego.gitorious.org/
meego-platform-security

146 • Mobile Simplified Security Framework

Automating Virtual Machine Network Profiles

Vivek Kashyap
IBM

kashyapv@us.ibm.com

Arnd Bergman
IBM

arndb@de.ibm.com

Stefan Berger
IBM

stefanb@us.ibm.com

Gerhard Stenzel
IBM

Gerhard.Stenzel@de.ibm.com

Jens Osterkamp
IBM

Jens.Osterkamp@de.ibm.com

Abstract

With the explosion of use of virtual machines in the
data-center/cloud environments there is correspondingly
a requirement for automating the associated network
management and administration. The virtual machines
share the limited number of network adapters on the sys-
tem among them but may run workloads with contend-
ing network requirements. Furthermore, these work-
loads may be run on behalf of customers desiring com-
plete isolation of their network traffic. The enforcement
of network traffic isolation through access controls (fil-
ters) and VLANs on the host adds additional run-time
and administrative overhead. This is further exacerbated
when Virtual Machines are migrated to another physical
system as the corresponding network profiles must be
re-enforced on the target system. The physical switches
must also be reprogrammed.

This paper describes the Linux enhancements in kernel,
in libvirt and layer-2 networking, enabling the offload-
ing of the switching function to the external physical
switches while retaining the control in Linux host. The
layer 2 network filters and QoS profiles are automati-
cally migrated with the virtual machine on to the target
system and imposed on the physical switch port without
administrative intervention.

We discuss the proposed IEEE standard (802.1Qbg) and
its implementation on Linux for automated migration of
port profiles when a VM is migrated from one system to
another.

1 Introduction

A network adapter is shared across multiple virtual ma-
chines(VM) on a Linux host. To accommodate VM-VM

and VM to external network communication a virtual
bridge is included in the Linux host. The Linux vir-
tual bridge relays unicast traffic between the virtual and
physical interfaces attached to it. It further replicates
and forwards broadcast and multicast transmission re-
ceived on its port(s).

For network isolation and security, the iptables/ebtables
rules might be enforced on the system. The more com-
mon rules are to prevent ARP or IP spoofing, block
sending a link level broadcast, or to allow only specific
set of protocol traffic.

Different workloads running in the VMs might also be
specifically restricted within certain limits based on the
workload requirements, priorities and possibly based on
the bandwidth purchased by the user.

For the purposes of this paper the layer-2 forwarding,
multiplexing and filtering(ebtables) function is collec-
tively considered part of the virtual-bridge.

The per-packet processing for bridging function - packet
relaying, replicating, evaluation against filter rules, or
bandwidth control - imposes a heavy burden that takes
away CPU resources that could be utilized more gain-
fully. This problem gets more and more exacerbated as
the number of virtual machines supported on a single
host increases in the multi-core, and large memory sys-
tems being used in the data-center/cloud environments.

Another problem faced in large deployments is the need
for maintaining consistent view of the port profiles. The
switch fabric and the embedded switches in the hyper-
visor(Linux KVM host) may have different capabilities
and also be under separate administrative control.

This is further exacerbated as the VMs (running im-
portant workloads) migrate from one system to another.

• 147 •

148 • Automating Virtual Machine Network Profiles

The filter rules and QoS enforcement must follow the
VM and be quickly in place. Not all policies may be
deployable in the hypervisor and the switch must be in-
formed of the migration.

As the MAC address associated with the virtual inter-
faces migrates as well, the physical switch at the tar-
get does not know if the MAC, now visible at another
port, is a migrated VM or a different VM using the
same MAC. Thereby, it needs to be informed of the port-
profile policy to deploy.

The proposal ’Edge Virtual Bridging’ in IEEE
[802.1Qbg] addresses these issues through offloading of
the switching function to the adjacent bridge i.e. the
physical switch in the network.

1.1 Edge Virtual Bridging: IEEE 802.1Qbg

The Edge Virtual Bridging(EVB) proposal defines the
protocols, configuration and control required across the
physical end station, such as the Linux host, and the ad-
jacent switch.

This section provides an introduction to the IEEE
802.1Qbg proposal and the subsequent sections describe
our implementation of the same on Linux to configure
KVM guests in ’VEPA’ mode.

Reflective Relay

The proposed standard extends the adjacent bridge ca-
pabilities to the virtual machines by ensuring that all the
packets sent by the VM’s are first sent to the switch port.
The switch then consults its tables, and if the packet
is destined to another VM on the same host, sends the
packet back to the host. The packet is then forwarded to
the destination VM.

This packet flow enables the switch to enforce fabric
wide packet filtering and control policies across all net-
work traffic. Otherwise the policy and rules might need
to be co-ordinated and enforced across the switch and
the hypervisor leading to administrative overhead and
inefficiencies outlined earlier.

Existent switches do not reflect the packet back on the
port on which it was received. Therefore, a new mode,
referred to as the ’reflective relay’ mode is introduced in
the Edge Virtual Bridging(EVB) proposal.

Virtual Ethernet Port Aggregator

The component in the physical end-station that works
together with the adjacent switch to support EVB is
called "Virtual Ethernet Port Aggregator" or VEPA.

VM

VM

VM

VM

V
E
P
A

Port Profile
Database

vSwitch in VEPA
mode forces all
traffic to fully-
capable edge for
full policy
enforcement.

Regular vSwitch
mode allows VM-
to-VM traffic with
limited policy
enforcement.

VM

VM

VM

VM

VEB L2 net(s)

VM Edge Switch Edge

L2 net(s)

A VEPA is very simplified version of an Ethernet bridge
that allows multiple downlink ports to communicate
with a single uplink port but not with each other. Eth-
ernet frames from one of the downlink ports get sent di-
rectly to the uplink, and Ethernet frames arriving at the
uplink port get forwarded to just the destination with
the matching MAC address, or flooded to all downlink
ports in case of broadcast. A VEPA does not support
unknown unicast frames, which get silently dropped.

The VEPA component therefore, is able to provide VM
to VM communication in conjunction with an uplink
port which is configured in ’reflective relay’ mode.

Dynamic discovery and configuration for VEPA
mode

The Link-level Discovery Protocol(LLDP)[LLDP] is
used for layer-2 discovery operations. The EVB pro-
posal extends the TLVs (configuration messages) sup-
ported to include advertisement of ’reflective relay’ ca-
pabilities and setting of the adjacent bridge’s port in re-
flective relay mode. The TLV also includes additional
parameters such as the the number of virtual interfaces
(VSI or Virtual station interfaces in EVB parlance) that
a station or bridge can support. See [802.1Qbg] for de-
scription of all capabilities and parameters exchanged.

2010 Linux Symposium • 149

Station (e.g., Hypervisor)

1

Bridge

EVB TLV – OFFER CAPABILTIES

Capabilities
Forwarding: Std, RR
Other: VSI, Auth, etc.

Current Config.(Std, None)
VSIs Supported = J
VSIs Configured = 0

RTE = 15

EVB TLV - CONFIGURE

Capabilities & Current Config.
Forwarding: RR
Other: VSI, Auth, etc.

VSIs Supported = J
VSIs Configured = K

RTE = 10

EVB TLV – CONFIRMATION

Capabilities
Forwarding: Std, RR
Other: VSI, Auth, etc.

Current Config.
Forwarding: RR
Other: VSI, Auth, etc.

VSIs Supported = J
VSIs Configured = K

RTE 10

Bridge advertises
what modes it can
support and the max
number of VSIs it can
handle.

Server
configures

itself from the
available

capabilities
according to
local policy.

But still
advertises its
full set of
capabilities.

2

3

Bridge
matches its
configuration
to the limited
capabilities
advertised by
the station.

The bridge periodically advertises its capabilities. The
Station receives the TLV, and based on its configuration,
may respond to configure the port in ’reflective relay’
(RR) mode.

VSI Discovery and Configuration

The switching function is offloaded from the end-station
with VEPA and dynamic configuration of the switch
port to RR mode. This however does not fully address
the problems outlined above. A mechanism is required
to associate the virtual interface (VSI) to specific profile
for filtering, VLAN and bandwidth control.

This is achieved by informing the switch of the MAC
address and VLAN ID pair and the profile that must be
used.

VM

VM

VM

VM

vSwitch L2
net(s)

VM
Edge

Switch
 Edge

Server
Edge

Port
Profile
Databa

se

VM
Manager

Query available port profile
types

System
Admin

Obtain a port profile instance

Network
Admin

3

1

2

4
Push VM &
vPort
Configuration
to
VM Host

VSI Discovery
and
Configuration
Protocol

Retrieve Port
Configuration

vPort Discovery &
Overall EVB
Discovery

DB Client
Interface DB-to-

switch
Interface

A

B

C

D

Port Profile DB
Schema

•CIM schema extensions

•CIM provider (libvirt-CIM)

•Extend libvirt to support
VEPA, external bridging, in
addition to host bridging

•Kernel extension to support VEPA
and VEB modes

• Implement IEEE 802.1Qbg
(proposed) and implement the
protocol for discovery, switch
configuration, and automatic profile
migration

The bridge on receiving the association request gets the
profile details from a database and configures its port

accordingly. This mechanism also addresses the issue
of ’reincarnated’ or reused MAC address and a MAC
address that has appeared on the port after a VM migra-
tion since the switch is informed of the exact profile to
impose.

The VSI Discovery protocol (VDP) defined by EVB,
therefore defines a set of states and commands ex-
changed between the bridge and the station. These are:

• Pre-associate: Inform the switch of the VSI and
port-profile and intention to associate

• Pre-associate with Resource Reservation: Same as
Pre-associate except also reserve resources at the
switch for a future association.

• Associate: Associate the VSI. This causes all re-
sources to be allocated at the switch and the impo-
sition of the VSI port profile.

• DeAssociate: De-associate the VSI from the port
and profile

Edge Control Protocol

The discovery and exchange of bridge capabilities is
performed over LLDP. LLDP is an unacknowledged
protocol and has limitations on frequency and number
of transmissions.

For VDP, the EVB has proposed a new link-level trans-
port called the "Edge Control Protocol"(ECP) which ac-
knowledges the messages exchanged. This enables the
End Station to transmit discovery operations more fre-
quently. The VDP protocol messages will be carried in
TLVs over ECP. The TLVs carry the VDP state requests
and responses.

2 Design and Implementation

The mapping of IEEE protocol to the Linux implemen-
tation can be broken into a few distinct interlocked com-
ponents. These are:

• Extend Linux kernel to support ’VEPA’ mode

• Extend libvirt interface xml to define VEPA mode
and VSI state

• Implement user-space daemon to support EVB link
level protocols

150 • Automating Virtual Machine Network Profiles

2.1 MACVTAP: Supporting a ’VEPA’ interface

When applied to Linux, a VEPA lets us share a single
Ethernet NIC between multiple KVM guests that all get
access to the Ethernet segment, but without the need
to set up an actual bridge that has both administrative
and performance overhead associated with features like
MAC address learning, spanning tree protocol or filter-
ing.

For our needs, we developed our solution over the pre-
existing ’macvlan’ driver supported in Linux. Macvlan
provides virtual Ethernet interfaces that can be created
using the ”ip link” command and that can be used by
applications, virtual machines or containers just like any
other Ethernet interface.

One significant drawback for our needs in macvlan im-
plementation was that it cannot easily be connected to
Qemu/KVM, which expects a tun/tap device instead of
a network interface. In addition, the VEPA implementa-
tion has to ensure that broadcast and multicast frames
never get delivered to the source port but do get for-
warded to all other ports that want them.

In order to connect macvlan devices to a kvm virtual
machine, a ”macvtap” device driver was implemented.
Macvtap plugs into the macvlan device driver, and lets
each of its downstream ports show up in the system as
a character device rather than a network interface. This
character device implements a subset of the API of the
tun/tap driver that is typically used to connect a KVM
guest to the host network.

In the implementation of macvtap, a few shortcuts could
be taken compared to the combination of tun/tap with a
bridge connected to an external NIC. Most importantly,
frames sent from the guest to the tap are not injected into
the receive path of the host but directly into the transmit
queue of the outbound interfaces. Similarly, inbound
frames do not need to get received by the host and then
sent out to a tun/tap device but simply get put into the
guests receive path when they get intercepted by the re-
ceive function of the uplink interface.

2.2 libvirt:VEPA interface for the KVM guest

With the necessary infrastructure for VEPA in place
with the macvtap/macvlan implementation we needed
to integrate the capability into the libvirt domain xml.

Specifying the VEPA interface

Since the macvlan/macvtap are tied specifically to an
interface that provides the uplink port for the ’VEPA’
function we decided to provide a strong linkage between
the macvtap interfaces and the backing up device.

This is therefore specified in the guest’s domain defini-
tion as described below. The example assumes the use
of ’eth0’ as the source device.

<interface type=’direct’>
<source dev=’static’ mode=’vepa’/>
<model type=’virtio’/>

</interface>

Libvirt creates a macvtap interface when a virtual ma-
chine with a direct network interface type is started or
such an interface type attached to a running virtual ma-
chine.

Libvirt opens the tap device to get a filedescriptor for
Qemu to write packets to and receive packets from. A
macvtap device works similar to a tap device in that an
interface is created on the host and a filedescriptor is
subsequently passed to Qemu. However, a macvtap de-
vice requires more active management by libvirt during
device teardown. Whereas for a tap device it is sufficient
that Qemu closes the tap filedescriptor for the tap de-
vice’s network interface in the host to disappear, libvirt
must actively tear down the macvtap device after Qemu
was detected to have terminated. Creation and teardown
of a macvtap device is done using netlink messages that
libvirt sends to the kernel device driver. The command
line parameters for Qemu are the same as for a tap de-
vice and pass the filedescriptor.

[...] -net nic,
macaddr=52:54:00:0c:dd:47,
vlan=1,model=virtio,
name=net1 -net tap,fd=15,
vlan=0,name=hostnet1
[...]

Specifying the VSI state information

The VSI state comprising of the profile to be imposed at
the switch port is specified in the interface description
as well. The VSI state along with the MAC address, and

2010 Linux Symposium • 151

the VLAN id is therefore forwarded to the user-space
daemon implementing the VDP/ECP protocols.

As of writing of this paper we are working to extend
the LLDPAD[e1000] daemon to support both the EVB
TLVs for RR mode, the ECP and VDP protocols.

The libvirt daemon is extended to send netlink messages
with the relevant details to the protocol daemon, LLD-
PAD. The daemon will then initiate the setup protocol
with the switch to enable the packet flow. For this LLD-
PAD will register the MAC/VLAN pair with the switch
along with the VSI data. The success (or failure) will
be reported back to libvirt and the guest will be brought
online (or failed). In case of failure, libvirt will not start
the VM or declare the hot-plugging of an interface to
have failed.

The VSI state is specified as in the following example:

<interface type=’direct’>
<source dev=’static’ mode=’vepa’/>
<model type=’virtio’/>
<vsi managerid=’12’
typeid=’0x123456’
typeidversion=’1’
instanceid=’insert-uuid-here’ />

</interface>

VSI states

The ongoing libvirt extensions will send the ’Associate’
command when the guest is being brought online and
will send a ’DeAssociate’ command when the guest is
shutdown or suspended or has been migrated.

3 Emulating VEPA bridge

As of this writing there are no switches in the mar-
ket that support the 802.1Qbg VEPA or reflective relay
mode. Therefore, for testing purposes, we utilized the
support for ’hairpin mode’ or reflective-relay mode al-
ready included in the Linux kernel. This enables us to
test the raw packet flow that will occur after the switch
setup protocol has been successfully completed. Testing
of the switch setup protocol will need to be done later.

brctl addif <bridge> <interface>
cd /sys/class/net/<interface>/brport
echo 1 > hairpin_mode

The VEPA enabled system was then be tested against
the Linux host configured as above.

4 Future Work

The libvirt and the LLDPAD work described above are
still in progress. The implementation will cover the
EVB TLVs, ECP and VDP protocols. The 802.1Qbg
proposal also describes ’multi-channel’ support and the
corresponding ’Channel Discovery and Configuration
Protocol’ (CDCP). We will extend our implementation
to support CDCP in the future.

A large set of management applications use the DMTF’s
CIM protocol to discover, create and manage virtual ma-
chines. There is work ongoing to implement libvirt-CIM
providers such that network profile automation can be
managed by CIM clients.

Migration of VMs

With the current implementation, at the time of the mi-
gration the target system must be put into ’Associate’
state with the switch when the migration commences
since there is no hook or mechanism to insert additional
function in the migration process as implemented by
qemu/kvm. It would be advantageous to be able to in-
sert a ’PreAssociate’ state on the target and then move
to ’Associate’ state only when the source is suspended.
This will avoid overlapping associates from two systems
at the same time since that can cause unpredictable re-
sults in the layer-2 fabric if the source and target are
connected to the same switch. This issue is mitigated
since migrating VMs are only active in one place, either
on the source or the target host, but never on both hosts
at the same time.

5 Acknowledgements

We would like to thank the EVB working group, IEEE
authors group and the Linux community members with
whom we have worked closely to define and imple-
ment the 802.1Qbg standard. We would specifically like
to thank Renato Recio, Mike Krause, Rakesh Sharma
Jeff Lynch, Daniel Berrange, Daniel Veillard, and Chris
Wright for various discussions on protocol develop-
ment, implementation and code reviews. Thanks to
Anna Fischer for enabling the "hairpin mode" in the
Linux bridge.

152 • Automating Virtual Machine Network Profiles

6 References

[802.1Qbg] http://www.ieee802.org/1/pages/802.1bg.html

[LLDP] http://standards.ieee.org/getieee802/download/802.1AB-
2005.pdf

[e1000] http://e1000.sf.net

Coverage and Profiling for Real-time tiny Kernels

Sital Prasad Kedia
Your affiliation

your-address@example.com

Abstract

• 153 •

154 • Coverage and Profiling for Real-time tiny Kernels

The advantages of a Kernel Sub-Maintainer

Jeff Kirsher
LAN Access Division, Intel R© Corporation

jeffrey.t.kirsher@intel.com

Abstract

Last year, approximately 9,500 patches were submitted
to the Linux kernel networking sub-system. Of these
9.500 patches, roughly 8% of those patch submissions
were against the in-kernel Intel R© wired LAN drivers.
In addition, over the last 2 years, the number of in-
kernel Intel R© wired LAN drivers went from 3 drivers
(e100, e1000 & ixgb) to 8 drivers (e100, e1000, e1000e,
igb, igbvf, ixgb, ixgbe & ixgbevf). With the increase
in Intel R© wired LAN kernel drivers and the large num-
ber of kernel patches, support and maintaining of the
in-kernel drivers faced several challenges.

To address the issues in maintaining and supporting the
Intel R© wired LAN in-kernel drivers, we needed a sub-
maintainer to deal with all of these challenges. I will
go on to explain the obstacles we overcame and the ad-
vantages we found by having a sub-maintainer and the
processes we use to assist us in our daily routine.

1 Introduction

When submitting patches toward the kernel for our
Intel R© wired LAN drivers, ran into issues that caused
a number of problems. Either the patches did not ap-
ply cleanly, because there were changes made to the
in-kernel driver that developers were not aware of, or
patches were not submitted at the proper time to make a
particular kernel version.

Having over 8 developers, who are all trying to keep
up-to-date with what the latest networking kernel tree
to use and/or the proper order and format the patches
needed to be submitted in was a nightmare. Individual
developers had to keep up with what was going on in the
community while still maintaining their internal work
load, and for some that was too much.

From the community standpoint, seeing patches and
responses from several different developers at Intel R©

caused confusion as to who they needed to contact or
deal with when problems arose with the Intel R© wired
LAN kernel drivers. With these problems, we needed to
find a resolution which could both service the needs of
the community and our internal needs. That is where I
come in as the kernel sub-maintainer for Intel R© wired
LAN drivers...

2 Reasoning

Increased Drivers

Over the last 3 years, Intel R© has gone from supporting
3 drivers (e100, e1000 and ixgb) to supporting 8 drivers
(e100, e1000, e1000e, igb, igbvf, ixgb, ixgbe, and ixg-
bevf) with a 40 GbE driver on the way as well. The in-
creasing number of drivers to support means an increase
in the amount of work to be done as well as community
support.

Increased patches

With the additional in-kernel drivers, comes additional
internal and external patches submitted against our
drivers. The Linux kernel networking maintainer (David
Miller) already has a large number of patches to review
and test personally, so any offload of the work would
greatly assist Mr. Miller.

3 Advantages

3.1 Consistency

In the past, multiple developers were submitting patches
using different techniques and/or tools. The kernel
maintainers felt like they had to inform developers of
their preferences and tendencies every time a patch
was submitted. In addition, developers would sub-
mit patches once or twice a year which made it diffi-
cult to remember the preferred methods and procedures

• 155 •

156 • The advantages of a Kernel Sub-Maintainer

for submitting patches. By having a single, local sub-
maintainer, the patch submittal process followed a more
regulated schedule and the patches were consistent in
their format to ensure that they followed the kernel cod-
ing style. I am also able to keep in constant communi-
cation with David Miller to make sure that we are aware
of Mr. Miller’s current preferences and tendencies.

One of the by products of having consistently formatted
patches is that the kernel maintainers and community
can focus on reviewing the changes being made rather
than focusing on patch formatting. An additional ad-
vantage is that patches tend to be smaller and easier to
review because patches are being sent out at a consistent
and regular pace, rather than "bulk" patches sent every
three months.

3.2 Single Point of Contact

With having a dedicated maintainer for the Intel R©wired
LAN drivers, both the community and kernel maintain-
ers have a single point of contact for questions and/or
support for any of our drivers. This reduces the amount
of confusion as to who to contact when questions or
problems arise and I am able to ensure that the appro-
priate developers are made aware of any issues.

3.3 Reduced Patch Problems

Patches submitted by the community can often times
conflict with patches submitted by Intel R© which would
either cause the driver to break or have issues passing
traffic. In having a single sub-maintainer, David Miller
can have confidence that patches I send to him have been
tested and will apply cleanly to his networking git trees.

3.4 Increased Patch Testing

Every patch submitted against our drivers, either from
the community or internally, goes through our BAT (Ba-
sic Acceptance Testing) to ensure that the patch does not
cause any issues. The testing includes compile testing,
module load/unload, and passing of traffic. In addition
to these basic tests, additional targeted testing is done to
ensure that the patch does what it is intended to do.

4 Processes (Internal/External)

4.1 Internal Mailing List & Netdev

Community patches come through the kernel network-
ing (Netdev) mailing list and sometimes through the
kernel mailing list (LKML). I import these patches and
mail them out through our internal kernel patch mailing
list. This ensures that Intel R© developers and testers who
have not seen the patch on the community mailing lists,
have a chance to review the community patches.

4.2 Patchworks

In addition to David Miller’s Netdev patchwork project,
we have an internal patchworks server to keep the sta-
tus of the patches (internal and community) that have
been submitted against our drivers. We have modified
the patch status field to include a more granular status
of the patch. Here are the additional states that a patch
could be in:

Status: New

This is the same status used in the community, new
patches which have been submitted that need to be as-
signed a tester and placed under review for others to see
and comment.

Status: Under LAD Review

Patches are under review internally (driver owners
specifically) and have been assigned a tester and placed
under review for others to see and comment.

Status: Under LAD Review - Critical

This status is reserved for internal and community
patches which need immediate attention for review and
testing.

Status: Under LAD Testing

The validation team is currently working on validating
the patch. Validation of a patch usually takes 24 hours
to complete the Basic Acceptance Testing (BAT).

Status: Passed LAD Testing

The testing has passed the Basic Acceptance Testing
(BAT) and can be sent to Netdev for inclusion.

2010 Linux Symposium • 157

Status: Failed LAD Testing

Testing has failed the testing and changes are required.
The patch is assigned back to me, along with feedback
on why the patch has failed.

Status: Mailed to Kernel/Netdev ML

The patch has passed testing and has been submitted
to the appropriate kernel maintainer and kernel mailing
list. In some cases, this is a re-submittal (for community
patches) to the kernel maintainer and kernel mailing list.

5 Problems

Public Git Tree

Currently we do not have a public git tree for the com-
munity to pull from. This can be an issue when I import
patches submitted from the community into our internal
git tree because there may be several internal patches
currently applied to the tree which are under testing. I
have been able to minimize this by maintaining several
branches in my git trees which keeps the patch count in
each branch lower.

Patch Status

Community patch submitters do not have a way to view
the status of their patch while the patch goes through
our internal patch process. David Miller sets the sta-
tus of the patch, originally submitted to the community,
to "Awaiting Upstream" in the Netdev project of patch-
works. This is not a direct reflection of the current status
of the patch in our internal git tree.

6 Conclusion

The addition of a sub-maintainer for Intel R© wired LAN
drivers has helped David Miller in the processing and
review of patches. Since the adding of a sub-maintainer,
the patch acceptance rate went from 45%, over three
years ago, to 97% acceptance rate in 2009. This paper
shows some of the benefits of having a sub-maintainer
and some of the processes that can be used.

158 • The advantages of a Kernel Sub-Maintainer

Linux-CR: Transparent Application Checkpoint-Restart in Linux

Oren Laadan
Columbia University

orenl@cs.columbia.edu

Serge E. Hallyn
IBM

serue@us.ibm.com

Abstract

Application checkpoint-restart is the ability to save the
state of a running application so that it can later resume
its execution from the time of the checkpoint. Applica-
tion checkpoint-restart provides many useful benefits in-
cluding fault recovery, advanced resources sharing, dy-
namic load balancing and improved service availability.
For several years the Linux kernel has been gaining the
necessary groundwork for such functionality, and now
support for kernel based transparent checkpoint-restart
is also maturing. In this paper we present the imple-
mentation of Linux checkpoint-restart, which aims for
inclusion in Linux mainline. We explain the usage model
and describe the user interfaces and some key kernel in-
terfaces. Finally, we present preliminary performance
results of the implementation.

1 Introduction

Application checkpoint-restart can provide many ben-
efits, including fault recovery by rolling back applica-
tions to a previous checkpoint, better response time by
restarting applications from checkpoints instead of from
scratch, and better system utilization by suspending jobs
on demand. Application migration is useful for dynamic
load balancing by moving applications to less loaded
hosts, fault resilience by migrating applications off of
faulty hosts, and improved availability by evacuating ap-
plications before host maintenance so that they continue
to run with minimal downtime.

While application checkpoint-restart can be performed
at different levels, choosing the correct level to transpar-
ently support unmodified applications is crucial in prac-
tice to enable deployment and widespread use. The two
main approaches for providing application checkpoint-
restart are in userspace or in the operating system kernel.

Userspace approaches are simple to implement and use,
but lack transparency and severely limit the types of ap-
plications that can be supported. In contrast, kernel ap-
proaches utilize operating system support to provide full
application transparency, without requiring any changes
to applications.

Given the benefits of the kernel level approach, it has
been the focus of several projects that aim to provide ap-
plication checkpoint-restart for Linux [5, 9, 12, 14, 16,
20]. However, none of them is integrated into the main-
stream Linux—they are implemented as kernel modules
or sets of kernel patches instead. As such, they incur a
burden both on users because they are cumbersome to
install, and on developers because maintaining them on
top of quickly changing upstream kernels is a sisyphean
task and they quickly fall behind.

We present Linux-CR, an implementation of transpar-
ent application checkpoint-restart in Linux, which aims
for inclusion in the Linux mainline kernel. Linux-CR
builds on the experience garnered through the previous
out-of-mainstream projects. It benefits from many of the
supporting features needed for checkpoint and restart
that are available upstream today, including the ability
to isolate applications inside containers using names-
paces, and to selectively freeze applications using the
freezer control group. Linux-CR’s checkpoint-restart is
transparent, secure, reliable, and efficient, and does not
adversely impact the performance or code quality of the
rest of the Linux kernel.

The remainder of the paper is organized as follows. Sec-
tion 2 describes Linux checkpoint-restart usage model
from a user’s point of view. Section 3 presents in detail
the checkpoint-restart architecture. Section 4 provides
an overview of the in-kernel API for checkpoint-restart.
Section 5 presents experimental results. Section 6 dis-
cusses related work. Finally, we present some conclud-
ing remarks.

• 159 •

160 • Linux-CR: Transparent Application Checkpoint-Restart in Linux

2 Usage

The granularity of checkpoint-restart is a process hier-
archy. A checkpoint begins at a task which is the root
of the hierarchy, and proceeds recursively to include all
the descendant processes. It generates a checkpoint im-
age which represents the state of the process hierarchy.
A restart takes a checkpoint image as input to create an
equivalent process hierarchy and restore the state of the
processes accordingly.

Before a checkpoint begins, and for the duration of the
entire checkpoint, all processes in the hierarchy must be
frozen. This is necessary to prevent them from modi-
fying system state while a checkpoint is underway, and
thus avoid inconsistencies from occurring in the check-
point image. Freezing the processes also puts them in
a known state–just before returning to userspace–which
is useful because it is a state with only a trivial kernel
stack to save and restore.

Linux-CR supports two main forms of checkpoint: con-
tainer checkpoint and subtree checkpoint. The distinc-
tion between them depends on whether the checkpointed
hierarchy is “self contained” and “isolated”. The term
“self contained” refers to a hierarchy that includes all
the processes that are referenced in it. In particular, it
must include all parent, child, and sibling processes, and
also orphan processes that were re-parented. The term
“isolated” refers to a hierarchy whose resources are only
referenced by processes that belong to the hierarchy. For
example, open file handles held by processes in the hi-
erarchy may not be shared by processes not in the hi-
erarchy. A key property of hierarchies that satisfy both
conditions is that their checkpoints are consistent and
reliable, and therefore guarantee a successful restart.

Container checkpoint operates on process hierarchies
that are both isolated and self contained. In Linux, iso-
lated and self-contained hierarchies are created using
namespaces [4], which facilitate the provision of pri-
vate sets of resources for groups of processes. In par-
ticular, the PID-namespace can be used to generate a
sub-hierarchy that is self contained. A useful manage-
ment tool for this is Linux Containers [13], which lever-
ages namespaces to encapsulate applications inside vir-
tual execution environments to give them the illusion of
running privately.

Checkpointing an entire container ensures that pro-
cesses inside the container do not depend on processes

from the outside. To ensure also that the checkpoint is
consistent, the state of shared resources in use by pro-
cesses in the container must remain unmodified for the
duration the checkpoint. Because the processes in the
container are frozen they may not alter the state. Thus
it suffices to require that, at checkpoint time, none of
the resources are referenced by processes from the out-
side. Combined, these properties guarantee that a future
restart from a container checkpoint will always succeed.
Note that to leverage container checkpoint, users must
launch those application that they wish to checkpoint
inside containers.

Subtree checkpoint operates on arbitrary hierarchies.
Subtree checkpoints are especially handy since they do
not require users to launch their applications in a spe-
cific way. For example, casual users that execute long-
running computations can simply checkpoint their jobs
periodically. However, subtree checkpoints cannot pro-
vide the same guarantees as container checkpoints. For
instance, because checkpoint iterates the hierarchy from
the top down, it will not reach orphan processes unless it
begins with the init(1) process, so orphan processes
will not be recreated and restored at restart. Instead, it
is the user’s responsibility to ensure that dependencies
on processes outside the hierarchy and resource sharing
from outside the hierarchy either do not exist or can be
safely ignored. For example, a parent process may re-
main outside the hierarchy if we know that the child pro-
cess will never attempt to access it. In addition, if out-
side processes share state with the container, they must
not modify that state while checkpoint takes place.

We support a third form of checkpoint: self-checkpoint.
Self-checkpoint allows a running process to checkpoint
itself and save its own state, so that it can restart from
that state at a later time. It does not capture the relation-
ships of the process with other processes, or any sharing
of resources. It is most useful for standalone processes
wishing to be able to save and restore their state. Self-
checkpoint occurs by an explicit system call and always
takes place in the context of the calling process. The
process need not be frozen for the duration of the check-
point. This form of checkpoint is analogous to the fork
system call in that the system call may return in two dif-
ferent contexts: one when the checkpoint completes and
another following a successful restart. The process can
use the return value from the system call to distinguish
between the two cases: a successful checkpoint opera-
tion will return a “checkpoint ID” which is a non-zero

2010 Linux Symposium • 161

positive integer, while a successful restart operation al-
ways returns zero.

2.1 Userspace Tools

The userspace tools consist of three programs: check-
point to take a checkpoint of a process hierarchy, restart
to restart a process hierarchy from a checkpoint image,
and ckptinfo to provide information on the contents of
a checkpoint image. A fourth utility, nsexec, allows
users to execute applications inside a container by creat-
ing an isolated namespace environment for them. These
tools provide the most basic userspace layer on top of
the bare kernel functionality. Higher level abstractions
for container management and related functionality are
provided by packages like lxc [3] (of Linux Containers)
and libvirt [2].

Figure 1 provides a practical example that illustrates the
steps involved to launch an application inside a con-
tainer, then checkpoint it, and finally restart it in another
container. In the example, the user launches a session
with an sshd daemon and a screen server inside a new
container.

Lines 1–3 create a freezer control group to encapsulate
the process hierarchy to be checkpointed. Lines 5–13
create a script to start the processes, and the script is
executed in line 15. In line 7 the script joins the freezer
control group. Descendant processes will also belong
there by inheritance, so that later it will be possible to
freeze the entire process hierarchy. Lines 8–10 close
the standard input, output and error to decouple the new
container from the current environment and ensure that
it does not depend on tty devices.

In line 15, nsexec launches the script inside a new pri-
vate set of namespaces. Lines 18–21 show how the ap-
plication is checkpointed. First, in line 18 we freeze
the processes in the container using the freezer control
group. We use the checkpoint utility in line 19 to check-
point the container, using the script’s PID to indicate the
root of the target process hierarchy. In the example, we
kill the application once the checkpoint is completed,
and thaw the (now empty) control group. We restart the
application in line 23. Finally, in line 25 we show how
to examine the contents of the checkpoint image using
the ckptinfo utility.

The log files provided to both the checkpoint and restart
commands are used for status and error reports. Should

1 $ mkdir -p /cgroup
$ mount -t cgroup -o freezer cgroup /cgroup
$ mkdir /cgroup/1

5 $ cat > myscript.sh << EOF
#!/bin/sh
echo $$ > /cgroup/1/tasks
exec 0>&-
exec 1>&-

10 exec 2>&-
/usr/sbin/sshd -p 999
screen -A -d -m -S mysession somejob.sh
EOF

15 $ nohup nsexec -tgcmpiUP pid myscript.sh &

$ PID=‘cat pid‘
$ echo FROZEN > /cgroup/1/freezer.state
$ checkpoint $PID -l clog -o image.out

20 $ kill -9 $PID
$ echo THAWED > /cgroup/1/freezer.state

$ restart -l rlog -i image.out

25 $ ckptinfo -ve < image.out

Figure 1: A simple checkpoint-restart example

a failure occur during either operation, the log file will
contain error messages from the kernel that carry more
detailed information about the nature of the error. Fur-
ther debugging information can be gained from the
checkpoint image itself with the ckptinfo command, and
from the restart program by using the “-vd” switches.

2.2 System Calls

The userspace API consists of two new system calls for
checkpoint and restart, as follows:

• long checkpoint(pid, fd, flags, logfd)

This system call serves to request a checkpoint of a pro-
cess hierarchy whose root task is identified by @pid, and
pass the output to the open file indicated by the file de-
scriptor @fd. If @logfd is not -1, it indicates an open
file to which error and debug messages are written. Fi-
nally, @flags determines how the checkpoint is taken,
and may hold one or more of the values listed in Table 1.

On success the system call returns a positive checkpoint
identifier. In the future, a checkpoint image may op-
tionally be briefly preserved in kernel memory. In such
cases, the identifier would serve to reference that image.
On failure the return value is -1, and errno indicates a
suitable error value.

In self-checkpoint, where a process checkpoints itself, it
is necessary to distinguish between the first return from

162 • Linux-CR: Transparent Application Checkpoint-Restart in Linux

Operation Flags Flag description

Checkpoint
CHECKPOINT_SUBTREE perform a subtree checkpoint
CHECKPOINT_NETNS include network namespace state

Restart

RESTART_TASKSELF perform a self-restart
RESTART_FROZEN freeze all the restored tasks after restart
RESTART_GHOST indicate a process that is a place-holder
RESTART_KEEP_LSM restore checkpointed MAC labels (if permitted)
RESTART_CONN_RESET force open sockets to a closed state

Table 1: System call flags (checkpoint and restart)

a successful checkpoint, and a subsequent return from
the same system call but following a successful restart.
This distinction is achieved using the return value, simi-
larly to sys_fork. Specifically, the system call returns
plain 0 if it came from a successful restart. In either
case, when the operation fails the return value is -1, and
errno indicates a suitable error value.

• long sys_restart(pid, fd, flags, logfd)

This system call serves to restore a process hierarchy
from a checkpoint image stored in the open file indi-
cated by the file descriptor @fd. It is intended to be
called by all the restarting tasks in the hierarchy, and by
a special process that coordinates the restart operation.
When called by the coordinator, @pid indicates the root
task of the hierarchy (as seen in the coordinator’s PID-
namespace). The root task must be a child of the coor-
dinator. When not called by the coordinator, @pid must
remain 0. If @logfd is not -1, it indicates an open file
to which error and debug messages are written. Finally,
@flags determines how the checkpoint is taken, and
may hold one or more of the values listed in Table 1.

On success the system call returns in the context of
the process as it was saved at the time of the check-
point. The exact behavior depends on how and when
the checkpoint was taken. If the process was executing
in userspace prior to the checkpoint, then the restart will
arrange for it to resume execution in userspace exactly
where it was interrupted. If the process was executing
a system call, then the return value will be set to the re-
turn value of that system call whether it completed or
was interrupted. For a self-checkpoint, the restart will
arrange for the process to resume execution at the first
instruction after the original call to sys_checkpoint,
with the system call’s return value set to 0 to indicate
that this is the result of a restart. On failure the return
value is -1 and errno indicates a suitable error value.

3 Architecture

The crux of checkpoint-restart is a mechanism to se-
rialize the execution state of a process hierarchy, and
to restore the process hierarchy and its state from the
saved state. For checkpoint-restart of multi-process ap-
plications, not only must the state associated with each
process be saved and restored, but the state saved and
restored must be globally consistent and preserve pro-
cess dependencies. Furthermore, for checkpoint-restart
to be useful in practice, it is crucial that it transparently
support existing applications.

To guarantee that the state saved is globally consistent
among all processes in a hierarchy, we must satisfy two
requirements. First, the processes must be frozen for the
duration of the checkpoint. Second, the resources that
they use must not be modified by processes not in the
hierarchy. These requirements ensure that the state will
not be modified by processes in or outside the hierarchy
while the execution state is being saved.

To guarantee that the operation is transparent to appli-
cations, we must satisfy two more requirements. First,
the state must include all the resources in use by pro-
cesses. Second, resource identifiers in use at the time
of the checkpoint must be available when the state is re-
stored. These requirements ensure not only that all the
necessary state exists when restart completes, but also
that it is visible to the application as it was before the
checkpoint, so that the application remains unaware.

Linux-CR builds on the freezer subsystem to achieve
quiescence of processes. This subsystem was created
to allow the kernel to freeze all userspace processes
in preparation for a full system suspend to disk. To
accommodate checkpoint-restart, the freezer subsystem
was recently re-purposed to enable freezing of groups
of processes, with the introduction of the freezer control
group.

2010 Linux Symposium • 163

Linux-CR leverages namespaces [4] to encapsulate pro-
cesses in a self-contained unit that isolates them from
other processes in the system and decouples them from
the underlying host. Namespaces provide virtual private
resource names: resource identifiers within a names-
pace are localized to the namespace. Not only are they
invisible to processes outside that namespace, but they
do not collide with resource identifiers in other names-
paces. Thus, resource identifiers, such as PIDs, can re-
main constant throughout the life of a process even if
the process is checkpointed and later restarted, possi-
bly on a different machine. Without it, identifiers may
in fact be in use by other processes in the system. To
accommodate checkpoint-restart, namespaces were ex-
tended to allow restarting processes to select predeter-
mined identifiers upon the allocation of their resources,
so that those processes can reclaim the same set of iden-
tifiers they had used prior to the checkpoint.

For simplicity, we describe the checkpoint-restart mech-
anism assuming container checkpoint. We also assume
a shared storage (across participating machines), and
that the filesystem remains unmodified between check-
point and restart. In this case, the filesystem state is
not generally saved and restored as part of the check-
point image, to reduce checkpoint image size. Available
filesystem snapshot functionality [6, 10, 15] can be used
to also provide a checkpointed filesystem image. We fo-
cus only on checkpointing process state; details on how
to checkpoint filesystem, network, and device state are
beyond the scope of this paper.

3.1 Kernel vs. Userspace

Previous approaches to checkpoint-restart have run the
gamut from fully in-kernel to hybrid to fully userspace
implementations. While many properties of processes
and resources can be recorded and restored in userspace,
some state exists that cannot be recorded or restarted
from userspace. To provide application transparency
and allow applications to use the full range of operat-
ing system services, we chose to implement checkpoint-
restart in the kernel. In addition, an in-kernel implemen-
tation is not limited to user visible APIs such as system
calls–it can use the full range of kernel APIs. This not
only simplifies the implementation, but also allows use
of native locking mechanisms to ensure atomicity at the
desired granularity.

Checkpoint is performed entirely in the kernel. Restart
is also done in the kernel, however, for simplicity and

flexibility, the creation of the process hierarchy is done
in userspace. Moving some portion of the restart to
userspace is an exception, which is permitted under two
conditions: first, it must be straightforward and leverage
existing userspace APIs (i.e. not introduce specialized
APIs). Second, doing so in userspace should bring sig-
nificant added value, such as improved flexibility. Also,
all userspace work must occur before entering the ker-
nel, to avoid transitions in and out of the kernel.

For instance, the incentive to do process creation in
userspace is because it is simple to use the clone sys-
tem call to do so, and because it allows for great flexi-
bility for restarting processes to do useful work after the
process hierarchy is created and before the rest of the
restart takes place. Indeed, the entire hierarchy is cre-
ated before in-kernel restart is performed. Likewise, it is
desirable to restore network namespaces in userspace1.
Doing so will allow reuse of existing userspace network
setup tools that are well understood instead of repli-
cating their high-level functionality inside the kernel.
Moreover, it will allow users to easily adjust network
settings at restart time, e.g. change the network device
or its setup, or add a firewall to the configuration.

3.2 Checkpoint

A checkpoint is performed in the following steps (steps
2–4 are done by the checkpoint system call):

1. Freeze the process hierarchy to ensure that the
checkpoint is globally consistent.

2. Record global data, including configuration and
state that are global to the container.

3. Record the process hierarchy as a list of all check-
pointed processes, their PIDs, and relationships.

4. Record the state of individual processes, including
credentials, blocked and pending signals, CPU reg-
isters, open files, virtual memory, etc.

5. Thaw the processes to allow them to continue exe-
cuting, or terminate the processes in case of migra-
tion. (If a filesystem snapshot is desired, it is taken
prior to this step.)

Checkpoint is done by an auxiliary process, and does
not require the collaboration of processes being check-
pointed. This is important since processes that are not
runnable, e.g. stopped or traced, would not be able to

1However, as of the writing of this paper, this is yet undecided.

164 • Linux-CR: Transparent Application Checkpoint-Restart in Linux

perform their own checkpoint. Moreover, this can be ex-
tended in the future to multiple auxiliary processes for
faster checkpoint times of large process hierarchies.

Much effort was put to make checkpoint robust in the
sense that if a checkpoint succeeds then, given a suitable
environment, restart will succeed too. The implementa-
tion goes to great extents to be able to detect whether
checkpointed processes are “non-restartable”. This can
happen, for example, when a process uses a resource
that is unsupported for checkpoint-restart, therefore it
will not be saved at all. Even if a resource is supported,
it may be temporarily in an unsupported state. For ex-
ample, a socket that is in the process of establishing a
connection is currently unsupported.

3.3 Restart

A restart is performed in the following steps (step 3 is
done by the restart system call):

1. Create a new container for the process hierarchy,
and restore its configuration and state.

2. Create the process hierarchy as prescribed in the
checkpoint image.

3. Restore the state of individual processes in the
same order as they were checkpoint.

4. Allow the processes to continue execution2.

Restart is managed by a special coordinator process,
which supervises the operation but is not a part of the
restarted process hierarchy. The coordinator process
creates and configures a new container, and then gen-
erates the new process hierarchy in it. Once the hierar-
chy is ready, all the processes execute a system call to
complete the restart of each process in-kernel.

To produce the process hierarchy, it is necessary to pre-
serve process dependencies, such as parent-child rela-
tionships, threads, process groups, and sessions. The
restored hierarchy must satisfy the same constraints im-
posed by process dependencies at checkpoint. Because
the process hierarchy is constructed in userspace, these
dependencies must be established at process creation
time (to leverage the existing system calls semantics).
The order in which processes are created is important,
because some dependencies are not reflected directly
from the hierarchical structure. For instance, an orphan

2It is also possible to freeze the restarted processes, which is use-
ful for, e.g., debugging.

process must be recreated by a process that belongs to
the correct session group to correctly inherit that group.

Linux-CR builds on two algorithms introduced by
Zap [12] to reconstruct the process hierarchy. The algo-
rithms are designed to create a hierarchy that is equiv-
alent to the original one at checkpoint. The first algo-
rithm, DumpForest, analyzes the state of a process hi-
erarchy. It runs in linear time with the number of PIDs
in use in the hierarchy. The output is a table with an
entry for each PID; The table encodes the order and the
manner in which processes should be restarted. The sec-
ond algorithm, MakeForest, reconstructs the hierarchy.
It works in a recursive manner by following the instruc-
tions set forth by the table. It begins with a single pro-
cess that will be used as the root of the hierarchy to fork
its children, then each process creates its own children,
and so on. For a detailed discussion of these algorithms
refer to [12].

In rebuilding the process hierarchy, there are two spe-
cial cases of PIDs referring to terminated processes that
require additional attention. One case is when a PID

of a dead process is used as a PGID of another pro-
cess. In this case, the restart algorithm creates a “ghost”
process–a placeholder that lives long enough so that its
PID can be used as the PGID of another process, but
terminates once the restart completes (and before the hi-
erarchy may resume its execution, to avoid races). An-
other case is when a PID represents a zombie process
that has exited but whose state has not been cleaned up
yet. In this case, the restart algorithm creates a process,
restores only minimal state such as its exit code, and fi-
nally the process exits to become a zombie.

Because the process hierarchy is created in userspace,
the restarting processes have the flexibility to do use-
ful work before eventually proceeding with in-kernel
restart. For instance, they might wish to create a new
custom networking route or filtering rule, create a vir-
tual device which existed at the host at the time of check-
point, or massage the mounts tree to mask changes since
checkpoint.

Once the process hierarchy is created, all the processes
invoke the restart system call and the remainder of
the restart takes place in the kernel. Restart is done in
the same order that processes were checkpointed. The
restarting processes now wait for their turn to restore
their own state, while the coordinator orchestrates the
restart.

2010 Linux Symposium • 165

Restart is done within the context of the process that
is restarted. Doing so allows us to leverage the avail-
able kernel functionality that can only be invoked from
within that context. Unlike checkpoint, which requires
observing process state, restart is more complicated as
it must create the necessary resources and reinstate their
desired state. Being able to run in process context
and leverage available kernel functionality to perform
these operations during restart significantly simplifies
the restart mechanism.

In the kernel, the restart system call depends on the
caller. The coordinator first creates a common restart
context data structure to share with all the restarting pro-
cess, and waits for them to become properly initialized.
It then notifies the first process to start the restart, and
waits for all the restarting tasks to finish. Finally, the
coordinator notifies the restarting tasks to resume nor-
mal execution, and then returns from the system call.

Correspondingly, restarting processes first wait for a no-
tification from the coordinator that indicates that the
restart context is ready, and then initialize their state.
Then, each process waits for its turn to run, restores
the state from the checkpoint image, notifies the next
restarting process to run, and waits for another signal
from the coordinator indicating that it may resume nor-
mal execution. Thus, processes may only resume exe-
cution after all the processes have successfully restored
their state (or fail if an error has occurred), to prevent
processes from returning to userspace prematurely be-
fore the entire restart completes.

3.4 The Checkpoint Image

The checkpoint image is an opaque blob of data, which
is generated by the checkpoint system call and con-
sumed by the restart system call. The blob contains
data that describes the state of select portions of ker-
nel structures, as well as process execution state such as
CPU registers and memory contents. The image format
is expected to evolve over time as more features are sup-
ported, or as existing features change in the kernel and
require to adjust their representation. Any changes in
the blob’s format between kernel revisions will be ad-
dressed by userspace conversion tools, rather than at-
tempting to maintain backward compatibility inside the
restart system call.

Internally, the blob consists of a sequence of records that
correspond to relevant kernel data structures and repre-

sent their state. For example, there are records for pro-
cess data, memory layout, open files, pending signals,
to name a few. Each record in the image consists of
a header that describes the type and the length of the
record, followed by a payload that depends on the record
type. This format allow userspace tools to easily parse
and skim through the image without requiring intimate
knowledge of the data. Keeping the data in self con-
tained records will also be suitable for parallel check-
pointing in the future, where multiple threads may inter-
leave data from multiple processes into a single stream.

Records do not simply duplicate the native format of
the respective kernel data structures. Instead, they pro-
vide a representation of the state by copying those in-
dividual elements that are important. One justification
is that during restart, one already needs to inspect, vali-
date and restore individual input elements before copy-
ing them into kernel data structures. However, the ap-
proach offers three additional benefits. First, it improves
image format compatibility across kernel revisions, be-
ing agnostic to data structure changes such as reorder-
ing of elements, addition or deletion of elements that
are unimportant for checkpoint-restart, or even moving
elements to other data structures. Second, it reduces the
total amount of state saved since many elements may be
safely ignored. Per process variables that keep sched-
uler state are one such example. Third, it allows a uni-
fied format for architectures that support both 32-bit and
64-bit execution, which simplifies process migration be-
tween them.

The checkpoint image is organized in five sections: a
header, followed by global data, process hierarchy, the
state of individual processes, and a finally a trailer. The
header includes a magic number (to identify the blob as
a checkpoint image), an architecture identifier in little-
endian format, a version number, and some information
about the kernel configuration. It also saves the time of
the checkpoint and the flags given to the system call. It
is followed by an architecture dependent header that de-
scribes hardware specific capabilities and configuration.

The global data section describes configuration and state
that are global to the container being checkpointed. Ex-
amples include Linux Security Modules (LSM) and net-
work devices and filters. In the future container-wide
mounts may also go here. The process hierarchy section
that follows provides the list of all checkpointed pro-
cesses, their PIDs and their relationships, e.g., parent-
child, siblings, threads, and zombies. These two section

166 • Linux-CR: Transparent Application Checkpoint-Restart in Linux

are strategically placed early in the image for two rea-
sons: first, it allows restart to create a suitable environ-
ment for the rest of the restart early on, and second, it
allows to do so in userspace.

The remainder of the checkpoint image contains the
state of all of the tasks and the shared resources, in the
order that they were reached by the process hierarchy
traversal. For each task, this includes state like the task
structure, namespaces, open files, memory layout, mem-
ory contents, CPU state, signals and signal handlers, etc.
Finally, the trailer that concludes the entire image serves
as a sanity check.

The checkpoint-restart logic is designed for streaming
to support operation using a sequential access device.
Process state is saved during checkpoint in the order in
which it needs to be used during restart. An important
benefit of this design is that the checkpoint image can be
directly streamed from one machine to another across
the network and then restarted, to accomplish process
migration. Using a streaming model provides the abil-
ity to pass checkpoint data through filters, resulting in
a flexible and extensible architecture. Example filters
include encryption, signature/validation, compression,
and conversion between formats of different kernel ver-
sions.

3.5 Shared Resources

Shared resources may be referenced multiple times, e.g.
by multiple processes or even by other resources. Ex-
amples of resources that may be shared include files de-
scriptors, memory address spaces, signal handlers and
namespaces. During checkpoint, shared resources will
be considered several times as the process hierarchy is
traversed, but their state need only be saved once.

To ensure that shared resources are saved exactly once,
we need to be able to uniquely identify each resource,
and keep track of resources that have been saved already.
More specifically, when a resource is first discovered, it
is assigned a unique identifier (tag) and registered in a
hash-table using its kernel address (at checkpoint) or its
tag (at restart) as a key. The hash-table is consulted to
decide whether a given resource is a new instance or
merely a reference to one already registered. Note that
the hash-table itself is not saved as part of the check-
point image; instead, it is rebuilt dynamically during
both checkpoint and restart, and discarded when they
complete.

During checkpoint, shared resources are examined by
looking up their kernel addresses in the hash-table. If an
entry is not found, then it is a new resource–we assign a
new tag and add it to the hash-table, and then record its
state. Otherwise, the resource has been saved before, so
it suffices to save only the tag for later reference.

During restart the state is restored in the same order as
has been saved originally, ensuring that the first appear-
ance of each resource is accompanied with its actual
recorded state. As with checkpoint, saved resource tags
are examined by looking them up in the hash-table, and
if not found, we create a new instance of the required re-
source, restore its state from the checkpoint image, and
add it to the hash-table. If an entry is found, it points to
the corresponding (already restored) resource instance,
which is reused instead of creating a new one.

3.6 Leak Detection
In order to guarantee that a container checkpoint is con-
sistent and reliable, we must ensure that the container
is isolated and that its resources are not referenced by
other processes from outside the container. When con-
tainer shared resources are referenced from outside, we
say that they leak; the ability to detect leaks is a prereq-
uisite for container checkpoint to succeed.

Because the shared objects hash-table already tracks
shared resources, it also plays a crucial role in detecting
resource leaks that may obstruct a future restart. The
key idea behind leak detection is to explicitly count the
total number of references to each shared object inside
the container, and compare them to the global reference
counts maintained by the kernel. If for a certain resource
the two counts differ, it must be because of an external
(outside the container) reference.

Leak detection begins in a pre-pass that takes place prior
to the actual checkpoint, to ensure that there are no ex-
ternal references to container shared objects. In this
pass we traverse the process hierarchy like in the actual
checkpoint but do not save the state. Instead, we col-
lect the shared resources into the hash-table and main-
tain their reference counts. When this phase ends, the
reference count of each object in the hash-table reflects
the number of in-container references to it. We now iter-
ate through all the objects and compare that count to the
one maintained by the kernel. The two counts match3 if
and only if there are no external references.

3Actually, the hash-table count should be one less, because it
does not count the reference that the hash-table itself takes.

2010 Linux Symposium • 167

This procedure is non-atomic in the sense that the refer-
ence counts from the hash-table and the kernel are com-
pared only after all the resources have been collected.
This is racy because processes outside the container may
modify the state of shared resources, create new ones or
destroy existing ones before the procedure concludes.
For instance, consider two processes, one inside a con-
tainer and the other not, that share a single file descriptor
table. Suppose that after the pre-pass collects the file ta-
ble and the files in it, the outside process opens a new
file, closes another (existing) file, and then terminates.
At this point, the new file is left out of the hash-table,
while the other (closed) file remains there unnecessarily.
Moreover, when the pre-pass concludes it will not detect
a file table leak because the outside process exited, and
the file table is only referenced inside the container. It
will not detect a file leak even though the new file may
be referenced outside, because the new file had not even
been tracked.

To address these races we employ additional logic for
leak detection during the actual checkpoint. This logic
can detect in-container resources that are not tracked by
the hash-table, or that are tracked but are no longer ref-
erenced in the container. Untracked resources are easy
to detect, because their lookup in the hash-table will fail.
To detect deleted resources, we mark every resource in
the hash-table that we save during the checkpoint, and
then at the end of the checkpoint, we verify that all the
tracked resources are marked. A tracked but unmarked
resource must have been added to the hash-table and
then deleted before being reached by the actual check-
point. In either case, the checkpoint is aborted.

3.7 Error Handling
Both checkpoint and restart operations may fail due to
a variety of reasons. When a failure does occur, they
must provide proper cleanup. For checkpoint this is sim-
ple, because the checkpoint operation is non-intrusive:
the process hierarchy whose state is saved remains un-
affected. For restart, cleanup is performed by the coor-
dinator, which already keeps track of all processes in the
restored hierarchy. More specifically, in case of failure
the coordinator will send a fatal signal to terminate all
the processes before the system call returns. Because
the cleanup is part of the return path from the restart
system call exit path, there is no risk that cleanup be
skipped should the coordinator itself crash.

When a checkpoint or restart fails, it is desirable to com-
municate enough details about the failure details to the

caller to determine the root cause. Using a simple, sin-
gle return value from the system call is insufficient to
report the reason of a failure. For instance, a process
that is not frozen, a process that is traced, an outstand-
ing asynchronous IO transfer, and leakage of shared re-
source leakage, are just a few failure modes that result
all in the error -EBUSY.

To address the need to report detailed information about
a failure, both checkpoint and restart system calls
accept an additional argument: a file descriptor to which
the kernel writes diagnostic and debugging information.
Both the checkpoint and restart userspace utilities have
options to specify a filename to store this log.

In addition, checkpoint stores in the checkpoint image
informative status report upon failure in the form of
(one or more) error objects. An error object consists
of a mandatory pre-header followed by a null character
(’\0’), and then a string that describes the error. By
default, if an error occurs, this will be the last object
written to the checkpoint image. When a failure occurs,
the caller can examine the image and extract the detailed
error message. The leading ’\0’ is useful if one wants
to seek back from the end of the checkpoint image, in-
stead of parsing the entire image separately.

3.8 Security Considerations

The security implications of in-kernel checkpoint-restart
require careful attention. A key concern is whether the
system calls should require privileged or unprivileged
operation. Originally our implementation required tasks
to have the CAP_SYS_ADMIN capability, while we opti-
mistically asserted our intent to eventually remove the
need for privilege and allow all users to safely use
checkpoint and restart. However, it was pointed out that
letting unprivileged users use these system calls is not
only beneficial to users, but also has the useful side ef-
fect of forcing the checkpoint-restart developers to be
more careful with respect to security throughout the de-
sign and development process. In fact, we believe this
approach has succeeded in keeping us more on our toes
and catching ways that users otherwise would have been
able to escalate privileges through carefully manipulated
checkpoint images, for instance bypassing CAP_KILL

requirements by specifying arbitrary userid and sig-
nals for file owners.

At checkpoint, the main security concern is whether the
process that takes a checkpoint of other processes in

168 • Linux-CR: Transparent Application Checkpoint-Restart in Linux

some hierarchy has sufficient privileges to access that
state. We address this by drawing an analogy between
checkpointing and debugging processes: in both it is
necessary for an auxiliary process to gain access to in-
ternal state of some target process(es). Therefore, for
checkpoint we require that the caller of the system call
will be privileged enough to trace and debug (using
ptrace) all of the processes in the hierarchy.

For restart, the main concern is that we may allow an
unprivileged user to feed the kernel with random data.
To this end, the restart works in a way that does not skip
the usual security checks. Process credentials, i.e. UID,
EUID, and the security context4 currently come from the
caller, not the checkpoint image. To restore credentials
to values indicated in the checkpoint image, restarting
processes use the standard kernel interface. Thus, the
ability to modify one’s credentials is limited to one’s
privilege level when beginning the restart.

Keeping the restart procedure to operate within the lim-
its of the caller’s credentials means that scenarios con-
sisting of privileged application that reduce their priv-
ilege level cannot be supported. For instance, a “se-
tuid” program that opened a protected log file and then
dropped privileges will fail the restart, because the user
will not have enough credentials to reopen the file.
The only way to securely allow unprivileged users to
restart such applications is to make the checkpoint im-
age tamper-proof.

There are a few ways to ensure the a checkpoint im-
age is authentic. One method is to make the userspace
utilities privileged using “setuid” and use cryptographic
signatures to validate checkpoint images. In particular,
checkpoint will sign the image and restart will first ver-
ify the signature before restoring from it. For instance,
TPM [11] can be used to sign the checkpoint image and
produce a keyed hash using a sealed private key, and to
refuse restart in the absence of the correct hash. Another
method is to create an assured pipeline for the check-
point image, from the invocation of the checkpoint and
restart system calls. Assured pipelines are precisely a
target feature of SELinux, and could be implemented
by using specialized domains for checkpoint and restart.
Note, however, that even with a tamper-proof check-
point image, a concern remains that the checkpoint im-
age amounts to a persistent privileged token, which a
clever user could find ways to exploit in new and inter-
esting ways.

4Security contexts are part of Linux Security Modules (LSM).

4 Kernel Internal API

The kernel API consists of a set of functions for use in
kernel subsystems and modules to provide support for
checkpoint and restart of the state that they manage. All
the kernel API calls accept a pointer to a checkpoint con-
text (ctx), that identifies the operation in progress.

The kernel API can be divided by purpose into several
groups: functions to handle data records; functions to
read and write checkpoint images; functions to output
debugging or error information; and functions to han-
dle shared kernel objects and the hash-table. Table 2
lists the API groups and their naming conventions. Ad-
ditional API exists to abstract away the details about
checkpointing and restoring instances of some objects
types, including memory objects, open files, and LSM
(security) annotations.

The ckpt_hdr_... group provides convenient helper
functions to allocate and deallocate buffers used as in-
termediate store for the state data. During checkpoint
they store the saved state before it is written out. During
restart they store data read from the image before it is
consumed to restore the corresponding kernel object.

The ckpt_write_... and ckpt_read_... groups
provide helper functions to write data to and read data
from the checkpoint image, respectively. These are
wrappers that simplify the handling, for example by
adding and removing record headers, and by provid-
ing shortcuts to handle common data such as strings and
buffers.

The ckpt_msg function writes an error message to the
log file (if provided by the user), and, when debugging
is enabled, also to the system log. The ckpt_err func-
tion is used when checkpoint or restart cannot succeed.
It accepts the error code to be returned to the user, and
a formatted error message which is written to the user-

Group Description
ckpt_hdr_... record handling (alloc/dealloc)
ckpt_write_... write data/objects to image
ckpt_read_... read data/objects from image
ckpt_msg output to the log file
ckpt_err report an error condition
ckpt_obj_... manage objects and hash-table

Table 2: Kernel API by groups

2010 Linux Symposium • 169

provided log and the system log. If multiple errors oc-
cur, e.g. during restart, only the first error value will be
reported, but all messages will be printed.

The ckpt_obj_... group includes helper functions to
handle shared kernel objects. They simplify the hash-
table management by hiding details such as locking and
memory management. They include functions to add
objects to the hash-table, to find objects by their kernel
address at checkpoint or by their tag at restart, and to
mark objects that are saved (for leak detection).

Dealing with shared kernel objects aims to abstract the
details of how to checkpoint and restart different ob-
ject types, and push the code to do so near the native
code for those objects. For example, code to checkpoint
and restart open files and memory layouts appears in the
file/ and mm/ subdirectories, respectively. The moti-
vation for this is twofold. First, placing the checkpoint-
restart code there improves maintainability because it
make the code more visible to maintainers. Higher
maintainers’ awareness increases the chances that they
will adjust the checkpoint-restart code when they intro-
duce changes to the other native code. Second, it is more
friendly to kernel objects that are implemented in kernel
modules, because it means that the code to checkpoint-
restart such objects is also part of the module.

To abstract the handling of shared kernel objects we as-
sociate a set of operations with each object type (simi-
lar to operations for files, sockets, etc). These include
methods to checkpoint and restore the state of an ob-
ject, methods to take or drop a reference to the objects
so that it can be referenced when in the hash-table, and a
method to read the reference count (in the hash-table) of
an object. The function register_checkpoint_obj

is used to register an operations set for an object type.
It is typically called from kernel initialization code for
the corresponding object, or from module initialization
code as part of loading a new module. Each of the
ckpt_obj_... takes the object type as one of its ar-
gument, which indicates the object-specific set of oper-
ation to use.

During checkpoint, for each shared kernel object the
function checkpoint_obj is called. It first looks up
the object in the hash-table, and, if not found, invokes
the ->checkpointmethod from the corresponding op-
erations set to create a record for the object in the image,
and adds the object to the hash-table. During restart,
records of shared kernel objects in the input stream are

passed to the function restore_obj, which invokes
the ->restore method from the corresponding oper-
ations set to create an instance of the object according
to the saved state, and adds the newly created object to
the hash-table.

Several objects in the Linux kernel are already ab-
stracted using operations set, which contain methods
describing how to handle different versions of objects.
For instance, open files have file_operations, and
seeking in ext3 filesystem is performed using a different
method than in nfs filesystem. Likewise, virtual memory
areas have vm_operations_struct, and the method
to handle page faults is different in an area that corre-
sponds to private anonymous memory than one that cor-
responds to shared mapped memory.

For such objects, we extend the operations to also pro-
vide methods for checkpoint, restore, and object collec-
tion (for leak detection), as follows:

To checkpoint a virtual memory area in a task’s memory
map, the struct vm_operations_struct needs to
provide the method for the ->checkpoint operation:
int checkpoint(ctx, vma)

and at restart, a matching callback to restore the state of
a new virtual memory area object::
int restore(ctx, mm, vma_hdr)

Note that the function to restore cannot be part of the
operations set, because it needs to be known before the
object instance even exists.

To checkpoint an open file, the struct file_
operations needs to provide the methods for the
->checkpoint and ->collect operations:
int checkpoint(ctx, file)
int collect(ctx, file)

and at restart, a matching callback to restore the state of
an opened file:
int restore(ctx, file, file_hdr)

Here, too, the restore function cannot be part of the
operations set. For most filesystems, generic func-
tions are sufficient: generic_file_checkpoint and
generic_file_restore.

To checkpoint a socket, the struct proto_ops

needs to provide the methods for the ->checkpoint,
->collect and ->restore operations:
int checkpoint(ctx, sock);
int collect(ctx, sock);
int restore(ctx, sock, sock_hdr)

170 • Linux-CR: Transparent Application Checkpoint-Restart in Linux

Number Image Checkpoint Checkpoint Restart
of processes size time (to file) time (no I/O) time

10 0.87 MB 8 ms 3 ms 10 ms
100 8.0 MB 72 ms 24 ms 72 ms

1000 79.6 MB 834 ms 237 ms 793 ms

Table 3: Checkpoint-restart performance

5 Experimental Results

We evaluated the current version of Linux Checkpoint-
Restart to answer three questions: (a) how long check-
point and restart take; (b) how much storage they re-
quire; and (c) how they scale with the number of pro-
cesses and their memory size.

The measurements were conducted on a Fedora 10 sys-
tem with two dual-core 2 GHz AMD Opteron CPUs
with 1 GB L2 cache, 2 GB RAM, and a 73.4 GB
10025 RPM local disk. We used Linux 2.6.34 with the
Linux-CR v21 patchset, with most debugging disabled
and SELinux disabled. All optional system daemons on
the test system were turned off.

For the measurements we used the makeprocs test from
the checkpoint-restart test-suite [1]. This test program
allows a caller to specify the number of child processes,
a memory size for each task to map, or a memory size
for each task to map and then dirty. We repeated the
tests thirty times, and report average values.

Table 3 presents the results in terms of checkpoint im-
age size, checkpoint time and restart time, for measure-
ments with 10, 100 and 1000 processes. Checkpoint
times were measured once with the output saved to a
local file, and once with the output discarded (techni-
cally, redirected to /dev/null). Restart times were
measured from when the coordinator begins and until
it returns from the kernel after a successful operation.
Restart times were measured reading the checkpoint im-
ages from a warm-cache.

The results show that the checkpoint image size and the
time for checkpoint and restart scale linearly with the
number of processes in the process hierarchy. The av-
erage total checkpoint time is about 0.8 ms per process
when writing the data to the filesystem, and drops to
well under 0.3 ms per process when filesystem access is
skipped. Writing the data to a file triples the checkpoint
time. This suggests that buffering the checkpoint out-
put until the end of a checkpoint is a good candidate for

a future optimization to reduce application downtime at
checkpoint. Average total restart time from warm cache
is about 0.9 ms per process. The total amount of state
that is saved per process is also modest, though it highly
depends on the applications being checkpointed.

To better understand how much of the checkpoint and
restart times is spent for different resources, we instru-
mented the respective system calls to measure a break-
down of the total time. For both checkpoint and restart,
saving and restoring the memory contents of processes
amounted to over 80% of the total time. The total mem-
ory in use within a process hierarchy is also the most
prominent component of the checkpoint image size.

To look more closely at the impact of the process size,
we measured the checkpoint time for ten processes each
with memory sizes increasing from 1 MB to 1 GB that
the process allocated using the mmap system call. We re-
peated the test twice. In one instance the processes only
allocate memory but do not touch it. In the second in-
stance the processes also dirty all the allocated memory.
In both cases, the output was redirected to avoid expen-
sive I/O. The results are given in Table 4. The results
show strong correlation between the memory footprint
of processes and checkpoint times. Even when memory
is untouched, the cost associated with scanning the pro-
cess’s page tables is significant. Checkpoint times in-
crease substantially with dirty memory as it requires the
contents to actually be stored in the checkpoint image.

Task size Checkpoint Checkpoint
time (clean) time (dirty)

1 MB 0.5 ms 1.3 ms
10 MB 0.7 ms 6.4 ms
100 MB 1.7 ms 58 ms

1 GB 10.6 ms 337 ms

Table 4: Checkpoint times and memory sizes

2010 Linux Symposium • 171

6 Related Work

Checkpoint-restart has been the subject of extensive re-
search [17, 18, 19], spanning all four approaches: ap-
plication level, library mechanisms, operating system
mechanisms, and hardware virtualization; See [12] for
a detailed discussion on these approaches.

Many application checkpoint-restart mechanisms have
been implemented in Linux, some in userspace [7, 8]
and others in the kernel [5, 9, 14, 12, 20]. Ckpt [7]
modifies tasks to let them checkpoint themselves. The
checkpoint images are in the form of executable files
which, when executed, restart the original process. Cry-
oPID [8] also uses an executable file for the checkpoint
image, but relies on /proc information to checkpoint
a task. Userspace approaches do not capture or are un-
able to restore some parts of a process’s system state,
and are limited in which applications they support. In
contrast, Linux-CR is an operating system mechanism
that can save and restore all relevant state, and can do so
completely transparently to the application.

EPCKPT [9] and CRAK [20] provide partial support for
checkpoint-restart for Linux 2.4 series, as a kernel patch
and kernel module respectively. BLCR [5] is aimed pri-
marily at HPC users. It consists of a library and a kernel
module. Applications must be checkpoint-aware so as to
discard unsupported resources. None of these provide
virtualization. Zap [12, 16] and OpenVZ [14] imple-
ment both containers and checkpoint-restart. OpenVZ
consists of an invasive out-of-tree kernel patch, and Zap
is a kernel module.

The Linux-CR project emerged as a unifying frame-
work to provide checkpoint-restart in the Linux kernel.
It builds on Zap, but it is implemented in the kernel.
Linux-CR improves on earlier work in that the design
and implementation are done in a clean way and geared
for inclusion in the mainstream Linux kernel, so that it
will be maintained as part of the kernel.

Linux-CR can detect when resources leak outside of
containers. This leak detection logic was inspired by
OpenVZ, which was the first to propose this mechanism.
However, leak detection in OpenVZ is incomplete be-
cause it does not handle race condition when scanning
for resources, allowing untracked and deleted resources
to remain undetected. Linux-CR addresses this by ex-
tending the mechanism to explicitly discover and handle
resources that escape the initial scan.

7 Conclusions

Previous work on application checkpoint and restart for
Linux does not address the crucial issue of integration
with the mainstream Linux kernel. We present in de-
tail Linux-CR, an implementation of checkpoint-restart,
which aims for inclusion in the mainline Linux kernel.
Linux-CR provides transparent, reliable, flexible, and
efficient application checkpoint-restart. We discuss the
usage model and describe the user interfaces and some
key kernel interfaces of Linux-CR. We present prelimi-
nary performance results of the implementation.

A key ingredient to a successful upstream implementa-
tion is the understanding by the kernel community of
the usefulness of checkpoint-restart. Without this we
would fail to receive from the community the invaluable
review and advice upon which we have relied. That we
have in fact received much such help shows that the use-
fulness of checkpoint-restart is recognized by the com-
munity. We therefore have high hopes that, with the
community’s help, the project will succeed in providing
checkpoint-restart functionality in the upstream kernel.

Legal Statement

This work represents the view of the authors and does
not necessarily represent the view of IBM. IBM is a reg-
istered trademark of International Business Machines
Corporation in the United States and/or other countries.
UNIX is a registered trademark of The Open Group in
the United States and other countries. Linux is a regis-
tered trademark of Linus Torvalds in the United States,
other countries, or both. Other company, product, and
service names may be trademarks or service marks of
others.

Acknowledgments

The Linux-CR project is the result of the hard work
of several developers. Major contributors include Matt
Helsley, Dave Hansen, Sukadev Bhattiprolu, Dan Smith,
and Nathan Lynch. Additional guidance has come from
Arnd Bergmann, Ingo Molnar, Louis Rilling, Alexey
Dobriyan and Andrey Mirkin. Various reviewers gave
countless valuable comments for the patchset. Jason
Nieh provided helpful comments on earlier drafts of this
paper. This work was supported in part by the DARPA
under its Agreement No. HR0011-07-9-0002, by NSF
grants CNS-0914845 and CNS-0905246, and AFOSR
MURI grant FA9550-07-1-0527.

172 • Linux-CR: Transparent Application Checkpoint-Restart in Linux

References

[1] Checkpoint/restart testsuite. http://www.
linux-cr.org/git/?p=tests-cr.git;
a=summary.

[2] Libvirt LXC container driver. http://www.
libvir.org/drvlxc.html.

[3] Linux Containers. http://lxc.sf.net.

[4] S. Bhattiprolu, E. W. Biederman, S. E. Hallyn,
and D. Lezcano. Virtual Servers and Check-
point/Restart in Mainstream Linux. SIGOPS Op-
erating Systems Review, 42(5), 2008.

[5] Berkeley Linux Checkpoint/Restart User’s Guide.
http://mantis.lbl.gov/blcr/doc/
html/BLCR_Users_Guide.html.

[6] BTRFS. http://oss.oracle.com/
projects/btrfs.

[7] ckpt. http://pages.cs.wisc.edu/
~zandy/ckpt/.

[8] CryoPID - A Process Freezer for Linux. http:
//cryopid.berlios.de.

[9] EPCKPT. http://www.research.
rutgers.edu/~edpin/epckpt/.

[10] EXT4. ext4.wiki.kernel.org.

[11] T. Group. Tcg tpm specification version 1.2 - part
1 design principles, 2005.

[12] O. Laadan and J. Nieh. Transparent Checkpoint-
Restart of Multiple Processes on Commodity Op-
erating Systems. In Proceedings of the 2007
USENIX Annual Technical Conference, Santa
Clara, CA, June 2007.

[13] LXC: Linux container tools. http:
//www.ibm.com/developerworks/
linux/library/l-lxc-containers.

[14] A. Mirkin, A. Kuznetsov, and K. Kolyshkin. Con-
tainers checkpointing and live migration. In Pro-
ceedings of the 2008 Ottawa Linux Symposium,
July 2008.

[15] Network Appliance, Inc. http://www.
netapp.com.

[16] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The
Design and Implementation of Zap: A System for
Migrating Computing Environments. In Proceed-
ings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI 2002), Boston,
MA, Dec. 2002.

[17] J. S. Plank. An Overview of Checkpointing in
Uniprocessor and Distributed Systems, Focusing
on Implementation and Performance. Technical
Report UT-CS-97-372, Dept. of Computer Sci-
ence, University of Tennessee, July 1997.

[18] E. Roman. A Survey of Checkpoint/Restart Im-
plementations. Technical Report LBNL-54942,
Lawrence Berkeley National Laboratory, July
2002.

[19] J. C. Sancho, F. Petrini, K. Davis, R. Gioiosa, and
S. Jiang. Current Practice and a Direction Forward
in Checkpoint/Restart Implementations for Fault
Tolerance. In Proceedings of the 19th IEEE Inter-
national Parallel and Distributed Processing Sym-
posium (IPDPS’05) - Workshop 18, Washington,
DC, Apr. 2005.

[20] H. Zhong and J. Nieh. CRAK: Linux Check-
point/Restart As a Kernel Module. Technical Re-
port CUCS-014-01, Columbia University , 2001.

Optimizing processes on multicore for speed and latency

Christoph H. Lameter
Graphe Inc.

cl@gentwo.org

Abstract

High Performance Computing is coming to every file
server and every desktop machine these days. The pro-
cessing power of the average server will grow signif-
icantly with the introduction of Westwere (24 threads
dual socket), Nehalem EX for quad socket (64 threads)
and 8 socket machines (128 threads) which will make
entirely new applications possible. In the financial mar-
ket it is then possible to run a complete trading system
setup on a single machine as demonstrated by running a
NYSE simulation at the IDF conference by Intel. How-
ever, the same issues already show up with a smaller
effect even on the run of the mill dual quad core sys-
tems.

Intel Nehalem processors support NUMA – a technol-
ogy so far only known from large supercomputers. The
NUMA effects are small on todays dual quad core file
servers but as the number of processors rises the dis-
tances of processors to memory will also increase and
put more demands on the operating system and appli-
cation software to obtain memory that a processor can
reach in an efficient manner. Temporal locality issues
dominate even within a core because the most effective
storage is in the L1 cache that is local to one execu-
tion context but unreachable from another. It is vital that
techniques originally developed for HPC are used to ex-
ploit the full potential that todays hardware provides.

We will discuss Westmere, Nehalem EX, temporal and
spatial locality management techniques, managing cpu
caches, hyperthreading, latency and performance in
Linux.

• 173 •

174 • Optimizing processes on multicore for speed and latency

Open Source issues? Avoiding the ipo(a)ds ahead..

Christoph H. Lameter
Graphe Inc.

cl@gentwo.org

Abstract

Have you ever wondered why Linux does not make
progress in certain areas? Why have we not conquered
the desktop yet? Why are many "commercial" appli-
cations not for Linux? Why is Apple dancing circles
around us with Iphones, Ipods and Ipads?

All these things require funding, a certain frame of mind
that focuses oni the end user and an autonomy on the
part of the developer of new applications. Open source
developers are frequently caught in an evil web of pres-
sure by employers to work on proprietary ideas which
sucks off the majority of time that is available for pro-
ductive work, the necessity to maintain relationships
with (like-minded) open source developers working on
the same projects which results in a closed mind to
end users and the inability to start something new and
creative with somewhat controllable effort and benefit
monetarily from it so that further efforts can be made.

It seems that the ipod world has found a solution to these
issues and enabled developers to create useful apps in a
minimal time frame, benefit from it and grow the use-
fulness of their software. Sadly this world is controlled
by a commercial entity, source code is not available.

The impression to the general public is that open source
contribution is something like a heroic effort. A renun-
ciation of the riches that could be had and a taking of a
vow of poverty. The motives of commercial entities can
be in collaboration but what we have seen the contribu-
tions are mainly driven by commercial benefits derived
from open source contribution. The motivation is not to
provide a well designed easy to use application to the
end user.

The author thinks that we need to change the develop-
ment process so that the design and creation of easily
usable end user applications is rewarded and that at the
same time it must be possible for others to use and mod-
ify the code created.

• 175 •

176 • Open Source issues? Avoiding the ipo(a)ds ahead..

Deploying Preemptible Linux in the Latest Camcorder

Geunsik Lim
Samsung Electronics

geunsik.lim@samsung.com

Jupyung Lee
Samsung Electronics

jupyung.lee@samsung.com

Sangbum Suh
Samsung Electronics

sbuk.suh@samsung.com

Abstract

Currently, the Linux kernel is well equipped to compete
with the soft realtime operating system. Linux has been
the choices of the operating system. We adjusted opti-
mized Linux kernel to the camcorder’s system architec-
ture which is equipped with ARM cortex-A8 and imple-
mented open-source based tool-chain, audio zoom cal-
culation, and realtime HDMI I2C communication and
userspace realtime thread program. Samsung has intro-
duced Consumer Electronics Show(CES) this year with
its new S-Series of full HD digital camcorders. These
product is the world’s first commercially available cam-
corder which includes built-in Wi-Fi and DLNA con-
nectivity.

This paper describes our trouble shooting, cross-
compiler issues, technical experiences and best practice
in reducing latency in Linux and applications for devel-
oping an embedded product like camcorder. This dis-
cussion focuses on how commercial platform can opti-
mize the realtime extensions available in Linux kernel,
but it is also relevant to any software developer who may
be concerned with finding a suitable tradeoff between
throughput and responsiveness for embedded systems.
Furthermore, many methods which implemented to fur-
ther improve the system performance will be presented
as well.

1 Introduction

Since 2000, commercial RTOSs such as pSOS, LynxOS,
QNX, Nucleus, Vxworks that have been used in em-
bedded devices have been replaced by Linux kernel.
For home appliances such as Digital TV, camcorder,
digital camera, printer, etc., electronic companies have
improved their differentiation and competitiveness by
modifying open-source software for each product use
since they adopted Linux which has the advantage not to
require paying royalty. For mobile platform such as mo-
bile phone, variable commercialization projects based

on Linux such as Maemo, Moblin, Android, and Palm-
Pre are in progress.

Particularly, when starting with Linux version 2.6,
realtime functionalities[19] such as O(1) Scheduler,
Threaded Interrupt Handling, Preemptible Kernel[8],
Priority Inheritance, High Resolution Timer[5], Tick-
less Timer and Userspace Realtime Mutex[2] have been
added so that they are being used for embedded devices
which require responsiveness as important factor.

For example, Commercial RHEL-RT[18] that its real-
time property is improved by Ingo Molnar[9] who is one
of the realtime system developers, currently working
for Red Hat has been applied for USS Zumwalt (DDG-
1000, U.S. Navy Next-Generation Destroyer) to ensure
that computers response correctly without halt & stop
of computers or failure of synchronization with other
events.

However, when originally development of the Linux
kernel began, it was not designed for the purpose of re-
altime property. That is why Linux may be suitable for
the system that required the soft realtime property, not
the hard realtime property.

Although Linux is continuously being developed to be
closer to the hard realtime property by many open-
source developers[1, 23] non-preemptible critical sec-
tions and interrupt off sections still exist in the RT
patched Linux kernel.

In the case of full HD camcorder, commercial cam-
corders have been developed by adopting RTOSs such
as Vxworks, TronOS instead of Linux for the OS in or-
der to meet realtime property. However, commercializa-
tion was attempted for the full HD camcorders from the
Samsung camcorder S-Series based on the Linux 2.6.29
kernel considering the advantages that the payment for
royalty is not required and the source can be freely mod-
ified.

• 177 •

178 • Deploying Preemptible Linux in the Latest Camcorder

The Samsung camcorder S-Series offer both built-in
Wi-Fi and DLNA connectivity and feature Samsung
AllShare that allows users to easily access, manage,
and share content including their full-HD videos across
other DLNA certified devices. The Samsung full HD
camcorder is commercially available in the worldwide
market.

2 Responsiveness VS. Throughput

The goal of Real Time Operating System(RTOS) is to
provide a predictable and deterministic environment.
The primary purpose is not to increase the speed of the
system[6], or lower the latency between an action and
response, although both of these increase the quality of
a RTOS[14].

Many companies have basically adopted RT patched
Linux kernel for their embedded products recently in or-
der to meet realtime property. When running software
in such a system, tradeoff between responsiveness and
throughput is often found. Otherwise, responsiveness
and throughput are inversely related.

The overhead for realtime preemption is applicable for
these cases [16].

• Mutex operations more complex than spinlock op-
erations

• Priority inheritance on mutex increases task
switching

• Priority inheritance increases Worst-Case Execu-
tion Time(WCET)

And, flexible design allows much better worst case sce-
narios in embedded products.

• Realtime tasks are designed to use kernel resources
in managed ways then delays can be eliminated or
reduced

For example, For recording mass files, if we try to un-
map memory that we allocated with 100MB for record-
ing in camcorder, we have to wait for more than 3sec-
onds to change mode from play mode to recording
mode. This results from the unit of memory unmapped

size when we are recording mass files like camcorder
particularly.

When performing memory unmap with system call to
virtual memory area used by user, it improves real-
time property by reducing the size of non-preemptible
sections associated with the unmap operation through
the minimization of "ZAP_BLOCK_SIZE". However,
the memory unmap operation results in delay due to
the minimized "ZAP_BLOCK_SIZE". In this case, we
recommend that default memory range to unmap allo-
cated memory from 8 pages to 1,024 pages. Figure 1
shows operation comparison between the memory un-
map ranges. We can not find side-effect during the sot-
ware quality assurance test after adjusting this approach
.

The unmap operations were repeated 3,328 times with
8 pages units in order to reset the 100MB of memory,
and check out whether any task with higher realtime
priority is waiting every time unmapping is completed
in each 8 pages units for realtime property. If any task
with higher realtime priority exists, the task preempts
the current task and the memory unmap operation will
be performed again after finishing the task. At the mo-
ment, It takes more than 3 seconds to unmap 100MB of
memory with 8 pages units in our test, and the average
share of CPU during the time accounted for 92% - 98%.

For a camcorder in this paper, as mass files have to
be recorded, memory has to be allocated with 100MB
unit and reset. When changing the boundary between
responsiveness and throughput to 1,024 pages from 8
pages through repeated tests, it showed the most realis-
tic performance. After changing the policy of memory
unmap which changes minimum unit for memory un-
mapping to 1,024 pages, the switching time from play
mode to recording mode in mass production has been
improved from 3 seconds and more to less than 1 sec-
ond. In our experiment, We decided that the best page
size of unmap operation was 1,024 pages without the
more page size like 2,048 pages and 4,096 pages to con-
sider both throughput and responsiveness.

When unmapping 100MB that was allocated for record-
ing video files through the Software Quality Assur-
ance(SQA) test process before and after changing the
unit in camcorders, it showed that the performance of
unmap_page_range() with 1,024 page unit is effective
to solve the memory unmap operation issue is delayed
due to the minimized "ZAP_BLOCK_SIZE".

2010 Linux Symposium • 179

Figure 1: Operation comparison between the memory
unmap ranges

3 Cross Compiler to solve low clock speed

While we prepared for the mass production of the Sam-
sung camcorder, we tried that the clock speed for the
product should be changed from 800Mhz to 600 Mhz
to reduce overall power consumption of camcorder. It
means that the lower clock speed is suitable for com-
mercial product if we can. After the change of the
clock speed is adjusted, Video recording test is failed
on SQA test before production release because of low
clock speed.

3.1 S5PC110 hardware specification

Before explaining the problem, We first presents hard-
ware characteristics of Samsung camcorder. The
S5PC110 is targeted for small form-factor connected de-
vices such as multimedia intensive smart phones in Fig-
ure 2, while the S5PV210 is aimed at portable comput-
ing devices such as netbooks that demand high perfor-
mance and design flexibility.[21]

High speed 3D graphics rendering and high resolu-
tion video support are two key differentiating features
for advanced mobile devices. Both the S5PC110 and
S5PV210 are equipped with a powerful built-in POW-
ERVR SGX 3D graphics engine, licensed from Imag-
ination Technologies, to support sophisticated 3D UI
and high-caliber games. In addition, the two proces-
sors integrate a1080p full HD codec engine that sup-
ports 30fps full HD video playback and recording. A

built-in HDMI1.3 interface allows output of captured or
downloaded mobile multimedia contents to an external
high definition digital display.

Figure 2: S5PC110(Cortex-A8) Architecture map

3.2 How to overcome low clock speed

First of all, We considered software technologies to min-
imize code size and optimized throughput according to
the compiler option tuning, As a result, we passed 68%
with GCC 4.4.3 based tuned toolchain and passed others
with updated AudioZoom engine library. Fortunately,
we overcomed the problem of low clock speed with soft-
ware approaches to observe the development schedule
that we had to work successfully for commericial prod-
uct.

3.3 GCC optimization for performance & code size

This optimization can provide significant increases in
performance and equally significant reductions in code
size for camcorder[4].

The default inline options for camcorder are following.

-finline-functions
-fno-inline-functions-called-once

Below are options that we found via mobile software
platform study like Android[22], Moblin, Maemo. Es-
pecially, Parameters setting is a key driver in perfor-
mance and size optimization. We searched for a config-
uration that reduces size the most using compiler option
search approach.

180 • Deploying Preemptible Linux in the Latest Camcorder

-finline
-fno-inline-functions
-finline-functions-called-once
--param max-inline-insns-auto=50
--param inline-unit-growth=0
--param large-unit-insns=0
--param inline-call-cost=4

• -fno-inline: Don’t pay attention to the inline key-
word. Normally this option is used to keep the
compiler from expanding any functions inline.
Note that if you are not optimizing, no functions
can be expanded inline.

• -finline-functions: Integrate all simple functions
into their callers. The compiler heuristically de-
cides which functions are simple enough to be
worth integrating in this way. Enabled at level ’-
O3’.

• -finline-functions-called-once: Consider all static
functions called once for inlining into their caller
even if they are not marked inline. Enabled at lev-
els ’-O1’, ’-O2’, ’-O3’ and ’-Os’.

• max-inline-insns-auto: When you use ’-finline-
functions’ (included in ’-O3’), a lot of functions
that would otherwise not be considered for inlin-
ing by the compiler will be investigated. To those
functions, a different limit compared to functions
declared inline can be applied. The default value is
50.

• inline-unit-growth: Specifies maximal overall
growth of the compilation unit caused by inlining.
The default value is 30 which limits unit growth to
1.3 times the original size.

• large-unit-insns: The limit specifying large transla-
tion unit. Growth caused by inlining of units larger
than this limit is limited by ’–param inline-unit-
growth’.

• inline-call-cost: Specify cost of call instruction rel-
ative to simple arithmetics operations(having cost
of 1). Increasing this cost disqualifies inlining of
non-leaf functions and at the same time increases
size of leaf function that is believed to reduce func-
tion size by being inlined. The default value is 12.

3.4 Code size comparison among the compilers

Figure 3 is the comparison as to how the size of
userspace library of camcorder changes by each GCC
version. When compiling the source of system library
by using tuned GCC 4.4.3 version, 6.60% of size re-
duction was obtained compared to existing GCC 4.2.0
version in Figure 3.

Figure 3: Code size comparison among the cross com-
pilers

3.5 Arithmetic speed for recording functions

Below is evaluation result among the cross compilers to
solve the low clock speed problem when running record-
ing function. From the test result, the arithmetic speed
of AudioZoom library engine for recoding functions by
using tuned GCC 4.4.3 version was increased by 10%
compared to existing performance speed in Table 1.

• Test environment: Preemptible Linux + Lightweight
root file system for embedded device

• GCC 4.2.X option: -march=armv7 -O3 -ffast-math -
fomit-frame-pointer -funroll-all-loops -pipe

• GCC 4.4.3 option: -finline -fno-inline-functions -
finline-functions-called-once –param max-inline-insns-
auto=50 –param inline-unit-growth=0 –param large-
unit-insns=0 –param inline-call-cost=4

3.6 CPU usage comparison

AudioZoom library performs arithmetic functions and
the largest computing tasks when recording video on the
camcorder. Figure 4 shows CPU usage monitoring re-
sult after moving latest GCC version and optimization.

2010 Linux Symposium • 181

GCC Version CodeSourcery(Lite) CrossTool-0.43 Montavista 5.0 Opensource(tuned)
4.2.1 4.2.0 4.2.0 4.4.3

Binary Size 175,034 175,034 170,377 156,019
1st Test 12,970,182 13,138,915 13,258,427 12,060,383
2nd Test 13,030,439 13,163,295 13,212,784 12,157,852
3rd Test 13,345,300 13,038,169 13,075,400 12,279,066
4th Test 12,889,146 13,353,949 13,171,671 12,277,243
5th Test 13,000,646 13,147,129 13,158,650 12,192,311
Average 13,047,143 13,168,291 13,175,386 12,193,371

Time(normalization) 1 1.009285 1.001402 0.916656

Table 1: Performance result of AudioZoom engine among the cross compilers

Figure 4: CPU usage comparison after improvement

3.7 SQA Test after changing cross compiler

After changing GCC version to 4.4.3, optimizing the in-
line function, and improving "Azoom(AudioZoom)" li-
brary engine for arithmetic process in recording, video
recording for 16 SD cards from different manufactur-
ers was normally performed in Software Quality Assur-
ance(SQA) test though the clock speed of CPU was low-
ered from @800MHz to @600MHz like Table 2.

3.8 GPL license issues

As we all know, Glibc open-source community se-
lected to encourage open-source based commercial
products. Our GCC 4.4.3 based tuned toolchain consists
of Glibc 2.11. Recently, Glibc 2.6.1+ is "LGPLv2+ and
LGPLv2+ with exceptions and GPLv2+". Many com-
panies want to close sources of userspace application of
camcorder for competitiveness thereby selecting LGPL
based Glibc open-source software. We can release our

software with "GCC 4.4.3 + Glibc 2.11" because some
sources of glibc are that defined with GPLV2+ are as
Executable Linking File(ELF) binary for debugging and
configuration setting only without shared object(’x.so’).

When compiling the Glibc source files that GPLv2 is
applied in Glibc 2.11 source, ’x.so’ files for library use
in rootFS(root file system) don’t exist. However, as they
are ELF Binary files for debugging and test, license is-
sue for application codes open doesn’t come out when
using glibc 2.6.1 version or higher to embedded prod-
uct. The source that requires GPLV2 license applied for
shared library(’x.so’) files has not been used so far, as
seen in Table 3. If GPLV2 is adopted to some shared
library(’x.so’) files of the specified version that was up-
dated for new feature and bugfix in the future, another
C library like uClibc, eGlibc, BSD C library should be
considered in order to protect the application codes de-
veloped among the companies for commercial products
from being disclosed.

4 Needs to move the latest Linux version

We use the term backporting to describe the situation
case where we take a fix for a security flaw out of the
most recent version of an upstream software package,
and apply that fix to an older version of the package
we release for server solutions and embedded devices
like RHEL(Redhat Enterprise Linux), Montavista [26],
Windlinux.

Backporting is the action of taking a certain software
modification (patch) and applying it to an older version
of the software than it was initially created for. It is
part of the maintenance step in a software development

182 • Deploying Preemptible Linux in the Latest Camcorder

Maker Type Cap Write(Kb/s) 800Mhz 600Mhz 600Mhz 600Mhz
AudioZoom AudioZoom AudioZoom AudioZoom

Ver 1.18 Ver 1.18 Ver 1.18 Ver 1.22
GCC 4.2.0 GCC 4.2.0 GCC 4.4.3 GCC 4.4.3

(Montavista) (Montavista) (tuned) (tuned)
A-DATA SDHC 8GB 10,556 ok fail ok ok
AnyFlash SDHC 8GB 8,687 ok fail ok ok
imation SDHC 8GB 9,945 ok fail ok ok
imation microSD 8GB 5,981 ok fail ok ok

inx SDHC 8GB 5,876 ok fail ok ok
Jaydisk SDHC 8GB 8,802 ok fail ok ok

Memorette SDHC 8GB 10,343 ok fail fail ok
Memorette SDHC 8GB 7,062 ok fail ok ok
Memory4U SDHC 8GB 8,260 ok fail fail ok
Samsung SDHC 8GB 9,690 ok fail ok ok
Sandisk SDHC 8GB 8,148 ok fail fail ok
Sandisk SDHC 8GB 11,725 ok fail ok ok
Sandisk SDHC 8GB 8,148 ok fail fail ok

Timu SDHC 8GB 10,172 ok fail ok ok
Toshiba SDHC 8GB 5,873 ok fail fail ok
Toshiba SDHC 8GB 10,072 ok fail ok ok

Table 2: Recording test among the 16 SD cards

process. It’s important that we examine how the Linux
kernel source changed recently.[27]

When considering the cost for labor and total costs for
the period of development in regard to R&D for com-
mercial embedded products, change of existing released
kernel version that has been commercialized and well
working into the latest version can be a risk to compa-
nies in terms of stability. For this reason, many embed-
ded product manufacturers are hesitating to change the
existing Linux kernel version to the latest version.

However, if an existing Linux kernel version is applied
for new products, it has a drawback that debugged func-
tions and new kernel features can’t be used. If the fact
that new Linux kernel version is actually released every
couple of months is taken into account, backporting can
be a practical choice as a method for considering both
product stability and new kernel features.

4.1 Case study: BUG: swapper: xxxxxx Error mes-
sage when booting

• Problem: "BUG:swapper: 1 task might have lost a
preemption check!" message.

• Reason: When we enabled ’CON-
FIG_DEBUG_PREEMPT’ feature, Kernel
display the status of preemption mode every times
When booting.

• Solution: Backporting from Linux 2.6.30-RT

4.2 Case study: Allocation error with GCC 4.4.X

• Problem: Relocation error when we compile linux-
2.6.29 Sources with GCC 4.4.3 toolchain (Un-
defined relocation type in Linux kernel module
module.c)
Relocation section ’.rel.text’ at offset 0x1adae0
contains 1960 entries:

Offset Type Sym. Name
00000088 R_ARM_MOVW_ABS_NC jiffies
00000090 R_ARM_MOVT_ABS jiffies
000001f4 R_ARM_MOVW_ABS_NC .LANCHOR
000000200 R_ARM_MOVT_ABS .LANCHOR
000000264 R_ARM_ABS32 .text

• Reason: Linux 2.6.29 don’t define relocation type
in module.c for GCC 4.4.X

• Solution: Backporting from Linux 2.6.30

2010 Linux Symposium • 183

Source files under GPLV2+ Binary file name Description
elf/ldconfig.c, elf/readlib.c ldconfig ELF file
elf/cache.c, elf/chroot_canon.c ldconfig ELF file
nscd/*.c (22files) nscd A Name Service Caching daemon
catgets/gencat.c getcat ELF file to create formatted msg catalog
locale/programs/*.c (38 files) locale, localedef iconv config file

libBrokenLocale.so
posix/getconf.c getconf Binary to get glibc setting information
iconv/dummy-repertoire.c iconv_prog, iconvconfig Iconv ELF file, Iconv config file
iconv/iconv_charmap.c iconv_prog, iconvconfig Iconv ELF file, Iconv config file
iconv/iconvconfig.c iconv_prog, iconvconfig Iconv ELF file, Iconv config file
iconv/iconv_prog.c iconv_prog, iconvconfig Iconv ELF file, Iconv config file
malloc/memusagestat.c memusagestat ELF file
sysdeps/.../linux/nscd_setup_thread.c nscd To create Thread on nscd Daemon

Table 3: Glibc 2.11 source files under GPLV2+

4.3 Case study: Undefined reference to
‘_gnu_mcount_nc’

• Problem: We often enable ’ftrace(function tracer)’
feature for tracing internal behavior of Linux. But
We can’t compile Linux 2.6.29 with GCC 4.4.X

...undefined ref to ‘__gnu_mcount_nc’

...undefined ref to ‘__gnu_mcount_nc’

.../mach-c110/built-in.o: In function

...undefined ref to ‘__gnu_mcount_nc’

...undefined ref to ‘__gnu_mcount_nc’

...more undefined ref to
‘__gnu_mcount_nc’ follow
make: *** [.tmp_vmlinux1] Error 1

• Reason: Since GCC 4.4’s the name and calling
convention is changed for function profiling like
ftrace on ARM.

• Solution: Backporting from http://
marc.info/?l=linux-arm-kernel&m=
124946219616111&w=2 to support new EABI
compatible profiler __gnu_mcount_nc. With this
patch both types are supported. Since the first
submission We folded in the EXPORT_SYMBOL
changes by Anand and removed the question mark
after "gcc 4.4". (Using __gnu_mcount_nc was
introduced in r140974 to gcc- Fix ARM EABI
profiling.)

4.4 Case study: Compiler error of Linux-2.6.29-RT
with SLUB features

• Problem: We can’t boot Linux kernel that patched
Ingo’ RT-Patch with SLUB(Unqueued Allocator)
features by default.

• Reason: This reason is summarized by Jonathan
Corbet on Oct-03-2007. Quite a few other changes
can be found in this tree. The SLUB allocator is not
an option for Realtime kernels. Instead, this tree
uses a modified version of the slab allocator which
replaces interrupt-based single-CPU locking with a
set of specific per-CPU locks.

The global files_lock has been removed in favor of
tightly-locked per-CPU lists. To help with the cre-
ation of such lists, a new locked-list type has been
added. The tasklet code has been reworked for bet-
ter threading, but the tasklet elimination patch is
not present. There’s also quite a few architecture-
specific patches adding various features (such as
clock_events) needed by the Realtime tree and fix-
ing problems.

• Solution: Understanding the Realtime tree about
SLUB/SLAB[11]

5 IRQ Handler

Under Linux, hardware interrupts are called IRQ’s (In-
terrupt Requests).[17] There are two types of IRQ’s,

184 • Deploying Preemptible Linux in the Latest Camcorder

short and long. A short IRQ is one which is expected
to take a very short period of time, during which the
rest of the machine will be blocked and no other inter-
rupts will be handled. A long IRQ is one which can take
longer, and during which other interrupts may occur but
not interrupts from the same device. If at all possible,
it’s better to declare an interrupt handler to be long.

When the CPU receives an interrupt, it stops whatever
it’s doing, saves certain parameters on the stack and calls
the interrupt handler.

This means that certain things are not allowed in the in-
terrupt handler itself, because the system is in an un-
known state. The solution to this problem is for the
interrupt handler to do what needs to be done immedi-
ately, usually read something from the hardware or send
something to the hardware, and then schedule the han-
dling of the new information at a later time (this is called
the "bottom half") and return. The kernel is then guar-
anteed to call the bottom half as soon as possible – and
when it does, everything allowed in kernel modules will
be allowed.

How can we run IRQ Processing with preemptible linux
on camcorder? The realtime for Linux patchset does
not guarantee adequate realtime behavior for all target
platforms. When using realtime Linux on a new plat-
form you should expect to have to tune the kernel and
drivers to provide performance that matches your spe-
cific requirements.[3]

In our case, Camcorders have to finish hard IRQ pro-
cessing most rapidly after HARD IRQ need Realtime
characteristics obtain CPU resources above all. And, an
architect designed to work lightweight tasks as hardware
about video decoding.

If we consider realtime characteristics about entire sys-
tem in general, threaded hard interrupt is a good choice.
But, we have to proceed Hard Interrupt case most
rapidly in our Camcorder. Otherwise, our camcorder has
to support realtime responsiveness assurance that don’t
must delay Hardware Interrupt in Figure 5.

For example, when we connect interface between Dig-
ital TV and HDMI(High-Definition Multimedia Inter-
face), communication start between DDC(Display Data
Channel) and I2C. If the delay happen when IRQ hap-
pen, abnormal data transfer often happen by timeout on
Samsung Digital TV.

High Priority Task

Interrupt
Handler

Interrupt

Priority
Inheritance

High Priority Task

Interrupt

Threaded
Interrupt

wake_up(thread)

schedule()

Interrupt
Handler

Don’t delay
in our camcorder

Figure 5: Area for preventing Hard IRQ Delay in Sam-
sung camcorder

"Thread Hardirqs" option reduces the latency of the ker-
nel by "Thread Hardirqs". This means that all hardirqs
will run in their own kernel thread context. While this
helps latency, this feature can also reduce performance.
We don’t enable "Thread Hardirqs" in our Camcorder
for lightweight Hard IRQ processing at "make menu-
config" menu.[13]

We measured IRQ execution time to decide fi-
nally before we disable "Hard thread IRQ" fea-
ture in Table 4. For test, we save the execution
time with do_gettimeofday() in asm_do_IRQ, run
"target> cat /proc/interrupts" after modify-
ing show_interrupt(). At the Table 4, ’Deadline(RT-
irq)’ field means RT-irqs that don’t have to be delayed
by the higher priority task during the IRQ processing.

6 Further Enhancements

"Complete Preemption Mode" does not mix with 3rd
Party’s binary kernel modules in our development for
commercial full HD camcorder.

We selected "Preemptible Mode" because of 3rd Party’s
preemptible device driver verification issues. In order
to further reduce the impact of human error on driver
reliability, we will consider "device drivers verification
process" of third party for improved realtime character-
istics as further enhancements on next products.

2010 Linux Symposium • 185

According to the NICTA research, Figure 6 shows a
summary of their study of 500 bugs found in Linux de-
vice drivers.[12]

Figure 6: Summary of bugs found in Linux device
drivers

We focus on three types of bugs. device protocol viola-
tions, i.e when the driver behaves in a way that violates
the required hardware protocol, and concurrency bugs,
i.e. race conditions and deadlocks resulting from incor-
rect synchronization of OS threads inside the driver[10],
and OS protocol violations, i.e. situations when the
driver fails to behave the way the OS expects it to. The
common property of these types of bugs is that both
of them are related to how the driver interacts with the
OS.[20]

Where do bugs come from?

• > 70% of the kernel code is in drivers.

• Drivers contain 3x - 7x bugs per loc compared to
the rest of the kernel.

Since device specifications are independent of any op-
erating system, drivers for different systems can be syn-
thesised from a single device specification. As a result,
the likelihood of errors due to incorrect specifications
will be reduced because these specifications are shared
by many drivers[15].

7 Conclusions

In contrast to the origianl Linux for non-realtime envi-
ronment, embedded developers often need a high level
concurrency in their thread application based on real-
time priority, with predictable application response to
system events rapidly.

Camcorder system requires realtime operating system
for deterministic control and rich operating system for
running camcorder applications (e.g: wireless, tcp/ip
protocol) and exploiting legacy libraries.

Linux kernel subsystem for Camcorder’s recording is
implemented using memory unmapping approach for
realtime control of recording mode and play mode. And,
We figiured out needs to move the lates Linux and GCC
version according to the experience of backporting from
recent version for the enhancement and bug fixes we
need is always in the next revision.

Camcorder specific realtime application logic is im-
plemented with many threads in NPTL(Native Posix
Thread Library[25]) model based userspace with prior-
ity queuing, robust FUTEX[24], priority inheritance[7].

For commercial Camcorder, Linux with proper tuning
showed satisfactory performance for a preemptible linux
based Camcorder system including RT-patch of Ingo
Molnar and others. Application of low latency and pre-
emptible kernel patches make it possible to record video
files normally.

References

[1] Real-Time Linux Wiki. Project site:
http://rt.wiki.kernel.org.

[2] RT-mutex subsystem with PI support. Linux
kernel documentation:
kernel/Documentation/rt-mutex.txt.

[3] Sony Frank Rowand. Adventures in real-time
performance tuning. In Embedded Linux
Conference, 2008.

[4] FSF & GNU. GCC 4.4.4 online documentation,
April 2010.

[5] Thomas Gleixner and Douglas Niehaus. Hrtimers
and beyond: Transforming the linux time
subsystems. In Ottawa Linux Symposium, 2006.

[6] Darren V. Hart. realtime linux latency
comparisons. In Ottawa Linux Symposium, 2007.

[7] Ingo Molnar. PI-futex. people.redhat.com:
http://lwn.net/Articles/102216/.

[8] Ingo Molnar. remove the Big Kernel Lock, this
time for real. Linux kernel mailing list:
http://lwn.net/Articles/102216/.

186 • Deploying Preemptible Linux in the Latest Camcorder

[9] Ingo Molnar. RT-patch. Index of /mingo/realtime-
preempt:http://www.kernel.org/pub/
linux/kernel/projects%/rt/.

[10] Jonathan Corbet. Driver porting: completion
events. Linux Weekly News:
http://lwn.net/Articles/102216/.

[11] Jonathan Corbet. What’s in the Realtime tree.
Linux Weekly News:
http://lwn.net/Articles/102216/.

[12] Ihor Kuz Leonid Ryzhyk, Peter Chubb and
Gernot Heiser. Dingo: Taming device drivers. In
Proceedings of the 4th EuroSys Conference,
Nuremberg, Germany, 2009.

[13] Linus Tovalds. The Linux Kernel Archives.
kernel.org: http://www.kernel.org.

[14] Paul E McKenny. ’real time’ vs ’real fast’: How
to choose? In Ottawa Linux Symposium, 2008.

[15] Microsoft. Architecture of the kernel-mode driver
framework(KMDF),2006/2007, 2007.

[16] Montavista. Real-time Application Programmer’s
Guide, 2009.

[17] Peter Jay Salzman. The Linux kernel Module
Programming Guide. TLDP: http:
//tldp.org/LDP/lkmpg/2.4/html/.

[18] Redhat. Red Hat Enterprise MRG 1.2 Realtime
Tuning Guide, 2009.

[19] Steven Rostedt. Internals of the rt patch. In
Ottawa Linux Symposium, 2007.

[20] Leonid Ryzhyk. On the construction of reliable
device drivers. In PhD Thesis, School of
Computer Science and Engineering, University of
NSW, 2010.

[21] SAMSUNG. SAMSUNG Opens the Door to
PC-Level Performance on Mobile Devices with
1Ghz Low-power Application Processors.
Samsung News:
http://www.samsung.com/global/
business/semiconductor/newsView.
do?news_i%d=1043.

[22] Shih-wei Liao. Smaller and Faster Android.
COSCUP(Conference for Open Source Coders,

Users and Promotoers): http:
//coscup.org/2009/zh-tw/program/.

[23] Thomas Gleixsner. Cyclictest.
http://rt.wiki.kernel.org/index.
php/Cyclictest.

[24] Ulrich Drepper. Futexes Are Tricky.
people.redhat.com: http://people.
redhat.com/drepper/futex.pdf.

[25] Ulrich Drepper. The native POSIX Thread
Library for Linux. people.redhat.com:
http://people.redhat.com/drepper/
nptl-design.pdf.

[26] Klaas van Gend. Using realtime linux common
pitfalls, tips & tricks. In Embedded Linux
Conference, 2008.

[27] Wikipedia Contributors. Backporting
terminology. Wikipedia, the free encyclopedia:
http://en.wikipedia.org/wiki/
Backporting.

2010 Linux Symposium • 187

IRQ No. Deadline(RT-irq) Chip Name Action Name Description
16 - s3c-uart s5pc100-uart UART ch0 RX
18 - s3c-uart s5pc100-uart UART ch0 TX
26 - s3c-uart NULL UART ch2 TX
45 500(Passed) s3c_vic_eint hpd HDMI Hot Plug Detect
50 - sVIC PDMA0 Physical DMA Ch-0
51 900(Passed) VIC PDMA1 Physical DMA Ch-1
52 - VIC samspi-dma SPI DMA
53 - s3c-timer pwm-tick pwm timer0 for log key
54 - s3c-timer pwm-tick pwm timer1 for time-print
55 - s3c-timer pwm_timer2 pwm timer2 for hrt clock_source
57 - s3c-timer pwm_timer4 pwm timer4 for hrt tick-timer
73 - VIC Pata ATA
74 - VIC 3D 3D
76 - VIC HDMI HDMI
79 - VIC sam-spi spi ch 0
80 - VIC sam-spi spi ch 1
81 - VIC sam-spi spi ch 2
83 - VIC s3c2410-i2c.2 i2c ch2 for audio-DAc
88 - VIC s3c-udc usb OTG
93 - VIC s3c-csis MIPI
96 - VIC s3cfb LCD[0]
97 500(Passed) VIC s3cfb LCD[1]
101 100(Passed) VIC s3c-fimc0 fimc0
102 100(Passed) VIC s3c-fimc1 fimc1
103 100(Passed) VIC s3c-fimc2 fimc2
104 - VIC s3c-jpg jpeg
106 - VIC PowerVR ad converting
107 100(Passed) VIC s5p-tvout tv mixer
109 100(Passed) VIC s5p-ddc i2c ch1 for HDMI ddc
110 - VIC s3c-mfc mfc
112 - VIC s3c-i2s-v50 i2s v50 for audio ch0
113 - VIC s3c-i2s-1 i2s for audio ch1
118 - VIC s5pc1xx_spdif spdif
130 500(Passed) VIC MMC0 mmc0 for wireless lan
131 - VIC s5p-cec HDMI CEC

Table 4: Deadline measurement result of IRQs that need realtime characteristic after disabling "Hard thread IRQ"
.

188 • Deploying Preemptible Linux in the Latest Camcorder

User Space Storage System Stack Modules with File Level Control

Sumit Narayan
Dept. of E.C.E.

Univ. of Connecticut, USA
sumitn@engr.uconn.edu

Rohit K. Mehta
E.C.S., School of Engineering

Univ. of Connecticut, USA
rohitm@engr.uconn.edu

John A. Chandy
Dept. of E.C.E.

Univ. of Connecticut, USA
chandy@engr.uconn.edu

Abstract

Filesystem in Userspace (FUSE) is a typical solution
to simplifying writing a new file system. It exports
all file system calls to the user-space, giving program-
mer the ability to implement actual file system code in
the user-space but with a small overhead due to con-
text switching and memory copies between the kernel
and the user-space. FUSE, however, only allows writ-
ing non-stackable file systems. The other alternative
to simplify writing file system code is to use File Sys-
tem Translator (FiST), a tool that can be used to de-
velop stackable file systems using template code. FiST
is limited to the kernel space and requires learning a
slightly simplified file system language that describes
the operation of the stackable file system. In this work,
we combine FUSE with FiST and present a stackable
FUSE module which will allow users to write stackable
file systems in the user-space. To limit the overhead
of context switching operations, we provide this mod-
ule in combination with our previously developed AT-
TEST framework that provides ways to filter files so that
only those with specific extended attributes are exported
to the user-space daemon. Further, these attributes can
also be exported to user-space where multiple functions
can behave as stackable modules with dynamic order-
ing. Another advantage of such a design is that it al-
lows non-admin users to have stackable file system im-
plemented and mounted, for example, on their respec-
tive home directories. In our experiments, we observe
that having stackable modules in user-space has an over-
head of around 26% for writes and around 39% for reads
when compared to the standard stackable file systems.

1 Introduction

The file system is often seen as one of the most critical
part of an operating system. It handles the task of storing

and organizing user files and their data on the underly-
ing storage devices. It is comprised of very complex C
kernel code which takes several months to develop and
stabilize and is usually written for a particular operat-
ing system platform. The file system code must interact
with the operating system’s virtual file system manager
to receive system calls from the user-space, with virtual
memory manager for page allocation and memory man-
agement within the kernel and with the virtual device
layer to communicate with the storage devices and store
data. This makes the file system code remarkably com-
plex to understand and very hard to develop. An aver-
age modern file system is comprised of around 50,000–
60,000 lines of code and supports a variety of features,
such as B-tree based search, flexible data extents, access
control lists, extended attributes, etc. [28]. This low-
level kernel code is very difficult to program and is often
the origin of bugs in a storage system [9, 17]. To add
any new feature in a file system, a programmer needs
to have a thorough understanding and working of the
file system. Apart from programming, providing sup-
port and maintenance for such large and complex file
systems with several features and diverse mount options
is also very hard. Thus, file system development and
maintenance is always considered to be the work of the
select few who have a very deep knowledge of the file
system and also the operating system.

Several techniques have been suggested to simplify the
process of file system development. To address the need
to quickly develop and incorporate new features in an
existing file system, the Linux kernel has provisions for
implementing stackable file systems. Stackable file sys-
tems [21, 10] give developers a quicker way to add new
features to a file system through an extensible file sys-
tem interface. It reduces the complexity of developing a
newer file system, in that it allows features to be added
incrementally in steps instead of creating a new file sys-
tem from scratch, or modifying an existing one. How-
ever, to obtain the best performance, these file systems

• 189 •

190 • User Space Storage System Stack Modules with File Level Control

are tightly integrated into the Linux kernel or are de-
signed and developed to run as a kernel module, thus
requiring the uphill task of understanding the kernel be-
fore starting to develop a file system. File System Trans-
lator (FiST) [27] is a file system generation tool that
simplifies the task of creating stackable file systems by
generating most of the code from a standard file system
template. The programmer is required to provide code
only for the main functionality of the file system, which
is then called from another code written in FiST lan-
guage and fed to the FiST file system generation tool.
The resulting code can then be inserted into a live sys-
tem as a loadable kernel module. However, the sim-
plified coding now requires learning a new file system
template language.

Kernel-space file systems are not always the best way to
develop a file system and suffer from several drawbacks.
They cannot be ported across different platforms and
they also do not provide any options for non-privileged
users to mount a file system. File system in User Space
(FUSE) is another solution to simplify writing a file sys-
tem and can be ported across different operating system
platforms. It has been integrated into the Linux kernel
tree and has ports available for other major operating
systems. FUSE exports all file system calls within the
kernel to the user-space through a simple application
programming interface (API) by connecting to a dae-
mon that is running in the user-space. FUSE provides
a good way to write virtual file systems, in that the file
systems do not store any data themselves. Writing a file
system in user-space is several folds easier when com-
pared to writing a kernel-space file system. FUSE also
has provisions to permit non-privileged users to mount
FUSE-based file systems. These user-space file sys-
tems however come with a small overhead due to con-
text switches and memory copies made during the data
transfer operations [25, 26].

As discussed above, FiST and FUSE are two very com-
mon solutions to simplify the process of writing file
systems. But, as observed, performance, portability
and availability to non-privileged users, all cannot be
achieved together. In this work we propose a stackable
FUSE architecture that will allow developing stackable
file systems in user-space. And to limit the overhead
due to context switching between the kernel space and
user-space, we propose to combine this stackable FUSE
design with ATTEST, an attribute-based storage frame-
work that allows defining policies to filter files and thus

User Process

Virtual File System

Stackable file
system

File System (Ext2/Ext3/JFS/Reiserfs/XFS)

User space

Kernel space

Figure 1: Stackable file systems.

file system operations on a per-file or per-directory ba-
sis [15].

The remainder of this paper is organized as follows.
Section 2 discusses the stackable file system model,
while Section 3 describes the FUSE architecture. Sec-
tion 4 describes the previously developed ATTEST
framework for an extendable storage system. In Sec-
tion 5, we provide details of our design for stackable
FUSE module, Section 6 gives a brief description of our
implementation approach and Section 7 shows the per-
formance results. Section 8 is an overview of the related
work. We end this paper with a section on our conclu-
sions and proposed future work.

2 Stackable File Systems

The idea of stackable or layered file systems was
adapted from the vnode interface first implemented on
SunOS in 1984 [12]. Stackable file systems [20, 21,
24, 22] are stand-alone file systems that can be mounted
on top of an existing file system mount point. Figure 1
shows the typical arrangement of a stackable file sys-
tem present between the Virtual File System (VFS) and
a lower-level file system, which may or may not be a
device-based file system. The advantage of developing
a stackable file systems is that they can be used to ex-
tend the functionality of an existing file system without
changing the code of the original file system. A stack-
able file system creates a vnode with its own operations
that is inserted on top of the vnode belonging to the un-
derlying file system. This allows a stackable file system
to perform operations in between the VFS and the lower
file system calls. For example, an encryption process

2010 Linux Symposium • 191

can take place before the data is written on the lower file
system, or, a decryption function can be run after the
data is read from the lower file system. Stackable file
systems can be used to add many functionalities such
as compression, encryption, caching, etc. to an exist-
ing file system. Other examples of stackable file sys-
tems include WrapFS [26], UnionFS [18], RAIF [11],
AVFS [14], etc.

fistgen is a set of File System Translator (FiST) language
and tool that allows a developer to create a stackable file
system by only describing the core functionalities of the
file system [27]. The file system generator tool, gener-
ates the code for a file system that can be directly loaded
as a kernel module into a live Linux system. To add
some of the functionalities in FiST, however, requires
learning a new language. Since loading a kernel mod-
ule in a system is restricted to privileged users only, file
systems generated using FiST can only be used if in-
serted into the system previously by an administrator or
a privileged user.

3 File system in User space (FUSE)

Filesystem in Userspace (FUSE) is a combination of a
user-space library and a kernel module for Unix-like op-
erating systems that allows non-privileged users to cre-
ate their own file systems without editing the kernel
code [2]. This is achieved by running the file system
code in user-space, while the FUSE module only pro-
vides a bridge to the actual kernel interfaces through a
set of APIs. FUSE’s kernel module simply redirects the
Virtual File System (VFS) calls to the user-space dae-
mon. Figure 2 shows the internal architecture of FUSE.
Several FUSE-based file systems are already in com-
mon use. FUSE can be particularly useful in providing
a POSIX interface for files which are accessible over the
network through different network protocols. Some of
the file systems based on such a design are sshfs [6],
httpfs [3], CurlFtpFs [1], etc. FUSE file systems are
easier to maintain since they run in user-space. They are
also easier to code and debug compared to the kernel
file systems. Running file system in user-space also im-
plies access to more libraries. Thus, FUSE file systems
can be written in any language that has a binding to the
FUSE libraries, including Ruby and Python.

However, file systems created using FUSE are always
the lowest file system in the storage stack. This means
that all FUSE requests must return from the FUSE

ls -l /mnt/fuse

glibc

Virtual
File

System
(VFS)

FUSE

NFS

EXT3

glibc

libfuse

User-space file
system code

User-space

Kernel-space

Figure 2: FUSE architecture showing kernel module and
user-space library.

layer to the user-space applications without going to the
lower-level file system within the kernel, similar to a
stackable file system. Thus, FUSE, in its current form is
not a solution for developing a stackable user-space file
system.

4 ATTribute-based Extendable STorage (AT-
TEST)

ATTEST is an attribute-based extendable storage frame-
work that allows policy decisions to be made at file-level
granularity and at all levels of the storage stack through
the use of file’s, or directory’s extended attributes [15].
These attributes can be used to enable or disable stack-
able file systems thus behaving like plugins and also al-
low the user to define rules to identify redundancy or
throughput requirements on per-file basis to select the
device for storing data. ATTEST allows user to set de-
fine file-based rules or directory-based policies that will
selectively enable or disable options at each layer within
the storage system stack. The rules set on a file are
stored in the file’s extended attributes and move with the
file while directory-based policies are set on all files cre-
ated under it. By allowing per-file attribute-based poli-
cies, it becomes possible to implement storage policies
on a much smaller granularity. The ATTEST framework
also pushes these attributes to the operating systems’
storage device layer called the logical volume manager

192 • User Space Storage System Stack Modules with File Level Control

User Process

Virtual File System

Cache

Encryption

Compression

Backup

File System (Ext2/Ext3/JFS/Reiserfs/XFS)

Device Mapper (LVM)

RAID

5

RAID

0

Regular

Disk
Tapes

User space

Kernel space

The plugins are enabled
and disabled depending

on attributes set by the user.

A user can by-pass any
of these plugins on a
per-file basis by setting
extended attributes on

the file.

SSD

Figure 3: ATTEST architecture with cache, encryp-
tion, compression, backup plugins and RAID-5, RAID-
0, regular disk, SSD and tapes.

(LVM). This allows the user to also pass a file’s proper-
ties and its data redundancy or throughput requirements.
ATTEST framework will then select the device based
on those attributes to store data blocks belonging to that
file.

The ATTEST framework was designed with the objec-
tive to include computationally expensive, but necessary
functionalities at the file system layer, or in the device
manager layer under a single file system mount-point
but with user-controlled rules or policies to determine
which files or directories will really be applying them.
Such a scheme would allow including functionalities
in file systems which are otherwise typically ignored
simply to avoid distributing their computation overhead
across all files present on the file system. Typical ex-
amples of such functionalities include encryption, com-
pression, redundancy, etc.

5 Stackable FUSE

As already mentioned, FiST and FUSE are techniques
to design new file systems with lower learning curve as

User Process

VFS

sfuse

sfuse library

Lower File System
(EXT3 / JFS / XFS)

Disk

sfuse file system

User-space

Kernel space

Figure 4: Operation flow in sfuse with a user-space sfuse
file system.

compared to writing a standard kernel-level file system
from scratch. FiST helps by extending functionalities
of an existing file system while FUSE allows easy pro-
gramming and maintenance of file system in the user-
space. FUSE also provides the ability for non-privileged
users to mount file systems and use it.

In this work, we propose a new stackable file system
module called sfuse that will provide users with a FUSE-
like interface in user-space to write their own file sys-
tem in the user-space. The added advantage of sfuse and
the difference compared to FUSE is that it will provide
stackability similar to that available using FiST. Thus,
data in all I/O operations will be sent to the user-space,
copied or modified, and returned to kernel-space to be
pushed to the lower-level file system. Since a FUSE-
based file system have a cost due to context switching
and memory copies, we plan to extend the idea of AT-
TEST and limit the overhead only to files that require
the user-space functionality implemented in the file sys-
tem.

There are several advantages of porting file system
stackability to the user-space. One of the main advan-
tages is that such a scheme would allow any user on the
machine to mount a stackable file system without the
need of administrator privileges. Along with stackabil-
ity, per-file control on the files will allow the user more

2010 Linux Symposium • 193

control on how the files are treated. sfuse also avoids
the need for the user to understand the FiST language in
developing a stackable file system. Figure 4 shows the
operation flow with a sfuse-based file system present in
the user-space. In case of READ, the data would flow
away from the lower file system, while during WRITE
operation, the data would flow towards the lower-level
file system. Section 6 provides more detail on the inter-
nals of the sfuse file system module.

6 Implementation

We implemented our stackable FUSE-like file system
sfuse on Linux kernel version 2.6.24. We started by first
creating a stackable base file system basefs using FiST.
We used a patched source of FiST version 0.2.1 to create
the stackable file systems which was compatible with
the Linux kernel version present on our machine. sfuse
is designed to export all file system operations to the
user-space daemon, similar to the default FUSE mod-
ule. To export I/O functions to the user-space daemon,
we modified the user-space FUSE library to receive re-
quests from the kernel even without any previous file
OPEN operation. All I/O requests are forwarded to the
user-space file system, irrespective of whether an OPEN
operation was performed on that file. This is in con-
trast to FUSE, where an I/O operation can be performed
only after an OPEN call is made. This step is required
in FUSE to open the actual file on the ported file sys-
tem and obtain a file handle in the user-space. The file
handle information is later used in identifying the file
on which I/O needs to be performed. In sfuse, the file
is actually opened within the sfuse’s Linux kernel mod-
ule and multiple operations on the same file are handled
within the kernel module.

A user may however also opt to also use the exported
OPEN function in the user space, depending on the re-
quirement of the stacked file system. As an example,
for a simple encryption file system, encode and decode
functions can be run without having any knowledge of
the file handle. In another case, if the stackable file
system is designed to count number of times a file is
opened, OPEN functions will have to be implemented
in the user-space.

To implement stackability in FUSE, we also require the
user-space FUSE library to return the request data buffer
back to the kernel after performing the stack function.
This is done in the same way as any write operation

would be performed in FUSE module. File systems de-
veloped based on sfuse are mounted in the same way as a
FUSE-based file system. The mount binary file requires
two parameters – the mount point directory and the di-
rectory which needs to have the stacked functionality on
top of it. In the kernel, data structures for storing the
file system’s private information must include informa-
tion regarding the lower-level file system along with the
connection pointers of the user-space FUSE daemon.

The user can control the files which must be exported
to the user-space by using ATTEST. The user can lay
rules or set policies for each file by directly setting the
file’s extended attributes, or by including the rules in
the ATTEST config file. More details on how to set the
rules and policy in an ATTEST framework is explained
in [15]. Stackable FUSE also allows attributes set by the
ATTEST framework to be passed from the kernel-space
to the user-space as tags along with any I/O request.
This will allow the user to perform dynamic ordering
of multiple stacked functions in the user-space without
going back into the kernel-space.

Our current implementation only supports synchronous
operations. This means that all operations can return
to the kernel space only after the user-space functions
have returned. As part of our future work, we plan to
support asynchronous operations in sfuse library, which
will allow the requests to be appended to a queue in the
user-space file system. This queue will be cleaned by a
thread running continuously on the system. One place
where such a mechanism can be very useful is in per-
forming lazy data backup and deduplication on a per-file
or a per-directory basis. With the assistance of ATTEST
rules, the user can also define policies, such as, if the
files need to backed up after compression, or encryp-
tion, or neither.

7 Results

We evaluated the performance of sfuse by running IO-
Zone [4], a popular benchmarking tool that performs
synthetic read/write tests to determine the throughput of
the system over a variety of file system configurations.
We conducted our experiments on a 1.8 GHz dual-core
dual processor AMD Opteron machine with 2 GB RAM
and two 40 GB hard disk drives running Linux kernel
2.6.24. The experiment was run for a file size of 2 GB
with record size set to 128 KB. Figure 5 shows the re-
sults with overhead of using sfuse compared to other file
system configurations.

194 • User Space Storage System Stack Modules with File Level Control

 0

 5000

 10000

 15000

 20000

 25000

 30000

Local File
System

basefs
(FiST)

fusexmp basefs
(sfuse)

Encrypt
(kernel)

Encrypt
(user-space)

T
h
ro

u
g
h
p
u
t

(K
B

p
s
)

WRITE
READ

Figure 5: Throughput comparison for different setup of
file system using IOZone benchmarking tool on a 2 GB
file and record size of 128 KB.

We first ran IOZone on a default EXT3 formatted non-
root partition to obtain the base performance of the sys-
tem without any stacks. Next, we ran IOZone on basefs,
a stackable file system generated by FiST. basefs is an
empty file system in that it simply forwards all calls
to the lower-level file system. By running IOZone on
basefs, we evaluate the overhead of including a stack-
able file system between VFS and disk-based file system
such as EXT3. basefs is available along with the source
code of fistgen. From Figure 5, we can see that includ-
ing an empty stackable file system has a very negligible
overhead.

Our third experiment was run on a fusexmp file system
mount. fusexmp is a FUSE-based file system that simply
mirrors the root directory of the system on the mounted
directory. It is available freely along with the FUSE
source code [2]. Our experiments confirm the overhead
that is expected to be present on any FUSE-based file
system due to memory copies between user-space and
the kernel-space. We observed almost 10% overhead
for writes and slightly less than 15% for reads in this
test. Our fourth setup was an empty file system similar
to basefs, but set up in sfuse. This file system simply
returned the request back to the kernel space without
doing anything to the transferred data. We conducted
this experiment to observe the real overhead of context
switching and memory copy operations. In our experi-
ments, we observed an overhead of around 8% for writes
and around 5% for reads when compared to the local file
system.

Our fifth experiment was done on a slightly modified

version of cryptfs stackable file system available with
the fistgen source code. We disabled the encryption of
file names in cryptfs and only allowed data block en-
cryption. We implemented the same encryption algo-
rithm in user-space and implemented a sfuse file sys-
tem for it. We observed almost 26% overhead for writes
and around 39% overhead for reads by porting the code
to the user-space. The overhead in this case is primar-
ily because of context switching between the user-space
and kernel space. The data buffer memory is copied
two times in each I/O operation for each direction of the
data flow, i.e., once from the kernel to the user-space,
and then, from the user-space back to the kernel space.
This overhead also comes from several other aspects
within the operating system like processor registers that
need to be saved and restored, cache entries that need
to be evicted and reloaded for the incoming processes,
etc. [13, 19].

While the overhead in our experiments are certainly
non-negligible and casts doubt over the need to port
file systems into the user-space, we remind the reader
the benefits such as the ability for non-administrator ac-
counts to control their data, simpler programming and
debugging in user-space with FUSE bindings available
in many programming languages other than C and per-
file granularity control sufficient to make this a useful
solution. Further, our sfuse code has not been highly
optimized and could be improved significantly to lower
this overhead.

8 Related Work

Significant effort has been put into providing users with
control of their data in terms of where their data is
placed in the storage system. Redundant Array of In-
dependent Filesystems (RAIF) [11], for example, is a
stackable file system that allows user to define rules to
determine data placement policy. RAIF allows users
to distribute data across different file systems and de-
fine redundancy across it. UmbrellaFS [8] is another
solution that allows the users to define distribution pol-
icy, but across different devices with each device having
their own redundancy and throughput limitation. AT-
TEST differs from these existing solutions, in that AT-
TEST allows rules that enable or disable stackable plug-
ins mounted in the system by the administrator and also
allows the user to define rules on data placement by se-
lecting underlying storage devices, each with their own
redundancy or throughput characteristics.

2010 Linux Symposium • 195

Apart from FUSE, there also exist other solutions to
writing file systems in user-space. UserFS [7] was an
idea proposed in 1993 which exported file system re-
quests to the user-space through a file descriptor. puffs
is an export of FUSE-like library on the NetBSD oper-
ating system [5].

However, all these solutions limit themselves by either
allowing the user only to decide where the data is stored
or not providing stackability in the file system. To the
best of our knowledge, we know of no solution that pro-
vides the users a mount point interface that will allow
the user to modify or copy the data in a stackable fash-
ion without the need for having any root-privileges.

9 Conclusions and Future Work

In this paper, we have presented a stackable user-based
file system model which can be controlled based on
user defined rules. Most of the existing file systems
make compromise on adding costly functionalities be-
cause there is no way to make policy decisions at a finer
granularity. In this work, we reinforce our commitment
to providing users more control over policy decisions
on the files by using ATTEST. Stackable file systems in
user-space opens up a variety of opportunities to design
file systems. However, the stackability of these file sys-
tems are expensive due to context switching. By using
the ATTEST framework, we can select files and enable
stackability and absorb the overheads only for files that
require the stackable functions enabled.

In the future, we plan to implement a stackable module
in the LVM layer that will send data blocks present at the
disk level to the user-space daemon in a similar fashion.
This can be used to write user-spaced disk block ma-
nipulation functions such as data deduplication or snap-
shotting. Such a design will also allow users to write
their own disk layout algorithms [23, 16] from the user
space.

References

[1] CurlFtpFS - a FTP filesystem based on cURL and
FUSE.
http://curlftpfs.sourceforge.net/.

[2] FUSE: Filesystem in user space.
http://fuse.sourceforge.net.

[3] HTTP filesystem.
http://httpfs.sourceforge.net/.

[4] IOZone. http://www.iozone.org.

[5] puffs - pass-to-userspace framework file system.
http://www.netbsd.org/docs/puffs/.

[6] SSH filesystem. http:
//fuse.sourceforge.net/sshfs.html.

[7] Jeremy Fitzhardinge. Userfs. http:
//www.goop.org/~jeremy/userfs/.

[8] John A. Garrison and A. L. Narasimha Reddy.
Umbrella file system: Storage management across
heterogeneous devices. In ACM Transactions on
Storage, volume 5, New York, USA, March 2009.

[9] Jim Gray. A census of tandem system availability
between 1985 and 1990. IEEE Transactions on
Reliability, 39(4):409–418, October 1990.

[10] John S. Heidemann and Gerald J. Popek. File
system development with stackable layers. In
ACM Transactions on Computer Systems,
volume 12, pages 58–89, February 1994.

[11] Nikolai Joukov, Arun M. Krishnakumar,
Chaitanya Patti, Abhishek Rai, Sunil Satnur,
Avishay Traeger, and Erez Zadok. RAIF:
Redundant array of independent filesystems. In
IEEE Conference on Mass Storage Systems and
Technologies, pages 199–214, San Diego, CA,
September 2007.

[12] S. R. Kleiman. Vnodes: An architecture for
multiple file system types in Sun UNIX. In
Proceedings of the Summer USENIX Technical
Conference, pages 238–247, Atlanta, GA, 1986.

[13] Chuanpeng Li, Chen Ding, and Kai Shen.
Quantifying the cost of context switch. In
Workshop on Experimental Computer Science,
San Diego, CA, 2007.

[14] Yevgeniy Miretskiy, Abhijith Das, Charles P.
Wright, and Erez Zadok. Avfs: An on-access
anti-virus file system. In 13th USENIX Security
Symposium, San Diego, CA, August 2004.

[15] Sumit Narayan and John A. Chandy. ATTEST:
ATTributes-based Extendable STorage. Journal of
Systems and Software, 83(4):548–556, April
2010.

196 • User Space Storage System Stack Modules with File Level Control

[16] James A. Nugent, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Controlling your
PLACE in the file system with gray-box
techniques. In Proceedings of the Annual
USENIX Technical Conference, pages 311–323,
San Antonio, TX, June 2003.

[17] Vijayan Prabhakaran, Lakshmi N.
Bairavasundaram, Nitin Agrawal, Haryadi S.
Gunawi, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. IRON file systems. In
Proceedings of the 20th ACM Symposium on
Operating Systems Principles, pages 206–220,
Brighton, UK, October 2005.

[18] David Quigley, Josef Sipek, Charles P. Wright,
and Erez Zadok. UnionFS: User- and community-
oriented development of a unification file system.
In Proceedings of 2006 Ottawa Linux Symposium,
pages 349–362, Ottawa, Canada, June 2006.

[19] Aditya Rajgarhia and Ashish Gehani.
Performance and extension of user space file
systems. In Proceedings of the 25th ACM
Symposium on Applied Computing, Sierre,
Switzerland, March 2010.

[20] David S. H. Rosenthal. Evolving the vnode
interface. In Proceedings of the USENIX
Technical Conference, pages 107–118, Anaheim,
CA, Summer 1990.

[21] David S. H. Rosenthal. Requirements for a
"stacking" vnode/VFS interface. Technical Report
SD-01-02-N014, UNIX International, 1992.

[22] Josef Sipek, Yiannis Pericleous, and Erez Zadok.
Kernel support for stackable file systems. In
Proceedings of 2007 Ottawa Linux Symposium,
Ottawa, Canada, June 2007.

[23] Jun Wang and Yiming Hu. PROFS:
Performance-oriented data reorganization for
log-structured file system on multi-zone disks. In
Proceedings of IEEE/ACM 9th International
Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems
(MASCOTS), pages 285–293, Cincinnati, OH,
August 2001.

[24] Erez Zadok and Ion Badulescu. A stackable file
system interface for Linux. In LinuxExpo 99,
pages 141–151, May 1999.

[25] Erez Zadok, Ion Badulescu, and Alex Shender.
Cryptfs: A stackable vnode level encryption file
system. Technical Report CUCS-021-98,
Computer Science Department, Columbia
University, June 1998.

[26] Erez Zadok, Ion Badulescu, and Alex Shender.
Extending file systems using stackable templates.
In Proceedings of the Annual USENIX Technical
Conference, pages 57–70, Monterey, CA, June
1999.

[27] Erez Zadok and Jason Nieh. FiST: A language for
stackable file systems. In Proceedings of 2000
USENIX Annual Technical Conference, pages
55–70, San Diego, CA, June 2000.

[28] Erez Zadok, Vasily Tarasov, and Priya Sehgal.
The case for specialized file systems, or, fighting
file system obesity. ;login: The USENIX
Magazine, 35(1):38–40, February 2010.

expect-lite
Automation for the rest of us

Craig Miller
Ciena

cvmiller@gmail.com

Abstract

Developers can always use a tool that will save money
and keep the boss happy. Automation boosts efficiency
while skipping drudgery. But how to implement au-
tomation for the rest of us without slowing down the real
work of developing software? Introducing expect-lite.
Written in expect, it is designed to directly map an in-
teractive terminal session into an automation script. As
easy as cutting and pasting text from a terminal window
into a script, and adding ’>’ and ’<’ characters to the be-
ginning of each line with advanced features to take you
further. No knowledge of expect is required!

In this paper, you’ll get an introduction to expect-lite,
including applications where complex testing environ-
ments can be solved with just a few lines of expect-lite
code. Although expect-lite is targeted at the software
verification testing environment, its use is not limited to
this environment, and it has been used world-wide for
several years in router configuration, Macintosh applica-
tion development, and FPGA development. expect-lite
can be found at: http://expect-lite.sf.net/

1 Introduction

expect-lite was born out of the need to boost efficiency
and skip drudge work. While written in Expect, no
knowledge of expect is required. In fact, expect-lite was
created to avoid scripting in Expect.

Because Expect is an interpretive language, quite of-
ten there are lines which are not executed, except when
something goes wrong. There is a chance that a typo,
or some other error may cause the Expect script crash,
printing a call trace. If that script is part of a larger
framework, it is possible the overnight regression, for
example, will come to a screeching halt.

expect-lite avoids this problem in its simplicity. By us-
ing simple characters such as > and <, it is near impos-
sible to have a typo, or syntax error.

2 Problem

The problem is that developers need to test soft-
ware, without having to think about an entire automa-
tion framework and yet another specialized language.
expect-lite was developed out of a need to automate test-
ing, and make it as easy as possible.

2.1 History

expect-lite is based on the industry standard Expect lan-
guage, a TCL extension written by Don Libes of NIST
(National Institute of Standards and Technology in the
U.S.). It was used and improved internally from 2005
to 2007 when Freescale Semiconductor graciously al-
lowed it to become an open source project. In 2008,
over 24,000 lines of expect-lite code were running daily
as part of a nightly regression.

2.2 Licensing

Because of the open nature of the foundation software
TCL (BSD-Style License) and Expect (Public Domain),
this open source project is licensed under the BSD-Style
License. Any modifications need not be re-integrated
into the open source project. Even commercial products
can be created using this software, as long as the copy-
right header remains intact.

This seemed like the right thing to do, since the under-
lying software is licensed under less restrictive terms.

• 197 •

198 • expect-lite

3 Features

expect-lite has been expanded over its five years of use,
starting with the simple send and expect constructs (’>’
and ’<’ respectively), and adding additional functional-
ity, such as if statements, looping, multi-session support,
and instant debugging.

The following subsections will high-light some of the
more important features which give expect-lite the
power to solve complex automation problems with min-
imal lines of script.

3.1 Remote Login

expect-lite was born into a multi-host environment,
which created an early requirement to remote login to
a host (usually a Linux machine). The remote host
was allocated by a sharing facility such as the commer-
cial package, LSF. Additionally, the remote host must
be specified on the command line where the script will
wake up and begin executing. Three methods of remote
login are supported:

1. telnet

2. ssh with password

3. ssh with keys (no password)

ssh with keys is the preferred method, since no pass-
word is required, however this requires some environ-
ment setup before hand.

Even when no remote host is required, it is best to log
into the localhost (shown in yellow in Figure 1) since
the underlying Expect has problems with synchroniza-
tion (between send and expect strings) when a remote
host is not specified. Therefore it is possible to setup the
localhost with ssh keys using the provided shell script
setup_local_ssh.sh.

3.2 Special Character Sequences

expect-lite interprets special characters at the beginning
of each line in the script as shown in Table 1.

local

localhost
remote host

Figure 1: Connection to remote host (blue) and localhost
(yellow) .

Table 1: Special Characters
Char Action

> send string to the remote host
>> send string to remote host, without

waiting for prompt
< string/regex MUST be received from

the remote host in the alloted timeout
or the script will FAIL!

<< literal string MUST be received (sim-
ilar to ’lessthan’ without regex evalu-
ation)

-< if string/regex IS received from the
remote host the script will FAIL!

used to indicate comment lines, and
have no effect

; are also used to indicate comment
lines, but are printed to stdout (for
logging)

;; similar to above, but no extra new-
lines are printed (useful for printing
script help)

@num changes the expect timeout to num-
ber of seconds

$var= static variable assignment at script
invocation

+$var= dynamic variable assignment
+$var increment value of $var by 1 decimal
-$var decrement value of $var by 1 decimal
=$var math functions, perform bitwise and

arithmetic operations: << >> & | ˆ * /
% + -

! indicates an embedded expect line
? c-style if/then/else in the format

?cond?action::else_action
% label - used for jumping to labels

~filename includes a expect-lite automation
file, useful for creation of com-
mon variable files, or ’subpro-
grams/subroutines’

3.3 Regular Expression (RegEx) Evaluation

The full power of TCL/Expect RegEx is available to
expect-lite. Thus permitting complex expect statements,

2010 Linux Symposium • 199

with the following limitations:

1. Support of RegEx in standard expect (e.g. includ-
ing anchors, char-classes and repeats)

2. Support of RegEx meta characters (e.g. \t \n are
supported, \d is not)

3. expect-lite only evaluates lines using RegEx which
begin with ’<’ ’-<’ and ’+’ (dynamic variables)

3.4 Static and Dynamic Variables

Variables are always prefaced with the $. Variables
bound at script invocation are considered static, and
those which are bound during execution of the script are
dynamic. Static variables are assigned with the $ as the
first character of a line, such as:

$five=5

Dynamic variables are assigned using RegEx capture
and begin with +$. For example, text output from a com-
mand may captured into a variable, such as:

>hostname
+$host=\n([a-z]+)

If, however, the dynamic var is not successfully cap-
tured, expect-lite will print:

Assigned Var: \
somevar=__NO_STRING_CAPTURED__

3.5 Constants

Constants are a very powerful feature of expect-lite.
Constants permit writing a generalized script and over-
riding internal variables in the script with command line
specified constants. They are are immutable, and cannot
be changed. For example the constant local_eth can be
defined on the command line as:

expect-lite remote_host=remote-host-018 \
cmd_file=basic_ping_test.elt \
local_eth=eth2

All references to $local_eth in the script will be set to
eth2. This allows one to change the behaviour of the
script without requiring a script change.

3.6 Plays well with Bash

Although not limited to working with bash, bash is in-
voked upon logging into the remote host, and therefore
will be discussed more here.

Since the bash shell is well documented, and supported,
it can be leveraged to assist in expect-lite’s limitations
such as looping and branching. A simple bash loop in-
side expect-lite can be created for example:

$set=1 2 3 4 5
>for i in $set #expanded by expect-lite
>{
>echo $i #expanded by bash
>}

In the above example, $set is an expect-lite variable, not
a bash variable. An expect-lite variable is always de-
clared before its use (e.g. $set = 1 2 3 4 5). If a variable
cannot be dereference by expect-lite it is passed to the
shell. The loop will execute after the final "}" line is
sent to the remote-host.

Using Bash to create executable expect-lite scripts, it is
possible to make expect-lite scripts executable, with the
help of a small embedded bash helper script. Insert the
following at the top of the expect-lite script:

#!/usr/bin/env bash
make this auto-runnable!
Little bootstrap bash script to run \
kick start expect-lite script
Convert --parms to expect-lite \
param=value format
PARAMS=‘echo $* | /bin/sed -r \
’s;--([a-z]+) ([0-9a-zA-Z]+);\1=\2;g’‘

echo $PARAMS
expect-lite r=none c=$0 $PARAMS
exit $?

The bash scriptlet does the following:

• Converts command line arguments from –arg value
to arg=value format, making the script more linux-
like

200 • expect-lite

• Call the expect-lite script with default arguments
(in this example that is r=none) and converted ar-
guments

• Exit with the same exit code of the expect-lite
script (0 success, 1 failure)

expect-lite ignores the bash scriptlet when invoked, be-
cause none of the lines begin with expect-lite special
characters.

3.7 Include Files

Include files are a quick way to develop script snippets
which can be included into larger scripts or to include a
common variable file. When an include file is executed,
it is as if the file were just pasted into the script file, and
therefore has access to the variable space of the main
script, and can modify that variable space as well. In
this example, a common variable file is "sourced":

Source common variable file
~asic_vars.inc

Common functions, such as telnet’ing to the DUT, are a
good use of include files:

; === Connect to DUT
~dut_connect.inc

Include filenames can also be assigned in a variable,
such that the file names can be declared at the top of
the script but used later within the script. For example:

Source Var file to be used
$asic_include=asic_vars.inc
...
~$asic_include

3.8 Not Expect

A test can also fail should text appear that is unexpected
(such as an error). This does not clear the expect input
buffer, and should be used before a valid expect. How
long should the script wait for the un-expected? In order
to reduce delays in script running time, the Not Expect
feature only waits for 100ms. This is usually enough
time to detect quick error responses such as "file not
found".

For example: Fail device doesn’t exist

>ls -l /dev/linux
-<No such file

3.9 If Statement

Conditional (if/then/else) statements are natively sup-
ported in expect-lite. The conditional uses a c-style syn-
tax with a question mark (?) at the beginning of the line,
and double colon to indicate the else statement, using
the format ?cond?action::else_action

Although spaces are not required around the conditional
characters (? and ::), it is recommended for ease of read-
ing. The comparison operators are: ’==’, ’!=’ ,’>=’,
’<=’, ’>’ and ’<’. If the compared values can be eval-
uated as a numbers, then larger and less than will yield
expected results. A simple conditional example:

$age=56
?if $age >= 55 ? \

>echo "freedom at 55!" :: \
> echo "keep working!"

In the above example if $age is larger than or equal to
55 then the action ’echo "freedom at 55!". If $age is less
than 55 then the action ’echo "keep working!"’ will be
sent.

3.10 Looping with Conditionals & Labels

Conditionals are limited to a single line. Sometimes
this is too limiting, as it would be nice to have several
commands be executed based on the success of a con-
ditional. To support this, the concept of labels has been
introduced. A label is defined as having the first charac-
ter a ’%’. Although the label line itself does nothing, it
provides a location to the conditional to Jump To Label.

Simple looping is now supported by allowing jump to
label backwards. The Repeat Loop is the easiest loop to
implement:

; ======== Incrementing Loop ========
$max=5
$count=3
%REPEAT_INC_LOOP

2010 Linux Symposium • 201

>echo $count
increment variable
+$count

?if $count <= $max ?%REPEAT_INC_LOOP

Because of jump to label can jump backwards, it is im-
portant to assign unique looping labels, such as %RE-
PEAT_INC_LOOP. Unexpected results will occur if
non-unique loop label names are used. Non-looping la-
bels, as illustrated in the previous section, are not re-
quired to be unique.

Also included in the above example is incrementing an
expect-lite variable: +$count This will add 1 to the value
of $count. If $count is not an integer, the value of $count
will remain unchanged (can’t add 1 to a string).

As part of the looping enhancement, there is infi-
nite loop protection. The maximum amount of loop-
ing is defined in expect-lite itself with the variable
_el_infinite_loop. This value is decremented with each
iteration of all loops for the entire script. Typically this
would be in the range of 100 to 1000 to be safe. For ex-
ample, if a complex expect-lite script had 4 loops each
with 100 iterations, the _el_infinite_loop should be set
larger than 400.

3.11 User Defined Prompt */prompt/

With each ’>’ command an implied "wait for prompt"
occurs. The predefined prompts are based on standard
shell prompts (>%$#). However, it is quite possible that
expect-lite will not be interacting with a shell, but an-
other application (such as gdb) or device which does not
issue a shell-like prompt.

As of version 3.1.5, the user may define a custom
prompt using the following command:

*/my_prompt /

The succeeding ’>’ lines will interpret a prompt as the
standard shell prompts and ’my_prompt ’. The user
defined prompt definition between the slashes is inter-
preted as regex, and therefore regex rules such as escap-
ing applies. For example, to set a user defined prompt
for gdb the following would be used:

*/\(gdb\) /

Only one (1) user defined prompt can be active at a time,
however multiple prompts can be represented using the
regex OR ’|’, for example, creating a gdb prompt and
my_prompt:

*/\(gdb\) |my_prompt /

Clearing a user defined prompt. There may be times
where a previously user defined prompt is causing prob-
lems by output which falsely triggers the user defined
prompt. It is possible to clear the user defined prompt
by:

*//

The scope of the user defined prompt is global, that is,
it extends to the main script as well as all include files
referenced.

3.12 Multiple Sessions *FORK

Until version release 3.5.0, expect-lite has been inten-
tionally limited to a single session keeping it simple.
However, there are certain environments where it might
be advantageous for a single script to control/monitor
both a client (e.g wget) and a server (httpd log). Without
multiple session support this type of environment would
be difficult to automate with expect-lite.

What is a new session? A new session starts with a
new shell on the remote host. All commands ’>’ and
received text ’<’ are constrained to that session. It is
possible to use multiple sessions on the localhost using
r=none, however r=none support is limted due to timing
issues. If multiple sessions on the localhost (the same
host where expect-lite is running), it is better to ssh to
the localhost by specifying r=localhost. This loop back
method ensures that the timing between commands and
received text stay in sync.

With the version of 3.5.0, expect-lite supports nearly
limitless multiple sessions. However, it is a good guide-
line to use as few sessions as needed. For backward
compatibility, the first session is the "default" session.
Additional sessions are assigned a name at invocation
with the *FORK <session_name> directive:

202 • expect-lite

*FORK Server
INFO: FORK session is: Server

expect-lite will print an "INFO" line stating the current
session name Session names may not contain spaces,
and must be unique for each session. To switch back
to a previously started session, re-use the session name.
The session name "default" (without quotes) is reserved
for the first session.

*FORK default
INFO: FORK session is: default

Print the current session name by using the *FORK with
no session name:

*FORK
INFO: FORK session is: Server

*FORK and variables. It is possible to assign a session
name to a variable, and then create a new session with
that name. For example:

$my_session=Client

*FORK $my_session
INFO: FORK session is: Client

All sessions will be automatically closed when the script
terminates.

4 Debugging your scripts

Although expect-lite is designed to implement automa-
tion as easily and quickly as possible, it is possible that
by using one of the more complex features, some script
debugging may be required.

4.1 Interact

Interact may be the quickest, easiest, and overall best
debugging aid. Interact is a mode which turns control
of the keyboard over to the user, so that one may type
directly to the process on the remote host With version
3.5.0 there are two methods to invoke Interact: program-
matic, and instant-interact.

Programmatic Interact is called in the script with the fol-
lowing command:

*INTERACT

expect-lite will pause at this point in the script, and con-
nect the keyboard to the remote session (which may be
at a prompt). Any command may be entered and re-
sponses observed. Typing ’+++’ (3 pluses) will return
control to the script, and it will continue. This is very
helpful for automation assist, allowing the script to per-
form complicated setup commands, before turning con-
trol over to the user for an interactive session.

The other method is instant-interact. This feature re-
quires a tcl package TclX to be installed, and will au-
tomatically be enabled when the package is present.
With the feature enabled, the user can press ’ˆ\’ (con-
trol+backslash) at anytime and enter Interact. This is
the easiest and fastest way to debug a script.

4.2 Debugging with the el_shell

To make debugging of scripts even easier, both methods
of interact support a limited expect-lite "shell". In this
"el_shell", expect-lite script commands can be typed, it
is possible to even assign variables inside the paused
script, for example:

$MYVAR=today

*SHOW VARS
Var:0 Value:0
Var:MYVAR Value:today
Var:TEST Value:/proc/cpuinfo

>>pwd
pwd
/home/user

In the previous example, $MYVAR is assigned, all
variables their respective values are displayed, and the
’pwd’ command is sent.

5 General Tips for writing scripts

Although expect-lite is designed to be simple, there are
a few things to watch out for when writing a script. Here
are some simple tips which will make script writing go
more smoothly:

2010 Linux Symposium • 203

1. Use reasonable timeouts, if 30 seconds is needed to
get a response, set the timeout at 45 or 60 seconds,
not 600.

• There is no cost to changing the timeout,
timeout values can also be variables

2. Beware of expect-lite using regex, when creat-
ing lines such as: <0.005 secs (5 micro
secs)

• The parentheses is used by the regex engine,
instead escape these characters: <0.005
secs \(5 micro secs \)

• or use ’<<’ which does not use regex, and
does not require escaping: <<0.005 secs
(5 micro secs)

3. Use the expect character ’<’ or ’<<’ often. Check
for valid results when possible. A script which ex-
pects nothing will never fail!

4. Use printable comments ’;’ often. Think of it as
writing a note to oneself, it will make reading log
files much easier.

6 Example Script

Problem: you need to write an automated script which
monitors an ethernet port for incoming packets (using
tcpdump) requiring sudo privilages, while generating
network traffic (a web request).

Solution: generate a request with wget and use tcpdump
to verify the return packet

In this script, two sessions are created with the *FORK
command, one for the packet capture, and another for
the wget request. The tcpdump output is filtered with
egrep to remove packets of non-interest, and limit the
hex packet output to 8 lines. Using two sessions permits
the monitoring of network traffic while generating the
wget request.

After setting up the monitor, and generating the wget re-
quest, the script switches back to the tcpdump session
to verify the client and server id strings. If the strings
are correct, then the script prints textttOverall Result:
PASS.

#
OLS 2010 Example Script
Script uses sudo, and tcp dump to
monitor network interface while
initiating web traffic with wget
#
set timeout to 10 seconds
@10
$SUDO_PASS=mysudopassword
$WEB_SERVICE=http://www.w3.org/

start packet capture

*FORK tcpdump
>echo $SUDO_PASS | sudo -S tcpdump \
-i eth0 -s 256 -e -X portrange 80 \
| egrep -A 8 ’www’

force expect-lite to wait
until tcpdump is ready
<\nlistening on
<link-type

initiate web request with wget

*FORK wget
; === get page without saving a copy, \

show HTTP headers
>wget -S --spider $WEB_SERVICE
verify server in wget output
<<Server: Apache
>

check packets captured

*FORK tcpdump
verify client
<User-Agent
<Wget
verify server
<Server
<Apache/2
>>^C

#*INTERACT
>>
>

Note near the *INTERACT command near the end of
the script. It was used to initially pause the script inside
the tcpdump session during development and is now
commented out.

The output of the script appears in Figure 2.

204 • expect-lite

7 Summary

Creating automation scripts is as easy as cutting and
pasting text from a terminal window into a script, and
adding ’>’ and ’<’ characters to the beginning of each
line. Advanced features take you even further. No
knowledge of expect is required!

Although expect-lite is targeted at the software verifica-
tion testing environment, it is not limited to this environ-
ment, and has been used world-wide for several years
in router configuration, Macintosh application develop-
ment, and FPGA testing.

expect-lite really is Automation for the rest of us.

2010 Linux Symposium • 205

Figure 2: Script output

cvmiller@sawtoothy:~/Expect-lite$./expect-lite r=halaconia c=test_sudo.elt

INFO: Instant-Interact ’^\’ feature is enabled

spawn ssh halaconia

Setting Expect Timeout to: 10

INFO: FORK session is: tcpdump, Active sessions are: default tcpdump

cvmiller@halaconia:~$
cvmiller@halaconia:~$
cvmiller@halaconia:~$ export PS1=’$ ’
$ set prompt = "$ "
$ echo mysudopassword | sudo -S tcpdump -i eth0 -s 256 -e -X portrange 80 | egrep -A 8 ’www’
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 256 bytes

INFO: FORK session is: wget, Active sessions are: default tcpdump wget

=== get page without saving a copy, show HTTP headers

cvmiller@halaconia:~$
cvmiller@halaconia:~$ export PS1=’$ ’
$ set prompt = "$ "
$ wget -S --spider http://www.w3.org/
--11:02:01-- http://www.w3.org/

=> ‘index.html’
Resolving www.w3.org... 128.30.52.51, 128.30.52.53, 128.30.52.54, ...
Connecting to www.w3.org|128.30.52.51|:80... connected.
HTTP request sent, awaiting response...

HTTP/1.1 200 OK
Date: Mon, 03 May 2010 15:02:01 GMT
Server: Apache/2
Content-Location: Home.html
Vary: negotiate,accept
TCN: choice
Last-Modified: Mon, 03 May 2010 14:51:30 GMT
ETag: "6dfe-485b1ba692080;89-3f26bd17a2f00"
Accept-Ranges: bytes
Content-Length: 28158
Cache-Control: max-age=600
Expires: Mon, 03 May 2010 15:12:01 GMT
P3P: policyref="http://www.w3.org/2001/05/P3P/p3p.xml"
Connection: close
Content-Type: text/html; charset=utf-8

Length: 28,158 (27K) [text/html]
200 OK

$

206 • expect-lite

INFO: FORK session is: tcpdump, Active sessions are: default tcpdump wget

11:02:01.093847 00:11:24:e1:db:c8 (oui Unknown) > 00:60:08:12:8f:95 (oui Unknown), ethertype
IPv4 (0x0800), length 74: halaconia.hoomaha.net.57016 > stu.w3.org.www: S
1982196051:1982196051(0) win 5840 <mss 1460,sackOK,timestamp 22265167 0,nop,wscale 6>

0x0000: 4500 003c 541c 4000 4006 2740 0a01 010e E..<T.@.@.’@....
0x0010: 801e 3433 deb8 0050 7625 e953 0000 0000 ..43...Pv%.S....
0x0020: a002 16d0 74ac 0000 0204 05b4 0402 080at...........
0x0030: 0153 bd4f 0000 0000 0103 0306 .S.O........

11:02:01.130855 00:60:08:12:8f:95 (oui Unknown) > 00:11:24:e1:db:c8 (oui Unknown), ethertype
IPv4 (0x0800), length 74: stu.w3.org.www > halaconia.hoomaha.net.57016: S
3973601193:3973601193(0) ack 1982196052 win 5792 <mss 1460,nop,nop,timestamp 3243392802 22265167>

0x0000: 4500 0038 0000 4000 3206 8960 801e 3433 E..8..@.2..‘..43
0x0010: 0a01 010e 0050 deb8 ecd8 57a9 7625 e954P....W.v%.T
0x0020: 9012 16a0 46e2 0000 0204 05b4 0101 080aF...........
0x0030: c152 3f22 0153 bd4f de71 7b8c .R?".S.O.q{.

11:02:01.130944 00:11:24:e1:db:c8 (oui Unknown) > 00:60:08:12:8f:95 (oui Unknown), ethertype
IPv4 (0x0800), length 66: halaconia.hoomaha.net.57016 > stu.w3.org.www: . ack 1 win 5840
<nop,nop,timestamp 22265176 3243392802>

0x0000: 4500 0034 541d 4000 4006 2747 0a01 010e E..4T.@.@.’G....
0x0010: 801e 3433 deb8 0050 7625 e954 ecd8 57aa ..43...Pv%.T..W.
0x0020: 8010 16d0 5e66 0000 0101 080a 0153 bd58^f.......S.X
0x0030: c152 3f22 .R?"

11:02:01.131988 00:11:24:e1:db:c8 (oui Unknown) > 00:60:08:12:8f:95 (oui Unknown), ethertype
IPv4 (0x0800), length 165: halaconia.hoomaha.net.57016 > stu.w3.org.www: P 1:100(99) ack 1 win
5840 <nop,nop,timestamp 22265176 3243392802>

0x0000: 4500 0097 541e 4000 4006 26e3 0a01 010e E...T.@.@.&.....
0x0010: 801e 3433 deb8 0050 7625 e954 ecd8 57aa ..43...Pv%.T..W.
0x0020: 8018 16d0 bfe9 0000 0101 080a 0153 bd58S.X
0x0030: c152 3f22 4845 4144 202f 2048 5454 502f .R?"HEAD./.HTTP/
0x0040: 312e 300d 0a55 7365 722d 4167 656e 743a 1.0..User-Agent:
0x0050: 2057 6765 742f 312e 3130 2e32 0d0a 4163 .Wget/1.10.2..Ac
0x0060: 6365 7074 3a20 2a2f 2a0d 0a48 6f73 743a cept:.*/*..Host:
0x0070: 2077 7777 2e77 332e 6f72 670d 0a43 6f6e .www.w3.org..Con

--
11:02:01.171913 00:60:08:12:8f:95 (oui Unknown) > 00:11:24:e1:db:c8 (oui Unknown), ethertype
IPv4 (0x0800), length 70: stu.w3.org.www > halaconia.hoomaha.net.57016: . ack 100 win 5792
<nop,nop,timestamp 3243392813 22265176>

0x0000: 4500 0034 6887 4000 3206 20dd 801e 3433 E..4h.@.2.....43
0x0010: 0a01 010e 0050 deb8 ecd8 57aa 7625 e9b7P....W.v%..
0x0020: 8010 16a0 5e28 0000 0101 080a c152 3f2d^(.......R?-
0x0030: 0153 bd58 8acc f50f .S.X....

11:02:01.172825 00:60:08:12:8f:95 (oui Unknown) > 00:11:24:e1:db:c8 (oui Unknown), ethertype
IPv4 (0x0800), length 529: stu.w3.org.www > halaconia.hoomaha.net.57016: P 1:460(459) ack 100
win 5792 <nop,nop,timestamp 3243392813 22265176>

0x0000: 4500 01ff 6888 4000 3206 1f11 801e 3433 E...h.@.2.....43
0x0010: 0a01 010e 0050 deb8 ecd8 57aa 7625 e9b7P....W.v%..
0x0020: 8018 16a0 b148 0000 0101 080a c152 3f2dH.......R?-
0x0030: 0153 bd58 4854 5450 2f31 2e31 2032 3030 .S.XHTTP/1.1.200
0x0040: 204f 4b0d 0a44 6174 653a 204d 6f6e 2c20 .OK..Date:.Mon,.
0x0050: 3033 204d 6179 2032 3031 3020 3135 3a30 03.May.2010.15:0
0x0060: 323a 3031 2047 4d54 0d0a 5365 7276 6572 2:01.GMT..Server
0x0070: 3a20 4170 6163 6865 2f32 0d0a 436f 6e74 :.Apache/2..Cont

--
11:02:01.172857 00:11:24:e1:db:c8 (oui Unknown) > 00:60:08:12:8f:95 (oui Unknown), ethertype
IPv4 (0x0800), length 66: halaconia.hoomaha.net.57016 > stu.w3.org.www: . ack 460 win 6432
<nop,nop,timestamp 22265186 3243392813>

0x0000: 4500 0034 541f 4000 4006 2745 0a01 010e E..4T.@.@.’E....
0x0010: 801e 3433 deb8 0050 7625 e9b7 ecd8 5975 ..43...Pv%....Yu
0x0020: 8010 1920 59d3 0000 0101 080a 0153 bd62Y........S.b
0x0030: c152 3f2d .R?-

sending ^C

9 packets captured
9 packets received by filter
0 packets dropped by kernel
$
$
##Overall Result: PASS

Impediments to institutional adoption of Free/Open Source Software

Peter St. Onge
Information + Technology Services, University of Toronto

pete.stonge@utoronto.ca

Abstract

Free and Open Source Software (FOSS) have a num-
ber of characteristics that make it highly desirable
in institutional settings: prevention of lock-in, cross-
platform availability and version consistency across
platforms, internationalization support, breadth and
depth of choices, availability of updates and cost. De-
spite these manifold advantages, institutional uptake of
FOSS has been limited. This paper discusses some of
the key factors limiting adoption, and presents some
suggestions on how these barriers can be overcome.

1 Introduction

This paper examines some of the strengths and weak-
nesses of FOSS as these relate to their use in institu-
tional settings, environments where a large number of
computers are in use – Typically this would involve any-
where from several tens of systems, upwards to several
thousand systems in active central management.

Given that organizations are driven to save money and
resources by realizing economies of scale wherever pos-
sible, the most important consideration in such a set-
ting is the ability to manage three major components –
users, systems, and services – as efficiently as possible.
The user base is generally highly variable in terms of
technical aptitudes, ability, and acceptance of any per-
formance issues or anything impacting their ability to
work, perceived or otherwise. The practical upshot of
this approach is that any element requiring manual con-
figuration or other "tweaking" is not suitable for use in
an institutional context.

There are excellent examples of where FOSS-based sys-
tems are used as the foundation for institutional com-
puting. This would include complex, multi-site file and
print services for Windows client systems [30], institu-
tional non-web single sign on [11], and corporate direc-
tories and authentication [3].

While extensive mention is made of Debian and deriva-
tive distributions in this paper, including the packaging
mechanism, it is understood that similar facilities exist
in RedHat/Fedora and other distributions of Linux and
that the same points apply to these distributions as well.

2 Packaging and Distribution

Similar to commercial software development, the prac-
tices and processes underlying the development, pack-
aging, and delivery of FOSS applications and systems
can be highly variable even where best practices (eg. re-
vision control, source code conventions, documentation
conventions, etc) are relatively well known.

2.1 Distribution

While the distribution of software from both com-
mercial and FOSS efforts can be done by the devel-
opers themselves, in the form of source tarballs or
pre-compiled binaries, greater mindshare is typically
achieved by making the application available via exist-
ing channel-based distribution systems, such as those
used by Debian, RedHat, and derivatives. Beyond their
philosophical differences underlying how FOSS-based
systems should work (eg. Debian vs Ubuntu or Red-
Hat or Fedora), all of the distributions of Linux serve
the particularly crucial role of being the primary distri-
bution channel for software in convenient form – pack-
ages. The importance of the distribution channel – the
different Linux distributions – manifests in the fact that
upstream developers often integrate distribution-specific
tools to facilitate packaging the application (eg. in the
Makefile); in this way, the amount of work required to
effectively package an application for different distribu-
tions is minimized.

The distribution systems (eg. package repositories) as
well as the packages themselves are difficult to subvert,
thanks to the good use of md5 hashes for repository

• 207 •

208 • Impediments to institutional adoption of Free/Open Source Software

content lists themselves, for each of the many pack-
ages in that repository, and for files inside packages
via manifest as required by the various distributions’
policies[24]. It is thus possible to audit the integrity of
system and application binaries on these FOSS-based
systems, something is in theory possible but not manda-
tory when creating an MSI or EXE-based installation
package. Newer, smaller organizations often do not
have the expertise or resources to test their packages
via build/install farm typical of larger organizations or
projects[8].

The different "distros" each also provide quality as-
surance for those packages they make available.
Distribution-specific policies set high standards for
both source (eg. the dreaded FTBFS[13]) and binary
packages[12]; packages are not permitted to enter into
the distribution system until the policy requirements are
met. Broadly-distributed tools such as linitian[25] and
the like, in conjunction with the distributions’ automatic
build testing, help to ensure the ability to consistently
install and uninstall individual packages cleanly and ef-
fectively.

In addition, these distribution mechanisms also allow
for the provisioning of a package’s dependencies (eg.
shared libraries) in a separate package; in non-FOSS
systems, these shared components were often shipped
as part of a dependant package, often leading to con-
flicts in different versions of the same libraries installed
on the system known as ’DLL Hell’[1], although this
has become less of a problem in recent years[4].

Ultimately, these channels also provide a mechanism to
provide patches back to the upstream source maintain-
ers to ensure that underlying bugs can be resolved in a
coordinated manner.

It is interesting to note that in the year 2010, the
paradigm for distribution of software on the Windows
operating system platforms is still primarily either the
retail channel, or via downloads from the develop-
ers’ sites, and that no central distribution channel ex-
ists. Moreover, no consist ant update mechanism has
achieved any real traction: Microsoft’s update mech-
anisms ("Windows Update" and "Microsoft Update")
have focused primarily on their software with what ap-
pears to be limited participation by hardware vendors
for driver updates (NVidia, ATI, Dell, Intel have oc-
casional but infrequent updates), and other approaches
like InstallShield’s distribution service appear to have

lost momentum after not gathering any real buy-in from
software manufacturers.

Unfortunately, FOSS offerings for non-FOSS systems
are also distributed in this same ad hoc manner for the
most part, which acts to limit the knowledge of and ac-
cess to the many multi-platform applications that would
otherwise help build FOSS’ mindshare outside of the
existing areas.

This vacuum presents a tremendous opportunity for ad-
vocates of "World Domination" (as quoted in [7]) to put
forward a packaging / distribution / update channel ef-
fort that would function effectively on non-FOSS plat-
forms, typical of the home or unmanaged user. Being
able to conveniently and easily install a FOSS pack-
age on a home user’s non-FOSS system, in the way
that synaptic would work, would be highly attractive
to technical and non-technical users alike.

Not only would this approach help serve to bring FOSS
to a much wider audience, it would also solve the prob-
lem of ensuring that end users can keep their applica-
tions up to date with minimal effort (eg. similar to how
update-notifier already works).

Previous efforts have attempted to bridge this gap,
strictly providing a distribution mechanism for pack-
ages: WPM[27] appears to have stalled during design
phase, Win-Get[23] had more success as an active dis-
tribution channel, but the apps in channel appear to be
quite dated (2.0.0.x for Firefox, Thunderbird). A third
attempt, Appupdater[19] combines a distribution mech-
anism with a user application that tracks available and
installed packages, and facilitates updates. It appears
to be the most successful approach thus far, at least for
unmanaged users in Windows, and continues to have
a modest selection of updated software packages – 88
packages, some of which are FOSS (eg. Thunderbird,
Firefox), some not (eg. Adobe PDF reader). This is
rather a small number of applications, however, given
that there are a rather large number of FOSS applica-
tions currently available for Windows.

2.2 Packaging

Even with a delivery mechanism to provide FOSS soft-
ware to non-FOSS operating systems, however, there
are other problems that remain particularly challenging
for institutional adoption of FOSS.

2010 Linux Symposium • 209

From the perspective of the distribution, the main goal
of a package is not just to facilitate the installation and
removal of that package’s application; it should also be
to facilitate the future replacement of that package by
another more updated version as it becomes available.
Although it is possible to build software for distribution
to non-FOSS platforms, it is generally not possible to
build the distribution package for non-FOSS platforms
(exe, msi) in the same way that is done for FOSS plat-
forms (rpm, deb, etc).

Firefox, in particular, is a good example as a web
browser popular with non-technical and technical peo-
ple for the relative speed, flexibility, and general resis-
tance to hostile sites[15]. Although there is a Windows
binary installer package available, it cannot be used in
managed Windows environments without first installing
it to a test system, creating an MSI file based on the pre-
install and post-install snapshots, then tested in a num-
ber of environments prior to being deployed via Group
Policy Object (GPO)[33]. As the work required to pack-
age the application and test it properly is considerable,
and given the frequency with which updates become
available, it is no surprise that few administrators have
opted to repackage applications themselves. This does
create opportunities for enterprising individuals to pro-
vide such a service[17], and this has helped penetration
of Firefox into some managed environments (eg. ours).
Unless these are done as part of normal FOSS project
activities, however, the project has no control over or
voice in how the application is packaged and provided.

At present, there are multiple approaches used to pack-
age FOSS applications for non-FOSS operating sys-
tems. NSIS[6] is an open-source suite used to build
executable (EXE) based installation packages; many
commercial offerings exist as well (eg. InstallShield).
These have all had a great deal of success in packaging
FOSS applications for end users of Windows systems.
From the perspective of managed systems, however, the
standard packaging format for applications on Windows
systems is the MSI[33]. Although other mechanisms
for software installation over large numbers of centrally
managed non-FOSS systems may exist, the best known
and most used software delivery mechanism in managed
environments typical of institutions is the MSI installer
package installed automatically via GPO.

Ultimately, the ability to build MSI packages for FOSS
applications for distribution on non-FOSS platforms,
with the same care and attention as other packaging

formats (deb, rpm, etc) to allow for package auditing
and assurance, as well as the development of a distri-
bution system similar to how FOSS software distribu-
tion already works, would remove a substantial barrier
to awareness of the broad availability of FOSS on non-
FOSS platforms in general, and to institutional adop-
tion of FOSS on centrally-managed non-FOSS systems
in particular.

3 Software

The advantages of FOSS in general have been treated
extensively and exhaustively elsewhere[26, 34]. From
the institutional perspective, there can be substantial
wins in adopting FOSS: the cross-platform availability
of given applications, support for internationalization,
the tendency towards frequent and non-disruptive up-
dates, and the ability to access support resources, both
internal and external.

There are, however, substantial downsides that must be
considered.

3.1 Cross-platform availability

Like numerous commercial applications, many estab-
lished FOSS applications like OpenOffice or Firefox are
available for multiple operating systems. Unlike many
commercial applications that produce different versions
of an application for different operating systems, how-
ever, FOSS applications tend to have consistent versions
and interfaces across different operating systems.

The ability to have the same user experience from an
application across multiple operating systems has im-
portant ramifications institutionally.

In terms of support, it becomes considerably simpler to
diagnose and rectify user issues with the application,
produce useful internal documentation to support the
use of that application, and build institutional knowl-
edge around the use of that applications.

From the user perspective, the application becomes the
important element rather than the operating system.
This can ease some pain points in heterogeneous com-
puting environments. In particular, it allows users to
be more "mobile" in terms of what operating system
they use: A consistent interface across platforms min-
imizes user disorientation with the application, particu-
larly when they already know that application well, even

210 • Impediments to institutional adoption of Free/Open Source Software

when the underlying operating system user interface dif-
fers from their "usual" platform.

This mobility offers an organization a great deal of flex-
ibility in developing their IT strategy, as they can choose
from different platforms based on their requirements
while minimizing disruption from transitions.

3.2 Internationalization

In addition to the ability to have consistent versions of
an application over multiple platforms, a further advan-
tage of using established FOSS applications is well-
known and well-supported ability for a single binary
application to present its user interface elements in any
number of languages[16].

Lacking such a well-documented practice, I have no-
ticed that many commercial applications have separate
releases to support individual languages. In many cases,
this is effectively a different version release of a given
application; the overhead of maintaining multiple con-
current versions of a commercial application makes in-
tegrating bug and feature fixes more complicated. The
end result we witnessed was an incompatibility between
an operating system of one language, and an applica-
tion of another, despite the fact that both were from the
same company. This has improved in Windows rela-
tively recently[20] but still appears considerably more
complex than how distros manage locales for i18n, and
existing Mac OS X support.

In an organization spanning different areas of languages,
dealing with language-specific software issues – partic-
ularly if a common vocabulary does not exist – adds
considerable complexity to support and administration
of these environments.

Conversely, a single binary application that has support
for relevant languages is far more easily deployed and
supported broadly, allowing for economies of scale and
leveraging of administrative efforts required in an insti-
tutional context.

3.3 Frequent, small changes

The development cycle and distribution process of pack-
aged binaries of FOSS applications provide a fairly
painless means to integrate the relatively frequent and
incremental updates over time. In the established or

"stable" dists, security and bug fixes are unremarkable
from the user standpoint as these minor internal issues
and not major changes to user interface and other ele-
ments.

Even in cases where one decides to use the more dy-
namic "testing" or "unstable" dists in Debian, the expe-
rience of significant breakage is quite small in my own
experience. This does not, of course, obviate the need
to test packages prior to wide deployment.

This capacity for accommodating frequent minor
changes provides the institutional administrator the
means to take company-specific or resource-specific
packages and maintain these in a state where minor
changes be readily propagated in response to corporate,
managerial or new policy requirements.

3.4 Support resources

In a large corporate organization, it is not unusual to
have local staff whose primary role is to coordinate with
a vendor for a particular product (or set of products), to
manage pending bug or function issues, feature requests,
and such. Although large software vendors often have
well-developed self-help and similar documentation re-
sources, dealing directly with support resources often
requires the dedicated staff to handle contract and enti-
tlement issues to ensure prompt access to updates and
support resources.

After considerable work ensuring that entitlements and
contracts are maintained, it was our experience as a rel-
atively small organization (a large University) that days
would usually pass between a support request and an
initial response, we felt generally poorly served by such
support arrangements. Especially in light of the cost of
the support contracts for expensive software: Typically
this was on the order of 20-25% of the original purchase
price, with the percentage increasing on an annual basis.

As a result, serious consideration of alternative open
source alternatives for some of these applications is be-
ing made at present[10]. Although in this case, justifi-
cation to technical and managerial oversight was sim-
ple due to the organization’s receptiveness to the use of
FOSS, other organizations may be more hesitant for var-
ious reasons; perhaps the most important is the lack of
formal "support" mechanisms.

2010 Linux Symposium • 211

As the number of organizations with similar problems
opt for the FOSS solution, the number of active devel-
opers and participants involved with projects increases –
each scratching their employers’ itches as well as their
own – these projects grow in capability and dependabil-
ity. Having individuals in a position to support criti-
cal applications employed on-site, the responsiveness of
support of FOSS in the form of immediate and direct ac-
cess to bug fixes is a valuable asset. Ultimately, if criti-
cal vendor applications would require staff dedicated to
support local customizations as well as coordinate with
remote vendors, it is difficult to see how dedicating lo-
cal staff to work on a FOSS project would imply any
greater staffing costs. Furthermore, local staff involved
in the development and support of internally developed
applications can also be the source of considerable in-
novation for those organizations.

Greater visibility of corporate or institutional involve-
ment in FOSS projects outside of the kernel, where this
involvement is well known, would provide additional
comfort to organizations considering adopting FOSS
applications in important and visible areas.

3.5 Limitations

The breadth and depth of mature FOSS applications is
a testament to the effectiveness of FOSS development
methods. These applications, however, have a number
of weaknesses that would have to be address to make
them suitable for institutional use.

As one example, it is currently not possible for most
of these very useful applications find all or part of their
configuration elsewhere. User configuration (user name,
email address, organization, incoming & outgoing mail
server configurations) for a mail user agent (eg. Thun-
derbird), for instance, is still a usually a task for the user,
or for a tech support representative. Web browser proxy
configuration is a similar issue, particularly in corporate
environments. Given the highly variable nature of user
technical aptitudes in organizations, expecting users to
enter in such information – simple as it may seem to
many readers – can easily lead to unexpected overbur-
dening of support resources and the loss of user accep-
tance of these applications.

In an environment where the mail service is managed
centrally, and all users are known a priori, the inability
to provision user data to the application on behalf of the

user reflects poorly on the technology and those who
administer it.

The ultimate goal of such efforts is to limit the need
for manual configuration of production user applications
– be they mail clients, web browsers, database clients,
databases, ODBC connections, etc. This not only al-
lows for a more productive user experience (minimiz-
ing time lost due to configuration issues), it also pro-
vides a means to minimize impacts of future service
changes (different server software, different IP address
used, etc).

4 Operating Systems

FOSS-based operating systems have had good sup-
port via PAM for external identity management sys-
tems for some time now, Kerberos and LDAP have
been two of the most commonly used of FOSS-based
systems[28, 11] for that purpose.

The primary goal of external authentication frameworks
like these is twofold. First, to shrink user credential
space by reducing the number of credentials that users
in an organization have to use to prove their identity to
non-critical services on a daily basis. Making it easier
for the user to remember their user name and one good
password (which can be enforced via password policy,
of course) rather than requiring many user names and
corresponding (and usually bad) passwords on differ-
ent systems – usually on systems where password poli-
cies cannot be implemented – can drastically reduce the
number of password reset requests and thus reduce de-
mands on IT help desks. Moreover, the common user
name across multiple systems allows for more effective
auditing of user activities across these systems, simpli-
fying the detection of anomalous behaviour (eg. access
to systems from "local" IP addresses concurrently with
access via VPN from "foreign" IP addresses).

The second, and perhaps more important goal, is to pro-
vide means for identity to be vouched for by a separate
trusted system (eg. Kerberos) once the user successfully
authenticates themselves; this process is often referred
to as Single Sign On[32], or SSO. From the user’s per-
spective, SSO reduces issues and inconveniences around
identification and authentication by having these han-
dled transparently after the initial authentication. Log in
once, and never again for that day.

212 • Impediments to institutional adoption of Free/Open Source Software

From the institutional perspective, however, SSO pro-
vides another important value. SSO reduces password
exposure by drastically reducing the number of infor-
mation system that have to handle passwords and hence
reducing the avenues for user credential compromise.
In other words, by relying on the Kerberos (or similar)
service for authentication, servers/services do not ever
handle the user’s password, and their compromise is less
likely to facilitate exploiting other systems via captured
user credentials.

Moreover, SSO simplifies services to some extent by ob-
viating the need to design and implement user credential
(user/pass) facilities, allowing developers to re-use code
dealing with the underlying SSO service for those pur-
poses.

Single sign on does not obviate the need for addi-
tional levels of protection and authentication around
critical institutional resources; services such as payroll,
finance, etc. require greater protection than the indi-
vidual user’s machine, for instance, and the use of two-
factor (or more) authentication is called for in these cir-
cumstances.

Kerberos is perhaps the most mature SSO systems,
and remains important, particularly because it remains
the only SSO solution that bridges both system-level
authentication and web single sign on through web
browsers[21].

Given the competing paradigms for identity man-
agement in play (Active Directory[5], LDAP[2],
Kerberos[11], PubCookie[22], Shibboleth[14], and oth-
ers), it would appear that institutional systems will need
to accommodate more than one of these approaches in
heterogeneous institutional environments.

5 Practice

Although the technological capacity for FOSS-based
systems to support institutional is already well-
established through the use of directory services[31], the
understanding of what directory services can provide is
still very limited by most administrators of FOSS sys-
tems.

In discussions with colleagues both near and far in-
volved in managing large numbers of machines in dif-
ferent environments, and generally the adoption of di-
rectory services to support administration is minimal.

As a result, the community of practice around the use
of directories to support FOSS-based or more heteroge-
neous environments remains relatively underdeveloped.

5.1 Directory services

The Lightweight Directory Access Protocol[35, 29]
(LDAP), is a directory service allowing for user, group,
machine, authorization, and service information to be
maintained centrally and in a secure manner. OpenL-
DAP provides a standards-based implementation of
LDAP[3], and Active Directory extends LDAP to sup-
port Microsoft Windows-based systems and services[5].

Central control of any resource usually invokes political
and other concerns. One of the advantages of directory
services is the ability to delegate control over parts of
the directory tree to particular individuals and groups,
allowing local control over access and facilitating man-
agerial tasks through a common GUI or web-based in-
terface.

The adoption of LDAP and AD by FOSS applications
manifests in many different areas. What follows is not
exhaustive by any means, but does serve to show possi-
bilities.

Mail user agents (Thunderbird and Evolution are only
two examples among others), for instance, can access
corporate directory information from an LDAP direc-
tory. The PostgreSQL database can have its service list
in stored in LDAP, which facilitates connecting to re-
mote institutional database servers.

Many office appliances (scanners, copiers, faxes) can
make use of user information from an LDAP server.

The ISC DHCP and BIND servers can both use LDAP to
contain their respective data; not only can this allow for
the management of data across multiple DNS / DHCP
servers across the institutional network, but they also
provide a means to ensure service redundancy inside the
institution.

Samba can use directories to manage user, group, and
machine elements in large organizations through the use
of LDAP to contain user account information[30].

PAM can also make use of user and group info in LDAP,
and with the proper components, new user home direc-
tories can be created at the initial login. Further, the

2010 Linux Symposium • 213

automounter can use information in LDAP to mount the
user’s remote home directory via NFS3 or NFS4.

The Puppet datacenter automation tool can make use of
LDAP to store configuration info for the machines that
it controls[18].

5.2 What’s missing...

Even with delegation and the breadth of applications
able to make use of directory services, there are a num-
ber of application shortcomings that remain.

As mentioned previously, the ability to tell user applica-
tions where to look for their configurations (eg. having
the user’s email application find the user’s info in a par-
ticular directory location) as a means to auto-provision
applications is an obvious institutional example.

For applications or services serving multiple users or
systems, however, similar benefits could accrue. Stor-
ing application configurations in a directory, where ap-
propriate, would allow for the ability to check and mod-
ify the application’s configuration remotely and non-
intrusively.

The benefits of directories are not always well-known,
particularly since these usually only become used in
larger environments not commonly experienced by a
sizable majority of FOSS users and developers.

The perception that the cost of one-off changes to sys-
tems to allow them to keep working or participate in the
local environment is far smaller than the benefit that a
well-designed directory service can provide; in aggre-
gate, however, the reverse is true. Not only would direc-
tory services provide am effective way to manage users
and equipment, but as mentioned above, would allow
user data to be provisioned appropriately across plat-
forms.

Another barrier in the FOSS world, the directory server
tree has no default population at install time. The nature
of most system administrators is to take the precaution-
ary approach in that they would want to understand how
a system works prior to configuring it. Combined with
the highly flexible nature of directories, in my experi-
ence the ethereal nature of a directory makes it harder
for most to grasp. In addition, configuring individual
machines or services to use the directory is a similarly
involved task, at least initially.

Unlike FOSS directory servers like OpenLDAP, Active
Directory-based directory servers come pre-populated
to accommodate the majority of common tasks (eg.
management of users, groups, and machines), primarily
through information gathered when the server is initially
installed. The process of enrolling Windows machines
is also relatively straightforward at install time.

In order to realize the manifold benefits of directory ser-
vices supporting the use of FOSS in organizations, a
greater community of practice around the use of these
techniques is needed. As this becomes more estab-
lished, other shortcomings at the level of software are
more likely to be addressed[9]. As in other communities
around technologies (eg. Samba), an intrinsic activity
this community should undertake is to document exam-
ples where directory services are used to support FOSS
systems, the problems encountered and lessons learned
(good and bad) in the process of set up and maintenance
of the directory, as well as best practices to ensure con-
tinuity.

6 Conclusions

Presently, the underlying technology required to pro-
ductively support the use of FOSS-based systems at the
institutional level exists at both the software application
and operating system levels. The majority of the techni-
cal limitations remaining involve the ability to for appli-
cations to obtain user-specific information through di-
rectory services.

It is expected that as FOSS applications are increasingly
adopted by institutional users that support for packag-
ing FOSS applications for non-FOSS platforms will be-
come more commonplace, akin to how FOSS applica-
tions are packaged for FOSS-based platforms, although
this would likely require a FOSS means to create MSI
files.

Finally, the most important limit to the potential of di-
rectory services is the general lack of knowledge of how
directory services work and how to properly design di-
rectories for particular situations.

7 Acknowledgements

This paper benefited immensely from discussions with
a number of people, and I would like to thank them: Ian

214 • Impediments to institutional adoption of Free/Open Source Software

Thomas, Martin Loeffler, Mike Wiseman, David Au-
clair, Peter Eden, John DiMarco, Ted Sikorski, David
Sutherland, Roger Dingledine, and Richard Sanford.

Any inaccuracies or errors are but my own.

References

[1] Rick Anderson. The End of DLL Hell.
http://msdn.microsoft.com/en-us/
library/ms811694.aspx.

[2] Brian Arkills. LDAP Directories Explained: An
Introduction and Analysis. Addison-Wesley
Professional, 2003.

[3] Gerald Carter. LDAP System Administration.
O’Reilly & Associates, Inc., Sebastopol, CA,
USA, 2003.

[4] Raymond Chen. Windows Confidential: Getting
Out of DLL Hell. http://technet.
microsoft.com/en-ca/magazine/
2007.01.windowsconfidential%.aspx.

[5] Brian Desmond, Joe Richards, Robbie Allen, and
Alistair Lowe-Norris. Active Directory:
Designing, Deploying, and Running Active
Directory. O’Reilly Media, Inc., 2008.

[6] The NSIS developers. The Nullsoft Scriptable
Install System (NSIS). http:
//nsis.sourceforge.net/Main_Page.

[7] Chris DiBona, Sam Ockham, and Mark Stone.
Open Sources: Voices from the Open Source
Revolution. O’Reilly Media, 1999.

[8] Andrew Dunstan. PostgreSQL BuildFarm.
http://buildfarm.postgresql.org/.

[9] The Apache Software Foundation. Apache
Directory Project.
http://directory.apache.org/.

[10] The Kuali Foundation. About the Kuali
Community.
http://www.kuali.org/about.

[11] Jason Garman. Kerberos: The Definitive Guide.
O’Reilly & Associates, Inc., Sebastopol, CA,
USA, 2003.

[12] The Debian QA Group. Debian quality assurance.
http://qa.debian.org/.

[13] The Debian QA Group. Debian wiki: FTBFS.
http://wiki.debian.org/qa.debian.
org/FTBFS.

[14] Internet2. Shibboleth.
http://shibboleth.internet2.edu/.

[15] Brian Krebs. A Peek Inside the ’Eleonore’
Browser Exploit kit. http:
//krebsonsecurity.com/2010/01/
a-peek-inside-the-eleonore-browser-e%
xploit-kit/.

[16] Tomohiro Kubota. Introduction to i18n.
http://www.debian.org/doc/
manuals/intro-i18n/.

[17] Ing-Long Eric Kuo. Firefox MSI. http:
//www.frontmotion.com/Firefox/.

[18] Puppet Labs. Storing Node Information in LDAP.
http://projects.puppetlabs.com/
projects/puppet/wiki/Ldap_Nodes.

[19] Neil McNab. Appupdater. http://www.
nabber.org/projects/appupdater/.

[20] Microsoft. Guide to Windows Vista Multilingual
User Interface. http:
//technet.microsoft.com/en-us/
library/cc721887(WS.10).aspx.

[21] University of Maryland Office of
Information Technology. Configuring Web
Browsers for Kerberos Authentication. http:
//www.helpdesk.umd.edu/topics/
applications/kerberos/4782/.

[22] University of Washington Techology Services.
Pubcookie: open-source software for
intra-institutional web authentication.
http://www.pubcookie.org/.

[23] Ryan Proctor. Win-get. http:
//windows-get.sourceforge.net/.

[24] The Debian Project. Debian Policy Manual.
http://www.debian.org/doc/
debian-policy/.

[25] The Debian Project. Lintian.
http://lintian.debian.org/.

2010 Linux Symposium • 215

[26] Eric S. Raymond. The Cathedral and the Bazaar:
Musings on Linux and Open Source by an
Accidental Revolutionary. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 2001. Foreword
By-Young, Bob.

[27] Edward Ropple. WPM - A Windows Package
Manager. http://blacken.
superbusnet.com/oss/wpm/.

[28] Andrew Ryan. HOWTO-pam.
https://mon.wiki.kernel.org/
index.php/HOWTO-pam.

[29] J. Sermersheim. RFC4511: Lightweight
Directory Access Protocol (LDAP): The Protocol.
http:
//tools.ietf.org/html/rfc4511.

[30] John H. Terpstra. Samba-3 by Example: Practical
Exercises to Successful Deployment (Bruce
Perens Open Source). Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2005.

[31] Wikipedia. Directory Sservices.
http://en.wikipedia.org/wiki/
Directory_service.

[32] Wikipedia. Single sign-on. http://en.
wikipedia.org/wiki/Single_sign-on.

[33] Wikipedia. Windows Installer.
http://en.wikipedia.org/wiki/
Windows_Installer.

[34] Sam Williams. Free as in Freedom: Richard
Stallman’s Crusade for Free Software. O’Reilly
& Associates, Inc., Sebastopol, CA, USA, 2002.

[35] K. Zeilenga. RFC4510 Lightweight Directory
Access Protocol (LDAP): Technical Specification
Road Map. http:
//tools.ietf.org/html/rfc4510.

216 • Impediments to institutional adoption of Free/Open Source Software

Linux kernel support to exploit phase change memory

Youngwoo Park, Sung Kyu Park and Kyu Ho Park
Korea Advanced Institute of Science and Technology (KAIST)

(ywpark,skpark)@core.kaist.ac.kr and kpark@ee.kaist.ac.kr

Abstract

Recently, phase change memory (PRAM) has been de-
veloped as a next generation memory technology. Be-
cause PRAM can be accessed as word-level using mem-
ory interface of DRAM and offer more density com-
pared to DRAM, PRAM is expected as an alternative
main memory device. Moreover, it can be used as ad-
ditional storage of system because of its non-volatility.
However, PRAM has several problems. First, the ac-
cess latency of PRAM is still not comparable to DRAM.
It is several times slower than that of DRAM. Sec-
ond, PRAM can endure hundreds of millions of writes
per cell. Therefore, if PRAM does not be managed
properly, it has negative impact on the system perfor-
mance and consistency. In order to solve these prob-
lems, we consider the Linux kernel level support to ex-
ploit PRAM in memory and storage system. We use
PRAM with a small size DRAM and both PRAM and
DRAM are mapped into single physical memory ad-
dress space in Linux. Then, the physical memory pages,
which are used by process, are selectively allocated
based on the access characteristics. Frequently updated
hot segment pages are stored in DRAM. PRAM is used
for read only and infrequently updated pages. Con-
sequently, we minimize the performance degradation
caused by PRAM while reducing 50% energy consump-
tion of main memory. In addition, the non-volatile char-
acteristic of PRAM is used to support file system. We
propose the virtual storage that is a block device inter-
face to share the non-volatile memory pages of PRAM
as a storage alternative. By using 256MB PRAM for vir-
tual storage, we can decrease more than 40% of access
time of disk.

1 Introduction

For several decades, DRAM has been the main mem-
ory of computer systems. Since the memory require-
ment is growing to support the increasing number of

cores and concurrent applications, DRAM based main
memory significantly increases the power and cost bud-
get of a computer system. Recent studies [8, 7] have
shown that 30-40% of modern server system energy is
consumed by the DRAM memory. Moreover, it is ex-
pected that DRAM scaling will be clamped by the lim-
itation in cell-bitline capacitance ratio [4, 10]. There-
fore, new memory technologies such as Phase-change
RAM (PRAM), Ferroelectric RAM (FRAM), and Mag-
netic RAM (MRAM) have been proposed to overcome
the limitation of DRAM.

Among these memories, PRAM is the most promising
technology for future memory. Figure 1 shows the ba-
sic structure of PRAM cell. PRAM uses phase change
material (GST: Ge2Sb2Te5). It has two phases;an amor-
phous or a crystalline phase. Since the amorphous and
the crystalline phase have a large variance on their re-
sistance, the data is read by measuring the current of
PRAM. The phase of GST can be changed by heat-
ing the material. The moderate and long current pulse
crystallizes GST. On the other hand, short current pulse
melts and quenches GST quickly and makes it amor-
phous.

Figure 1: PRAM cell structure [2]

Basically, PRAM is byte-addressable like DRAM. The

• 217 •

218 • Linux kernel support to exploit phase change memory

great advantages of PRAM are the scalability and low
energy consumption. PRAM does not require imple-
menting capacitor for memory cell. PRAM provides su-
perior density relative to DRAM. Because the phase of
PRAM is maintained persistently, PRAM is non-volatile
memory and has negligible leakage energy. Therefore,
PRAM can be used to provide the memory that has
much higher capacity and lower power consumption
than DRAM.

However, the long current pulse for crystallizing in-
creases the latency of PRAM writes. Although PRAM
access latency is tens of nanoseconds, it is still not com-
parable to DRAM access latency. The frequent ac-
cess of PRAM can impact on the overall system per-
formance. Also, the PRAM write energy consumption
and endurance are limitations of PRAM. The high pulse
for phase change increases the dynamic energy con-
sumption. PRAM writing makes the thermal expansion
and contraction of material. It degrades the electrode-
storage contact and reduces the reliability of program-
ming current. This degrades the write endurance of
PRAM cells. PRAM can sustains 108 rewrite per cell
[11].

In this paper, we consider the Linux level support to ex-
ploit PRAM in current computer system. First of all,
we decide to use PRAM with a small size DRAM to
overcome the limitation of PRAM. PRAM and DRAM
are mapped into single physical memory address space.
Then, the physical main memory of Linux consists of
one small fast region (DRAM) and one large slow region
(PRAM). Therefore, the PRAM is used to increase the
size of main memory and eliminate a lot of page faults.
At the same time, we can use DRAM to reduce the over-
all main memory access latency. Based on this main
memory architecture, we propose a new Linux physical
page management mechanism. The physical memory
pages, which are used by process, are selectively allo-
cated based on the segment type. Consequently, we min-
imize the performance degradation and endurance prob-
lems caused by PRAM while achieving a large scale and
low power main memory.

In addition, we also discuss the block device interface to
share the non-volatile main memory pages of PRAM as
a storage alternative. It gives a lot of advantage for file
system to access metadata and small size file because it
can read or write the data as single word level and avoid
unnecessary seek latency of disk.

2 Hybrid main memory architecture

CPU

Page Table

Linear Address Space

0

0x8000000

0x6000000

DRAM

PRAM

Physical Address Space

Paging Unit

Page Swap

Disk

Figure 2: Hybrid main memory architecture

Figure 2 shows the proposed hybrid main memory ar-
chitecture. Both PRAM and DRAM are used as a main
memory. This architecture reduces the cost and power
budget because large portion of main memory is re-
placed by PRAM. Using small size of DRAM, it mini-
mizes the performance degradation. Similar to the tradi-
tional main memory architecture, there is memory page
swap between hybrid main memory and the second level
storage. However, the number of page swapping can be
reduced because the main memory capacity is increased
by PRAM.

In hybrid main memory architecture, PRAM and
DRAM are assigned to single physical address space.
All memory pages of PRAM and DRAM can be directly
managed by the Linux kernel. However, it is necessary
for kernel to distinct the PRAM and DRAM region. We
assume that DRAM always has lower physical address
than PRAM and the size of each memory is provided by
the kernel option. The, Linux kernel has information of
the exact physical address range of PRAM and DRAM
as shown in Figure 2. Physical pages of PRAM and
DRAM can be distinguished by the physical address.

3 Hybrid main memory management

3.1 Free page management

For the hybrid main memory architecture, Linux kernel
needs to manage DRAM and PRAM region separately.
In current Linux kernel, the physical memory of the sys-
tem can be partitioned and managed in several nodes.
Also, physical memory of each node is divided into sev-
eral zones. If we can map DRAM and PRAM phys-
ical pages into separate memory nodes, memory man-
agement facilities can be used in proposed hybrid main

2010 Linux Symposium • 219

memory architecture. However, Linux node is only pro-
posed for specific NUMA hardware and Linux zone is
proposed to cope with the hardware constraints. Instead
of making new node or zone for DRAM and PRAM,
we use additional free area for each zone as shown in
Figure 3.

alloc_page() free_page()

DRAM free area

…

PRAM free area

…

DRAM free area

…

PRAM free area

…

DRAM free area

…

PRAM free area

…

ZONE_DMA ZONE_NORMAL ZONE_HIGHMEM

NODE 0

Specified Zone &

Virtual address
Physical address

Figure 3: Free page management for hybrid main mem-
ory list

Proposed Linux kernel has two DRAM free area and
PRAM free area which contain only the free pages of
DRAM and PRAM, respectively. Although both free
areas are used by the same buddy system page alloca-
tor, the contiguous DRAM and PRAM block is indepen-
dently handled. In addition, When the kernel invokes a
memory allocation function, the page frames are selec-
tively allocated to one of the free area of specified zone.
The free area selection considers the characteristics of
allocated data. We will describe this allocation policy in
the section 3.2

After we divide the free areas, we also need to consider
the page reclamation method. Basically, Linux reclaims
free pages when there is not enough number of pages
in zones. Although we separately manage the free page
list of DRAM and PRAM, the page reclamation occurs
when the total number of pages in both DRAM and
PRAM free areas is lower than the threshold. There-
fore, we can fully utilize the main memory region before
swapping. Even though one of the memory devices is
fully utilized, the free pages of another memory device
are contributed as main memory. The large size PRAM
main memory region reduces a lot of page swapping.

3.2 Selective allocation

In hybrid main memory architecture, there are two dif-
ferent memory devices. Particularly, PRAM is very

different from the conventional DRAM. The physical
memory management of Linux kernel, which is only
developed for the uniform memory devices, should be
changed. The first thing which needs to be addressed is
the page allocation.

The goal of the page allocation of Linux is to serve
the memory allocation request from the Linux kernel
and the user processes. Conventional Linux kernel al-
locates physical memory pages when kernel functions
like alloc_page() and __get_free_page() are called.
These page allocation functions are successfully re-
turned when the free pages of requested size are found
and allocated. The conventional buddy system allocates
groups of contiguous page frames to solve the external
fragmentation.

Previously, it is not important where the memory pages
are located in main memory because the characteristics
of memory pages are always same in uniform memory
device. However, in our hybrid main memory architec-
ture, the location of pages can have significant effect on
the performance and power consumption of main mem-
ory. As we mentioned in section 1, PRAM write op-
eration is much slower than read and require high en-
ergy. If memory pages that are frequently updated are
allocated in PRAM, it can increase the dynamic power
consumption and decrease the overall access latency of
main memory. Moreover, it reduces the lifetime of main
memory because PRAM has limited write endurance.
Therefore, the key of our page allocation is to assign
frequently updated data into DRAM instead of PRAM.

The question is how to find the write intensive data be-
fore page allocation. Although it is very difficult to
predict the future access pattern of each page, we can
use the general characteristics of pages for page alloca-
tion. Traditionally, the process address space of Linux is
partitioned in several linear address intervals called seg-
ments. It is well known that the access pattern of data in
same segment is almost similar. For example, text seg-
ment includes the executable code which is read-only
data. Stack segment contains the return address, param-
eters and local variables which are frequently read write.
Table 1 summarizes the general access patterns of Linux
segments.

Figure 4 shows the design of selective allocation. The
memory segments are identified by the variables which
are included in the mm_struct memory descriptor. For
example, start_code and end_code store the initial and

220 • Linux kernel support to exploit phase change memory

Segment type Access pattern

Text segment Read only
Initialized data segment Read centric

Uninitialized data segment Infrequent read/write
Stack segment Frequent read/write
Heap segment Frequent read/write

Table 1: Access pattern of Linux segments

Stack

Heap

Text(ELF)

Data

BSS

Command line

Link table

Environment string

start_brk

brk

start_stack

start_data

env_end

DRAM

PRAM

Physical address spaceVirtual address space

0

0x8000000

0x6000000

start_code

Page

fault

virtual

address

mm_struct

Figure 4: Design of selective allocation

final virtual address of the segments. start_stack store
the start virtual address of stack segments. Also, we can
get the virtual address, where physical page should be
mapped. It is delivered by the page fault handler be-
fore page allocation. Thus, only if the variable of the
mm_struct memory descriptor is compared to the virtual
address that cause the page fault, we can decide the seg-
ment type of page before allocation. After finding the
segment type, we selectively allocate a physical page
between DRAM and PRAM.

In current design of selective allocation, the page allo-
cation policy is fixed. The pages of heap and stack seg-
ments are allocated in DRAM. All other memory pages
are allocated into PRAM as shown in Figure 4. How-
ever, if we implement new system call salloc_policy(),
the selective allocation policy is changed by each appli-
cation. For example, a user can allocate stack and heap
pages in PRAM. Also, this system call can be used to
decide the allocation policy of file cache, mmap and li-
brary pages.

4 Hybrid main memory for virtual storage

4.1 Virtual stroage

Many previous researches prove that non-volatile mem-
ory is very effective to reduce the overhead of disk based

storage because it is free from seek latency and favor-
able for small size random accesses data [3, 6, 12]. In
proposed hybrid main memory, a part of main mem-
ory (PRAM) can be used for the byte-addressable non-
volatile storage. In order to exploit PRAM memory
as storage, we propose the virtual storage which is a
block level interface to use PRAM region of hybrid main
memory for storage as shown in Figure 5.

Figure 5: Virtual storage architecture

Similar to the virtual memory, the virtual storage is an
abstraction of single and contiguous storage. Physically,
it uses PRAM main memory region and disk as a stor-
age device. If the file system writes data to the vir-
tual storage interface, it selectively allocates data into
PRAM memory page or disk. However, we do not re-
serve PRAM pages for storage use. All free pages in
PRAM are dynamically allocated for memory page and
file page. The mapping from virtual page to physical
page in PRAM or disk is maintained by the storage page
table which contains the mapping of allocated virtual
pages as tree. In order to preserve the mapping infor-
mation after power-off, it should be stored in PRAM
and the root of table is managed in a fixed location of
PRAM.

4.2 Selective allocation for virtual storage

In section 3.2, we describes that the memory pages are
allocated based on the type of segments. On the other
hand, the basic metric for file page allocation algorithm
is data size. It is generally known that a small size file is
frequently and randomly accessed. Because PRAM has
fast access time and much smaller capacity than disk, it
is better to keep only data of a small size file in PRAM.
If the requested data size to virtual storage is over sev-

2010 Linux Symposium • 221

eral tens of KB, contiguous physical pages in disk are
selected to store the data.

Also, the virtual storage is designed to support write re-
quest merging. Although the data size of a request is
small, if it is a sequential request that has a nearby vir-
tual address of previous one, the selective allocator de-
cides that those pages are in the same file and move them
into disk later. It can allocate a large file, whose size is
continuously increased, to disk. Consequently, the write
request merging reduces the waste of PRAM space and
number of disk access.

5 Evaluation

5.1 Hybrid main memory

Currently, PRAM is not available as a main memory.
Instead of hardware, we evaluate proposed hybrid main
memory and its management schemes using the M5
simulator [9]. In order to implement the hybrid main
memory architecture, we use additional memory mod-
ules in a physical main memory space. Two memory
modules are used to simulate DRAM and PRAM mem-
ory, respectively. The PRAM and DRAM memories are
mapped into same physical address space.

In addition, we add the memory access monitoring mod-
ule. It monitors all memory access of DRAM and
PRAM. Because we separately use two memory mod-
ules, the memory monitoring module can monitors both
DRAM and PRAM at the same time. Although we mon-
itors the total read/write access counter and size of mem-
ory, the memory monitors can be extended to get an any
information that is related with memory access. Finally,
the monitored read/write access count and size is used
to calculate the access latency and energy consumption
of overall main memory.

Then, the selective allocation for main memory is im-
plemented and evaluated on Linux 2.6.27 which is op-
erated on the M5 simulator. We execute benchmarks on
M5 using a simple execution ALPHA processor running
at 1GHz. We assume that the processor does not have
caches to focus on main memory evaluation. The total
main memory size is 256MB. For hybrid main memory,
64MB DRAM and 198MB PRAM is used. The access
latency and energy consumption of DRAM and PRAM
is calculated by the parameters of Numonyx [11]. Ta-
ble 2 summarizes the parameters used for DRAM and

Parameter DRAM PRAM

Read latency 50ns 50ns
Write latency 50ns 1us
Read Energy 0.1nJ/b 0.05nJ/b
Write Energy 0.1nJ/b 0.5nJ/b
Idle Energy 1W/GB 0.005W

Table 2: DRAM and PRAM characteristics [11]

PRAM. For our workloads, we use MiBench benchmark
suite.

First of all, we compare the energy consumption of pro-
posed hybrid main memory with DRAM. For this evalu-
ation, we should assume the idle time of main memory.
It has been well-established that the average utilization
of server is even below 30% [5]. Therefore, in all evalu-
ations of energy consumption, we assumes that memory
is only accessed 40% time.

Figure 6 and Figure 7 shows the reduction in memory
energy consumption. The hybrid main memory achieves
around 30% energy savings. Moreover, if we use the
selective allocation, we can reduce the PRAM write
operation which consumes more energy than DRAM
read/write and PRAM read operation. The total energy
saving ratio is increased by 50%. The selective alloca-
tion exploits the read-friendliness of PRAM as well as
writes friendliness of DRAM, and hence achieves better
overall energy efficiency.

Figure 6: Total energy consumption

Although PRAM is good for scalable main memory, it
can increase the overall latency of main memory. Fig-
ure 8 shows total access latency and Figure 9 shows the
latency overhead against the DRAM main memory. In
our experiments, the hybrid main memories that use typ-
ical Linux allocation algorithm have more than 100%

222 • Linux kernel support to exploit phase change memory

Figure 7: Energy savings against DRAM main memory

latency overhead. However, if we use the selective al-
location, we can allocate the infrequently accessed page
in PRAM and reduce the 50% latency overhead. More-
over, the latency of 6 applications is only increased un-
der 20%, while reduce much more than 50% energy
consumption.

However, some benchmarks use much global variables
and update the variables frequently. It causes a lot of
write in data segment. The latency of these benchmarks
is much larger than DRAM main memory. For Type-
set application, selective allocation rather increases the
latency and reduces energy consumption.

Figure 8: Total access latency

5.2 Virtual storage

In order to evaluate the performance of virtual storage,
we estimate the total access time when executing OLTP
trace [1]. In virtual storage, each OLTP request can be
allocated to PRAM or disk. We use PRAM access la-
tency of Table 2 and assume 5ms disk access latency
for evaluation. Then, three allocation policies (random,
selective, and selective merging) are compared in this

Figure 9: Latency overhead against DRAM main mem-
ory

evaluation. The random allocation randomly assigns a
request to PRAM or disk. The selective allocation uses
PRAM only for the request whose size is under 64KB.
The selective merging uses both selective allocation and
write request merging which is proposed in section 4.2.
Figure 10 shows the evaluation result.

Figure 10: Total storage access time of virtual storage

Figure 10 presents that the use of PRAM decrease the
total access time of disk. It is because PRAM is free
from seek latency and favorable for small size random
access. However, random allocation cannot fully use the
PRAM because it dissipates PRAM for large size se-
quential data. Although the selective allocation reduces
the access time of virtual storage, it does not effective
when the size of PRAM is small. If the size of PRAM is
small, PRAM space is filled with fragmented sequential
requests soon. Many of small size random requests do
not have the benefits of PRAM.

On the other hand, selective allocation with write re-
quest merging is very effective because request merging
help to find more sequential data. The virtual storage

2010 Linux Symposium • 223

can allocate the more random requests to PRAM. It re-
duces the number of disk accesses and more increase
the performance of virtual storage. If 256MB PRAM
is used as storage in virtual storage, we decrease more
than 40% of access time of disk.

6 Further work

Although the selective allocation statically allocates
memory pages by using the general characteristics of
segments, it cannot fully reflect the dynamic access pat-
tern of memory page. In order to minimize the access
latency of hybrid main memory, it is necessary to dy-
namically balance and move pages between DRAM and
PRAM. For example, if some memory pages are fre-
quently updated in a moment, it is better to be migrated
to DRAM at that time. If a page in DRAM is occasion-
ally read, it needs to be migrated to PRAM. The page
migration also increases the endurance of PRAM be-
cause the frequently updated page will be migrated to
DRAM.

In order to implement the memory migration, we may
use the LRU lists of OS kernel to manage. There are
active_list and inactive_list of pages in Linux kernel.
If we always select the page of inactive_list to migrate
into PRAM, recently accessed page is stored in DRAM.
However, the LRU list of OS kernel does not fully mon-
itor the memory access because memory access is oc-
curred without interruption of kernel. Therefore, we
need to think about hardware and software design of ker-
nel LRU list to reflect the memory access pattern.

Also, we described that PRAM is good for storage alter-
natives. However, all previous file systems statically as-
sign non-volatile RAM only for storage although PRAM
can be used both for main memory and storage system.
In order to maximize the advantage of PRAM, we need
to develop unified management of PRAM for memory
and storage devices. All PRAM pages need to be freely
allocated for main memory and storage. Linux kernel
should be implemented to control the use of PRAM ac-
cording to overall system status.

7 Conclusion

PRAM will be widely used in the future computing
system as memory or storage alternatives. In this pa-
per, we consider the Linux kernel level support to ex-
ploit PRAM. We use PRAM for hybrid main memory

and propose new page allocation algorithm. Conse-
quently, we minimize the performance degradation and
endurance problems caused by PRAM while reducing
50% energy consumption of main memory. Also, we
propose the virtual storage which is a new block level in-
terface using PRAM for storage. It allocates small size
random access data into PRAM and reduces the num-
ber of disk access. We can decrease more than 40% of
access time of disk.

References

[1] OLTP Application I/O and Search Engine I/O.
http://traces.cs.umass.edu/index.php/Storage/Storage.

[2] Phase-change memory.
http://en.wikipedia.org/wiki/Phase-
change_memory.

[3] An-I A. Wang, et al. Conquest: Better
Performance through a Disk/Persistent-RAM
Hybrid File System. In Proceedings of 2002
USENIX Annual Technical Conference, 2002.

[4] Benjamin C. Lee, E. Ipek, O. Mutlu, and D.
Burger. Architecting Phase Change Memory as a
Scalable DRAM Alternative. In Proceedings of
the 36th annual International Symposium on
Computer Architecture, 2009.

[5] David Meisner, David Meisner, Thomas F.
Wenisch. PowerNap: eliminating server idle
power. In roceeding of the 14th international
conference on Architectural support for
programming languages and operating systems,
2009.

[6] Ethan L. Miller, Scott A. Brandt, and Darrell D.
E. long. HeRMES: High-performance reliable
MRAM-enabled storage. In Proceedings of the
8th IEEE Workshop on Hot Topics in Operating
Systems (HotOS-VIII), 2001.

[7] G. Dhiman, R. Ayoub, and T. Rosing. PDRAM:A
Hybrid PRAM and DRAM Main Memory
System. In Proceedings of the 46th Annual
Design Automation Conference, 2009.

[8] Moinuddin K. Qureshi, V. Srinivassan, and Jude
A. Rivers. Scalable High Performance Main
Memory System Using Phase-Change Memory
Technology. In Proceedings of the 36th annual

224 • Linux kernel support to exploit phase change memory

International Symposium on Computer
Architecture, 2009.

[9] Nathan L. Binkert, Ronald G. Dreslinski, Lisa R.
Hsu, Kevin T. Lim, Ali G. Saidi, and Steven K.
Reinhardt. The M5 Simulator: Modeling
Networked Systems. IEEE Micro, 26(4):52–60,
2006.

[10] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A
Durable and Energy Efficient Main Memory
Using Phase Change Memory Technology. In
Proceedings of the 36th annual International
Symposium on Computer Architecture, 2009.

[11] S. Eilert, M. Leinwander, and G. Crisenza. Phase
Change Memory: A new memory enables new
memory usage models. 2009 IEEE International
Memory Workshop, pages 1–2, 2009.

[12] Y. Park, S. H. Lim, C. Lee, K. H. Park, et. al.
PFFS:A Scalable Flash Memory File System for
the Hybrid Architecture of Phase change RAM
and NAND Flash. In Proceedings of the 2008
ACM symposium on Applied computing, 2008.

The Virtual Contiguous Memory Manager

Zach Pfeffer
Qualcomm Innovation Center (QuIC)

zpfeffer@quicinc.com

Abstract

An input/output memory management unit (IOMMU)
maps device addresses to physical addresses. It also in-
sulates the system from spurious or malicious device ad-
dresses and allows fine-grained mapping attribute con-
trol. The Linux kernel core does not contain a generic
API to handle IOMMU mapped memory; device driver
writers must implement device specific code to inter-
operate with the Linux kernel core. As the number
of IOMMUs increases, coordinating the many address
spaces mapped by all discrete IOMMUs becomes diffi-
cult without in-kernel support.

To address this complexity the Qualcomm Innovation
Center (QuIC) created the Virtual Contiguous Mem-
ory Manager (VCMM) API. The VCMM API enables
device independent IOMMU control, VMM interoper-
ation and non-IOMMU enabled device interoperation
by treating devices with or without IOMMUs and all
CPUs with or without MMUs, their mapping contexts
and their mappings using common abstractions. Physi-
cal hardware is given a generic device type and mapping
contexts are abstracted into Virtual Contiguous Memory
(VCM) regions. Users "reserve" memory from VCMs
and "back" their reservations with physical memory. We
have implemented the VCMM to manage the IOMMUs
of an upcoming ARM based SoC. The implementation
will be posted to the Code Aurora Foundation’s site.

1 Motivation and Opportunities

Driver writers who control devices with IOMMUs must
contend with device control and memory management.
Driver writers have a large device driver API that they
can leverage to control their devices, but they are lack-
ing a unified API to help them program mappings into
IOMMUs and share those mappings with other devices
and CPUs in the system.

Sharing is complicated by Linux?s CPU centric VMM.
The CPU centric model generally makes sense because
average hardware only contains a MMU for the CPU
and possibly a graphics MMU. If every device in the
system has one or more MMUs, a CPU centric memory
management (MM) programming model breaks down.

The VCMM was built to allow abstract device program-
ming and mapping interoperation.

2 VCMM Abstractions

Abstracting IOMMU programming into a common API
has already begun in the Linux kernel. It was built to ab-
stract the difference between AMD’s and Intel’s IOM-
MUs to support x86 virtualization on both platforms.
The interface is listed in kernel/include/linux/iommu.h.
It contains interfaces for mapping and unmapping as
well as ’domain management.’ This interface has not
gained widespread use outside the x86; PA-RISC, Al-
pha and SPARC architectures and ARM and PowerPC
platforms all use their own mapping modules to control
their IOMMUs. The VCMM contains an IOMMU pro-
gramming layer, but since its abstraction supports map
management independent of device control, the layer is
not used directly. This higher-level view enables a new
kernel service, not just an IOMMU interoperation layer.

Looking at mapping from a system-wide perspective re-
veals a general graph problem. The VCMM’s API is
built to manage the general mapping graph. Each node
that talks to memory, either through an MMU or directly
(physically mapped) can be thought of as the device end
of a mapping edge. The other edge is the physical mem-
ory (or intermediate virtual space) that is mapped.

In the direct mapped case the device is assigned a ’one-
to-one’ MMU. This scheme allows direct mapped de-
vices to participate in general graph management.

The CPU nodes can also be brought under the same
mapping abstraction with the use of a light overlay on

• 225 •

226 • The Virtual Contiguous Memory Manager

the existing VMM. This light overlay allows VMM
managed mappings to interoperate with the common
API. The light overlay enables this without substantial
modifications to the existing VMM.

In addition to CPU nodes that are running Linux (and
the VMM), remote CPU nodes that may be running
other operating systems can be brought into the general
abstraction. Routing all memory management requests
from a remote node through the central memory man-
agement framework enables new features like system-
wide memory migration. This feature may only be fea-
sible for large buffers that are managed outside of the
fast-path, but having remote allocation in a system en-
ables features that are impossible to build without it.

The fundamental objects that support these abstractions
are:

• Virtual Contiguous Memory Regions

• Reservations

• Associated Virtual Contiguous Memory Regions

• Memory Targets

• Physical Memory Allocations

In a nut-shell, users allocate Virtual Contiguous Mem-
ory Regions and associate those regions with one or
more devices by creating an Associated Virtual Contigu-
ous Memory Region. Users then create Reservations
from the Virtual Contiguous Memory Region. At this
point no physical memory has been committed to the
reservation. To associate physical memory with a reser-
vation a Physical Memory Allocation is created and the
Reservation is backed with this allocation.

3 Virtual Contiguous Memory Regions

A Virtual Contiguous Memory Region (VCM) abstracts
the memory space a device ’sees.’ The addresses of the
region are only used by the devices which are associated
with the region. This address space would normally be
implemented as a device page-table.

A VCM is created and destroyed with three functions:

vcm_id = vcm_create(start_addr, len);

vcm_id = vcm_create_from_prebuilt(ext_

vcm_id);

vcm_free(vcm_id);

start_addr is an offset into the address space where allo-
cations will start from. len is the length from start_addr
of the VCM. Both functions generate a vcm_id which is
an opaque instance of a VCM.

ext_vcm_id is used to pass a request to the VMM to
generate a vcm_id. In the current implementation the
call simply makes a note that the vcm_id is a VMM
vcm_id for other interfaces usage. This ’muxing’ is seen
throughout the implementation.

vcm_create() and vcm_create_from_prebuilt() produce
vcm_ids for virtually mapped devices (IOMMUs and
CPUs). To create a one-to-one mapped VCM users
pass the start_addr and len of the physical region. The
VCMM matches this and records that the vcm_id is a
one-to-one VCM.

The newly created vcm_id can be passed to any func-
tion that needs to operate on or with a virtual contiguous
memory region. Its main attributes are a start_addr and
a len as well as an internal setting that allows the imple-
mentation to mux between true virtual spaces, one-to-
one mapped spaces and VMM managed spaces.

The current implementation uses the genalloc library to
manage the VCM for IOMMU devices.

4 Reservations

A Reservation is a contiguous region allocated from a
VCM. There is no physical memory associated with it.

A Reservation is created and destroyed with:

res_id = vcm_reserve(vcm_id, len, attr);

vcm_unreserve(res_id);

A vcm_id is a VCM created above. len is the length
of the request. It can be up-to the length of the
VCM region the reservation is being created from. attr
are mapping attributes: read, write, execute, user, su-
pervisor, secure, not-cached, write-back/write-allocate,
write-back/no write-allocate, write-through. These attrs
can be changed to match to any architecture.

The implementation calls gen_pool_alloc() for IOMMU
devices, alloc_vm_area() for VMM areas and is a pass
through for one-to-one mapped areas.

2010 Linux Symposium • 227

5 Associated Virtual Contiguous Memory Re-
gions and Activation

An Associated Virtual Contiguous Memory Region
(AVCM) is a mapping of a VCM to a device. The map-
ping can be active or inactive.

An AVCM is managed with:

avcm_id = vcm_assoc(vcm_id, dev_

id, attr);

vcm_deassoc(avcm_id);

vcm_activate(avcm_id);

vcm_deactivate(avcm_id);

A vcm_id is a VCM created above. dev_id is an opaque
device handle that’s passed down to the device driver the
VCMM muxes in to handle a request. attr are associa-
tion attributes: split, use-high or use-low. split controls
which address hit a ’high-address’ page-table and which
addresses hit a “low-address” page-table. For instance,
all addresses whose most-significant-bit is one would
use the “high-address” page-table, any other register
would use the ’low address’ page-table. One vcm_id
can be associated with many devices and many vcm_ids
can be associated with one device.

An AVCM is only a link. To program and depro-
gram a device with a VCM the user calls vcm_activate()
and vcm_deactivate().For IOMMU devices, activating a
mapping programs the base address of a page-table into
an IOMMU. For VMM and one-to-one based devices,
mappings are active immediately; the API does require
an activation call for them for internal reference count-
ing.

6 Memory Targets

A Memory Target is a platform independent way of
specifying a physical pool; it abstracts a pool of physical
memory. The physical memory pool may be physically
discontinuous, need to be allocated from in a unique
way or have other user-defined attributes.

7 Physical Memory Allocation and Reserva-
tion Backing

Physical memory is allocated as a separate step from
reserving memory. This allows multiple reservations to

back the same physical memory. A Physical Memory
Allocation is managed using the following functions:

physmem_id = vcm_phys_

alloc(memtype, len, attr);

vcm_phys_free(physmem_id);

vcm_back(res_id, physmem_id);

vcm_unback(res_id);

attr can include an alignment request, a specification to
map memory using various block sizes and/or to use
physically contiguous memory. memtype is one of the
memory types listed in Memory Targets.

The current implementation manages two pools of
memory. One pool is a contiguous block of memory and
the other is a set of contiguous block pools. In the cur-
rent implementation the blocks pools contain 4K, 64K
and 1M blocks. The physical allocator does not try to
split blocks from the contiguous block pools to satisfy
requests.

The use of 4K, 64K and 1M blocks solves a problem
with some IOMMU hardware. IOMMUs are placed in
front of multimedia engines to provide a contiguous ad-
dress space to the device. Multimedia devices need large
buffers and large buffers may map to a large number of
physical blocks. IOMMUs tend to have small transla-
tion lookaside buffers (TLBs). The number of physical
blocks that map a given range needs to be small or else
the IOMMU will continually fetch new translations dur-
ing a typical streamed multimedia flow since the TLB
is small. By using a 1 MB mapping (or 64K mapping)
instead of a 4K mapping the number of misses can be
minimized, allowing the multimedia block to meet its
performance goals.

8 Low Level Control

It is necessary to access attributes of the abstractions.
The API contains many functions but the two that are
typically used are:

devaddr = vcm_get_dev_addr(res_id);

vcm_hook(dev_id, user_

handler, void *data);

The first function, vcm_get_dev_addr() returns a device
address given a reservation. This device address is a

228 • The Virtual Contiguous Memory Manager

virtual IOMMU address for reservations on IOMMU
VCMs, a virtual VMM address for reservations on
VMM VCMs and a ’virtual’ (physical) address for one-
to-one devices.

The second function, vcm_hook allows a caller in the
kernel to register a user_handler. The handler is passed
the data during a fault. The user can return 1 to indicate
that the underlying driver should handle the fault and
retry the transaction or can return 0 to halt the transac-
tion. If the user doesn’t register a handler the low-level
driver will print a warning and terminate the transaction.

9 A Detailed Walk Through

The following call sequence walks through a typical al-
location sequence. In the first stage the memory for a
device is reserved and backed. This occurs without map-
ping the memory into a VMM VCM region. The second
stage maps the first VCM region into a VMM VCM re-
gion so the kernel can read or write it. The second stage
is not necessary if the VMM does not need to read or
modify the contents of the original mapping. Figure 1
shows the mappings schematically.

Stage 1: Map and Allocate Memory for a Device

The call sequence starts by creating a VCM region:

vcm_id = vcm_create(start_addr, len);

The next call associates a VCM region with a device:

avcm_id = vcm_assoc(vcm_id, dev_

id, attr);

To activate the association users call vcm_activate() on
the avcm_id from the associate call. This programs the
underlining device with the mappings.

vcm_activate(avcm_id);

Once a VCM region is created and associated it can be
reserved from.

res_id = vcm_reserve(vcm_id, res_

len, res_attr);

A user allocates physical memory:

physmem_id = vcm_phys_

alloc(memtype, len, phys_attr);

To back the reservation with the physical memory allo-
cation the user calls:

vcm_back(res_id, physmem_id);

Stage 2: Map the Device’s Memory into the VMM’s
VCM region

If the VMM needs to read and/or write the region that
was just created the following calls are made.

The first call creates a prebuilt VCM:

vcm_vmm_id = vcm_from_prebuit(ext_vcm_

id);

The prebuilt VCM is associated with the CPU device
and activated:

avcm_vmm_id = vcm_assoc(vcm_vmm_id, dev_

cpu_id, attr);

vcm_activate(avcm_vmm_id);

A reservation is made on the VMM VCM:

res_vmm_id = vcm_reserve(vcm_vmm_

id, res_len, attr);

Once the topology has been set up a vcm_back() allows
the VMM to read the memory using the physmem_id
generated in stage 1:

vcm_back(res_vmm_id, physmem_id);

10 Mapping IOMMU, one-to-one and VMM
Reservations

Figure 3 demonstrates mapping IOMMU, one-to-one
and VMM reservations to the same physical memory.
It shows the use of phys_addr and phys_size to create a
contiguous VCM for one-to-one mapped devices. Fig-
ure 2 shows the mappings schematically.

11 Summary

The VCMM is an attempt to abstract attributes of three
distinct classes of mappings into one API. The VCMM
allows users to reason about mappings as first class ob-
jects. It also allows memory mappings to flow from
the traditional 4K mappings prevalent on systems today
to more efficient block sizes. Finally, it allows users
to manage mapping interoperation without becoming
VMM experts. These features will allow future systems
with many MMU mapped devices to interoperate simply
and therefore correctly.

2010 Linux Symposium • 229

vcm_id

start_addr

len

dev_id

physmem_id

res_len

Physical Space IOMMU Virtual Space

avcm_id

VMM start address

VMM len

dev_cpu_id

res_len

VMM Virtual Space

avcm_vmm_id

vcm_vmm_id

res_vmm_id

res_id

Figure 1: Walk Through

SZ_1K

SZ_16M

dev_iommu_id
physmem_id

res_len

Physical Space IOMMU Virtual Space

VMM start address

VMM len

dev_cpu_id

res_len

VMM Virtual Space

avcm_vmm_id

vcm_vmm_id

vcm_iommu_id

One-To-One Space

vcm_onetoone_id

phys_size

phys_addr

res_vmm_id

res_iommu_id

res_onetoone_id

dev_onetoone_id

avcm_onetoone_id

SZ_1M

SZ_1M

SZ_4K

Figure 2: Mapping IOMMU, One-to-One and VMM Reservations

230 • The Virtual Contiguous Memory Manager

physmem_id = vcm_phys_alloc(memtype, SZ_2MB + SZ_4K, CONTIGUOUS);}
vcm_iommu_id = vcm_create(SZ_1K, SZ_16M);}
vcm_onetoone_id = vcm_create(phys_addr, phys_size);}
vcm_vmm_id = vcm_from_prebuit(ext_vcm_id);}

avcm_iommu_id = vcm_assoc(vcm_iommu_id, dev_iommu_id, attr0);}
avcm_onetoone_id = vcm_assoc(vcm_onetoone_id, dev_onetoone_id, attr1);}
avcm_vmm_id = vcm_assoc(vcm_vmm_id, dev_cpu_id, attr2);}

vcm_activate(avcm_iommu_id);}
vcm_activate(avcm_onetoone_id);}
vcm_activate(avcm_vmm_id);}

res_iommu_id = vcm_reserve(vcm_iommu_id, SZ_2MB + SZ_4K, attr);}
res_onetoone_id = vcm_reserve(vcm_onetoone_id, SZ_2MB + SZ_4K, attr);}
res_vmm_id = vcm_reserve(vcm_vmm_id, SZ_2MB + SZ_4K, attr);}

vcm_back(res_iommu_id, physmem_id);}
vcm_back(res_onetoone_id, physmem_id);}
vcm_back(res_vmm_id, physmem_id);}

Figure 3: Mapping IOMMU, One-to-One and VMM Reservations Example

Transactional system calls on Linux

Donald E. Porter
The University of Texas at Austin
porterde@cs.utexas.edu

Emmett Witchel
The University of Texas at Austin
witchel@cs.utexas.edu

Abstract

Have you ever had to manually back out an unsuccess-
ful software install? Has a machine ever crashed on you
while adding a user, leaving the group, password and
shadow files inconsistent? Have you struggled to elim-
inated time-of-check-to-time-of-use (TOCTTOU) race
conditions from an application? All of these problems
have a single underlying cause: programmers cannot
group multiple system calls into a single, consistent op-
eration. If users (and kernel developers) had this power,
there are a variety of innovative services they could
build and problems they could eliminate. This paper de-
scribes system transactions and a variety of applications
based on system transactions. We add system calls to
begin, end, and abort a transaction. A system call that
executes within a transaction is isolated from the rest of
the system. The effects of a system transaction are un-
done if the transaction fails.

This paper describes a research project that developed
transactional semantics for 152 Linux system calls and
abstractions including signals, process creation, files,
and pipes. The paper also describes the practical chal-
lenges and trade-offs in implementing transactions in
Linux. The code changes needed to support transac-
tions are substantial, but so are the benefits. With no
modifications to dpkg itself, we were able to wrap an
installation of OpenSSH in a system transaction. The
operating system rolls back failed installations automat-
ically, preventing applications from observing inconsis-
tent files during the installation, and preserving unre-
lated, concurrent updates to the file system. Overheads
for using transactions in an application like software in-
stallation range from 10-70%.

1 Introduction

A number of programming tasks are impossible to write
robustly using the POSIX API. For example, backing

out a failed software installation or upgrade is a major
hassle for system administrators because the software
spans multiple files with tightly coupled dependences.
For instance, a new version of a binary may expect a new
configuration file format or a new binary may not link
with previous versions of the supporting libraries. If a
software installation fails or the machine crashes during
installation, these tight dependences are broken, often
rendering the software unusable. If the failed upgrade is
for a core system utility, such as the shell, the entire sys-
tem may stop working. Software installation tools, such
as yum and apt, have evolved to provide sophisticated
support for tracking package dependences and automat-
ically uninstalling libraries that are no longer needed,
but even these systems fail—truly robust failure recov-
ery remains elusive.

Even simple changes to system settings, such as adding
user accounts, are prone to subtle errors or race con-
ditions with other administrators. Local user accounts
are stored across three files that need to be mutu-
ally consistent: /etc/passwd, /etc/shadow, and
/etc/group. Utilities like vipw and useradd help
ensure that these account files are formatted correctly
and mutually consistent. These utilities create lock files
to prevent concurrent modifications, but this cannot pre-
vent a careless administrator from ignoring the lock file
and editing the password files directly. Moreover, these
utilities cannot ensure that updates to these files are mu-
tually consistent if the system crashes during an oper-
ation. For instance, suppose the system crashes after
useradd writes /etc/passwd but before it writes
/etc/shadow. After rebooting the system, the new
user will not be able to log on, yet useradd will fail
because it thinks the user already exists, leaving the sys-
tem administrator to manually repair the database files.

Race conditions for OS-managed resources, including
the file system namespace, can cause security problems
for programs that run as root. Despite their concep-
tual simplicity, time-of-check-to-time-of-use, or TOCT-

• 231 •

232 • Transactional system calls on Linux

Victim Attacker
if(access(’foo’)){

symlink(’secret’,’foo’);
fd=open(’foo’);
write(fd,...);
...

}

Victim Attacker
symlink(’secret’,’foo’);

sys_xbegin();
if(access(’foo’)){

fd=open(’foo’);
write(fd,...);
...

}
sys_xend();

symlink(’secret’,’foo’);

Figure 1: An example of a TOCTTOU attack, followed by
an example that eliminates the race using system transac-
tions. The attacker’s symlink is serialized (ordered) either
before or after the transaction, and the attacker cannot see
partial updates from the victim’s transaction, such as changes
to atime.

TOU, races [7] have created over 600 vulnerabilities in
real, deployed applications [10]. A TOCTTOU race
most commonly occurs as depicted in Figure 1, when a
malicious program changes the file system namespace
with a symlink, just between the check (access)
and the use (open) in an application with root privi-
lege. This is a common attack vector for privilege esca-
lation, as these race conditions can trick a process with
root-privilege to overwrite a sensitive file, such as the
password database.

Each of these seemingly unrelated problems share an
underlying cause: developers cannot group multiple
system calls into a single, consistent operation. The
ideal software installer would be able to atomically re-
place multiples files on the system at once; when the in-
stallation finished, either all of the updates take effect or
they are all rolled back. Similarly, adding a user should
atomically update each relevant configuration file, and
prevent a concurrent user from interfering with the up-
dates. Finally, an application with root privileges should
be able to request that a permissions check and subse-
quent file open be executed in isolation from potentially
interfering applications.

Some of these problems, such as TOCTTOU races, are
being addressed in the kernel by adding more function-
ality to existing system calls. The open system call

has acquired a number of flags that bundle in tasks like
checking that the file doesn’t exist and conditionally
creating the file. The current open implementation is
more complex than a simple open, create, and stat
combined. Similarly, the rename system call has been
heavily used by applications, such as editors, to atomi-
cally replace a single file. The rename implementation
is so complex that Linux uses a single, file-system wide
mutex to synchronize renames in all but the simplest
cases, harming system scalability. In order to address
TOCTTOU specifically, openat and over a dozen sim-
ilar variants have been added to Linux. These calls es-
sentially allow applications to reimplement their own
private dcache, at a substantial performance and com-
plexity cost to the application [16].

As an alternative, system transactions allow developers
to compose a series of simple system calls into a more
complex operation. The kernel guarantees that a system
transaction appears to execute as one isolated, atomic
operation. System transactions eliminate the need for
complex work-arounds in applications, and even obvi-
ate the need for such semantically heavy system calls
as rename. Windows Vista and later have already
adopted a transactional file system and registry to ad-
dress problems arising from crashes during software in-
stallation [14]. Rather than having to petition kernel de-
velopers for a point solution to the next race condition
or crash-consistency issue, system transactions give de-
velopers the tools to solve their own problems.

This paper describes ongoing research at the University
of Texas at Austin to develop transactional system calls
on a variant of Linux, called TxOS. The work has ap-
peared in previous research venues [11, 12]; this paper
reviews the design of the system with a focus on the
needed changes to the Linux source code and the ra-
tionale for the design decisions. Section 2 provides an
overview of the TxOS design and Section 3 describes
the implementation in more detail. Sections 4 and 5
measure the performance of system transactions. Sec-
tion 6 describes why system transactions are a better
solution than file locking or a transactional file system,
Section 7 describes ongoing and future directions for the
project, and Section 8 concludes.

2 TxOS Overview

System transactions provide ACID semantics for up-
dates to OS resources, such as files, pipes, and signals.

2010 Linux Symposium • 233

Subsystem Tot. Part. Examples
Credentials 34 1 getuid, getcpu, setr-

limit (partial)
Processes 13 3 fork, vfork, clone,

exit, exec (partial)
Communication 15 0 rt_sigaction,

rt_sigprocmask,
pipe

Filesystem 63 4 link, access, stat,
chroot, dup, open,
close, write, lseek

Other 13 6 time, nanosleep, ioctl
(partial), mmap2
(partial)

Totals 138 14 Grand total: 152

Unsupported
Processes 33 nice, uselib, iopl, sched_yield,

capget
Memory 15 brk, mprotect, mremap, mad-

vise
Filesystem 29 mount, sync, flock, setxattr,

io_setup, inotify
File Descriptors 14 splice, tee, sendfile, select, poll
Communication 8 socket, ipc, mq_open,

mq_unlink
Timers/Signals 12 alarm, sigaltstack,

timer_create
Administration 22 swapon, reboot, init_module,

settimeofday
Misc 18 ptrace, futex, times, vm86,

newuname
Total 151

Table 1: Summary of system calls that TxOS completely
supports (Tot.) and partially supports (Part.) in transactions,
followed by system calls with no transaction support. Par-
tial support indicates that some (but not all) execution paths
for the system call have full transactional semantics. Linux
2.6.22.6 on the i386 architecture has 303 total system calls.

In this programming model, both transactional and non-
transactional system calls may access the same system
state; the OS imposes a global order for all accesses
and arbitrates contention fairly. The interface for system
transactions is intuitive and simple, allowing a program-
mer to wrap a block of unmodified code in a transaction
simply by adding sys_xbegin()and sys_xend().

TxOS implements system transactions by isolating data
read and written in a transaction (making it invisible
to unrelated kernel threads) using existing kernel mem-
ory buffers and data structures. When an application

writes data to a file system or device, the updates gener-
ally go into an OS memory buffer first, allowing the OS
to batch updates to the underlying device. By making
these buffers copy-on-write for transactions, TxOS iso-
lates transactional data accesses until commit. In TxOS,
transactions must fit into main memory, although this
limit could be raised in future work by swapping un-
committed transaction state to disk.

TxOS isolates updates to kernel data structures using re-
cent implementation techniques from object-based soft-
ware transactional memory systems. These techniques
are a departure from the logging and two-phase locking
approaches of databases and historic transactional oper-
ating systems, such as QuickSilver [15] and Locus [17]
(Section 2.3). TxOS’s isolation mechanisms are opti-
mistic, allowing concurrent transactions on the assump-
tion that conflicts are rare.

Table 1 summarizes the system calls and resources for
which TxOS supports transactional semantics, including
the file system, process and credential management, sig-
nals, and pipes. A partially supported system call means
that some processing paths are fully transactional, and
some are not. For example, ioctl is essentially a large
switch statement, and TxOS does not support transac-
tional semantics for every case. When the user makes
an unsupported system call or a partially supported call
cannot support transactional semantics, the system logs
a warning or aborts the transaction, depending on the
flags passed to sys_xbegin().

Ideal support for system transactions would include ev-
ery reasonable system call. TxOS supports a subset of
Linux system calls as shown in Table 1. The count of
152 supported system calls shows the relative maturity
of the prototype, but also indicates that it is incomplete.
The count of unsupported system calls does not propor-
tionately represent the importance or challenge of the re-
maining work because many resources, such as network
sockets, IPC, etc., primarily use the common file system
interfaces. For instance, extending transactions to in-
clude networking (a real challenge) would increase the
count of supported calls by 5, whereas transaction sup-
port for extended file attributes (a fairly straightforward
extension) would add 12 system calls. The remaining
count of system calls falls into three categories: sub-
stantial extensions (memory management, communica-
tion), straightforward, but perhaps less common or im-
portant (process management, timers, most remaining
file interfaces), and operations that are highly unlikely

234 • Transactional system calls on Linux

Function Name Description
int sys_xbegin
(int flags)

Begin a transaction. The flags specify
transactional behavior, including auto-
matically restarting the transaction af-
ter an abort, ensuring that committed
results are on stable storage (durable),
and aborting if an unsupported system
call is issued. Returns status code.

int sys_xend() End of transaction. Returns whether
commit succeeded.

void sys_xabort
(int no_restart)

Aborts a transaction. If the transac-
tion was started with restart, setting
no_restart overrides that flag and does
not restart the transaction.

Table 2: TxOS API

to be useful inside a transaction (e.g., reboot, mount,
init_module, etc.). TxOS supports transactional se-
mantics for enough kernel subsystems to demonstrate
the power and utility of system transactions.

2.1 System transactions for system state

Although system transactions provide ACID semantics
for system state, they do not provide these semantics for
application state. System state includes OS data struc-
tures and device state stored in the operating system’s
address space, whereas application state includes only
the data structures stored in the application’s address
space. When a system transaction aborts, the OS re-
stores the kernel state to its pre-transaction state, but it
does not revert application state.

For most applications, we expect programmers will use
a library or runtime system that transparently manages
application state as well as system transactions. In
simple cases, such as the TOCTTOU example, the de-
veloper could manage application state herself. TxOS
provides single-threaded applications with an automatic
checkpoint and restore mechanism for the application’s
address space that marks the pages copy-on-write (sim-
ilar to Speculator [9]), which can be enabled with a
flag to sys_xbegin() (Table 2). In a recent pa-
per [11], we describe how system transactions integrate
with hardware and software transactional memory, pro-
viding a complete transactional programming model for
multi-threaded applications.

2.2 Communication model

Code that communicates outside of a transaction and re-
quires a response cannot be encapsulated into a single
transaction. Communication outside of a transaction vi-
olates isolation. For example, a transaction may send a
message to a non-transactional thread over an IPC chan-
nel, which the system will buffer until commit. If the
code waits for a reply to the buffered message, the ap-
plication will deadlock. The programmer is responsible
for avoiding this send/reply idiom within a transaction.

Communication among threads within the same trans-
action is unrestricted. This paper only considers system
transactions on a single machine, but future work could
allow system transactions to span multiple machines.

2.3 Managing transactional state

Databases and historical transactional operating systems
typically update data in place and maintain an undo log.
This approach is called eager version management [5].
These systems isolate transactions by locking data when
it is accessed and holding the lock until commit. This
technique is called two-phase locking, and it usually
employs locks that distinguish read and write accesses.
Because applications generally do not follow a globally
consistent order for data accesses, these systems can
deadlock. For example, one thread might read file A
then write file B, while a different thread might read file
B, then write file A.

The possibility of deadlock complicates the program-
ming model of eager versioning transactional systems.
Deadlock is commonly addressed by exposing a time-
out parameter to users. Setting the timeout properly is
a challenge. If it is too short, it can starve long-running
transactions. If it is too long, it can destroy the perfor-
mance of the system.

Eager version management degrades responsiveness in
ways that are not acceptable for an OS kernel. If an in-
terrupt handler, high priority thread, or real-time thread
aborts a transaction, it must wait for the transaction to
process its undo log (to restore the pre-transaction state)
before it can safely proceed. This wait jeopardizes the
system’s ability to meet its timing requirements.

In contrast, transactions in TxOS operate on private
copies of data structures, known as lazy version man-
agement. Transactions never hold kernel locks across

2010 Linux Symposium • 235

system calls. Lazy versioning requires TxOS to hold
locks only long enough to make a private copy of the rel-
evant data structure. By enforcing a global ordering for
kernel locks, TxOS avoids deadlock. TxOS can abort
transactions instantly—the winner of a conflict does not
wait for the aborted transaction to process its undo log.

The primary disadvantage of lazy versioning is the com-
mit latency due to copying transactional updates from
the speculative version to the stable version of the data
structures. As we discuss in Section 3, TxOS minimizes
this overhead by splitting objects, turning a memcpy of
the entire object into a pointer copy.

2.4 Interoperability and fairness

TxOS allows flexible interaction between transactional
and non-transaction kernel threads. TxOS efficiently or-
ders transactions with non-transactional accesses inside
the kernel by requiring all system calls follow the same
locking discipline, and by requiring that transactions an-
notate accessed kernel objects. When a thread, trans-
actional or non-transactional, accesses a kernel object
for the first time, it must check for a conflicting anno-
tation. The scheduler arbitrates conflicts when they are
detected. In many cases, this check is performed at the
same time as a thread acquires a lock for the object.

Interoperability is a weak spot for previous transac-
tional systems. In most transactional systems, a conflict
between a transaction and a non-transactional thread
(called an asymmetric conflict [13]) must be resolved
by aborting the transaction. This approach undermines
fairness. In TxOS, because asymmetric conflicts are of-
ten detected before a non-transactional thread enters a
critical region, the scheduler has the option of suspend-
ing the non-transactional thread, allowing for fairness
between transactions and non-transactional threads.

3 Implementation

This section describes how system transactions are im-
plemented in the TxOS kernel and the reasons why the
TxOS implementation deviates from the Linux kernel.
TxOS provides transactional semantics for 152 of 303
system calls in Linux, presented in Table 1. The sup-
ported system calls include process creation and termi-
nation, credential management operations, sending and
receiving signals, and file system operations.

System transactions in TxOS add roughly 3,300 lines
of code for transaction management, and 5,300 lines for
object management. TxOS also requires about 14,000
lines of minor changes to convert kernel code to use the
new object type system and to insert checks for asym-
metric conflicts when executing non-transactionally.
Compared to the overall size of the kernel, these changes
are small; however, some changes are invasive at points
and this section explains why the changes were neces-
sary and potential alternatives.

3.1 Object versioning

TxOS maintains multiple versions of kernel data struc-
tures so that system transactions can isolate the effects
of system calls until transactions commit (i.e., hide the
effects from other kernel threads), and in order to undo
the effects of transactions if they cannot complete. Data
structures private to a process, such as the current user
id or the file descriptor table, are versioned with a sim-
ple checkpoint and restore scheme. For shared kernel
data structures, however, TxOS implements a versioning
system that borrows techniques from software transac-
tional memory systems [3] and recent concurrent pro-
gramming systems [4].

When a transaction accesses a shared kernel object, such
as an inode, it acquires a private copy of the object,
called a shadow object. All system calls within the
transaction use this shadow object in place of the stable
object until the transaction commits or aborts. The use
of shadow objects ensures that transactions always have
a consistent view of the system state. When the trans-
action commits, the shadow objects replace their stable
counterparts. If a transaction cannot complete, it simply
discards its shadow objects.

Any given kernel object may be the target of pointers
from several other objects, presenting a challenge to re-
placing a stable object with a newly-committed shadow
object. A naïve approach might update the pointers to
an object when that object is committed. This naïve ap-
proach is impractical, as some objects (e.g., inodes) are
pointed to by a substantial number of other data struc-
tures which the object itself doesn’t reference.

Splitting objects into header and data In order to
allow efficient commit of lazy versioned data, TxOS de-
composes objects into a stable header component and

236 • Transactional system calls on Linux

struct inode_header {
atomic_t i_count; // Reference count
spinlock_t i_lock;
inode_data *data; // Data object
// Other objects
address_space i_data; // Cached pages
tx_data xobj; // for conflict detection
list i_sb_list; // kernel bookkeeping

};

struct inode_data {
inode_header *header;
// Common inode data fields
unsigned long i_ino;
loff_t i_size; // etc.

};

Figure 2: A simplified inode structure, decomposed into
header and data objects in TxOS. The header contains the ref-
erence count, locks, kernel bookkeeping data, and the objects
that are managed transactionally. The inode_data object
contains the fields commonly accessed by system calls, such
as stat, and can be updated by a transaction by replacing
the pointer in the header.

a volatile, transactional data component. Figure 2 pro-
vides an example of this decomposition for an inode.
The object header contains a pointer to the object’s data;
transactions commit changes to an object by replacing
this pointer in the header to a modified copy of the data
object. The header itself is never replaced by a trans-
action, which eliminates the need to update pointers in
other objects; pointers point to headers. The header
can also contain data that is not accessed by transac-
tions. For instance, the kernel garbage collection thread
(kswapd) periodically scans the inode and dentry
(directory entry) caches looking for cached file system
data to reuse. By keeping the data for kernel bookkeep-
ing, such as the reference count and the superblock list
(i_sb_list in Figure 2), in the header, these scans
never access the associated inode_data objects and
avoid restarting active transactions.

Decomposing objects into headers and data also pro-
vides the advantage of the type system ensuring that
transactional code always has a speculative object. For
instance, in Linux, the virtual file system function
vfs_link takes pointers to inodes and dentries,
but in TxOS these pointers are converted to the shadow
types inode_data and dentry_data. When mod-
ifying Linux, using the type system allows the compiler
to find all of the code that needs to acquire a specu-
lative object, ensuring completeness. The type system

also allows the use of interfaces that minimize the time
spent looking up shadow objects. For example, when
the path name resolution code initially acquires shadow
data objects, it then passes these shadow objects directly
to helper functions such as vfs_link and vfs_-
unlink. The virtual file system code acquires shadow
objects once on entry and passes them to lower lay-
ers, minimizing the need for filesystem-specific code to
reacquire the shadow objects.

Multiple data objects TxOS decomposes an object
into multiple data payloads when it houses data that
can be accessed disjointly. For instance, the inode_-
header contains both file metadata (owner, permis-
sions, etc.) and the mapping of file blocks to cached
pages in memory (i_data). A process may often read
or write a file without updating the metadata. TxOS ver-
sions these objects separately, allowing metadata oper-
ations and data operations on the same file to execute
concurrently when it is safe.

Read-only objects Many kernel objects are only read
in a transaction, such as the parent directories in a path
lookup. To avoid the cost of making shadow copies,
kernel code can specify read-only access to an object,
which marks the object data as read-only for the length
of the transaction. Each data object has a transactional
reader reference count. If a writer wins a conflict for
an object with a non-zero reader count, it must create a
new copy of the object and install it as the new stable
version. The OS garbage collects the old copy via read-
copy update (RCU) [6] when all transactional readers
release it and after all non-transactional tasks have been
descheduled. This constraint ensures that all active ref-
erences to the old, read-only version have been released
before it is freed and all tasks see a consistent view of
kernel data. The only caveat is that a non-transactional
task that blocks must re-acquire any data objects it was
using after waking, as they may have been replaced and
freed by a transaction commit. Although it complicates
the kernel programming model slightly, marking data
objects as read-only in a transaction is a structured way
to eliminate substantial overhead for memory allocation
and copying. Special support for read-mostly transac-
tions is a common optimization in transactional systems,
and RCU is a technique to support efficient, concurrent
access to read-mostly data.

2010 Linux Symposium • 237

static inline struct inode_data *
tx_get_inode(struct inode *inode,

enum access_mode mode){
if(!aborted_tx())

return error;
else if(!live_transaction()){

return inode->inode_data;
else {

contend_for_object(inode, mode);
return get_private_copy(inode);

}
}

struct inode *inode;
// Replace idata = inode->inode_data with
inode_data *idata = tx_get_inode(inode, RW);

Figure 3: Pseudo-code for the hook used to acquire an in-
ode’s data object, and an example of its use in code.

3.2 Impact of data structure changes

The largest source of lines changed in TxOS comes from
splitting objects such as inodes into multiple data struc-
tures. After a small amount of careful design work in
the headers, most of the code changes needed to split
objects was rather mechanical.

A good deal of design effort went into assessing which
fields might be modified transactionally and must be
placed in the data object, and which can remain in the
header, including read-only data, kernel-private book-
keeping, or pointers to other data structures that are in-
dependently versioned. A second design challenge was
assessing when a function should accept a header object
as an argument and when it should accept a data object.
The checks to acquire a data object are relatively expen-
sive and would ideally occur only once per object per
system call. Thus, once a system call path has acquired
a data object, it would be best to pass the data object
directly to all internal functions rather than reacquire it.
This has to be balanced against forcing needless object
acquisition in order to call a shared function that only
uses the data object in the uncommon case.

Once the function signatures and data structure defini-
tions are in place, the remaining work is largely me-
chanical. The primary change that must be propagated
through the code is replacing certain pointer derefer-
ences with hooks (Figure 3), so that TxOS can redi-
rect requests for a data object to the transaction’s private

State Description
exclusive Any attempt to access the list is a conflict

with the current owner
write Any number of insertions and deletions are

allowed, provided they do not access the
same entries. Reads (iterations) are not al-
lowed. Writers may be transactions or non-
transactional tasks.

read Any number of readers, transactional or
non-transactional, are allowed, but inser-
tions and deletions are conflicts.

notx There are no active transactions, and a non-
transactional thread may perform any oper-
ation. A transaction must first upgrade to
read or write mode.

Table 3: The states for a transactional list in TxOS. Having
multiple states allows TxOS lists to tolerate access patterns
that would be conflicts in previous transactional systems.

copy where appropriate. It is in this hook code where
TxOS checks for conflicts between transactions. By en-
capsulating this work in a macro, we hide much of the
complexity of managing private copies from the rest of
the kernel code, reducing the chances for error.

A benefit of changing the object definitions is that it
gives us confidence in the completeness of our hook
placement. In order to dereference a field that can be
modified in a transaction, the code must acquire a ref-
erence to a data object through the hook function. If
the hook is not placed properly, the code will not com-
pile. A question for future work is assessing to what
degree these changes can be automatically applied dur-
ing compilation using a tool like CIL [8]. This “header
crawl” technique leads to more lines of code changed,
but increases our confidence that the changes were made
throughout the large codebase that is the Linux kernel.

3.3 Lists

Linked lists are a key data structure in the Linux kernel,
and they present key implementation challenges. Sim-
ple read/write conflict semantics for lists throttle con-
current performance, especially when the lists contain
directory entries. For instance, two transactions should
both be allowed to add distinct directory entries to a sin-
gle list, even though each addition is a list write. TxOS
adopts techniques from previous transactional memory

238 • Transactional system calls on Linux

systems to avoid conflicts on list updates that do not se-
mantically conflict [3]. TxOS isolates list updates with
a lock and defines conflicts according to the states de-
scribed in Table 3. For instance, a list in the write state
allows concurrent transactional and non-transactional
writers, so long as they do not access the same entry.
Individual entries that are transactionally added or re-
moved are annotated with a transaction pointer that is
used to detect conflicts. If a writing transaction also at-
tempts to read the list contents, it must upgrade the list
to exclusive mode by aborting all other writers. The
read state behaves similarly. This design allows maxi-
mal list concurrency while preserving correctness.

A second implementation challenge for linked lists is
that an object may be speculatively moved from one list
to another. This requires a record of membership in
both the original list (marked as speculatively deleted)
and the new list (marked as speculatively added). Ide-
ally, one would simply embed a second list_head
in each object for speculatively adding an entry to a
new list; however, if multiple transactions are contend-
ing for a list entry, it is difficult to coordinate reclaiming
the second embedded entry from an aborted transaction.
For this reason, if a transaction needs to speculatively
add an object to a list, it dynamically allocates a second
list_head, along with some additional bookkeeping.
Dynamic allocation of speculative list entries allows a
transaction to defer clean-up of speculatively added en-
tries from an aborted transaction until a more convenient
time (i.e., one that does not further complicate the lock-
ing discipline for lists).

Although TxOS dynamically allocates list_head
structures for transactions, the primary list_head for
an object is still embedded in the object. During com-
mit, a transaction replaces any dynamically allocated,
speculative entries with the embedded list head. Thus,
non-transactional code never allocates or frees memory
for list traversal or manipulation.

A final issue with lists and transactional scalability is
that most lists in the Linux kernel are protected by
coarse locks, such as the dcache_lock. Ideally, two
transactions that touch disjoint data should be able to
commit concurrently, yet acquiring a coarse lock will
cause needless performance loss. Thus, we imple-
mented fine-grained locking on lists, at the granularity
of a list. This improves scalability (§ 5), but complicates
the locking discipline. Locks in TxOS are ordered by
kernel virtual address, except that list locks must be ac-

quired after other object locks. This discipline roughly
matches the paradigm in the directory traversal code.

4 Evaluation

This section evaluates the overhead of system transac-
tions in TxOS, as well as its behavior for several case
studies, including a transactional software installation
and a transactional LDAP server. We perform all of
our experiments on a server with 1 or 2 quad-core Intel
X5355 processors (for a total of 4 or 8 cores) running at
2.66 GHz with 4 GB of memory. All single-threaded ex-
periments use the 4-core machine, and scalability mea-
surements were taken using the 8 core machine. We
compare TxOS to an unmodified Linux kernel, version
2.6.22.6—the same version extended to create TxOS.

4.1 Single-thread system call overheads

A key goal of TxOS is to make transaction support ef-
ficient, taking special care to minimize the overhead
non-transactional applications incur. To evaluate per-
formance overheads for substantial applications, we
measured the average compilation time across three
non-transactional builds of the Linux 2.6.22 kernel on
unmodified Linux (3 minutes, 24 seconds), and on
TxOS (3 minutes, 28 seconds). This slowdown of less
than 2% indicates that for most applications, the non-
transactional overheads will be negligible. At the scale
of a single system call, however, the average overhead is
currently 29%, and could be cut to 14% with improved
compiler support.

Table 4 shows the performance of common file sys-
tem system calls on TxOS. We ran each system call
1 million times, discarding the first and last 100,000
measurements and averaging the remaining times. The
elapsed cycles were measured using the rdtsc instruc-
tion. The purpose of the table is to analyze transaction
overheads in TxOS, but it does not reflect how a pro-
grammer would use system transactions because most
system calls are already atomic and isolated. Wrapping
a single system call in a transaction is the worst case
for TxOS performance because there is very little work
across which to amortize the cost of creating shadow
objects and commit.

The Base column shows the base overhead from adding
transactions to Linux. These overheads have a geomet-
ric mean of ∼3%, and are all below 20%, including a

2010 Linux Symposium • 239

Call Linux Base Static NoTx Bgnd Tx In Tx Tx
access 2.4 2.4 1.0× 2.6 1.1× 3.2 1.4× 3.2 1.4× 11.3 4.7× 18.6 7.8×
stat 2.6 2.6 1.0× 2.8 1.1× 3.4 1.3× 3.4 1.3× 11.5 4.1× 20.3 7.3×
open 2.9 3.1 1.1× 3.2 1.2× 3.9 1.4× 3.7 1.3× 16.5 5.2× 25.7 8.0×
unlink 6.1 7.2 1.2× 8.1 1.3× 9.4 1.5× 10.8 1.7× 18.1 3.0× 31.9 7.3×
link 7.7 9.1 1.2× 12.3 1.6× 11.0 1.4× 17.0 2.2× 57.1 7.4× 82.6 10.7×
mkdir 64.7 71.4 1.1× 73.6 1.1× 79.7 1.2× 84.1 1.3× 297.1 4.6× 315.3 4.9×
read 2.6 2.8 1.1× 2.8 1.1× 3.6 1.3× 3.6 1.3× 11.4 4.3× 18.3 7.0×
write 12.8 9.9 0.7× 10.0 0.8× 11.7 0.9× 13.8 1.1× 16.4 1.3× 39.0 3.0×
geomean 1.03× 1.14× 1.29× 1.42× 3.93× 6.61×

Table 4: Execution time in thousands of processor cycles of common system calls on TxOS and performance relative to
Linux. Base is the basic overhead introduced by data structure and code modifications moving from Linux to TxOS, without
the overhead of transactional lists. Static emulates compiling two versions of kernel functions, one for transactional code and
one for non-transactional code, and includes transactional list overheads. These overheads are possible with compiler support.
NoTX indicates the current speed of non-transactional system calls on TxOS. Bgnd Tx indicates the speed of non-transactional
system calls when another process is running a transaction in the background. In Tx is the cost of a system call inside a
transaction, excluding sys_xbegin()and sys_xend(), and Tx includes these system calls.

performance improvement for write. Overheads are
incurred mostly by increased locking in TxOS and the
extra indirection necessitated by data structure reorga-
nization (e.g., separation of header and data objects).
Transaction support in the kernel does not significantly
slow down non-transactional activity.

TxOS replaces simple linked lists with a more com-
plex transactional list (§3.3). The transactional list al-
lows more concurrency, both by eliminating transac-
tional conflicts and by introducing fine-grained locking
on lists, at the expense of higher single-thread latency.
The Static column adds the latencies due to transac-
tional lists to the base overheads (roughly 10%, though
more for link).

A key overhead in the TxOS prototype is dynamic
checks whether a system call is executing inside a trans-
action or not. An alternative implementation might
provide two versions of each function, one transac-
tional and one non-transactional, and convert the dy-
namic checks into compile-time checks. This optimiza-
tion would require installing a second system call ta-
ble for transactions and more sophisticated compilation
support. We capture the benefits in the Static column,
which reduces the average non-transactional system call
overhead to 14% over Linux.

The NoTx column presents measurements of the cur-
rent TxOS prototype, with dynamic checks to determine
if a thread is executing a transaction. The Bgnd Tx
column are non-transactional system call overheads for
TxOS while there is an active system transaction in a

different thread. Non-transactional system calls need to
perform extra work to detect conflicts with background
transactions. The In Tx column shows the overhead
of the system call in a system transaction. This over-
head is high, but represents a rare use case. The Tx
column includes the overheads of the sys_xbegin()
and sys_xend()system calls.

4.2 Applications and micro-benchmarks

Table 5 shows the performance of TxOS on a range
of applications and micro-benchmarks. Each measure-
ment is the average of three runs. The slowdown rel-
ative to Linux is also listed. Postmark is a file system
benchmark that simulates the behavior of an email, net-
work news, and e-commerce client. We use version 1.51
with the same transaction boundaries as Amino [18].
The LFS small file benchmark operates on 10,000 1024
bytes files, and the large file benchmark reads and writes
a 100MB file. The Reimplemented Andrew Bench-
mark (RAB) is a reimplementation of the Modified An-
drew Benchmark, scaled for modern computers. Ini-
tially, RAB creates 500 files, each containing 1000 bytes
of pseudo-random printable-ASCII content. Next, the
benchmark measures execution time of four distinct
phases: the mkdir phase creates 20,000 directories;
the cp phase copies the 500 generated files into 500 of
these directories, resulting in 250,000 copied files; the
du phase calculates the disk usage of the files and direc-
tories with the du command; and the grep/sum phase
searches the files for a short string that is not found and

240 • Transactional system calls on Linux

Bench Linux TxOS Linux TxOS
ext2 ACI ext3 ACID

postmark 38.0 7.6 0.2× 180.9 154.6 0.9×
lfs small
create 4.6 0.6 0.1× 10.1 1.4 0.1×
read 1.7 2.2 1.2× 1.7 2.1 1.3×
delete 0.2 0.4 2.0× 0.2 0.5 2.4×
lfs large
write seq 1.4 0.3 0.2× 3.4 2.0 0.6×
read seq 1.3 1.4 1.1× 1.5 1.6 1.1×
write rnd 77.3 2.6 0.03× 84.3 4.2 0.05×
read rnd 75.8 71.8 0.9× 70.1 70.2 1.0×
RAB
mkdir 8.7 2.3 0.3× 9.4 2.2 0.2×
cp 14.2 2.5 0.2× 13.8 2.6 0.2×
du 0.3 0.3 1.0× 0.4 0.3 0.8×
grep/sum 2.7 3.9 1.4× 4.2 3.8 0.9×
dpkg .8 .9 1.1× .8 .9 1.1×
make 3.2 3.3 1.0× 3.1 3.3 1.1×
install 1.9 2.7 1.4× 1.7 2.9 1.7×

Table 5: Execution time in seconds for several transactional
benchmarks on TxOS and slowdown relative to Linux. ACI
represents non-durable transactions, with a baseline of ext2,
and ACID represents durable transactions with a baseline of
ext3 with full data journaling.

checksums their contents. The sizes of the mkdir and
cp phases are chosen to take roughly similar amounts of
time on our test machines. In the transactional version,
each phase is wrapped in a transaction. Make wraps a
software compilation in a transaction. Dpkg and Install
are software installation benchmarks that wrap the entire
installation in a transaction, as discussed below (§ 4.3).

The overhead of system transactions for most workloads
is quite reasonable (1–2×), and often system transac-
tions speed up the workload (e.g., postmark, LFS small
file create, RAB mkdir and cp phases). Benchmarks
that repeatedly write files in a transaction, such as the
LFS large file sequential write phase or the LFS small
file create phase, are more efficient than Linux. Transac-
tion commit groups the writes and presents them to the
I/O scheduler all at once, improving disk arm scheduling
and, on ext2 and ext3, increasing locality in the block
allocations. Write-intensive workloads outperform non-
transactional writers by as much as 29.7×.

TxOS requires extra memory to buffer updates. We
surveyed several applications’ memory overheads, and
focus here on the LFS small and large benchmarks as
two representative samples. Because the utilization pat-
terns vary across different portions of physical memory,

we consider low memory, which is used for kernel data
structures, separately from high memory, which can be
allocated to applications or to the page cache (which
buffers file contents in memory). High memory over-
heads are proportional to the amount data written. For
LFS large, which writes a large stream of data, TxOS
uses 13% more high memory than Linux, whereas LFS
small, which writes many small files, introduced less
than 1% space consumption overhead. Looking at the
page cache in isolation, TxOS allocates 1.2–1.9× as
many pages as unmodified Linux. The pressure on the
kernel’s reserved portion of physical memory, or low
memory, is 5% higher for transactions across all bench-
marks. This overhead comes primarily from the ker-
nel slab allocator, which allocates 2.4× as much mem-
ory. The slab allocator is used for general allocation (via
kmalloc) and for common kernel objects, like inodes.
TxOS’s memory use indicates that buffering transac-
tional updates in memory is practical, especially consid-
ering the trend in newer systems toward larger DRAM
and 64-bit addresses.

4.3 Software installation

By wrapping system commands in a transaction, we ex-
tend make, make install, and dpkg, the Debian
package manager, to provide ACID properties to soft-
ware installation. We test make with a build of the text
editor nano, version 2.0.6. Nano consists of 82 source
files totaling over 25,000 lines of code. Next, we test
make install with an installation of the Subversion
revision control system, version 1.4.4. Finally, we test
dpkg by installing the package for OpenSSH version
4.6. The OpenSSH package was modified not to restart
the daemon, as the script responsible sends a signal and
waits for the running daemon to exit, but TxOS defers
the signal until commit. A production system could
rewrite the script to match the TxOS signal API.

As Table 5 shows, the overhead for adding transactions
is quite reasonable (1.1–1.7×), especially considering
the qualitative benefits. For instance, by checking the
return code of dpkg, our transactional wrapper automat-
ically rolled back a broken Ubuntu build of OpenSSH
(4.6p1-5ubuntu0.3), and no concurrent tasks were able
to access the invalid package files during the installation.

2010 Linux Symposium • 241

4.4 Transactional LDAP server

Many applications have fairly modest concurrency con-
trol requirements for their stable data storage, yet
use heavyweight solutions, such as a database server.
An example is Lightweight Directory Access Protocol
(LDAP) servers, which are commonly used to authen-
ticate users and maintain contact information for large
organizations. System transactions provide a simple,
lightweight storage solution for such applications.

To demonstrate that system transactions can provide
lightweight concurrency control for server applications,
we modified the slapd server in OpenLDAP 2.3.35’s
flat file storage module (called LDIF) to use system
transactions. The OpenLDAP server supports a number
of storage modules; the default is Berkeley DB (BDB).
We used the SLAMD distributed load generation engine1

to exercise the server, running in single-thread mode.
Table 6 shows throughput for the unmodified Berke-
ley DB storage module, the LDIF storage module aug-
mented with a simple cache, and LDIF using system
transactions. The “Search Single” experiment exercises
the server with single item read requests, whereas the
“Search Subtree” column submits requests for all en-
tries in a given directory subtree. The “Add” test mea-
sures throughput of adding entries, and “Del” measures
the throughput of deletions.

The read performance (search single and search subtree)
of each storage module is within 3%, as most reads are
served from an in-memory cache. LDIF has 5–14× the
throughput of BDB for requests that modify the LDAP
database (add and delete). However, the LDIF mod-
ule does not use file locking, synchronous writes or any
other mechanism to ensure consistency. LDIF-TxOS
provides ACID guarantees for updates. Compared to
BDB, the read performance is similar, but workloads
that update LDAP records using system transactions
outperform BDB by 2–4×. LDIF-TxOS provides the
same guarantees as the BDB storage module with re-
spect to concurrency and recoverability after a crash.

4.5 Transactional ext3

In addition to measuring the overheads of durable trans-
actions, we validate the correctness of our transactional

1http://www.slamd.com/

Back end Search Search Add Del
Single Subtree

BDB 3229 2076 203 172
LDIF 3171 2107 1032 (5.1×) 2458 (14.3×)
LDIF-TxOS 3124 2042 413 (2.0×) 714 (4.2×)

Table 6: Throughput in queries per second of OpenL-
DAP’s slapd server (higher is better) for a read-only and
write-mostly workload. For the Add and Del workloads, the
increase in throughput over BDB is listed in parentheses. The
BDB storage module uses Berkeley DB, LDIF uses a flat file
with no consistency for updates, and LDIF-TxOS augments
the LDIF storage module use system transactions on a flat file.
LDIF-TxOS provides the same crash consistency guarantees
as BDB with more than double the write throughput.

ext3 implementation by powering off the machine dur-
ing a series of transactions. After the machine is pow-
ered back on, we mount the disk to replay any opera-
tions in the ext3 journal and run fsck on the disk to
validate that it is in a consistent state. We then verify
that all results from committed transactions are present
on the disk, and that no partial results from uncommitted
transactions are visible. To facilitate scripting, we per-
form these checks using Simics. Our system success-
fully passes over 1,000 trials, giving us a high degree
of confidence that TxOS transactions correctly provide
atomic, durable updates to stable storage.

4.6 Eliminating race attacks

System transactions provide a simple, deterministic
method for eliminating races on system resources. To
qualitatively validate this claim, we reproduce several
race attacks from recent literature on Linux and validate
that TxOS prevents the exploit.

We downloaded the symlink TOCTTOU attacker code
used by Borisov et al. [1] to defeat Dean and Hu’s prob-
abilistic countermeasure [2]. This attack code creates
memory pressure on the file system cache to force the
victim to deschedule for disk I/O, thereby lengthening
the amount of time spent between checking the path
name and using it. This additional time allows the at-
tacker to win nearly every time on Linux.

On TxOS, the victim successfully resists the attacker by
reading a consistent view of the directory structure and
opening the correct file. The attacker’s attempt to inter-
pose a symbolic link creates a conflict with the transac-
tional access check, which TxOS resolves by putting

242 • Transactional system calls on Linux

Figure 4: Time to perform 500,000 renames divided across
a number of threads (lower is better). TxOS implements
its renames as calls to sys_xbegin(), link, unlink,
and sys_xend(), using 4 system calls for every Linux
rename call. Despite higher single-threaded overhead,
TxOS provides better scalability, outperforming Linux by
3.9× at 8 CPUs. At 8 CPUs, TxOS also outperforms a simple,
non-atomic link/unlink combination on Linux by 1.9×.

the attacker to sleep until the victim commits. The per-
formance of the safe victim code on TxOS is statistically
indistinguishable from the vulnerable victim on Linux.

To demonstrate that TxOS improves robustness while
preserving simplicity for signal handlers, we reproduced
two of the attacks described by Zalewksi [19]. The
first attack is representative of a vulnerability present in
sendmail up to 8.11.3 and 8.12.0.Beta7, in which an
attacker induces a double-free in a signal handler. The
second attack, representative of a vulnerability in the
screen utility, exploits lack of signal handler atom-
icity. Both attacks lead to root compromise; the first
can be fixed by using the sigaction API rather than
signal, while the second cannot. We modified the sig-
nal handlers in these attacks by wrapping handler code
in a sys_xbegin, sys_xend pair, which provides
signal handler atomicity without requiring the program-
mer to change the code to use sigaction. In our ex-
periments, TxOS serializes handler code with respect to
other system operations, preventing both attacks.

5 Toward simpler, scalable system calls

System calls like rename and open have been used as
ad hoc solutions for the lack of general-purpose atomic
actions. These system calls have strong semantics (a
rename is atomic within a file system), resulting in

complex implementations whose performance does not
scale. As an example in Linux, rename has to serial-
ize all cross-directory renames on a single file-system-
wide mutex because finer-grained locking would risk
deadlock. The problem is not that performance tuning
rename is difficult, but it would substantially increase
the implementation complexity of the entire file system,
including unrelated system calls.

Transactions allow the programmer to combine simpler
system calls to perform more complex operations, yield-
ing better performance scalability and a simpler imple-
mentation. Figure 4 compares the unmodified Linux im-
plementation of rename to calling sys_xbegin(),
link, unlink, and sys_xend()in TxOS. In this
micro-benchmark, we divide 500,000 cross-directory
renames across a number of threads.

TxOS has worse single-thread performance because it
makes four system calls for each Linux system call.
TxOS quickly recovers, performing within 6% at 2
CPUs and out-performing rename by 3.9× at 8 CPUs.
The difference in scalability is directly due to imple-
menting transactions with fine-grained locking, whereas
Linux must use coarse-grained locks to maintain the fast
path for rename and keep its implementation complex-
ity reasonable. While this experiment is not represen-
tative of real workloads, it shows that solving consis-
tency problems with modestly complex system calls like
rename will either harm performance scalability or
introduce substantial implementation complexity. Be-
cause of Linux’s coarse-grained locks, TxOS’ atomic
link/unlink pair outperforms the Linux non-atomic
link/unlink pair by 1.9× at 8 CPUs.

A kernel that provides a smaller set of simple calls
as well as a facility to compose them into more com-
plex operations will be more maintainable than a ker-
nel that supports a wide array of point solutions. More-
over, the complexity of managing fine-grained locking
inside of transactions is encapsulated inside a small code
base. In TxOS, the locking code inside a given system
call is generally not complicated by transaction support.
While adding transactions to the kernel may seem to in-
crease the complexity of the system at first blush, TxOS
demonstrates that the complexity can be tightly encap-
sulated and transactions can obviate the need for other
complex or poor-performing code.

2010 Linux Symposium • 243

6 Design alternatives

The problems that system transactions solve are cur-
rently addressed to some degree by file locking and
transactional file systems. However, neither approach
is a complete solution, as explained in this section.

File locking File locking in Linux takes many forms:
mandatory locking, advisory locking, and lock files.
Lock files and advisory locking both provide concur-
rency control at the system level when all programs re-
spect the locks; however, one cannot prevent buggy or
malicious applications from ignoring these locks and ac-
cessing the data concurrently.

The reason advisory locking is popular is that manda-
tory locking can lead to denial of service on the system.
The OS can revoke a mandatory lock, but likely at the
cost of corrupting the underlying file.

File locking in Linux is associated with a file inode;
this means that file locking cannot protect the file sys-
tem namespace against TOCTTOU attacks. Finally, it is
worth emphasizing that file locking only addresses con-
currency control for system resources. File locking does
not provide the ability to recover from a failed operation,
which is useful for problems like software installation.

Transactional file systems The examples in the pa-
per introduction focus on the file system, which is the
source of the largest pain points. A transactional file
system, such as TxF adopted by Windows Vista [14],
can address some of the key issues. Unfortunately, im-
plementing transactions within a particular file system
(below the virtual filesystem (VFS) layer) undermines
API simplicity and leads to usability problems.

When transactions are implemented in a specific file
system, the key problem is file system state propagat-
ing into other volatile resources which cannot be rolled
back by the file system if a transaction fails. State flow-
ing from the file system to other resources leads to ei-
ther conservative restrictions on transactions or specula-
tive state leaking from an aborted transaction. For ex-
ample, memory mappings are not under the control of
the filesystem, and therefore most transactional file sys-
tems cannot allow a transactionally written file to also
be memory mapped and executed. Linux software in-
stallers commonly unpack a set of files and then config-
ure the software with post-installation scripts included

in the software package. The conservative prohibition
against executing transactionally written binaries, com-
mon in transactional file systems, prevents rolling back
an install that can’t be configured properly. As a sec-
ond example, file handles are not visible to a file sys-
tem and they do not roll back even if the backing store
rolls back. For this reason, the Windows transactional
file system requires that file handles used in a transac-
tion be closed when a transaction ends and then sub-
sequently re-opened when they are again needed. Fi-
nally, running processes can observe transactional file
system data and propagate it (or results computed us-
ing it as inputs) through a pipe to new child process.
Returning again to the post-installation script example,
rolling back modifications to the file system does not kill
the running post-installation script nor does it stop any
daemons it may have launched or undo requests it sent
to another running service. Compensating for these ac-
tions in userspace is difficult; the simplest programming
model requires more robust kernel support.

Implementing transactions as a first-class kernel primi-
tive simplifies the programming model for developers;
treating transactions as a core kernel abstraction bet-
ter encapsulates implementation details. For example,
most transactional file systems expose locking details
to users, often in the form of forcing them to reason
about the risk of deadlock between completely unrelated
programs. The TxOS prototype encapsulates all lock-
ing details within the kernel, guaranteeing the user that
transactions cannot deadlock with each other. Trans-
action isolation in TxOS can still lead to starvation in
some pathological cases, such as a long-running transac-
tion denying access to a file or short transactions repeat-
edly aborting a longer transaction before it can commit.
Rather than expose locking or other low-level system
details to users as a way to enforce transaction schedul-
ing policy, TxOS allows system administrators to set
high-level policies through a file in /proc. For in-
stance, the default policy is to favor the transaction with
the highest scheduling priority, but this can be replaced
with a policy that favors the oldest transaction. Selecting
a high-level contention management policy is much less
error-prone than managing kernel locks in userspace.

A final argument for generalized transaction support in
the kernel is that transactions are a useful feature for all
Linux file systems. The TxOS design implements file
system transactions primarily in the VFS layer, leaving
minimal adoption work for a specific file system. The

244 • Transactional system calls on Linux

main onus on a specific file system is ensuring atomic
commit of data to disk, which is already provided by
common techniques such as journaling. As a proof
point, we implemented a transactional ext3 file sys-
tem in one developer month on TxOS. Transaction sup-
port can be generalized in the VFS layer while imposing
minimal development effort on individual file systems.

7 Limitations and future work

TxOS does not yet provide transactional semantics for
several classes of OS resources. Currently, TxOS either
logs a warning or aborts a transaction that attempts to ac-
cess an unsupported resource: the programmer specifies
the behavior via a flag to sys_xbegin(). Among the
unsupported resources are the network, certain classes
of inter-process communication, and user interfaces.

Ongoing work on TxOS is focused in three directions.
First, we plan to study additional applications that can
benefit from transactions. Second, we plan to add sup-
port for additional kernel abstractions and resources.
Third, we would like to find additional optimizations to
improve the performance of the TxOS prototype.

8 Conclusion

TxOS demonstrates that transactions are a practical ab-
straction a widely-deployed, commodity OS. The code
changes required are substantial, but so are the bene-
fits. The source code for TxOS is available at http:
//txos.code.csres.utexas.edu.

References

[1] N. Borisov, R. Johnson, N. Sastry, and D. Wag-
ner. Fixing races for fun and profit: How to abuse
atime. In USENIX Security, 2005.

[2] D. Dean and A. J. Hu. Fixing races for fun and
profit: how to use access(2). In USENIX Security,
pages 14–26, 2004.

[3] M. Herlihy and E. Koskinen. Transactional boost-
ing: A methodology for highly-concurrent trans-
actional objects. In PPoPP, 2008.

[4] M. Kulkarni, K. Pingali, B. Walter, G. Rama-
narayanan, K. Bala, and L. P. Chew. Optimistic
parallelism requires abstractions. In PLDI, 2007.

[5] J. Larus and R. Rajwar. Transactional Memory.
Morgan & Claypool, 2006.

[6] P. E. McKenney. Exploiting Deferred Destruction:
An Analysis of Read-Copy Update Techniques in
Operating System Kernels. PhD thesis, 2004.

[7] W. S. McPhee. Operating system integrity in OS-
/VS2. IBM Systems Journal, 13(3):230–252, 1974.

[8] G. C. Necula, S. Mcpeak, S. P. Rahul, and
W. Weimer. CIL: Intermediate language and tools
for analysis and transformation of C programs. In
ICCC, pages 213–228, 2002.

[9] E. B. Nightingale, P. M. Chen, and J. Flinn. Spec-
ulative execution in a distributed file system. In
SOSP, 2005.

[10] NIST. National Vulnerability Database. http:
//nvd.nist.gov/, 2010.

[11] D. E. Porter, O. S. Hofmann, C. J. Rossbach,
A. Benn, and E. Witchel. Operating system trans-
actions. In SOSP, 2009.

[12] D. E. Porter and E. Witchel. Operating systems
should provide transactions. In HotOS, 2009.

[13] H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S.
Hofmann, A. Bhandari, and E. Witchel. MetaT-
M/TxLinux: Transactional memory for an operat-
ing system. In ISCA, 2007.

[14] M. Russinovich and D. Solomon. Windows Inter-
nals. Microsoft Press, 2009.

[15] F. Schmuck and J. Wylie. Experience with trans-
actions in QuickSilver. In SOSP. ACM, 1991.

[16] D. Tsafrir, T. Hertz, D. Wagner, and D. D. Silva.
Portably preventing file race attacks with user-
mode path resolution. Technical report, IBM Re-
search Report, 2008.

[17] M. J. Weinstein, J. Thomas W. Page, B. K.
Livezey, and G. J. Popek. Transactions and syn-
chronization in a distributed operating system. In
SOSP, 1985.

[18] C. P. Wright, R. Spillane, G. Sivathanu, and
E. Zadok. Extending ACID semantics to the file
system. Trans. Storage, 3(2):4, 2007.

[19] M. Zalewski. Delivering signals for fun and profit.
2001.

CPU bandwidth control for CFS

Paul Turner
Google

pjt@google.com

Bharata B Rao
IBM India Software Labs, Bangalore
bharata@linux.vnet.ibm.com

Nikhil Rao
Google

ncrao@google.com

Abstract

Over the past few years there has been an increas-
ing focus on the development of features for resource
management within the Linux kernel. The addition of
the fair group scheduler has enabled the provisioning
of proportional CPU time through the specification of
group weights. Since the scheduler is inherently work-
conserving in nature, a task or a group can consume ex-
cess CPU share in an otherwise idle system. There are
many scenarios where this extra CPU share can cause
unacceptable utilization or latency. CPU bandwidth pro-
visioning or limiting approaches this problem by provid-
ing an explicit upper bound on usage in addition to the
lower bound already provided by shares.

There are many enterprise scenarios where this func-
tionality is useful. In particular are the cases of pay-
per-use environments, and latency provisioning within
non-homogeneous environments.

This paper details the requirements behind this fea-
ture, the challenges involved in incorporating into CFS
(Completely Fair Scheduler), and the future develop-
ment road map for this feature.

1 CPU as a manageable resource

Before considering the aspect of bandwidth provision-
ing let us first review some of the basic existing con-
cepts currently arbitrating entity management within the
scheduler.

There are two major scheduling classes within the Linux
CPU scheduler, SCHED_RT and SCHED_NORMAL.
When runnable, entities from the former, the real-time
scheduling class, will always be elected to run over
those from the normal scheduling class.

Prior to v2.6.24, the scheduler had no notion of any en-
tity larger than that of single task1. The available man-
agement APIs reflected this and the primary control of
bandwidth available was nice(2).

In v2.6.24, the completely fair scheduler (CFS)
was merged, replacing the existing SCHED_NORMAL
scheduling class. This new design delivered weight
based scheduling of CPU bandwidth, enabling arbitrary
partitioning. This allowed support for group scheduling
to be added, managed using cgroups through the CPU
controller sub-system.

This support allows for the flexible creation of schedul-
ing groups, allowing the fraction of CPU resources re-
ceived by a group of tasks to be arbitrated as a whole.
The addition of this support has been a major step in
scheduler development, enabling Linux to align more
closely with enterprise requirements for managing this
resouce.

The hierarchies supported by this model are flexible, and
groups may be nested within groups. Each group en-
tity’s bandwidth is provisioned using a corresponding
shares attribute which defines its weight. Similarly,
the nice(2) API was subsumed to control the weight
of an individual task entity.

Figure 1 shows the hierarchical groups that might be
created in a typical university server to differentiate
CPU bandwidth between users such as professors, stu-
dents, and different departments.

One way to think about shares is that it provides lower-
bound provisioning. When CPU bandwidth is scheduled
at capacity, all runnable entities will receive bandwidth
in accordance with the ratio of their share weight. It’s
key to observe here that not all entities may be runnable

1Recall that under Linux any kernel-backed thread is consid-
ered individual task entity, there is no typical notion of a process
in scheduling context.

• 245 •

246 • CPU bandwidth control for CFS

Figure 1: An example hierarchy applicable to a univer-
sity server.

in this situation; this means that CPU bandwidth is com-
paratively available in abundance and the entities that
are running will be able to consume bandwidth at a
higher rate than their weight would permit were more
entities runnable.

It should be noted that the concept of proportional shares
is different from a guarantee. Assigning share to a group
doesn’t guarantee that it will get a particular amount of
CPU. It only means that the available CPU bandwidth
will be divided as per the shares. Hence depending on
the number of groups present, the actual amount of CPU
time obtained by groups can vary. 2

For example: If there were 3 groups with 1024 shares
each, then each would receive 1024

1024+1024+1024 = 33.3%
of the CPU when all were runnable3. If a 4th group
on the same level were to become active with a share
of 2048, then the other groups would now receive only
20% of available bandwidth. The CPU bandwidth avail-
able to a group (by weight) is always relative.

2Also recall: These ratios are only relative to the time avai lable
to SCHED_NORMAL. Time spent in SCHED_RT execution is inde-
pendent of this mo del.

3Since group entities are containers, for a group entity to be
runnable it must have an active child entity, the leaves of this tree
must thusly all be task entities.

2 Motivation for bandwidth control

As discussed above, the scheduler is work conserving
by nature; when idle cycles are available in the system,
it is because there were no runnable entities available
(on that cpu) to consume them. While for many use-
cases, efficient use of idle CPU cycles like this might be
considered optimal, there are two key side effects that
must be considered:

1. The actual amount of CPU time available to a
group is highly variable as it is dependent on the
presence and execution patterns of other groups,
a machine can the not be predictably partitioned
without intimately understanding the behaviors of
all co-scheduled applications.

2. The maximum amount of CPU time available to a
group is not predictable. While this is closely re-
lated to the first point, the distinction is worth not-
ing as this directly affects capacity planning.

While not of concern to most desktop users, these are
key requirements in certain enterprise scenarios. Band-
width control aims to address this by allowing upper
limits on group bandwidths to be set. This allows both
capacity and the maximal effect on other groups to be
predicted.

This feature is already available for the real-time group
scheduler (SCHED_RT). The first attempt to add this
functionality to CFS (SCHED_NORMAL) was posted in
June 2009 by the RFC post [2] to the Linux Kernel
Mailing List (LKML). In the subsequent sections of this
paper, we discuss this initial approach and how it has
evolved into CFS Bandwidth Control below.

3 Example use cases

Bandwidth provisioning is commonly found useful in
the following scenarios:

• Pay-per-use:

In enterprise systems that cater to multiple
clients/customers, a customer pays for, and is pro-
visioned with a specific share of CPU resources. In
such systems, customers would object should they
receive less and its in the provider’s interest that

2010 Linux Symposium • 247

they not provided more. In this case CPU band-
width provisioning could be used directly to con-
strain the customers usage and provide soft band-
width to interval guarantees. Such pay-per-use sce-
narios are frequently seen in cloud systems where
service is priced by the required CPU capacity.

• Virtual Machines

For (integrated) Linux based hypervisers such as
KVM, bandwidth limits at the scheduler level may
be useful to control the CPU entitlements of hosted
VMs.

• Latency provisioning

The explicit provisioning of containers within the
machine allows for expectations to be set with
respect to latency and worst-case access to CPU
time. This becomes particularly important with
non-homogenous collections of latency sensitive
tasks where it is difficult to restrict co-scheduling.

• Guarantees

In addition to maximum CPU bandwidth, in many
situations applications may need CPU bandwidth
guarantees. Currently this is not directly supported
by the scheduler. In such cases, hard limits settings
of different groups may be derived to reach a mini-
mum (soft) guarantee for every group. An example
of how to obtain guarantees for groups by using
hard limit settings is provided in the OpenVZ wiki
[1].

4 Interfaces

As discussed above the cgroups interface has been lever-
aged for managing the CPU controller subsystem. Our
work extends these interfaces.

In case of SCHED_RT, bandwidth is specified using
two control parameters: the enforcement interval (cpu.
rt_period_us) and allowable consumption (cpu.
rt_runtime_us) within that interval. Accounting is
performed on a per-CPU basis. For example if there
were 8 CPUs in the system 4, the group would be al-
lowed to consume 8 times the cpu.rt_runtime_us
within an interval of cpu.rt_period_us. This is en-
abled by allowing unconsumed time to be transferred

4Assuming the root_domain has not been partitioned via
cpusets

from CPUs present in the root_domain span that
have unconsumed bandwidth available.

In our initial approach [3], the bandwidth specifica-
tion exposed for SCHED_NORMAL class was based on
this model. However for the reasons described in the
subsequent sections, we have now opted for global
specifcation of both enforcement interval (cpu.cfs_
period_us) and allowable bandwidth (cpu.cfs_
quota_us). By specifying this, the group as a whole
will be limited to cpu.cfs_quota_us units of CPU
time within the period of cpu.cfs_period_us.

Of note is that these limits are hierarchical, unlike
SCHED_RT we do not currently perform feasibility
evaluaion regarding the defined limits. If a child has
a more permissive bandwidth allowance than its parent,
it will be indirectly throttled when the parent’s quota is
exhausted.

Additionally, there is the global control: /proc/sys/
kernel/sched_cfs_bandwidth_slice_us

This sysctl interface manages how many units are trans-
ferred from the global pool each time a local pool re-
quires additional quota. The current default is 10ms.
The details of this transfer process are discussed in later
sections.

5 Existing Approaches

5.1 CFS hard limits

This was the first approach [3] at implementing band-
width controls for CFS and was modelled on the exist-
ing bandwidth control scheme in use by the real-time
scheduling class. The mechanism employed here is
quite direct. Each group entity (specifically cfs_rq
here) is provisioned locally with cfs_runtime_us
units of time. CPUs are then allowed to borrow from
one another within a given root_domain. This
means that the externally visible bandwidth of the group
is effectively the weight of the root_domain CPU
mask multiplied by cfs_runtime_us (per cfs_
period_us). When a CFS group consumes all its
runtime and when there is nothing left to borrow from
the other CPUs, the group is then throttled. At the end
of the enforcement interval, the bandwidth gets replen-
ished and the throttled group becomes eligible to run
once again.

248 • CPU bandwidth control for CFS

A typical time line for a process that runs as part of a
bandwidth controlled group under CFS Hard Limits ap-
pears as shown in Figure 2.

Time

Start BW refresh BW refresh

2ms1ms 3ms

Running Throttled Running

Runtime consumed
Sleep

Wakeup

Running

4ms 5ms 6ms 7ms 8ms

Runtime
consumed

Throttled Running

cfs_runtime_us = 2ms
cfs_period_us = 4ms
Bandwidth = 2/4 = 0.5

Figure 2: Progress of a task in bandwidth controlled
group

Figure 3 shows the same situation with borrowing of
quota from other cpus.

Time

Start BW refresh

2ms1ms 3ms

Running Throttled Running

4ms

Runtime consumed,
Borrow

Runtime fully consumed,
nothing left to borrow

cfs_runtime_us = 2ms
cfs_period_us = 4ms
Bandwidth = 2/4 = 0.5

Figure 3: Progress of a task in bandwidth controlled
group with runtime borrowing

The strategy for time-redistribution is to visit all neigh-
bor CPUs and transfer 1

n of their remaining run-time,
where n is the weight of the root_domain span. There
is an implicit assumption made within this scheme that
we will be able to converge quickly above to cfs_
period_us while borrowing. This is indeed true for
the real-time class as, by default, SCHED_RT is provi-
sioned with 95% of total system time, allowing an in-
dividual CPU to reach to rt_period_us with only a
single partial iteration of borrowing in the default con-
figuration. This can also be expected to hold more gen-
erally as the nature of entities requiring this scheduling
class is to be well-provisioned.

In the more general case, where the reservation may
represent only a small-to-medium fraction of system re-
sources, this convergence breaks down. Each iteration
is able to maximally consume n−1

n additional time, at
the expense of taking every rq->lock. Moreover, as
most cpus will not be allowed to reach the upper bound

of the period we will have an extremely long tail of re-
distribution.

5.2 Hybrid global pool:

The primary scalability issue with the local pool ap-
proach is that there there is a many-to-many relationship
in the computation and storage of remaining quota. This
is acceptable provided either the existence of a strong
convergence condition or ’small’ SMP systems.

Tracking quota globally is also not a solution that scales
with machine size due to the large contention the global
store then experiences. One of the advantages of the lo-
cal quota model above is that, when within quota, con-
sumption is very efficient since it can potentially be ac-
counted locklessly and involves no ’remote’ queries.

Our design for the distribution of quota is a hybrid
model which attempts to combine both local and global
quota tracking. To each task_group a new cfs_
bandwidth structure has been added. This tracks
(globally) the allocated and consumed quota within a
period. However, consumption does not occur against
this pool directly; as in the local pool approach above
there is a local, per cfs_rq, store of granted and con-
sumed quota. This quota is acquired from the global
pool in a (user configurable) batch size. When there is
no quota available to re-provision a running cfs_rq,
it is locally throttled until the next quota refresh. Band-
width refresh is a periodic operation that occurs once
per quota period within which all throttled run-queues
are unthrottled and the global bandwidth pool is replen-
ished.

TimeRunning Throttled Running

cfs_rq_quota_us = 20ms
cfs_rq_period_us = 40ms
sched_cfs_bandwidth_slice_us = 10ms

10ms 20ms 30ms 40ms

Start by
borrowing
a slice of
10ms from
global pool

Runtime
consumed.
Borrow
another slice
of 10ms from
global
pool

Running

Entire
quota
consumed.
Nothing left
to borrow

BW refresh
Global quota
replenished

Figure 4: progress of a task in bandwidth controlled
group with global quota

2010 Linux Symposium • 249

6 Design

CFS bandwidth control implements the above discussed
hybrid approach to bandwidth accounting. The global
quota is distributed in ’slices’ to local per-CPU caches,
where it is then consumed. The local accounting for
these quota slices closely resembles the SCHED_RT
case, however, the many-to-many CPU interactions on
refresh and expiration are avoided. The batching of
quota distribution also allows for linear convergence to
quota within a provisioned period.

A summary of specific key changes is provided below.

6.1 Data-structures

struct cfs_bandwidth:

This is the top-level group representation of
bandwidth, encapsulated within the corresponding
task_group structure. The remaining quota
within each period, as well as the total runtime
assigned per period, and quota period length are
managed here.

struct cfs_rq:

This is the per-group runqueue of all runnable en-
tities present in SCHED_NORMAL group. Each
group has one such representative runqueue on ev-
ery CPU. The entities within a group are arranged
in a time-ordered RB tree. Time ordering is done
by vruntime or virutal runtime, which is a rough
indication of the amount of CPU time obtained
by an entity. We have annotated this structure
with the new variables quota_assigned and
quota_used, which track the total bandwidth al-
located from the global pool to this runqueue and
the amount consumed respectively.

6.2 Bandwidth distribution and constraint

update_curr():

This function is periodically called from scheduler
ticks as well as during other scheduler events like
enqueue and dequeue to update the amount of time
the currently running entity has received. Time
since the last invocation is charged against the en-
tity. The weight-normalized vruntime which forms
the basis for fair-share scheduling is also updated
here.

The accounting here is extended to call the new
function account_cfs_rq_quota. This en-
sures that quota accounting will occur at the same
instance at which execution time is charged.

account_cfs_rq_quota():

This function forms the basis for quota distribution
and tracking. The rough control flow is as shown
in Figure 5:

Is this a bandwidth limited group ?
local_quota_assigned != RUNTIME_INF ?

account_cfs_rq_quota(cfs_rq, delta)
ENTER

local_quota_used += delta

local_quota_used < local_quota_assigned ?

Borrow runtime from global pool
borrowed = tg_request_cfs_quota()

Borrow from global pool successful ?
borrowed != 0 ?

local_quota_assigned += borrowed Throttle cfs_rq and resched task

EXIT

NO

YES

YES

NO

YES

NO

Figure 5: Control flow diagram for ac-
count_cfs_rq_quota()

Entity throttling

A throttled cfs_rq is one that has run out of local
bandwidth (specifically, local_quota_used≥

250 • CPU bandwidth control for CFS

local_quota_assigned). By extension this
means there was no global bandwidth availble to
’top-up’ or refresh the pool. At this point the entity
is no longer schedulable in the current quota period
as it has reached its bandwidth limit. 5

Such a cfs_rq is considered throttled. This
state is tracked explicitly using the equiva-
lently named attribute. Issuing a throttle opera-
tion (throttle_cfs_rq()) will dequeue the
sched_entity from its parent cfs_rq and set
the above throttled flag. Note that for an entity to
cross this threshold it must be running, and thus,
be the current entity. This means that the dequeue
operation on the throttled entity will just update the
accounting since the currently running entity is al-
ready dequeued form RB tree as per CFS design.

We must however, ensure that it is not able to re-
enter the tree due to either a put operaton, or thread
wake-up. The first case is handled naturally as the
decision to return an entity to the RB tree is based
off the entity->on_rq flag, which has been
unset as a consequence of accounting during de-
queue. The task wakeup case is handled directly
by ceasing to enqueue past a throttled entity within
enqueue_task_fair().

When the lone throttled entity of a parent is de-
queued, the parent entity will suddenly become
non-runnable, since it no longer has any runnable
child entities. Even though the parent is not throt-
tled, it need not remain on the RB tree. The natural
solution to this is to continue dequeuing past the
throttled entity until we reach an entity with load
weight remaining. This is analogus to the ancestor
dequeue that may occur when a nested task sleeps.

The unthrottle case is symmetric, the entity is re-
enqueued and the throttled flag is cleared. Parent-
ing entities must then potentially be enqueued up
the tree hierarchy until we reach either the root,
or an ancestor undergoing its own throttling opera-
tions.

Quota Refresh

task_group quota is refreshed periodically us-
ing hrtimers by programming the hrtimer to
expire every cfs_period_us seconds. A

5Since bandwidth is defined on at the group level it should be
noted that an individual task entity will never be throttled, only its
parent.

struct hrtimer period_timer is embed-
ded in cfs_bandwidth structure for this pur-
pose. If there is a quota interval within which no
bandwidth is consumed then the timer will not be
re-programmed on expiration.

The refresh operation first refreshes the global
quota pool, stored in the cfs_bandwidth struc-
ture. We then iterate over the per-CPU cfs_rq
structures to determine whether any of them have
been throttled. In the case of a throttled cfs_rq,
we attempt to assign more bandwidth to it and –
if successful – unthrottle it. Unlike SCHED_RT
case, we could do this check for throttled cfs_rqs
speculatively to reduce the contention on rq->
lock. Future development here could involve re-
fresh timer consolidation to further reduce over-
head in the many cgroup case.

Locking Considerations

Since the locally assigned bandwidth is maintained
on the cfs_rq, we are able to nest tracking and
modification under the parent rq->lock. Since
this lock is already held for existing CFS account-
ing, this allows the local tracking of quota to be
performed with no additional locking.

Explicit locking is required to synchronize mod-
ification to the assigned or remaining bandwidth
available in the global pool. Such an operation
occurs when a local pool exceeds its (locally) as-
signed quota or through configuration change.

6.3 Challenges

• Slack time handling

One caveat of our chosen approach is that the time
locally assigned may have been allocated from the
global pool in a previous quota interval. This repre-
sents potential local over-commit when bandwidth
is expressed versus reservation. The maximum
outstanding over-subscription within a given set
of consecutive intervals is constant at num_cpus ·
batch_slice. It is of note that this holds true for
any number of consecutive observed interval since
the input rate of the system is bounded, the over-
commits occurs from remaining slack time that
may be left over from the interval immediately
prior to the first measured period. One potential
approach to mitigate this for environments where

2010 Linux Symposium • 251

harder limits are required is to use generation coun-
ters during the allocation and distribution of quota.

• Fairness issues
The waterfall distribution of quota from global to
local pools is also potentially accompanied by risks
involving the fairness of consumption. Consider
for example the case of a multi-CPU machine.
Since the allocation of quota is currently in batch
sized amounts it is possible for a multi-threaded
application to experience reduced parallelism. It
is also possible for quota to be ’stranded’ as load-
balancing leaves local quota unavailable for con-
sumption due to no runnable entities. The latter
can also potentially be addressed by a generational
model as it would then be possible to return quota
to the global pool on a voluntary sleep. However as
systems scale the former potentially becomes a real
problem. A short term mitigation strategy could be
to reduce the batch-sizing used for the propagation
of quota from global to local pools. Longer term
strategies for resolving this issue might include a
graduated scheme for batch slice sizing and sub-
dividing the global pool at the sched_domain
level to allow for finer granularity of control on dis-
tribution.

• Load-balancer interactions
CFS bandwidth control currently supports only a
very primitive model for load balancer interac-
tions. Throttled run-queues are excised from load-
balancing decisions; it turns out that it is hard to
improve this model without undesirable emergent
behaviors. At first inspection it may appear that mi-
grating threads from a locally throttled run-queue
to an unthrottled one would be a sensible decision.
This quickly breaks down when the case of insuffi-
cient quota is considered. Here the last run-queue
to have quota available will resemble that last seat
in the game ’musical chairs’, inadvertantly creat-
ing a ’herd’ of executing threads. Likewise, it does
not make sense to migrate a thread to a run-queue
that has already been throttled as it being runnable
indicates there is local quota still available.

While improving the actual mechanics of load bal-
ancing in these conditions may be a large technical
challenge, there may be an easier case to make for
improvement in the distribution of share weight.
Currently, when a run-queue is throttled its partic-
ipation in group share distribution is also halted.

This may result in undesirable rq weight fluctua-
tions. One avenue that has been considered in this
area is to continue allowing throttled entities to par-
ticipate in weight calculations for re-distribution.
This will allow entities to re-wake with their cor-
rect weight and prevent large swings in distribu-
tion. For this to work effectively however some
stronger guarantees that quota will expire relatively
concurrently are desired to avoid skews.

7 Results

This section describes the experiments we have under-
taken to validate CFS bandwidth control. We describe
our test setup and the benchmarks run. We then present
our results and discuss some limitations in the current
approach. Finally we explore the effects of changing
parameters like sched_slice and enforcement peri-
ods in the system.

We performed all our tests on a 16-core AMD ma-
chine with no restrictions to affinity. We ran our tests
with our patches based on top of the v2.6.34 kernel,
which as of writing this paper was the most recent
stable kernel release. Outside the default x86 Kcon-
fig, we enabled CONFIG_FAIR_GROUP_SCHED and
CONFIG_CFS_BANDWIDTH_CONTROL. We config-
ured our test machine with the following cgroup config-
uration for all experiments.

Container Shares Notes
system 1024 Contains system tasks

such as sshd, measure-
ment tasks, etc.

protag 65536 Benchmark runs in this
container. The protag
container is large enough
to mitigate system inter-
ference.

We monitored system utilization in a monitoring thread
that was part of the system container. This thread woke
up once a second and read /proc/stat for busy us-
age and idle time for all CPUs in the system. We used
busy time measured as a fraction of the total system time
as a metric to measure the effectiveness of CPU band-
width control.

Two simple benchmarks were used to validate the band-
width control mechanism - while-1 soakers and sys-
bench. Both these benchmarks are multi-threaded ap-
plications and can completely saturate the machine in

252 • CPU bandwidth control for CFS

the absence of bandwidth control. We would also like to
note that system daemon/thread interference was mini-
mal and can be ignored for the purposes of this discus-
sion.

When the runtime allocated to a cgroup is the same as its
period, it can be expected to receive one CPU’s worth of
wall time. When the runtime is twice the period it gets
about two CPUs worth, and so on. The same bandwidth
limits were explicitly attained using the cpuset sub-
system and CPU affinities as a control group. It should
be noted that due to the lack of affinity and that time
was observed on all runnable CPUs in the first case there
is nothing special about the integral CPU case for CFS
Bandwidth Control, it merely enables the use of cpusets
as an OPT control parameter.

Each benchmark was run with three different bandwidth
enforcement periods - 100ms, 250ms, and 500ms. In
each set of runs, we allocated an integer core worth of
runtime to the protag cgroup ranging from 1 core worth
upto the full 16 cores worth of runtime. We compare
these results with the baseline measurement for the re-
spective benchmark.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

%
 o

f s
ys

te
m

 ti
m

e

#cpus

cpu bandwidth (period = 100 ms)lat-soaker-p100000

affinity-user
cfsbandwidth-user

Figure 6: while-1 soakers, CFS Bandwidth Control,
100ms

Figures 6, 7 and 8 show the comparision of CPU times
obtained by while-1 soakers when run with affinities and
when run with bandwidth control. We see that the aver-
age deviation from the baseline benchmark is very small
in each of these cases. We also notice that the average
deviation from baseline decreases as the enforcement
period increases.

Figures 9, 10 and 11 show the results for sysbench. The
benchmark was to run the CPU sysbench test with 16

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

%
 o

f s
ys

te
m

 ti
m

e

#cpus

cpu bandwidth (period = 250 ms)lat-soaker-p250000

affinity-user
cfsbandwidth-user

Figure 7: while-1 soakers CFS Bandwidth Control,
250ms

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

%
 o

f s
ys

te
m

 ti
m

e

#cpus

cpu bandwidth (period = 500 ms)lat-soaker-p500000

affinity-user
cfsbandwidth-user

Figure 8: while-1 soakers, CFS Bandwidth Control,
500ms

worker threads. Each thread computed all prime num-
bers lesser than 100000. Again, we see that the devia-
tion from the baseline benchmark is very small in most
cases and improves as the enforcement period increases.

7.1 Overhead

CFS bandwidth control adds a minimal overhead to the
enqueue/dequeue fast paths. We used tbench to mea-
sure overhead on these paths as it exercises these paths
very frequently (450K times a second). We used on
a vanilla 2.6.34 kernel with affinity masks as the base-
line. The tabular data below shows the overhead with
enforcement period at 100ms.

As described earlier, quota is distributed in batch_
slice amounts of runtime. This is set to 10ms by

2010 Linux Symposium • 253

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14 16

el
ap

se
d

tim
e

(s
)

#cpus

cpu bandwidth (period = 100 ms)sysbench-p100000

affinity-elapsed
cfsbandwidth-elapsed

Figure 9: sysbench bandwidth control, 100ms

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14 16

el
ap

se
d

tim
e

(s
)

#cpus

cpu bandwidth (period = 250 ms)sysbench-p250000

affinity-elapsed
cfsbandwidth-elapsed

Figure 10: sysbench bandwidth control, 250ms

default in our current system, but we expose this as a
tunable that can be set at runtime via a procfs tunable.
While decreasing this value increases the frequency at
which CPUs request for quota from the global pool, we
did not notice any measurable impact on performance.

8 Conclusions and Futures

CFS Bandwidth Control is a light-weight and flexibile
mechanism for bandwidth control and specification. We

cputime baseline bandwidth control
1 219.022 213.415
8 1668.12 1653.7
16 2451.82 2421.36

Table 1: Overhead of CFS bandwidth control, tbench 10
procs

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14 16

el
ap

se
d

tim
e

(s
)

#cpus

cpu bandwidth (period = 500 ms)sysbench-p500000

affinity-elapsed
cfsbandwidth-elapsed

Figure 11: sysbench bandwidth control, 500ms

are currently in the process of attempting to collect test-
data on a wider variety of both proprietary and open-
source workloads and hope to publish this data as it be-
comes available.

Our patchset is in a stable state and we encourage
any customers interested in this requirement to evalu-
ate whether it meets their needs and provide feedback.
The current posting is version 2, available at [4].

We are currently pursuing peer review with the hopes
of merging this feature into the mainline scheduler tree.
Looking forwards we are attempting to deliver improve-
ments such as generational quota to mitigate potential
slack time issues and improve fairness. For simplicity’s
sake given the review process however, formal consid-
eration of this should be post-poned until the original
approach reaches maturation within the community.

9 Acknowledgements

We would like to thank Ken Chen, Dhaval Giani, Bal-
bir Singh and Srivatsa Vaddagiri for discussion related
to the development of this work. Much credit is also
due to the original bandwidth mechanisms present in
SCHED_RT as they have both inspired and formed the
basis for much of this work. We would also like to thank
Google and IBM for funding this development.

10 Legal Statements

c© International Business Machines Corporation 2010.
Permission to redistribute in accordance with Linux

254 • CPU bandwidth control for CFS

Symposium submission guidelines is granted; all other
rights reserved.

This work represents the view of the authors and does
not necessarily represent the view of IBM.

IBM, IBM logo, ibm.com, andWebSphere, are trade-
marks of International Business Machines Corporation
in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.

References in this publication to IBM products or ser-
vices do not imply that IBM intends to make them avail-
able in all countries in which IBM operates.

INTERNATIONAL BUSINESS MACHINES CORPO-
RATION PROVIDES THIS PUBLICATION âĂIJAS
ISâĂİ WITHOUT WARRANTY OF ANY KIND, EI-
THER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied war-
ranties in certain transactions, therefore, this statement
may not apply to you. This information could include
technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these
changes will be incorporated in new editions of the pub-
lication. IBM may make improvements and/or changes
in the product(s) and/or the program(s) described in this
publication at any time with

References

[1] Guarantees in OpenVZ. http://wiki.
openvz.org/Containers/Guarantees_
for_resources.

[2] Bharata B Rao. CFS hard limits - v0, June 2009.
http://lkml.org/lkml/2009/6/4/24.

[3] Bharata B Rao. CFS hard limits - v5, January 2010.
http://lkml.org/lkml/2010/1/5/44.

[4] Paul Turner. CFS bandwidth control - v2, April
2010. http://lkml.org/lkml/2010/4/
28/88.

Page/slab cache control in a virtualized environment

Balbir Singh
Linux Technology Center, IBM,

balbir@linux.vnet.ibm.com

Abstract

The Linux page/slab cache subsystems are one of the
most useful subsystems in the Linux kernel. Any at-
tempts to limit its usage have been discouraged and
frowned upon in the past. However, virtualization is
changing the role of the kernel running on the system,
specifically when the kernel is running as a guest. As-
sumptions about using all available memory as cache
and optimizations will need need to be re-looked in an
environment where resources are not fully owned by one
guest OS.

In this paper, we discuss some of the pain points of page
cache in a virtualized environment; like double caching
of data in both the host and guest and its impact on mem-
ory utilization. We look at the current page cache be-
havior of Linux running as a guest and when multiple
instances of guest operating systems are running. We
look at current practices and propose new solutions to
the solving the double caching problem in the kernel.

1 Introduction

The cache systems are typically designed to grow, they
tend to use as much memory is required for caching key
data that can be reused later. They also provide a reclaim
system that can quickly reclaim back memory used for
caching. An often asked question on the Linux Kernel
Mailing List (LKML) [5] relates to why the free mem-
ory on the system is very low, even though the system
is mostly idle or even when the system has few applica-
tions that do not take up a lot of memory. Typically we
distinguish between free memory and freeable memory.
The cache (unless dirty) falls in the category of freeable
memory. We use memory to optimize the cost of other-
wise reading from a slow device. The ability to reclaim
from the cache when needed is a good design trade-off.

The scenario is quite different in a virtualized environ-
ment. The entire guest kernel memory is mapped into

the hypervisor address space. The memory cached in
the kernel, shows up as mapped memory in the hyper-
visor. Beyond the change of the way memory is visi-
ble, caching policies in both the guest and host can lead
to double caching. Double caching is not very good in
a virtualized environment, where resources are scarce
and heavily shared. In the sections to follow, we look
at page cache in a virtualized environment, some basic
data about page cache in a virtualized environment, our
approaches to solving the problem, future work and we
finally conclude with recommendations.

NOTE: We’ve used the terms host and hypervisor inter-
changeably in this paper.

2 I/O in a Virtualized Environment

Our focus in this paper is on the KVM hypervisor [3]
and the Linux Operating System running as the guest
operating system. The KVM hypervisor configuration
can be very complex. Lets look at the various ways of
carrying out I/O.

1. Direct Assignment: In this mode, the IOMMU [2]
creates one or more unique address spaces which
can be used for DMA operations. With IOMMU’s
and direct assignment, a device can be assigned
to a virtual machine directly. This speeds up
I/O immensely. The drawback of such a scheme
is scalability. There are standards that allow to
solve the scalability problem by virtualizing the
workqueues, interrupts, registers on a per VM ba-
sis while using the same device. The guest drivers
need to support these devices to make full use of
the capabilities.

2. Paravirtualized I/O: The hypervisor uses the virt
I/O [6] subsystem to paravirtualize the I/O and
makes as efficient as possible. The data exchanged

• 255 •

256 • Page/slab cache control in a virtualized environment

between the guest and the host is done via a zero-
copy mechanism, with efficient notification mech-
anism for availability of data. This mode requires
support from the guest operating system to have
paravirtualized drivers.

3. Emulated I/O: In this mode, the hypervisor emu-
lates a storage device. Guest drivers do I/O to the
emulated device and the emulated device in-turn
does I/O to the actual physical device.

Modes 2 and 3 above need support from the hypervi-
sor to carry out the complete I/O. Beyond the I/O modes
listed above, virtual machines themselves can be config-
ured in

1. Dedicated Partition Mode: In this mode, the vir-
tual machine is installed the file system on a parti-
tion. This could be an entire disk, a virtual partition
spanning multiple disks, an LVM partition or a disk
partition.

2. Virtual Machine Image Mode: In this mode, the
virtual machine is installed in an image file. A set
of Virtual Machine Images (VMI) are kept together
in a virtual machine repository

Understanding the details of the various image formats
is essential to identify the cost of doing I/O operations
and hence the levels of caching and the cost of caching
data in memory. In this paper, we don’t focus on any
specific image file format. The focus is on common
strategies.

3 Page Caching Strategies

There are various strategies that one can employ for
page cache. The strategies are examined here

3.1 Guest Only Caching

In the guest only caching strategy, the host page cache
is bypassed. This is done by passing the cache=none

argument to the hypervisor during guest startup. This
option enables direct I/O and directly writes the data to
disk, bypassing the host page cache. This strategy works
well for cases where the filesystem of the VM is dedi-
cated to the guest using direct assignment for I/O or if

the guest works in dedicated partition mode. Guest only
caching mode can be used with VMI’s, but it can be an
ineffective strategy if the hypervisor is doing I/O. Sev-
eral VM’s running in parallel, have their own I/O sched-
uler and if the host does not merge the I/O’s, it can cause
excessive head movement in seeking devices. If there
are several VM’s running in parallel, they could cache
memory proportional to their size. The total consump-
tion of memory in each of the guests for caching can be
very high. This consumption shows up as mapped mem-
ory in the hypervisor. The most effective way to free
the memory cached in the guests is through ballooning.
This requires that we have an auto ballooning daemon
running in the background and a cooperative guest. 1

3.2 Host Only Caching

In the host only caching strategy, the guest cache is
not used for caching. All the caching is delegated to
the host. This works well for VMI’s, the host page
cache optimizes disk I/O. The host is able to opti-
mize I/O from all VM’s and provides higher through-
put. KVM supports writethrough and writeback

caching. In writethrough caching, the I/O is blocked till
the data hits the disk. In writeback mode, the I/O re-
turns as soon as the data hits the host page cache. The
big advantage of the writeback mode is the through-
put, the biggest disadvantage is potential of data loss
if the hypervisor crashes. True host only caching is
not possible, each guest maintains its own cache, which
leads to mixed caching. Typical recommendations to
reduce guest caching include changing the setting of
vm.swappiness to 0. In section 4 we look at the re-
sults from the various modes mentioned in this section,
including results when vm.swappiness is set to 0.

3.3 Mixed Caching

In this mode, both the host and the guests cache I/O data.
This happens in a typical VM setup. The disadvantages
listed in section 3.2 apply to this strategy. Beyond that
a system with caching both on the host and the guest(s)
incurs a penalty of double memory usage for caching
the same data. While there are several ways to deal with
page duplication problem [1], none of them deal with
the duplication of page cache between the host and the
guest.

1A guest is considered cooperative if it has a balloon driver en-
abled and running

2010 Linux Symposium • 257

Figure 1: Cache Usage in various modes

Figure 2: Host Page Cache and Guest RSS Usage in
various modes

4 Page Cache Control

The double caching behaviour of was studied using
memory cgroups [7]. A new cgroup was created for the
virtual machine being executed. The virtual machine(s)
ran the kernbench [8] benchmark. Memory cgroups
can provide information about the RSS and page cache
(mapped and unmapped) usage of the process running
inside the cgroup (in this case the virtual machine com-
prises of the processes running as a part of hypervisor).
Each VM was allocated 1 gigabyte of RAM and 2 Vir-
tual CPUs (VCPUs)

Figure 1 shows the unmapped cache usage in three
modes.

1. The first mode is the writethrough mode, which
was described earlier in section 3.2. The guest

and host both consume memory for page cache si-
multaneously and independently. The guest usage
is however larger than the host usage. The data
showed 60% of the data was duplicated over the
entire run of the benchmark.

2. The second mode is the writeback with swappiness
in the guest set to 0. The results showed that the
guest page cache usage was lower than the host
page cache usage and also lower than the usage in
writethrough mode. The usage however was not
close to 0, it was close to 50% of the host page
cache usage. The host page cache usage was quite
high.

3. The last mode is the direct I/O or the cache=none
mode. In this mode, the hypervisor uses direct I/O
to write out the pages from the guest block device
to the disk. The data shows that the host page cache
usage for the virtual machine is almost 0, all the
caching is done in the guest. The size of the cache
in the guest is high and higher than the other modes
experimented with.

Figure 2 shows the page cache usage on behalf of the
guest versus the RSS of the virtual machine. The results
show that in addition to the memory being occupied by
as cache in the guest (which shows up under RSS usage
in the figure), the host is also caching page cache data.
The key observations are

1. Host side caching for cache=none is almost 0 as
expected.

2. With cache=writethrough, there is still double
caching. The host uses close to 40% of the guest
memory for caching data

3. When swappiness is set to 0 and the mode
is cache=writeback, the host uses additional
memory to cache guest data.

5 Proposed Approach

The proposed approach consists of two mechanisms to
reduce the double caching of page cache data. The ap-
proaches are discussed

258 • Page/slab cache control in a virtualized environment

5.1 Mixed Caching With Host Emphasis

In this mechanism, both the guest and host use mem-
ory for page cache, but the cache is primarily pushed
towards the host page cache. The guest page cache
is monitored and shrunk frequently. The kernel has
a partial implementation of this approach for NUMA
systems [4] when the zone_reclaim_distance is
greater than 0, implying that the cost of allocation from
different nodes is high, the code does local reclaim of
easy to free pages before allocating from a distant node.
The algorithm reuses this behaviour and exploits the
min_unmapped_ratio to keep the unmapped page
cache usage under control.

Algorithm 1 Modified VM algorithm for page cache
control
get_page_from_freelist()
...
determine zone to allocate from
if zone is below watermark then

if should_balance_unmapped_cache()
then

wakeup kswapd
end if

end if

Algorithm 2 Check if page cache should be controlled
should_balance_unmapped_cache()
if unmapped pages for zone > min_unmapped_

ratio * number of zone pages then
return TRUE

else
return FALSE

end if

Algorithm 3 Kswapd changes
balance_pgdat()
...
on wakeup check if zone is below watermark or
should_balance_unmapped_cache()
if unmapped pages need balancing then

Reuse zone_reclaim logic
for various reclaim priorities do

Invoke reclaim targeting only unmapped pages
and with swapping out of pages disabled

end for
end if

Figure 3: Time comparison of kernbench for with and
without changes

Algorithms 1, 2, 3 show the changes made to control
unmapped pages in the page cache. The code provides
control over unmapped page cache via a boot parameter
called unmapped_page_control. This boot param-
eter selectively activates the page cache control feature.
By default 1% of the memory can be used for unmapped
page cache. There is a sysctl vm.min_unmapped_

ratio that can be tuned in the guest to control the
amount of unmapped page cache.

5.1.1 Experiments and Results

The approach was tested by running four VM’s in par-
allel, each running kernbench. Each VM had 1 GB of
memory and 2 VCPUs.

The figure shows an overhead of close to 5% when the
feature is enabled with min_unmapped_ratio set to
1%.

Figure 4 shows the free and cached memory usage of the
benchmark running in four VM’s without any changes
to support control of unmapped pages. As can be seen,
the free memory is low and the unmapped page cache
memory usage is high. Figure 5 shows the free and
cached memory usage of the same benchmark running
in four VM’s with the unmapped_page_control boot
parameter specified during bootup. The figure shows
a higher free memory and lower unmapped page cache
utilization.

2010 Linux Symposium • 259

Figure 4: Free and cached memory inside the guest
without any changes

Figure 5: Free and cached memory inside the guest with
changes

5.2 Cooperative Unmapped Page Cache Control

In this mechanism, the ballooning driver is used to coop-
eratively control page cache. In contrast to the previous
approach, this approach is activated selectively on mem-
ory pressure within the hypervisor. The code changes in
this approach are quite simple and consists of the fol-
lowing:

1. Create a new GFP flag, called __GFP_FREE_

CACHE

2. Use __GFP_FREE_CACHE from the balloon driver,
when it allocates pages under pressure.

3. The virtual memory subsystem honours the __

GFP_FREE_CACHE flags by reusing code from
zone_reclaim and the approach above to free
both unmapped page cache and slab cache pages
when the guest operating system is ballooned.

The key challenge with this approach is that the cache
usage is externally controlled when ballooning occurs.
It is important to make the correct decisions on when
to balloon a particular guest and by how much. Typi-
cally a hypervisor would have a automatic tuning dae-
mon whose job is to monitor memory usage in the host,
the free memory, memory pressure in the host, the guest
memory usage, various entitlements and makes smart
decisions on which guests to balloon 2. For the experi-
ments and results obtained using this approach, we used
a similar tool to monitor and automatically balloon the
guests as required.

5.2.1 Experiments and Results

The test setup involved four VM’s all running kernbench
with 4 VCPUs and 6GB of memory. Four guest VM’s
ran this test in parallel. The test was run under a mem-
ory monitor as described in section 5.2, which means it
was subjected to auto ballooning based on host memory
pressure, the size, usage and entitlement of each of the
VM’s. As stated earlier, the ballooning operation could
increase or decrease the memory footprint of the guest
VM.

2A ballooning operation can either reduce the memory footprint
of the guest or give it additional memory to use

260 • Page/slab cache control in a virtualized environment

Figure 6: Host Anonymous Memory, running kern-
bench four VM’s

Figure 7: Host Free Memory, running kernbench four
VM’s

VM With Changes Without Changes
make -j3 1 88.83 87.582
make -j16 1 76.786 76.686
make -j3 2 88.124 87.463
make -j16 2 77.264 76.704
make -j3 3 88.808 87.544
make -j16 3 76.748 75.522
make -j3 4 88.128 87.436
make -j16 4 76.828 75.63

Table 1: Elapsed time four VM’s running kernbench

Figure 6 shows the anonymous memory usage in the
host and correspondingly figure 7 shows the in the graph
show the usage and free memory with and without
changes to the operating system for cooperative balloon-
ing. Figure 6 shows that the anonymous memory usage
after the changes is lower as expected. This indicates
that the cooperative ballooning technique, reduces the
cache size and in turn the RSS size of each guest VM3.
Similarly figure 7 shows that the free memory in the host
is higher with changes.

Table 1 shows the results for the kernbench run in each
VM with and without the ballooning changes for coop-
erative page cache management. The results show no
significant overhead of the patches, but as the graphs
earlier depict, it results in higher free memory in the hy-
pervisor.

6 Future Work

The approaches listed in the paper are by no means com-
plete. There are several additional possibilities to re-
duce page cache deduplication. One of them is to extend
KSM [1] to deal with page cache data between host and
guest operating systems. There is also additional scope
in paravirtualizing hints such as madvise(2), so that
the hypervisor is aware of the hints and can appropri-
ately handle the hints and manipulate its page cache us-
age in line with the hints coming from the applications
running in the guest operating system.

7 Conclusion

Our results show that there is definitely double caching
of page cache data between the hypervisor and guests.

3As seen from the host

2010 Linux Symposium • 261

Our approach pushes the caching of page cache data
(more specifically unmapped page cache) to the hyper-
visor. The approaches listed above unmapped page con-
trol and cooperative page cache control.

The unmapped page control approach provides the best
control over double caching and it also provides the flex-
ibility to the user on what percentage of memory can
be used for unmapped pages. This approach however,
shows a noticeable overhead on the run time, due to the
control introduced. We noticed in our experiments that
the overheads came from the time required to scan and
remove unmapped cached pages, rather than the lack of
memory for caching.

In the cooperative approach provides noticeable benefit
in terms of free memory available when the technique
is used. The technique however, requires a daemon that
continuously monitors all the guest operating systems
and invokes ballooning operations when necessary. The
really good aspect of this approach was minimal to no
overhead in implementing this feature.

We believe that both the approaches listed above have
an important role to play. The invocation and usage of
these approaches is best left to the system administra-
tor/user or a higher level software making decisions for
virtualization environments. The key advantage these
approaches provide is that they allow more free mem-
ory in the hypervisor, which allows additional work to
be executed in the hypervisor.

8 Acknowledgements

The author would like to thank the following people
for their help and support throughout this effort. Their
names appear in no particular order below. Naren De-
vaiah, Premalatha Nair, Dipankar Sarma, Vaidyanathan
Srinivasan, Adam Litke, Joel Schopp, Mike Day, Paul
Mckenney, Karl Rister, Avi Kivity, Dave Hansen, Tim
Pepper, Anthony Liguory, Rayan Harper, Rik van Riel,
Larry Kessler, Ankita Garg, Supriya Kannery, Venkata
R Jagana and many others who’ve been helped me via
discussion/suggestions.

9 Legal Statement

c©International Business Machines Corporation 2010. Per-
mission to redistribute in accordance with Linux Symposium
submission guidelines is granted; all other rights reserved.

This work represents the view of the authors and does not
necessarily represent the view of IBM.

IBM, IBM logo, ibm.com, and WebSphere, are trademarks of
International Business Machines Corporation in the United
States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in all
countries in which IBM operates.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES

THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MER-

CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied war-
ranties in certain transactions, therefore, this statement may
not apply to you. This information could include technical
inaccuracies or typographical errors. Changes are periodi-
cally made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or
the program(s) described in this publication at any time with-
out notice.

References

[1] Andrea Arcangeli, Izik Eidusa, and Chris Wright.
Increasing memory density using ksm. In OLS ’09:
The 2009 Linux Symposium, pages 19–28, 2009.

[2] Muli Ben-Yehuda, Jimi Xenidis, Michal Ostrowski,
Karl Rister, Alexis Bruemmer, and Leendert van
Doorn. The price of safety: Evaluating iommu
performance. In OLS ’07: The 2007 Ottawa Linux
Symposium, pages 9–20, July 2007.

[3] Avi Kivity. kvm: the linux virtual machine
monitor. In OLS ’07: The 2007 Ottawa Linux
Symposium, pages 225–230, July 2007.

[4] Christoph Lameter. Local and remote memory. In
Memory in a Linux/NUMA System, pages 1–25,
July 2006.

[5] Linux Kernel Mailing List. http://lkml.org, Last
viewed in May 2010.

262 • Page/slab cache control in a virtualized environment

[6] Rusty Russell. virtio: towards a de-facto standard
for virtual i/o devices. SIGOPS Oper. Syst. Rev.,
42(5):95–103, 2008.

[7] Balbir Singh and Vaidayanathan Srinivasan.
Containers: Challenges with memory resource
controller and its performance. In OLS ’07: The
2007 Ottawa Linux Symposium, pages 209–222,
2007.

[8] Kernbench version 0.42.
http://www.kernel.org/pub/linux/kernel/people/ck/apps/kernbench/,
Last viewed in May 2010.

The Benefits of More Procrastination in the Kernel

Geoff T Smith
Your affiliation

your-address@example.com

Abstract

• 263 •

264 • The Benefits of More Procrastination in the Kernel

Scaling Beyond 10 Gigabit Ethernet

Peter P. Waskiewicz Jr.
LAN Access Division, Intel Corp.

peter.p.waskiewicz.jr@intel.com

Abstract

10 Gigabit Ethernet is a fast-growing market in today’s
networking industry. Faster platforms, lower infrastruc-
ture costs, and a growing number of advanced features
have driven this migration to higher bandwidth needs.
However, as the platforms keep getting faster and keep
growing in number of CPU cores and NUMA mem-
ory nodes, scaling networking becomes more and more
challenging.

This paper will illustrate the challenges facing high I/O
networking. It will focus on what has been done in the
past year to help scale, including better NUMA local-
ity, cacheline-aligned structures, and more efficient in-
terrupt handling. Looking to the future, the paper will
highlight ongoing areas for improvement, such as inter-
rupt affinity policies with MSI-X, better NUMA scala-
bility, working with increased CPU counts, all of which
are necessary to efficiently drive speeds beyond 10 Gi-
gabit.

1 Introduction

Technology marches on. Huge growth in datacenter and
other computing environments have been made in the
previous year, with more innovations continuing to push
technology forward. With the shift towards Cloud com-
puting, large virtualized clusters, and storage systems
running over standard Ethernet networks, the demand
for massive amounts of network bandwidth has never
been higher. 10 Gigabit Ethernet just isn’t enough in
many cases, and the demand for multiple ports of 10 Gi-
gabit Ethernet has become the status quo for these larger
datacenter installations. To meet the need for higher
bandwidth, the industry is also moving towards the next
tier of networking technology, 40 Gigabit Ethernet. The
question is: can today’s Linux kernel handle the perfor-
mance demand?

To better understand what’s required to scale beyond
10 Gigabit networking, a better understanding of the
current challenges at 10 Gigabit networking is require-
mented.

This paper will dive into various hotspots in today’s
kernel that have large impacts on network performance
scaling. As the throughput demands increase towards
40 Gigabit, these hotspots become more pronounced in
their impact on overall performance scaling. Using ex-
amples of today’s existing platforms, an illustration of
each performance point will be made, and how to tune
it for better scaling and efficiency.

2 The Evolution of Networking

2.1 Today’s 10 Gigabit Ethernet scaling issues

10 Gigabit Ethernet still has a way to go before reach-
ing optimum performance. Many of the performance
tuning problems with 10GbE are masked by how fast
today’s platforms are. However, these issues can be
amplified by reducing the size of the packet payload,
and watching packets per second (pps) dropping dra-
matically. They can also be amplified by increasing
the number of 10GbE ports in a machine, or by run-
ning other CPU and memory-intensive applications on
the same machine. The out-of-the-box performance still
has many bottlenecks and scalability issues.

2.2 The speed evolution: Why 40G and not 100G?

The next evolution of Ethernet technology has made a
somewhat odd jump. Up until now, each generation has
made a factor-of-ten jump in speed, such as 10Mbit to
100Mbit, 100Mbit to 1Gbit, and 1Gbit to 10Gbit. So
why not 10Gbit to 100Gbit? There are two primary
reasons. The first reason is the optics technology used
for 40Gbit is the same technology used in 10Gbit. This

• 265 •

266 • Scaling Beyond 10 Gigabit Ethernet

makes 40Gbit a more cost-effective evolution of Ether-
net technology, especially in a cost-conscious environ-
ment such as corporate IT shops.

The bigger reason for 40Gbit, however, is that 10Gbit
is still highly demanding on today’s platforms. At
smaller packet sizes, such as in routers and bridges,
10Gbit is still able to consume a decently powerful
platform. 40Gbit is a massive evolution of I/O de-
mand, which planned future platforms will be strained
to drive. 100Gbit devices would be starved due to the
sheer amount of data throughput required of the mem-
ory bus and processors. Custom ASICs may be able to
drive 100Gbit on single-port switch uplinks, but general
purpose deployment of such devices will require much
more platform-level horsepower to be viable solutions.

3 NUMA

3.1 NUMA in use today

NUMA (Non Uniformed Memory Architecture) is a
memory topology concept. In older platform designs,
a front-side bus was utilized that had a single memory
controller. In the larger multi-proc systems, multiple
front-side busses were present, also having a memory
controller per front-side bus. However, the bandwidth
among CPUs was still partitioned across CPU sockets.
Also, the front-side bus frequency to memory was typi-
cally a few orders of magnitude slower than the CPUs,
thus causing memory-intensive applications to be bot-
tlenecked by memory access.

With a NUMA topology, memory controllers control
a bank of memory that is preferred for a specific set
of computational resources. In a recent AMD R© or
Intel R© platform, the memory controllers are embed-
ded in the CPU socket itself, so in a dual-socket con-
figuration, there would be two memory controllers, and
therefore two NUMA domains. Also, today’s NUMA
memory controller implementations interleave memory
accesses, bringing the memory access frequency close
to or equal with the CPU frequency. This nets a large
boost in performance for those memory-intensive appli-
cations, which high throughput networking is a part of.

3.2 Scaling networking with NUMA

While interconnects between CPU sockets in NUMA-
enabled platforms are incredibly fast (e.g. 6.4 GT/sec

50

60

70

80

90

100

Memory latency (nanoseconds)

On-core

Off-core

0

10

20

30

40

50

60

70

80

90

100

Memory latency (nanoseconds)

On-core

Off-core

Off-socket

Figure 1: Memory latencies intra-socket and inter-
socket

on Intel’s QuickPath InterconnectTM- QPI[1], 6.4 GT/sec
on AMD’s HyperTransportTM[2]), making memory ac-
cesses across these interconnects increases memory la-
tency and can drive down I/O throughput. This becomes
an even larger problem when the number of sockets in-
creases, since process scheduling becomes very non-
deterministic. The amount of inter-socket memory ac-
cesses will increase dramatically, and in a heavy work-
load scenario, this will drive memory latencies very
high.

As seen from Figure 1, keeping memory accesses local
to a CPU socket yields the best performance[3]. Mem-
ory latency on the same CPU socket is very fast, but
once the memory access leaves for another CPU socket,
the latency increases dramatically. As workloads in-
crease, the amount of bandwidth flowing between CPU
sockets increases almost exponentially. This is due to
traffic from the original memory requests, plus the re-
quests being forwarded to other CPU sockets and mem-
ory controllers, plus all the replies from each sets of re-
quests. Even with today’s CPUs and platform topolo-
gies, this perfect storm of NUMA node cross-talk at
high network workloads will bring a high-end platform
to its knees. Better attention to tuning and memory al-
location configuration is required to make the platform
more efficient.

2010 Linux Symposium • 267

Memory Memory

QPI /HyperTransport

Controller

Memory

Complex

PCIe Root

CPU Socket 1

(NUMA domain 1)

Controller

Memory

Complex

PCIe Root

(NUMA domain 0)

CPU Socket 0

PCIe

Connection

Network

Device

Memory allocated

on opposite node

Figure 2: Example PCIe layout with NUMA cross-talk

3.3 NUMA vs. PCI Express root complexes

One of the many scaling challenges that networking
faces is the location of the PCIe root complex. On older
platforms (front-side bus architecture), the North Bridge
chipset handled memory accesses and also owned the
PCIe lanes allocated to onboard devices. This allowed
device drivers to operate without caring where the PCIe
lanes were with respect to a CPU affinity.

In today’s platform topologies, PCIe root complexes are
being driven into the CPU socket itself. This means that
certain PCIe slots on a motherboard have hard-defined
CPU affinities since the PCIe lanes attached to that slot
are solely owned by a particular CPU socket. Now this
topology can help with I/O latency for that device, since
the PCIe to memory controller physical distance and ac-
cess time are now reduced. However, this can be the
source of additional problems, where processes are run-
ning on a different CPU socket, but need the I/O devices
attached to another socket. This now creates additional
NUMA node crosstalk, as well as crosstalk to access the
PCIe device.

In Figure 2, the network device might have all memory
structures and DMA regions allocated on NUMA node
1. But the PCIe uplink is connected to the root com-
plex on CPU socket 0. Therefore, all memory access
and DMA operations must cross the CPU socket inter-
connect, causing massive amounts of NUMA crosstalk.

The question is: is it better to allow this crosstalk to oc-
cur, or is it better to only allow access to an I/O device
from the native CPUs associated with its socket? This is
a very difficult question to answer in a non-partitioned
(non-virtualized) system. Artificial partitions placed
on the process scheduler can have unwanted side ef-
fects (cache-thrashing, unbalanced CPU loads, etc.), not
to mention wanting to use all available computing re-
sources within a platform. The best way to approach this
issue is to align network flows with particular CPUs and
network device queues. This way, most of the network
flows will be aligned to the local CPUs, since outgoing
flows will return to the same CPUs. This will help re-
duce NUMA cross talk, since many of the network flows
will be deterministic. More discussion on network flow
alignment is found in section 4.

4 Network Flow CPU Alignment

4.1 What thrashed my cache?

Benchmarks are always easy to manipulate to yield de-
sired results. For example, to demonstrate how well a
10 Gigabit device can scale, the test used can be tuned
to have perfect CPU-to-flow alignment, interrupt align-
ment, and optimal payload buffer sizes. Then the exact
number of threads can be run to allow the device to hit
line rate, while keeping the CPUs at the lowest CPU uti-
lization possible. This is usually a great graph to look at,
but is completely uninteresting and unrealistic in real-
world computing scenarios.

A more typical model has a mix of traffic types, pay-
load buffer sizes, and flow/interrupt alignment. In many
cases, the selection of network queues is random both
on transmit (done in the kernel) and on receive (typi-
cally done in the underlying hardware). Plus it’s pretty
much guaranteed the Rx and Tx queue selections will
not line up; in other words, network flows will be spat-
tered across the CPUs.

This spattering of network flows causes CPU cache-
thrash, and also causes the operating system’s process
scheduler to work harder by rescheduling processes to
other CPUs. The overall effect is more time is spent
with the process accounting versus getting data moved.
This is inefficient. This problem becomes even worse
as more threads are added, and more network ports are
added.

268 • Scaling Beyond 10 Gigabit Ethernet

4.2 Flow Steering to the rescue

Flow Steering is a solution that can resolve the cache-
thrash and overworked process scheduler. The gen-
eral concept is to identify a new flow on transmit,
usually by extracting certain fields from the packet
(source/destination address and ports), and computing
a hash using those values. Then store this hash value
along with the CPU the flow originated from into a table.
Then on the receive side, do the same packet inspection
and hash calculation, and then look for a match. If a flow
matches an entry in the table, then direct that packet at
the cached CPU in the table.

At the time of writing this paper, a software-based pro-
posal is still being worked on to solve the problem of
Flow Steering. This work is from Google R©, and is
called RFS, or Receive Flow Steering. This will help de-
vices that have either single or multiple receive queues.
The driver will simply hand the packet to the operating
system, and the network stack will compute the hash
and issue an IPI (inter-processor interrupt) to schedule
the processing of that packet on the intended CPU.

Another approach is to have this support natively in
the networking hardware. Intel’s R© 82599 10GbE con-
troller, run by the ixgbe driver, has an implementation of
Flow Steering in silicon. It’s called Flow Director, with
limited driver interaction to program the filters. Other
hardware that is known to have these filtering capabili-
ties is Sun’s R© Neptune 10GbE adapter, which the niu
driver runs. An effort is underway to try to use any
available hardware offloads for Flow Steering with the
kernel’s software layer, thus creating a common Flow
Steering interface.

In Figure 3, specific flows are aligned to a specific CPU
core. The alignment occurs when the transmit queue
and receive queue return to the same CPU. In this figure
though, it can be seen that there isn’t a perfect verti-
cal alignment; flows on CPU 2 are going to Rx and Tx
queues 1, where flows on CPU 1 are going to Rx and
Tx queues 2. In a vertical alignment, CPU 1’s flows
would go through Rx and Tx queues 1, and CPU 2’s
flows would go through Rx and Tx queues 2. This model
works better with the in-kernel Tx queue selection en-
gine using the netdevice’s ->select_queue mecha-
nism.

Flow Steering still isn’t the end-all solution to the scal-
ing problem though. Even with network flows aligned

CPU 0 CPU 1 CPU 2 CPU 3

Device

Network

R
x

 Q
u

eu
e 0

T
x

 Q
u

eu
e 0

R
x

 Q
u

eu
e 1

T
x

 Q
u

eu
e 1

R
x

 Q
u

eu
e 2

T
x

 Q
u

eu
e 2

T
x

 Q
u

eu
e 3

R
x

 Q
u

eu
e 3

App 1 App 3 App 4App 2

Figure 3: Example of Flow Steering in action

to CPUs, there is still one more variable to the problem:
interrupts.

5 Interrupt Alignment and MSI-X

5.1 MSI-X interrupts in networking

As network devices increase in speed, the only way to
scale these workloads is to spread the load across multi-
ple processing engines, both in the network device and
the host CPUs. Network devices also come with mul-
tiple queues in hardware that help partition traffic flows
for easier processing. The traditional INT_* pin inter-
rupts can’t be used to take advantage of these multiple
queues. Also, newer Message Signaled Interrupts (MSI)
can’t be used, since they still only provide a single inter-
rupt source, which doesn’t map well into multiple pro-
ducers and consumers.

MSI-X is an extension of MSI, where multiple inter-
rupt vectors are allocated. Put simply, MSI-X allows
a device to have multiple interrupt sources, each of
which can fire independently from one another. How-
ever, these are delivered as messages on PCI-Express,
rather than a hard interrupt line to a processor. This also

2010 Linux Symposium • 269

CPU 0 CPU 1 CPU 2 CPU 3

Device

Network

R
x
 Q

u
e
u
e
 0

T
x
 Q

u
e
u
e
 0

R
x
 Q

u
e
u
e
 1

T
x
 Q

u
e
u
e
 1

R
x
 Q

u
e
u
e
 2

T
x
 Q

u
e
u
e
 2

T
x
 Q

u
e
u
e
 3

R
x
 Q

u
e
u
e
 3

MSI−X

Vectors

Figure 4: Example of unbalanced MSI-X interrupts

allows the MSI-X message to be directed at a specific
CPU or group of CPUs if desired.

In networking, MSI-X can be used very effectively with
multiple queues. A single MSI-X vector can be assigned
to each individual Rx or Tx queue, giving a one-to-
one mapping of queues to interrupt sources. Now these
queues can partition the traffic load, plus they can no-
tify an individual CPU that work is available, without
impacting other CPUs or queues on the device. This in-
terrupt model is required in order to scale to 10 Gigabit
and beyond.

Figure 4 illustrates an example of MSI-X vectors being
assigned to network resources, and mapped to a CPU.
However, this illustration shows how MSI-X vectors can
be completely sprayed across CPUs in a random fash-
ion. This prevents deterministic behavior of the inter-
rupts, and will severely impact the scalability of the net-
working load.

5.2 What thrashed my cache, again?

Even with perfect network flow alignment with CPUs,
the CPU caches can still be thrashed, and the operating

system process scheduler can still be overworked. Inter-
rupts are used in devices to both indicate when hardware
resources can be reclaimed by the driver, and on the re-
ceive path when data arrives and needs to be passed up
the network stack. When the interrupt fires, it has a CPU
affinity associated with it. So if the network flow align-
ment is currently bound to one CPU, and its associated
MSI-X vector is bound to a different CPU, the cache and
process scheduler will be thrashed, again.

MSI-X interrupt affinity is also essential for proper net-
work scaling. But this is not true if the Tx queue se-
lection mechanism doesn’t match the Rx queue selec-
tion mechanism. In other words, if the CPU generating
the transmit session doesn’t match the CPU that would
process the receive for that data stream, then interrupt
CPU affinity is useless. At that point, the CPU cache
would be compromised, and process scheduling would
need rescheduling.

Once a Flow Steering mechanism is in place, whether
it’s in hardware or software, interrupt affinity for those
flows is needed. Figure 5 shows what a balanced sys-
tem would look like, when Flow Steering aligns flows,
and the associated MSI-X interrupts are affinitized to the
same CPU as the flows.

5.3 Automatic interrupt affinity control

Development has been ongoing to allow device drivers
to control their own affinity for an interrupt vector.
Many proposals have been made, ranging from direct
affinity control from a driver, to extending the userspace
daemon irqbalance to have more intelligence of network
device behavior. None of these seemed to be a complete
solution, mainly because intelligence of interrupts and
network flows couldn’t be fully shared with these pro-
posals, and the correct decision couldn’t be made.

A new approach was recently merged into the kernel,
and into the irqbalance daemon. The new interface is
present in the 2.6.35 kernel (yet to be released at the
time of this writing). It allows a device driver to provide
a "hint" to irqbalance, where this hint is a CPU mask
of preferred CPUs for this interrupt to be linked. Then
irqbalance can take this information, and further balance
interrupts on the platform using these hints. This way
the driver gets the affinity behavior of its interrupts, and
the rest of the platform is properly balanced based on
interrupt load across the system.

270 • Scaling Beyond 10 Gigabit Ethernet

CPU 0 CPU 1 CPU 2 CPU 3

Device

Network

R
x
 Q

u
e
u
e
 0

T
x
 Q

u
e
u
e
 0

R
x
 Q

u
e
u
e
 1

T
x
 Q

u
e
u
e
 1

R
x
 Q

u
e
u
e
 2

T
x
 Q

u
e
u
e
 2

T
x
 Q

u
e
u
e
 3

R
x
 Q

u
e
u
e
 3

Queues

MSI−X

Legend

Figure 5: Example of balanced MSI-X interrupts with
Flow Steering

6 Scaling to 40 Gigabit

6.1 Hiding behind the platform?

40 Gigabit is the next evolution for Ethernet devices. As
showcased earlier in this paper, significant gains in per-
formance can be seen on 10 Gigabit Ethernet devices
just by tuning the kernel in certain ways. While these
tunings are not absolutely required for 10 Gigabit Eth-
ernet, they will be necessary for 40 Gigabit Ethernet.

The platforms that exist today, and the platforms that
are planned for the future, will not be able to scale 40
Gigabit Ethernet with the random resource layout that
occurs in today’s kernel and device drivers. Even with
the shift towards larger PCIe busses like PCIe 3.0, which
boasts 8 GT/sec of bandwidth per PCIe lane, platforms
will not have enough bandwidth to handle the amount of
memory I/O required if it’s not tuned. In Figure 2, one
sees a layout that can cause extreme NUMA cross-talk
to occur. In a 40 Gigabit Ethernet setup, if all memory
accesses needed to cross the CPU interconnects to ac-
cess a remote memory node, the projected interconnects
won’t even be able to keep up.

One problem that doesn’t have a solution yet is the
PCIe affinity to a specific CPU socket, and how a sin-
gle 40 Gigabit device will scale being bound directly
to a CPU socket. The best way to scale is to make
use of all computing resources present in a platform.
That means using all available CPU cores in each CPU
socket, and using all available memory bandwidth of the
other memory controllers in the platform. However, this
also means that CPU interconnect traffic will increase,
which is not optimal, as previously pointed out.

6.2 New technologies in a 40 Gigabit world

40 Gigabit Ethernet isn’t just about a faster link. Fea-
tures and technology advancements are needed to uti-
lize the large pipes. Different methods to carve up the
pipe are the first step. Advances in Single Root I/O
Virtualization, SR-IOV, have enabled support in vari-
ous ecosystems. VMWare, Xen, and KVM all have SR-
IOV support. With this technology, bandwidth can be
allocated to different Virtual Machines, and make bet-
ter use of the full 40 Gigabit pipe. Other virtualization
technologies evolving include the Virtual Edge Bridging
technology, VEB, which has been getting some traction
recently in the Linux kernel.

Other advancements and refinements with Data Cen-
ter Bridging (DCB) in IEEE have also created more
opportunities to use this technology in 40 Gigabit net-
works. Large network-based storage deployments, such
as Fiber Channel over Ethernet and iSCSI, can use DCB
to produce reliable, cost-effective solutions by using a
40 Gigabit device.

As more of these technologies emerge that take advan-
tage of larger network pipes, 10 Gigabit and 40 Gigabit
networks become even more practical for large-scale de-
ployment.

6.3 How a 40 Gigabit layout should look

Pulling all the tuning requirements together, a scalable
40 Gigabit Ethernet layout looks fairly rigid. This does
imply that a system administrator will require knowl-
edge of the network device layout, or a system adminis-
trator will need to influence the layout of the networking
resources in the underlying drivers. Applications need
to be placed on specific CPU cores to make the best use
of memory controller bandwidth, while trying to spread
the load across the majority of the platform.

2010 Linux Symposium • 271

App

0

App

1

App

2

App

3

App

0

App

0

App

1

App

1

App

2

App

2

App

3

App

3

C
ore 2

C
ore 2

C
ore 0

C
ore 1

C
ore 2

C
ore 3

CPU Socket 1

PCIe

C
ore 0

C
ore 1

C
ore 2

C
ore 3

CPU Socket 0

PCIe
C

ore 0

C
ore 1

C
ore 2

C
ore 3

CPU Socket 2

PCIe

C
ore 0

C
ore 1

C
ore 2

C
ore 3

CPU Socket 3

PCIe

App

3

App

2

App

1

App

0

R
x Q

ueue 0

T
x Q

ueue 0

R
x Q

ueue 1

T
x Q

ueue 1

R
x Q

ueue 2

T
x Q

ueue 2

R
x Q

ueue 3

T
x Q

ueue 3

Network
Device

10 GbE

R
x Q

ueue 0

T
x Q

ueue 0

R
x Q

ueue 1

T
x Q

ueue 1

R
x Q

ueue 2

T
x Q

ueue 2

R
x Q

ueue 3

T
x Q

ueue 3

Network
Device

10 GbE

R
x Q

ueue 0

T
x Q

ueue 0

R
x Q

ueue 1

T
x Q

ueue 1

R
x Q

ueue 2

T
x Q

ueue 2

R
x Q

ueue 3

T
x Q

ueue 3

Network
Device

10 GbE

R
x Q

ueue 0

T
x Q

ueue 0

R
x Q

ueue 1

T
x Q

ueue 1

R
x Q

ueue 2

T
x Q

ueue 2

R
x Q

ueue 3

T
x Q

ueue 3

Network
Device

10 GbE

Network Flow:

MSI−X:

PCIe:

Legend

Figure 6: Four 10GbE Devices with MSI-X and Flow Affinity

272 • Scaling Beyond 10 Gigabit Ethernet

Figure 6 shows the whole picture of a 40 Gigabit lay-
out using four 10 Gigabit devices. This is what today’s
model would look like. Applications running on each
CPU socket would be scheduled on specific CPU cores,
with their flows being steered into the attached 10 Gi-
gabit device and back. The associated MSI-X interrupts
for the queues are also routed to the CPU cores the net-
work flows are being steered to. This provides full ver-
tical affinitization of network flows and interrupts, and
will achieve the best model for scaling 40 Gigabit net-
working.

7 Conclusion

Ethernet networks are still evolving to higher speeds
such as 10 Gigabit. As costs continue to drop, more
demand for 10 Gigabit and 40 Gigabit networks will
emerge. And while today’s platforms are capable of
handling the load required of these devices, it’s obvi-
ous the Linux kernel still needs help to be tuned for best
performance. In the years to come, work must be com-
pleted in the areas discussed in this paper to improve the
overall out-of-the-box experience for users.

References

[1] Intel Corp. QuickPath Specification
http://www.intel.com/technology/quickpath

[2] AMD Corp. HyperTransport Specification
http://www.amd.com/us/products/technologies/hypertransport-
technology/Pages/hypertransport-technology.aspx

[3] Paul E. McKenney, NetConf 2009 RCU and
Breakage
http://vger.kernel.org/netconf2009_slides/NetConf.2009.07.13b.odp

