
Proceedings of the
Linux Symposium

Volume Two

July 23rd–26th, 2008
Ottawa, Ontario

Canada

Contents
Where Linux Kernel Documentation Hides 7

Rob Landley

Tux meets Radar O’Reilly—Linux in military telecom 19
Grant Likely & Shawn Bienert

A Symphony of Flavours: Using the device tree to describe embedded hardware 27
Grant Likely & Josh Boyer

Tux on the Air: The State of Linux Wireless Networking 39
John W. Linville

AUGEAS—a configuration API 47
David Lutterkort

‘Real Time’ vs. ‘Real Fast’: How to Choose? 57
Paul E. McKenney

If I turn this knob. . . what happens? 67
Arnaldo Carvalho de Melo

Performance Inspector Tools with Instruction Tracing and Per-Thread / Function
Profiling 75
M. Milenkovic, S.T. Jones, F. Levine, & E. Pineda

Containers checkpointing and live migration 85
A. Mirkin, A. Kuznetsov, & K. Kolyshkin

Building a Robust Linux kernel piggybacking The Linux Test Project 91
Subrata Modak

Have You Driven an SELinux Lately? 101
James Morris

Coding Eye-Candy for Portable Linux Devices 115
Bob Murphy

SELinux for Consumer Electronics Devices 125
Yuichi Nakamura

PATting Linux 135
Venkatesh Pallipadi & Suresh Siddha

Pathfinder—A new approach to Trust Management 145
Patrick Patterson & Dave Coombs

Linux Data Integrity Extensions 151
Martin K. Petersen

Red Hat Linux 5.1 vs. CentOS 5.1: ten years of change 157
D. Hugh Redelmeier

Measuring DCCP for Linux against TCP and UDP With Wireless Mobile Devices 163
Leandro Melo Sales

Smack in Embedded Computing 179
Casey Schaufler

Energy-aware task and interrupt management in Linux 187
V. Srinivasan, G. Shenoy, D. Sarma, S. Vaddagiri, & V. Pallipadi

Choosing an application framework for your Linux mobile device 199
Shreyas Srinivasan & Phaneendra Kumar

SCSI Fault Injection Test 205
Kenichi Tanaka

A Survey of Virtualization Workloads 215
A. Theurer, K. Rister, & S. Dobbelstein

Thermal Management in User Space 227
Sujith Thomas

A Model for Sustainable Student Involvement in Community Open Source 235
Chris Tyler

A Runtime Code Modification Method for Application Programs 245
Kazuhiro Yamato

SynergyFS: A Stackable File System Creating Synergies between
Heterogeneous Storage Devices 255
Keun Soo Yim

Live Migration with Pass-through Device for Linux VM 261
Edwin Zhai

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Where Linux Kernel Documentation Hides

Rob Landley
Impact Linux

rob@landley.net

Abstract

Last year my day job was documenting the Linux kernel.
It seemed like a simple task: read through the kernel’s
Documentation directory, fill in the holes, and make sure
it all stays up to date. In reality, I found most kernel doc-
umentation lives in web pages, magazine articles, online
books, blog entires, wikis, conference papers, videos,
standards, man pages, list archives, commit messages,
and more. The real problem is editorial: only after find-
ing and indexing the existing documentation can we fig-
ure out whether it’s up to date and what’s missing.

In this talk I’ll list the documentation sources I found,
show my attempts at organizing them (on http://
kernel.org/doc), and explain what would be nec-
essary to really get this issue under control.

1 Introduction

In 2007 the Linux Foundation awarded me a fellowship
to deal with the ongoing lack of good Linux kernel doc-
umentation. Unfortunately, a good problem statement
isn’t necessarily a good plan of attack. I spent most of
the next seven months just trying to figure out what “fix-
ing it” actually meant, and how to go about it. The re-
sults may be found at http://kernel.org/doc.

My first big surprise was that the kernel’s Documenta-
tion/ directory is just the tip of the iceberg. Most ker-
nel documentation lives in web pages, magazine arti-
cles, online books, blog entries, wikis, conference pa-
pers, audio and video recordings of talks, standards,
man pages, list archives, commit messages, and more.
The real problem isn’t a LACK of documentation, it’s
that no human being can ever hope to read more than a
tiny fraction of what’s said, written, and recorded about
the kernel on a daily basis. Merging all this raw data
into the kernel tarball would be like trying to burn the
internet to CD.

Coping with such an enormous slush pile is fundamen-
tally an editorial task. Only after finding and indexing
the existing mass of documentation can anyone figure
out whether what’s out there for a given topic is com-
plete and up-to-date. You can’t fill in the holes without
first knowing where they are.

This paper is not an attempt to summarize seven months
of reading about why UTF-8 is a good internationaliza-
tion format or how to load firmware out of initramfs for
a statically linked device driver. It’s about turning the
dark matter of kernel documentation into something you
can browse.

2 The editorial task

Google is great at finding things, but it doesn’t tell you
what to search for. Google is not a reference work that
allows one to see available topics and home in on an
area of interest, moving from more general to more spe-
cific. But there’s more to teaching someone English than
handing them a dictionary: a good reference work is not
necessarily a good tutorial. Adding a reference index to
a tutorial is fairly easy, turning a reference into a tutorial
is harder. But creating a reference from scratch is also
easier than creating a tutorial from scratch, a reference
can be little more than a collection of sorted links, while
a tutorial has to make sense.

Indexing the web’s Linux kernel documentation just to
provide a comprehensive reference is a huge undertak-
ing. Even keeping an index up to date after its creation
would be a project on par with any other major kernel
subsystem. But without knowing here the holes are,
writing new documentation to try to fill in those holes
tends to reinvent the wheel.

In the absence of an obvious place to go on the web to
find the most up-to-date existing documentation, newly
created documentation tends to be repetitive and over-
lapping. Half-hearted attempts to collate what’s avail-
able into a single new comprehensive version often just

• 7 •

8 • Where Linux Kernel Documentation Hides

add one more variant to the pile. A well-meaning editor
who isn’t already an expert on a given topic probably
won’t create a new category killer document attracting
patches instead of competition. If they didn’t feel like
contributing to someone else’s existing document, why
would the next well-meaning editor be different?

More to the point, author and editor are different jobs.
Researching and writing new documentation isn’t really
an editorial task. An editor collects and organizes the
submissions of others. A real editor spends most of
their time wading through a slush pile and saying “no”
to most of it, or saying “no” to things their assistant ed-
itors pass up to them.

If this sounds familiar, it’s because fighting off stur-
geon’s law is what editors do. Open source project
maintainers perform an editorial job, publishing regu-
lar editions of source code anthologies. Putting together
Linux distributions is another layer of editorial filter-
ing. Open source developers are already familiar with
this process. Applying it to documentation, providing a
brief summary and a pile of links to existing documents
is more effective than trying to become an expert on ev-
ery single topic, and has the advantage of not making
the clutter any worse.

The other big editorial problem is keeping documenta-
tion up to date. When code is a living thing, its docu-
mentation must also be. The best documentation about
the innards of the 2.4 kernel is only passably accurate
about early 2.6, and in many ways the first 2.6 release
has more in common with 2.4 than with 2.6.25. But the
“many eyeballs” effect of open source can be diluted by
having many targets. In a maze of twisty documents,
all different, fixes that don’t naturally funnel to a central
integration and redistribution point get eaten by a grue.

3 Why won’t it all fit in the kernel tarball?

It took me a while to realize the editorial nature of the
kernel documentation problem, and that it was not pri-
marily a question of new development. The obvious
place to start when looking for Linux kernel documen-
tation may be Google, but the next most obvious place
is the Documentation directory in the kernel source tar-
ball. And that comes with some enormous built-in as-
sumptions.

The kernel tarball is the central repository for kernel
source code, so it’s easy to assume that Documentation/

is the central repository for all kernel documentation, or
could easily be turned into such. This mistaken assump-
tion cost me about 3 months.

First of all, the Documentation directory isn’t even
the only significant source of documentation within
the kernel tarball itself. The kerneldoc entries in
the source code (used by make htmldocs) and
the kconfig help entries (used by the help option of
make menuconfig) are each significant and com-
pletely separate sources of documentation. The files
in Documentation/ seldom if ever refer to htmldocs or
menuconfig help, and those seldom refer back to it (or
to each other).

This other information cannot easily be migrated to the
Documentation directory. The other sources of docu-
mentation in the kernel source are usually located near
the things they document, to benefit from locality of ref-
erence. There’s a reason they live where they do, as do
over two dozen README files in the source code, the
output of make help, references to IETF RFC docu-
ments in source comments, and so on.

In addition, the data formats are different. Documenta-
tion/ consists primarily of flat text files, htmldocs uses
structured source code comments to generate docbook
(and from that HTML or PDF output), and kconfig is
in its own format which has dedicated viewer programs
(such as menuconfig).

None of these is really an obvious choice for indexing
the others. The flat text of Documentation/ does not
lend itself to linking out the way HTML does, so at first
glance htmldocs seems a better choice for an index. But
the format of htmldocs is highly constrained by its ori-
gins as structured source comments; it’s designed to do
what it’s currently doing and not much else. As a po-
tential index, the kconfig help entries have both sets of
disadvantages; they’re flat text without hyperlinks and
they’re highly structured for a specific purpose.

On a second look, the Documentation directory seems
the least bad choice for indexing the other documenta-
tion content in the kernel tarball, so it’s worth a closer
look here.

4 Organized based on where passing strangers
put things down last

Documentation/ does not compile, give warnings, or
break the build. It cannot easily be profiled, bench-

2008 Linux Symposium, Volume Two • 9

marked, or regression tested. Because of this, the nor-
mal kernel build process doesn’t naturally organize it
very well. Here are a few of the files in the top level
Documentation directory of the 2.6.25 kernel:

• IRQ.txt: Introductory file answering the question,
“What is an IRQ?”

• unicode.txt: a standards document mirrored from
lanana.org.

• stallion.txt: documentation for an unmaintained
multiport serial card, last updated in 1999. (see
also sx.txt, riscom8.txt, computone.txt. . .)

• unshare.txt: just under 300 lines of documentation
about a single system call, unshare(2).

• cli-sti-removal.txt: Guide for migrating away
from cli/sti locking, circa 2.5.28.

• feature-removal-schedule.txt: an important, reg-
ularly updated file about ways the Linux kernel
plans to break binary compatability without nec-
essarily involving sysfs.

• zorro.txt: Documentation for the Amiga “Zorro”
bus.

• spinlock.txt: A post Linus made to the linux-
kernel mailing list back in 1998 about spinlocks,
with some almost intelligible notes at the top about
which portions of the original message are obsolete
or deprecated.

• mono.txt and java.txt: instructions on how to con-
figure BINFMT_MISC to run Microsoft and Sun’s
bytecode languages. (No wine.txt to do the same
for Windows binaries, though.)

• README.cycladesZ: file containing a URL to
firmware for the Cyclades-Z card. (It does not say
what a Cyclades-Z card is.)

• logo.gif and logo.txt: the Tux graphic, and a URL
to Larry Ewing’s page on it.

• email-clients.txt: Notes about sending unmangled
patches to the linux kernel mailing list with alpine,
evolution, kmail, lotus notes, mutt, pine, sylpheed,
thunderbird, and tkrat.

• IPMI.txt: docs about the Intelligent Management
Platform Interface driver. It’s over 600 lines long
but links to an Intel website in the introduction be-
cause “IPMI is a big subject and I can’t cover it all
here!”

• dontdiff: data file for use with diff’s “-X” option.

• tty.txt: This file starts “The Lockronomicon: Your
guide to the ancient and twisted locking policies
of the tty layer and the warped logic behind them.
Beware all ye who read on.”

This is a small subset of the ~140 files at the top level,
and doesn’t include anything in the ~75 different sub-
directories for busses, architectures, foreign language
translations, subsystems, and so on.

A token attempt at organizing Documentation/ can be
found in the 00-INDEX files in each subdirectory, con-
taining a one line description of each file (example:
“device-mapper/ - directory with info on Device Map-
per.”). Some directories have this file, some don’t. Some
files are listed, some aren’t.

00-INDEX is better than nothing, but it mirrors a
filesystem hierarchy without symlinks. A file like
filesystems/ramfs-rootfs-initramfs.txt belongs both in
“filesystems” and in “early-userspace”, but it has to pick
one.

Even the perennial question “where do I start?” has at
least three answers in the kernel tarball’s existing docu-
mentation: the oldest and in some ways still the best is
the “README” file at the top of the kernel (not in Doc-
umentation), the next oldest is Documentation/kernel-
docs.txt, and the newest is Documentation/HOWTO.
None of them really provide a good introduction to
the kernel’s source code. For that I recommend
Linux Kernel 2.4 Internals (http://www.moses.
uklinux.net/patches/lki.html), which is
woefully out of date and x86-specific but still the
best I’ve found. It is not in the kernel tarball.
(Neither is http://en.wikibooks.org/wiki/
Inside_Linux_Kernel which seems to be another
unrelated attempt at doing the same thing. There are
plenty more out there.)

It is possible to clean up Documentation/ (albeit a fairly
large undertaking), and I pushed a few patches to this
effect (which were generally greeted with a strange

10 • Where Linux Kernel Documentation Hides

combination of indifference and bikeshedding). It’s
also possible to convert the Documentation directory to
HTML (an even larger project, of dubious value). But
ultimately, there’s a larger philosophical problem.

Documentation/ is based on the assumption that every-
thing of interest will be merged into the kernel tarball. It
already copies standards documents and HOWTOs with
defined upstream locations, because having potentially
out-of-date copies in the kernel tarball is considered su-
perior to having a single cannonical location for this in-
formation out on the web. The philosophy of Documen-
tation/ is the same as for code: if out of tree drivers are
bad, out of tree documentation must also be bad.

This is a difficult philosophy to apply to indexing doc-
umentation that lives on the web. The web has many
formats (from pdf to flash) and Documentation has one.
Web content has many licenses, the kernel is GPLv2
only. How does one apply CodingStyle to Linus Tor-
valds’ Google video about the origins of git? The ker-
nel source tarball is currently just under 50 megabytes,
the mp3 audio recordings of OLS talks just for the year
2000 total a little under 90 megabytes.

Unfortunately, the belief that the internet can or should
be distilled into Documentation/ is pervasive among ker-
nel developers. My interview process for the Linux
Foundation fellowship consisted of writing Documenta-
tion/rbtree.txt. Before doing so I pointed out that there
was already an excellent article on Red Black Trees in
the Linux Weekly News kernel archives, and another ar-
ticle about it on Wikipedia. But they weren’t in the ker-
nel tarball and thus (I was told) they didn’t count, so I
reinvented the wheel to get the job. Three months later,
I regretted adding to fragmentation.

Exporting kernel tarball docs to http://kernel.
org/doc

The kernel-centric Documentation/ in the kernel tarball
created a reciprocal problem: Not only did Documenta-
tion/ suck at indexing the web, but the web wasn’t doing
that great at indexing the kernel’s built-in documenta-
tion either.

I personally encountered this effect in early 2007,
when my Google search for ext2 filesystem format
documentation which didn’t bring up Documenta-
tion/filesystems/ext2.txt in the first five pages of hits. I

didn’t even notice that file until a month later (after all if
its Google rank sucks how good can it be), because there
was no cannonical uncompressed location at which to
find it on the web, and things like gitweb or the most re-
cent release tarball were too transient to work up much
of a ranking for any specific version. (Similarly, there
was no standard web location for the current htmldocs,
despite those being HTML!)

So the first well-defined problem I needed to tackle was
exporting the documentation already in the kernel tar-
ball somewhere Google could find it. I requested a
page on kernel.org, and received http://kernel.
org/doc. I copied the kernel’s Documentation/*
to http://kernel.org/doc/Documentation,
set up the make htmldocs tools on my laptop,
and posted the results to http://kernel.org/
doc/htmldocs. Then I created a script to periodi-
cally update this documentation from the kernel reposi-
tory (http://kernel.org/hg/linux-2.6) and
checked this script into a new mercurial repository on
my website (http://landley.net/hg/kdocs).

Over the months that followed, I improved my ex-
port script to harvest and export much more informa-
tion from the kernel source. (See http://landley.
net/hg/kdocs/file/tip/make/ for the scripts
that do all this. If you check out the mercurial repository
and run “make/make.sh - -long” it’ll try to reproduce this
directory on your machine. You need mercurial, wget,
pdftk, xmlto, and probably some other stuff.)

http://kernel.org/doc/Documentation/

The way a web server shows a directory full of files
isn’t very informative, so I wrote a Python script to turn
the 00-INDEX files in each Documentation subdirectory
into a simple HTML index. This had the unfortunate
side effect of hiding files in any directory with a 00-
INDEX that doesn’t list everything, so I wrote the script
make/doclinkcheck.py which compares the gen-
erated HTML indexes against the contents of the direc-
tories and shows 404 errors and extra files. I sent lots of
00-INDEX patches to linux-kernel trying to fill in some
of the gaps, but as of April 2008 doclinkcheck.py shows
about 650 files still improperly indexed.

http://kernel.org/doc/htmldocs

On the htmldocs front, the top level book index created
by make htmldocs was unfortunate, so I had my

2008 Linux Symposium, Volume Two • 11

script create a better one. I also wrote a quick script to
create “one big html file” versions of each “book”, and
used the old trick that if “deviceiobook.html” is the one
big (“nochunks”) version, “deviceiobook/” at the same
location is a directory containing the many small pages
(“chunks”) version. The top level index lists both ver-
sions.

http://kernel.org/doc/menuconfig/

The kconfig help text is the third big source of
kernel documentation, and the only human readable
documentation on several topics, so I wrote make/
menuconfig2html.py to parse the kconfig source
files and produce HTML versions of the help text.

The resulting web pages organize information the same
way menuconfig does. The first page selects architec-
ture, the later pages show config symbols with one line
descriptions. The symbol names link to help text ex-
tracted from the appropriate Kconfig file.

I attempted to organize the result to reduce duplication
to produce a “single point of truth” for Google to find
easily, and hopefully rank high. There are several index
pages (since menuconfig shows different menus for dif-
ferent architectures), but each Kconfig file is translated
to a single page of help text, and the indexes link to the
same translated Kconfig files. Each HTML file is named
after the source file it’s generated from.

http://kernel.org/doc/rfc-linux.html

Many comments in the Linux kernel source code refer-
ence Internet Engineering Task Force Request For Com-
ments (IETF RFC) standards documents, which live at
http://tools.ietf.org/html. I put together a
script to grep the source code for RFC mentions, and put
a link to that RFC together with links to each source file
that mentions it. (It seemed like a useful thing to do at
the time.)

http://kernel.org/doc/readme

The kernel source contains over two dozen README
files outside of the Documentation directory. My export
scripts collect them together into one directory.

http://kernel.org/doc/makehelp.txt

If you type make help, kbuild emits a page of doc-
umentation, and my export scripts put that on the web
too.

5 Indexing kernel documentation on the inter-
net

With the kernel’s existing internal documentation ex-
ported to the web, the next task was adding documen-
tation from the net. Mining the internet for Linux kernel
documentation and trying to put it in some coherent or-
der is a huge undertaking, and I barely scratched the sur-
face. What I did find was overwhelming, and had some
common characteristics.

There are lots of existing indexes of documentation.
Linux Weekly News has an index of all the kernel arti-
cles it has published over the years (at http://lwn.
net/Kernel/Index/). Linux Journal magazine has
online archives going back to its first issue (http:
//www.linuxjournal.com/magazine). The
free online Linux Device Drivers book has an in-
dex (http://lwn.net/Kernel/LDD3/). Kernel
Traffic has an index (http://kerneltraffic.
org/kernel-traffic/archives.html). My
own mirror of the OLS papers has an index (http:
//kernel.org/doc/ols).

The common theme of these indexes (and many more
like them) is that they index only their own local con-
tent, because the aim of most of these repositories is to
create new local documentation rather than index exist-
ing external documents. These indexes are valuable, but
collating them together is a nontrivial task. When in-
dexed by topic they don’t necessarily use the same topic
names, while other indexes are only by date. And this
glosses over any actual overlap in the article contents.

Some indexes (such as Documentation/kernel-docs.txt)
do link to a number of external sources. Others
(such as the Linux Documentation Project http:
//tldp.org) attempt to organize existing docu-
mentation by mirroring it. These are valuable re-
sources, but most tend to give up after a certain
point, either finding natural boundaries or realizing
the enormity of the task of indexing the entire inter-
net and deciding against it. Once promising index-
ing efforts, such as the Open Source Writer’s Group

12 • Where Linux Kernel Documentation Hides

(at www.oswg.org), the Linux Kernel Documenta-
tion Project (http://www.nongnu.org/lkdp/),
and on “The Linux Kernel: The Book” (http://
kernelbook.sourceforge.net/), stalled and
died.

The Linux Documentation project (http://tldp.
org) is the largest and most well known of the exist-
ing documentation collection projects, but its primary
focus is userspace and its method is mirroring. Its ef-
forts go to collecting and mirroring as many documents
as possible, not into cross-referencing or deep linking
into them.

6 To mirror or not to mirror

The decision whether or not to mirror web resources is
tricky, and has no good answer. On the one hand, mir-
rors get out of synch with their original sources, take up
potentially gigabytes of storage, dilute the Google page
rank of the original source, raise licensing concerns, of-
ten have an inferior user interface to an original page
with a style sheet, and so on. On the other hand, re-
sources that aren’t mirrored can go 404 and vanish from
the net.

The wayback machine at archive.org aims to preserve
the entire internet for posterity, and for the most part
I chose to rely on that project to preserve information
rather than mirroring it. Some things, such as the OLS
papers, I chose to mirror in order to present them in a
different format (or at a different granularity) than the
source material, or because (like the 2006 OLS slides)
the sources were already decaying after a relatively short
period of time. But where original sources were estab-
lished and stable, I linked directly to them. (Mirroring
the Linux Weekly News archives would be silly.)

7 On old material and editorial ignorance

Deciding whether or not a reference is obsolete requires
domain expertise. This is something that an editor of-
ten won’t have much of, nor time to acquire it. This is
another facet of the author vs editor dichotomy.

An editor must accept that there is material they don’t
understand, and that attempting to become an expert on
every topic is not a viable strategy. New content is gen-
erated faster than any human being can absorb it without
specializing.

As an editor I found myself fielding documentation that
I did not have more than the most superficial under-
standing of. It was not possible for me to improve this
documentation, tell if it’s up to date, evaluate its accu-
racy or thoroughness. (In extreme cases, such as foriegn
translations, I couldn’t even read it.)

What can an editor do about this? Pile it up in a heap.
Summarize the topic as best they can (which may just
be a title statement cribbed from somewhere), link to
the documentation they found in whatever order seems
appropriate (if all else fails, there’s always alphabetical),
and wait for people who do understand it to complain. If
the editor’s brief summary plus pile of links does attract
relevant domain experts: delegate to them.

In cases where I could tell that a reference was obso-
lete (such as devfs), I often wanted to link to it anyway.
Why? Because it provides historical insight into the cur-
rent design. “Here’s how the kernel used to do things,
and here’s what was wrong with that approach.” A rel-
evant domain expert can avoid reinventing the wheel if
they see what was learned from the previous approaches.

So noting the date of older resources in the index can
be valuable, but excluding them just because they’re old
isn’t. These days everyone takes for granted that Linux
uses ELF executables, but they have to read old articles
from 1995 (such as http://www.linuxjournal.
com/article/1139) to learn why. (Or at least
they did until recently, now there’s http://people.
redhat.com/drepper/dsohowto.pdf. Which
provides better coverage of the topic? Since I haven’t
piled up enough links on that topic to worry about prun-
ing them yet, I don’t currently have to make that deci-
sion.)

8 What’s out there?

Here’s a quick survey of some of the more prominent
kernel documentation sources out on the web. This is
not an attempt to be exhaustive, the internet is too big
for that.

linux-kernel mailing list archives

The Linux kernel mailing list is the main channel of
discussion for Linux kernel developers. The early
history of Linux started on usenet’s comp.os.minix

2008 Linux Symposium, Volume Two • 13

and moved to its own “linux-activists” mailing
list (archived at http://www.kclug.org/
old_archives/linux-activists/ and
with a few interesting early posts summarized at
http://landley.net/history/mirror/linux/

1991.html and http://landley.net/history/

mirror/linux/1992.html). It then moved to
linux-kernel@vger.rutgers.edu, and even-
tually to vger.kernel.org when the rutgers
machine died.

Numerous archives of linux-kernel are available. The
most well known is probably the one at http://www.
uwsg.iu.edu/hypermail/linux/kernel/. But
the sheer volume of this mailing list is such that few
if any kernel developers actually read all of it, and the
archives are overwhelming. Drinking from this firehose
yields a poor signal to noise ratio; it is a valuable source
of raw data, but extensive filtering and summarizing is
required to extract useful documentation from it.

The linux-kernel mailing list is one of of almost a hun-
dred mailing lists hosted on vger.kernel.org (see http:
//vger.kernel.org/vger-lists.html), and
many other kernel-relevant mailing lists live on other
servers. Although linux-kernel@vger.kernel.org is the
big one, others provide plenty of relevant information.

During the course of the documentation fellow-
ship, I posted regular status updates to linux-
doc@vger.kernel.org. That list was mostly mori-
bund, so the archives at http://marc.info/?l=
linux-doc provide a relatively concise summary of
my activities during the project.

http://kernel-traffic.org/

To understand the magnitude of the kernel documenta-
tion slush pile, ponder the fate of kerneltraffic.org. This
popular, widely-read website provided weekly sum-
maries of discussions on the linux kernel mailing list
from January 2000 to November 2005. But eventu-
ally the volume overwhelmed editor Zack Brown, who
brought the project to an end:

From http://kerneltraffic.org/
kernel-traffic/latest.html

Kernel Traffic has become more and more difficult over
the years. From an average of 5 megs of email per week

in 1999, the Linux kernel mailing list has gradually in-
creased its traffic to 13 megs per week in 2005. Con-
densing that into 50 or 100 K of summaries each week
has started to take more time than I have to give.

Kernel Traffic was an extremely valuable resource due
to the sheer volume of material it condensed, and its loss
is still strongly felt. These days, most kernel developers
consider it impossible for anyone to read all messages
on linux-kernel, certainly not on a regular basis.

In 2007 I hired a research assistant named Mark Miller,
in hopes of bringing Kernel Traffic up to date. He re-
produced the existing site from its XML source files
(see http://mirell.org/kernel-traffic),
and experimentally summarized a few more weeks. The
result was that summarizing each week of posts took
him longer than a week, and the amount of expertise
necessary to select and summarize interesting threads,
plus the sheer number of hours required, made doing
just this and nothing else a full time job for someone
(such as Zach Brown) who is already a domain expert.
The job was simply too big.

Linux Weekly News kernel page

The other systematic summarizer of the linux-kernel
mailing list, and the only one to continue a regular pub-
lication schedule to this day, is the Linux Weekly News
kernel page. Each week, Jonathan Corbet does excel-
lent in-depth analysis of several kernel topics discussed
on the list. Since 1999, this has resulted in several hun-
dred individual articles.

The LWN Kernel Index page (http://lwn.net/
Kernel/Index/) collects the individual articles and
organizes them by topic: Race Conditions, Memory
Management, Networking, and so on. Individual arti-
cles are linked from mulitple topics, as appropriate.

A second index, the LWN Kernel Page (http://
lwn.net/Kernel/), links to article series such as
Kernel Summit coverage, 2.6 API changes, and Ulrich
Drepper’s series on memory management.

The Linux Weekly News kernel page is published regu-
larly, but it does not attempt to be as thorough as Kernel
Traffic was. Kernel Traffic provided brief summaries of
up to two dozen mailing list threads each week, while
LWN Kernel coverage provides in depth articles about
3-5 topics in a given week. The two complemented each
other well, and one is not a substitute for the other.

14 • Where Linux Kernel Documentation Hides

http://kerneltrap.org/

The Kernel Trap website cherry picks occasional in-
teresting threads from the Linux Kernel Mailing List
(among other sources) and reproduces them for inter-
ested readers. It falls somewhere between Linux Weekly
News and Kernel Traffic in content, with an update fre-
quency avereaging less than one article per day.

Kernel Trap takes little time to follow, and the material
it highlights is consistently interesting. Some articles,
such as “Decoding Oops” (http://kerneltrap.
org/Linux/Decoding_Oops) every would-be ker-
nel developer should read. But in terms of complete
coverage of the Linux Kernel Mailing List, Kernel Trap
is the next step down after Kernel Traffic and Linux
Weekly News.

In addition to summarizing, KernelTrap also generates
new content such as event coverage and interviews with
prominent developers (see http://kerneltrap.
org/features).

Ottawa Linux Symposium proceedings (http://
kernel.org/doc/ols)

This conference has produced a wealth of high quality
kernel documentation over the years. (So much so that
despite many hours devoted to absorbing this material,
I’ve personally never managed to read even half of it.)

Due to the high quality of the OLS papers, and my per-
sonal familiarity with them, I devoted significant ef-
fort to them. After confirming they were freely re-
distributable, I took the published PDF volumes and
broke them up into individual papers (using the make/
splitols.py script, which uses pdftk). This resulted
in over 300 individual PDF files, mirrored on kernel.org.

The next step was to index them. For each year, I created
an index file, such as the one at http://kernel.
org/doc/ols/2002. For the first 25 papers of 2002,
I read each one and wrote a brief summary of the con-
tents of each paper, but this was surprisingly exhausting.
After that, I just listed the title and authors of each pa-
per. The collective index of the OLS papers links to
audio and video recordings of panels, as well as the pre-
sentation slides for 2006 (mirrored locally on kernel.org
due to their original index pointing into a number of 404
errors after less than a year).

The 2001 papers are no longer available from the OLS
website,1 but Linux Weekly news had copies mirrored.
For 2000 I found audio recordings, but no papers. I dis-
covered no material from 1999.

Other conferences

OLS used to be one of four main Linux technical confer-
ences. The others were east and west coast versions of
LinuxWorld Expo, and Atlanta Linux Showcase. I have
the complete set of casette tapes of talks at the 2001 Lin-
uxWorld Expo which I need to secure the rights to digi-
tize and put online. The CD-ROM from ALS 1999 is at
http://kernel.org/doc/als1999.

These days, the most important kernel conferences
(and the only ones the project’s maintainer still
regularly attends) are linux.conf.au and the kernel
summit. But interesting material can be found at
The April 2008 Linux Foundation Summit in Austin,
the Consumer Electronic Linux Forum’s annual
conference in Mountain View, and many others in
Europe, Asia, Africa, Japan. . . . (See http://www.
linuxjournal.com/xstatic/community/
events, http://elinux.org/Events, and
http://www.linuxcalendar.com for lists.)

These other conferences produce lots of mate-
rial. Videos and presentation files from the 2007
O’Reilly Open Source Convention are at http:
//conferences.oreillynet.com/pub/w/
58/presentations.html. Videos from the
Embedded Linux Conference Europe 2007 are linked
from http://lwn.net/Articles/266169/.
The full text of 28 papers presented at the Ninth
Real-time Linux Workshop (held in Linz, Aus-
tria November 2-3 2007) are up at http://

linuxdevices.com/articles/AT4991083271.

html. Things like the Linux Plumber’s Confer-
ence (http://linuxplumbersconf.org)
or Japan Regional Technical Jamboree #20
http://celinuxforum.org/node/82 produce
more all the time.

Recently, Usenix released decades of existing mate-
rial when it opened web access to its conference pro-
ceedings. The announcement is at http://blogs.
usenix.org/2008/03/12/

1http://www.linuxsymposium.org

2008 Linux Symposium, Volume Two • 15

This doesn’t even get into papers and talks presented at
regional LUGs.

Man pages

The best existing documentation on the kernel’s system
calls is section 2 of the man-pages package. (There’s
some debate on whether man-pages should document
the API exported by the kernel or the wrapped versions
provided by glibc, but they’re mostly the same.)

I was using Eric Raymond’s Doclifter project to convert
each new release of man-pages to docbook, and from
there to HTML, but eventually the man-pages main-
tainer started doing his own HTML conversions, and
put them on the web at http://kernel.org/doc/
man-pages/online_pages.html.

This may fall under the heading of “don’t ask ques-
tions, post errors”. Michael Kerrisk had meant to put
up html versions of the man pages for some time, but
my doclifter conversions were probably horrible enough
to bump it up on his todo list before too many outside
sources linked to them. (I also sent ESR a few patches to
doclifter, and converted his old RCS repository to mer-
curial so it could go up on the web. This got him started
on the whole “source control” kick. Did I mention this
project spawns endless tangents?)

Developer blogs and web pages

Prominent kernel developers often have web pages.
Many of them (such as valhenson.com, selenic.
com/linux-tiny, and http://people.

netfilter.org/rusty/unreliable-guides/

are documentation resources in their own right.

Many kernel developers also blog. The blog aggregator
Kernel Planet http://kernelplanet.org does a
reasonable job of collecting many developer blogs into
a single page, where lots of excellent posts documenting
obscure subjects float by... and scroll off the end again,
unrecorded.

My own blog for 2007 http://landley.net/
notes-2007.html documents a lot of my own
struggle with the kernel documentation issue. (If you
can dig those comments out from the noise about cats
and food.)

Wikis and Wikipedia

Distributed, user generated content naturally scales in
volume with the size of the userbase. Unfortunately, the
editorial task of coordinating, filtering, and integrating
the resulting material does not. Doing that takes work.

Drew Curtis, of the news aggregator Fark, recently
spoke about “the wisdom of crowds” in an interview:

We’re the only news aggregator out there
which is edited, which I think is the next step
in social networks because right now every-
body is talking about the wisdom of crowds,
and all that- -which is complete horse ****,
and I think the next step is realizing that what
crowds pick is pretty much pornography and
Internet spam, and as a result you’ve got to
have some editing involved there somewhere.

(Curtis went on to note that the record-holding top story
of “Digg” had been puppies playing.)

Wikis are a perfect example of this. The Linux Kernel
is the subject of dozens of wikis. Some random
examples (with varying degrees of kernel focus) include
rt.wiki.kernel.org, elinux.org, linux-mm.org, kernel-
newbies.org, unix-kernel-wiki.wikidot.com/linux-
kernel-wiki, linux-ntfs.org, wiki.linuxquestions.org,
gentoo-wiki.com, wiki.ubuntu.com/KernelTeam, fedo-
raproject.org/wiki, slackwiki.org, wiki.debian.org, and
so on.

The lack of integration leads to multiple wikis
emerging even for individual Linux distribu-
tions. For example, SuSE has en.opensuse.org,
susewiki.org, wiki.linuxquestions.org/wiki/SuSE,
suseroot.com, wikipedia’s pages on SuSE, the
SuSE pages on wiki.kollab.org, linux.ittoolbox.com,
www.linuxformat.co.uk/wiki. . .

The biggest wiki of all is wikipedia, which has hundreds
of pages on topics related to the Linux kernel. Unfor-
tunately, the way to find stuff in Wikipedia is to use
Google. Wikipedia has both a reluctance to link to any-
thing other than itself, and a general lack of indexing.

Wikipedia’s Linux index http://en.wikipedia.

org/wiki/Wikipedia:WikiProject_Linux/

index is mostly oriented towards userspace, containing

16 • Where Linux Kernel Documentation Hides

a single link to the http://en.wikipedia.org/
wiki/Linux_Kernel page. That page does not
attempt to index pages on numerous kernel-relevant
topics (such as Red Black Trees or IPSec).

The related Wikibooks project has several pages
devoted to the Linux kernel, of which http:

//en.wikibooks.org/wiki/The_Linux_Kernel

functions as a reasonable index of external resources.
It’s actually quite nice, and a good source of further
links for anyone interested in finding such. However, at
the time of writing this paper, it contains exactly three
links to wikipedia articles.

None of these wikis really focuses on indexing external
content. Few have complete or well-organized indexes
even of their own content. They throw data up in the air
and leave sorting it up to Google.

Google Tech Talks

I made a small page linking to a few interesting Google
Tech Talks (http://kernel.org/doc/video.
html) but didn’t manage to index even 1% of what’s
there. And that’s just a single video series from one
source in California, not a serious attempt to trawl
Youtube for kernel content.

I broke down and wrote some

What can I say, I’m weak?

The most popular one hosted on kernel.org/doc would
probably be the the Git Bisect HOWTO at http:
//kernel.org/doc/local/git-quick.html
which provides just enough background for somebody
to use git bisect without forcing them to learn about
things like branches first.

Others (such as Documentation/make/headers_

install.txt) went upstream.

(Don’t ask about sysfs. It’s a heisenberg system: at-
tempting to document it changes the next release. Doc-
umenting it by examining its implementation is explic-
itly forbidden by its developers; you’re supposed to read
their minds. You think I’m joking. . .)

Online books

Linux Device Drivers (http://lwn.net/Kernel/
LDD3/) is a complete education in the Linux kernel
by itself. (I’ve read maybe 3 chapters.) Linux Kernel
in a Nutshell (http://www.kroah.com/lkn/) is
also online. “Linux Kernel 2.4 Internals” (http://
www.tldp.org/LDP/lki/) remains an excellent if
somewhat dated introduction, and the Linux Documen-
tation Project has its own book called “The Linux Ker-
nel” (http://tldp.org/LDP/tlk/tlk.html)
based on the 2.0 source. faqs.org has The Linuxx
Kernel HOWTO (http://www.faqs.org/docs/
Linux-HOWTO/Kernel-HOWTO.html)

I got permission from Mel Gorman to mirror the pub-
lished version of his book “Understanding the Linux
Virtual Memory Manager” at http://kernel.
org/doc/gorman. (It’s an excellent resource, and
I haven’t made it past the introduction yet. It’s on my
todo list.)

Finding new stuff

Jonathan Corbet tracks changes to the Linux
kernel on a Linux Weekly News page http:

//lwn.net/Articles/2.6-kernel-api/ and
in the Linux Weather Forecast http://www.

linux-foundation.org/en/Linux_Weather_

Forecast. Kernel newbies has its own pages
http://kernelnewbies.org/LinuxChanges and
http://kernelnewbies.org/Linux26Changes).
The elinux.org website has its own version of the
Linux Weather Forecast (http://elinux.org/
Technology_Watch_List).

Many other websites (such as http://www.
linuxdevices.com) track changes to their own
areas of interest.

And so on

The kernel git archive has some very in-
formative commit messages (browsable at
http://git.kernel.org/?p=linux/kernel/

git/torvalds/linux-2.6.git) going back to
2.6.12-rc2. Thomas Gleixner converted the old bit-
keeper repository (covering 2.5.0 through 2.6.12-rc2)
into git (browsable at http://git.kernel.org/

2008 Linux Symposium, Volume Two • 17

?p=linux/kernel/git/tglx/history.git).
That’s just as much an unsummarized firehose as the
linux-kernel mailing list, and I never got around to even
trying to deal with it.

On http://kernel.org/doc are links to free on-
line copies of the Single Unix Specification version 3,
the C99 standard, the ELF and DWARF specs, and
more. Go there. Read it.

9 Organizing this heap

If I sound tired just listing all those resources, imagine
what it’s like trying to collate them.

My approach was to create a large topic index, us-
ing nested html “span” tags and a simple python script
to create an index from that, and check the lot into a
mercurial repository (http://landley.net/hg/
kdocs). I could have used wiki software, but kernel.org
dislikes active content for security reasons.

Another reason to avoid wiki software is that the
public face of the index is HTML, thus the source for-
mat (http://kernel.org/doc/master.idx)
should be as close to pure HTML as possible. I
expected to receive and merge patches against the
generated HTML, and those patches needed to apply to
the source with as little work on my part as possible.

Once I had a decent topic index (based on examinations
of Linux Device Drivers, Linux Kernel Internals, and so
on), the next step was to go through the individual sub-
indexes (such as the ones for Linux Weekly News kernel
articles, Documentation/, htmldocs, kernel traffic, the
Ottawa Linux Symposium papers, and so on) and slot in
links to each resource as appropriate. Many resources
needed a link from more than one topic, so this was an
interative and extremely time consuming process.

I also attempted to summarize each topic briefly, in
addition to providing a stack of links. The line be-
tween “writing new documentation” and indexing ex-
isting documentation was never more blurry than when
doing that.

When prioritizing, I kept in mind the rate of churn. Ev-
ery kernel release breaks out of tree drivers, to the point
that even widely used patches such as squashfs or kgdb,
applied by every major kernel vendor, are a pain to use
with a current vanilla kernel. Documenting interfaces

with an expected lifespan of 3 months is a Red Queen’s
race.

The interface between the kernel and userspace is the
most stable part of the kernel, and has some of the best
existing documentation. The easiest approach is to start
there and work in.

10 Unfinished business

The file http://kernel.org/doc/pending/
todoc.txt was my working todo list when the Linux
Foundation decided to discontinue the documentation
fellowship. After six months, they admitted they hadn’t
had a clear idea what “solving” the kernel documenta-
tion problem meant, and they were going to pull back
and reconsider their options. They praised the work I’d
done and gave me one more month to finish it up, but
did not wish to continue funding it for the full year.

After seven months of drinking from the firehose, I was
actually kind of happy to stop. As with the maintainer
of Kernel Traffic: it was fun, but I was tired.

18 • Where Linux Kernel Documentation Hides

Tux meets Radar O’Reilly—Linux in military telecom

Grant Likely
Secret Lab

grant.likely@secretlab.ca

Shawn Bienert
General Dynamics Canada

shawn.bienert@gdcanada.com

Abstract

Military telecom systems have evolved from simple
two-way radios to sophisticated LAN/WAN systems
supporting voice, video and data traffic. Commercial
technologies are being used to build these networks, but
regular off the shelf equipment usually isn’t able to sur-
vive the harsh environments of military field deploy-
ments.

This paper discusses the use of Linux in General
Dynamics’ vehicle mounted MESHnet communication
system. We will discuss how Linux is used in the sys-
tem to build ad-hoc networks and provide reliability for
the soldiers who depend on it.

1 Introduction

To say that good communication is critical to the mil-
itary is never an understatement. Wars have been won
and lost on the basis of who had the most accurate and
timely information. It is understandable then that the
military takes its telecom gear very seriously.

Just like the private sector, in order to survive, the
military has had to keep up with advances in technol-
ogy. Current military communications networks carry-
ing both voice and data traffic bear little resemblance to
the original analog radio systems of the past.

In most cases, however, regular commercial equipment
is not suitable for a military environment. Aside from
the obvious fact that most equipment isn’t painted green,
the military puts high reliability expectations on its
equipment. When your life depends on the proper op-
eration of your equipment reliability tends to be an im-
portant concern. For example, tank drivers typically do
not have a very good field of view from where they are
located in the vehicle, and thus are dependent on direc-
tions provided by the commander via the intercom sys-
tem to accurately direct the vehicle. An intercom failure

can very quickly result in problems like running over a
small car or driving through a building.

There is a natural conflict between reliability and the in-
creasingly complex services required by military users.
As complexity increases, so do the number of poten-
tial failure points which tends to reduce the stability
and reliability of the entire system. As new technolo-
gies such as WiFi, VoIP and Ad-Hoc mobile networking
are added, system engineers need to analyze the impact
on the rest of the system to ensure overall reliability is
maintained.

Within this environment, Linux and other Free and Open
Source Software (FOSS) components are being used as
building blocks for system design. As we discuss in this
paper, FOSS is proving to be a useful tool for solving
the conflicting requirements inherent in large military
telecom system designs.

2 Typical Military Telecom Network

For illustration purposes, Figure 1 is an example of a
typical military telecom deployment based on the next
generation of General Dynamics Canada’s MESHnet
platform. MESHnet equipment provides managed net-
work infrastructure for voice and data traffic within and
between military vehicles and provides voice services
which run on top of it. For example, a MESHnet user
in a vehicle has an audio headset and control panel that
give him intercom to his other crew mates, direct tele-
phone service to other users, and access to two-way ra-
dio channels. He also has an Ethernet port for attaching
his laptop or PDA to the network for configuration, sta-
tus monitoring, email, and other services. In the back-
ground, GPS and other sensors attached to each vehicle
use the radio service to automatically transmit position
and status reports back to headquarters [1].

• 19 •

20 • Tux meets Radar O’Reilly—Linux in military telecom

Comms
Vehicle

Comms
Vehicle

Comms
VehicleRadioNet-1

RadioNet-2

RadioNet-3

RadioNet-4 RadioNet-5

Command
Vehicle

Command
Vehicle

Remote
Vehicle

RadioNet-1

Remote
Vehicle

RadioNet-2

Remote
Vehicle

RadioNet-3

RadioNet-1

Figure 1: Example MESHnet Deployment with Headquarters and Remote Vehicles

2.1 Vehicle Platforms

At the heart of the MESHnet system are the vehicle in-
stallations. MESHnet equipped vehicles provide a user
terminal and headset for each crew member in the ve-
hicle, a set of interfaces to two-way radios, and a net-
work router for wired and wireless connections to ex-
ternal equipment. The whole vehicle is wired together
with an Ethernet LAN. Figure 2 shows an example ve-
hicle harness which includes 2 radios and a GPS sensor.
You’ll notice that the Ethernet topology (shown by the
bold lines) is a ring. The ring is for redundancy in the
event of a cable or equipment failure.

The system is designed to immediately provide intercom
service between crew members when the system is ini-
tially powered on. Each radio is detected and configured
as an abstract radio net. Solders can select from a vari-
ety of radio nets for monitoring with a single key press
and use their Push-to-Talk (PTT) key for transmitting.

Data equipment like Laptops, PDAs, and sensors can be
connected to the system via Ethernet, USB, and serial

ports, allowing the equipment to work together and pro-
viding access to digital data radios for low bandwidth
network traffic back to headquarters.

2.2 Headquarters

When a battlefield headquarters is established, several
vehicles are parked together and Ethernet is again used
to connect them in a mesh topology.1 The on-vehicle
router keeps internal and external Ethernet segments
separate. Services provided by each vehicle are bridged
onto the inter-vehicle LAN so that user terminals have
access to all radios and other equipment within the head-
quarters.

3 System Design Issues (and how Open Source
can solve them)

In this section we discuss the various aspects of the com-
munication system that need to be addressed by system

1Hence the name MESHnet.

2008 Linux Symposium, Volume Two • 21

Driver

Commander

Driver
Headset

Gunner

Commander
Headset

Radio-2

Gateway

Gunner
Headset

Radio-1

GPS

Figure 2: Example MESHnet Equipped Vehicle Installation

designers. Most of these issues bear close resemblance
to issues also faced in the commercial environment, but
there are some unique characteristics.

3.1 Open Architecture

Telecom systems have become so complex and varied
over the years that it is no longer feasible for a sin-
gle vendor to be capable of designing and supplying all
equipment used in a tactical network. Many different
vendors supply equipment which is expected to interop-
erate with the rest of the network. Military customers
are also wary of solutions which lock them into a single
vendors solution or which force the replacement of ex-
isting equipment. As such, there is significant pressure
by military customers to use common interfaces wher-
ever possible.

It is now taken for granted that Ethernet and 802.11
wireless are the common interconnect interfaces. The
historical proprietary interfaces used in military net-
works are rapidly giving way to established commercial
standards. Not only does it make interoperability easier,
it also allows military equipment to use readily available
commercial components which in turn reduces cost and
complexity.

Additionally, the protocols used by tactical applications
are rapidly moving toward common protocols published
by international standardization bodies like the Request
for Comments (RFC) documents published by the Inter-
net Engineering Task Force (IETF). The entire network
is based on the Internet Protocol (IP). Dynamic Host
Configuration Protocol (DHCP), Domain Name System
(DNS) and the Zeroconf protocol suite simplify and au-
tomate network configuration. SNMP is used for net-
work management. Session Initiated Protocol (SIP) and
Real Time Protocol (RTP) are natural choices for audio
services like radio net access, intercom, and of course,
telephony. Similarly, HTTP, SSL, SMB, and other com-
mon protocols are not just preferred, but demanded by
military customers.

Just like in the commercial world there is little eco-
nomic sense in developing all the software infrastructure
to support these protocols from scratch when the same
functionality is easily obtainable from third parties. In
particular, since development effort on FOSS operating
systems is measured in thousands of man years [2], the
functionality and quality FOSS offers is far broader than
any company can hope to develop over the course of a
single product development cycle.

22 • Tux meets Radar O’Reilly—Linux in military telecom

Of course, custom engineering is still required when
standard protocols are not suitable for a particular appli-
cation. Even so, it is still preferable to start with an ex-
isting protocol and build the extra functionality on top of
it; ideally while maintaining compliance with the origi-
nal protocol.

This is where the power of open architecture comes into
play. If a custom protocol is what is required, then rather
than creating an entirely new protocol from scratch, an
existing, standard protocol can be easily tweaked to ac-
commodate the designer’s needs. Or, better yet, multiple
standard protocols can be combined into a single, cus-
tom protocol which still maintains backward compati-
bility to each original protocol. For example, commu-
nicating over a remote radio net involves several tasks:
knowing that the radio exists and understanding the path
to get there, initiating a pressel-arbitrated session with
that radio, and finally transmitting digital audio over the
network to that radio. Using a combination of such stan-
dard protocols like Zeroconf, SIP, and RTP as building
blocks, a custom protocol can be created which will al-
low the user to perform this complicated operation in a
single, simple step with little additional engineering re-
quired.

3.2 Segmentation of Functionality

To manage complexity and keep system designers from
driving themselves insane with their own designs, it is
important to establish boundaries between areas of func-
tionality. Once again, this is not much different from
the issues faced by commercial system designers, but
the high reliability requirement brings the issue to the
forefront.

In the military environment, equipment failures are not
just planned for, they are expected. It is important that
when equipment does fail that the impact is minimal.
For example, imagine a network with 3 user terminals
named commander, driver, and gunner and connected
in a ring. If the gunner terminal fails, then it is expected
that any headsets or radios directly connected to the gun-
ner node would no longer work. However, that same
failure should not affect intercom between the comman-
der and driver nodes. In this case the system is designed
so that no service depends on a particular unit of hard-
ware that is otherwise unrelated to the service. So, while
the intercom between commander and driver may pass

through the gunner node, the system is designed to by-
pass it in the event of a failure.

In this example, several boundaries in functionality
work together to ensure the desired behaviour. First,
at the physical layer the units are at the very least con-
nected in a ring topology which insures that any sin-
gle point of failure will still retain a connection path
between the remaining nodes. A Rapid Spanning Tree
Protocol (RSTP) agent runs on each node and controls
the network fabric to eliminate Ethernet connectivity
loops in real time and ensures the layer 2 network en-
vironment is usable without any need for manual inter-
vention.

At layer 3, Zeroconf is used to provide a fallback mecha-
nism for assigning IP addresses in the absence of a prop-
erly configured DHCP server. Any two nodes are able
to establish a network connection in the absence of any
other hardware.

Similarly, the radio net service is logically separate from
the network layer and any other services in the network.
The radio server runs as a user space application on the
node to which a radio is attached and accepts connec-
tions from radio clients across the network. It also ad-
vertises itself via Multicast DNS (mDNS) which isolates
it from depending on a properly configured DNS server.
In turn, the radio clients are also user space processes
running on end user nodes. If the hardware hosting the
radio server fails, then only access to that particular ra-
dio is affected and will not bring down the rest of the
comm system.

Services and protocols that are decentralized, or are de-
signed to provide automatic failover are greatly pre-
ferred over services which do not. The intercom service
is provided by intercom agents running on each end user
devices. The intercom agents do not depend on a single
server node to mix all audio streams, but instead use
mDNS to discover each other and determine how to mix
the intercom traffic between them. Any one intercom
node failure shall not take down the entire intercom ser-
vice.

The Linux kernel plays a significant role here too as
the system is designed to tolerate software failures also.
With several applications executing on the same hard-
ware device, the failure of a single application must not
cause other unrelated applications to fail. The enforced
process separation provided by the Linux kernel pre-

2008 Linux Symposium, Volume Two • 23

vents a bug in one application from affecting the envi-
ronment of another. This feature in particular is a ben-
efit over traditional flat memory model RTOS systems
when providing complex services within a single hard-
ware platform.2

Finally, it can be argued that open source projects have
tended towards well defined boundaries between com-
ponents. There is the obvious boundary between kernel
and user space, but there are also well defined bound-
aries between the libraries composing the protocol and
application stacks. For example, the MESHnet user de-
vices make use of the GStreamer framework for pro-
cessing audio streams. The GStreamer core library de-
fines a strict API for plugins but implements very little
functionality inside the core library itself. The plugins
use the API to communicate with each other over a well
defined interface which isolates the two sides from in-
ternal implementation details. Separation at this level
doesn’t directly improve reliability and fault tolerance,
but a well defined and predictable API with few side ef-
fects makes the system design easier to comprehend and
therefore easier to audit for bugs.

3.3 Capability and Quality

Military customers are also unapologetic in their ap-
petite for rich features in their equipment. They want all
the features available in comparable commercial equip-
ment, without sacrificing the reliability requirements
discussed above. As already stated, the budgets of most
military equipment development projects are not large
enough to fund the development of all the required com-
ponents from scratch, so system designers must look to
third party software to use as the starting point. This
means either licensing a proprietary application or se-
lecting a FOSS component.

When evaluating third party components, quite a few
questions tend to be asked: How well does it work?
Does it support all the features we need? Is it under ac-
tive development? Do we get access to the source code?
Can it be customized? How much does it cost? How
much work is required to integrate it into the rest of the
project?

FOSS components do not always come out on top in the
tradeoff analysis. For some of the questions, FOSS has

2Granted with the tradeoff that embedded Linux system are typ-
ically larger and more resource-hungry than the equivalent RTOS
implementation. There are no claims of something for nothing here.

a natural advantage over its proprietary counterparts; ac-
cess to source code and favorable licencing terms being
the most significant. For others a lot depends on the type
of application and what FOSS components exist in that
sphere.

For example, within the operating environment sphere
there are the Linux and BSD kernels, several other open
source RTOSes, and various commercial offerings like
vxWorks and QNX. In most cases, Linux comes out on
top; active development is high which inspires confi-
dence that the kernel will be around for a long time. It
boasts a large feature set, the code quality is excellent,
and is easy to port to new embedded platforms.

However, there are still areas where Linux is not cho-
sen as the solutions for good reason. Systems with tight
memory constraints are still the domain of traditional
RTOSes or even bare metal implementations. Despite
large strides being made in the area of Linux real time,
some applications require guarantees provided by tra-
ditional RTOSes. The existence of legacy code for a
particular environment is also a significant factor.

Emotional and legal influences also have an impact on
what decision is made. Emotions come into play when
designers already have a bias either for or against a par-
ticular solution. Misunderstanding or mistrust of the
open source development model can also dissuade de-
signers from selecting a FOSS component. And there is
always ongoing debate over legal implications of using
a GPL licensed work as part of an embedded product.

No single aspect can be pinpointed as the most impor-
tant factor in selecting a component for use. However,
if a FOSS component does provide the functionality
needed, and it is shown to be both reliable and actively
used in other applications, then there is a greater chance
that it will be selected. Well established projects with
a broad and active developer base tend to have an ad-
vantage in this regard. Not only does this typically indi-
cate that development will continue over the long term,
it also suggests (but doesn’t guarantee) that it will be
possible to obtain support for the component as the need
arises. It is also often assumed that a large existing user
base will contribute to code quality in the form of bug
fixes and real world testing.

Smaller and less popular FOSS projects are at a bit of
a disadvantage in this regard and can be viewed as a bit
of a risk. If the project developers stop working on it

24 • Tux meets Radar O’Reilly—Linux in military telecom

for one reason or another, then the system vendor may
be forced to assume the full burden of supporting the
software in-house. That being said, the risk associated
with small FOSS components is still often lower than
the risk associated with a proprietary component being
dropped with no recourse by its vendor.

3.4 Maintenance

Unlike the consumer electronics market with high vol-
umes and short product life cycles, the military equip-
ment market tends towards low volume production runs
and equipment which must be supported for decades af-
ter being deployed. Equipment vendors, especially of
large integrated systems, often also enter into long term
support contracts for the equipment they have supplied.

Knowing this, it is prudent to start the design process in
the mindset that any chosen components such as CPUs
and memory chips must be replaceable for the entire
expected lifetime of the equipment. One way to do
this is to restrict component choices to ones that have
a long term production commitment from the manufac-
turer. Another way is to do a lifetime buyout for the
quantity of chips required over the expected support pe-
riod.

Similarly, software components have the same support
requirement. Each component must be supportable over
the long term. FOSS components have a natural advan-
tage in this area. Unlike with proprietary components, a
third party FOSS vendor cannot impose restrictions on
the use and maintenance of a FOSS component. Nor can
business or financial changes with a third party vendor
affect the ability to maintain the product.3

3.5 Redundancy and Fault Tolerance

In this section and the next we get into the real areas
where military equipment vendors differentiate them-
selves from their competition. Pretty much all of the
functionality required for tactical telecom systems al-
ready exist to a large degree in both the FOSS and pro-
prietary ecosystems. How well the components are in-
tegrated together onto a hardware platform is a big part
of whether or not the system is suitable for military use,
and that depends on strong system engineering.

3Unless, of course, you’ve also subcontracted support to said
third party vendor, then you could be stuck with a manpower prob-
lem.

Fault tolerance is an excellent example. Looking at in-
dividual components does not tell you much about the
system as a whole. To design a reliable system requires
looking at the entire system requirements and designing
architectures that provide those functions in a reliable
and fault tolerant way. Some of those decisions are sim-
ple and only affect a small aspect of the design. For ex-
ample, a typical requirement is for equipment to stand
up to the kind of abuse inflicted by solders. A common
solution is to enclose the electronics in cast aluminum
chassis and to use MIL-STD-38999 connectors instead
of RJ-45 jacks for cable connections.

Other issues affect the design of more than one subsys-
tem. Designing a reliable Ethernet layer has an impact
on multiple layers of the system design. It has already
been discussed that using a mesh topology of Ethernet
connections requires the design of each node to include
a managed Ethernet switch and requires an RSTP agent
to run on each box. In addition, the system must be able
to report any relevant changes to the network topology
to the system users in a useful form. For example, on
a vehicle with three nodes connected in a ring, if the
system detects that one of the three links is not con-
nected, then that probably indicates that an equipment
failure has already occurred and that there is no remain-
ing backup connections in the event of a second failure.
This is information that the soldier needs to know so that
a decision can be made about whether or not to continue
using the damaged equipment. Therefore, the reliability
of the Ethernet layer also has an impact on the design
of the user interface so that changes in equipment status
can be reported.

While individual components have little influence on the
system design as a whole, using well designed compo-
nents with predictable behaviour simplifies the job of
the system designer just by requiring less effort to un-
derstand the low level intricacies.

3.6 User Interface and Configuration

Finally, even the most feature rich and capable a system
is just an expensive doorstop if nobody is able to under-
stand how to use it. On the whole, solders are mostly
uninterested in the details of a telecom system and only
care about whether or not the system lets them talk to
who they need to talk to and provide the network con-
nections they need. Even if the system is quite complex

2008 Linux Symposium, Volume Two • 25

the system designer should strive to make it have the
appearance of simplicity for the vast majority of users.

For example, if the network consists of user devices with
attached headsets and two units are wired together and
powered up without any kind of network configuration,
then it is appropriate for the devices to self configure
themselves and enable intercom between the two head-
sets without any manual intervention. Similarly, select-
ing basic services should strive to only require a single
key press. For the few users who do need greater con-
trol, like network managers, it is appropriate to provide
a different control interface that doesn’t hide the details
or complexity of the system.

4 Conclusion

The military sector faces significant challenges when
designing a communication system that meets the de-
mand for increasingly complex functionality while still
retaining the robustness and reliability required by life-
critical equipment. With its open architecture and high
level of functionality, quality, availability, and maintain-
ability, Linux and other Free and Open Source Software
is often well suited to providing the building blocks on
which to base the next generation of sophisticated yet
stable and operationally simple military communication
systems.

References

[1] Mark Adcock, Russell Heal, A Land Tactical
Internet Architecture for Battlespace
Communications, http://www.gdcanada.
com/documents/Battlespace%
20Networking%20MA%203.pdf, Retrieved
on Apr 10, 2008

[2] David A. Wheeler, More Than a Gigabuck:
Estimating GNU/Linux’s Size,
http://www.dwheeler.com/sloc/
redhat71-v1/redhat71sloc.html,
Retrieved on Apr 10, 2008

26 • Tux meets Radar O’Reilly—Linux in military telecom

A Symphony of Flavours: Using the device tree to describe embedded
hardware

Grant Likely
Secret Lab

grant.likely@secretlab.ca

Josh Boyer
IBM

jwboyer@linux.vnet.ibm.com

Abstract

As part of the merger of 32-bit and 64-bit PowerPC sup-
port in the kernel, the decision was to also standardize
the firmware interface by using an OpenFirmware-style
device tree for all PowerPC platforms; server, desktop,
and embedded. Up to this point, most PowerPC em-
bedded systems were using an inflexible and fragile,
board-specific data structure to pass data between the
boot loader and the kernel. The move to using a device
tree is expected to simplify and generalize the PowerPC
boot sequence.

This paper discusses the implications of using a device
tree in the context of embedded systems. We’ll cover
the current state of device tree support in arch/powerpc,
and both the advantages and disadvantages for embed-
ded system support.

1 Background

We could go on for days talking about how embedded
systems differ from desktops or servers. However, this
paper is interested in one particular aspect: the method
used by the operating system to determine the hardware
configuration.

In general, desktop and server computers are engineered
to be compatible with existing software. The expecta-
tion is that the operating system should not need to be re-
compiled every time new hardware is added. Standard-
ized firmware interfaces ensure that the boot loader can
boot the operating system and pass it important details
such as memory size and console device. PCs have the
BIOS. PowerPC and Sparc systems typically use Open-
Firmware. Commodity hardware is also designed to be
probeable by the OS so that the full configuration of the
system can be detected by the kernel.

The embedded world is different. Systems vary wildly,
and since the software is customized for the system,
there isn’t the same market pressure to standardize
firmware interfaces. You can see this reflected in the
boot schemes used by embedded Linux. Often the op-
erating system is compiled for a specific board (plat-
form) with the boot loader providing minimal informa-
tion about the hardware layout, and the platform initial-
ization code is hard coded with the system configura-
tion.

Similarly, data that is provided by the boot firmware is
often laid out in an ad-hoc manner specific to the board
port. The old embedded PowerPC support in the ker-
nel (found in the arch/ppc subdirectory) uses a par-
ticularly bad method for transferring data between the
boot loader and the kernel. A structure called bd_info,
which is defined in include/asm-ppc/ppcboot.h,
defines the layout of the data provided by the boot
loader. #defines are used within the structure to add
platform-specific fields, but there is no mechanism to
describe which bd_info layout is passed to the ker-
nel or what board is present. Changes to the layout of
bd_info must be made in both the firmware and the
kernel source trees at the same time. Therefore, the ker-
nel can only ever be configured and compiled for a sin-
gle platform at a time.

When the decision was made to merge 32-bit (arch/
ppc) and 64-bit (arch/ppc64) PowerPC support in the
kernel, it was also decided to use the opportunity to
clean up the firmware interface. For arch/powerpc
(the merged architecture tree), all PowerPC platforms
must now provide an OpenFirmware-style device tree
to the kernel at boot time. The kernel reads the device
tree data to determine the exact hardware configuration
of the platform.

• 27 •

28 • A Symphony of Flavours: Using the device tree to describe embedded hardware

/ { // the root node
an-empty-property;
a-child-node {

array-prop = <0x100 32>;
string-prop = "hello, world";

};
another-child-node {

binary-prop = [0102CAFE];
string-list = "yes","no","maybe";

};
};

Figure 1: Simple example of the .dts file format

2 Description of Device Trees

In the simplest terms, a device tree is a data structure that
describes the hardware configuration. It includes infor-
mation about the CPUs, memory banks, buses, and pe-
ripherals. The operating system is able to parse the data
structure at boot time and use it to make decisions about
how to configure the kernel and which device drivers to
load.

The data structure itself is organized as a tree with a sin-
gle root node named /. Each node has a name and may
have any number of child nodes. Nodes can also have
an optional set of named property values containing ar-
bitrary data.

The format of data contained within the device tree
closely follows the conventions already established by
IEEE standard 1275. While this paper covers a ba-
sic layout of the device tree data, it is strongly recom-
mended that Linux BSP developers reference the origi-
nal IEEE standard 1275 documentation and other Open-
Firmware resources. [1][2]

The device tree source (.dts) format is used to express
device trees in human-editable format. The device tree
compiler tool (dtc) can be used to translate device trees
between the .dts format and the binary device tree blob
(.dtb) format needed by an operating system. Figure 1
is an example of a tree in .dts format. Details of the
device tree blob data format can be found in the kernel’s
Documentation directory. [3]

For illustrative purposes, let’s take a simple example of
a machine and create a device tree representation of the
various components within it. Our example system is
shown in Figure 2.

PowerPC 440

IRQ Controller

PLB Bus

128MB RAM

OPB Bridge

Ethernet irq: 2 Serial 1 irq: 3 Serial 2 irq: 4 Flash

Figure 2: Example PowerPC 440 System

/dts-v1/
/ {

model = "acme,simple-board";
compatible = "acme,simple-board";
#address-cells = <1>;
#size-cells = <1>;

// Child nodes go here
};

Figure 3: Example system root node

It should be noted that the device tree does not need to
be an exhaustive list of all devices in the system. It is
optional to itemize devices attached to probable buses
such as PCI and USB because the operating system al-
ready has a reliable method for discovering them.

2.1 The root Node

The start of the tree is called the root node. The root
node for our simple machine is shown in Figure 3. The
model and compatible properties contain the exact
name of the platform in the form <mfg>,<board>,
where <mfg> is the system vendor, and <board> is
the board model. This string is a globally unique identi-
fier for the board model. The compatible property is not
explicitly required; however, it can be useful when two
boards are similar in hardware setup. We will discuss
compatible values more in Section 2.4.1.

2.2 The cpus Node

The cpus node is a child of the root node and it has a
child node for each CPU in the system. There are no ex-

2008 Linux Symposium, Volume Two • 29

cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {

device_type = "cpu";
model = "PowerPC,440GP";
reg = <0>;
// 400MHz clocks
clock-frequency = <400000000>;
timebase-frequency = <400000000>;
i-cache-line-size = <32>;
d-cache-line-size = <32>;
i-cache-size = <32768>;
d-cache-size = <32768>;

};
};

Figure 4: cpus node

plicitly required properties for this node; however, it is
often good practice to specify #address-cells=<1>,
and #size-cells=<0>. This specifies the format for
the reg property of the individual CPU nodes, which is
used to encode the physical CPU number.

CPU nodes contain properties for each CPU on the
board. The unit name for CPU nodes is in the form
cpu@0 and it should have a model property to describe
the CPU type. CPU nodes have properties to specify the
core frequency, L1 cache information, and timer clock
frequency. Figure 4 is the cpus node for our sample
system.

2.3 System Memory

The node that describes the memory for a board is, un-
surprisingly, called a memory node. It is most common
to have a single memory node that describes all of the
memory ranges and is a child of the root node. The reg
property is used to define one or more physical address
ranges of usable memory. Our example system has 128
MiB of memory, so the memory node would look like
Figure 5.

2.4 Devices

A hierarchy of nodes is used to describe both the buses
and devices in the system. Each bus and device in the
system gets its own node in the device tree. The node for

memory {
device_type = "memory";
// 128MB of RAM based at address 0
reg = <0x0 0x08000000>;

};

Figure 5: Memory node

the processor local bus is typically a direct child of the
root node. Devices and bridges attached to the local bus
are children of the local bus node. Figure 6 shows the
hierarchy of device nodes for the sample system. This
hierarchy shows an interrupt controller, an Ethernet de-
vice, and an OPB bridge attached to the PLB bus. Two
serial devices and a Flash device are attached to the OPB
bus.

2.4.1 The compatible property

You’ll notice that every node in the device hierarchy has
a compatible property. compatible is the key that
an OS uses to decide what device a node is describ-
ing. In general, compatible strings should be in the form
<manufacturer>,<part-num>. For each unique set
of compatible values, there should be a device tree
binding defined for the device. The binding documents
what hardware the node describes and what additional
properties can be defined to fully describe the configu-
ration of the device. Typically, bindings for new devices
are documented in the Linux Documentation directory
in booting-without-of.txt [3].

You’ll also notice that sometimes compatible is a list
of strings. If a device is register-level compatible with
an older device, then it can specify both its compati-
ble string and the string for the older device, so that an
operating system knows that the device is compatible
with an older device driver. These strings should be or-
dered with the specific device first, followed by a list of
compatible devices. For example, the flash device in the
simple system claims compatibility with cfi-flash,
which is the string for CFI-compliant NOR flash chips.

2.4.2 Addressing

The device address is specified with the reg property.
reg is an array of cell values. In device tree terminol-

30 • A Symphony of Flavours: Using the device tree to describe embedded hardware

plb {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
ranges;
UIC0: interrupt-controller {

compatible = "ibm,uic-440gp",
"ibm,uic";

interrupt-controller;
#interrupt-cells = <2>;

};
ethernet@20000 {

compatible = "ibm,emac-440gp";
reg = <0x20000 0x70>;
interrupt-parent = <&UIC0>;
interrupts = <0 4>;

};
opb {

compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
ranges = <0x0 0xe0000000

0x20000000>;
serial@0 {

compatible = "ns16550";
reg = <0x0 0x10>;
interrupt-parent = <&UIC0>;
interrupts = <1 4>;

};
serial@10000 {

compatible = "ns16550";
reg = <0x10000 0x10>;
interrupt-parent = <&UIC0>;
interrupts = <2 4>;

};
flash@1ff00000 {

compatible = "amd,s29gl256n",
"cfi-flash";

reg = <0x1ff00000 0x100000>;
};

};
};

Figure 6: Simple System Device Hierarchy

ogy, cells are simply 32-bit values. Array properties like
reg are arrays of cell values. Each reg property is a list
of one or more address tuples on which the device can
be accessed. The tuple consists of the base address of
the region and the region size.

reg = <base1 size1 [base2 size2 [...]]>;

The actual size of each reg tuple is defined by the par-
ent nodes’ #address-cells and #size-cells prop-
erties. #address-cells is the number of cells used
to specify a base address. Similarly, #size-cells is
the number of cells used to specify a region size. The
number of cells used by reg must be a multiple of
#address-cells plus #size-cells.

It is important to note that reg defines bus addresses,
not system addresses. The bus address is local to the
bus that the device resides on, or in device tree terms,
the address is local to the parent of the node. Buses in
turn can map bus addresses up to their parent using the
ranges property. The format of ranges is:

ranges = <addr1 parent1 size1 [...]>;

Where addr is a bus address and is #address-cells
wide, parent is an address on the parent bus and is the
parent node’s #address-cells wide. size is the par-
ent node’s #size-cells wide.

Buses that provide a 1:1 mapping between bus address
and parent address can forgo the explicit mapping de-
scribed above and simply specify an empty ranges
property:

ranges;

In this example system, the Flash device is at address
0x1ff00000 on the OPB bus, and the OPB bus specifies
that PLB bus address 0xe0000000 is mapped to address
0x0000000 on the OPB bus. Therefore, the Flash device
can be found at base address 0xfff00000.

2.5 Interrupts and Interrupt Controllers

The natural layout of a tree structure is perfect for de-
scribing simple hierarchies between devices, but is not
particularly suitable for capturing complex interconnec-
tions.

Interrupt signals are a good example of additional link-
ages. For example, it is correct to describe the serial
device in our sample system as a child of the OPB bus.
However, it is also correct to say that it is a child of the
interrupt controller device, so how should this be de-
scribed in the device tree? Established convention says
that the natural tree structure should be used to describe
the primary interface for addressing and controlling the
devices. Secondary connections can then be described

2008 Linux Symposium, Volume Two • 31

with an explicit link between nodes called a phandle. A
phandle is simply a property in one node that contains a
pointer to another node.

For the case of interrupt connections, device nodes
use the interrupt-parent and interrupts prop-
erties to describe a connection to an interrupt controller.
interrupt-parent is a phandle to the node that de-
scribes the interrupt controller and interrupts is a list
of interrupt signals on the interrupt controller that the
device can raise.

Interrupt controller nodes must define an empty prop-
erty called interrupt-controller. They also must
define #interrupt-cells as the number of cells re-
quired to specify a single interrupt signal on the interrupt
controller, similar to how #address-cells specifies
the number of cells required for an address value.

Many systems, particularly SoC systems, only have one
interrupt controller, but more than one can be cascaded
together. The links between interrupt controllers and de-
vices form the interrupt tree.

Referring back to the serial device node, the property
interrupt-parent defines the link between the node
and its interrupt parent in the interrupt tree.

The interrupts property defines the specific inter-
rupt identifier. Its format depends on its interrupt par-
ent’s #interrupt-cells property and the values con-
tained within are specific to that interrupt domain. A
common binding for this property when the parent’s
#interrupt-cells property is 2 is to have the first
cell represent the hardware interrupt number for the de-
vice in the interrupt controller, followed by its level/
sense information.

2.6 Special Nodes

2.6.1 The chosen Node

Firmware often needs to pass non-hardware types of in-
formation to the client OS, such as console port, and
boot arguments. The node that describes this kind of
information is called the /chosen node. There are no
required properties for this node; however, it is quite
useful for defining the board setup. If our example sys-
tem booted from a USB key and used the serial port as
the console, the /chosen node might look like Figure 7.

chosen {
bootargs = "root=/dev/sda1 rw ip=off";
linux,stdout-path =

"/plb/opb/serial@10000";
};

Figure 7: Chosen node

aliases {
console = "/plb/opb/serial@10000";
ethernet0 = "/plb/ethernet@20000";
serial0 = "/plb/opb/serial@0";
serial1 = "/plb/opb/serial@10000";

};

Figure 8: Aliases node

2.6.2 aliases

In order to ease device lookup in client operating sys-
tems, it is often desirable to define an aliases node.
This allows one to provide a shorthand method for iden-
tifying a device without having to specify the full path
on lookup. This is typically only done for the more com-
mon devices on a board, such as Ethernet or serial ports.
Figure 8 provides an example.

The types of nodes and properties that can be contained
in a device tree are as varied as the hardware that they
describe. As hardware designers invent new and creative
ways of designing components, these unique properties
will continue to grow. However, the direction is to be
as general as possible to allow commonality between
the various hardware components across these boards.
Given the flexible nature of the device tree concept, the
hope is that the client operating systems will be able to
adapt to new hardware designs with a minimal amount
of code churn and allow the most possible reuse of code.

3 Usage of Device Tree in Linux Kernel

3.1 Early Boot

To understand how the kernel makes use of the de-
vice tree, we will start with a brief overview of the
arch/powerpc boot sequence. arch/powerpc pro-
vides a single entry point used by all PowerPC plat-
forms. The kernel expects a pointer to the device tree

32 • A Symphony of Flavours: Using the device tree to describe embedded hardware

blob in memory to be in register r3 before jumping to
the kernel entry point.1

The kernel first does some basic CPU and memory
initialization, and then it tries to determine what kind
of platform it is running on. Each supported plat-
form defines a machdep_calls structure. The ker-
nel calls probe_machine(), which walks through the
machine_desc table, calling the .probe() hook for
each one. Each .probe() hook examines the device
tree and returns true if it decides that the tree describes
a board supported by that platform code. Typically, a
probe will look at the compatible property on the root
node of the tree to make the decision, but it is free to
look at any other property in the tree. When a probe
hook returns true, probe_machine() stops iterating
over the table and the boot process continues.

3.2 Device initialization

In most regards, using the device tree has little impact
on the rest of the boot sequence. Platform code registers
devices into the device model and device drivers bind
to them. Probable buses like PCI and USB probe for
devices and have no need for the device tree. Sequence-
wise, the boot process doesn’t look much different, so
the real impact is not on the sequence, but rather on
where the kernel obtains information from about periph-
erals attached to the system.

The interesting questions, then, revolve around how the
platform code determines what devices are present and
how it registers them with the kernel.

3.2.1 of_platform bus

Currently, most embedded platforms using the device
tree take advantage of the of_platform bus infras-
tructure. Like the platform bus, the of_platform

bus doesn’t represent a hardware bus. It is a soft-
ware construct for manually registering devices into
the device model; this is useful for hardware which

1Actually, this is not entirely true. If the boot firmware provides
an Open Firmware-compatible client interface API, then the kernel
first executes the prom_init() trampoline function to extract
the device tree from the firmware before jumping into the common
entry point.

cannot be probed. Platform code2 can use the of_

platform_bus_probe() convenience function to it-
erate over a part of the device tree and register a struct
of_device for each device. Device drivers in turn reg-
ister a struct of_platform_driver, and the of_

platform infrastructure matches drivers to devices.

The core of both the platform and of_platform

buses is almost identical, which begs the question of
why do two separate software buses exist in the first
place? The primary reason is that they use different
methods to match devices to drivers. The platform bus
simply matches a device and a driver if they share the
same .name property. The of_platform bus instead
matches drivers to devices on the basis of property val-
ues in the tree; in particular, the driver provides a match
table of name, device_type, and compatible prop-
erties’ values. When the values in one of the table en-
tries match the values in an of_device, then the bus
calls the driver’s probe hook.

3.2.2 platform bus adapters

While the of_platform bus is often convenient, it is
by no means mandated or the only way to retrieve de-
vice information out of the device tree. Some drivers
already exist with platform bus bindings and the devel-
opers have decided not to rework the binding to use
of_platform. Rather, a helper function is used to
search the device tree for nodes with the appropriate
property values. When interesting nodes are found, the
function creates a new struct platform_device,
populates it with data from the tree node, and registers
it with the platform bus. Several examples of this can be
seen in arch/powerpc/syslib/fsl_soc.c. As of
this writing, the Freescale Gianfar, USB host controller,
and I2C device drivers work this way.

There is some debate amongst the Linux PowerPC hack-
ers over whether to merge the of_platform bus func-
tionality back into the platform bus. Doing so would
eliminate a lot of duplicated code between them, but it
leaves the question of how to match drivers and devices.
The following are some of the options:

2Not to be confused with the platform bus. Platform code in this
context refers to the support code for a particular hardware platform
and can be found in the arch/powerpc/platforms subdi-
rectory.

2008 Linux Symposium, Volume Two • 33

Teach platform bus about device tree matching. If
the platform drivers could optionally supply an OF
match table, it could be used if the platform device also
had a pointer to a device node in the tree. The downside
is that it increases the complexity of platform devices,
but these are intended to be simple constructs. It is un-
certain whether this approach would be acceptable to the
platform bus maintainers.

Translate between nodes properties and platform
bus names. This approach has a minimal amount of
impact on existing platform bus drivers. However, it
requires the match table to also supply functions for
populating pdata structures from the data in the device
tree. Also, device-tree-to-platform-bus translation must
occur at boot time and not at module load time, which
means that the binding data must be contained within the
driver module. Besides, device registration is supposed
to be under the control of platform code. It is poor form
for drivers to register their own platform devices.

Make drivers search the device tree directly. This
solves the problem of data about matching devices being
separate from the device driver, but it doesn’t work so
well because there is no easy way to prevent multiple
drivers from binding against the same node. Once again,
it is bad form for drivers to register their own devices.

3.2.3 Other Methods

Of course, not all initialization fits simply within the
platform/of_platform bus model. Initialization of
interrupt controllers is a good example, since such con-
trollers are initialized directly from one of the platform
code hooks and do not touch the driver model at all. An-
other example is devices that are logically described by
more than one node within the device tree. For instance,
consider an audio device consisting of a node for the
I2S bus and another node for the CODEC device. In
this case, each node cannot be probed independently by
separate drivers. The platform code most likely needs
to interpret the tree data to create device registrations
useful to the device drivers.

The key here is that the device tree is simply a data struc-
ture. Its sole purpose is to describe the hardware layout
and it does not dictate kernel architecture. Platform code

and device drivers are free to query any part of the tree
they desire to make appropriate decisions.

At this point it is worth mentioning that it can be a strong
temptation to design new device tree bindings around
what is convenient for the device drivers. The problem
is that what might seem like a good approach when you
start writing a device driver often turns out to be just the
first of several bad ideas before you finish it. By keeping
the device tree design focused on hardware description
alone, it decouples it from the driver design and makes
it easier to change the driver approach at some point in
the future. There are literally decades of Open Firmware
conventions to help you design appropriate bindings.

4 Case Studies

4.1 PowerPC 440 SoCs

The PowerPC 440 chip is a widely used SoC that comes
in many different variations. In addition to the PPC
440 core, the chip contains devices such as 16550-
compatible serial ports, on-board Ethernet, PCI host
bridge, i2c, GPIO, and NAND flash controllers. While
the actual devices on the various flavors of the 440 are
typically identical, the quantity and location of them in
the memory map is very diverse. This lends itself quite
well to the device tree concept.

In arch/ppc, each PPC 440 board had its own unique
board file, and described the MMIO resources for its de-
vices as a set of #define directives in unique header
files. There were some attempts to provide common
code to share among board ports; however, the amount
of code duplication across the architecture was quite
large. A typical board file was around 200 lines of C
code. The code base was manageable and fairly well
maintained, but finding a fairly complete view of the in-
teraction among the files was at times challenging.

When contrasted with the arch/powerpc port for PPC
440, some of the benefits of the device tree method are
quickly revealed. The average board file is around 65
lines of C code. There are some boards that have no ex-
plicit board file at all, as they simply reuse one from a
similar board. Board ports have become relatively easy
to do, often taking someone familiar with device trees
a relatively short time to complete base support for a

34 • A Symphony of Flavours: Using the device tree to describe embedded hardware

PowerPC 440

Memory Bus

EMAC0

MAL

EMAC1

Figure 9: Logical EMAC/MAL connections

board.3 Additionally, multiplatform support makes it
possible to have a single vmlinux binary that will run
on any of the PPC 440 boards currently supported today.
This was virtually impossible before device trees were
used to provide the device resources to the kernel.

However, using a device tree does present unique chal-
lenges at times. Situations arise that require the intro-
duction of new properties or using different methods
of defining the interaction between nodes. For Pow-
erPC 440, one of those cases is the MAL and EMAC
nodes. The MAL and EMAC combined comprise the
on-board Ethernet. A simplified view of the intercon-
nects is shown in Figure 9.

The MAL device has a number of channels for trans-
mit and receive. These channels are what the various
EMAC instances use for their transmit and receive oper-
ations. The MAL also has 5 interrupts, but not all these
interrupts go to a single interrupt parent. These issues
required some more complex concepts and new proper-
ties to be applied in the device tree.

To solve the multiple interrupt parent problem for the
MAL, an interrupt map was used. In this situation, the
MAL node’s interrupt-parent property is set to
itself, and the interrupts property simply lists inter-
rupts 0–5. Recall that this is possible because the repre-
sentation of that property is dependent upon the node’s
interrupt-parent property, which in this case is
the MAL itself. To properly map the real interrupts
to the appropriate controllers, the interrupt-map
property is used. In this property, each MAL-specific

3The AMCC PowerPC 440EPx Yosemite board support was
completed in 5 hours, with the majority of the work coming from
rearranging the existing 440EPx support and adapting a new DTS
file.

interrupt is mapped to its proper interrupt parent using
the interrupt domain for that parent. Figure 10 shows
the device tree node for the MAL. Here you can see that
MAL interrupt 0 maps to UIC0 interrupt 10, and so on.

MAL0: mcmal {
compatible = "ibm,mcmal-440gp",

"ibm,mcmal";
dcr-reg = <0x180 0x62>;
num-tx-chans = <4>;
num-rx-chans = <4>;
interrupt-parent = <&MAL0>;
interrupts = <0 1 2 3 4>;
#interrupt-cells = <1>;
interrupt-map = <
/*TXEOB*/ 0 &UIC0 0xa 4
/*RXEOB*/ 1 &UIC0 0xb 4
/*SERR*/ 2 &UIC1 0 4
/*TXDE*/ 3 &UIC1 1 4
/*RXDE*/ 4 &UIC1 2 4>;

interrupt-map-mask = <0xffffffff>;
};

EMAC0: ethernet@40000800 {
device_type = "network";
compatible = "ibm,emac-440gp",

"ibm,emac";
interrupt-parent = <&UIC1>;
interrupts = <1c 4 1d 4>;
reg = <40000800 0x70>;
local-mac-address = [000000000000];
mal-device = <&MAL0>;
mal-tx-channel = <0 1>;
mal-rx-channel = <0>;

};

Figure 10: PowerPC 440 MAL and EMAC nodes

You’ll also notice in Figure 10 that there are some new
MAL-specific properties introduced for the total number
of transmit and receive channels. When looking at the
EMAC node in Figure 10, you will see that there are
new properties specific to the MAL as well. Namely, the
mal-device property is used to specify which MAL
this particular EMAC connects to, pointing back to the
phandle of the MAL node. The mal-tx-channel
and mal-rx-channel properties are used to specify
which channels within that MAL are used. The device
driver for the on-board Ethernet parses these properties
to correctly configure the MAL and EMAC devices.

While this is certainly not the most complex interac-
tion between devices that can be found, it does illus-

2008 Linux Symposium, Volume Two • 35

trate how a more interesting setup can be accomplished
using the device tree. For those interested in further ex-
amples of complex setups, including multiple bridges
and unique address ranges, the arch/powerpc/boot/
dts/ebony.dts file found in the kernel would be a
good starting point.

4.2 Linux on Xilinx Spartan and Virtex FPGA plat-
forms

Xilinx has two interesting FPGA platforms which can
support Linux. The Spartan and Virtex devices both sup-
port the Microblaze soft CPU that can be synthesized
within the FPGA fabric. In addition, some of the Vir-
tex devices include one or more dedicated PowerPC 405
CPU cores. In both cases, the CPU is attached to pe-
ripherals which are synthesized inside the FPGA fabric.
Changing peripheral layout is a simple matter of replac-
ing the bitstream file used to program the FPGA.

The FPGA bitstream file is compiled from VHDL, Ver-
ilog, and system layout files by Xilinx’s Embedded De-
velopment Kit tool chain. Historically, EDK also gener-
ated an include file called xparameters.h which con-
tains a set of #define statements that describes what
peripherals are present and how they are configured.
Unfortunately, using #defines to describe the hard-
ware causes the kernel to be hard coded for a particular
version of the bitstream. If the FPGA design changes,
then the kernel needs to be recompiled.

Just like other platforms, migrating to arch/powerpc

means that Virtex PowerPC support must adopt the de-
vice tree. Fortunately, the device tree model is particu-
larly suited to the dynamic nature of an FPGA platform.
By formalizing the hardware description into the device
tree, the kernel code (and therefore the compiled image)
is decoupled from the hardware design—particularly
useful now that hardware engineers have learned soft-
ware’s trick of changing everything with a single line of
source code.

On the other hand, the burden of tracking changes in the
hardware design is simply shifted from making changes
in the source code to making changes in the device tree
source file (.dts). For most embedded platforms, the
.dts file is written and maintained by hand, which is
not a large burden when the hardware is stable and few
changes are needed once it is written. The burden be-
comes much greater in the FPGA environment if every

change to the bitstream requires a manual audit of the
design to identify device tree impacts.

Fortunately, the FPGA tool chain itself provides a solu-
tion. The FPGA design files already describe the sys-
tem CPUs, buses, and peripherals in a tree structure.
Since the FPGA tool chain makes significant use of the
TCL language, it is possible to write a script that in-
spects EDK’s internal representation of the system de-
sign and emits a well formed dts file for the current
design. Such a tool has been written; it is called gen-
mhs-devtree [?] and it is in the process of being officially
integrated into the EDK tool chain.

Figure 11 shows an example of a device tree node gen-
erated by an instance of version 1.00.b of the opb_

uartlite ipcore. As you can see, the node includes
the typical compatible, reg, and interrupt prop-
erties, but it also includes a set of properties with the
xlnx, prefix. These properties are the ipcore configura-
tion parameters extracted from the FPGA design. The
device tree has made it possible to provide this data to
the operating system in a simple and extensible way.

RS232_Uart_1: serial@40400000 {
compatible =

"xlnx,opb-uartlite-1.00.b";
device_type = "serial";
interrupt-parent = <&opb_intc_0>;
interrupts = < 4 0 >;
port-number = <0>;
reg = < 40400000 10000 >;
xlnx,baudrate = <2580>;
xlnx,clk-freq = <5f5e100>;
xlnx,data-bits = <8>;
xlnx,odd-parity = <0>;
xlnx,use-parity = <0>;

} ;

Figure 11: node generated by gen-mhs-devtree

With the success of the device tree for Xilinx PowerPC
designs, Xilinx has decided to also adopt the device tree
mechanism for Microblaze designs. Since many of the
Xilinx peripherals are available for both PowerPC and
Microblaze designs anyway, it was the natural choice to
use the same mechanism for describing the hardware so
that driver support can be shared by both architectures.

36 • A Symphony of Flavours: Using the device tree to describe embedded hardware

5 Tradeoffs and Critique

5.1 kernel size

One of the often-heard concerns of using the device tree
method is how much larger the kernel binary will be.
The common theory is that by adding all the device
tree probing code, and any other “glue” code to make
the board-specific drivers function with the generic ker-
nel infrastructure, the overall vmlinux binary size will
drastically increase. Combine this with having to store
the dtb for the board and pass it in memory to the ker-
nel, and one could see why this might be a concern for
embedded targets.

While it is certainly true that the size of the vmlinux
binary does grow, the actual differences are not as
large as one may think. Let’s examine the sizes of an
arch/ppc and an arch/powerpc vmlinux binary
using feature-equivalent kernel configs for minimal sup-
port with a 2.6.25-rc9 source tree.4 Table 1 shows the
resulting binary size for each arch tree.

Arch Text Data BSS Total
ppc 2218957 111300 82124 2412381

powerpc 2226529 139564 94204 2460297

Table 1: Section sizes of vmlinux binaries

As you can see, the overhead for the device tree method
in this case is approximately 47KiB. Add in the addi-
tional 5KiB for the dtb file, and the total overhead for a
bootable kernel is approximately 52KiB.

While to some this may seem like quite a bit of growth
for such a simple configuration, it is important to keep in
mind that this brings in the base OpenFirmware parsing
code that would be required for any arch/powerpc
port. Each device driver would have some overhead
when compared to its arch/ppc equivalent; however,
this would be a fairly small percentage overall. This
can be seen when examining the vmlinux size for a
multiplatform arch/powerpc config file. This con-
fig builds a kernel that runs on 6 additional boards, with
support for 5 additional CPU types, and adds the MTD
subsystem and OF driver. The resulting vmlinux adds

4Essentially, the kernel was configured for BOOTP autoconf us-
ing an NFS rootfilesystem for the PowerPC 440GP Ebony evaluation
board.

approximately 130 KiB of overhead when compared to
the single-board arch/ppc config. A comparison with
a similar multiplatform config in arch/ppc cannot be
done, as there is no multiplatform support in that tree.

5.2 Multiplatform Kernels

Another question that is often heard is “But why do I
care if I can boot one vmlinux on multiple boards?
I only care about one board!” The answer to that, in
short, is that most people probably don’t care at all. That
is particularly true of people who are building a single
embedded product that will only ever have one config-
uration. However, there are some benefits to having the
ability to create such kernels.

One group that obviously benefits from this are the up-
stream kernel maintainers. When changing generic code
or adding new features, it is much simpler to build
a multiplatform kernel and test it across a variety of
boards than it is to build individual kernels for each
board. This is helpful for not only the architecture main-
tainers, but anyone doing wider cross-arch build testing.

It’s important to note that for most of the embedded
boards, there is nothing that precludes building a sin-
gle board config. Indeed, there are approximately 35
such defconfigs for the Freescale and IBM/AMCC em-
bedded CPUs alone. However, doing a “buildall” re-
gression build of this takes quite a long time, and the
majority of it is spent building the same drivers, filesys-
tems, and generic kernel code. By using a multiplatform
defconfig, you only need to build the common bits once
and the board-specific bits are built all together.

So while not everyone agrees that multiplatform embed-
ded kernels are useful, the current direction is to put em-
phasis on making sure new board ports don’t break this
model. The hope is that it will be easier for the main-
tainers to adapt existing code, perform cleanups, and do
better build test regressions.

References

[1] http://playground.sun.com/1275/
home.html, Accessed on June 24, 2008.

[2] http://www.openfirmware.org,
Accessed on June 24, 2008.

2008 Linux Symposium, Volume Two • 37

[3] Benjamin Herrenschmidt, Becky Bruce, et al.
http://git.kernel.org/?p=linux/
kernel/git/torvalds/linux-2.6.
git;a=blob;f=Documentation/
powerpc/booting-without-of.txt,
Retrieved on June 21, 2008.

38 • A Symphony of Flavours: Using the device tree to describe embedded hardware

Tux on the Air: The State of Linux Wireless Networking

John W. Linville
Red Hat, Inc.

linville@redhat.com

Abstract

“They just want their hardware to work,” said Jeff
Garzik in his assessment on the state of Linux wireless
networking in early 2006. Since then, more and more
of “them” have their wish. Lots of hardware works, and
most users have little or no trouble using their Linux lap-
tops at their favorite cafe or hotspot. Wireless network-
ing no longer tops the list of complaints about Linux. Of
course, some problems persist. . . and new things are on
the horizon.

This paper will discuss the current state of Linux wire-
less networking, mostly from a kernel perspective. We
will explore where we are, some of how we got here,
and a little of why things are the way they are. We will
also preview some of what is to come and how we plan
to get there.

1 Where have we been?

The original wireless LAN devices were what are now
called “full MAC” devices. These devices go to a great
deal of effort to present themselves to the host processor
very much like an ethernet device. They tend to have
large firmware images that create that illusion, and only
add the requirement of configuring parameters particu-
lar to dealing with wireless LANs such as specifying a
Service Set IDentifier (SSID).

Devices with “full MAC” designs are not particularly
prone to being forced into modes that do not comply
with governmental regulations. As a result, vendors of
such devices tend to be more open to supporting open
source drivers. Examples include the old Prism2 and
the early Prism54 devices, which are well supported by
drivers in the Linux kernel. Unfortunately, the require-
ment for large firmware images tends to increase the
costs associated with producing this kind of device.

Newer consumer-oriented wireless LAN devices tend to
utilize what is known as a “half MAC” or “soft MAC”

design. These devices minimize the work done using
firmware on the devices themselves. Instead, only criti-
cal functions are performed by the device firmware, and
higher functions like connection management are trans-
fered to the host processor. This solves problems for
hardware manufacturers, but makes life more difficult
for open source software in more ways than one.

The chief problem created by the shift to “soft MAC”
designs is the need for software to perform those func-
tions on the host processor that had previously been
performed by firmware on the wireless LAN device.
The early Intel Centrino wireless drivers used a com-
ponent called “ieee80211” to perform these functions.
The ieee80211 component used code adapted from
the earlier hostapd driver for Prism2 devices.

Unfortunately, the early Centrino wireless hardware
designs were not sufficiently general to apply the
ieee80211 code directly to other drivers. In re-
sponse to that need, Johannes Berg developed an ex-
tension to that code to support true “soft MAC” de-
signs. The original bcm43xx and zd1211rw drivers
used this “ieee80211softmac” code successfully, as did
a few more drivers that never got merged into the main-
line Linux kernel. However, many developers (includ-
ing Johannes Berg) felt that this combination of code
was poorly integrated and the source of many problems.

About this time, Devicescape released source code to
what would eventually become the mac80211 com-
ponent. Most of the active wireless developers ral-
lied around this code and so all new development for
“soft MAC” devices was shifted to this codebase. Un-
fortunately, many core Linux networking developers
quickly identified systemic problems with the code from
Devicescape. Thankfully, Jiri Benc adopted the De-
vicescape code and began working to resolve these
problems. After many months, a great deal of code
pruning, and some help from Michael Wu, Johannes
Berg, and others, the new mac80211 component was
initially merged into the Linux kernel version 2.6.22.

• 39 •

40 • Tux on the Air: The State of Linux Wireless Networking

The remaining drivers were merged later, and finally
there was much rejoicing.

Now things are much better. Of course, the Linux ker-
nel continues to support “full MAC” designs, and now
it has infrastructure to support “soft MAC” devices as
well. Thanks to this new infrastructure, it is possible to
add new features to a whole set of related drivers with a
minimal set of changes. Linux is well on its way to be-
ing a first-class platform for all forms of wireless LAN
networking.

2 Where are we now?

The past is the past. What is the situation now? What
drivers are available? Which ones are coming soon?
How fast is wireless LAN development progressing?
Where can I get the latest code? Where can I find cur-
rent information? And what is coming next?

2.1 Driver status

Several wireless LAN drivers have been developed and
merged into the mainstream kernel over the past few
years. Still more are currently under development.
Sadly, a few may never appear.

2.1.1 Current Drivers

Table 1 represents the 802.11 wireless LAN drivers
available in the 2.6.25 kernel which were originally
merged in 2006 or later. As you can see, nearly all of
them are based upon the mac80211 infrastructure. The
notable exception is libertas. That driver was devel-
oped for use in the One Laptop Per Child’s XO laptop,
which relied on extensive firmware both for power man-
agement and for implementing a pre-standard version
of mesh networking. The other exception is rndis_
wlan, which is primarily an extension of the existing
rndis_host ethernet driver to also support configu-
ration of wireless devices which implement the RNDIS
standard. Aside from these two, all of the other drivers
are for “soft MAC” devices.

All of these drivers support infrastructure mode (a.k.a.
“managed mode”) and most of them support IBSS mode
(a.k.a. “ad-hoc mode”) as well. These drivers can rea-
sonably be expected to work well with NetworkMan-
ager and similar applications as well as the traditional
wireless configuration tools (e.g., iwconfig).

Driver Hardware Vendor Uses mac80211?
adm8211 ADMTek Y
ath5k Atheros Y
b43 Broadcom Y
b43legacy Broadcom Y
iwl3945 Intel Y
iwl4965 Intel Y
libertas Marvell N
p54pci Intersil Y
p54usb Intersil Y
rndis_wlan Various N
rt2400pci Ralink Y
rt2500pci Ralink Y
rt2500usb Ralink Y
rt61pci Ralink Y
rt73usb Ralink Y
rtl8180 Realtek Y
rtl8187 Realtek Y
zd1211rw ZyDAS Y

Table 1: New drivers since 2005

2.1.2 Drivers In Progress

A number of drivers have been started but are not yet
completed or mergeable for one reason or another. Rea-
sons include questionable reverse-engineering practices,
incomplete specifications, or simply a lack of develop-
ers working on producing a mergeable driver.

The tiacx driver for the Texas Instruments ACX100
chipset has been around for a long time. At one time
this driver was working well and had been successfully
ported to the mac80211 infrastructure. Unfortunately,
questions were raised about the reverse engineering pro-
cess used to create the initial version of this driver. It
is possible that TI could clarify this driver’s legal sta-
tus. Otherwise, work similar to that done by the SFLC
to verify the provenance of the ath5k driver will be
required to remove the legal clouds currently prevent-
ing this driver from being merged into the mainstream
Linux kernel.

The agnx driver for the Airgo chipsets1 is based upon
a set of reverse-engineered specifications2 as well. To
date, this team has maintained a rigid separation be-
tween reverse engineers and driver authors. This is the
same technique used with good results to implement the
b43 and b43legacy drivers. Unfortunately, the main

1http://git.sipsolutions.net/?p=agnx.git
2http://airgo.wdwconsulting.net/mymoin

2008 Linux Symposium, Volume Two • 41

reverse engineer has had to leave the project for personal
reasons. Worse, the driver is still not fully functional.
Until the agnx reverse engineering team is reconsti-
tuted, this driver remains in limbo.

The at76_usb driver supports USB wireless chipsets
from Atmel. This driver has been ported to the
mac80211 infrastructure and it works reasonably well.
It is possible that it will be merged as early as the 2.6.27
merge window.

A driver has appeared recently for the Marvell 88w8335
chipset. These are PCI (and CardBus) devices manufac-
tured a few years ago, and Marvell has shown little in-
terest in supporting an upstream driver for them. While
these devices were marketed under the “Libertas” brand,
these devices bear little or no resemblance to those cov-
ered by the libertas driver. The driver for these de-
vices is called mrv8kng and it has been posted for re-
view. Hopefully that will lead to it being mergeable as
early as the 2.6.27 merge window as well.

Marvell has shown interest in supporting a driver for
their current TopDog chipset. They have released a
driver based on the net80211 infrastructure from the
Madwifi project, and they have provided some minimal
documentation on the firmware for their device. Unfor-
tunately, no one is known to be actively working to port
this driver to mac80211 or to make it mergeable into
the mainstream kernel.

2.1.3 Unlikely Drivers

Hardware vendors come and go, and some products are
more successful than others. Nowadays most Linux
wireless drivers are reverse engineered, and reverse en-
gineering takes lots of both motivation and skill. While
it is certainly possible that a motivated and skilled re-
verse engineer will apply his craft to produce a driver
for an uncommon hardware device, the odds are against
such an occurrence. So wireless devices that enjoyed
limited market penetration and are no longer in produc-
tion are unlikely to ever get a native Linux driver. One
example of such a device is the InProComm IPN2220.
Unfortunately, NDISwrapper will likely remain the only
viable solution for making this hardware work under
Linux.

2.2 Patch Activity

Take it from the author, someone who knows: wireless
LAN is currently one of the fastest developing segments
of the Linux kernel. New drivers or new features arrive
nearly every month, and the large portions continue to
undergo extensive refactoring as lessons are learned and
functionality is extended. In fact, some might say that
too much refactoring continues to occur! Nevertheless,
the wireless developers continue to be prolific coders.

This is not simply anecdotal—Linux Weekly News
(LWN) regularly documents patch activity in the ker-
nel as it nears each release. Because of the role the au-
thor plays as wireless maintainer, the number of Linux
kernel Signed-off-by’s for the author provides a good
proxy for the level of activity around wireless LAN in
the kernel. For 2.6.24, LWN placed the author as the
#5 “gatekeeper” for patches going into the linux ker-
nel.3 This represented over 4% of the total patches in
that release, or more than 1 out of every 25. For 2.6.25,
it was a full 5%, or 1 out of every 20 patches.4 This
is all the more impressive when one considers that no
wireless vendor other than Intel provides direct devel-
oper services.5 Given the amount of work remaining, I
see no reason to believe that this level of production will
change significantly in the near future.

2.3 How does someone get the code?

Given the quick pace which continues around the Linux
kernel in the area of wireless LAN development, not
all distributions are shipping with current wireless code.
All of this progress does one no good if you do not have
the code. So how is a user to go about getting it?

2.3.1 Development Trees

Ongoing development is done using git, now the stan-
dard revision control system for the Linux kernel. Mul-
tiple trees are used in order to accomodate various
needs relating both to distributing patches to other ker-
nel maintainers and to facilitating further development.

3http://lwn.net/Articles/264440/
4http://lwn.net/Articles/275954/
5In fact, nearly all of the prominent wireless developers are uni-

versity students!

42 • Tux on the Air: The State of Linux Wireless Networking

Most of these trees are of no interest either to end users
or to casual developers.

The tree that is of interest is the wireless-testing tree,
git://git.kernel.org/pub/scm/linux/
kernel/git/linville/wireless-testing.
git. This tree is generally based on a recent “rc”
release (e.g., 2.6.25-rc9) from Linus. It also includes
any patches destined for the current release that have
not yet been merged by Linus, as well as any patches
queued for the next release. This tree might also include
drivers that are still in development and are not yet
considered stable enough for inclusion even in the next
kernel release. Consequently, this tree is intended as
the base for any significant wireless LAN development.
Users or developers seeking an up-to-date wireless
LAN codebase should use this tree.

2.3.2 The compat-wireless-2.6 project

Not everyone is interested in running a “bleeding edge”
kernel. The compat-wireless-2.6 project6 was created to
fill this need. This project provides a means to compile
very recent wireless code in a way that is compatible
with older kernels. At the time of this writing, kernels
as old as 2.6.21 are supported. Even older kernels may
be supported by the time you read this.

The compat-wireless-2.6 project maintains a set of
scripts, patches, and compatibility code. These are com-
bined with code taken from a current wireless-testing
tree. The resulting code is compiled against the user’s
running kernel, resulting in modules that can be loaded
to provide current wireless bugfixes and updated hard-
ware support. Users of enterprise distributions or others
who need to run older kernels may find this project to be
quite useful.

2.3.3 Fedora

Obviously the easiest way to get kernels is through a
distribution. This is especially true for users who may
not be kernel hackers or even software developers at all.
Perhaps unfortunately (or possibly by design), distri-
butions have varying policies regarding kernel updates.
Consequently, not all distributions have an easy means

6http://www.linuxwireless.org/en/users/
Download

for users to run kernels with current wireless LAN code.
One distribution that does provide such kernels is Fe-
dora.

The Fedora build system is called Koji,7 and all offi-
cial Fedora packages are built there. As a Fedora con-
tributor, the author ensures that current wireless fixes
and updates make their way into the Fedora kernel
on a timely basis. The normal Fedora update process
typically makes kernel updates available within a few
weeks. Those too impatient to wait can retrieve later
kernels directly from Koji. Picking the latest kernel built
by the author is usually the best way to find the kernel
with the latest wireless bits:

http://koji.fedoraproject.org/koji/
userinfo?userID=388

2.4 Website

Those simply wanting a starting point for information
about current wireless LAN developments would do
well to vist the Linux Wireless wiki,8 graciously hosted
by Johannes Berg. This site has information organized
for users, hardware vendors, and potential developers.
Since it is a wiki, the site is easily updated as old in-
formation becomes obsolete, and it is open to a wide
variety of potential contributors who may or may not be
actual software developers. The Linux Wireless wiki is
a good first stop for anyone seeking more information
about wireless LAN support in Linux.

3 What is coming?

The road behind us was a hard slough, and now we stand
on steady ground. Yet we are far from home! What
new features are coming to Linux wireless LANs? A
new and better means for configuring wireless devices
is on the way, and new ways for using those devices to
communicate are coming as well.

3.1 Replacing Wireless Extensions with CFG80211

Traditionally Linux wireless interfaces have been con-
figured using an Application Programming Interface
(API) known as Wireless Extensions (WE). This API

7http://koji.fedoraproject.org
8http://wireless.kernel.org

2008 Linux Symposium, Volume Two • 43

is based on a series of ioctl calls, each of which
specifies the parameters of a specific attribute for wire-
less LAN configuration. This API mapped sufficiently
well to the designs of wireless LAN devices that were
prevalent when WE was produced, and it continues to
remain at least minimally serviceable for modern de-
signs. However, WE has many shortcomings. Chief of
these is that it fails to specify a number of details about
what default behaviors should be, what the proper tim-
ing should be, or order of configuration steps, or even
what the exact meaning is intended to be for a number
of parameters. Further, reliance on individual configu-
ration actions for what otherwise might be considered
atomic operations introduces the possibility of race con-
ditions when configuring devices. Also, WE has proven
to be difficult to extend without breaking the kernel’s
pledge of userland Application Binary Interface (ABI)
consistency between releases. Finally, the in-kernel WE
implementation is mostly transparent, forcing individ-
ual drivers to reimplement a number of features of the
API which might otherwise be shared.9 All of this, cou-
pled with the general disdain for ioctl-based inter-
faces which is now prevalent amongst kernel developers,
makes it difficult to extend or even adequately maintain
WE going forward.

In order to address this, work has begun on cfg80211.
This is a component intended to replace WE for config-
uration of wireless interfaces. The cfg80211 compo-
nent should provide a much cleaner API both to user-
land applications and to drivers. The userland interface
(as implemented in the Netlink-based nl80211 com-
ponent) will provide a logical grouping of configura-
tion parameters so that logically atomic operations are
actually handled atomically within the kernel. On the
driver side, cfg80211 will provide an interface that
minimizes the amount of configuration handling that
drivers need to do on their own.10 Finally, the designers
of cfg80211 have attempted to observe the API de-
sign lessons learned over a decade of continuing Linux
development. The cfg80211 component should re-
main both extensible and maintainable for a long time
to come.

9This leads to differing behaviors between drivers and is a poten-
tial source of bugs that might otherwise be avoided.

10This should serve to provide much more consistent wireless
driver behavior observable by userland applications like Network-
Manager.

3.2 “Access point” mode

Most people interested in wireless LAN technology
know that there is a difference between a wireless client
device and a wireless access point. The latter is usu-
ally a small box with antennas on it that plugs into the
wired LAN (e.g., the Ethernet jack on the wall or the
back of a cable modem or DSL modem). Access points
are wireless infrastructure devices that coordinate wire-
less LAN traffic, and they require somewhat different
software to implement this coordination behavior. Fur-
ther, many early wireless device designs made it impos-
sible to implement an access point no matter if you had
the required software or not. This is why the list of de-
vices traditionally supported by the hostapd software
is rather short.

The dirty little secret is that there is not really anything
special about the physical wireless LAN hardware used
in an access point. Usually only the software and/or
firmware controlling it prevents or enables it to be used
as an access point. With older designs, this meant that
access points needed devices with firmware which al-
lowed access point functions to work. With the “soft
MAC” designs which are now prevalent, this means that
software in the kernel can allow a wide variety of de-
vices to be used to implement an access point.

It turns out that the mac80211 component already con-
tains most of the code needed to enable this access point
behavior. However, it is currently disabled in stock ker-
nels. This is because that behavior needs a stable API
for control by userland software (e.g., hostapd), and
such an API has not yet been agreed upon. Work is in
progress (and far along) on implementing support for
such an API in the cfg80211 and nl80211 compo-
nents. The current maintainer of the mac80211 com-
ponent, Johannes Berg, has a series of patches for both
the kernel and for hostapd that enables using Linux
as an access point. This support may be merged into the
mainline kernel as early as version 2.6.27.

3.3 Mesh networking

Many people realize that there are currently two com-
mon modes of communication on wireless LANs: a)
access point or infrastructure mode, where the wireless
client talks to an access point that directs traffic to the
rest of the LAN; and b) ad-hoc or independent BSS
mode, where wireless clients coordinate wireless traffic

44 • Tux on the Air: The State of Linux Wireless Networking

amongst each other, but with traffic limited to stations
that are physically in range of one another. In recent
years a new mode has been under development. This
mode, commonly called mesh networking, is a bit like
a mixture of the two previous modes. Wireless stations
coordinate wireless traffic amongst each other within a
limited range, but also stations can pass traffic between
stations that cannot otherwise reach each other. This en-
ables communication over much larger ranges without
requiring lots of infrastructure, and is therefore ideal for
underdeveloped or disaster-stricken areas. This mode
of communication has seen popular use by the OLPC
project in their XO laptops.

The people that developed the wireless mesh firmware
for the adapters on the XO laptop have also contributed
a pre-standard implementation of mesh networking for
the mac80211 component. The developers from Cozy-
bit seem to be committed to maintaining and improving
this code until the 802.11s specification for mesh net-
working is finalized. This gives Linux a cutting-edge
wireless capability not currently seen in other main-
stream operating systems. Surely this will prove useful
to a great number of people all over the world.

3.4 Multi-Queue Support

The 802.11e wireless standard defines Quality of Ser-
vice (QoS) mechanisms based on classifying traffic into
four queues.11 All pending traffic in the highest prior-
ity queue is transmitted before traffic in the next highest
priority, and so on. The mac80211 component imple-
ments support for this by using a custom queueing dis-
cipline associated with the physical wireless device.

Modern wired LAN devices have evolved designs which
also have multiple queues for supporting QoS applica-
tions. Consequently, the Linux kernel’s networking in-
frastructure has been extended to support the concept of
multiple hardware queues attached to a single network
interface. Now that this exists, it seems sensible to con-
vert the mac80211 component to make use of this new
infrastructure. Work is currently underway to achieve
just that.

4 What else is needed?

So, it seems that things are firming up reasonably well.
Further, the wireless LAN developers already have the

11The queues are designated for voice traffic, video traffic, best-
effort traffic, and background traffic.

next round of work cut out for them. But surely that
is not all that is lacking? There certainly are areas
that need to be addressed. These include better power
management and taking advantage of performance-
enhancing features available to drivers within the Linux
kernel’s networking layer.

4.1 Better Power Management

Power management is an important issue. Not only are
mobile devices continuing to proliferate, but also en-
ergy efficiency has become increasingly important even
with desktop computers and other fixed-location de-
vices. There are both economic and ecological reasons
behind this trend, and it is unlikely to significantly de-
crease in importance anytime soon—just the opposite is
likely. So it behooves wireless LAN devices to be good
citizens regarding power usage.

4.1.1 Suspend and Resume

Drivers receive notifications of suspend and resume
events from the core kernel. Drivers are expected to save
or restore the state of their associated hardware as appro-
priate for the specific notification. This approach suf-
fices for the vast majority of LAN adapters. Since “full
MAC” devices implement the connection management
functionality themselves, this approach should work for
those devices as well.

In the case of mac80211-based devices, the actual
hardware driver does not implement the connection
management functionality. Since the wireless LAN en-
vironment may change radically between when a device
is suspended and when it is resumed, there is no way
for a mac80211-based driver to reliably resume opera-
tional state by itself after a suspend.

Unfortunately, the mac80211 component is currently
completely unaware of suspend and resume events.
Drivers work around this by unregistering themselves
from mac80211 upon suspend and re-registering them-
selves upon resume. This method works reasonably well
in many circumstances, but it is unreliable and it tends
to increase the wait required after a resume before the
wireless interface is again usable. The mac80211 com-
ponent needs to be aware of suspend and resume events
and it needs to handle them appropriately without forc-
ing driver work-arounds.

2008 Linux Symposium, Volume Two • 45

4.1.2 Power Saving Mode

The 802.11 specification includes a mechanism for a de-
vice in infrastructure mode to notify its associated ac-
cess point that it is entering power-saving mode. The
access point then queues frames intended for the power-
saving station. Periodically the station returns to full
power state long enough to ask the access point if it is
holding traffic for the station, and to accept delivery of
any such traffic. This can enable a device to save a great
deal of power if it is not actively transmitting traffic.

The mac80211 component currently makes no use of
this mechanism. The potential for power savings makes
this seem like a “must have” feature. On the other hand,
implementing it may not be as simple as it sounds. Still,
this would be a welcome addition to the mac80211 fea-
ture set.

4.2 NAPI Interrupt Mitigation

NAPI is a mechanism used by network drivers to miti-
gate the costs of processing interrupts on a busy network
link. The basic idea is to disable interrupts after the first
one and schedule a polling routing to keep processing
incoming frames. In that way, the kernel only incurs the
cost of the first interrupt in a burst of traffic rather than
processing interrupts for individual frames.

Originally, NAPI implicitly assumed that a given inter-
rupt source was associated with a single network in-
terface. Because the mac80211 component supports
multiple kernel network interfaces on a single physical
wireless interface, mac80211 drivers were implicitly
excluded from using NAPI. This has not been a huge
problem, because the transfer speeds used on wireless
networks has been relatively slow. However, 802.11n
is bringing much faster speeds to wireless LANs. For-
tunately, NAPI has been changed to disassociate in-
terrupt sources from specific network interfaces. The
mac80211 component should take advantage of NAPI
in order to maximize wireless LAN performance.

5 Other issues

Perhaps more than any other section of the kernel, wire-
less LAN support is held hostage to non-technical con-
cerns. Coping with these legal and political issues is key
to maintaining and improving good support for wireless
LANs in the Linux kernel.

5.1 Firmware Licensing

Wireless LAN protocols have stringent timing require-
ments for a number of operations. Consequently,
many adapters have an embedded microcontroller with
firmware to handle a variety of operations. This is true
even for many “soft MAC” designs, even though they
rely on the host processor for most higher-level opera-
tions. These devices simply do not work without their
required firmware.

In the Windows and OSX worlds, drivers typically in-
clude the firmware as data embedded in the driver bi-
naries. In most cases developers have learned how to
separate the firmware from those binaries so that they
can be loaded by Linux drivers as well. Unfortunately,
the copyright status of the resulting firmware images is
at best uncertain.

Many vendors have provided liberal licenses for their
firmware images which allow those images to be freely
distributed for use with Linux drivers. Intel and Ralink
are two examples of good citizens in this regard. Other
vendors have proven unwilling to cooperate on this is-
sue, with Broadcom as the most clear example of an
uncooperative vendor. Making wireless LAN hardware
purchasing decisions in support of cooperative vendors
is advised as the best approach to resolving this issue.

5.2 Vendor Participation

Many vendors have proven unwilling to provide either
support or programming documentation for their wire-
less LAN devices. This is true even for vendors like
Broadcom who have grown accustomed to providing
such support for their wired LAN devices. Some ven-
dors cite the spectre of governmental regulation as a
reason they cannot participate in the creation of open
source drivers. Other vendors (such as Realtek) find
ways to provide community developers with informa-
tion and still others (particularly Intel) provide devel-
opers dedicated to the cause. Unfortunately, too many
vendors continue to depend on support from reverse en-
gineers and unsupported community developers. Again,
economic pressure is advised as the best approach to re-
solving this situation.

5.3 Regulatory Issues

As noted above, vendors often cite the spectre of gov-
ernmental regualtors as a reason to provide poor support

46 • Tux on the Air: The State of Linux Wireless Networking

for Linux or no support for Linux at all. Unfortunately,
these fears are not altogether unfounded. The regula-
tions governing wireless LAN communications are de-
termined by geographical location and political realities.
There are literally dozens or even hundreds of differ-
ent regulatory jurisdictions covering the planet. Each
of these jurisdictions can have its own set of rules about
which channels are available, what practices (e.g., active
scanning) are acceptable on each channel, what power
output is acceptable on each channel, whether the rules
differ between indoor and outdoor operation, and many
other variables.

Complying with all these regulations can be trouble-
some at best. Add to that the fact that failure to ensure
compliance with local regulations can result in local of-
ficials refusing to let a vendor conduct business in their
jurisdiction. One can understand how a vendor may be
hesitant to embrace the loss of total control over their
products. Still, some vendors have found ways to over-
come these fears. Once again, economic pressure is ad-
vised to persuade hesitant vendors to find ways to satisfy
regulators while supporting open source drivers, as well
as to reward those vendors which have already done just
that.

6 Conclusion

Hopefully it is clear to the reader that a great deal of
progress has been made for Linux in the wireless LAN
arena over the past few years. Not so long ago Linux
was a wireless LAN ghetto, with only a few devices
working reliably enough for general use. Now most con-
sumer devices are either already supported, or support
already exists for a similar device, with reverse engi-
neering efforts continuing in hope of supporting new de-
vice versions. Better still, we now see a number of wire-
less LAN vendors offering some form of Linux support
even if that is only providing liberal licensing terms for
device firmware. Also, development of fixes and new
features continues to make Linux wireless LAN even
better. Wireless LAN is no longer the biggest problem
for Linux.

AUGEAS—a configuration API

David Lutterkort
Red Hat, Inc.

dlutter@redhat.com

Abstract

One of the many things that makes Linux configura-
tion management the minefield we all love is the lack
of a local configuration API. The main culprit for this
situation, that configuration data is generally stored in
text files in a wide variety of formats, is both an impor-
tant part of the Linux culture and valuable when humans
need to make configuration changes manually.

AUGEAS provides a local configuration API that
presents configuration data as a tree. The tree is backed
directly by the various config files as they exist today;
modifications to the tree correspond directly to changes
in the underlying files. AUGEAS takes great care to pre-
serve comments and other formatting details across edit-
ing operations. The transformation from files into the
tree and back is controlled by a description of the file’s
format, consisting of regular expressions and instruc-
tions on how to map matches into the tree. AUGEAS cur-
rently can be used through a command line tool, the C
API, and from Ruby, Python, and OCaml. It also comes
with descriptions for a good number of common Linux
config files that can be edited “out-of-the-box.”

1 Introduction

Configuration management of Linux1 systems is a no-
toriously thorny subject. Problems in this space are nu-
merous, from making large numbers of machines man-
ageable by mere mortals, to the sheer mechanics of
changing the configuration files of a single system pro-
grammatically. What makes the latter so difficult is the
colorful variety of configuration file formats in com-
mon use, which has historically prevented any form of
system-wide configuration API for Linux systems.

AUGEAS lays the foundation for such an API by focus-
ing on the most basic and mundane task in this area:

1Most of this paper applies to any Unix-like system, though we
will only talk about Linux here.

changing configuration files in a way that abstracts away
the formatting details that are irrelevant to program-
matic configuration changes. While formatting details
may be irrelevant in this context, they are still impor-
tant, and AUGEAS goes through a lot of trouble to pre-
serve comments, whitespace, etc.

Logic for configuration changes is embedded in many
tools, and the same logic is reinvented multiple times,
often for no other reason than a difference in imple-
mentation language. As an example, Webmin [?] can
edit a wide variety of configuration files; that editing
logic, and the hard work for writing and maintaining it,
is of no use to other configuration tools like Puppet,
Bcfg2, or cfengine, since none of them is written in
Perl. The prospect of reimplementing large parts of this
logic in Ruby for use by Puppet was so unappealing
that it became clear that a language-agnostic and tool-
independent way to achieve this had to be found.

The lack of a simple local configuration API also pre-
vents building higher-level services around configura-
tion changes. Without it, there is no way to set system-
wide (or site-wide) policy for such changes that can be
enforced across multiple tools, from simple local GUI
tools to remote administration capabilities.

AUGEAS tackles this problem in the simplest possible
way and focuses solely on the mechanics of modifying
configuration files.

2 Design

There is no shortage of attempts to simplify and unify
Linux system configuration. Generally, they fall into
one of three categories: keyhole approaches targeted
at one specific purpose; greenfield approaches to solve
modifying configuration data once and for all; and tem-
plating, popular in homegrown config management sys-
tems when plain file copying becomes unsatisfactory,
and often used as a middle ground for the first two.

• 47 •

48 • AUGEAS—a configuration API

A careful look at these three types of approaches was
very instructive in setting AUGEAS’ design goals, and
determining what exactly it should do, and, even more
importantly, what it should not attempt to do.

2.1 Keyhole Approaches

The most direct and obvious approach to scripting con-
figuration changes is to use simple text editing tools like
sed and awk or the equivalent facilities in the script-
ing language of choice. Since changing configuration
data is usually only part of a larger task, like writing an
installer, the resulting scripts are good enough for their
purpose, but not general enough to be of use in other
situations, even if language barriers are not a concern.

All popular open-source config management systems
follow this approach, too, resulting in unnecessary du-
plication of logic to parse and write configuration files,
and a healthy mix of common and unique bugs in that
logic. Even seemingly simple file formats hold surprises
that make it all too easy to write a parser that will fail to
process all legal files for that format correctly. As an
example, one simple and popular format uses setting of
shell variables in a file sourced into a larger script. Since
comments in shell scripts start with a # and extend to the
end of the line, a parser of such files should strip this pat-
tern from every line it reads before processing it further.
Unless, of course, the # appears inside a quoted string.
But even that will trip up on unquoted uses of # that do
not start a comment, such as V=x#y.

2.2 Greenfield Approaches

Recognizing that the state of the art of modifying Linux/
Unix configuration is less than ideal, various proposals
have been put forward to improve it, such as Elektra and
Uniconf. Since the variations in config file formats are
the biggest roadblock to treating configuration data in a
unified manner, they generally start by proposing a new
scheme for storing that data. The exact storage scheme
varies from project to project, from LDAP to relational
databases and files in their own favorite format. Such an
approach is of course unrealistic, since it requires that
the upstream consumers of configuration data modify
their applications to use the new API. From the perspec-
tive of an upstream maintainer, such changes are with-
out reward while the API is new and unproven. And the

only way to prove that an API is worth upstream’s effort
is to get upstream projects to use it.

A side effect of introducing completely new storage for
configuration data is that the configuration files that ad-
ministrators are used to, and that a multitude of tools
knows about, are either no longer used at all, or are
no longer the authoritative store for configuration data.
This is undesirable, as system administrators have to get
used to a whole new way of making local configuration
changes, and scripts have to be changed to use the new
configuration API.

Greenfield approaches generally also aim much higher
than just modifying configuration data. It is tempt-
ing to model other aspects of configuration data and
build more capabilities into the new unified API, rang-
ing from fine-grained permissioning schemes to hiding
differences between Linux distributions and Unix fla-
vors. Each of these addresses a problem that is hard
in its own right, often not just because of technical dif-
ficulties, but also because modeling it in a way that is
suitable for a wide variety of uses is hard.

2.3 Templating

Templating, just as the greenfield approaches, intro-
duces a new “master” store for all configuration data,
which makes it impossible to change it in its “native”
location, either manually (for example, during an emer-
gency), or with other programs than the template engine.

2.4 Design Goals

With the successes and limitations of these approaches
in mind, AUGEAS focuses on the problem at the heart
of all of them: editing configuration files programmati-
cally. Above all else, AUGEAS limits its scope to a hand-
ful of goals around that task.

As we have seen for greenfield approaches, it is un-
likely that the current situation of configuration data
scattered across many files in many formats can be ad-
dressed by radically breaking with history and custom.
At the same time, as shown by templating approaches,
the penalty for generating these files from a new au-
thoritative source is high, and rarely ever appropriate.
AUGEAS therefore uses the existing config files as its
sole store of configuration data and does not require ad-
ditional data stores.

2008 Linux Symposium, Volume Two • 49

The multitude of producers and consumers of config-
uration data makes it imperative that AUGEAS be use-
ful without the support of these producers and con-
sumers. In other words, AUGEAS must be useful with-
out any changes to other code which handles config-
uration data—in particular, without any support from
the primary users of that data like system daemons.
Similarly, there are a vast number of tools that mod-
ify configuration data, and it should be possible to use
these tools side-by-side with AUGEAS. As a conse-
quence, AUGEAS should not rely on such tools preserv-
ing any AUGEAS-specific annotations (for example, in
comments), while making sure that such annotations
added by other tools are preserved across edits with
AUGEAS.

We would like AUGEAS to handle as wide a variety of
configuration files as possible. Since every format needs
some form of intervention by a person, AUGEAS should
make it as easy as possible to describe file formats, not
only in terms of the notation of the description, but also
in the checks that it can perform to spot errors in the
description.

How a change to the tree is translated into a change in
the underlying file should be intuitive, and should cor-
respond to a reasonable expectation of “minimal” ed-
its. For example, changing the alias of one host in
/etc/hosts should only lead to a change on the line
containing the host entry, and leave the rest of the file
untouched.

Finally, configuration changes have to be made in many
situations and with tools written in many languages.
AUGEAS therefore must be “language neutral” in the
sense that it can be used by the widest variety of
programming languages. In practice, this means that
AUGEAS has to be implemented in C. Furthermore, the
public API relies solely on strings as data types, where
some strings denote paths in the tree.

3 Using AUGEAS to change files

AUGEAS can be used in a number of ways: a C library
API, the augtool shell command, and from a number
of other programming languages. Currently, bindings
are available for Python, Ruby, and OCaml. The fol-
lowing discusses the usage of augtool, which closely
mirrors the other interfaces.

3.1 The tree and path expressions

In the tree that AUGEAS maintains, each node consists
of three pieces of information: a string label that is part
of the path to the node and all its children, an optional
string value, and a list of child nodes. Since files are
inherently ordered data structures, the AUGEAS tree is
also ordered; in particular, the order of siblings matters.
Multiple siblings can have the same label—for example,
a host entry in /etc/hosts can have multiple aliases,
each of which is stored in a separate alias node.

Because of this structure, AUGEAS’ tree is conceptually
similar to an XML parse tree. When multiple siblings
have the same label, it is of course necessary to distin-
guish between them. For that, and for simple searches,
AUGEAS adapts some of the conventions of XPath [2].
In particular, a label by itself in a path, for example,
alias/, matches all children of a node with label
alias. The n-th child with that label can be picked
out with alias[n], and the last such child, with the
special notation alias[last()].

Wildcard searches using * as a path component are also
supported. The path /p/*/g matches all grandchildren
with label g of the node p. Searches with * are not
recursive, and the above pattern does not match a node
p/a/b/g.

3.2 Tree manipulation

When augtool starts, it reads schema descriptions out
of a set of predefined directories, and parses configura-
tion files according to them. The result of this initializa-
tion is the tree that is presented to the user. The user can
now query the tree, using match to search nodes that
match a certain path expression, and get to retrieve the
value associated with a node.

The tree is modified using ins to insert new nodes at a
specific position in the tree—for example, to insert an-
other alias node after the first such node, and rm to
delete nodes and whole subtrees. The value associated
with a node can be changed with set.

Files are not modified while the tree is being changed,
both so that files with possibly invalid entries are not
produced while multi-step modifications are under way,
and to enable more extensive consistency checks when
files are finally written. Writing of files is initiated with

50 • AUGEAS—a configuration API

the save command, which writes new versions of all
files whose tree representation has changed; files that
have no modifications made to them are not touched.

What files are written, and how the tree is transformed
back into files, are again governed by the schemas that
augtool read on startup. Schemas are written in a
domain-specific language, and the primitives of the lan-
guage ensure that the transformation from file to tree
and the reverse transformation from tree to file match
and follow certain consistency rules designed to make
the round trip from file through tree to modifed file safe
and match users’ expectations. The mechanisms per-
forming the transformation need to know two pieces of
information: which files to transform, and how to trans-
form them. The first is given through a file name filter,
described as shell globs specifying which files to include
or exclude; the second is done by writing a lens that is
applied to the contents of each file matching the filter.

4 Lenses and bidirectional programming

AUGEAS needs to transform file contents (strings) into
a tree and that tree back into file contents. Rather than
having users specify these two mappings separately, and
running the risk that they might not be compatible with
one another, AUGEAS uses the idea of a lens to combine
the two mappings in a way that guarantees their compat-
ibility in a very precise sense.

The term lens was coined by the Harmony project [4],
and originates from the “view update” problem: given
a concrete view of data (configuration files in AUGEAS’
case) and an abstract view of the same data (the tree),
construct suitable mappings between the two views that
translate changes to the abstract view into intuitively
minimal changes of the concrete data. Generally, the
mapping from concrete to abstract view leaves out some
information, for example, formatting details or com-
ments that are of no use in the abstract view. Conversely,
the mapping from abstract to concrete view must restore
that data. With that, lenses are not bijective mappings
between the concrete and the abstract domains: multiple
concrete views, namely all the ones that differ only in
unimportant details such as formatting, map to the same
abstract view. Harmony uses lenses to construct map-
pings between tree-structured data [3], for example, for
synchronization of calendar files that essentially contain
the same information, but use different XML-based for-
mats. Similarly, Boomerang [1] performs mappings

between unstructured text data. AUGEAS uses the same
approach for its mapping between text data and trees.

Formally, a lens consists of two functions, get and put.2

If C is the set of all concrete data structures (in AUGEAS’
case, strings), and A is the set of all abstract data struc-
tures (in AUGEAS’ case, trees), a lens l consists of

l.get : C → A

l.put : A×C →C

The get function is used to transform concrete views
into abstract ones. The put function, which maps ab-
stract views back to concrete views, receives the origi-
nal concrete view as its second argument and consults
that to restore any information left out by the get direc-
tion. The two directions are tied together by two re-
quirements that express intuitive notions of how lenses
should behave when we make a roundtrip from concrete
to abstract view and back: for every c ∈C and a ∈ A, a
lens l must fulfill

l.put (l.get c) c = c (GETPUT)

l.get (l.put a c) = a (PUTGET)

Put into words, GETPUT expresses that transforming a
string c into a tree, and then transforming the unmod-
ified tree back into a string, should yield the string c
we started with, and ensures that the put direction re-
stores any information not captured in the tree faithfully
when the tree is not modified. The PUTGET law states
that transforming any tree back into a string using an ar-
bitrary concrete string c as the second argument to put
and transforming the result back into a tree must yield
exactly the tree we started with, limiting how put uses
its second argument c when transforming a tree: it can
only use it for those parts of a string that are abstracted
away by the get direction.

The lens laws are weaker than requiring that get and put
be inverses of one another. That would require that both
be bijective, and keep lenses from doing what makes
them so useful in practice: abstracting away unimpor-
tant information like comments or how many spaces are
used to separate two values. Since all lenses contain a
get and put direction that are compatible in the sense laid

2Strictly speaking, there is a third function, create, involved to
create new concrete data from abstract data alone; since we are not
proving anything about lenses here, there’s no need to distinguish
between put and create.

2008 Linux Symposium, Volume Two • 51

down by the lens laws, building complex lenses from
simpler ones is called bidirectional programming, since
every lens expresses how to get from input c to output a,
and at the same time, how to get from an output a back
to an input c.

Lenses are built from simple builtin lenses, called
lens primitives, by combining them with a few builtin
lens combinators. This mechanism of building com-
plex lenses from simpler ones forms the backbone of
AUGEAS’ schema descriptions. The two lens laws,
GETPUT and PUTGET, restrict how lenses can be com-
bined; in AUGEAS, these restrictions are enforced by the
typechecker described below.

Typically, a complex lens that describes the processing
of a whole file is broken up in smaller lenses, each of
which processes a small portion of the file, for example
the aliases of a host in /etc/hosts. To support this
mode of working, where complex lenses are gradually
built from simpler ones, AUGEAS has a builtin unit test
facility which makes it possible to verify that a “small”
lens applied to a text fragment or a partial tree produces
the desired result.

4.1 Matching

Behind the scenes, when a lens is applied either to a
string (in the get direction) or to a tree (in the put direc-
tion), it has to be matched to the current input for a va-
riety of reasons, the most basic being to check whether
a lens applies to the input at all.

In the get direction, this poses little difficulty and match-
ing of a lens to a string boils down to matching a string
to a regular expression. Regular expressions are re-
stricted to the ones familiar from formal language the-
ory, not the ones popular in various languages such as
Perl, as those introduce extensions that leave the realm
of regular languages. Some of the computations that
the typechecker has to perform can be easily done with
regular languages but become uncomputable when a
broader class of languages, such as context-free lan-
guages, are considered. In practical terms, AUGEAS

uses the notation of extended POSIX regular expres-
sions, but does not support backreferences.3

3The implementation currently also lacks support for a few other
features, such as named character classes, but unlike backreferences,
those are supportable in principle.

Matching a tree in the put direction to a lens is more
complicated than string matches for the get direction.
To avoid implementing a mechanism that matches trees
against a full tree schema, AUGEAS defines tree match-
ing solely in terms of matching the labels at one level of
the tree against a regular expression. For example, a lens
that produces any number of nodes labelled a followed
by a node labelled b, matches any tree that has such a se-
quence of nodes at its root level, regardless of the struc-
ture of the trees underneath each a and b node. This
simplification makes it possible to reduce tree matching
to matching regular expressions against strings. A tree
with two nodes labelled a followed by a node labelled
b and a node labelled c at its root level is converted into
the string a/a/b/c/ for purposes of matching, and the
lens mentioned above is converted to the regular expres-
sion (a/)∗b/. Clearly, this lens does not match the
tree a/a/b/c/.

4.2 Lens primitives

AUGEAS has a handful of lens primitives; strictly speak-
ing, the builtins are functions that, given a regular ex-
pression, indicated as re, or a string, indicated by str, or
both, produce lenses.

Tree nodes are constructed by the subtree lens combina-
tor discussed in the next section. The lens primitives lay
the groundwork for the subtree lens: they mark which
parts of the input to use as a tree label, which to store as
the node’s value, and which to omit from the tree.

• key re matches the regular expression re in the get
direction and tells the subtree lens to use that as
the label of the tree node it is constructing. In the
put direction, it outputs the label of the current tree
node.

• label str does not consume any input in the get di-
rection, nor does it produce output in the put direc-
tion. It simply tells the subtree lens to use the str
as the label of a tree node.

• seq str is similar to label; in the get direction, it
sets the label of the enclosing subtree to a number.
When that subtree is used in an iteration, the num-
bers are consecutive, starting from 1. The str ar-
gument is used to distinguish between separate se-
quences. In the put direction, the seq lens expects a
tree node labelled with any positive number. There

52 • AUGEAS—a configuration API

is also a counter str lens whose sole effect it is to
reset the counter with the given name back to 1 in
the get direction.

• store re matches the regular expression re in the
get direction and tells the subtree lens to use that
as the value of the tree node it is constructing. In
the put direction, it outputs the value of the current
tree node.

• del re str matches the regular expression re in the
get direction and suppresses any matches from in-
clusion in the tree. In the put direction, it restores
the match in the output, if the current tree node cor-
responds to preexisting input, or outputs the default
str if the current tree node was added to the tree and
does not have any counterpart in the original input.

4.3 Lens combinators

Besides the subtree lens, there are a few more lens
combinators that make it possible to build complicated
lenses from the five lens primitives listed above. In the
following, l, l1, and l2 always refer to arbitrary lenses:

• The subtree lens, written as [l], applies l in the
get direction to the input and constructs a new tree
node based on the results of l.get. It uses whatever l
marked as label and value for the new tree node; if l
contains other subtree lenses, the trees constructed
by them become the children of the new tree node.

• Lens concatenation, written as l1 · l2, applies first l1
and then l2. In the get direction, the tree produced
by l1 is concatenated with that produced by l2; sim-
ilarly, in the put direction, the current tree is split
and the first part is passed to the put direction of l1,
and the second part to the put direction of l2.

• Lens union, l1|l2, chooses one of l1 or l2 and ap-
plies it. Which one is chosen depends on which
one matches the current text in the get direction, or
the current tree in the put direction.

• Lens iteration, l∗ and l+, applies l as long as it
matches the current text in the get direction and the
current tree in the put direction.

When AUGEAS processes a file with a lens l, it expects
that the lens for that file processes the file in its entirety:

that means that l.get has to match the whole contents of
the file. If it only matches partially, AUGEAS flags that
as an error and refuses to produce the tree for that file.
Similarly, when AUGEAS writes the tree back to a file, it
expects that the entire subtree for that file, for example,
everything under /files/etc/hosts, gets written
out to file. It is an error if any nodes in that subtree are
not written, or if required nodes (such as the canonical
name for an entry in /etc/hosts) are missing from
the tree.

5 Writing schemas

The description of how files are to be mapped to the
tree, and the tree back into files are defined in AUGEAS’
domain-specific language. The language is a functional
language, following the syntactic conventions of ML.
Figure 1 shows the definitions needed to process /etc/
hosts.

Schema descriptions are divided into modules, one
per file. A module can contain autoload direc-
tives and names defined with let. AUGEAS’ language
is strongly typed, and statically typechecked; this en-
sures that as many checks as possible are performed
without ever transforming a single file. The available
types are string, regexp, lens, filter, and
transform—the last two are only needed for describ-
ing which lens is applied to what file.

String literals are enclosed in double-quotes, and can
use the escape sequences familiar from C. Regular ex-
pression literals are enclosed in forward slashes and use
extended POSIX syntax.

The most important part of the listing in Figure 1 is line
16, which defines the lens used to transform a whole
/etc/hosts file. Strictly speaking, lenses are only
ever applied to strings; finding files and reading and
writing their contents is done by transforms. The trans-
form xfm combines the lens lns and a filter that in-
cludes the one file /etc/hosts. Transforms are used
by augtool when it starts up to find all the files it
needs to load; to this end, it looks for all transforms in
modules on its search path that are marked for autoload,
as the transform xfm is on line 2 in the example.

The /etc/hosts file is line-oriented, with lines fur-
ther subdivided in fields separated by whitespace. The
fields are the IP address, the canonical name, and an

2008 Linux Symposium, Volume Two • 53

1: module Hosts =
2: autoload xfm

4: let sep_tab = del /[\t]+/ "\t"
5: let sep_spc = del /[\t]+/ " "
6: let eol = del "\n" "\n"

8: let comment = [del /#.*\n/ "# "]
9: let word = /[^# \n\t]+/

10: let host = [seq "host" .
11: [label "ipaddr" . store word] . sep_tab .
12: [label "canonical" . store word] .
13: [label "alias" . sep_spc . store word]*
14: . eol]

16: let lns = (comment | host) *

18: let xfm = transform lns (incl "/etc/hosts")

Figure 1: The definition of the lenses used for mapping /etc/hosts into the tree and back.

127.0.0.1 localhost
192.168.0.2 server
A comment
192.168.0.3 ns

(a) Restoring comments by position

127.0.0.1 localhost
192.168.0.1 router
A comment
192.168.0.2 server
192.168.0.3 ns

(b) Initial /etc/hosts

127.0.0.1 localhost
A comment
192.168.0.2 server
192.168.0.3 ns

(c) Restoring comments by key

Figure 2: Two possibilities of restoring comments in a changed file. After removing the tree node for
192.168.0.1 from the tree for the initial file (middle), the tree can either be transformed so that the comment is
restored at the same position (left), or so that the comment is restored by its key (right).

arbitrary number of aliases for a host. Lines starting
with # are comments. Accordingly, the lens lns on
line 16 processes any combination of matches for the
comment and host lens.

The comment lens on line 8 deletes any line matching
the regular expression /#.*\n/, i.e. anything from a
starting # to the end of the line. Since AUGEAS requires
that a file in its entirety is matched, there is no need to
anchor regular expressions at the start and end of lines
with ˆ or $. The del primitive is enclosed in a sub-
tree construct [...]; that causes the tree to contain a
node with NULL label and value for every comment in
the file. The reason for doing this has to do with how
the put direction of del restores text: conceptually, the
get direction of lenses produces a skeleton of the parsed
text consisting of all the text deleted by the del lens with
“holes” to fill in the parts stored in the tree. The put di-

rection traverses the tree and fills the holes. The skele-
tons are associated with the parent node in the tree. If the
comments were not their own tree node, AUGEAS would
treat the whole /etc/hosts file as consisting of some
comments with a fixed number of host entries between
the comments. As an example, consider the initial file
in Figure 2. After the initial file shown in the middle
is read into the tree and the tree node corresponding to
192.168.0.1 is deleted, there are two ways in which
the comment can be preserved when the tree is saved
back to file: either by putting the comment after the sec-
ond host entry (by position) as shown in Figure 4.3 or as
coming after the entry for 127.0.0.1 but before the
entry for 192.168.0.2 (by key). The former behav-
ior results from not enclosing the del for comment in a
subtree, the latter is the behavior of the lens in Figure 1.

The host lens on lines 10–14 in Figure 1 is straight-

54 • AUGEAS—a configuration API

forward in comparison: it stores host entries in sepa-
rate subtrees, labelled with the number of the host entry.
Each such subtree consists of a node labelled ipaddr,
followed by a node labelled canonical, followed by
zero or more nodes labelled alias. The value for
each of the nodes is taken from splitting the line along
spaces. The only difference between the sep_tab and
sep_spc lenses that consume the whitespace between
tokens on a line is how they behave when the tree is
modified so that a brand new host entry is written to the
file: sep_tab produces a tab character in that case,
whereas sep_spc produces a space character.

The example in Figure 1 also illustrates two different
ways to transform array-like constructs into the tree:
the whole /etc/hosts file can be viewed as an ar-
ray of lines of host entries (ignoring comments for the
moment), and the aliases for each host are an array of
space-separated tokens. For the former, we used the
seq lens to produce a tree node for each host entry,
wherease for the latter, we simply produce a new node
with label alias for each alias. The reason for this
is again connected to how formatting is preserved when
entries are deleted from the tree or added to it. The for-
mer construct, using seq restores spacing by key, the
number of the host entry in this case, whereas the latter
restores it by position. When a new host entry is inserted
into the tree under a new key, e.g. 10000, all existing
entries keep their spacing, since the skeletons for each
entry are restored using that key. On the other hand,
when a new alias for a host is inserted into the tree as
the first alias for the host, the spacing is restored by po-
sition, so that the space between the (new) first and sec-
ond alias is the same as the space that was in the initial
file between the (old) first and second alias. Generally,
it is preferrable to map arrays into the tree by using the
same fixed label repeatedly, as is done for aliases here,
since it makes the tree easier to manipulate, but often,
considerations of what it means to preserve formatting
in an “intuitive” way require that constructs using seq
be used.

5.1 Lens development

When developing a lens for a new file format, the needed
lens is gradually built up from simpler lenses and tested
against appropriate text or tree fragments. For example,
with the definitions from Figure 1, we can add a test

test lns get
"127.0.0.1 localhost.localdomain localhost" = ?

to that same file. Running the modified file through
augparse prints the tree resulting from applying the
get direction of lns to the given string; augparse is
a companion to augtool geared towards lens develop-
ment.

There are two different kinds of tests: test LNS get
STR = RESULT applies the get direction of LNS to
STR and compares the resulting tree to RESULT, or
prints it if RESULT is ?. Conversely, test LNS
put STR after COMMANDS = RESULT first ap-
plies the get direction of LNS to STR; it then changes the
resulting tree using the COMMANDS, which can change
the tree similar to augtool’s set, rm, and ins com-
mands, and transforms the modified tree back to a string
using the put direction of LNS. The test succeeds if this
string equals the given RESULT string.

5.2 The typechecker

When configuration files are modified programmati-
cally, ensuring that the changed configuration files are
still valid is a major concern. AUGEAS contains a type-
checker, very closely modelled on Boomerang’s [1]
typechecker, that helps guard against common problems
that could lead to invalid configuration files. Typecheck-
ing is performed statically—in other words, based solely
on the schema description, to help weed out problems
before any file is ever transformed according to that
schema.

Typechecking happens in two phases: the first phase
performs fairly standard checks that arguments to func-
tions and operators have the type required by those
functions and operators, for example, to ensure that the
subtree operator [...] is only applied to lenses, and
not to strings or regular expressions.

The second phase checks lenses for certain problems as
they are constructed from simpler lenses. The details of
those checks are based on the theoretical foundation laid
by Boomerang [1] and make heavy use of computa-
tions on the regular languages matched by those lenses.
In essence, the checks ensure that the lens laws GETPUT

and PUTGET hold for any lens that is constructed.

Explaining these checks in detail would triple this paper
in size; instead, let us just look at one of them to provide
a taste of what the typechecker does. For two lenses l1
and l2, call the regular expressions they match in the get

2008 Linux Symposium, Volume Two • 55

direction r1 and r2. The get direction of the concatena-
tion l = l1 · l2 of these two lenses matches the concate-
nation r = r1r2 of their underlying regular expressions.
When l.get is applied to a string u matching r, it needs
to split it into two strings u = u1u2 and then pass u1 to
l1.get and u2 to l2.get. The two lenses l1 and l2 may do
completely different things with these strings, for exam-
ple, l1 may be a del lens and l2 a store lens. It is therefore
imperative that there be no ambiguity in how u is split
into two strings; otherwise, the way u is processed by
l, and therefore the resulting tree, would depend on ar-
cane implementation details of the split operation, and
may change unexpectedly as code is changed.

The typechecker therefore checks every time a conca-
tentation of two lenses is formed to ensure that the regu-
lar languages matched by them are unambiguously con-
catenable; in other words, that each string u matching r
can be split in exactly one way in one part matching r1
and one part matching r2.

Similar checks are performed for iteration of lenses to
ensure that a string matching an iterated lens l∗ can be
split in exactly one way into n pieces matching l. For the
union l1|l2 of lenses, checks are performed to ensure that
whether l1 or l2 is chosen is guaranteed to be unique.

The lens laws impose restrictions both on the get and
the put direction of lenses, and both are enforced by the
typechecker. The concatenation of two lenses is not only
restricted by the requirement that any input string in the
get direction can be split unambiguously, but also by the
requirement that any tree in the put direction can be split
unambiguously. Splitting (for concatenation and itera-
tion) and choice (for union) of trees is performed solely
on the labels of the immediate children of the node un-
der consideration. This has the advantage that it is easy
to implement, and can be easily reduced to checks sim-
ilar to those for the get direction, but has the disadvan-
tage that as far as the typechecker and the put direction
of lenses are concerned, all tree nodes labeled foo are
identical, no matter whether they are a leaf or whether
they are the root of complicated subtrees. This simple
approach to matching trees has not yet led to any sig-
nificant problems in practice, but it is conceivable that
a more sophisticated approach to trees and tree schemas
is needed at some point in the not-too-distant future.

6 Future Work

The current implementation of AUGEAS is useful, but
by no means complete. Improvements can be made in
almost every area: first and foremost is the task of ex-
panding the set of configuration files that AUGEAS can
process “out-of-the-box.”

Several limitations of the current implementation would
be particularly interesting to remove. First, the public
API lacks support for recursive matching. While path
expressions can use the * wildcard operator, that oper-
ator does only match one level in the tree. An opera-
tor that matches multiple levels at once would be very
useful, similar to the ** extension to filename globbing
in some programs, or the // operator in XPath expres-
sions. Other changes to the public API, such as efficient
iteration over large parts of the tree, are desirable.

The language currently misses the concept of permu-
tations; for example, in some files entries take options,
similar to shell commands. If individual options are pro-
cessed by lenses l1, l2, . . ., ln, there is no convenient way
in the language to construct a lens that matches a permu-
tation of these n lenses; permutations either need to be
written out manually or approximated with a construct
like (l1|l2| . . . |ln)∗. Because of the combinatorial com-
plexity involved, a straightforward implementation of
permutations will be of limited use in practice. Instead,
adding an operator like RelaxNG’s interleave to the
language seems more promising, but even that will re-
quire some special care to keep the runtime of the type-
checker bearable.

AUGEAS can only handle file formats that can be de-
scribed as a regular language. In particular, file formats
that have constructs that can be nested arbitrarily deep
can not be processed by AUGEAS. That is a fairly severe
limitation in practice, as it precludes processing of the
very popular httpd.conf: the Apache configuration
allows some constructs, most notably IfModule, that
can be nested to an arbitrary depths. While it is not ter-
ribly hard to expand the implementation to process such
non-regular file formats, enhancing the typechecker to
handle them is hard. The most promising approach is
to expand the class of file formats that AUGEAS ac-
cepts only very slightly, e.g. by allowing balanced lan-
guages, but not all context-free languages, and basing
typechecking such file formats off suitable regular ap-
proximations of the file format.

56 • AUGEAS—a configuration API

Another area of possible improvements are services
built on top of AUGEAS: system-config-boot,
one of the graphical configuration tools shipped with
Fedora, contains some experimental code that sepa-
rates the user interface from the logic changing /etc/
grub.conf through DBus. The UI sends messages
to a DBus activated service that checks the users cre-
dentials with PolicyKit and, if the users is authorized
to make the change, uses Augeas to edit /etc/grub.
conf. The backend does not need any specific knowl-
edge about the file being edited, and it would be fairly
easy to expand this code to add permissioning to con-
figuration changes that distinguishes between different
nodes in the Augeas tree, even if those nodes ultimately
come from the same file.

In a similar vein, it would be interesting to investigate
a remote-able configuration API built on top of Augeas,
where a special daemon allows remote counterparts to
modify a system’s configuration.

Acknowledgments

We wish to thank Benjamin Pierce and Nathon Foster
and their collaborators for their work on Harmony and
Boomerang. Anders Moeller provided invaluable in-
put, not the least through his dk.brics.automaton
Java package, for the finite automata library used by the
type checker.

References

[1] Aaron Bohannon, J. Nathan Foster, Benjamin C.
Pierce, Alexandre Pilkiewicz, and Alan Schmitt.
Boomerang: Resourceful lenses for string data. In
ACM SIGPLAN–SIGACT Symposium on Principles
of Programming Languages (POPL), San
Francisco, California, January 2008.

[2] World Wide Web Consortium. XML Path
Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath.

[3] J. Nathan Foster, Michael B. Greenwald,
Jonathan T. Moore, Benjamin C. Pierce, and Alan
Schmitt. Combinators for bidirectional tree
transformations: A linguistic approach to the
view-update problem. ACM Transactions on
Programming Languages and Systems, 29(3):17,
May 2007. Preliminary version presented at the

Workshop on Programming Language
Technologies for XML (PLAN-X), 2004; extended
abstract presented at Principles of Programming
Languages (POPL), 2005.

[4] Benjamin Pierce et al. Harmony. http://
alliance.seas.upenn.edu/~harmony.

‘Real Time’ vs. ‘Real Fast’: How to Choose?

Paul E McKenney
IBM Linux Technology Center

paulmck@linux.vnet.ibm.com

Abstract

Although the oft-used aphorism “real-time is not real-
fast” makes a nice sound bite, it does not provide much
guidance to developers. This paper will provide the
background needed to make a considered design choice
between “real time” (getting started as quickly as possi-
ble) and “real fast” (getting done quickly once started).
In many ways, “real fast” and “real time” are Aesop’s
tortoise and hare, respectively. But in the real world of
real time, sometimes the race goes to the tortoise and
sometimes it goes to the hare, depending on the require-
ments as well as the details of the workload and the en-
closing software environment.

1 Introduction

Linux
TM

has made much progress in the real-time arena
over the past ten years, particularly with the advent of
the -rt patchset [10], a significant fraction of which has
now reached mainline. This naturally leads to the ques-
tion of which workloads gain improved performance by
running on real-time Linux. To help answer this ques-
tion, we take a close look at the real-time vs. real-fast
distinction in order to produce useful criteria for choos-
ing between a real-time and non-real-time Linux.

Section 2 looks at a pair of example applications in or-
der to make a clear distinction between real-time and
real-fast, Section 3 examines some factors governing the
choice between real-time and real-fast, and Section 4
gives an overview of the underlying causes of real-time
Linux’s additional overhead. Section 5 lays out some
simple criteria to help choose between real fast and real
time, and finally, Section 6 presents concluding remarks.

2 Example Applications

This section considers a pair of diverse workloads, an
embedded fuel-injection application and a Linux kernel
build.

2.1 Fuel Injection

This rather fanciful fuel-injection scenario evaluates
real-time Linux for controlling fuel injection for a mid-
sized industrial engine with a maximum rotation rate of
1500 RPM. This is slower than an automotive engine;
when all else is equal, larger mechanical artifacts move
more slowly than do smaller ones. We will be ignoring
complicating factors such as computing how much fuel
is to be injected.

If we are required to inject the fuel within one degree of
top dead center (the point in the combustion cycle where
the piston is at the very top of the cylinder), what jitter
can be tolerated in the injection timing? 1500 RPM is 25
RPS, which in turn is 9000 degrees per second. There-
fore, a tolerance of one degree turns into a tolerance of
one nine-thousandth of a second, or about 111 microsec-
onds.

Such an engine would likely have a rotational position
sensor that might generate an interrupt to a device driver,
which might in turn awaken a real-time control process.
This process could then calculate the time until top dead
center for each cylinder, and then execute a sequence
of nanosleep() system calls to control the timing.
The code to actuate the fuel injector might be a short
sequence of memory mapped I/O (MMIO) operations.

This is a classic real-time scenario. We need to do some-
thing before a deadline, and faster is most definitely not
better. Injecting fuel too early is just as bad as injecting
it too late. This situation calls for some benchmarking
and validation of the nanosleep() system call, for
example, with the code shown in Figure 1. On each pass
through the loop, lines 2-5 record the start time, lines 6-9
execute the nanosleep() system call with the speci-
fied sleep duration, lines 10-13 record the end time, and
lines 14-16 compute the jitter in microseconds and print
it out. This jitter is negative if the nanosleep() call
did not sleep long enough, and positive if it slept too
long.

• 57 •

58 • ‘Real Time’ vs. ‘Real Fast’: How to Choose?

1 for (i = 0; i < iter; i++) {
2 if (clock_gettime(CLOCK_MONOTONIC, ×tart) != 0) {
3 perror("clock_gettime 1");
4 exit(-1);
5 }
6 if (nanosleep(&timewait, NULL) != 0) {
7 perror("nanosleep");
8 exit(-1);
9 }
10 if (clock_gettime(CLOCK_MONOTONIC, &timeend) != 0) {
11 perror("clock_gettime 2");
12 exit(-1);
13 }
14 delta = (double)(timeend.tv_sec - timestart.tv_sec) * 1000000 +
15 (double)(timeend.tv_nsec - timestart.tv_nsec) / 1000.;
16 printf("iter %d delta %g\n", iter, delta - duration);
17 }

Figure 1: Loop to Validate nanosleep()

It is important to use clock_gettime() with
the CLOCK_MONOTONIC argument. The more-
intuitive CLOCK_REALTIME argument to clock_
gettime() means “real” as in real-world wall-clock
time, not as in real-time. System administrators and
NTP can adjust real-world wall-clock time. If you incor-
rectly use gettimeofday() or CLOCK_REALTIME
and the systems administrator sets the time back one
minute, your program might fail to actuate the fuel in-
jectors for a full minute, which will cause the engine to
stop. You have been warned!

Before executing this validation code, it is first
necessary to set a real-time scheduling priority, as
shown in Figure 2. Line 2-5 invokes sched_get_
priority_max() to obtain the highest possible
real-time (SCHED_FIFO) priority (or print an error)
and lines 6-9 set the current process’s priority. You
must have appropriate privileges to switch to a real-
time priority; either super-user or CAP_SYS_NICE.
There is also a sched_get_priority_min() that
gives the lowest priority for a given scheduler pol-
icy, so that sched_get_priority_min(SCHED_
FIFO) returns the lowest real-time priority, allowing
applications to allocate multiple priority levels in an
implementation-independent manner, if desired.

However, real-time priority is not sufficient to obtain
real-time behavior, because the program might still take
page faults. The fix is to lock all of the pages into

memory, as shown in Figure 3. The mlockall()
system call will lock all of the process’s current mem-
ory down (MCL_CURRENT), and all future mappings as
well (MCL_FUTURE).

Hardware irq handlers will preempt this code. How-
ever, the -rt Linux kernel has threaded irq handlers,
which appear in the ps listing with names resem-
bling IRQ-16. You can check their priority using
the sched_getscheduler() system call, or by
looking at the second-to-last field in /proc/<PID>
/stat, where <PID> is replaced by the actual process
ID of the irq thread of interest. It is possible to run your
real-time application at a higher priority than that of the
threaded irq handlers, but be warned that an infinite loop
in such an application can lock out your irqs, which can
cause your system to hang.

If you are running on a multi-core system, another way
to get rid of hardware-irq latencies is to direct them
to a specific CPU (also known as “hardware thread”).
You can do this using /proc/irq/<IRQ>/smp_
affinity, where <IRQ> is replaced by the irq num-
ber. You can then affinity your real-time program to
some other CPU, thereby insulating your program from
interrupt latency. It may be necessary to pin various
kernel daemons to subsets of the CPUs as well, and
the schedutils taskset command may be used for
this purpose (though care is required, as some of the
per-CPU kernel daemons really do need to run on the

2008 Linux Symposium, Volume Two • 59

1 sp.sched_priority = sched_get_priority_max(SCHED_FIFO);
2 if (sp.sched_priority == -1) {
3 perror("sched_get_priority_max");
4 exit(-1);
5 }
6 if (sched_setscheduler(0, SCHED_FIFO, &sp) != 0) {
7 perror("sched_setscheduler");
8 exit(-1);
9 }

Figure 2: Setting Real-Time Priority

1 if (mlockall(MCL_CURRENT | MCL_FUTURE) != 0) {
2 perror("mlockall");
3 exit(-1);
4 }

Figure 3: Preventing Page Faults

corresponding CPU). This has the downside of pro-
hibiting your real-time program from using all of the
CPUs, thereby limiting its performance. This technique
is nonetheless useful in some cases.

Once we have shut down these sources of non-real-time
behavior, we can run the program on both a real-time
and a non-real-time Linux system. In both cases, we run
on a four-CPU 2.2GHz x86 system running with low-
latency firmware.

Even after taking all of these precautions, the non-real-
time Linux fails miserably, missing the mark by up to
3 milliseconds. Non-real-time Linux systems are there-
fore completely inappropriate for this fuel-injection ap-
plication.

As one might hope, real-time Linux does much better.
Nanosleep always gets within 20 microseconds of the
requested value, and 99.999% of the time within 13 mi-
croseconds in a run of 10,000,000 trials. Please note
that the results in this paper are from a lightly tuned
system. More careful configuration (for example, using
dedicated CPUs) might well produce better results.

If real-time Linux can so easily meet such an aggressive
real-time response goal, it should do extremely well for
more typical workloads, right? This question is taken up
in the next section.

1 tar -xjf linux-2.6.24.tar.bz2
2 cd linux-2.6.24
3 make allyesconfig > /dev/null
4 time make -j8 > Make.out 2>&1
5 cd ..
6 rm -rf linux-2.6.24

Figure 4: Kernel Build Script

2.2 Kernel Build

Since the canonical kernel-hacking workload is a ker-
nel build, this section runs a kernel build on both a
real-time and a non-real-time Linux. The script used
for this purpose is shown in Figure 4, featuring an 8-
way parallel build of the 2.6.24 Linux kernel given an
allyesconfig kernel configuration. The results (in
decimal seconds) are shown on Table 1, and as you can
see, real-time Linux is not helping this workload. The
non-real-time Linux not only completed the build on av-
erage more than 15% faster than did the real-time Linux,
but did so using less than half of the kernel-mode CPU
time. Although there is much work in progress to nar-
row this gap, some of which will likely be complete be-
fore this paper is published, there is no getting around
the fact that this is a large gap.

Clearly, there are jobs for which real-time Linux is not
the right tool!

60 • ‘Real Time’ vs. ‘Real Fast’: How to Choose?

Real Fast (s) Real Time (s)
1350.4 1524.6

Raw Data 1332.7 1574.2
real 1314.5 1569.8

Average 1332.6 1556.2
Std. Dev. 14.6 22.4

3027.2 2940.9
Raw Data 3013.1 2982.2

user 2996.1 2971.2
Average 3012.2 2964.7
Std. Dev. 12.7 17.5

314.7 644.3
Raw Data 317.3 660.9

sys 317.9 665.9
Average 316.6 657.0
Std. Dev. 1.4 9.2

Table 1: Kernel Build Timings

2.3 Discussion

A key difference between these two applications is the
duration of the computation. Fuel injection takes place
in microseconds, while kernel builds take many seconds
or minutes. In the fuel-injection scenario, we are there-
fore willing to sacrifice considerable performance in or-
der to meet microsecond-scale deadlines. In contrast,
even on a very fast and heavily tuned machine, handfuls
of milliseconds are simply irrelevant on the kernel-build
timescale.

The next section will look more closely at these issues.

3 Factors Governing Real Time and Real Fast

In the previous section, we saw that the duration of the
work is a critical factor. Although there are a few ex-
ceptions, real-time response is usually only useful when
performing very short units of work in response to a
given real-time event. If the work unit is going to take
three weeks to complete, then starting the work a few
milliseconds late is unlikely to matter much. This re-
lationship is displayed in Figure 5 for work-unit dura-
tions varying from one microsecond on the far left to
100 millisecond on the far right, where smaller latencies
are better. The y-axis shows the total delay, including
the scheduling latency and the time required to perform
the unit of work. If the unit of work to be done is quite

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Duration of Task (Microseconds)

real time

real fast

Figure 5: Real Time vs. Real Fast Against Work-Unit
Duration for User-Mode Computation

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Duration of Task (Microseconds)

real time

real fast

Figure 6: Real Time vs. Real Fast Against Work-Unit
Duration for Kernel Build

small, a real-time system will out-perform a non-real-
time system by orders of magnitude. However, when
the duration of the unit of work exceeds a few tens of
milliseconds, there is no discernable difference between
the two.

Furthermore, Figure 5 favors the real-time system be-
cause it assumes that the real-time system processes the
unit of work at the same rate as does the non-real-time
system. However, in the kernel-build scenario discussed
in Section 2.2, the non-real-time Linux built the kernel
16.78% faster than did the real-time Linux. If we fac-
tor in this real-time slowdown, the non-real-time ker-
nel offers slightly better overall latency than does the
real-time kernel for units of work requiring more than
about ten milliseconds of processing, as shown in Fig-
ure 6. This breakeven would vary depending on the type
of work. For example, floating-point processing speed

2008 Linux Symposium, Volume Two • 61

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Duration of Task (Microseconds)

real time

real fast

Figure 7: Real Time vs. Real Fast Against Work-Unit
Duration for Heavy I/O

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

na
no

sl
ee

p(
)

jit
te

r
(m

ic
ro

se
co

nd
s)

Number of Parallel Tasks

99.999%

max

average

Figure 8: Nanosleep Jitter With Increased Load

would be largely independent of the type of kernel (and
hence represented accurately by Figure 5), while heavy
I/O workloads would likely be profoundly affected by
the kernel type, as shown in Figure 7, which uses the 2-
to-1 increase in kernel-build system time as an estimate
of the slowdown. In this case, the crossover occurs at
about one millisecond.

In addition, a concern with worst-case behavior should
steer one towards real time, while a concern with
throughput or efficiency should steer one towards real
fast. In short, use real-time systems when the work to be
done is both time-critical and of short duration. There
are exceptions to this rule, but they are rare.

CPU utilization is another critical factor. To show this,
we run a number of the nanosleep() test programs
in parallel, with each program running 100,000 calls to
nanosleep in a loop (code shown in Figure 1). Fig-

ure 8 shows the resulting average, 99.999 percentile de-
lay, and maximum delay. The average jitter changes
very little as we add tasks, which indicates that we are
getting good scalability from a real-fast viewpoint. The
99.999 percentile and maximum delays tell a different
story, as both increase by more than a factor of three as
we go from a single task to 12 parallel tasks.

This is a key point: obtaining the best possible real-time
response usually requires that the real-time system be
run at low utilization. This is in direct conflict with the
desire to conserve energy and reduce system footprint.
In some cases, it is possible to get around this conflict
by putting both real-time and non-realtime workload on
the same system, but some care is still required. To illus-
trate this, run four parallel downloads of a kernel source
tree onto the system, then unpack one of them and do a
kernel build. When the nanosleep test program runs
at maximum priority concurrently with this kernel-build
workload, we see the 99.999% jitter at 59 microseconds
with the worst case at 146 microseconds, which is worse
than the parallel runs—but still much better than the
multi-millisecond jitters from the non-real-time kernel.

Advancing technology can be expected to improve real-
time Linux’s ability to maintain real-time latencies in
face of increasing CPU utilization, and careful choice
of drivers and hardware might further improve the sit-
uation. Also, more-aggressive tuning might well pro-
duce better results. For example, this workload does
not control the periodicity of the nanosleep() test
programs, so that all 12 instances might well try to run
simultaneously on a system that has but four CPUs. In
real-world systems, mechanical constraints often limit
the number of events that can occur simultaneously, in
particular, engines are configured so that it is impossible
for all cylinders to fire simultaneously. That said, sites
requiring the best possible utilization will often need to
sacrifice some real-time response.

Similarly, if you need to use virtualization to run mul-
tiple operating-system instances on a single server, you
most likely need real fast as opposed to real time. Again,
technology is advancing quite quickly in this area, es-
pecially in the embedded space, so we may soon see
production-quality virtualization environments that can
simultaneously support both real-time and real-fast op-
erating systems. This is especially likely to work well
if either: (1) CPUs and memory can be dedicated to
a given operating instance or (2) the hypervisor (e.g.,
Linux with KVM) gives real-time response, but the

62 • ‘Real Time’ vs. ‘Real Fast’: How to Choose?

guest operating systems need not do so. Longer term,
it is quite possible that both the hypervisor and the guest
OSes will offer real-time response.

4 Sources of Real-Time Overhead

The nanosleep() test program used the
mlockall() system call to pin down memory
in order to avoid page-fault latencies. This is great for
this test program’s latency, but has the side-effect of
removing a chunk of memory from the VM system’s
control, which limits the system’s ability to optimize
memory usage. This can degrade throughput for some
workloads.

Real-time Linux’s more-aggressive preemption in-
creases the overhead of locking and interrupts [2]. The
reason for the increased locking overhead is that the cor-
responding critical sections may be preempted. Sup-
pose that a given lock’s critical section is preempted,
and that each CPU subsequently attempts to acquire
the lock. Non-real-time spinlocks would deadlock at
this point. The CPUs would each spin until they ac-
quired the lock, but the lock could not be released un-
til the lock holder got a chance to run. Therefore,
spinlock-acquisition primitives must block if they can-
not immediately acquire the lock, resulting in increased
overhead. The need to avoid priority inversion further
increases locking overhead. This overhead results in
particularly severe performance degradation for some
disk-I/O benchmarks, however, real-time adaptive spin-
locks may provide substantial improvements [4]. In ad-
dition, the performance of the user-level pthread_
mutex_lock() primitives may be helped by private
futexes [5].

Threaded interrupts permit long-running interrupt han-
dlers to be preempted by high-priority real-time pro-
cesses, greatly improving these processes’ real-time la-
tency. However, this adds a pair of context switches
to each interrupt even in absence of preemption, one
to awaken the handler thread and another when it goes
back to sleep, and furthermore increases interrupt la-
tency. Devices with very short interrupt handlers can
specify IRQF_NODELAY in the flags field of their
struct irqaction to retain the old hardirq behav-
ior, but this is not acceptable for handlers that run for
more than a small handful of microseconds.

Linux’s O(1) scheduler is extremely efficient on SMP
systems, as a given CPU need only look at its own

queue. This locality reduces cache thrashing, yield-
ing extremely good performance and scalability, aside
from infrequent load-balancing operations. However,
real-time systems often impose the constraint that the N
highest-priority runnable tasks be running at any given
point in time, where N is the number of online CPUs.
This constraint cannot be met without global schedul-
ing, which re-introduces cache thrashing and lock con-
tention, degrading performance, especially on work-
loads with large numbers of runnable real-time tasks.
In the future, real-time Linux is likely to partition large
SMP systems, so that this expensive global scheduling
constraint will apply only within each partition rather
than across the entire system.

Real-time Linux requires high-resolution timers with
tens-of-microseconds accuracy and precision, resulting
in higher-overhead timer management [3, 6]. However,
these high-resolution timers are implemented on a per-
CPU basis, so that it is unlikely that this overhead will
be visible at the system level for most workloads. In
addition, real-time Linux distinguishes between real-
time “timers” and non-real-time “timeouts,” and only
the real-time timers use new and more-expensive high-
resolution-timer infrastructure. Timeouts, for exam-
ple, TCP/IP retransmission timeouts, continue to use
the original high-efficiency timer-wheel implementa-
tion, further reducing the likelihood of problematic
timer overheads.

Real-time Linux uses preemptible RCU, which has
slightly higher read-side overhead than does Classic
RCU [8]. However, the read-side difference is unlikely
to be visible at the system level for most workloads. In
contrast, preemptible RCU’s update-side “grace-period”
latency is significantly higher than that of RCU clas-
sic [7]. If this becomes a problem, it should be possi-
ble to expedite RCU grace period, albeit incurring ad-
ditional overhead. It may then be possible to retire the
Classic RCU implementation [9], but given that Classic
RCU’s read-side overhead is exactly zero, careful anal-
ysis will be required before such retirement can be ap-
propriate.

In summary, the major contributors to the higher over-
head of real-time Linux include increased overhead of
locking, threaded interrupts, real-time task scheduling,
and increased RCU grace-period latency. The next sec-
tion gives some simple rules that help choose between
the real fast non-real-time Linux kernel and the real-time
Linux kernel.

2008 Linux Symposium, Volume Two • 63

5 How to Choose

The choice of real time vs. real fast is eased by consid-
ering the following principles:

1. Consider whether the goal is to get a lot of work
done (real fast throughput), or to get a little bit of
work done in a predictable and deterministic time-
frame (real-time latency).

2. Consider whether the hardware and software can
accommodate the heaviest possible peak load with-
out missing deadlines (real time), or whether occa-
sional peak loads will degrade response times (real
fast). It is common real-time practice to reserve
some fraction of resources, for example, to limit
CPU utilization to 50%.

3. Consider memory utilization. If your workload
oversubscribes memory, so that page faults will oc-
cur, you cannot expect real-time response.

4. If you use virtualization, you are unlikely to get
real-time response—though this may be changing.

5. Consider the workload. A process that executes
normal instructions in user mode will incur a
smaller real-time average-overhead penalty than
will a process that makes heavy use of kernel ser-
vices.

6. Focus on work-item completion time instead of on
start time. The longer the work item’s execution
time, the less helpful real-time Linux will be.

The need to focus on deterministic work-item comple-
tion cannot be stressed enough. Common practice in the
real-time arena is to focus on when the work-item starts,
in other words, on scheduling latency. This is under-
standable, given the historic separation of the real-time
community into RTOS and real-time application devel-
opers, both working on proprietary products. It is hoped
that the advent of open-source real-time operating sys-
tems will make it easier for developers to take the more
global viewpoint, focusing on the time required for the
application to both start and finish its work. Please note
that it is important to focus on the proper level of de-
tail, for example, event-driven systems should analyze
deadlines on a per-event basis.

Throughput
Only Goal?

All Memory
Consumed?

Virtualization
Required?

>100ms? Real Fast

Real Time

Y

Y

Y

Y

Y

N

N

N

N

N

Basic Work Item

Peak Loads
Degrade

Response Time?

Figure 9: Real Time vs. Real Fast Decision Flow

A rough rule-of-thumb decision flow is shown in Fig-
ure 9. If you only care about throughput—the amount of
work completed per unit time—then you want real fast.
If cost, efficiency, or environmental concerns force you
to run at high CPU utilization so that peak loads degrade
response times, then you again want real fast—and as a
rough rule of thumb, the more aggressive your real-time
workload, the lower your CPU utilization must be. One
exception to this occurs in some scientific barrier-based
computations, where real-time Linux can reduce OS jit-
ter, allowing the barrier computations to complete more
quickly—and in this case, because floating point runs at
full speed on real-time Linux, this is one of those rare
cases where you get both real fast and real time simul-
taneously. If your workload will fill all of memory, then
the mlockall() system call becomes infeasible, forc-
ing you to either purchase more memory or allow the re-
sulting page faults force you to go with real fast. Given
the current state of the art, if you need virtualization,
you are most likely in real-fast territory—though this
may soon be changing, especially for carefully config-
ured systems. Finally, if each basic item of work takes
hundreds of milliseconds, any scheduling-latency bene-
fit from real-time Linux is likely to be lost in the noise.

64 • ‘Real Time’ vs. ‘Real Fast’: How to Choose?

If you reach the real-time bubble in Figure 9, you may
need some benchmarking to see which of real time or
real fast works best for your workload. No benchmark-
ing is needed to see that a workload requiring (say) 100
microseconds of processing with a 250-microsecond
deadline will require real-time Linux, and there appears
to be no shortage of applications of this type. In fact,
it appears that real-time processing is becoming more
mainstream. This is due to the fact that the availability
of real-time Linux has made it easier to integrate real-
time systems into enterprise workloads [1], which are
starting to require increasing amounts of real-time be-
havior. Where traditional real-time systems were stand-
alone systems, modern workloads increasingly require
that the real-time systems be wired into the larger enter-
prise.

6 Concluding Remarks

If you remember only one thing from this paper, let it be
this: “use the right tool for the job!!”

Ongoing work to reduce the overhead of real-time Linux
will hopefully reduce the performance penalty imposed
by the real-time kernel, which will in turn make real-
time Linux the right tool for a greater variety of work-
loads.

Might real-time Linux’s performance penalty eventually
be reduced to the point that real-time Linux is used for
all workloads? This outcome might seem quite impossi-
ble. On the other hand, any number of impossible things
have come to pass in my lifetime, including space flight,
computers beating humans at chess, my grandparents
using computers on a daily basis, and a single operating-
system-kernel source base scaling from cell phones to
supercomputers. I have since learned to be exceedingly
careful about labeling things impossible.

Impossible or not, here are some challenging but rea-
sonable intermediate steps for the Linux kernel, some
of which are already in progress:

1. Reduce the real-time performance penalty for mul-
tiple communications streams.

2. Reduce the real-time performance penalty for
mass-storage I/O. (This becomes more urgent with
the advent of solid-state disks.)

3. Reduce the preemptable RCU grace-period latency
penalty.

4. Where feasible, adjust implementation so that per-
formance penalties are incurred only when there
are actually real-time tasks in the system.

It will also likely be possible to further optimize some
of the real-time implementations. In any case, real-time
Linux promises to remain an exciting and challenging
area for some time to come.

Acknowledgements

No article mentioning the -rt patchset would be com-
plete without a note of thanks to Ingo Molnar, Thomas
Gleixner, Sven Deitrich, K.R. Foley, Gene Heskett,
Bill Huey, Esben Neilsen, Nick Piggin, Steven Rost-
edt, Michal Schmidt, Daniel Walker, and Karsten Wiese.
We all owe Ankita Garg, Vara Prasad, Ananth Mav-
inakayanahalli, Chirag Jog, and especially Darren Hart
and Paul Giangarra a debt of gratitude for their help in
making this paper human-readable. I am grateful to Paul
Clarke for the use of his machines, and the ABAT team
for providing easy access to these machines. Finally, I
owe thanks to Daniel Frye and Kathy Bennett for their
support of this effort.

Legal Statement

This work represents the views of the authors and does not
necessarily represent the view of IBM.

Linux is a copyright of Linus Torvalds.

Other company, product, and service names may be trade-
marks or service marks of others.

References

[1] BERRY, R. F., MCKENNEY, P. E., AND PARR,
F. N. Responsive systems: An introduction. IBM
Systems Journal 47, 2 (April 2008), 197–206.

[2] CORBET, J. Approaches to realtime Linux.
Available:
http://lwn.net/Articles/106010/
[Viewed March 25, 2008], October 2004.

2008 Linux Symposium, Volume Two • 65

[3] CORBET, J. A new approach to kernel timers.
Available:
http://lwn.net/Articles/152436/
[Viewed April 14, 2008], September 2005.

[4] CORBET, J. Realtime adaptive locks. Available:
http://lwn.net/Articles/271817/
[Viewed April 14, 2008], March 2008.

[5] DUMAZET, E. [PATCH] FUTEX : new PRIVATE
futexes. Available:
http://lkml.org/lkml/2007/4/5/236
[Viewed April 18, 2008], April 2007.

[6] GLEIXNER, T., AND MOLNAR, I. [announce]
ktimers subsystem. Available:
http://lwn.net/Articles/152363/
[Viewed April 14, 2008], September 2005.

[7] GUNIGUNTALA, D., MCKENNEY, P. E.,
TRIPLETT, J., AND WALPOLE, J. The
read-copy-update mechanism for supporting
real-time applications on shared-memory
multiprocessor systems with Linux. IBM Systems
Journal 47, 2 (May 2008), 221–236. Available:
http://www.research.ibm.com/
journal/sj/472/guniguntala.pdf
[Viewed April 24, 2008].

[8] MCKENNEY, P. E. The design of preemptible
read-copy-update. Available:
http://lwn.net/Articles/253651/
[Viewed October 25, 2007], October 2007.

[9] MCKENNEY, P. E., SARMA, D., MOLNAR, I.,
AND BHATTACHARYA, S. Extending RCU for
realtime and embedded workloads. In Ottawa
Linux Symposium (July 2006), pp. v2 123–138.
Available: http:
//www.linuxsymposium.org/2006/
view_abstract.php?content_key=184
http:
//www.rdrop.com/users/paulmck/
RCU/OLSrtRCU.2006.08.11a.pdf
[Viewed January 1, 2007].

[10] MOLNAR, I. Index of /mingo/realtime-preempt.
Available: http://www.kernel.org/pub/
linux/kernel/projects/rt/ [Viewed
February 15, 2005], February 2005.

66 • ‘Real Time’ vs. ‘Real Fast’: How to Choose?

If I turn this knob. . . what happens?

Arnaldo Carvalho de Melo
Red Hat Inc.

acme@{redhat.com,ghostprotocols.net}

Abstract

Characterizing problems in systems with lots of con-
figuration knobs while trying versions of components
can be an error-prone task. System and application
configuration details such as kernel boot options, SMP
affinity, NIC and scheduler settings, /proc and /sys
filesystem entries, lock_stat data, and other items
can prove vital. Software to collect this information in
a database, correlating to application performance num-
bers for automated and visual analysis, is needed to help
in this process.

Work in this direction is presented in this paper, showing
how changes in system tunings compare to previous re-
sults in the database. By automating the collection of
performance numbers together with environment tun-
ings, it helps in noticing trends in system behavior as
system components evolve.

1 Introduction

Characterizing a performance or latency problem,
benchmarking, testing new versions of system compo-
nents or a new machine—all these require storing the re-
sults in a database or spreadsheet for comparisons. Cre-
ating graphics from the collected data also helps in this
process.

The number of system (software and hardware) knobs
keeps growing, and it is easy to overlook one setting and
then have difficulty in reproducing it on another system
with supposedly the same hardware and software com-
ponents, as is common when trying to obtain help from
fellow developers, a company help desk, or the support
services of a vendor.

Automatically recreating a set of tunings after the up-
date of one of the system hardware or software com-
ponents and comparing the results of a series of bench-
marks with previous results is important in the life cycle
of any software.

A small variation in performance, latency, memory us-
age, and several other software metrics after the update
of a component is usually acceptable. It is thus possi-
ble that continuous degradation of a metric is unnoticed
over several development cycles as the base hardware
used also gets upgraded.

This paper will describe efforts in providing software for
reading and storing system settings in a database, inde-
pendently from how these changes were performed, be
it using basic system tools such as chrt or taskset,
or using higher level tools, such as tuna, that will also
be described.

Ways to do live analysis of changes on system compo-
nents such as changing the scheduler policy, priority,
and processor affinity of threads and interrupts will also
be presented; as well as running benchmarks for post
processing, storing results in a database, and then gen-
erating reports showing the sets of tunings that provided
the best results; as well as graphics showing results from
several sets of tunings.

2 Automated Testing

I started working in this area when trying to charac-
terize performance degradations found when trying to
run market data applications on the PREEMPT_RT Real
Time enabled kernels.

Knobs such as enabling or disabling TSO (TCP Seg-
mentation Offload), using private futexes by upgrad-
ing the system C library, disabling or enabling IRQ
balancing, setting the affinity and priority of the hard
IRQ threads, making sure that oprofile, systemtap or
lock_stat[1] were not enabled, trying new patches
by fellow developers, and many others quickly added
up to make me crazy when trying to compare results.

Many times this leads to having to re-run tests already
performed due to forgetting whether one of these many
knobs had been set.

• 67 •

68 • If I turn this knob. . . what happens?

To help in comparing the results, I started working on
a set of software components, mostly written in the
Python language.

Some system interfaces lacked Python bindings, so one
of the first tasks performed was to fill this gap.

Bindings for the interfaces exposed through the schedu-
tils package were written, python-schedutils [3], allow-
ing getting and setting the scheduler policy, real time
priority, and processor affinity of threads.

Another Python binding, python-ethtool [4], allows get-
ting and setting network interface drivers knobs such as
TSO1 and UFO;2 these are hardware assists for common
TCP and UDP operations that can greatly improve per-
formance, but inherently can add delay as the network
stack waits for more application buffers to coalesce into
one big segment to send to the ethernet card in just one
transfer. Disabling these features is one thing usually
tried when characterizing a problem, as it involves soft-
ware implementations both in the OS network stack and
on the NIC firmware—two places where bugs can hap-
pen. Also, the interaction of these two software imple-
mentations can be a source of problems.

There is also a lot of information available in the /proc
filesystem, that despite its initial goals of providing in-
formation about the processes in the system, has been
overloaded with all sorts of system-wide information. A
library that turns several areas of the information found
there into Python dictionaries was also written.

Classes for turning /proc/pid/stats and status
into dictionaries, for instance, are used by the other
components to sample information such as the number
of voluntary and involuntary context switches experi-
enced by threads.

The sysctl information in /proc/sys is also turned
into dictionaries and the ones that are changeable by the
administrator (directly, using a simple echo shell com-
mand, or through higher level tools) are stored in a set of
database tables, one per a selected set of /proc/sys
subdirectories.

A tool that collects the state of this subset of sysctl set-
tings and assigns a unique numeric identifier was also
written.

1TCP Segmentation Offload
2UDP Fragmentation Offload

This tool initially was used to store more than just sysctl
settings, with extra information such as if system anal-
ysis tools such as lock_stat, oprofile, or systemtap
were in use, or the options passed through the kernel
command line.

The tool is being rewritten so that it can be used just
for sysctls, with another like-minded tool to be made
available for other, non-sysctl knobs.

To better illustrate the use of such tool, here are some
examples:

$ tuneit --show 1
tcp_congestion_control: bic
kcmd_idle: None
lock_stat: False
tso: lo=0,eth0=1
app_sched: SCHED_RR
app_affinity: ff
systemtap: False
vsyscall64: 1
kcmd_maxcpus: None
irqbalance: True
app_rtprio: 51
oprofile: False
$

This shows the set of tunings recorded in the database
associated with the unique numeric identifier 1.

To see what changed from the first set of tunings to the
second one:

$ tuneit --diff 1,2
Tunings#: 1
tso: lo=0,eth0=1

Tunings#: 2
tso: lo=0,eth0=0

$

Only TSO was changed, being enabled on the first set
of tunings for the eth0 interface and disabled on the
second set of tunings.

This tool can be used as well for identifying the sets of
tunings where a knob had a particular value. For in-
stance:

$ tuneit --query "vsyscall64=0"
71,111

Some work was done on allowing this tool to be used
for replaying a specific set of tunings:

$ cat /proc/sys/kernel/vsyscall64
1
$ tuneit --replay 71
$ cat /proc/sys/kernel/vsyscall64
0
$

2008 Linux Symposium, Volume Two • 69

The settings that can not be replayed at run time, such as
kernel command line options or the presence of kernel
features such as lock_stat, will instead generate a
warning, so that the user is aware when comparing the
ensuing results.

Currently this suite also checks if lock_stat is en-
abled in the kernel, resetting it before running the bench-
marks, and storing the contents of /proc/lock_
stat immediately after its completion, so that later
on they can be examined. The same procedure will be
implemented for oprofile, when requested, so that one
more of the best practices used by performance workers
can be automated, avoiding cases where such valuable
information gets lost, even having been collected.

Other tools in this suite are used to collect other relevant
information such as details about the machine and the
system components installed in it:

[root@doppio ait]# ./ait-get-sysinfo
arch: x86_64
cpu_model: Intel(R) Core(TM)2 CPU

T7200 @ 2.00GHz
futex_performance_hack: None
irqbalance: False
kcmd_idle: None
kcmd_isolcpus: None
kcmd_maxcpus: None
kcmd_nohz: None
kernel_release: 2.6.25-rc8
lock_stat: False
nic_kthread_affinities: eth0=3
nic_kthread_rtprios:
nodename: doppio.ghostprotocols.net
nr_cpus: 2
oprofile: False
softirq_net_rx_prio:
softirq_net_tx_prio:
systemtap: False
tcp_congestion_control: bic
tcp_dsack: 1
tcp_sack: 1
tcp_window_scaling: 1
tso: lo=0,eth0=1,pan0=1
ufo: lo=0
vendor_id: GenuineIntel
vsyscall64: 0
[root@doppio ait]#

Existing tools such as sysreport will probably be used in
the future, as they provide more information, although
they take a considerably longer time to collect it.

Finally, to provide the information required for the
reporting tools, the benchmark results are stored in

the database, correlated with all the above information
about the system hardware, software, and the respective
settings of both.

One can report the best results in a textual form:

$ rit.py db perf4-1.lab.redhat.com \
perf7-1.lab.redhat.com

server: perf4-1.lab.redhat.com

client: perf7-1.lab.redhat.com

latest report info:
report id: 504
kernel: 2.6.18-53.1.14.el5
max rate: 25000

max rates per kernel release:

2.6.18-88.el5 : 100000
2.6.24-17.el5rt : 97000
2.6.24-20.el5rt : 100000
2.6.24-21.el5rt : 94000
2.6.24-22.el5rt : 64000
2.6.24.1-24.el5rt : 100000
2.6.24.3-rt3.rwmult2: 100000
2.6.24.4-30nommapsem: 100000
2.6.24.4-41.el5rt : 97000

rate: 1000

Shared System tunings:

ufo: lo=0,eth0=0,eth1=0,eth2=0
softirq_net_tx_pri: 90,...,90
softirq_net_rx_pri: 90,...,90
app_rtprio: 0
irqbalance: False
app_affinity: ff
app_sched: SCHED_OTHER
kcmd_isolcpus: None
nic_kth_aff: eth1=ff;eth2=ff
nic_kth_rtpri: eth1=95;eth2=95
oprofile: False
systemtap: False
kcmd_maxcpus: None
futex_performance_hack: 0
kcmd_idle: poll
lock_stat: False
tcp_congestion_control: bic
client: perf7-1.lab.redhat.com

70 • If I turn this knob. . . what happens?

Figure 1: Solid line: libc-2.7.90 (uses private futexes), Dashed line: libc-2.5

Different system tunings:

env|tun|kernel |avglat| tso|vsc64|nhz
128|105| .24-22rt|249.38|eth2=1| 1 | 0
135|109| .24-20rt|252.41|eth2=1| 1 |off
127|104| .24-22rt|254.34|eth2=0| 1 | 0
136|109|24.1-24rt|258.53|eth2=1| 1 |off
134|108| .24-21rt|259.54|eth2=1| 1 |off
133|108|24.1-24rt|262.04|eth2=1| 1 |off
138|111|24.1-24rt|265.08|eth2=1| 0 |off
129|106| .24-22rt|266.51|eth2=1| 1 | on
130|106| .24-17rt|266.51|eth2=1| 1 | on
132|108| .24-17rt|267.97|eth2=1| 1 |off

The common set of tunings for all the 10 best test results
is shown, followed by what really changed, and then the
average latencies, the metric in this particular test.

Another result that can be generated is a set of graphs
that show several benchmark results for visual compar-
ison, as in Figure 1. This compares two versions of the
system C library, one that uses private futexes and an
older one that does not, on a system with 8 cores.

Another graphical report, this time with more than just
two test results, is found in Figure 2, where the dia-
monds and squares lines are the ones with the old glibc,

and all the tests have lock_stat on. The html file
that includes these graphics has a link for the respective
/proc/lock_stat data, where we can see that there
is contention for mmap_sem, illustrated in Figure 3.

3 tuna

Also written was tuna [2], a tool to allow tweaking
scheduler parameters, performing techniques such as
CPU isolation.

It has three main boxes, one that shows the load for each
CPU in the system, another with the interrupt sources,
and the last one displaying the threads in the system.

Users can drag interrupt sources and threads into a CPU,
setting the affinity of the dragged entities to that CPU.

Tuna also allows the user to right click on a CPU and
isolate it, removing it from the CPU affinity masks of
all threads and interrupt sources. It is also possible to do
the opposite operation, including a CPU into the affinity
masks of all interrupt sources and threads in the system.

2008 Linux Symposium, Volume Two • 71

Figure 2: Diamonds and Squares: libc-2.5, Others: libc-2.7.90 (uses private futexes)

Usually the sequence is to isolate a CPU and then move
some specific threads to that CPU so as to keep the iso-
lated CPU cache hot, reducing accesses to main memory
for a critical thread or set of threads.

More work is required to group cores per socket, for
CPUs where caches are shared by the cores in a multi-
core CPU socket. It then will be possible to move
threads or interrupt sources to a socket and not just to
a core.

The infrastructure put in place for multi-core CPUs will
also allow creating groups that include not just cores
in a socket, but any arbitrary grouping that is deemed
useful for a particular purpose. That would permit ar-
rangements such as dedicating two cores in a socket to a
particular purpose, and the other two (assuming a quad-
core CPU) for other purposes.

This will also help on big NUMA systems that have dif-
ferent costs for accessing memory that is one or more
hops away from a particular core.

While it is understood that a general-purpose kernel tries
hard to cope with all the underlying details on multi-

core systems and NUMA topologies, it is generally con-
sidered useful to have such functionality for experi-
mentation. As the complexity of such systems grows,
a tool that exploits GUI facilities and provides higher
level, simpler interfaces for performing these operations
should be of help.

In trying to help a wider audience to understand more
about the components in the kernel, tuna provides
context-sensitive help, so far only for kernel threads.
Right clicking on a kernel thread line in the threads box
and clicking on the What is This? option opens up a win-
dow with information about it.

It is also possible to filter out kernel threads or user
threads and sort by all the columns, and in the future it
should be possible to add more columns from the fields
found in the dictionaries built from the /proc files.

Most of the operations available in the GUI are also
available on the command line, allowing its use in sys-
tems without graphical libraries.

72 • If I turn this knob. . . what happens?

lock_stat version 0.2

class name con-bounces contentions waittim-min waittime-max waittime-total

mm->mmap_sem-W 198626 265946 0.94 53724.80 17407373.03
mm->mmap_sem-R 21179643 49780404 0.74 299766.89 8739012694.54

mm->mmap_sem 50039855 [<ffffffff802626ca>] rt_down_read+0xb/0xd
mm->mmap_sem 4126 [<ffffffff80292c68>] sys_mprotect+0xce/0x22e
mm->mmap_sem 0 [<ffffffff80211e7e>] sys_mmap+0xcf/0x119
mm->mmap_sem 0 [<ffffffff80291014>] sys_munmap+0x32/0x59

...

lock->wait_lock 39064428 40206507 0.94 316.86 56173839.20

lock->wait_lock 3584410 [<ffffffff804a1aed>] rt_spin_lock_slowunlock+0xf/0x5c
lock->wait_lock 8990657 [<ffffffff804a1bde>] rt_spin_lock_slowlock+0x21/0x19e
lock->wait_lock 3742935 [<ffffffff80262383>] rt_mutex_slowtrylock+0x18/0x79
lock->wait_lock 205398 [<ffffffff80262812>] rt_up_read+0x26/0x66

...

dev->queue_lock#2 5918095 8546238 0.86 99690.79 506180455.19

dev->queue_lock#2 1385877 [<ffffffff8043db2c>] __qdisc_run+0xa4/0x185
dev->queue_lock#2 7160361 [<ffffffff8042ddae>] dev_queue_xmit+0x12d/0x29f
dev->queue_lock#2 0 [<ffffffff8042d45d>] net_tx_action+0xbc/0xf3

Figure 3: Edited lock_stat data showing mmap_sem contention in report 354

4 Oscilloscope

The companion to tuna is an oscilloscope application.
It should be fed with a stream of values that will be plot-
ted on the screen together with a histogram.

The goal here is to be able to instantly see how a sig-
nal generator, such as cyclictest, signaltest,
or even ping, reacts when (for instance) its scheduling
policy or real time priority is changed, be it using tuna
or plain chrt.

If the ftrace [5] feature is built into the running
kernel, the oscilloscope classes will take snapshots
of /sys/kernel/debug/tracing/trace and asso-
ciate it with the position on the screen where the sam-
ple appears. So when the user clicks on the vicinity of
such a sample, it will pop up a window with the ftrace-
collected functions, usually what happened in the kernel
while preemption and interrupts were disabled, causing
the latency spike.

5 Future Directions

Integration with qpid [6] is planned, to get or set param-
eters on remote machines.

When this integration is complete, tuna will be just
one of the interfaces to change knobs, another one be-
ing the AMQP Management Console, part of the qpid
project [6].

Being able to use inventory systems for data about the
systems used in the tests is also something to be consid-
ered.

The tuneit tool described earlier in this paper will be
augmented to allow starting a tuning session. There it
will look at all threads and interrupt sources in the sys-
tem, recording the current scheduler policy, real time
priority, and affinities. Then, after a tuna, plain chrt
and taskset, or any other method, it will compare the
new settings and record the changes in the database, al-
lowing the settings to be replayed on the same machine
or on another.

2008 Linux Symposium, Volume Two • 73

6 Conclusion

The activities that this paper describes should be famil-
iar to many readers; ad-hoc ways to accomplish these
goals probably have been performed by most.

I hope that by describing his efforts in this direction and
talking about requirements for further usability encour-
ages interested people to join forces with him in working
on improving this infrastructure for wider use, saving
work for people with similar needs.

Test results for more benchmarks (such as AMQP [6],
netperf, and other open source benchmarks) will be per-
formed and should be publicly available by July, in time
for OLS 2008.

References

[1] lock stat documentation in the kernel sources
Documentation/lockstat.txt

[2] tuna git repository http://git.kernel.org/

?p=linux/kernel/git/acme/tuna.git

[3] python-schedutils git repository http:

//git.kernel.org/?p=linux/kernel/

git/acme/python-schedutils.git

[4] python-ethtool git repository
http://git.kernel.org/?p=linux/

kernel/git/acme/python-ethtool.git

[5] ftrace tracing infrastructure
http://lwn.net/Articles/270971/

[6] qpid project
http://cwiki.apache.org/qpid/

74 • If I turn this knob. . . what happens?

Performance Inspector Tools with Instruction Tracing and Per-Thread /
Function Profiling

Milena Milenkovic, Scott T. Jones, Frank Levine, Enio Pineda
International Business Machines Corporation

{mmilenko, stjones, levinef, enio}@us.ibm.com

Abstract

The open-source Performance InspectorTM project con-
tains a suite of performance analysis tools for Linux R©

which can be used to help identify performance prob-
lems in JavaTM and C/C++ applications, as well as help
determine how applications interact with the Linux ker-
nel. One such tool is the Per-Thread Time Facility
(PTT); it consists of a kernel module and user-space
components which maintain thread statistics for time
(cycles) or any of a number of predefined metrics. JProf
is a Java/C/C++ profiler which uses PTT to produce re-
ports with per-method/function metrics. Another tool
is a Tracing Facility, which may be used for tracing
instructions, thread dispatches, and sampling events.
In this paper we present the details of the most com-
monly used Performance Inspector tools, targeting the
audience of developers interested in performance fine-
tuning.

1 Introduction

“I suggest you count your bees, you may find
that one of them is missing.”

—Inspector Clouseau,
Pink Panther Strikes Again

With growing software complexity, a performance ana-
lyst job is becoming increasingly difficult. The Perfor-
mance Inspector project (PI) consists of a set of tools
that helps with analyzing application and system per-
formance on Linux. It includes a kernel driver mod-
ule (pitrace) and various user-space applications and li-
braries. The project is hosted on SourceForge (http:
//perfinsp.sourceforge.net). PI currently
includes support for the Intel x86, Intel and AMD
x86_64, and IBM PowerPC64 and s390 platforms.

The PI toolset enables analysts to identify the overall
processor utilization, and application/thread hardware
counter summary information. PI provides support for
both application and kernel sample-based profiling or
instruction tracing. Sample-based profiling without full
context information may not give enough analysis infor-
mation to tune large applications, so PI provides method
(Java) or function/subroutine (C/C++) tracing at the ap-
plication level, relying on built-in Java Virtual Machine
(JVM) support for method entries and exits and gcc
compile options to generate entry/exit notifications. The
Per Thread Time facility, together with the metrics cali-
bration, allows for accurate per-method counts of stable
metrics such as instruction completed. Because of the
repeatability of this metric, it has been used to assign in-
struction budgets to application components. Utilizing
the PI programmatic control of tracing and the consis-
tency of the measurements, changes in component in-
struction budgets can be identified.

PI encompasses the following user-space components:

• The libperfutil library includes a set of APIs for
communication with the pitrace driver and other
utilities. The JPerf.jar package includes support
for the equivalent Java interfaces: for example, you
can turn instruction tracing on and off directly from
a Java application, thus enabling fine-grain control
of the traced code.

• JProf (libjprof) is a Java profiling agent that re-
sponds to events from either the JVM Profiler Inter-
face (JVMPI) or the JVM Tool Interface (JVMTI),
based on the invocation options. Common usages
of JProf are:

– Capturing execution flow in the form of
method call trees or a method trace.

– Resolving Just-In-Time (JIT) compiled code

• 75 •

76 • Performance Inspector Tools with Instruction Tracing and Per-Thread / Function Profiling

Type and Length | Major Code | Minor Code | TimeStamp | Variable Data

16 bit | 16 bit | 32 bit | 32 bit | variable length

Figure 1: Trace record format

addresses to method names to support trace
post-processing.

– Capturing the state of the Java Heap that can
later be processed by the hdump PI applica-
tion to help locate memory leaks.

– Capturing information about IBMTM JVM
usage of locks via the Java Lock Monitor
(JLM).

• The rtdriver application is a socket-based com-
mand interface that enables interactive control of
JProf, such as when to start or stop of profiling, or
when to dump the contents of the Java Heap.

• The swtrace application is used to control the Trac-
ing facility. This application is also used to invoke
the AboveIdle tool—a lightweight tool which re-
ports processor utilization (busy, idle, and interrupt
time).

• The post application is used to convert binary trace
files to readable reports using the liba2n (A2N—
address-to-name) library, which converts addresses
to symbolic names. This library may be used to
convert addresses to names for dynamically gener-
ated code, such as the code generated by Java via
the Just-In-Time (JIT) support; along with time-
stamped tracing, it provides accurate symbolic res-
olution even when addresses are reused.

• Other tools include msr, used to read and write
model-specific registers (MSR); mpevt, used to ma-
nipulate hardware performance counter events; ptt,
used to give summary per-thread metric counts;
and cpi, used to measure cycles per instruction
(CPI) for an application or a time interval.

The rest of the paper is organized as follows. Section 2
explains the Tracing facility and what kind of infor-
mation can be traced with it. Section 3 explains the
inner workings of the Per-Thread Time Facility which
provides per-thread metric virtualization, and Section 4
explains how metrics are adjusted for instrumentation

overhead in the JProf profiler. Section 5 briefly de-
scribes how users can visualize some of the PI reports,
and the last section gives directions for future project
development.

2 Tracing Facility

PI includes support for a software tracing mechanism—
the Tracing Facility. Although there are already estab-
lished Linux tools with somewhat similar functionality,
our tracing mechanism accurately captures information
necessary for address-to-name symbol resolution of dy-
namically generated code such as Java JITed code. The
main issue with the JITed code is that it can be recom-
piled and moved around the address space. The tracing
mechanism combines kernel knowledge about memory
segments for a process with JProf jita2n (JITed code
address-to-name) synchronizing records and the corre-
sponding dynamically generated code.

We consider two main groups of trace records: one
group consists of Module Table Entry (MTE) records
and the other group consists of all the other record
types, such as ITrace and tprof. Each group uses a
per-cpu buffer, i.e., there is an MTE buffer and a non-
MTE buffer (trace buffer) allocated for each CPU in
the pitrace driver. These buffers are pinned (allocated
in pitrace kernel module) and memory mapped, so that
libperfutil can read them directly. All trace records
have a similar format, shown in Figure 1. The Type and
Length field specifies the record length and the type of
the Variable Data field. The Major Code field specifies
a trace record type, for example, MTE, tprof, or ITrace.
The Minor Code field specifies a subtype within a type,
e.g., a process name MTE record. The TimeStamp field
has the lower 32-bits of the time stamp, and a special
trace record is written to indicate a change in the higher
32 bits.

Figure 2 shows a block scheme of PI components and
files involved when tracing a Java application.

2008 Linux Symposium, Volume Two • 77

post.show

logjita2n

pitrace
kernel driver

JVM

Interface

libjprof

libperfutil

swtrace swtrace.nrm2

liba2n

post

arc

tprof.out

Figure 2: Block scheme for tprof/ITrace tracing of Java application

The swtrace application is the front-end which con-
trols the tracing facility via libperfutil APIs. It is
used to enable tracing of specific record types, specify
the size of trace and MTE buffers, turn tracing on and
off, write the content of trace buffers to a file, and se-
lect the Tracing facility mode. There are three possible
modes: normal, wrap-around, and continuous. In the
normal mode, tracing automatically stops when either
an MTE buffer or a trace buffer becomes full. In the
continuous mode, both MTE and trace buffer segments
are written to a file when a segment size reaches a given
threshold. In the wrap-around mode, meant to be used
to analyze application crashes or the most recent appli-
cation activity, MTE buffers are written continuously in
a file, and other trace records wrap around the buffer.
The default trace file name is swtrace.nrm2.

When initialized and turned on, the Tracing facility gets
notifications about each task exit and unmap, using
the existing kernel notification mechanism. When a task
exits, we write its parent tree (if not already written), and
if the task is not a clone, we also write a trace record
for each of its mapped executable memory segments.
Similarly, when a memory segment is unmapped, we
write the parent tree and executable segment info for the
corresponding task. When tracing is turned off, we write
previously unwritten MTE data for all tasks still alive.

A trace record write can be initiated from the
pitrace module, or from a user application, using the
libperfutil TraceHook() function. The JProf pro-
filer can use this function to trace start, stop, and name
information for each Java thread; it then also writes the
same information into a log-jtnm file. When a JITed
method is loaded, JProf can write trace records with
the method start address, current thread, and the current
time stamp; it then also writes address to name trans-
lation info such as code address, method name, class
name, time stamp, and possibly bytes of instructions,
into a log-jita2n file. This information is used by
post to resolve addresses of trace records to the correct
Java method, class, and thread name. Post can create an
ASCII version of a trace (post.show), a tprof.out re-
port from tprof trace records, and an arc report from
ITrace records. ITrace and tprof tracing mechanisms
are explained in more details in the following subsec-
tions.

2.1 ITrace

To fully understand a complex performance issue, ana-
lysts sometimes need to see a full instruction trace. To
get such a trace, we actually need to trace only taken
branch instructions, using the underlying hardware sup-
port for trap on branch or taken branch. The only is-
sue is that in some earlier 2.6 kernel distributions, trap

78 • Performance Inspector Tools with Instruction Tracing and Per-Thread / Function Profiling

arc Field Definition:
1: cpu no.
2: K(kernel) or U(user)
3: last instruction type
0=INTRPT, 1=CALL, 2=RETURN, 3=JUMP, 4=IRET, 5=OTHER, 6=UNDEFD, 7=ALLOC
4: no. of instructions
5: @|? = Call_Flow | pid_tid
6: offset (from symbol start)
7: symbol:module
8: pid_tid_pidname_[threadname]
9: last instruction type (string)
10: line number (if available)
...

0 U 3 1 @ 120 <plt>:/opt/ibm-java2-i386-50/jre/bin/libj9prt23.so 11c1_11c1_java_main JUMP 0
0 U 3 2 @ 0 __libc_write:/lib/libpthread-2.5.so 11c1_11c1_java_main JUMP 0
0 U 1 1 @ 2c __libc_write:/lib/libpthread-2.5.so 11c1_11c1_java_main CALL 0
0 U 2 19 @ 0 __pthread_enable_asynccancel:/lib/libpthread-2.5.so 11c1_11c1_java_main RETURN 0
0 U 1 7 @ 31 __libc_write:/lib/libpthread-2.5.so 11c1_11c1_java_main CALL 0
0 K 5 1 @ 6 no_singlestep:vmlinux 11c1_11c1_java_main OTHER 0
0 K 5 0 @ 0 syscall_trace_entry:vmlinux 11c1_11c1_java_main OTHER 0
0 K 5 0 @ 0 do_syscall_trace:vmlinux 11c1_11c1_java_main OTHER 0
0 K 5 0 @ 2e do_syscall_trace:vmlinux 11c1_11c1_java_main OTHER 0

...
0 U 2 1 @ 1a java/io/PrintStream.print(Ljava/lang/String;)V:JITCODE 11c1_11c1_java_main RETURN 0
0 U 3 1 @ 19f hellop.main([Ljava/lang/String;)V:JITCODE 11c1_11c1_java_main JUMP 0
0 U 3 5 @ 1af hellop.main([Ljava/lang/String;)V:JITCODE 11c1_11c1_java_main JUMP 0
0 U 3 11 @ c4 hellop.main([Ljava/lang/String;)V:JITCODE 11c1_11c1_java_main JUMP 0
0 U 3 7 @ d4 hellop.main([Ljava/lang/String;)V:JITCODE 11c1_11c1_java_main JUMP 0
0 U 3 7 @ d4 hellop.main([Ljava/lang/String;)V:JITCODE 11c1_11c1_java_main JUMP 0

...

Figure 3: Excerpts from an arc file

on branch flags might not be correctly preserved across
interrupts and system calls, so we need to dynamically
patch such critical places or to use kprobes.

We call a branch trace ITrace. ITrace can include both
user- and kernel-space trace records. One ITrace record
has addresses of the branch and the branch target, and
possibly the number of instructions executed from be-
tween the previous and the last branch execution. There
are separate major codes for user and kernel addresses.
On PowerPC, ITrace records can also include load and
store addresses (with different major codes).

The post application can produce an arc report from an
ITrace and the corresponding log-jita2n file. Fig-
ure 3 shows excerpts from an arc file obtained from the
ITrace of a simple hellop application, where main()
calls myA() in a loop and prints a value; myA() calls
myC() which calculates that value. We can follow a
write request from JITed code to a JVM library to a
system library to the kernel and back. (One arc ex-
cerpt in the figure shows the entry to the kernel and the
other one shows the exit from PrintStream.print
to hellop.main.)

ITrace can be controlled using the provided run.
itrace script, or libperfutil C or Java interfaces.
run.itrace is normally used when we do not want
to or cannot change the tracing target application; the
script asks for the lowest pid to trace. A more con-
trolled ITrace can be obtained by using ITraceOn()
and ITraceOff() interfaces around the section of the
code to be traced.

Currently PI does not include support for continuous
ITrace. However, we are investigating an algorithm that
might enable this feature in future releases.

2.2 Tprof

Tprof trace can be used for system performance analy-
sis. It is based on a sampling technique which encom-
passes the following steps:

• Interrupt the system periodically if time-based, or
when performance-monitoring hardware reaches a
given threshold, if event-based.

• Determine the address of the interrupted code
along with the process id (pid) and thread id (tid).

2008 Linux Symposium, Volume Two • 79

================================
)) Process_Thread_Module_Symbol

================================

LAB TKS %%% NAMES

PID 2372 51.25 java_103c
TID 1704 36.82 tid_main_103c
MOD 721 15.58 vmlinux
SYM 123 2.66 _spin_unlock_irqrestore
SYM 88 1.90 system_call
SYM 48 1.04 write_chan
SYM 42 0.91 __copy_to_user_ll
...
MOD 338 7.30 JITCODE
SYM 81 1.75 hellop.myC()V
SYM 32 0.69 hellop.main([Ljava/lang/String;)V
SYM 17 0.37 java/lang/String.indexOf(II)I
SYM 17 0.37 java/io/PrintStream.write(Ljava/lang/String;)V
SYM 16 0.35 java/lang/Long.getChars(JI[C)V
SYM 15 0.32 java/io/FileOutputStream.write([BII)V
SYM 13 0.28 java/lang/StringBuffer.append(Ljava/lang/String;)Ljava/lang/StringBuffer;
SYM 12 0.26 sun/nio/cs/StreamEncoder.flushBuffer()V
...

Figure 4: A time-based tprof report excerpt

• Record tprof trace record in a trace buffer.

• Return to the interrupted code.

The detailed steps to obtain a tprof trace and a sub-
sequent tprof.out report are encapsulated by the
run.tprof script. This script interacts with the analyst
to set up and run necessary steps. Similarly to ITrace,
JProf is used to collect the necessary JIT address-to-
name information.

The Tprof.out report shows percentages of tprof
trace records for various granularity, such as for each
process, module within a process, or a symbol within a
module. Figure 4 shows an excerpt from a time-based
tprof report for the hellop application, for symbols
within a module within a thread. Such reports can be
used to detect hot-spots in the application or to indicate
the resource distribution.

2.3 Other Trace Types

The trace format can easily be used for various types of
trace records. In addition to ITrace, tprof, MTE, system
information, and time stamp change trace records, the
tracing facility currently can produce traces of thread
dispatches, and interrupt entries and exits.

3 Per-Thread Time Facility

To accurately determine performance metrics accumu-
lated in an instrumented function, the user-space profiler
needs operating system or device driver support for vir-
tualized per-thread metrics (PTM). Such support needs
to:

• Keep separate metrics count for threads of interest.
The PTM code needs to get control when a new
thread is about to be dispatched, and to read and
save away values of hardware monitoring counters
used for metrics.

• Factor out time spent in external interrupts.
When applications are being monitored, there are
some kernel operations that are being done as a di-
rect result of the application code, such as those
that require a kernel service. When those services
are executed synchronously, it is usually best to in-
clude the overhead of the entire code path, includ-
ing the kernel code path as part of the application
because that is how the application will run nor-
mally, without instrumentation. For example, we
do not want to remove the influence of page faults.
However, some events, such as I/O interrupts, tend
to occur randomly on a given thread. When trying
to produce repeatable measurements, it is helpful to

80 • Performance Inspector Tools with Instruction Tracing and Per-Thread / Function Profiling

factor out or separate out the metric counts related
to asynchronous interrupts.

• Make per-thread metric values available to the pro-
filer. One way to do it is to use a system call or an
ioctl. However, we can avoid the overhead of
system calls using a mapped data area with all nec-
essary information.

The best solution would be to have all these features pro-
vided by the operating system. By having the OS mon-
itor the selected threads, we avoid security issues, es-
pecially if an application is allowed to monitor only its
own threads. The perfmon2 project is an excellent PTM
candidate and we eagerly await its full inclusion into the
mainstream Linux kernel [1]. In the mean time, we im-
plement the necessary support in the Per-Thread Time
Facility (PTT) in the PI driver module, pitrace. Note
that a more correct name would be Per-Thread Metrics
Facility; PTT is a legacy name from the time it sup-
ported only per-thread processor cycles. Today PTT can
support virtualization of any physical metric provided
by the performance monitoring counters.

The pitrace module hooks the scheduler close to
its return, when the thread to be scheduled is already
known. We either use kprobes or dynamically patch
the kernel ourselves. To factor out external interrupts,
we patch the interrupt entries and exits, so that the time
spent in interrupts is accounted for in per-cpu interrupt
buckets.

When a request to monitor a thread is made, the driver
allocates and maps a thread work area which the appli-
cation or profiler attached to the application may access
directly. The profiler specifies the exact metrics to be
monitored and the driver simply reads and accumulates
the specified metrics at dispatch and interrupt entry/exit
time. Figure 5 shows the PTM state machine. For exam-
ple, when a previous state was the Dispatch and we are
currently entering an interrupt, the metrics delta (differ-
ence from the metrics in the last state) should be added
to the accumulated thread metrics.

The mapped thread work area contains the accumulated
per-thread values and the per-cpu values in the last PTM
state. The profiler reads the metrics, calculates the dif-
ferences from the value of the counters at the time of
the last PTM state, and adds those differences to the
accumulated values. Since there is a chance that the
thread could be dispatched out and back in during the

Interrupt entryInterrupt entry Interrupt exitInterrupt entryInterrupt entry

DispatchDispatchDispatchDispatch

Interrupt entry

I

T/I

T T/I T/I T

II

T

T – metrics applied to a thread
I – metrics applied to the interrupt bucket
T/I – applied to a thread or the interrupt bucket, depending
whether there are pending interrupts

Figure 5: State machine for virtual per-thread metrics

calculations, there should be a simple way for the pro-
filer to determine that this has occurred. One way to
provide this feature is to also keep track of the number
of dispatches and interrupts in the mapped thread work
area. The profiler reads the count of dispatches and in-
terrupts before reading the metrics and reads them again
after performing the calculations. If the number of dis-
patches and interrupts does not change, then the calcu-
lated values can be used. If the thread was dispatched
or interrupted while reading counters, then the calcula-
tions should be repeated until the number of dispatches
and interrupts stays the same [2]. Our experiments in-
dicate that this procedure needs to be repeated at most a
couple of times.

3.1 PTT Interfaces and ptt Application

The libperfutil library provides interfaces to the
PTT facility in the driver. There are APIs to initial-
ize the PTT facility (PttInit()) and to terminate it
(PttTerminate()). Instead of using a single func-
tion to get the current thread metric values, recent pack-
ages provide separate functions depending on whether
the underlying platform is a uni- or multi-processor sys-
tem, and on the number and combination of metrics
(counters vs. cycles), so that the most frequently used
cases of one or two metrics are optimized to reduce
overhead. The required function is automatically se-
lected by libperfutil, so that the profiler code only
needs to set a pointer to it. The interested reader can
get more details about available APIs from the package

2008 Linux Symposium, Volume Two • 81

documentation. The maximum number of metrics col-
lected concurrently is eight, regardless of the number of
performance monitoring counters available.

One example of PTT facility usage is the ptt applica-
tion, which can turn PTT on and off and dump informa-
tion about threads for which PTT data is available.

4 JProf Callflow Tracing and Metrics Calibra-
tion

Identifying and reporting calling sequences, by receiv-
ing notifications on entries and exits to functions or Java
methods, is an important methodology that has been
shown to be very useful for performance analysis [3].

Based on the invocation options, JProf calls a
libperfutil function, PttInit(), which in turn
initializes the PTT facility. JProf receives notifica-
tions from the Java Virtual Machine (JVM) about Java
method entries and exits, via the JVM Profiler Interface
(JVMPI) or the JVM Tool Interface (JVMTI), and it can
also query the JVM about the method type and other
relevant information.

When an entry or exit event is received, JProf can get
the virtualized metrics for the thread on which it is exe-
cuting. However, the act of observing a metric in a run-
ning application almost always changes the behavior of
that application in some way. For example, the instruc-
tions used to read a metric increase the execution path
length of the application and the memory used to store
what was read reduces the amount of memory available
to the application. That is why the metrics need to be
calibrated, that is, adjusted to compensate for the over-
head caused by the instrumentation required to observe
the metric.

All metrics can be calibrated, but the accuracy of the
calibration depends on the stability of the metric being
observed. For example, the number of processor cy-
cles required to execute a method is not a stable metric,
since it is influenced by a great number of factors such
as memory latency, the size of the instruction or data
cache, the amount of free memory, asynchronous inter-
rupts, and even the size and complexity of the instruc-
tions used by the method. On the other hand, the number
of instructions completed is a stable metric, because the
number of instructions executed along any given path in
the uninstrumented application is fixed. This is why the

JProf calibration algorithm is optimized for instructions,
although it can be applied to any metric.

The most obvious kind of calibration is performed by
merely reading the values of the metrics at entry to and
exit from JProf. By doing this, JProf can eliminate its
own effects on the metrics between these two reads.
We call this internal calibration. To maximize the ac-
curacy of the internal calibration, we want to read the
metrics as soon as possible after entry to JProf (Early
Read) and again at the last possible moment before exit
from JProf (Late Read). Another calibration component
is external calibration—compensation for instrumenta-
tion overhead outside of JProf.

In an ideal world, there would be no instructions before
the Early Read or after the Late Read, but this is never
true. Even the instructions necessary to call the Early
Read routine or setup the actual reading of the values
are overhead that must be removed.

To achieve successful removal of the JProf portion of
external overhead, there are no conditional branches be-
fore the Early Read and after the Late Read, to keep the
instruction path constant.

4.1 The Calibration Algorithm

The basic assumption on which the calibration algo-
rithm is based is that the overhead which must be re-
moved can be computed from the minimum observed
change in the metrics between calls to the profiler. Be-
tween any consecutive calls to the profiler, we can com-
pute metric deltas which are the differences in the metric
values between those acquired by the Early Read rou-
tine from the current call and those acquired by the Late
Read routine from the previous call. Each delta includes
both the external instrumentation overhead that we want
to remove and the actual metric values that we want to
keep.

However, the instrumentation overhead may vary de-
pending on the type of the event (entry or exit), type
of method (native, interpreted or JITed), and even the
transition sequence between methods. The overhead as-
sociated with an entry event following an entry event
may be different from the overhead associated with an
entry event following an exit event, due to optimizations
in the so-called glue code.

The solution is to maintain an array of minimum ob-
served deltas for each sequence of method types and

82 • Performance Inspector Tools with Instruction Tracing and Per-Thread / Function Profiling

transition types. We have found that a sequence of three
method types and the transitions between them is suf-
ficient for all of the applications we have tested. For
example, Interpreted-enters-JITed-enters-Interpreted is
one sequence, while JITed-exits-to-JITed-enters-JITed
is a different sequence.

Working with the JVM, we have found that there are
really three different transition types: entry, exit, and
exception-exit. We treat exception-exit (an exit from a
routine as a result of an exception) as a unique type, in
order to eliminate its influence on statistics gathered for
normal exits.

There are also many different method types. We not
only consider interpreted and JITed methods, but also
native methods. We further distinguish between static
and non-static methods for each of these types, since
non-static routines require additional glue code to iden-
tify the object associated with the method. The last two
method types we use are Compiling and Other. Just as
we defined a special transition type to isolate the effects
of exceptions, we define a special method type for the
Java compiler to isolate its effects. Finally, we define an
Other type to allow us to isolate the effects of methods
whose type can not be accurately identified. This can
occur when profiling is started in the middle of execut-
ing a method and we lack information about the context
in which the method is executing. Thus, we use 8 dif-
ferent method types and 3 different transition types for
a total of 8*3*8*3*8 = 4608 different sequences.

Although the categories are still relatively easy to man-
age, the sheer number of categories introduces other
problems. As the number of categories increases, the
number of events in each category decreases. This
makes it harder to find the true minimum overhead for
each category. It also makes it too costly to save counts
of all of the different types of sequences with every
method.

The solution to both of these problems is to train the
profiler by saving the minimum observed values from
other profiling runs. This is most effective if the train-
ing application generates events in as many valid cat-
egories as possible. Some categories will never occur,
such as JITed-enters-Native-exits-to-Native, which is in-
valid because the native method must return to the JITed
method which called it. We use a trainer Java test case,
which is included in the PI package.

Transition Num Instr
En-jitted-En-jitted 3
En-jitted-En-Jitted 6
En-jitted-En-native 28
En-jitted-En-Native 35
En-jitted-Ex-jitted 3
En-jitted-Ex-Jitted 3
En-Jitted-En-jitted 3
En-Jitted-En-Jitted 4
En-Jitted-En-native 28
En-Jitted-En-Native 29
En-Jitted-Ex-jitted 3
En-Jitted-Ex-Jitted 3
En-native-Ex-jitted 4
En-native-Ex-Jitted 4
En-Native-Ex-jitted 23
En-Native-Ex-Jitted 4
Ex-jitted-En-jitted 1
Ex-jitted-En-Jitted 4
Ex-jitted-En-native 38
Ex-jitted-En-Native 29
Ex-jitted-Ex-jitted 1
Ex-jitted-Ex-Jitted 1
Ex-Jitted-En-jitted 1
Ex-Jitted-En-Jitted 2
Ex-Jitted-En-native 38
Ex-Jitted-En-Native 39
Ex-Jitted-Ex-jitted 1
Ex-Jitted-Ex-Jitted 1

Table 1: Minimum number of instructions for the most
frequently seen transitions. En–method entry, Ex–
method exit, lower case–static methods, upper case–
non-static methods.

4.2 Environmental Overhead

The calibration algorithm described so far still has one
remaining flaw: not all glue code should be associated
with instrumentation overhead. Some glue code will be
executed even if the application is not being profiled.
The calibration algorithm can accurately detect over-
head, but it can not determine how much to remove and
how much to keep. To do this, the profiler requires spe-
cific knowledge about the execution environment when
executing applications that have not been instrumented.

The solution to this problem is to execute the trainer ap-
plication while gathering an instruction trace. By care-
fully analyzing the results of the instruction trace, a set
of minimum values after calibration can be determined.
Table 1 shows an example of minimum calibration val-
ues for the most frequently seen transitions, for IBM

2008 Linux Symposium, Volume Two • 83

JVM 5.0 SR5 for 32-bit Linux on Intel platforms. For
example, En-jitted-Ex-Jitted means that a method calls
a static JITed method which then returns to a non-static
JITed method.

Note that we are using only 4 of the types in the 5-type
sequences we described. Due to the difficulty of gener-
ating every possible combination in the trainer code, we
limit the number of the steps to 4. The sequences not
covered by data Table 1 will assume a minimum over-
head of 1. We do not try to determine values for inter-
preted methods, because all methods significantly con-
tributing to the overall application profile will be JITed
after the initial warm-up.

The calibration algorithm must still be used with these
minimum calibration values. The amount of calibration
needed can still vary based on the parameters specified
during instrumentation, even though the environmental
overhead represented by these minimum calibration val-
ues remains constant.

By applying the calibration algorithm with an appropri-
ate set of minimum calibration values, profiling accu-
racy is nearly identical to that achieved by instruction
tracing with a fraction of the impact on the execution
speed of the application. We validated this approach by
comparing a calibrated flow to the instruction trace, for
several testcases.

Note that we assume that the instrumentation overhead
is constant for a particular transition/type sequence.
This is achieved in IBM Java 5. Another concern is
that a Java compiler may in-line methods and then may
or may not produce entry/exit events for such methods.
Disabling in-lining may affect the general overhead of
the application. One approach for Java is to simply
let in-lining occur as normal and only get the entry/exit
events for the methods that are not in-lined. Moreover,
a compiler may optimize code and change it in various
ways, such as partial in-lining or loop unrolling. These
and other optimizations may cause the calibrated met-
rics to vary from what is expected by examining the
code.

4.3 Profiling Exit/Entry Events in C/C++ Code

The same calibration concept can be extended to code
written in other programming languages, such as C.
JProf needs two additional event categories, for C code

entries and exits, so that it can be used for profil-
ing of both standalone C code and code called from
Java using the Java Native Interface (JNI). We imple-
mented a prototype profiler library hookit which sends
entry/exit notifications to JProf. The code to be pro-
filed needs to be compiled using the gcc compile op-
tion -finstrument-functions and to be stati-
cally linked with libhookit.

4.4 JProf Callflow Reports

JProf can produce two kinds of callflow reports, depend-
ing on the invocation options. More frequently used
is a log-rt report, which represents methods orga-
nized into a call tree, with the number of callers and
callees for each method. Figure 6 shows an excerpt of
a log-rt file for hellop. The number of loop iter-
ations was 1000, so both myA and myC are called 1000
times. The BASE column shows the accumulated num-
ber of instructions executed for all 1000 calls.

The other type of callflow report is a log-gen file,
which has a full callflow trace, with one line for each
method entry or exit event, together with the metric
value(s) between two successive events. The records in
a log-gen file are written immediately after a method
entry/exit, so the calibration algorithm has to apply
whatever is the current minimum delta.

5 Performance Inspector report visualization

Several types of reports produced by PI toolset can
be visualized using Visual Performance Analyzer
(VPA), which is an Eclipse-based visual performance
toolkit [4].

With the help of VPA, users can visualize tprof reports
with its Profile Analyzer component, and callflow re-
ports with the Control Flow Analyzer.

6 Conclusion and Future Directions

Although some of PI tools have overlapping function-
alities with other Linux utilities or kernel modules, we
believe that the project significantly contributes to the
always-demanding field of performance analysis, by
providing some unique useful features. One such fea-
ture is per-thread metrics virtualization which, together

84 • Performance Inspector Tools with Instruction Tracing and Per-Thread / Function Profiling

LV CALLS CEE BASE DELTA DS IN NAME
2 1000 1000 11888 2378000 1 6 J:hellop.myA()V
3 1000 0 7004919 1225000 0 12 J:hellop.myC()V
2 1000 1000 9200 2384000 0 7 J:java/lang/StringBuffer.<init>()V
3 1000 1000 48529 2382000 0 8 J:java/lang/StringBuffer.<init>(I)V
4 1000 0 3880 1221000 0 5 J:java/lang/Object.<init>()V
2 1000 2000 37855 3543000 1 6 J:java/lang/StringBuffer.append(J)Ljava/lang/StringBuffer;
3 1000 3000 114912 4709000 5 14 J:java/lang/Long.toString(J)Ljava/lang/String;
4 1000 0 108379 1225000 1 5 J:java/lang/Long.stringSize(J)I
4 1000 0 178282 1225000 0 4 J:java/lang/Long.getChars(JI[C)V
4 1000 1000 10800 2384000 0 5 J:java/lang/String.<init>(II[C)V
5 1000 0 3320 1221000 0 2 J:java/lang/Object.<init>()V

Column Labels:
: LV = Level of nesting (Call Depth)
: CALLS = Calls to this method (Callers)
: CEE = Calls from this method (Callees)
: BASE = Metrics observed
: DELTA = BASE adjustment due to calibration
: DS = Dispatches observed
: IN = Interrupts observed
: NAME = Name of Method or Thread

Figure 6: A log-rt report excerpt with the instruction completed metric

with the metrics calibration mechanism, enables accu-
rate profiling of Java methods or C functions. Also
useful is the combination of the Tracing Facility and
address-to-name resolution mechanism, which results
in correct trace interpretation for dynamically generated
code.

We constantly add support for new hardware platforms,
and we will continue to do so in the future. Current tools
support a limited set of hardware performance counter
events, but this set can be easily extended by adding new
events to per-platform event description files.

We also strive to support new Linux releases. The sensi-
tivity to kernel changes would be significantly reduced
if we could build on the top of mechanisms integrated
with the mainline Linux kernel. In the future, we might
be able to use perfmon2 for per-thread performance
counter virtualization [1]. It would be nice to merge
the Tracing facility with some of the on-going tracing
efforts, such as the Driver Tracing Infrastructure [5].

We maintain a long wish list of useful additions to the
PI project, such as the capability for continuous ITrace.
As always, new ideas and contributions are welcome.

Legal Statement

c© 2008 IBM. Permission to redistribute in accordance with
Linux Symposium submission guidelines is granted; all other
rights reserved.

This work represents the view of the authors and does not
necessarily represent the view of IBM.

IBM and the IBM logo are trademarks or registered trade-
marks of International Business Machines Corporation. Java
is a trademark of Sun Microsystems. Linux is a registered
trademark of Linus Torvalds. Performance Inspector is a
trademark of IBM. Other company, product, and service
names may be trademarks or service marks of others.

References

[1] perfmon2: the hardware-based performance
monitoring interface for Linux,
http://perfmon2.sourceforge.net/

[2] R.F. Berry, et al., Method and system for
low-overhead measurement of per-thread
performance information in a multithreaded
environment, US Patent No. 6658654, 2003.

[3] W.P. Alexander, R.F. Berry, F.E. Levine, R.J.
Urquhart, A unifying approach to performance
analysis in the Java environment, IBM Systems
Journal, Vol. 39, Nov. 1, 2000, pp. 118–134.

[4] Visual Performance Analyzer, http:
//www.alphaworks.ibm.com/tech/vpa

[5] D. Wilder, Unified Driver Tracing Infrastructure,
Linux Symposium, Ottawa, Canada, 2007.

Containers checkpointing and live migration

Andrey Mirkin
OpenVZ

major@openvz.org

Alexey Kuznetsov
OpenVZ

alexey@openvz.org

Kir Kolyshkin
OpenVZ

kir@openvz.org

Abstract

Container-type virtualization is an ability to run multiple
isolated sets of processes, known as containers, under a
single kernel instance. Having such an isolation opens
the possibility to save the complete state of (in other
words, to checkpoint) a container and later to restart it.
Checkpointing itself is used for live migration, in partic-
ular for implementing high-availability solutions.

In this paper, we present the checkpointing and restart
feature for containers as implemented in OpenVZ. The
feature allows one to checkpoint the state of a running
container and restart it later on the same or a different
host, in a way transparent for running applications and
network connections. Checkpointing and restart are im-
plemented as loadable kernel modules plus a set of user-
space utilities. Its efficiency is proven on various real-
world applications. The overall design, implementation
details and complexities, and possible future improve-
ments are explained.

1 Introduction

OpenVZ is container-based virtualization for Linux.
OpenVZ partitions a single physical server into multi-
ple isolated containers. As opposed to other virtualiza-
tion solutions, all containers are running on top of a sin-
gle kernel instance. Each container acts exactly like a
stand-alone server; a container can be rebooted inde-
pendently and have root access, users, IP address(es),
memory, processes, files, etc. From the kernel point of
view, a container is the separate set of processes com-
pletely isolated from the other containers and the host
system.

Having a container not tied to a particular piece of hard-
ware makes it possible to migrate such a container be-
tween different physical servers. The trivial form of mi-
gration is known as cold (or offline) migration, which

is performed as follows: stop a container, copy its file
system to another server, start it. Cold migration is of
limited use since it involves a downtime which usually
requires prior planning.

Since a container is an isolated entity (meaning that all
the inter-process relations, such as parent-child relation-
ships and inter-process communications, are within the
container boundaries), its complete state can be saved
into a disk file—the procedure is known as checkpoint-
ing. A container can then be restarted back from that
file.

The ability to checkpoint and restart a container has
many applications, such as:

• Hardware upgrade or maintenance.

• Kernel upgrade or server reboot.

Checkpoint and restart also makes it possible to move a
running container from one server to another without a
reboot. This feature is known as live migration. Sim-
plistically, the process consists of the following steps:

1. Container’s file system transfer to another server.

2. Complete state of container (all the processes and
their resources) is saved to a file on disk.

3. The file is copied to another server.

4. The container is restarted on another server from
the file.

Live migration is useful for:

• High availability and fault tolerance.

• Dynamic load balancing between servers in a clus-
ter of servers.

• 85 •

86 • Containers checkpointing and live migration

This paper is organized as follows. Section 2 discusses
related work. Section 3 provides prerequisites and re-
quirements for checkpointing. Section 4 presents over-
all design of checkpoint and restart system. Section 5
describes the algorithm for live migration of containers.
Section 6 provides possible ways for live migration op-
timization. Finally, the paper is ended with a brief con-
clusion.

2 Related Work

There are many another projects which proposed check-
point and restart mechanisms:

• CHPOX (Checkpoint for Linux) [1]

• EPCKPT (Eduardo Pinheiro Checkpoint Project) [2]

• TCPCP (TCP Connection Passing) [4]

• BLCR (Berkeley Lab Checkpoint/Restart) [7]

• CRAK (Checkpoint/Restart As a Kernel Module) [5]

• ZAP [6]

• Sprite [10]

• Xen [8]

• VMware [9]

Not all the systems are available as open source soft-
ware, and the information about some of them is pretty
scarce. All the systems which are available under an
open source license lack one feature or another. First,
except for some written-from-scratch process migra-
tion operating systems (such as Sprite [10]), they can
not preserve established network connections. Second,
general-purpose operating systems such as UNIX were
not designed to support process migration, so check-
point and restart systems built on top of existing OSs
usually only support a limited set of applications. Third,
no system guarantees processes restoration on the other
side because of resource conflicts (e.g., there can be a
process on a destination server with the same PID).

Hardware virtualization approaches like Xen [8] and
VMware [9] allow checkpointing and restarting only
an entire operating system environment, and they can
not provide checkpointing and restarting of small sets
of processes. That leads to higher checkpointing and
restart overhead.

3 Prerequisites and Requirements for System
Checkpointing and Restart

Checkpointing and restarting a system has some prereq-
uisites which must be supplied by the OS which we use
to implement it. First of all, a container infrastructure is
required which gives:

1. PID virtualization – to make sure that during
restart the same PID can be assigned to a process
as it had before checkpointing.

2. Process group isolation – to make sure that parent-
child process relationships will not lead to outside
a container.

3. Network isolation and virtualization – to make sure
that all the networking connections will be isolated
from all the other containers and the host OS.

4. Resources virtualization – to be independent from
hardware and be able to restart the container on a
different server.

OpenVZ [11] container-type virtualization meets all
these requirements. Other requirements which must be
taken into account during the design phase are:

1. The system should be able to checkpoint and restart
a container with the full set of each process’ re-
sources including register set, address space, al-
located resources, network connections, and other
per-process private data.

2. Dump file size should be minimized, and all ac-
tions happening between a freeze and a resume
should be optimized to have the shortest possible
delay in service.

4 Checkpointing and Restart

The checkpointing and restart procedure is initiated
from the user-level, but it is mostly implemented at
the kernel-level, thus providing full transparency of the
checkpointing process. Also, a kernel-level implemen-
tation does not require any special interfaces for re-
sources re-creation.

The checkpointing procedure consists of the following
three stages:

2008 Linux Symposium, Volume Two • 87

1. Freeze processes – move processes to previously
known state and disable network.

2. Dump the container – collect and save the com-
plete state of all the container’s processes and the
container itself to a dump file.

3. Stop the container – kill all the processes and un-
mount container’s file system.

The restart procedure is checkpointing, vice versa:

1. Restart the container – create a container with the
same state as previously saved in a dump file.

2. Restart processes – create all the processes inside
the container in the frozen state, and restore all of
their resources from the dump file.

3. Resume the container – resume processes’ execu-
tion and enable the network. After that, the con-
tainer continues its normal execution.

The first step of the checkpointing procedure and also
the last step of restart procedure before processes can re-
sume their execution is process-freeze. The freeze is re-
quired to make sure that processes will not change their
state and saved processes’ data will be consistent. It is
also easier to reconstruct frozen processes.

Process freeze is performed by setting the special flag
TIF_FREEZE on all the processes’ threads. In this
case, the PF_FREEZE task flag can not be used, as
atomic change is required. After TIF_FREEZE flag
is set on all the threads, each process receives a fake
signal. Sending the fake signal is for moving all the
threads to a beforehand known state—in this case, it is
refrigerator(). Using just a fake signal for freez-
ing processes has the benefit that all the signals which
are on the way to a process will be saved and delivered
after the process restart.

Using such a mechanism for processes freeze has bene-
fits for processes which are in the kernel context at the
moment of freezing—they will handle the fake signal
before returning to user mode, and will be frozen as all
the other processes are. If a process is in an uninter-
ruptible state (system call or interrupt handling), it will
be frozen right after the kernel event is completed. If
a process is in an interruptible system call, it will be
interrupted and handle the fake signal. In most cases,

Session

Group 1

Group 2

Group 3

Session
leader

Group
leader Group

leader

Group
leader

Figure 1: Process hierarchy

such system calls will be automatically restarted; other-
wise, the caller should be prepared for the appropriate
error handling. Such a mechanism is simple, as it uses
the already implemented “software suspend” kernel fea-
ture, and so does not require much change in the kernel
source code.

It is very important to save a consistent state of all the
container’s processes. All process dependencies should
be saved and reconstructed during restart. Dependencies
include the process hierarchy (see Figure 1), identifiers
(PGID, SID, TGID, and other identifiers), and shared
resources (open files, SystemV IPC objects, etc.). Dur-
ing the restart, all such resources and identifiers should
be set correctly. Any incorrectly restored parameter can
lead to a process termination, or even to a kernel oops.

Another big area of checkpointing and restart is net-
working. During checkpointing and restart, the net-
work should be disabled—it is needed to preserve net-
work connections. The simplest way to disable the net-
work is to drop all incoming packets, as processes are
frozen and can not process incoming packets. From the
point of view of an outside, user it looks like a tempo-
rary link network problem, not something like “host un-
reachable” message. Such a behavior is acceptable since
the TCP protocol has a mechanism to resend packets if
no acknowledgment is received, and for the UDP proto-
col, packet loss is expected.

As most of the resources must be restored from the pro-
cess context, a special function (called “hook”) is added

88 • Containers checkpointing and live migration

on top of the stack for each process during the restart
procedure. Thus, the first function which will be exe-
cuted by a process will be that “hook,” and the process
itself will restore its resources. For the container’s init
process, this “hook” also restores the container state in-
cluding mount points, networking (interfaces, route ta-
bles, iptables rules, and conntracks), and SystemV IPC
objects; and it initiates process tree reconstruction.

5 Live Migration

Using the checkpointing and restart feature, it is easy
to implement live migration. A simple algorithm is im-
plemented which does not require any special hardware
like SAN or iSCSI storage:

1. Container’s file system synchronization. Transfer
the container’s file system to the destination server.
This can be done using the rsync utility.

2. Freeze the container. Freeze all the processes and
disable networking.

3. Dump the container. Collect all the resources and
save them to a file on disk.

4. Second container’s file system synchronization.
During the first synchronization, a container is still
running, so some files on the destination server can
become outdated. That is why, after a container is
frozen and its files are not being changed, the sec-
ond synchronization is performed.

5. Copy the dump file. Transfer the dump file to the
destination server.

6. Restart the container on the destination server. At
this stage, we are creating a container on the desti-
nation server and creating processes inside it in the
same state as saved in dump file. After this stage,
the processes will be in the frozen state.

7. Resume the container. Resume the container’s ex-
ecution on the destination server.

8. Stop the container on the source server. Kill the
container’s processes and unmount its file system.

9. Destroy the container on source server. Remove
the container’s file system and config files on the
source server.

If, during the restart, something goes wrong, the migra-
tion process can be rolled back to the source server, and
the container will resume execution on the source server
as if nothing happened.

In live migration for external clients which connected
to the container via the network, the migration process
will look like a temporary network problem (as live mi-
gration is not instantaneous). But after a delay, the con-
tainer continues its execution normally, with the only
difference being that it will already be on the destina-
tion server.

In the above migration scheme, Stages 3–6 are respon-
sible for the most delay in service. Let us take a look at
them again and dig in a little bit deeper:

1. Dump time – the time needed to traverse over all
the processes and their resources and save this data
to a file on disk.

2. Second file system sync time – time needed to per-
form the second file system synchronization.

3. Dump file copying time – time needed to copy the
dump file over the network from the source server
to the destination server.

4. Undump time – time needed to create a container
and all its processes from a dump file.

6 Migration Optimizations

Experiments show that second file system sync time and
dump file copying time are responsible for about 95%
of all the delay in service. That is why optimization of
these stages can make sense. The following options are
possible:

1. Second file system sync optimization – decrease
the number of files being compared during the sec-
ond sync. This could be done with the help of file
system changes tracking mechanism.

2. Decreasing the size of a dump file:

(a) Lazy migration – migration of memory after
actual migration of container, i.e., memory
pages are transferred from the source server
to the destination on demand.

(b) Iterative migration – iterative migration of
memory before actual migration of container.

These three optimizations are described below.

2008 Linux Symposium, Volume Two • 89

Source server Destination server

Frozen
container

Restarted
container

“page-in”
 swap device

“page-out”
daemon

Network 1
2

3

4

5

1. Request a page from swap.

2. Resend the request to the source server.

3. Find the page on the source server.

4. Transfer the page to the destination server.

5. Load the page to memory.

Figure 2: Lazy migration

6.1 File System Changes Tracking

The idea is that when this system is activated, it begins
to collect the names of the files being changed and stores
them in a list. The list of modified files is to be used
during the second file system synchronization. It can
dramatically decrease second file system synchroniza-
tion time. Tracking file system changes can not be im-
plemented as a separate loadable kernel module, as it
requires core kernel changes.

6.2 Lazy Migration

During live migration, all processes’ private data are
saved to a dump file, which is then transferred to the
destination server. In the case of large memory usage,
the size of the dump file can be huge, resulting in an
increase of dump file transfer time, and thus in an in-
creased delay in service. To handle this case, another
type of live migration can be used—lazy migration. The
idea is the following—all the memory pages allocated
by processes are marked with a special flag, which is
cleared if a page is changed. After that, a container can
be frozen and its state can be dumped, but in this case
only pages without this flag are stored. That helps to
reduce the size of a dump file.

The only problem which should be also solved here is
how to transfer all the remaining memory pages from
the source server to the destination. A special page-in
swap device on the destination server and a page-out
daemon on the source server are proposed to solve this
problem.

Iteration 1
Container's

memory

Source server Destination server

Iteration 2

pages changed during iteration 1

all pages

changed pages

Iteration 3

pages changed during iteration 2

changed pages

Figure 3: Iterative migration

During processes restart on the destination server, all the
pages which are not saved to the dump file are marked
as swapped to a page-in device. When a process re-
sumed on the destination server accesses a page which
is marked as swapped, a request to the swap device is
generated. The page-in device resends this request to
the page-out daemon on the source server. The page-
out daemon sends the requested page to the destination
server, and then this page is loaded into memory on the
destination server. See Figure 2 for details. During the
first few minutes pages, are transferred to the destina-
tion server on demand. After a while, the swap-out is
forced, and all the pages are transferred from the source
server to the destination.

6.3 Iterative Migration

Another way to decrease the size of the dump file is
to transfer memory pages in advance. In this case, all

90 • Containers checkpointing and live migration

the pages are transferred to the destination server be-
fore container freeze. But as processes continue their
normal execution, pages can be changed and transferred
pages can become outdated. That is why pages should
be transferred iteratively. On the first step, all pages are
marked with a clean flag and transferred to the desti-
nation server. Some pages can be changed during this
process, and the clean flag will be removed in this case.
On the second step, only the changed pages are trans-
ferred to the destination server. See Figure 3 for details.
This iterative process stops if the number of the changed
pages becomes zero, or the number of the changed pages
becomes more than N

2i , where N is the total number of
pages and i is the iteration number.

All the transferred pages temporarily stored on the des-
tination server are used during the restart process. All
the pages changed during the last iteration are stored in
a dump file and restored from it during the restart pro-
cess.

7 Conclusion

The checkpointing and restart mechanism for contain-
ers has been designed and implemented in the OpenVZ
Linux kernel. On top of this mechanism, the live migra-
tion feature has been implemented, allowing the move-
ment of containers from one server to another without
a reboot. The efficiency of the system has been proven
on various real-world applications. Possible optimiza-
tions of the migration algorithm have been proposed to
decrease the delay in service.

References

[1] O.O. Sudakov, Yu.V. Boyko, O.V. Tretyak, T.P.
Korotkova, E.S. Meshcheryakov, Process
checkpointing and restart system for Linux,
Mathematical Machines and Systems, 2003.

[2] Eduardo Pinheiro, Truly-Transparent
Checkpointing of Parallel Applications, Federal
University of Rio de Janeiro UFRJ.

[3] Eduardo Pinheiro, Ricardo Bianchini, Nomad,
COPPE Systems Engineering, Federal University
of Rio de Janeiro, Rio de Janeiro, Brazil.

[4] Werner Almesberger, TCP Connection Passing, In
Proceedings of the Linux Symposium (Ottawa,
Ontario, Canada, July, 2004).

[5] Hua Zhong, Jason Nieh, CRAK: Linux
Checkpoint/Restart As a Kernel Module,
Department of Computer Science, Columbia
University, Technical Report CUCS-014-01,
November 2001.

[6] Steven Osman, Dinesh Subhraveti, Gong Su,
Jason Nieh, The Design and Implementation of
Zap: A System for Migrating Computing
Environments. In Proceedings of the Fifth
Symposium on Operating Systems Design and
Implementation (OSDI 2002), Boston, MA,
December 9–11, 2002.

[7] Jason Duell, The Design and Implementation of
Berkeley Lab’s Linux Checkpoint/Restart,
Lawrence Berkeley National Laboratory

[8] Xen. http://www.xen.org

[9] VMware, Inc. http://www.vmware.com

[10] The Sprite Operating System. http:
//www.eecs.berkeley.edu/Research/
Projects/CS/sprite/sprite.html

[11] OpenVZ. http://openvz.org

Building a Robust Linux kernel piggybacking The Linux Test Project

Subrata Modak
Linux Technology Centre, IBM, India
subrata@linux.vnet.ibm.com

Balbir Singh
Linux Technology Centre, IBM, India

balbir@linux.vnet.ibm.com

Abstract

The LinuxTM kernel is growing at a rapid rate and runs
across many architectures and platforms; ensuring that
the kernel is reliable, robust, and stable is very critical.
The Linux Test Project (LTP) was established to meet
the very goals stated above. Testing is often ignored
in major development, and we pay the cost through fre-
quent updates, frequent crashes and unhappy users. LTP
is now breathing a new life; we want to add more test
cases, cover more code, test new features, update exist-
ing test cases, and improve the framework.

In this paper, we explore the effectiveness of testing via
LTP, and look at coverage statistics and number of new
test cases added. We look at where LTP development
and kernel testing via LTP stands with regard to kernel
development. This paper also demonstrates how to write
a simple LTP test case, and enjoy the benefits of using it
over and over again.

1 Introduction

The Linux Test Project, created by SGI1, was one of
the first to bring organized testing to Linux. No formal
testing methodology was available to Linux developers
prior to the arrival of LTP. Systematic integration test-
ing was a distant dream, though most developers unit-
tested their own enhancements and patches. LTP’s pri-
mary goal continues to be to provide a test suite to the
Linux community that helps to validate the reliability,
robustness, and stability of the Linux kernel. It provides
functional and regression testing with or without stress,
utilizing its own execution harness to allow for test au-
tomation.

At the time when the 2.3 kernel was released, LTP
had around 100 tests [6]. As Linux grew and matured
through the 2.4, 2.5 & 2.6 kernels, the LTP test suite also

1Silicon Graphics Inc.

grew and matured as well. Today, the Linux Test Project
contains well over 3000 tests, and the number of tests is
still growing. It has evolved over the years to become
very comprehensive, capable of testing various features
of the kernel including system calls, memory manage-
ment, inter-process communication, device drivers, I/O,
file systems, and networking. With 95% of the test code
written in C, the Linux Test Project has become one
of the de-facto verification suites used by developers,
testers, and Linux distributors who contribute enhance-
ments, bug fixes, and new tests back to the project.

2 Breathing a new life into LTP

LTP is now breathing a new life. New test cases have
been added; many more test cases have been fixed be-
tween early 2007 and April, 2008. Table 12 provides
details of test cases that have been added in the men-
tioned period, and as of the date of writing of this pa-
per. Kdump test cases, by their very own nature, test
the Kdump kernel; similarly, the Real Time Linux test
cases are meant for the RT kernel. These additions show
that LTP is a part of the daily testing activity of several
people involved with kernel testing. It also shows the
flexibility that LTP provides to test case writers and ex-
ecutors.

LTP [2] also saw a massive cleanup of the existing test
cases. Around 350 patches were applied and 1000 new
sources added, ending up modifying 1000 and removing
247 source files. The broken issues in LTP, one of the
limitations preventing further adoption and expansion of
the project, were also addressed effectively.

Some of the issues that were addressed as part of the
LTP refresh are:

• The release pattern of file packages were revived to
include results on various architectures. With that,

2Data as on 15th April 2008, from initial addition to subsequent
patching

• 91 •

92 • Building a Robust Linux kernel piggybacking The Linux Test Project

Name/Type Total
Sources

Avg.
Code
Size
(bytes)

Kdump, Kdump for Network
Partition dumps

26 2312

Uts, Sysvipc, & Pid Namespace 27 2614
Inotify 4 5894
Writev 7 7712
Swapon 4 8975
Numa 6 6986
Remap_file_pages 3 6465
Nfs Check Tests 1 1834
Posix_Fadvise & Fadvise64 5 4003
Madvise 4 6572
Sendfile64 7 5625
Arm Specific Test Cases 1 1091
Real Time Linux Test Cases 101 3400
Fallocate 5 7071
Filescaps 11 2579
Cpu Controllers 17 5134
Msgctl 12 7985
Ti-rpc 588 3218

Table 1: Specific List of Test Cases Added to LTP [4]

LTP achieved the release of 169 packages (total-
ing 265 MB of code), with 31458 packages down-
loaded overall, making an average of 65 downloads
per day [1].

• Gcov-kernel patches for kernels 2.6.18, 2.6.19,
2.6.20, 2.6.21, 2.6.22, 2.6.23, 2.6.24 & 2.6.25 were
also made available to the community through LTP.

• Addition of RHEL5 LSPP Test suite Release
(EAL4 + Certification Test Suite).

• Addition of SGI Common Criteria EAL4 certifi-
cation test suite for RHEL5.1 on SGI Altix 4700
(ia64) and Altix XE (x86_64) Systems.

While LTP worked hard to retain the confidence of the
Linux community, it also saw a revamp of the testing
infrastructure by providing:

• Output logs in a more attractive/decipherable
HTML format. Figure 1 depicts the new HTML
output format for LTP with clear distinction be-
tween FAILED, PASSED, WARNED, and BRO-
KEN testcases. It is expected that HTML format
can be used to show overall test status, and help to
interactively explore failures. It is also envisioned
that using XML in the future will allow the results
to be validated and converted to attractive formats
using style sheets; other such advantages of XML
can be similarly exploited.

Figure 1: A Sample new HTML format for LTP Output

• Adding discrete sequential run capability. LTP has
an existing option to run the suite for definite pe-
riod of time, say 24 hrs [7]. The drawback with
this approach is that the test run can terminate mid-
way without completing the last loop due to time
pre-emption. This new feature allows the test to
execute as many loops as specified by the user, irre-
spective of the time consumed. Particular test cases
executed in multiple loops are properly tagged to
distinguish outputs generated in multiple loops.

• Auto Mail Back option of reports. LTP now pro-

2008 Linux Symposium, Volume Two • 93

vides the option to collate all outputs and logs,
tar(1) them and finally mail them back to a
specified email address, after testing is complete.
This can be handy in situations where the tests are
run (in background) on remote servers for longer
duration of time. On completion, the user gets the
collated reports in his/her mailbox, a handy indica-
tion of the completion of the tests.

• Generating default file for failed tests. LTP now
generates a file containing a list of exclusive test
cases which failed during test run. This file is cre-
ated in a format which then can be directly used
to do a quick re-run of these failed tests. The user
now can collate the output of only failed tests, and
debug more efficiently.

• Integrating better stress generation capability.
LTP employs a parallel infrastructure to create
stress (I/O, memory, storage, network) on the sys-
tem, to verify test case behavior under extreme
condition(s). The full potential of this infrastruc-
ture was not exploited earlier. LTP now provides
expanded options to utilize the existing features of
stress generation.

In the recent past, there has been focus on running LTP
tests concurrently [3]. Several fixes have been provided
in this regard to allow tests to run concurrently.

The other area of focus has been to help developers write
unit test cases without the need to download the original
LTP-Suite. LTP development rpms for various architec-
tures (i386, x86_64, ia64, ppc64, s390x, etc.) are now
being regularly released to address this. This is to mo-
tivate developers to write unit test case(s) on their own,
build them with the LTP development rpms, test them,
and finally integrate them to mainstream LTP. Interme-
diate releases are now regular, which gives developers
time to fix any build breaks before the final month-end
release.

While we aim to increase the kernel code coverage, we
also took a holistic look into the source code that we
added to LTP suite during this transition period. The
results showed that the LTP code has increased 42%3

starting 1st January 2007 till 15th April 2008. Though
this is quite a small figure compared to what Linux ker-
nel has grown, the most important thing to note is that

3Data Generated from diffs of ltp-20061222 & ltp-20060415.

the same has been achieved by a very small group of
LTP developers.

3 Kernel Code Coverage Statistics

One of the metrics to measure the effectiveness of test-
ing is code coverage [10]. We’ve run coverage with the
gcov patch (linux-2.6.24-gcov.patch4) on a x86 system
and run different versions of LTP on the same kernel.
However, during code coverage we have not considered
Kdump tests, RT tests, DOTS, Open_Posix_Testsuite,
Open_HPI_Testsuite, Pounder21 & SElinux testcases.
Table 2 shows the code coverage for the top 10 items.

Directory Coverage
fs 49.8% 10135/20367 lines
include/asm 49.4% 595/1204 lines
include/linux 58.7% 2239/3812 lines
include/net 56.2% 990/1762 lines
ipc 52.8% 1442/2729 lines
kernel 38.2% 9880/25837 lines
lib 42.2% 2105/4992 lines
mm 51.5% 6899/13396 lines
net 65.4% 630/964 lines
security 51.9% 666/1283 lines

Table 2: 2.6.24 kernel code coverage using December
2006 LTP

Directory Coverage
fs 52.9% 10778/20367 lines
include/asm 50.9% 613/1204 lines
include/linux 60.0% 2283/3812 lines
include/net 57.6% 1015/1762 lines
ipc 56.4% 1539/2729 lines
kernel 39.1% 10097/25837 lines
lib 43.2% 2159/4992 lines
mm 52.7% 7066/13396 lines
net 65.7% 633/964 lines
security 51.9% 666/1283 lines

Table 3: 2.6.24 kernel code coverage using March 2008
LTP

The coverage was obtained by running December 2006
LTP against a gcov instrumented 2.6.24 release of the

4Available at http://ltp.cvs.sourceforge.net/
ltp/utils/analysis/gcov-kernel

94 • Building a Robust Linux kernel piggybacking The Linux Test Project

kernel. Table 3 also shows the code coverage for the top
10 items. This coverage was obtained by running March
2008 LTP against a gcov-instrumented 2.6.24 release of
the kernel.

Comparing Tables 2 and 3, we make the following ob-
servations:

• Between the two runs, the coverage of the recent
LTP is better. This is a good sign and is indicative
of the progress that LTP has made. Table 4 shows
the percentage increase in coverage between De-
cember, 2006 and March, 2008.

Subsystem % Increase
Filesystems 3.1
include/asm 1.5
include/linux 1.3
include/net 1.4

ipc 3.6
kernel 0.9

lib 1.0
mm 1.2
net 0.3

security 0

Table 4: Increased coverage due to LTP enhancements
between Dec 2006 & March 2008.

• Two subsystems, fs and include/asm, now have
coverage greater than 50 percent.

• The data also points us to some interesting facts,
such as:

– LTP needs to do a better job of covering the
error paths. Some of them need to be cov-
ered using the fault injection framework. One
limitation of LTP is that the test cases can-
not handle faults from the kernel. The test
case exits on failure. We propose a new LTP
robust subproject to allow LTP to work well
with fault injection.

– It is not possible for LTP to cover certain sce-
narios. With a wide set of permutable config
and boot options, it is not possible to test ev-
ery config/boot option and extract coverage.
We’ve tested the most common and minimal
configuration that works on our machine.

– It is not possible for LTP to handle cov-
erage of code that is not exposed to user
space. For example, a machine may be con-
figured with SPARSEMEM, FLATMEM or
DISCONTIGMEM. Testing these options
and obtaining coverage data is not possible.

– There are several areas of code that have no
coverage. We’ve taken up those areas as areas
that need more test cases. Section 7 provides
more details about our future plans.

• We intend to make code coverage data available to
the LTP website,5 so that developers can see how
well their code is tested. This might even motivate
them to contribute the test cases they’ve used for
testing the feature to LTP.

4 Role of LTP in testing Linux

Software testing can be broadly categorized into

• Compilation Testing6

• Unit Testing

• Functional Testing

• System Testing

• Stress Testing

• Performance Testing

LTP helps with Functional, System and Stress testing.
LTP cannot directly do Compilation, Performance or
Unit testing.

There are several ways of testing the Linux kernel. Most
developers run the latest kernel on their desktops and
servers. The kernel gets tested via the applications that
get executed. Any major performance regression is ob-
served and reported.

LTP goes a step further by providing test cases that test
user interfaces with several valid and invalid parame-
ters. It tests various subsystems of the kernel such as

5http://ltp.sourceforge.net/
6Many textbooks on software testing, do not include build as a

part of the test effort. Since Linux runs on several platforms and
has several features that can be enabled/disabled at compile time,
ensuring that the build works well across the platforms, architectures
and features is an important aspect of testing Linux

2008 Linux Symposium, Volume Two • 95

the memory management code, the scheduler, system
calls, file systems, real time features, POSIX semantics,
networking, resource management, containers, IPC, se-
curity, timer subsystem and much more. LTP provides
an infrastructure to stress test the system by:

• Providing test cases that stress the system.

• Allowing concurrent execution of test cases.

• Providing noise in the background (CPU, Memory,
Storage, Network, etc.) while running tests.

LTP plays an important role in system testing. Several
users of LTP use it to validate their entire system. Run-
ning LTP validates the “C” library and the user inter-
face(s) provided by the kernel (to the extent test cases
have been added).

LTP is also run by kernel testers for regression testing.
Given the size and nature of the LTP test cases, it pro-
vides a good framework for executing desired tests, se-
lecting a subset of those tests as basic acceptance test,
and running them.

In the future, we intend to enhance LTP to provide fa-
cilities for performance testing7 and more test cases that
can test the functionality of features not yet in the main-
line Linux kernel. This would help provide extensive
testing of a feature before it gets into the mainline Linux
kernel.

5 Early and Effective Testing

Up to a point it is better to let the snags [bugs] be
there than to spend such time in design that there
are none (how many decades would this course take?)

A M Turing, Proposals for ACE (1945)

The importance and significance of effective and early
testing cannot be stressed enough. According to Barry
Boehm’s Software Engineering Economics [5], the time
required to identify a defect in software after it has been
deployed is 40 to 1000 times longer than if had been
found in the requirements analysis. While testing cannot
really catch bugs introduced in the requirements phase,
it certainly can help catch them before the code is de-
ployed.

7By providing a performance testing framework

bug introduced

x x+1

x.stable

x+2

x+1.stable

x+3

x+2.stable x+3.stable

bug fixed

Figure 2: Sample bug fix flow for a bug introduced in
version x and fixed in version x+3.

Consider a hypothetical example of a feature that intro-
duces a bug into version x of the kernel. The bug is
tested and detected in version x+3. Figure 2 shows in
dotted lines the versions into which the bug needs to be
fixed. If Linux distributions have spawned off kernels in
between versions x and x+3, then more bug fixing, hot
fixes and updates need to take place.

The example scenario above shows the advantage of
early and effective bug fixing. Had the bug been de-
tected in version x itself, the unnecessary overhead of
bug-fixing, maintenance and additional testing could
have been avoided.

This brings up an important question: To what extent do
we test the kernel? We believe that all bugs that can be
caught easily and with some effort and observation must
be discovered and fixed. Turing’s quote at the beginning
of this section refers to a good trade off between bugs
and time spent.

6 Simplest way to write a LTP test case

There have been papers written by LTP Maintain-
ers/developers regarding ways/methodology to write a
simple LTP test case. Notably amongst them are:

• Testing Linux with the Linux Test Project [9] , and

• Improving the Linux Test Project with Kernel Code
Coverage Analysis [8]

All of these are easily available in archives, hence we
skip the intricate details of writing a testcase. We in-
stead focus on presenting a set of workflows to depict
the overall mechanism to run the LTP suite, and individ-
ual test case execution.

96 • Building a Robust Linux kernel piggybacking The Linux Test Project

6.1 LTP Suite Execution Framework

Figure 3 depicts the flow of how the entire LTP suite
works. On invocation, runltp script parses all options.
It proceeds to generate the list of test cases to be exe-
cuted depending on user choice at command line. It ex-
ports all the identifiers necessary for test execution next.
Optionally, it can also generate certain stress on the sys-
tem. Next, it invokes the test driver PAN, which then
takes care of executing each test case in the list. Once
all test cases are executed, PAN reports PASS if all test
cases have executed successfully. Else, it returns fail if
at least one of them failed. Generation of HTML output
and auto-mail-back is optional. Once that is over, the
script does the necessary cleanups (releasing resources,
clearing system stress, etc.) and exits.

6.2 Individual Test Execution Framework

Figure 4 shows the preamble, which starts with mention-
ing the copyright statement(s) followed by the GPLv2
declaration (which is mandatory). Following that, the
test case name and algorithm are described. Modifica-
tion history is maintained to identify sources of this code
modification: the author, date and reason of modifica-
tion.

Figure 5 shows the the main body of the test case.
It starts by including headers that declare general and
LTP-specific global and static identifiers. Once inside
the main() block, the first thing is to check whether
the feature under test is supported by this kernel ver-
sion/architecture/FS type/glibc version. If any of these
evaluate to false, the test is aborted, corresponding mes-
sage written to logs/output, cleanups done and test exits
with proper exit-value. If everything is supported, the
main code of testing is executed.

If there are some BROKEN or WARNING messages
generated, then the test takes appropriate action. As-
suming everything goes well, test execution status is
written to log/output, cleanups are done, and the test ex-
its with a proper return value.

7 Future Plans

Several initiatives have been taken so far to improve
LTP. Most of them have been successful. We plan to
take up more such initiatives in future. As a part of

Invoke runltp

Parse Command
line options

Generate Default
Test Cases List

Export Necessary
Variables

Generate Background Stress
(CPU/Memory/Storage/Network)

PAN
(Test Driver)

(Execute Tests Sequentially)

 Invoke PAN with options

Report
PASS/FAIL

Test 1

Generate HTML Output

Archive Reports and Logs.
Send e-mail

Cleanups

Exit

Test n

Figure 3: LTP Flow Diagram

2008 Linux Symposium, Volume Two • 97

Preamble

Copyright &
 GPLv2 declaration

Declare Test Name

Write the Algorithm

Update Modification
 history

Figure 4: LTP Test Flow Preamble

LTP’s initiative to involve kernel developers in particu-
lar, we have already started with the concept of LTP de-
velopment packages. These are a combination of LTP-
specific libraries, header files, executables and man-
pages, easing developers’ task of developing unit test
cases, for the features that they plan to merge to the ker-
nel.

Another initiative is starting the LTP-mm tree. Develop-
ers might not wait for their features to be part of main-
line kernel and then open up the test cases. The same
test cases can be contributed to the LTP-mm. Test cases
can be contributed to the LTP-mm project as early as the
corresponding feature hits any kernel tree (mm,rc,etc.),
or planning to get into any tree. The test case(s) them-
selves can be modified multiple times in resemblance to
the corresponding feature changes/modification in the
kernel tree. Once the feature becomes part of main-
line kernel, the corresponding test cases are moved from
LTP-mm project to main LTP project.

While we will be happy to have those test cases use the
LTP-specific logging libraries, it is not a mandatory re-
quirement. If the test case(s) is/are written in C/Shell
and returns 0/1 on PASS/FAIL, then it is a very good
candidate for inclusion into the LTP. We encourage ker-
nel developers to contribute their unit test cases in what-
ever form they have. The LTP community will help
them in converting them to the required format across
time. We would also urge test cases to find their way
to the LTP in many unexplored areas, such as device
drivers, and also in areas where the kernel code cover-

Body

Include Headers

Declare Global
 and Static Identifiers

Enter Main

Check for Kernel version
 Arch & FS Type

setup()
 (Resource Allocation)

Supported

Write to
 Log/Output File(s)

Not
Supported

Execute Test Code

BROK/WARN/
 RETR/CONF

INFO/PASS/FAIL
Stop

Execution

cleanup()
 (Resource de-allocation)

Exit Main
 (with Return-Code)

Figure 5: Individual Test Flow Diagram

age is very low.

When we request the community to contribute to test
case(s) development, we also want to convey to you that
the LTP aims to include new test cases in the areas of:

• Power Management testing,

• Controllers and Containers testing,

• KDUMP (kdump on Xen hypervisor and guests),

• Union Mount,

• Sharedsubtree, etc.

98 • Building a Robust Linux kernel piggybacking The Linux Test Project

SAMPLE LTP OUTPUT

<<<test_start>>>
tag=remap_file_pages01 stime=1208361993
cmdline="remap_file_pages01"
contacts=""
analysis=exit
initiation_status="ok"
<<<test_output>>>
remap_file_pages01
1 PASS : Non-Linear shm file OK

<<<execution_status>>>
duration=1 termination_type=exited
termination_id=0 corefile=no
cutime=7 cstime=2
<<<test_end>>>
<<<test_start>>>
tag=faccessat01 stime=1208362004
cmdline="faccessat01"
contacts=""
analysis=exit
initiation_status="ok"
<<<test_output>>>
faccessat01

6 FAIL : faccessdat() Failed, errno=20 : Not a directory

<<<execution_status>>>
duration=1 termination_type=exited
termination_id=0 corefile=no
cutime=8 cstime=2
<<<test_end>>>
<<<test_start>>>
tag=fallocate01 stime=1208363009
cmdline="fallocate01"
contacts=""
analysis=exit
initiation_status="ok"
<<<test_output>>>
fallocate03

0 WARN : System doesn’t support execution of the test

<<<execution_status>>>
duration=1 termination_type=exited
termination_id=0 corefile=no
cutime=8 cstime=2
<<<test_end>>>

Figure 6: Sample LTP Output

in very near future. We will continue to fix and improve
upon the existing testcases. Forthcoming enhancements
in the area of LTP infrastructure include:

• Development of XML logs/output. We plan to gen-
erate the logs/output in XML format so that they

SAMPLE LTP LOG

Test Start Time: Wed Apr 16 21:47:41 2008
--
Testcase Result Exit Value
-------- ------ ----------
remap_file_pages01 PASS 0
faccesat01 FAIL 1
fallocate03 WARN 1
--
Total Tests: 2
Total Failures: 0
Kernel Version: 2.6.18-53.1.13.el5
Machine Architecture: i686
Hostname: <sniff>

Figure 7: Sample LTP Log

can be parsed easily by any XML parser.

• .config File based Execution. Options to run LTP
are growing. It may be difficult for users to remem-
ber and mention all options at command line. We
plan to provide .config file, which will host all such
options in variable=value format. Users will be re-
quired to just run runltp, which will automatically
parse options from the .config file.

• Network based installation, execution and report
collection. We plan to create an infrastructure
where it will be possible to provision LTP on mul-
tiple machines from a central machine. The pro-
visioning server will be capable of deploying LTP
suite across multiple machines, build & install, run,
and bring back all of the reports.

Recently, we identified that many LTP test cases fail
while running concurrently. We plan to make the entire
LTP suite concurrency-safe [3]. We also plan to test
all kernel releases (mm, rc, etc.) and make those results
available on the LTP website, along with the code cov-
erage details against the latest stable kernel. In the near
future, LTP will continue to focus on all possible means
to improve code coverage. However, in the long term,
we will also consider adding benchmark infrastructure
to LTP.

8 Conclusion

As Linux testing evolved through the ages, other test
projects/suites with better infrastructure/features came

2008 Linux Symposium, Volume Two • 99

to the center-stage. LTP is considered to have the fol-
lowing defects: Lacking the facility to provide auto-
matic kernel build/reboot and test, having low code cov-
erage, non-parsible output logs, and broken test cases.
While it is true that the LTP does not provide autobuild
and test options, that was not the main focus area. It was
designed to be a very handy regression test suite. LTP
used in conjunction with other test suite(s) can com-
plement each other’s features to implement the much
broader goal of making Linux better.

The kernel code coverage cannot be drastically im-
proved without the corresponding test cases for kernel
features being made available to the LTP. While this
responsibility cannot be enforced, the impact of such
can be brought to developers notice. Each section of
logs/output are properly tagged, which in turn can be
parsed by even a simple parser. Figure 6 depicts a sam-
ple test output, and, Figure 7 shows a sample log file
contents. The HTML output depicted in Figure 1 is tes-
timony to the fact that LTP log/output can be parsed very
easily. Hence, a simple parser was able to generate this
HTML from a normal text output. And this very triv-
ial output format will also enable us to write the future
XML parser.

Many test cases were found to be broken, as many ker-
nel features have undergone changes, and, the same test-
cases were not cleaned. LTP clearly distinguishes the
way test cases should report results, with keywords like
INFO, BROK, CONF, RETR, PASS, FAIL, etc. well
documented in the LTP manpages. Elaborate informa-
tion about the test case behavior is also reported along
with these keywords.

Everybody can put forth their views of how LTP should
move forward, what it should address, and what it
should avoid. The LTP community highly appreciates
patches, the benefit of which goes directly to all. LTP
has discovered opportunity in positive criticism, and has
focused with more vigor on its primary goal of pro-
viding a functional and regression test suite. It will
keep growing at any cost along with the growing kernel,
while simultaneously addressing bottlenecks in other ar-
eas too. However, we need more active contribu-
tion from the kernel developers to make LTP a very
strong and useful test suite for the Linux kernel.

Acknowledgments

We would like to thank Robert Williamson, IBM, for his
input to and review of drafts of this paper. We also owe
lot of thanks to Sudarshan Rao, Premalatha Nair, and
our team mates for their active support and enthusiasm.
And a special thanks to all those LTP developers whose
immense contribution keeps this project growing.

Legal Statement

c©International Business Machines Corporation 2008. Per-
mission to redistribute in accordance with Linux Symposium
submission guidelines is granted; all other rights reserved.

This work represents the view of the authors and does not
necessarily represent the view of IBM.

IBM, IBM logo, ibm.com, and WebSphere, are trademarks of
International Business Machines Corporation in the United
States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in all
countries in which IBM operates.

INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EX-
PRESS OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not al-
low disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.
This information could include technical inaccuracies or ty-
pographical errors. Changes are periodically made to the in-
formation herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) de-
scribed in this publication at any time without notice.

References

[1] Linux test project download page.
https://sourceforge.net/project/

showfiles.php?group_id=3382.

100 • Building a Robust Linux kernel piggybacking The Linux Test Project

[2] Linux test project home page.
https://sourceforge.net/projects/ltp.

[3] Linux test project mailing list.
https://sourceforge.net/mailarchive/

forum.php?forum_name=ltp-list.

[4] Linux test project source code repository.
http://ltp.cvs.sourceforge.net/ltp/.

[5] B. Boehm. Software Engineering Economics.
Prentice Hall, 1981.

[6] N. Hinds. Kernel korner: The linux test project:
Finding 500 bugs in 50 different kernel versions is
the fruit of this thorough linux testing and code
coverage project. Linux Journal, 2004. http:
//www.linuxjournal.com/article/7445.

[7] M. Iyer. Linux test project documentation howto.
http://ltp.sourceforge.net/

documentation/how-to/ltp.php.

[8] P. Larson. Improving the linux test project with
kernel code coverage analysis. Linux Symposium
2003.

[9] P. Larson. Testing linux with linux test project.
Linux Symposium 2002.

[10] P. Larson, R. Williamson, and M. Ridgeway.
Linux test project technical papers.
http://ltp.sourceforge.net/

documentation/technicalpapers.

Have You Driven an SELinux Lately?
An Update on the Security Enhanced Linux Project

James Morris
Red Hat Asia Pacific Pte Ltd
jmorris@redhat.com

Abstract

Security Enhanced Linux (SELinux) [18] has evolved
rapidly over the last few years, with many enhancements
made to both its core technology and higher-level tools.

Following integration into several Linux distributions,
SELinux has become the first widely used Mandatory
Access Control (MAC) scheme. It has helped Linux to
receive the highest security certification likely possible
for a mainstream off the shelf operating system.

SELinux has also proven its worth for general purpose
use in mitigating several serious security flaws.

While SELinux has a reputation for being difficult to
use, recent developments have helped significantly in
this area, and user adoption is advancing rapidly.

This paper provides an informal update on the project,
discussing key developments and challenges, with the
aim of helping people to better understand current
SELinux and to make more effective use of it in a wide
variety of situations.

1 Introduction

The scope of this paper is to cover significant advances
in the SELinux project since its initial integration with
mainstream Linux distributions. For context, a brief
technical overview of SELinux is provided, followed by
project background information.

1.1 Technical Overview

SELinux is a flexible MAC framework for Linux, de-
rived from the Flask research project [30], and inte-
grated into the Linux kernel via the Linux Security Mod-
ules (LSM) API [34].

All security-relevant accesses between subjects and ob-
jects are controlled according to a dynamically loaded
mandatory security policy. Clean separation of mecha-
nism and policy provides considerable flexibility in the
implementation of security goals for the system, while
fine granularity of control ensures complete mediation.

An arbitrary number of different security models may be
composed (or “stacked”) by SELinux, with their com-
bined effect being fully analyzable under a unified pol-
icy scheme.

Currently, the default SELinux implementation com-
poses the following security models: Type Enforcement
(TE) [7], Role Based Access Control (RBAC) [12],
Muilti-level Security (MLS) [29], and Identity Based
Access Control (IBAC). These complement the standard
Linux Discretionary Access Control (DAC) scheme.

With these models, SELinux provides comprehensive
mandatory enforcement of least privilege, confidential-
ity, and integrity. It is able to flexibly meet a wide range
of general security requirements:

• Strong isolation of applications.

• Information flow control.

• Ensuring critical processing flow.

• Protection of system integrity.

• Containment of security vulnerabilities.

SELinux is also able to meet the requirements of and
interoperate with traditional MLS systems.

1.2 Project Background

Based on the growing need for stronger security [19],
SELinux was released as an open source project by the

• 101 •

102 • Have You Driven an SELinux Lately?

US National Security Agency in December 2000. A vi-
brant community formed around the project, with De-
bian developers leading efforts to integrate SELinux into
a mainstream distribution. Subsequent early integra-
tion efforts were also largely community-led, with indi-
vidual developers undertaking SELinux packaging work
for the Gentoo, SuSE, and Red Hat distributions.

In March 2001, the NSA presented SELinux to senior
kernel developers at the Linux Kernel Summit. Feed-
back from the summit led to the formation of the LSM
project—the aim of which was to allow different secu-
rity mechanisms to be plugged into the core kernel.

SELinux helped to drive LSM requirements, while
SELinux developers participated as core contributors in
LSM development. SELinux was ported to the result-
ing LSM API, and then merged into the mainline Linux
kernel for the kernel’s v2.6 release in December 2003.

Concurrently, SELinux was fully integrated into the Fe-
dora Core distribution, version 2 of which was released
in May 2004. This marked the first release of an oper-
ating system with official support for SELinux. The se-
curity policy distributed with Fedora Core 2 was largely
derived from the initial NSA example policy, as well
as from ad-hoc community contributions. It had not yet
been well-tuned to many general Linux deployment sce-
narios and was a noted source of frustration in causing
many applications to fail unexpectedly due to policy vi-
olations.

In some cases, SELinux was blocking previously unde-
tected programming errors (such as the leaking of open
file descriptors), although the initial security policy was
also generally regarded as being too strict. A solu-
tion was implemented during the development of Fedora
Core 3 (released November 2004), whereby only critical
applications were confined by policy. This policy was
designated as targeted, and was considered to be a ma-
jor improvement in usability. It allowed SELinux to be
enabled by default, leading to what is believed to be the
first ever release of a mainstream operating system with
mandatory security enabled in a standard configuration.

Red Hat Enterprise Linux 4, based on Fedora Core 3,
shipped a few months later in February 2005 as the first
commercial distribution with full SELinux support.

These initial major distribution releases, while shipping
with relatively few confined services by default, pro-
vided useful mandatory security out of the box. They

were key milestones in the the transition of SELinux
from a research project into a production-deployable
system.

With SELinux now being distributed to the wider com-
munity, the project began to evolve rapidly in terms of
both function and usability.

2 Policy

Early versions of targeted policy confined only a few
critical and typically network-facing applications. On-
going contributions from the community, in conjunction
with continued efforts by core project developers, led to
a steady increase in the number of applications confined
by policy. As of April 2008, there was policy support for
several hundred applications in the upstream repository.

2.1 Booleans

The Booleans facility1 was developed to allow certain
policy features to be selectively enabled or disabled
without having to reload policy. This was originally de-
signed with smaller systems in mind, but has proven to
be significantly useful in the general case.

Feedback from the community indicated that there were
common patterns in the way applications would be cus-
tomized. Booleans were able to provide a suitable high-
level mechanism for administrators to effect limited yet
useful customization of policy according to these pat-
terns.

For example: policy for an FTP server might have a
boolean which enables remote access to user home di-
rectories. Rather than having to modify or even know
any SELinux policy, the administrator could instead
control this behaviour by simply running a command to
enable or disable the associated boolean.

2.2 Loadable Policy Modules

SELinux initially shipped with a monolithic policy
scheme, requiring a full rebuild of policy from source
for any modification. The Loadable Policy Module ar-
chitecture [20] was introduced to provide a more robust
and flexible approach to composing and deploying pol-
icy.

1also referred to as Conditional Policy

2008 Linux Symposium, Volume Two • 103

With this new architecture, binary policy modules could
be loaded dynamically, eliminating the need for systems
to carry a full policy source tree and associated build
infrastructure in case customization was required.

The core operating system policy was separated into a
base policy module, allowing it to be streamlined and
further tailored for different use scenarios. Higher-level
components could now be developed and managed in-
dependently, enabling the distribution of third-party pol-
icy, as well as the ability to incorporate policy modules
with application packages.

Loadable Policy Modules were first shipped with Fedora
Core 5 in March 2006.

2.3 Reference Policy

One of the most significant advances in the SELinux
project has been the Reference Policy effort [28]. This
was a fundamental reworking of the policy framework
to provide a more structured basis for policy design and
analysis. A critical goal was to improve the quality of
policy and thus facilitate increased overall assurance.

Key elements of the Reference Policy effort included:

• Introducing the principles of layering and inter-
faces to the policy language to facilitate better ab-
straction and modularization.

• Leveraging the new Loadable Policy Module archi-
tecture discussed in Section 2.2.

• Building support for documentation into the infras-
tructure to encourage the practice of literate pro-
gramming [17].

• Easier configuration of security models, so that fea-
tures such as MLS may enabled without requiring
separate policy source trees.

• Porting the NSA example policy to the new frame-
work.

For policy developers, Reference Policy meant a greatly
simplified view of policy. Much of the low-level com-
plexity was abstracted away. Design could be performed
in a modular fashion, utilizing well-defined and docu-
mented interfaces. This facilitated a greater focus on

high-level security goals and better comprehensibility of
policy.

Reference Policy was first shipped along with Loadable
Policy Modules in Fedora Core 5.

2.4 Other Developments

The (somewhat experimental) MLS functionality sup-
plied with the original SELinux release was signifi-
cantly revised to meet certification requirements and to
be more useful in the real world. This included policy
enhancements and the ability to enable MLS dynami-
cally. MLS was previously a kernel compile-time option
and not enabled at all in mainstream distributions.

The MLS infrastructure was also adapted to a new secu-
rity model, Multi-Category Security (MCS) [24], which
utilized the category attribute of MLS labels and a sim-
ple policy to provide end users with a discretionary la-
beling scheme. Fedora Core 5 shipped with MCS en-
abled by default, allowing much of the MLS infrastruc-
ture to be exercised by general users. The future of MCS
is currently unclear, as its wider adoption requires ex-
tension to applications, and it may be better to instead
utilize TE for the same purpose.

The RBAC scheme was greatly improved, allowing
roles to be defined and loaded as policy modules, rather
than having to be managed as part of the previous mono-
lithic policy scheme.

By the time of writing, targeted and strict versions of
policy in the upstream repository had been merged into
a single version. Targeted behavior is now selected by
including the “unconfined” policy module. Strict behav-
ior may also be re-selected incrementally by mapping
users to confined roles.

3 Toolchain and Management

Major changes such as the Loadable Policy Modules
and Reference Policy projects entailed reworking much
of the low level SELinux infrastructure. This provided
opportunities to improve the function and usability of
the toolchain, and to implement a foundation for the de-
velopment of high-level SELinux applications.

The following are highlights of recent advances made in
SELinux toolchain and management technology.

104 • Have You Driven an SELinux Lately?

3.1 libsemanage

The extensible libsemanage library was developed in
conjunction with Reference Policy as the first program-
matic API for applications which need to manipulate
policy. Such applications range in scope from the
core system management utilities and scripts through to
graphical policy design and management tools.

3.2 semanage

The semanage command line tool was introduced as a
means to unify low-level SELinux administrative tasks,
many of which, prior to Reference Policy, involved edit-
ing disparate policy source files and rebuilding policy.

For the system administrator, semanage improved over-
all usability by providing a well documented, canonical
utility for managing key aspects of an SELinux system.
Examples of semanage use include configuring local file
labeling rules and the labeling of system objects such as
network ports.

Recently, much the core of semanage has been refac-
tored into a Python module to enable re-use by other
management tools such as system-config-selinux.

3.3 system-config-selinux

system-config-selinux is a GUI tool for comprehensive
SELinux system management. It has been integrated
into Fedora-based distributions, and serves as a graphi-
cal alternative to semanage.

A flexible underlying Python-based architecture should
make it readily adaptable to the management schemes
of other distributions and operating systems.

3.4 Loadable Policy Module Tools

• checkmodule is the policy module compiler. It ver-
ifies the correctness of a policy source module then
converts it into a binary representation.

• semodule_package bundles a binary policy file as
created by checkmodule with optional related data
such as file labeling data into a format ready to be
installed by semodule.

• semodule is the core policy module management
tool. It is used for installing, upgrading, querying
and deleting binary policy modules.

3.5 Boolean Management

setsebool and getsebool are the standard command-
line utilities for managing the state of policy Booleans
(see Section 2.1). Booleans may also be managed via
system-config-selinux.

3.6 restorecond

A common early issue for administrators was that some
files were particularly susceptible to being mislabeled,
such as the /etc/resolv.conf file being recreated by cer-
tain system tools.

The restorecond utility was developed to automate rela-
beling of such files, reducing administrative burden.

Files to be monitored are listed in a configuration file
(typically /etc/selinux/restorecond.conf). restorecond
utilizes the Inotify subsystem to detect changes to any
of these files, then performs relabeling if needed.

Note that file labeling is usually handled transparently
by SELinux policy, or by enabling system tools to pre-
serve security labels on files. As such, restorecond is
an optional SELinux component aimed at improving us-
ability on general purpose systems.

3.7 setroubleshoot

setroubleshoot is a GNOME facility which triggers a
user alert upon SELinux policy violations. The alert no-
tifies the user of the problem and assists in resolving the
issue or filing a report with SELinux developers. setrou-
bleshoot may also be configured to send email alerts to
an administrator for centralized management.

setroubleshoot utilizes a pluggable rule database and at-
tempts to heuristically determine problem causes.

Community feedback indicates this facility has signifi-
cantly improved the SELinux user experience, by help-
ing to resolve issues encountered, and by giving users
a clearer understanding of what is happening on their
system when SELinux prevents an access.

setroubleshoot first shipped with Fedora Core 6 in Oc-
tober 2006.

2008 Linux Symposium, Volume Two • 105

3.8 SELinux Policy Management Server

The SELinux Policy Management Server [21] is an on-
going project which addresses several requirements in
the management of policy on an SELinux system. Its
aim is to provide a platform for installing, updating and
querying SELinux policy on production systems, with
the ability to safely delegate administration of policy to
separate users.

Currently in a prototype phase, a notable planned fea-
ture of the policy management server is support for re-
motely managing a single policy across multiple ma-
chines.

4 Policy Development

Since the introduction of Reference Policy, there have
been several advances in the area of authoring SELinux
policy.

4.1 Command Line Tools

While SELinux policy is ideally shipped with the sys-
tem and managed with high-level tools, administrators
may still wish to develop their own enhancements to
policy. This task has been simplified somewhat with
modular policy and new or enhanced command-line
tools.

4.1.1 audit2allow

The audit2allow utility parses the audit log and converts
access denial records into security policy. It has proven
to be a valuable tool in resolving local policy issues.

For example, in the case of an application not having
any SELinux policy (e.g., locally developed or provided
by a third party), a policy module may be developed
for it with a few simple commands [31]. The system
is configured in permissive mode, so that access denials
will be logged but not be enforced, and then the audit
log is passed to audit2allow to generate a binary policy
module. The new module may then be loaded into the
system via semodule. This is a form of “learning mode.”
It is always recommended that the administrator review
the resulting policy, and to request further review from
the community if necessary.

4.1.2 audit2why

The audit2why tool was developed to help administra-
tors better understand SELinux audit messages. It takes
raw audit logs as input and analyzes them to deter-
mine which policy component triggered a particular au-
dit message.

Often, the audit messages alone do not provide enough
information to trace an access denial back to the asso-
ciated policy component. Access denials have several
possible causes: missing TE rules, missing RBAC rules,
and policy constraints. audit2why is able to pinpoint
precisely which.

Recently, audit2why was extended to determine which
policy Boolean, if applicable, may be modified to re-
solve the issue.

4.2 SLIDE

The SELinux Policy IDE (SLIDE) is a sophisticated GUI
policy development environment, implemented as an
Eclipse plugin. It is aimed at making policy develop-
ment easier, and includes many developer-oriented fea-
tures such as syntax highlighting, project exploration,
auto-completion, wizards, and refactoring support.

SLIDE also includes support for testing, deploying, and
remotely managing policy. It was recently integrated
into the Fedora distribution as an official package.

4.3 Policy Druid

A policy generation druid is included in system-config-
selinux. This is a simple graphical wizard which
presents the user with a series of questions about an
application based on common security traits. A policy
module is then automatically generated for the applica-
tion, which may then be further managed via system-
config-selinux.

No knowledge of the SELinux policy language is re-
quired. This tool is useful for rapidly generating policy
with broad confinement properties.

4.4 SEEdit

The SELinux Policy Editor (SEEdit) [27] is a graphical
tool which allows users to develop policy in a simpli-
fied policy language. Introduced by Hitachi Software in

106 • Have You Driven an SELinux Lately?

2005, SEEdit utilizes pathname-based configuration and
is targeted at developing policy for embedded systems.

4.5 SETools

A powerful set of policy analysis tools has been devel-
oped by Tresys and packaged into the SETools [6] suite.
Included in the suite are utilities for analyzing SELinux
policy, analyzing audit messages and creating audit re-
ports, and verifying and examining policy.

4.6 CDS Framework Toolkit

The CDS Framework Toolkit [1] is a high-level tool for
designing SELinux policy for “cross-domain solutions”
(CDSs). CDSs are specialized guard systems for con-
trolling information flow between different security do-
mains.

While typically employed for sensitive government and
military use, the underlying principles of have more
general applications, such as in the case of a corpo-
rate Internet gateway which filters email and other user
traffic. As SELinux is able to enforce critical process-
ing flow,2 security policy can be used to ensure, for ex-
ample, that incoming email is always passed through a
virus checker and a spam filter.

The CDS Framework Toolkit utilizes a GUI and abstract
representation of the system, and does not require de-
tailed knowledge of SELinux policy on the part of the
user.

5 Networking

SELinux provides fine-grained controls over network
accesses at several layers of the networking stack. At
the socket layer, all socket system calls are mediated.
Specialized controls are implemented for critical net-
working protocols (such as Unix domain sockets), the
IP layer, and the interface layer.

Since the initial releases of SELinux, several aspects of
networking support have been reworked or newly im-
plemented.

2also referred to as an assured pipeline

5.1 Secmark

The first release of SELinux included rudimentary IP
layer controls for packet flow. An effort called Sec-
mark [25] was undertaken in 2006 to modernize the IP
layer controls, leveraging the rich firewalling capabili-
ties available in the Linux kernel.

With Secmark, iptables rules are used to label packets
based on attributes which can be determined from the
packet alone (e.g., destination port). Packet flow is then
mediated using these labels according to SELinux pol-
icy.

This allows the utilization of all available iptables
matches as selectors, as well as features such as con-
nection tracking (or “stateful inspection”). Use of the
latter leads to greatly simplified network packet policy.
A single rule can be used, for example, to permit the
flow of all traffic in a validated “established” or “re-
lated” state, eliminating the need to explicitly allow (or
ignore) ephemeral port use, and to automatically handle
multi-connection protocols such as FTP.

The code for this has been merged upstream, although
distribution integration is not yet complete, as there is
currently an outstanding issue of how best to perform
the integration without clashing with current users of
iptables.

5.2 Labeled Networking

While Secmark provides local labeling of network traf-
fic, there is also a need for the ability to mediate traffic
based upon remote characteristics such as the security
context of the peer application. This is achieved by con-
veying security labels with the traffic as it transits the
network.

SELinux takes two approaches to this:

• Labeled IPSec

This essentially involves labeling IPSec security
associations (SAs) to implicitly label traffic car-
ried over those SAs. This was derived from earlier
Flask research [9], implemented for SELinux by
an IBM team [15], and further refined by Trusted
Computer Solutions for better MLS support and
improved usability.

2008 Linux Symposium, Volume Two • 107

• NetLabel

Legacy trusted systems utilize IP options to convey
security labels across the network. It is desirable
for SELinux to interoperate with these systems. A
flexible implementation based on the abandoned
CIPSO [14] standard has been developed and in-
tegrated into the kernel by HP.

All of the above network labeling schemes were de-
signed to be security framework agnostic, and are avail-
able for use by other security modules.

6 Memory Protection

Linux systems take a layered approach to security, to
provide “defense in depth,” ensuring that security mea-
sures are implemented at every possible level. No single
measure can defeat all attacks, but many attacks can be
defeated by a combination of measures.

SELinux utilizes kernel-based mechanisms to confine
the behavior of userland applications. It is thus not de-
signed to protect directly against kernel bugs, nor certain
classes of application issues such as memory-based at-
tacks, although it can help confine the damage done by
such attacks.

Many distributions ship with mechanisms to protect
against memory-based attacks, such as support for non-
executable pages (NX) and glibc memory checks. In
some cases, applications may wish to override memory
checks (e.g., certain virtual machine interpreters), and
SELinux has been extended to allow these overrides to
be controlled by SELinux policy [11].

Enforcement of these memory checks via SELinux pol-
icy has led to the discovery of several applications which
were inadvertently performing dangerous memory oper-
ations. While initially causing inconvenience to users,
many of these applications were subsequently fixed,
while developer awareness of the underlying issues was
increased.

7 Security Evaluation and Accreditation

For some classes of government and military users, se-
curity certification is an important procurement require-
ment. The integration of SELinux made it possible

to have Linux certified to the highest level currently
achieved by mainstream operating systems.

In 2007, Red Hat Enterprise Linux version 5 in a server
configuration was certified under the Common Criteria
Evaluation and Validation Scheme (CCEVS) to Evalu-
ation Assurance Level 4 Augmented (EAL4+), against
the protection profiles:

• LSPP: Labeled Security Protection Profile

• RBACPP: Role Based Access Control Protection
Profile

• CAPP: Controlled Access Protection Profile (Au-
dit)

As CCEVS certifications include hardware, certification
was performed for both HP and IBM platforms. A simi-
lar certification is currently underway for SGI hardware.
EAL4+ is the highest assurance level likely achievable
without a specially designed operating system, while
LSPP is an updated equivalent of the earlier Trusted
Computer System Evaluation Criteria (TCSEC or “Or-
ange Book”) B1 rating.

Several aspects of the certification are notable. It was
the first time that Linux itself was known to be sub-
jected to such a rigorous security validation process.
Linux has now become directly competitive in the mar-
ketplace with existing “trusted” operating systems. An
innovative approach was taken such that the Linux cer-
tifications were performed on the standard product line,
rather than on separately maintained versions. Also in-
novative was the cooperative and open community cer-
tification effort, which led to a pooling of resources be-
tween several different companies and organizations.

The certification efforts also led to the development of
several enhancements to SELinux and Linux itself, such
as an overhaul of the Audit subsystem, and the intro-
duction of polyinstantiated directories via Linux names-
paces and the Pluggable Authentication Modules (PAM)
subsystem. Many of these certification-related develop-
ments have proven generally useful, with a notable ex-
ample being the introduction of Kiosk Mode (see Sec-
tion 12).

SELinux-based systems have also been accredited on a
per-system basis, independently of CCEVS. Details of
such accreditations are often not public, although a case

108 • Have You Driven an SELinux Lately?

study was presented at the 2007 SELinux Symposium
where an SELinux-based system was developed to al-
low US Coast Guard Intelligence to consolidate access
to separate classified networks [16].

The Certifiable Linux Integration Platform (CLIP) [2]
project consists of specialized SELinux policy and sys-
tem configuration packages aimed at meeting rigorous
security requirements. For example, CLIP has been
used to help SELinux systems meet Director of Cen-
tral Intelligence Directive 6/3 at Protection Level 4, a
common requirement for government and military sys-
tems which handle Sensitive Compartmented Informa-
tion (SCI).

8 Performance and Scalability

The initial SELinux code release was not tuned for per-
formance. Increased SELinux adoption saw the contri-
bution of several enhancements aimed at improving per-
formance, scalability, and resource utilization.

Examples include:

• Utilizing Read Copy Update (RCU) [23] to remove
locking and atomic operations from critical per-
formance paths. In January 2005, patches were
merged upstream which dramatically increased
the scalability of the core SELinux kernel code.
Benchmarks run on 4-node 16-way NUMA system
indicated a 50% increase in memory bandwidth
and near-linear scheduler scalability.

• Calculating information on non-critical paths as
needed rather than ahead of time. Patches were
developed to perform more kernel access decision
calculations on the fly and also reduce the size of
related kernel structures. These changes, merged
in September 2005, resulted in savings of around
8 MB of kernel memory for targeted policy and
16MB for strict policy. Under Linux, kernel mem-
ory is not pagable and thus a particularly precious
resource.

• Better utilization of the Linux slab allocator [13].
The kernel objects which hold SELinux policy
rules were originally allocated via a generically-
sized slab class. In August 2004, a patch was
merged which implemented a custom slab class for
policy rules, leading to memory savings of 37% on
64-bit systems.

• Caching information rather than calculating it in
performance critical paths. Recent patches from
HP have introduced label caches for virtual entities
such as network addresses and ports, to avoid con-
sulting the kernel policy database for labels at each
access.

• Optimized revalidation. Under SELinux, read and
write permissions for an open file are revalidated
on each access. This is to ensure correct mediation
even if there have been labeling or policy changes
since the initial access. In September 2007, patches
were merged which ensured that such revalidation
would only occur if it was known that labels or pol-
icy had actually changed. Benchmarking indicates
that overhead for read and write was reduced by a
factor of five on Pentium-based systems and a fac-
tor of ten on the SuperH platform.

Many of the performance and resource utilization en-
hancements were contributed by developers from the
embedded community.

9 Mitigation

A significant goal of SELinux is to mitigate threats aris-
ing from flaws in applications. Programming flaws are
relatively common and effectively impossible to pre-
vent entirely. Some flaws, especially those present in
network-facing services and in privileged applications,
may be exploited by malicious attacks. Such attacks can
lead to disclosure of private information, corruption or
destruction of valuable data, abuse of resources (e.g., hi-
jacking a system to send spam), and the staging of more
sophisticated attacks.

SELinux policy may be used to confine an application to
ensure that it is capable of performing only the accesses
needed for normal operation. This is an application of
the principle of least privilege, which ensures that if an
application is compromised or even malfunctions, that
its actions will be limited to those it was supposed to be
performing.

For example, if a web server was vulnerable to remote
attack, an exploit may attempt to publish sensitive infor-
mation from user directories or to send spam. With an
appropriate SELinux policy, such actions would not be
permitted, and these threats would be mitigated.

2008 Linux Symposium, Volume Two • 109

Several cases of successful threat mitigation with
SELinux have been documented, where systems run-
ning with SELinux enabled were protected against real
vulnerabilities and exploits [22].

These cases have demonstrated the value of deploying
SELinux for general use.

10 Extending SELinux

The SELinux architecture has been extended beyond the
Linux kernel to other areas of the system, and to other
operating systems. Such efforts benefit from the abil-
ity to re-use existing SELinux components, such as the
policy framework, code, and tools.

10.1 Desktop

Extending SELinux to the desktop environment is a sig-
nificant undertaking. The modern desktop is made up of
many layers and components, all of which need to be an-
alyzed and understood in terms of information flow. At
each layer, an SELinux policy model needs to be devel-
oped, and mediation hooks inserted into the code. This
area has seen steady progress in parallel with the inte-
gration of SELinux into the base operating system.

The X Access Control Extension (XACE) [32] is a plug-
gable mandatory security framework for the X server,
developed by the NSA, and merged into the upstream
X.org tree. A Flask/TE module for XACE called
XSELinux was also developed and merged upstream.

Work has also begun on securing the GNOME desktop
environment by extending the SELinux architecture to
GConf (the GNOME configuration system) [8] and D-
BUS (the freedesktop.org messaging system). The D-
BUS work has been merged upstream, while the GConf
extensions are expected to remain in a prototype stage
until further core desktop security infrastructure is in
place.

A proof of concept project called Imsep [33] demon-
strated a promising approach to protecting desktop ap-
plications by separating image processing functions into
a separate security domain.

10.2 Database

SE-PostgreSQL [5], an extension of the SELinux archi-
tecture to the PostgreSQL relational database system,
was released in September 2007. It features security
labeling of data at the row and column levels, with en-
forcement of mandatory access control for authorized
clients.

This importantly allows security policy to be uniformly
applied to data at the OS level and within the database,
where previously, fine-grained mandatory control was
lost once information entered the database.

10.3 Virtualization

Efforts have been made by the NSA to integrate a flexi-
ble MAC scheme into the Xen hypervisor. Currently, the
Xen Security Modules (XSM) project [10] implements a
pluggable hook framework within the hypervisor, allow-
ing different security models to be selected. An existing
MAC scheme for Xen called Access Control Module
(ACM) has been ported to XSM, and a Flask/TE module
has been developed based on SELinux principles.

XSM removes security model logic from the core Xen
code, and provides security model configuration flex-
ibility. Hooks are implemented to allow mediation
of privileged hypercalls, inter-domain communication
(e.g., event channels and grant tables), and access to sys-
tem resources by domains. An aim of this work is to
increase robustness and assurance by decomposing the
highly privileged Dom0 into separate domains. Inter-
actions between these domains may then be controlled
with fine-grained mandatory policy.

XSM and the Flask/TE module were merged into ver-
sion 3.2 of the mainline Xen release.

10.4 Storage

While many local filesystems support SELinux via ex-
tended attributes, support for remote filesystems is rudi-
mentary. When a remote filesystem is mounted, a
policy-defined default security label may be assigned to
all files on the mount; or in the case of NFS, the label
may be specified by the administrator as a mount option.
This provides coarse protection, although fine-grained
labeling is not available; remote labels if they exist are

110 • Have You Driven an SELinux Lately?

ignored; and there is no way to remotely set labels on
files. There is also no awareness of whether the remote
system is performing any SELinux enforcement.

The Labeled NFS project [3] was started in 2007 to
address these issues. Thus far, detailed requirements
based on previous similar projects have been gathered,
while proof of concept code has been published and re-
viewed by Linux NFS developers. A key challenge of
the project is to accommodate the needs of multiple up-
stream groups including the IETF, Linux NFS develop-
ers and core kernel maintainers.

Labeled NFS was presented by the NSA at the IETF
71 meeting in March 2008. RFC documents are being
developed with the aim of establishing Labeled NFS as
an Internet standard, while work is continuing on the
prototype Linux code.

10.5 Beyond Linux

Several non-Linux operating systems have adopted, or
are in the process of adopting, Flask/TE technology.

FreeBSD led the way in this area with the SE-BSD
project, which ported the SELinux architecture to its
TrustedBSD framework. This work was then ported to
Apple’s Darwin operating system, as SE-Darwin. These
projects are not currently incorporated into their respec-
tive mainline trees.

Recently, the OpenSolaris project announced Flexible
Mandatory Access Control (FMAC) [4], an effort to in-
corporate the Flask/TE architecture into their mainline
operating system. This project is also expected to lever-
age the Flask/TE port to Xen, and to implement Labeled
NFS and Labeled IPSec.

The FMAC project presents an exciting opportunity for
Linux and OpenSolaris to offer compatible mandatory
security to users. A significant potential benefit is in-
creased overall adoption of mandatory security.

11 Community

As discussed in Section 1.2, the SELinux project
emerged from academic and government research ef-
forts. As SELinux has been integrated into Linux distri-
butions and made more generally usable, the SELinux
community has expanded in both size and scope.

11.1 SELinux Symposium

The SELinux Symposium (2005–2007) has been of pro-
found importance to the project, bringing together core
developers, security researchers and significant early
adopters.

A small, invite-only developer summit, arising from
earlier informal meetings, was typically held after the
main symposium, driving much of the direction of de-
velopment for each year. The developer summit is now
planned to be a separate, open event aimed at engaging
the wider community.

11.2 Online Resources

The nsa.gov site remains the primary point of focus for
the project, hosting many critical documents, the main
mailing list, and historical core code releases.

Other SELinux sites have been deployed in recent years:

• selinuxnews.org – project news and events,
and an SELinux community blog aggregator.

• oss.tresys.com – hosts several open source
SELinux projects developed by Tresys.

• selinuxproject.org – a wiki hosting mis-
cellaneous developer and project resources.

Distributions with SELinux support typically also
utilize mailing lists and web sites to provide re-
sources to developers and users. Links to these
may be found at the SELinux for Distributions site:
selinux.sourceforge.net.

Many seminal SELinux papers and presentations
are archived at the SELinux Symposium web site:
selinux-symposium.org.

SELinux kernel development is now hosted in public
repositories on kernel.org.

11.3 Distributions

While Fedora-based distributions have been at the fore-
front of SELinux development in recent years, SELinux
integration efforts have continued in other distributions.

2008 Linux Symposium, Volume Two • 111

Gentoo, Debian, and Ubuntu all have security hardening
efforts involving SELinux integration into their mainline
distribution releases.

SELinux was incorporated into the mainline release of
Debian 4.0 (“Etch”). Previously, SELinux packages for
Debian were only available from separate repositories.

As of version 8.04, Ubuntu includes full support for
SELinux in its server release.

11.4 Adoption

SELinux was always intended to be adaptable to a wide
variety of usage scenarios, and to provide useful pro-
tection in the general case. Initially, serious adop-
tion appeared to be focused around traditional higher-
assurance users such as government and military orga-
nizations.

With the integration of SELinux into general purpose,
mainstream distributions, wider and more general adop-
tion is now being seen.

There has been growing interest from industry sectors
with critical security needs, such as finance and health-
care.

Consumer electronics is significant area of adoption
which was not perhaps originally anticipated. As con-
sumer devices become more sophisticated and con-
nected, the nature and scope of their security require-
ments is markedly increased. A flexible MAC scheme
such as SELinux often proves useful in this area, as se-
curity policy can be tailored to the specific function of
each product, leading to tighter security than is typically
possible for a general purpose system. There is poten-
tial to increase the time to patch if a vulnerability is dis-
covered which is mitigated by SELinux policy, perhaps
delaying the update until another critical update is re-
quired. Updating software in fielded devices can be ex-
pensive and risky.

In terms of general purpose adoption, statistics gathered
by the Fedora project since the release of Fedora 8 ten-
tatively indicate that a significant majority of users have
SELinux enabled. Recent advances in usability and in-
creased awareness of the value of mandatory security
are likely factors here.

12 Current Developments

At the time of writing, an area of active development is
in confining users. Under targeted policy, general users
on an SELinux system are unconfined, with a focus on
protecting against external threats. With the release of
Fedora 8, a facility called Kiosk Mode [26] (or xguest)
was introduced. This allows an anonymous user to ac-
cess a desktop session in limited but useful manner, such
as to only allow web browsing. The security goal in this
case is to protect the system from the user. Kiosk Mode
may be useful for providing public access to desktop and
Internet applications in varied settings, such as libraries,
cafes, conferences, product demonstrations, and train-
ing sessions.

Another current development is permissive domains, a
mechanism to allow permissive mode to be invoked only
for specific applications. SELinux enforcement may be
disabled for a selected application, say, to debug its pol-
icy, while maintaining SELinux enforcement for the rest
of the system.

13 Future Work

Areas of ongoing and future work in the SELinux
project include:

• Continued extension of SELinux architecture to the
desktop infrastructure and major applications. The
Imsep work mentioned in Section 10.1 looks to be
a promising model for general separation of secu-
rity domains within applications.

• Working with the IETF to standardize Labeled
NFS, and with the Linux community to have it ac-
cepted into the mainline kernel.

• Ongoing performance improvement, and efforts to
further reduce the memory footprint of SELinux.

• Further simplification of policy, perhaps through
the development of a higher-level policy language
with idioms more familiar to Linux administrators.

• Support for more virtualization models, including
Linux as hypervisor (e.g., KVM) and containers.

• Improved support for third party distribution of
policy modules, such as the case of cross-building
RPMs on systems with a conflicting host policy.

112 • Have You Driven an SELinux Lately?

• Continued usability improvements for end users,
administrators and developers.

• Better documentation.

14 Conclusion

Following the transition of SELinux from a research
project into a deployable, community-driven technol-
ogy, there has been rapid and intense growth in its func-
tion, usability, and adoption.

The SELinux project has pioneered the practical appli-
cation of mandatory security in general purpose com-
puting, utilizing a flexible, open approach to both the
technology and the execution of the project itself.

While still a work in progress, SELinux has matured to
the point where it is able to provide useful mandatory
protection to general users, while also meeting higher
assurance goals in critical security environments.

Other operating systems have begun adopting concepts
innovated by the SELinux project, such as incorporating
mandatory security into mainline products and making
it a standard feature enabled by default.

It is hoped that SELinux will continue to both provide
and foster stronger computer security for users of the
continually evolving globally networked environment.

15 Acknowledgements

Thanks to Stephen Smalley, Dan Walsh, Karl MacMil-
lan, and Christopher PeBenito for providing valuable
feedback during the preparation of this paper.

References

[1] CDS Framework Toolkit. http://oss.
tresys.com/projects/cdsframework.

[2] Certifiable Linux Integration Platform. http:
//oss.tresys.com/projects/clip.

[3] Labeled NFS.
http://www.selinuxproject.org/
page/Labeled_NFS.

[4] OpenSolaris Project: Flexible Mandatory Access
Control. http://www.opensolaris.org/
os/project/fmac/.

[5] Security Enhanced PostgreSQL.
http://code.google.com/p/sepgsql/.

[6] SETools. http:
//oss.tresys.com/projects/setools.

[7] W. E. Boebert and R. Y. Kain. A Practical
Alternative to Hierarchical Integrity Policies.
Proceedings of the 8th National Computer
Security Conference, 1985.

[8] J. Carter. Using GConf as an Example of How to
Create an Userspace Object Manager.
Proceedings of the 3rd Annual Security Enhanced
Linux Symposium, March 2007.

[9] Ajaya Chitturi. Implementing Mandatory
Network Security in a Policy-flexible System.
Master’s thesis.
http://www.cs.utah.edu/flux/
papers/ajay-thesis-abs.html.

[10] G. Coker. Xen Security Modules (slides).
http://xen.org/files/xensummit_4/
xsm-summit-041707_Coker.pdf, April
2007.

[11] U. Drepper. SELinux Memory Protection Tests.
http://people.redhat.com/drepper/
selinux-mem.html, April 2006.

[12] D. Ferraiolo and R. Kuhn. Role-Based Access
Controls. Proceedings of the 15th National
Computer Security Conference, October 1992.

[13] Brad Fitzgibbons. The Linux Slab Allocator,
October 2000.

[14] IETF CIPSO Working Group. Commercial IP
Security Option (CIPSO 2.2), July 1992.

[15] Trent Jaeger, Kevin Butler, David H. King, Serge
Hallyn, Joy Latten, and Xiaolan Zhang.
Leveraging IPsec for Mandatory Access Control
of Across Systems. Proceedings of the 2nd
International Conference on Security and Privacy
in Communication Networks, August 2006.

[16] G. Kamis. US Coast Guard / NetTop2 - Thin
Client Implementation (slides).
http://selinux-symposium.org/
2007/slides/08-tcs.pdf, March 2007.

2008 Linux Symposium, Volume Two • 113

[17] Donald E. Knuth. Literate programming. Center
for the Study of Language and Information,
Stanford, CA, USA, 1992.

[18] P. Loscocco and S. Smalley. Meeting Critical
Security Objectives with Security-Enhanced
Linux. Proceedings of the 2001 Ottawa Linux
Symposium, July 2001.

[19] P. Loscocco, S. Smalley, P. Muckelbauer,
R. Taylor, S. Turner, and J. Farrell. The
Inevitability of Failure: The Flawed Assumption
of Security in Modern Computing Environments.
Proceedings of the 21st National Information
Systems Security Conference, October 1998.
http://www.cs.utah.edu/flux/
papers/ajay-thesis-abs.html.

[20] Karl MacMillan. Core Policy Management
Infrastructure for SELinux, March 2005.

[21] Karl MacMillan, Joshua Brindle, Frank Mayer,
Dave Caplan, and Jason Tang. Design and
Implementation of the SELinux Policy
Management Server. Proceedings of the 2nd
Annual Security Enhanced Linux Symposium,
March 2006.

[22] D. Marti. A seatbelt for server software: SELinux
blocks real-world exploits, February 2008.
http://www.linuxworld.com/news/
2008/022408-selinux.html.

[23] Paul E. McKenney, Jonathan Appavoo, Andi
Kleen, Orran Krieger, Rusty Russell, Dipankar
Sarma, and Maneesh Soni. Read-Copy Update. In
Ottawa Linux Symposium, July 2001.

[24] J. Morris. A Brief Introduction to Multi-Category
Security. http://james-morris.
livejournal.com/5583.html, September
2005.

[25] J. Morris. New Secmark-based Controls for
SELinux. http://james-morris.
livejournal.com/11010.html, May
2006.

[26] J. Morris. Using SELinux Kiosk Mode in Fedora
8. http://james-morris.
livejournal.com/25640.html, February
2008.

[27] Y. Nakamura. Simplifying Policy Management
with SELinux Policy Editor. March 2005.

[28] C. PeBenito, F. Mayer, and K. MacMillan.
Reference Policy for Security Enhanced Linux.
Proceedings of the 2nd Annual Security Enhanced
Linux Symposium, February 2006.

[29] R. Smith. Introduction to Multilevel Security.
http://www.cs.stthomas.edu/
faculty/resmith/r/mls/index.html,
2005.

[30] R. Spencer, S. Smalley, P. Loscocco, M. Hibler,
D. Andersen, and J. Lepreau. The Flask Security
Architecture: System Support for Diverse
Security Policies. Proceedings of the Eighth
USENIX Security Symposium, August 1999.

[31] D. Walsh. Creating Loadable Modules with
Audit2Allow. http:
//fedoraproject.org/wiki/SELinux/
LoadableModules/Audit2allow,
February 2006.

[32] E. Walsh. Application of the Flask Architecture to
the X Window System Server. Proceedings of the
3rd Annual Security Enhanced Linux Symposium,
March 2007.

[33] C. Walters. Towards a Least Privilege Desktop
(presentation slides), March 2005.

[34] C. Wright, C. Cowan, J. Morris, S. Smalley, and
G. Kroah-Hartman. Linux Security Modules:
General Security Support for the Linux Kernel.
USENIX Security Conference, August 2002.

114 • Have You Driven an SELinux Lately?

Coding Eye-Candy for Portable Linux Devices

Bob Murphy
ACCESS Systems Americas, Inc.

Bob.Murphy@access-company.com

Abstract

Linux is increasingly being used in portable devices
with unusual hardware display architectures. For in-
stance, recent OMAP and XScale CPUs support multi-
ple frame-buffer “overlays” whose contents can be com-
bined to form what the user sees on the screen.

As part of the ACCESS Linux Platform, ALP, ACCESS
has developed a set of kernel modifications, an X exten-
sion and driver, and additions to the GDK/GTK stack
to take advantage of the XScale CPU’s three-overlay ar-
chitecture. This paper provides an overview of these
modifications and how they have been used to achieve
a variety of “eye-candy” features, such as GTK widgets
that float translucently over an actively playing video.

1 Introduction

The evolution of display systems for computer graphics
has included a wide variety of features and architectures.
Some systems, like the vector displays used by Ivan
Sutherland in 1963, have largely wound up in the dust-
bin of history. For the last twenty years, framebuffer-
based raster displays have dominated the industry.

However, standardization on raster displays does not
mean progress has stood still. Early framebuffer sys-
tems used simple video RAM that corresponded to the
screen, and programs could modify what was displayed
by poking into memory-mapped addresses. Nowadays,
nobody would consider a desktop system that didn’t in-
clude a framebuffer card with enough RAM to permit
page flipping, and a floating point graphics process-
ing unit to accelerate 3D rendering using systems like
OpenGL.

In embedded devices such as cell phones, framebuffers
and related graphics hardware are often built into the
CPU or related chips. Cell phone users often don’t care

much about 3D first-person shooters, but they do want
to see photos and videos, and they want eye candy.

Cell phone manufacturers have gone to great lengths
to support eye candy, such as adding GPUs and us-
ing CPUs with vector integer capabilities. In fact, the
iPhone is reputed to use a CPU1 that has a vector float-
ing point coprocessor, which would allow a straightfor-
ward port of the Quartz graphics system used in Mac OS
X.

As a response, some embedded CPU vendors have be-
gun to support video overlays. These are multiple
framebuffers whose contents can be programmatically
combined to create the image the user sees. Video over-
lays can allow developers to provide a wide variety of
eye candy.

2 Video Overlays: Hardware Examples

2.1 TI OMAP

Texas Instruments’ OMAP 3430 rev. 2 is an ARM CPU
with three video overlay framebuffers, as shown in Ta-
ble 1.2

Overlay Pixel Formats
Graphics Palette RGB, direct RGB, and

RGB with alpha channel
Video 1 Direct RGB and YCbCr
Video 2 Direct RGB and YCbCr

Table 1: OMAP 3430 Overlays

Many common compressed raster formats, such as
MPEG, QuickTime, and JPEG, store images or frames

1A chip based on the ARM1176JZF design.
2The OMAP display architecture has other options and modes

not covered in this discussion.

• 115 •

116 • Coding Eye-Candy for Portable Linux Devices

Video 2 Video 1 Graphics

Figure 1: OMAP Normal Mode Overlays

Graphics Video 2 Video 1

Figure 2: OMAP Alpha Mode Overlays

in a YCbCr color space. YCbCr encodes colors as
a combination of luminance (brightness) and chromi-
nance (hue) values. The human eye is more sensitive to
luminance than chrominance, which makes YCbCr suit-
able for image compression. A codec can compress an
image’s chrominance and luminance separately, and ap-
ply a higher degree of compression to the chrominance
values without much perceptual difference.

However, JPEG rendering and MPEG playback usually
involve not only image decompression, but pixel color
space conversion from YCbCr to RGB. The OMAP
chip’s direct hardware support for YCbCr formats in the
Video 1 and Video 2 overlays allow high frame rates for
image and video display with lower CPU effort.

The OMAP chip supports two overlay layering modes:
normal and alpha.

In normal mode, the frame buffers are stacked as shown
in Figure 1 . A simple use of this mode would be to treat
the RGB-based graphics layer as a normal framebuffer,
and map X11 into it. A developer could then display
video or pictures “on top” of the X11 layer using one or
both of the video overlays.

In alpha mode, the frame buffers are stacked as shown
in Figure 2. This places the video layers “under” the

Overlay 1 Overlay 2 Base Overlay

Figure 3: XScale Overlays

graphics layer. Alpha mode is more interesting from an
eye candy perspective because any alpha channel infor-
mation in the graphics overlay is applied as color blend-
ing. When X11 is mapped onto the graphics layer, pro-
grams can not only “punch holes” in the X11 layer to
display video from one of the underlying overlays, but
they can have parts of the X11 layer “float translucently”
on top of a playing video.

2.2 Marvell XScale

Beginning with the PXA270, the XScale ARM CPUs
have offered a version of overlays that is generally sim-
ilar to the OMAP alpha mode, but quite different in de-
tail. These chips provide three overlay frame buffers,
stacked as shown in Figure 3, and described in Table 2.3

Overlay Pixel Formats
Overlay 1 Direct RGB, and RGB with T bit
Overlay 2 Direct RGB and YCbCr

Base Overlay Palette RGB and direct RGB

Table 2: XScale PXA270 and PXA3XX Overlays

A simple use of this architecture would be to disable
Overlays 1 and 2, set the base overlay to a direct RGB
format, and map X11 to it. This would act like a very
standard framebuffer. And as with OMAP, the XScale
Overlay 2 is optimized for video and pictures due to its
YCbCr pixel format options.

But the T bit in Overlay 1 is rather odd: it is an alpha
channel of sorts, but not a normal one. A platform-wide
flag in hardware activates or deactivates its effects. And

3The XScale display architecture also has other options and
modes not covered in this discussion.

2008 Linux Symposium, Volume Two • 117

T Bit Pixel RGB Effect At That Pixel
0 Any Overlay 1 is opaque: only the Overlay 1 color appears; no contribution comes from

either of the other two overlays
1 Non-black Overlay 1 is color-blended: the RGB color from Overlay 1 for that pixel is color-

blended with the colors for that pixel from the topmost active underlying overlay,
using a platform-wide alpha value that can be varied from 0.125 to 1.0 in 0.125 unit
increments

1 Black Overlay 1 is transparent: the pixel color from the topmost active underlying overlay
is used

Table 3: T Bit Effect On A Pixel

if it is active, this one bit can have three effects on a
per-pixel basis, as described in Table 3.

ALP maps X11 to Overlay 1, and displays video and
pictures in Overlay 2. This permits GTK widgets that
“float translucently” over pictures and playing video.
ALP also can disable Overlay 2, and use the T bit in
conjunction with the base overlay to create a variety of
RGB-based eye candy effects.

3 Eye Candy Implementation in ALP

ACCESS engineers call alpha blending using the top-
most hardware overlay Overlay Transparency, usually
abbreviated OT, and distinguish three modes for each
pixel, paralleling the XScale modes:

• OT opaque means the user sees only the topmost,
X11 overlay’s color.

• OT transparent means the topmost, X11 overlay
contributes nothing. The user sees only the color
from an underlying overlay, such as one playing
video.

• OT blended means the user sees a color blended
from the color in the X11 overlay and one of the
underlying overlays.

Figure 4 summarizes the implementation of OT within
the ALP platform. A typical OT-aware application will
call into both GTK+ and the ALP OT API. The OT im-
plementation, in turn, affects the behavior and/or imple-
mentation of other components in the graphics pipeline,
including GTK+, GDK, X11, and the kernel video de-
vice drivers.

OTAware Application

A
LP

O

ve
rla

y
Tr

an
sp

ar
en

cy GTK+

GDK

Pango

X11

Kernel

Figure 4: ALP Overlay Transparency Component Stack

3.1 Developer API

Developers can apply OT features using a GTK-based
API built into the ALP platform. The API paradigm is
that developers can set an 8-bit alpha value for various
parts of widgets that is applied as OT, or specify that
the alpha channel in a raster image be applied as OT.
This makes the API portable while insulating develop-
ers from needing to know anything about the underlying
hardware. Some hardware, such as OMAP, can support
this paradigm directly. Other hardware, such as XScale,

118 • Coding Eye-Candy for Portable Linux Devices

do not, but in such cases, the hardware-dependent im-
plementation is written to “do the right thing” and come
as close as possible to matching that paradigm.

The API provides several levels of calls:

• Platform calls let programs query the system to
determine things like whether it supports OT at all.

• Window calls let programs enable or disable OT
support for an entire GtkWindow and its child wid-
gets. When OT support is disabled for a GtkWin-
dow, it and all its child widgets are OT opaque, no
matter what other OT settings have been applied to
those widgets. There is also an option to indicate
how the window manager should apply OT to the
window frame.

• Widget calls let a program apply an 8-bit alpha
value to an individual widget’s background or text.
They can also determine whether a widget contain-
ing a raster image with an alpha channel will have
those alpha values applied to OT.

• Container calls parallel the widget calls, and let
a program set default values for child widgets of a
container. For instance, a program could apply one
to a container to set a single OT background al-
pha value for all child widgets of a container. Pro-
grams can override these default values for individ-
ual widgets using the widget calls.

Figure 5 shows the widget portion of the API. Using an
enum-based approach makes the API readily extensible,
and provides backward compatibility since the system
ignores enum values it does not recognize.

3.2 GTK/GDK and Platform Support

ACCESS has added OT support to ALP without any
changes to GTK or GDK source code; instead, all sup-
port at the GDK level and above is written in platform-
specific code. ALP applications must call a platform-
specific initialization routine, which includes (among
other things) a variety of OT-related run-time modifica-
tions to GTK and GDK behaviors.

When an application calls one of the API routines on
a GTK widget, container, or window, the routine at-
taches OT-related state information to that GTK object

using g_object_set_data(). Later, when a widget
receives an expose event and draws itself, the OT code
applies that state information, climbing the container hi-
erarchy to determine default values if needed. Currently,
ALP applies OT alpha values to portions of widgets as
follows:

• Background alpha is applied to the widget’s entire
allocation.

• Text alpha is applied to the pixels actually ren-
dered as text.

• Foreground alpha determines whether a raster im-
age’s alpha channel is applied for OT purposes.

3.3 Xtransp Extension

ALP includes a new X extension called Xtransp, which
provides an interface to the OT features in the X server,
as summarized in Table 4. Xtransp provides OT features
on a per-Window basis, as well as calls that apply to the
entire screen or system, and override any Window-based
values to permit effects such as app transitions4.

Inside the X server, Xtransp uses the devPrivates mech-
anism to add OT-related information to X Screens and
Windows, including state information and an OT alpha
array. It also overrides several Screen methods for win-
dow handling and drawing. Xtransp always keeps the
screen consistent with OT changes to part of a Window
or Screen, by adding that area to the Screen’s damage
region.

In particular, Xtransp head-patches the Screen’s
PaintWindowBackground() method, so that when a
Window is painted, its OT alpha information is copied
to the Screen.

3.4 X Server

3.4.1 Extensions

The OT code in the X server works in conjunction with
several X extensions to provide features useful for cell
phones and other portable devices:

4The routines that set blending values are useful with XScale
hardware, which does not support different alpha blending values
on different pixels, but not with OMAP, which does.

2008 Linux Symposium, Volume Two • 119

enum _AlpVidOvlWidgetFeatures
{

// Widget alpha values; values range 0-255
ALP_VIDOVL_FTR_WIDGET_BG_ALPHA = 0x05000000, // Background
ALP_VIDOVL_FTR_WIDGET_FG_ALPHA, // Foreground
ALP_VIDOVL_FTR_WIDGET_TEXT_ALPHA // Text

};

/*
Get a feature value for a GtkWidget
[in] widget A GtkWidget
[in] selector A feature code from _AlpVidOvlWidgetFeatures
[in] outValue The value to be retrieved
return An error code, or ALP_STATUS_OK if no error

If the widget does not have an explicitly-set value, this will return
the corresponding default value from the widget’s container stack.

*/
alp_status_t alp_vidovl_widget_get_feature(GtkWidget *widget,

guint32 selector, guint32 *outValue);

/*
Set a feature value for a GtkWidget
[in] widget A GtkWidget
[in] selector A feature code from _AlpVidOvlWidgetFeatures
[in] inValue The value to be set for the feature
return An error code, or ALP_STATUS_OK if no error

*/
alp_status_t alp_vidovl_widget_set_feature(GtkWidget *widget,

guint32 selector, guint32 inValue);

Figure 5: Typical ALP Overlay Transparency API

• The Shape extension, which supports non-
rectanglar Windows, also limits OT alpha value ap-
plication to Windows. That permits features such
as translucent dialogs and menus with rounded or
bevelled corners.

• Using the Shadow extension simplifies the
platform-dependent driver architecture.

• The OT-oriented hardware drivers support the
RandR extension, so that portable device displays
can be rotated. This is common in cell phones,
where phone dialing is usually done in portrait
mode, but camera features are used in landscape
mode.

3.4.2 PXA3XX Video Driver

A new video driver for the PXA3XX series CPUs5 pro-
vides the lowest level of support for OT in the X server.
This is a kdrive driver that was developed from Keith
Packard’s fbdev driver. The changes to fbdev include
things one would expect, such as setting up and main-
taining hardware-specific states, and limiting pixel for-
mats to those the hardware supports.

The heart of the driver changes are in the shadowbuffer-
to-framebuffer blitter, which is where per-pixel OT al-
pha values in the 0-255 range are converted to the three
states the XScale hardware supports. Its behavior is
summarized in Table 5.6

5These are the PXA300, PXA310, and PXA320 XScale ARM
CPUs from Marvell, code-named Monahans. The driver also sup-

120 • Coding Eye-Candy for Portable Linux Devices

Window Function Effect
XOverlayTransparencySetWindowAlpha Enable or disable OT support in a given X Window,

and set its behavior toward child Windows.
XOverlayTransparencyUpdateWindowAlphaMap Apply an array of 8-bit alpha values to a rectangle in

a Window.
XOverlayTransparencySetBlending Set a single set of RGB blending values to apply,

platform-wide, to all Window-based operations.
Screen or System Function Effect
XOverlayTransparencySetScreenAlpha Apply a single alpha value to a rectangle on the

screen, and disable any Window-based OT features.
XOverlayTransparencyDisableScreenAlpha Disable the effect of XOverlayTransparency-

SetScreenAlpha, and re-enable any Window-based
OT features.

XOverlayTransparencySetScreenBlending Set a single set of RGB blending values for screen-
based operations.

Table 4: Xtransp API Summary

Alpha Effect 32-bit TRGB Result
0 Transparent 0x01000000

1-254 Color-blended 0x01RRGGBB
255 Opaque 0x00RRGGBB

Table 5: Alpha Translation for XScale

3.4.3 Emulation in Xephyr

Embedded systems are notoriously difficult to develop
for: programmers require working hardware, and then
must use a cross-compiler, and flash or otherwise trans-
fer executables to the device.

To speed development, the ALP Development Suite in-
cludes the ALP Simulator: an x86-native version of ALP
that runs under User Mode Linux and mimics a device
display via Xephyr. This lets in-house and third-party
developers write and test code quickly on a Linux x86-
based host computer. Then, when code works well on
the host, they can cross-compile and transfer code for
testing on an ARM device.

The ALP Simulator provides limited support for
OT via changes to Xephyr, primarily replacing the

ports the PXA270 CPU, which shares the same overlay architecture.
6When color-blending, black is converted to 0x01000001 (very

slightly blue) to avoid accidental transparency.

shadowUpdateRotatePacked() blitter with one
that is OT-aware. Since this is intended for initial devel-
opment and testing, no attempt is made to simulate the
XScale or OMAP video or base overlays. Instead, pix-
els that would be OT transparent are rendered as light
aqua, and pixels that would be OT blended are rendered
as a 50% average with light aqua. This lets developers
quickly see whether their use of the GTK-based OT API
is generally correct.

3.5 Kernel

The kernel sources require very few changes to support
OT for XScale. They largely fall into three groups:

• A new ioctl lets the X server set the platform-wide
color blending level that is used when a pixel has
the T bit set and the pixel is not black.

• The video drivers include pxafb_overlay.c, an
Intel-developed open-source driver for XScale
overlays 1 and 2 (/dev/fb1 and /dev/fb2).

• The open-source pxafb video driver for the base
overlay (/dev/fb0) includes support for new
pixel formats and other features supported by the
XScale PXA270 and PXA3XX chips.

2008 Linux Symposium, Volume Two • 121

3.6 Video Playback

The current version of ALP includes a GStreamer-based
media framework that plays video by activating XScale
Overlay 2 as a YCbCr framebuffer, and blitting frames
to it. Media playback occurs in a separate thread of exe-
cution, so while GTK-based programs can start and stop
video playback, they otherwise proceed independently
of the media framework.

4 Results

4.1 Transition Effects

One common form of eye candy is transition effects:
items sliding on and off screen, zooming around, chang-
ing colors, and fading in and out.

The ALP platform achieves some of its transition effects
by a combination of OT features in the X11 overlay and
raster images in the base overlay. For instance, fade-in
at app launch is done in several steps:

1. Fill the bottom (base) overlay with a solid color,
typically a light gray.

2. Use the OT screen feature to make the entire X11
(top) overlay transparent. This makes the whole
screen light gray.

3. When the app has finished displaying its user in-
terface, gradually increase the opacity of the X11
overlay until it is fully opaque.

4.2 Floating Widgets

Another fun form of eye candy is translucency. ALP’s
OT implementation allows widgets to float transparently
or translucently above playing video. Figures 6 through
11 show this in action. These are screen shots from an
XScale development system, showing a sample applica-
tion which plays a Hawaii travelogue video in the back-
ground on Overlay 2.

In Figure 6, the sample application is shown at entry.
The main window and all its child widgets have been
initialized with a variety of OT alpha values. However,
OT support has not been activated on the main window,
so it and its child widgets remain opaque. Although the

Figure 6: Application on entry

Figure 7: After pressing the Transparent Window but-
ton

122 • Coding Eye-Candy for Portable Linux Devices

Figure 8: After pressing the Translucent Dialog button

video is playing in the background on Overlay 2, none
of it is visible.

Pressing the Transparent Window button toggles OT
support on the main window; Figure 7 shows the result.
The playing video is visible through the window’s trans-
parent background and the translucent buttons; however,
all the text is opaque. Above the main application win-
dow, the status bar remains opaque because it belongs to
a different process.

Figure 8 shows what happens after toggling the main
window’s OT support off, and then pressing the Translu-
cent Dialog button. The dialog contents, except for the
opaque text, are translucent. However, the dialog frame
has been set to opaque.

After dismissing the dialog and pressing the Full Screen
Transp. Window button, Figure 9 shows a full-screen
transparent window. In the center, there is a translucent
button with opaque text.

Figure 10 shows the same Transparent Window result
as Figure 7, with an opaque menu on top. The menu’s
rounded corners show the effect of the Shape extension
on OT.7

7The screenshot shows a menu layout bug; the system was still
under development when this paper was written.

Figure 9: After pressing the Full Screen Transp. Win-
dow button

Figure 10: Opaque menu over transparent / translucent
widgets

2008 Linux Symposium, Volume Two • 123

Figure 11: Landscape Mode

After selecting 90 deg CCW from the menu in Figure 10,
Figure 11 shows the result of rotating the entire X layer
to landscape mode, while leaving the video playing in
portrait mode.

5 References

Texas Instruments, OMAP3430 Multimedia Device
Silicon Revision 2.0 Technical Reference Manual, 2007.

Marvell, Monahans L Processor and Monahans LV
Processor Developers Manual, 2006.

124 • Coding Eye-Candy for Portable Linux Devices

SELinux for Consumer Electronics Devices

Yuichi Nakamura
Hitachi Software Engineering
ynakam@hitachisoft.jp

Yoshiki Sameshima
Hitachi Software Engineering
same@hitachisoft.jp

Abstract

As the number of network-connect Consumer Electron-
ics (CE) devices has increased, the security of these de-
vices has become important. SELinux is widely used
for PC servers to prevent attacks from a network. How-
ever, there are problems in applying SELinux to CE de-
vices. SELinux kernel, userland, and policy consume
hardware resources unacceptably. This paper describes
tuning SELinux for use in CE devices. The tuning has
two features. The first is using our policy writing tool to
reduce the policy size. It facilitates writing small policy
by simplified policy syntax. The second is tuning the
SELinux kernel and userland. We have tuned permis-
sion check, removed needless features for CE devices,
and integrated userland to BusyBox. We have evaluated
tuned SELinux on a SuperH (SH) processor based de-
vice, and found the consumption of hardware resources
to be acceptable for CE devices.

1 Introduction

Linux is a leading OS for embedded systems [1], and
has also been adopted in CE devices such as TVs, DVD
recorders, set top boxes, mobile phones, and home gate-
ways. Because CE devices are connected to the Internet,
their security is now an important issue. Once vulnera-
bilities in CE devices are exploited by attackers, they
can destroy the system, steal information, and attack
others.

1.1 Requirements of security technologies for CE
devices

To counter security problems, security technologies are
necessary. However, security technologies for CE de-
vices have to meet the following three requirements.

1. Effective without update
The security technlogies have to be effective even

without security updates, because the process of
updating introduces several problems. Some CE
devices do not have a network updater. To fix vul-
nerabilities for such devices, manufacturers have to
recall devices, and re-write flash ROM. Even if de-
vices do have a network updater, security patches
tend to be delayed or not provided, because prepar-
ing updates is a heavy task for manufacturers. Up-
dates for CE devices are provided from the man-
ufacturers, not from OS distributors. The manu-
facturers have to track all vulnerabilities and de-
velop security patches as soon as possible; as a
result, manufacturers will likely give up providing
updates.

2. Architecture-independent
The security technologies have to be architecture-
independent, since many CPU architecures—such
as SuperH (SH), ARM, MIPS, PowerPC, and
x86—are used in CE devices. Moreover, there are
many variants within a CPU family. For example,
SH has SH2, SH3, SH4, and SH64 variants. To
port security technologies for such various CPUs,
the security technologies need to be architecture-
independent.

3. Small resource usage
The security technologies have to work in
resource-constrained environments. The architec-
ture of a CPU is focused on power consumption
rather than speed, thus the CPU clock is often slow
such as 200Mhz. Main memory is often less than
64Mbyte, and the file storage area is often less than
32Mbyte to reduce hardware cost.

1.2 Porting security technologies to CE devices

Many security technlogies are already used in the PC
environment. The most major ones are: buffer over-
run protection, network updater, and anti-virus software.

• 125 •

126 • SELinux for Consumer Electronics Devices

However, they do not meet the previously stated re-
quirements for CE devices. First, buffer overrun protec-
tions are architecture-dependent, because they depend
on memory management of the CPU. For example, Exec
Shield [3] is one of the most widely used buffer over-
run protection technologies. It modifies codes under the
arch directory in the kernel source tree. Second, net-
work updaters such as yum [2] obviously do not meet
the first requirement of being effective without update.
Finally, anti-virus software does not meet the third re-
quirement, because the pattern file consumes file stor-
age area, sometimes more than 30Mbyte in a PC envi-
ronment. In addition, the system becomes slow when a
virus scan is running.

1.3 SELinux for CE devices

The Linux kernel includes Security-Enhanced Linux
(SELinux) [4]. SELinux meets the first requirement,
because it is effective even when a security update is
not applied. SELinux provides label-based access con-
trol to Linux. Each process has a label called domain,
and each resource has a label called type. Access rules
between the domains and types are described in the se-
curity policy. Domains are configured to access only
types that they need; thus, processes have only limited
access rights. Assuming that a vulnerability exists in an
application and it is not fixed, attackers can take con-
trol of the application. However, attack attempts usually
fail due to lack of access rights; attackers obtain the do-
main of the application process that is allowed to access
only limited types. SELinux has actually been widely
used for PC servers and blocked attacks [5]. SELinux
also meets the second requirement of being architecture-
independent; there is no code modification under arch
directory. However, SELinux does not meet the third
requirement—small resource usage. SELinux was fo-
cused on PC usage, and many features were added. Con-
sequently, its resource consumption has become unac-
ceptable for CE devices.

The purpose of our work is to apply SELinux to CE de-
vices. SELinux is tuned to meet resource requirements
for that purpose. Our tuning has two features. The first
is reducing policy size by using our policy writing tool.
The tool facilitates writing small policy by simplifiying
policy syntax. The second is tuning the SELinux ker-
nel and userland. Permission checks are tuned, needless
features for CE devices are removed, and userland com-
mands are integrated to BusyBox [6]. Tuned SELinux

is evaluted on a SH-based device. SH is a CPU family
widely used for CE devices, including DVD recorders
and home gateways. The evaluation results show the
consumption of hardware resources is acceptable for CE
devices.

2 Problems in applying SELinux to CE devices

To apply SELinux to CE devices, SELinux has to meet
resource usage requirements. However, SELinux con-
sumes CPU, file size, and memory unacceptably when
used in CE devices. The detail is described in this sec-
tion.

2.1 CPU usage

SELinux has overhead for system calls (syscalls) be-
cause of its security checks. In the PC environment,
P. Loscocco et al. [4] measured the overhead and con-
cluded that it is insignificant. However, the overhead
is a problem when using SELinux on a CE device plat-
form. The SELinux overhead measured on a CE device
platform is shown in Table 1 and Table 2. We measured
them by lmbench [7] and Unixbench [8]. Values in the
tables are an average of 5 trials. The CE device plat-
form is SH7751R (SH4 architecture, 240Mhz) proces-
sor, Linux 2.6.22. In particular, the read/write overhead
is a problem, because they are executed frequently and
the overhead is big. Overhead more than 100% is ob-
served in null read/write; it is about 10% when measured
in a Pentium 4 PC. Moreover, 16% overhead remains in
reading a 4096-byte buffer. 4096 bytes are often used
for I/O buffer because it is the page size in many CPUs
for embedded systems, such as SH and ARM.

2.2 File size increase

The file size of the kernel and userland increases when
SELinux is ported because of components listed in Ta-
ble 3. The increase is about 2Mbyte if SELinux for PC
(SELinux included in Fedora Core 6) is ported without
tuning. However, the increase is not acceptable for CE
devices, because flash ROM less than 32Mbyte is of-
ten used to store a file system. If SELinux consumes
2Mbyte, it is too much.

2008 Linux Symposium, Volume Two • 127

lmbench Overhead(%)
Null read 130
Null write 147
Stat 97
Create 163
Unlink 86
Open/close 93
Pipe 67
UNIX socket 31
TCP 22
UDP 28

Table 1: System call overhead by SELinux on a CE de-
vice platform, measured by lmbench. To compute over-
head, the time to execute syscall in SELinux disabled
kernel is used as the baseline value.

Unixbench read/write Overhead(%)
256 byte read 66.6
256 byte write 66.8
1024 byte read 40.5
1024 byte write 43.9
4096 byte read 16.2
4096 byte write -3.1

Table 2: The SELinux overhead for read/write on a CE
device platform, measured by Unixbench. To compute
overhead, the throughput in SELinux disabled kernel is
used as the baseline value.

2.3 Memory consumption

SELinux has data structures in the kernel to load the se-
curity policy. The memory consumption by the security
policy used in PC is about 5Mbyte. However, it is also
unacceptable for CE devices because the size of RAM
is often less than 64Mbyte and swap is not prepared.
If SELinux is used for CE devices, the possibility that
memory can not be allocated increases. If memory can
not be allocated, applications will not work correctly.

3 Tuning SELinux for CE devices

Tuning is needed because the resource consumption by
SELinux is not acceptable for CE devices, as described
above. Our tuning consists of two parts. The first is
reducing policy size by utilizing our policy writing tool.
The second part is tuning the kernel and userland.

Component Additional features
Kernel The SELinux access control fea-

ture, audit, and xattr support in
filesystem.

Library libselinux, libsepol, and libseman-
age

Command Commands to manage SELinux
such as load_policy. Additional op-
tions for existing commands, such
as -Z option for ls to view file label.

Policy file The security policy

Table 3: Files related to SELinux

3.1 Reducing policy size by policy writing tool

Since the security policy consumes both file storage area
and RAM, the security policy has to be small. Problems
in preparing a small policy and our approach to resolv-
ing them are described.

3.1.1 Problems in preparing small policy

To prepare policy, refpolicy [9] is usually used and cus-
tomized for the target system [10]. Refpolicy is a pol-
icy developed by the SELinux community, and is used
in distributions such as Red Hat and Fedora by default.
It is composed of sample configurations for many ap-
plications and a set of macros. Refpolicy works well
on PC systems, but it is hard to use for CE devices.
To prepare small policy based on refpolicy, one has to
remove unnecessary configurations, then add necessary
ones. However, there are three difficulties in the process.

1. Large amount of removal
The amount of removal is large, because configura-
tions for many distributions, applications, and use
cases are included. For example, configurations for
many Apache modules are included in refpolicy.
To configure Apache that serves simple home page
and CGI, configurations about unnecessary Apache
modules have to be removed. We removed about
400 lines for that. For each application, such re-
moval has to be done.

2. Many macros and labels
Refpolicy contains many macros and labels. More

128 • SELinux for Consumer Electronics Devices

than 2,000 macros are defined and used. More than
1,000 labels are declared. Policy developers have
to understand them in removing and adding config-
urations. Figure 1 is an example of configurations
in refpolicy. It is hard for policy developers to un-
derstand so many macros and labels.

policy_module(apache,1.3.16)
type httpd_t;
type httpd_exec_t;
init_daemon_domain(httpd_t,httpd_exec_t)
role system_r types httpd_t;
....
ifdef(‘targeted_policy’,‘
typealias httpd_sys_content_t

alias httpd_user_content_t;
typealias httpd_sys_script_exec_t

alias httpd_user_script_exec_t;
’)
allow httpd_t httpd_sys_content_t:
dir r_dir_perms;
...
corenet_tcp_sendrecv_all_if(httpd_t)
...

Figure 1: Example of configurations used in PC. This is
part of configuration of http server.

3. Dependency
Two kinds of dependencies that appear in remov-
ing and adding configurations increase the cost of
preparing policy.

(a) Labels and declarations
There are dependencies in labels (do-
main/type) and declaration. They make
removing configurations difficult. The major
part of SELinux configuration is allowing
domain to access some type, like below.
allow httpd_t sendmail_exec_t:

file execute;

This is part of configuration to allow web
server to send mails. In SELinux policy
syntax, all labels must be declared like
below.
type httpd_t;

type sendmail_exec_t;

Such text based policy configuratin is con-
verted to binary representation to be loaded
in the kernel. If the declaration is removed,
error is outputted and conversion fails. This

often happens in removing files. Refpolicy is
composed of many files. For example, in file
mta.te configurations related to sendmail is
described and sendmail_exec_t is declared.
If mta.te is removed, policy conversion fails
in allow httpd_t sendmail_exec_t:

file execute;. This line has to be
removed to convert policy successfully.

(b) Labeling change
Dependencies also appear when labeling is
changed. Assume an application foo run-
ning as foo_t domain is allowed to access
foo_file_t type and under /foo direc-
tory are labeled as foo_file_t. Then
foo can access under /foo. What happens
an application bar running as bar_t do-
main needs configuration to access /foo/
bar? One will define new type such as bar_
file_t and labels /foo/bar as bar_
file_t type, then allow bar_t to access
bar_file_t. Problem is happenning here.
foo can not access /foo/bar, because
foo_t is not allowed to access bar_t. To
resolve that, configuration that allows foo_t
to access bar_t has to be described. In
adding new configuration, such dependency
have to be considered carefully.

3.1.2 Preparing policy by SELinux Policy Editor

Policy is prepared without using refpolicy to avoid
above difficulties. SELinux Policy Editor (SEEdit) [11]
is used for that. SEEdit was developed by the authors
to facilitate policy writing. The main feature is Simpli-
fied Policy Description Language (SPDL). Fig 2 is an
example of configuration written by SPDL. Type labels
are hidden; in other words, file names and port numbers
can be used to specify resources. SPDL is converted to
usual SELinux policy expression by converter, and pol-
icy is applied.

domain httpd_t;
program /usr/sbin/httpd;
allow /var/www/** r;
allownet -protocol tcp -port 80 server;

Figure 2: Example of SPDL, part of configuration for
http server

2008 Linux Symposium, Volume Two • 129

How difficulties described in Section 3.1.1 are resolved
by SEEdit is shown below.

1. Large amount of removal
Only configurations that are necessary for CE de-
vices are described by SEEdit. Obviously, there
is no need to remove unnecessary configurations.
One has to create necessary configurations, but the
number of lines to be described is small. For ex-
ample, we wrote about 20 lines for web server that
serves a simple homepage.

2. Macros and labels
Labels are hidden, and macros are not used in
SPDL. Syntax of SPDL appears instead of macros,
but it is much simpler than macros.

3. Dependencies
In SPDL, such dependencies are not included. De-
pendencies are resolved internally when SPDL is
converted to the original SELinux configuration
syntax.

3.2 Tuning the kernel and userland

SELinux was developed for PC usage, so there are un-
needed features, functions, and data structures for CE
devices. The SELinux overhead for syscalls, file size,
and memory usage can be reduced by removing them.
The removal strategy and implementation are described
in this section.

3.2.1 Reducing overhead

The SELinux overhead is reduced by removing un-
needed functions and redundant permission checks from
the kernel.

1. Removal of function calls from SELinux access de-
cision code
Function calls can be removed from SELinux ac-
cess decision function (avc_has_perm) by us-
ing inline functions and calling avc_audit only
when it is necessary. avc_has_perm is called in
all permission checks, thus the removal will reduce
overhead.

2. Removal of duplicated permission checks in file
open and read/write
There are duplicated permission checks in the pro-
cess of file open and read/write to the file descrip-
tor. For example, when a process opens a file to
read or write, read/write permission is checked.
Read/write permission is checked again in every
read/write system call to the file descriptor. The
check at read/write time is duplicated, because
read/write permission is already checked at open
time. Therefore, the permission check at read/write
time can be removed. There is one exception:
When security policy is changed between file open
and read/write time, permission has to be checked
at read/write time to reflect the change.

3. Removal of permission checks related to network
In the process of network communication,
SELinux permissions are checked for NIC, IP
address, and port number. Permission checks in
NIC and IP address are removed, because they
are rarely used. Note that if there is a domain
that wants to communicate with only a specific IP
address, they can not be removed.

3.2.2 Reducing file size

SELinux userland was intended for server usage, so
many features are unnecessary for CE devices. File size
can be reduced by choosing features that meet the fol-
lowing criteria.

• Access control feature of SELinux works.

• Security policy can be replaced.
Most of the troubles related to SELinux are caused
by a lack of policy configurations. To fix these is-
sues, we need a feature to replace policy.

Features in SELinux userland can be classified like Ta-
ble 4. Features 1 , 2, and 3 are chosen according to cri-
teria above. Feature 1 is necessary to use access control;
Features 2 and 3 are needed to replace policy.

Features 1 through 3 are chosen and implemented. In
the implementation, commands are integrated to Busy-
Box, and libselinux is modified. By using BusyBox, the
size can be reduced more. Libselinux was also tuned.

130 • SELinux for Consumer Electronics Devices

Feature Description Related packages
1 Load policy Load security policy file to the kernel libselinux
2 Change labels View and change domains and types libselinux

policycoreutils
coreutils
procps

3 Switch mode Switch permissive/enforcing mode libselinux
4 User space AVC Use the access control feature of SELinux libselinux

from userland applications
5 Analyze policy Access data structure of policy libsepol
6 Manage conditional policy Change parameters of conditional libselinux

policy feature libsepol
libsemanage

7 Manage policy module framework Install and remove policy modules libsemanage

Table 4: Features included in SELinux userland. We use 1,2, and 3 for CE devices.

Unnecessary features were removed and the dependency
on libsepol, whose size is about 300Kbytes, was re-
moved.

3.2.3 Reducing memory usage

To reduce memory usage, unnecessary data structures
are removed from the kernel. The biggest data structure
in SELinux is the hash table in struct avtab. Two
avtabs are used in the kernel. Access control rules in
the security policy are stored in hash tables of struct
avtab. 32,768 hash slots are prepared for each hash
table; they consume about 260Kbyte. Hash slots were
shrunk to reduce the size of avtabs. In addition, hash
slots are allocated dynamically based on number of ac-
cess control rules in policy, i.e. the number of allocated
hash slots is 1/4 of the number of rules. That change
creates a concern about performance, because the hash
chain length will increase. However, although the chain
length becomes longer, regressions in performance were
not observed.

4 Evaluation

To evaluate our tuning, we ported SELinux to an evalu-
ation board and measured performance both before and
after tuning.

4.1 Target device and software

The specification of the device and version of the soft-
ware used in the evaluation are shown.

1. Target device
The Renesas Technology R0P751RLC001RL
(R2DPLUS) board was used as our target device.
This board is often used to evaluate software for
CE devices. The specification is shown below.

• CPU: SH7751R(SH4) 240Mhz

• RAM: 64Mbyte

• Compact flash: 512Mbyte

• Flash ROM: 64Mbyte (32Mbyte available for
root file system)

SELinux can be ported to both compact flash and
flash ROM. We measured the benchmark on a com-
pact flash system for convenience.

2. Software and policy
The version of the software and policy used in the
evaluation are listed below.

• Kernel: Linux 2.6.22

• SELinux userland: Obtained from SELinux
svn tree (selinux.svn.sourceforge.net) as of
Aug 1, 2007

2008 Linux Symposium, Volume Two • 131

• Security policy (before tuning): policy.21 and
file_contexts file were taken from selinux-
policy-targeted-2.4.6-80.fc6 (included in Fe-
dora 6).

• Security policy (after tuning): Written by
SELinux Policy Editor, including configura-
tions for 10 applications. Not all applications
are confined, similar to targeted policy [12].

4.2 Benchmark results

We ported SELinux to the target board and measured
the benchmark before and after tuning. The benchmark
results for syscall overhead, file size, and memory usage
are shown.

4.2.1 Syscall overhead

Syscall overhead was measured by lmbench and
unixbench. The result is shown in Table 5 and Table
6. The SELinux overhead for read/write was significant
before tuning. Null read/write overhead is reduced to
1/10 of the previous overhead. The overhead in read-
ing a 4096 buffer was especially problematic, but it is
almost eliminated by our tuning.

lmbench Overhead before Overhead after
tuning(%) tuning(%)

Null read 130 13
Null write 147 15
Stat 97 59
Create 163 146
Unlink 86 70
Open/close 93 62
Pipe 67 31
UNIX socket 31 6
TCP 22 11
UDP 28 12

Table 5: The SELinux overhead for system call on the
evaluation board, measured by lmbench. Average of 5
trials.

4.2.2 File size

The file size related to SELinux is summarized in Ta-
ble 7. As a result of tuning, the file size increase is re-

Unixbench Overhead before Overhead after
read/write tuning(%) tuning(%)
256 byte read 66.6 16.2
256 byte write 66.8 26.8
1024 byte read 40.5 13.1
1024 byte write 43.9 19.0
4096 byte read 16.2 3.3
4096 byte write -3.1 0

Table 6: The SELinux overhead for read/write on the
evaluation board, measured by Unixbench. Average of
5 trials.

duced to 211Kbyte. In the evaluation board, flash ROM
available for root file system is 32Mbyte. The size of
SELinux is less than 1%, so it is acceptable for the eval-
uation board.

Component File size before File size after
tuning(Kbyte) tuning(Kbyte)

Kernel(zimage) 74 74
size increase
Library 482 66
Command 375 11
Policy file 1,356 60
Total 2,287 211

Table 7: File size related to SELinux. Userlands are
built with -Os flag and stripped.

4.2.3 Memory usage

We measured memory usage by using the free com-
mand. The usage by SELinux was measured as follows.

A = The result of free when SELinux enabled kernel
booted.
B = The result of free command when SELinux
disabled kernel booted.
Memory usage by SELinux = A - B

The memory usage by SELinux was measured for both
before tuning and after tuning. We also measured mem-
ory usage of a hash table in struct avtab to see
the effect of tuning. We inserted code that shows the

132 • SELinux for Consumer Electronics Devices

size of allocated tables for that purpose. The result is
shown in Table 8. The memory consumption after tun-
ing is 465Kbyte. In the evaluation board, memory size
is 64Mbyte. The consumption by SELinux is less than
1%—small enough.

Component Memory usage Memory usage
before tuning after tuning

(Kbyte) (Kbyte)
Hash tables in 252 1
struct avtab
SELinux program 5,113 464
and policy
Total 5,365 465

Table 8: Memory usage by SELinux

5 Related works

R. Coker [13] ported SELinux to an ARM-based device,
but SELinux was Linux 2.4 based. Since then, SELinux
has changed a lot. Implementation has changed, many
features were added, and policy development process
has changed. KaiGai [14] ported xattr support to jffs2
and was merged to Linux 2.6.18. We are using his
work when we run SELinux on a flash ROM system.
The seBusyBox project in the Japan SELinux Users
Group worked to port SELinux commands and options
to BusyBox. We joined this project and did the porting
together. Applets ported in this project were merged to
BusyBox. In this project H. Shinji [15] also worked to
assign different domains to applets, and his work was
merged to BusyBox 1.8.0. H. Nahari [16] presented a
design of a secure embedded system. He also mentioned
SELinux for embedded devices, but the detail was not
described.

6 Conclusion

There are problems in applying SELinux to CE de-
vices. SELinux kernel, userland, and the security policy
consume hardware resources unacceptably. We tuned
SELinux to meet the resource requirements of CE de-
vices. The tuning has two features. The first is using
our policy writing tool to reduce policy size. It facil-
itates writing small policy by simplifying policy syn-
tax. The second is tuning SELinux kernel and user-
land. Permission checking was tuned, needless features

for CE devices were removed, and userland was inte-
grated to BusyBox. Tuned SELinux was evaluated on a
SH-based CE device evaluation board. The benchmark
result shows that the SELinux overhead for read/write
is almost negligible. File size is about 200 Kbyte, and
memory usage is about 500Kbyte, about 1% of the flash
ROM and RAM of the evaluation board. We conclude
that SELinux can be applied to CE devices easier as the
result of our work.

7 Future works

There are remaining issues to be done in the future.

1. Xattr for file systems on flash ROMs
There are several files systems for flash ROMs,
including jffs2, yaffs2, and logfs. Jffs2 supports
xattr; yaffs2 and logfs do not support xattr. The
porting of xattr is needed to use SELinux on such
file systems.

2. Strict policy
We adopted targeted policy in this paper. We have
to write strict policy for more security. That is to
say, domains for every program are prepared. The
number of access control rules and policy size will
be large. To write small strict policy is a remaining
problem.

8 Availability

We have submitted related patches to Linux, Busy-
Box and SELinux community. The merged works are
shown in Table 9. The links to patches can be seen on
the Embedded Linux Wiki, http://elinux.org/
SELinux. The SELinux Policy Editor is available on
the SELinux Policy Editor Website [11]. 2.2.0 supports
the writing of policy for CE devices.

Work Merged version
Reducing read/write overhead Linux 2.6.24
Reducing size of avtab Linux 2.6.24
Reducing size of libselinux libselinux 2.0.35
Integrating SELinux commands BusyBox 1.9.0

Table 9: Availability of our work

2008 Linux Symposium, Volume Two • 133

9 Acknowledgements

We are helped by many people during the work. We
would like to thank them. seBusyBox project commu-
nity members and KaiGai Kohei (NEC) gave us useful
comments. People in the SELinux community gave us
feedback, Stephen Smalley gave us ideas for the imple-
mentation of tuning. People in the BusyBox commu-
nity, especially Denys Vlasenko, reviewed patches and
gave us feedback. Yusuke Goda (Renesas Solutions)
provided a driver for flash ROM.

References

[1] Linux Devices.com: Linux to remain a leading
embedded OS, says analyst (2007),
http://www.linuxdevices.com/news/
NS2335393489.html

[2] Yum: Yellow dog Update, Modified: http:
//linux.duke.edu/projects/yum/

[3] A. van de Ven: Limiting buffer overflows with
ExecShield, Red Hat Magazine, July 2005 (2005),
http://www.redhat.com/magazine/
009jul05/features/execshield/

[4] P. Loscocco and S. Smalley: Integrating Flexible
Support for Security Policies into the Linux
Operating System: the Proceedings of the
FREENIX Track of the 2001 USENIX Annual
Technical Conference (2001)

[5] D. Marti: A seatbelt for server software: SELinux
blocks real-world exploits, Linuxworld.com
(2008), http://www.linuxworld.com/
news/2008/022408-selinux.html

[6] BusyBox, http://www.busybox.net/

[7] L. McVoy and C. Staelin: lmbench: Portable tools
for performance analysis: the Proceedings of
USENIX 1996 Annual Technical Conference
(1996)

[8] UNIX Bench, http://www.tux.org/pub/
tux/benchmarks/System/unixbench/

[9] Refpolicy, http://oss.tresys.com/
projects/refpolicy

[10] F. Mayer, K. MacMillan and D. Caplan: SELinux
by Example, Prentice Hall (2006)

[11] SELinux Policy Editor,
http://seedit.sourceforge.net/

[12] F. Coker and R. Coker: Taking advantage of
SELinux in Red Hat R© Enterprise Linux R©, Red Hat
Magazine, April 2005 (2005),
http://www.redhat.com/magazine/
006apr05/features/selinux/

[13] R. Coker: Porting NSA Security Enhanced Linux
to Hand-held devices, Proceedings of the Linux
Symposium, Ottawa, Ontario, Canada (2003)

[14] KaiGai: Migration of XATTR on JFFS2 and
SELinux, CELF Jamboree 11(2006), http://
tree.celinuxforum.org/CelfPubWiki/
JapanTechnicalJamboree11

[15] H. Shinji: Domain assignment support for
SELinux/AppArmor/LIDS, BusyBox mailing list,
http://www.busybox.net/lists/
busybox/2007-August/028481.html

[16] H. Narari: Trusted Secure Embedded Linux:
From Hardware Root of Trust to Mandatory
Access Control, Proceedings of the Linux
Symposium, Ottawa, Ontario, Canada (2007)

134 • SELinux for Consumer Electronics Devices

PATting Linux

Venkatesh Pallipadi
Suresh Siddha

Intel Open Source Technology Center
{venkatesh.pallipadi|suresh.b.siddha}@intel.com

Abstract

The Page Attribute Table (PAT), introduced in Pentium
III, provides the x86 architecture with an option to as-
sign memory types to physical memory, based on page
table mappings. The Linux kernel, however, does not
fully support this feature, though there were many ear-
lier efforts to add support for this feature over the years.

The need for PAT in Linux is becoming critical with the
latest platforms supporting huge memory; these cannot
be supported by limited number of MTRRs, often lead-
ing to poor graphics and IO performance.

In this paper, we will provide insight into earlier at-
tempts to enable PAT in the Linux kernel and details
of our latest attempt, highlighting various issues that
were encountered. We will describe the new APIs
for userspace/drivers for specifying various memory at-
tributes.

1 Introduction

Page Attribute Table (PAT) has been a hardware feature
in x86 processors starting from the Pentium III gener-
ation of processors. The PAT extends the IA-32 archi-
tecture’s page-table format to allow memory types to be
assigned to regions of physical memory based on linear
address mappings [1].

PAT is a complementary feature to Memory Type Range
Registers (MTRR). The MTRRs are used to map regions
in physical address space with specific memory types.

PAT and MTRR together allow the processor to op-
timize operations for different types of memory such
as RAM, ROM, frame-buffer memory, and memory-
mapped I/O devices. The MTRRs are useful for stati-
cally describing memory types for physical ranges, and
are typically set up by system firmware. The PAT allows

dynamic assignment of memory types to pages in linear
address space.

The Linux kernel (as in linux-2.6.25 [2]) does not fully
support PAT. It only uses PAT for write-back and un-
cached mappings, and uses MTRR to dynamically as-
sign write-combining memory type. This results in
over-dependence on MTRR, causing issues like perfor-
mance problems with the display driver (X), for exam-
ple.

The Linux kernel also does not enforce the no-aliasing
requirement while mapping memory-types, potentially
resulting in various linear addresses from the same or
different processes, mapping to the same physical ad-
dress with different effective memory types. This alias-
ing can potentially cause inconsistent or undefined op-
erations that can result in system failure [1].

In this paper, we present details about our recent ef-
fort towards adding PAT support for the x86 architec-
ture in the Linux kernel [13]. We start with an architec-
ture primer on PAT and MTRR in Section 2, followed
by a description of the Linux kernel status (as in linux-
2.6.25) in Section 3. Section 4 provides details about
our proposed PAT implementation. APIs for drivers and
applications to set memory types is discussed in Sec-
tion 5. We conclude the paper with a look at the future
in Section 6.

2 Architectural Background

In this section, we provide an architectural overview of
PAT, MTRR, and interactions between PAT and MTRR.
Refer to the chapter on Memory Cache Control in
[1] for a complete reference.

2.1 PAT

The PAT extends the IA-32 architecture’s page-table for-
mat to allow memory type to be assigned to pages based

• 135 •

136 • PATting Linux

����������	
��� ������������������������������

����������������� ������
���

�
�
�

�
�
�

�
�
�

Figure 1: PAT flags in a 4K Page Table Entry

��������������������	���

��

��

�

��

��

�

�

������������������������

�

��

��

�

��

��

	�

	�

Figure 2: IA32_CR_PAT MSR

on linear address mappings. Figure 1 shows a regular
4K page table entry, with bits 12–51 forming the phys-
ical frame number. Bits 0–11 have various page flags
associated with this mapping. Page flags PAT, PCD, and
PWT together represent the PAT attribute of the page.
These three bits index into 8-page attribute types in the
IA32_CR_PAT MSR. This MSR’s content is depicted
in Figure 2, with each Page Attribute (PA0 through PA7)
mapping to a particular memory type encoding.

The memory types that can be encoded by PAT are listed
in Figure 3. PA0 through PA7 in the IA32_CR_PAT
MSR can contain any encoding from Figure 3.

The IA32_CR_PAT MSR is set with a predefined de-
fault setting for each PAT entry (PA0 through PA7) upon
power up or reset. System software can write different
encodings to these entries with the WRMSR instruction.
On a multi-processor system, the IA32_CR_PAT MSR
of all processors must contain the same value.

The PAT allows any memory type to be specified in the
page tables, and therefore it is possible to have a sin-

Encoding Memory Type
0 Uncacheable (UC)
1 Write Combining (WC)
2 Reserved
3 Reserved
4 Write Through (WT)
5 Write Protected (WP)
6 Write Back (WB)
7 Uncached (UC-)

Figure 3: Memory types that can be encoded with PAT

gle physical region mapped to two or more different lin-
ear addresses, each with different memory types. These
mappings may be the part of the same address space,
or may be in the address spaces of different processes.
Such a mapping of a single physical region with multi-
ple linear address ranges with different memory types is
referred to as aliasing. Architecturally, any such alias-
ing can lead to undefined operations that can result in a
system failure. It is the operating system’s responsibility
to prevent such aliasing when PAT is being used.

2.2 MTRR

The MTRR provides a mechanism for associating the
memory types with physical address ranges in system
memory. MTRR capability can be determined by the
IA32_MTRRCAP MSR. The encodings supported by
MTRR are listed in Figure 4. The MTRRs are defined
as a combination of:

• Fixed Range MTRRs: A Fixed Range MTRR
consists of predetermined regions of size 64K,
16K, and 4k in the 0–1MB physical memory
range. This includes eight 64K ranges, sixteen 16K
ranges, and sixty-four 4K ranges. Each such range
can be defined as a particular memory type encod-
ing.

• Variable Range MTRRs: Most x86 processors
support up to eight Variable Range MTRRs. They
are specified using a pair of MSRs: IA32_MTRR_
PHYSBASEn defines the base address; and IA32_
MTRR_PHYSMASKn contains a mask used to de-
termine the range.

• Default MTRR Type: Any physical memory
range not covered by a fixed or variable MTRR
range takes the memory type attributes from the
IA32_MTRR_DEF_TYPE MSR.

When MTRRs are enabled, MTRR range overlaps are
not defined, except for:

• Any range overlap, with one of the ranges being of
uncached type, will result in the effective memory
type of uncached.

• Any range overlap, with one range being write-
back and another range being write-through, will
result in the effective memory type of write-
through.

2008 Linux Symposium, Volume Two • 137

Encoding Memory Type
0 Uncacheable (UC)
1 Write Combining (WC)
2 Reserved
3 Reserved
4 Write Through (WT)
5 Write Protected (WP)
6 Write Back (WB)

7–0xFF Reserved

Figure 4: Memory types that can be encoded with
MTRR

While MTRRs are enabled and being used, the operat-
ing system has to make sure that there are no overlap-
ping MTRR regions with overlapping types not defined
above.

2.3 MTRR and PAT overlap

PAT and MTRR may define different memory types for
the same physical address. The effective memory type
resulting from this overlap is architecturally defined as
in the chapter on Memory Cache Control in refer-
ence [1]. Specifically,

• The PAT memory type of write-combine takes
precedence over any memory type assigned to that
range by MTRR.

• The PAT memory type of uncached-minus gives
precedence to any MTRR write-combine setting
for the same physical address. If there are no
MTRR memory types or if the memory type in
MTRR is write-back, the effective memory type for
that region will be uncached.

3 Linux Kernel Background

All references to the Linux kernel in this section refers
to version 2.6.25. The Linux kernel supports PAT in
a very restrictive sense, with PAT memory types un-
cached and uncached-minus being used by kernel APIs
like ioremap_noncache(), set_memory_uc(),
pgprot_noncached(), etc. User-level APIs that
use the PAT uncached memory type are the /proc,
and /sys PCI resource interfaces and mmap of /dev/
mem.

Linux also supports adding new MTRR ranges using
the kernel API mtrr_add(). There is also a user-
level API to set MTRR ranges by using /proc/mtrr
writes.

The kernel does not do any aliasing checks while setting
the PAT mappings. The kernel only makes sure that ker-
nel identity mapping of physical memory is consistent
while changing the PAT memory type with some of the
APIs above. The kernel does check for any overlap with
existing MTRR ranges, while adding a new MTRR.

Following is an example of MTRR usage on a typical
server. Figure 5 shows the contents of /proc/mtrr.
The effective memory type on this system will be as in
Figure 6.

Below we will look at the memory-attribute-related
problems that we have in the Linux kernel.

3.1 Limited number of MTRRs

As explained in Section 2, typically there are only eight
variable-range MTRRs supported on x86 CPUs. With
an increasing amount of physical memory in the plat-
form, the platform firmware ends up using most of those
MTRRs to statically define memory types for the system
memory range. When a driver later wants to use MTRR
to map some range as write-combining, for example,
there may not be any free MTRRs available for use.
This results in the driver not being able to set a memory
type. This can appear to the end user as (for instance)
the video driver running less optimially, as it ends up us-
ing an uncached memory type for frame-buffer instead
of the desired write-combine memory type.

3.2 MTRR conflict with BIOS MTRRs

As described in Section 2, certain overlapping MTRR
memory types like write-combine and uncached re-
sult in causing the effective type to be uncached. On
some platforms, the BIOS sets up PCI ranges explicitly
mapped as uncached and a potential overlapping write-
back for RAM. Later, when some driver which wants to
map the same range as a write-combine memory type
using MTRRs, there will be a conflict which results in
the effective memory type being uncached. This results
in the driver not being able to get optimal performance.

This has been reported a few times by end users on
lkml [10] [3] [11] on various platforms. Unfortunately,

138 • PATting Linux

cat /proc/mtrr
reg00: base=0xd0000000 (3328MB), size= 256MB: uncacheable, count=1
reg01: base=0xe0000000 (3584MB), size= 512MB: uncacheable, count=1
reg02: base=0x00000000 (0MB), size=8192MB: write-back, count=1
reg03: base=0x200000000 (8192MB), size= 512MB: write-back, count=1
reg04: base=0x220000000 (8704MB), size= 256MB: write-back, count=1
reg05: base=0xcff80000 (3327MB), size= 512KB: uncacheable, count=1

Figure 5: Variable MTRR example

0MB

1MB

8192MB

8704MB

8960MB

3328MB

3584MB

4096MB

3327MB

Fixed Range

MTRR

Variable Range

MTRR

-uncached

-write-back

Default MTRR

Figure 6: Effective memory types due to MTRR set by BIOS

there is no way to resolve this with existing PAT and
MTRR support in the 2.6.25 kernel.

3.3 No well-defined APIs

Poorly defined APIs across PAT and MTRRs have led to
various issues like:

• Drivers making assumptions about the underly-
ing kernel implementation. For instance, the
frame buffer driver is assuming that ioremap()
will use PAT uncached-minus mapping and the
driver follows the ioremap() call by an mtrr_
add() call to set a write-combine memory type
to the same range. Changing ioremap() from
uncached-minus to uncached resulted in poor
frame buffer performance in this specific case.

• Drivers setting the page table entries along with
the PAT memory types natively, either by us-
ing pgprot_noncached() or by directly using
PAT, PCD, and PWT bits. This results in flaky code,
where the driver depends on kernel PAT usage.

4 Current PAT effort

4.1 Earlier PAT attempts

As was emphasised earlier, PAT as a hardware feature
has been around for few years. During those years, there
were quite a few attempts to enable PAT support in the
Linux kernel.

One of the initial attempts was from Jeff Hartmann [8]
in January, 2001. The patch proposed a vmalloc()
kind of interface to support per 4K-page level write-
combining memory type control. There were no re-
sponses on the mailing list archive, and so we conclude
that the patch did not make its way into the Linux kernel
for some unknown reason.

Terence Ripperda proposed PAT support with [9] in
May, 2003, which supported adding write-combining
mapping for AGP and framebuffers. There were con-
cerns expressed about this patch in the mailing list,
mainly related to keeping the memory type consistent
for a physical address across different virtual mappings
that may exist in the system.

2008 Linux Symposium, Volume Two • 139

mtrr: type mismatch for e0000000,8000000 old: write-back new: write-combining
mtrr: type mismatch for e0000000,4000000 old: write-back new: write-combining

Figure 7: common MTRR error message in kernel log

Terence followed it up with [4] in April, 2004, adding
memory type tracking. That patch never made into the
Linux kernel either, due to some concerns about various
CPU errata on the mailing list.

Eric W. Biederman proposed PAT support with [6] in
August, 2005, which started a fresh discussion on the
mailing list about aliasing and PAT-related processor er-
rata. Andi Kleen took up this patch and included it in
his test tree [12]. However, the PAT support never got
wide enough testing and did not get into the upstream
Linux kernel. Also, none of the patches fully addressed
attribute aliasing concerns.

4.2 Current PAT Proposal

Our initial proposals [7] [5] were based on Eric and
Andi’s patchset, with changes around identity mapping
of reserved regions or holes and a few other cleanups
and bug fixes. Those patches broke a lot of systems and
provided us with a lot of feedback about what was not
being done correctly.

Based on the feedback and breakage reports, we
changed our patches to eliminate the issues around not
having identity mapping for reserved regions and elim-
inated the changes for early_ioremap, simplifying
our approach along the way. We also got benefits from
other changes like x86 change_page_attr().

The patches here [13] are version 3 of the patchset
which was included in linux-2.6.25-rc8-mm2.
The patchset also took a slightly different top-down ap-
proach, defining the PAT-related APIs and the eventual
PAT bit setting for those APIs in different use cases, try-
ing to ensure backward compatibility with the older ver-
sions of drivers and applications. All of the APIs related
to PAT and memory type changes are described in detail
in Section 5.

4.3 Preventing PAT aliasing

One of the big roadblocks for earlier PAT patches was
aliasing related to PAT attributes. As per the processor

specification [1], single physical address mapped to two
or more different linear addresses should not have differ-
ent memory types. Such aliasing can lead to undefined
operations that can result in system failure.

The current PAT proposal handles this by using two in-
ternal functions, reserve_memtype() and free_
memtype(). Any API that wants to change the mem-
ory type for a region first has to go through reserve_
memtype to be sure that there are no aliases to the
physical address, reserving the memory type for the
region in the process. At the time of unmapping the
memory type, API will free the range with a free_
memtype() call. APIs will fail if reserve fails due
to existing aliases.

Internally, the reserve function goes through a linked
list which keeps track of physical address ranges with a
specific memory type. The linked list is maintained in
sorted order, based on the start address. The linked list
may contain ranges with different sizes, and will detect
partial or full overlaps with a single existing mapping or
overlaps with multiple regions, with conflicting memory
types.

If there is more than one user for a specific range with
same memory type, the reference counting for such
users are tracked by having multiple entries in the linked
list.

To keep the implementation simple, this list is imple-
mented as a simple doubly linked list. In the future,
if there are any bottlenecks around this list, it can be
optimized to have some cache pointers to previously re-
served or freed regions, and changing the list into a more
efficient data structure.

5 PAT APIs

One of the major challenges with PAT was to add the
support in a clean manner, causing as few issues with
existing applications and drivers as possible. As de-
scribed in Section 3, the current memory type usage in
Linux has some API-level confusion. That highlighted

140 • PATting Linux

API RAM ACPI, . . . Rsvd/
. . . Holes

ioremap() – UC- UC-
ioremap_cache() – WB WB
ioremap_nocache() – UC UC
ioremap_wc() – WC WC
set_memory_uc() UC – –

set_memory_wb()
set_memory_wc() WC – –

set_memory_wb()
pci /sys resource file – – UC-
pci /sys resource_wc file – – WC
pci /proc/ device file – – UC-
pci /proc/ device file – – WC

ioctl PCIIOC_
WRITE_COMBINE

/dev/mem read-write WB UC UC
/dev/mem mmap – UC UC

with O_SYNC
/dev/mem mmap – alias alias

no O_SYNC
/dev/mem mmap – WB WB

no O_SYNC
with no alias
MTRR type WB

/dev/mem mmap – – UC-
no O_SYNC
with no alias
MTRR type not WB

Table 1: PAT related API cheat-sheet

the need to establish a clear API for everything related
to memory type changes.

The API defined with the proposed PAT patches is de-
scribed in detail below.

5.1 ioremap

ioremap(), ioremap_cache(), ioremap_
nocache(), and ioremap_wc() are the interfaces
that a driver can use to mark a physical address range
with some memory type. The expected usage of these
interfaces is over a physical address range that is either
reserved/hole or a region used by ACPI, etc. ioremap
and friends should never be used on a RAM region that
is being used by the kernel.

ioremap interfaces, when they change the memory
type, keep the memory type consistent across the vir-
tual address where the address is being remapped into,
and the kernel identity mappings.

ioremap interfaces may fail if there is an existing
stricter memory type mapping. Example: If there is
an existing write-back mapping to a physical range, any
request for uncached and write-combine mappings will
fail.

ioremap interfaces will succeed if there is an existing,
more lenient mapping. Example: If there is an existing
uncached mapping to a physical range, any request for
write-back or write-combine mapping will succeed, but
will eventually map the memory as uncached.

5.2 set_memory

set_memory_uc, set_memory_wc, and set_
memory_wb are used to change the memory type of
a RAM region. A driver can allocate a memory buffer
and then use set_memory APIs to change the mem-
ory type for that region. It is the driver’s responsibility
to change the memory type back to write-back before
freeing the page. A failure to do that can have nasty
performance side effects as the page gets allocated for
different usages later.

As with the ioremap interfaces, the kernel makes sure
that the identity map aliases, if any, are kept consistent.

set_memory APIs can fail if there is a different mem-
ory type that is already in use for the same physical
memory region.

5.3 /proc access to PCI resources

User-level drivers/applications can access a PCI re-
source region through the /proc interface. The re-
source file at /proc/bus/pci/<dev>/ is mmap-
able and an application can use that mmapped address
to access the resource.

By default, such an mmap will provide uncached access
to the region. Applications can use PCIIOC_WRITE_
COMBINE ioctl and get write-combine access to the re-
source, in cases where the region is prefetchable.

A request to uncached access can fail if there is already
an existing write-combine mapping for that region. A
request for write-combine access can succeed with un-
cached mapping instead, in the case of already existing
uncached mapping for this region.

2008 Linux Symposium, Volume Two • 141

5.4 /sys access to PCI resource

Apart from the /proc interface described above, there
is also a /sys-based interface that can be used to access
PCI resources. It resides under devices/pci<bus>
/<dev>/. This is again an mmap-able interface. The
file resource is useful to get a UC access, and file
resource_wc, to get write-combing access (in case
the region is prefetchable).

The success and failure conditions of a mmap of the
/sys PCI resource file are the same as in the /proc
resource file description above.

5.5 read and write of /dev/mem

The existing API that allows read and write of memory
through /dev/mem will internally use ioremap()
and hence read and write using the uncached memory
type. To read/write RAM, we use the identity mapped
address, with existing WB mapping.

5.6 mmap of /dev/mem

/dev/mem mmap is an interface for applications to ac-
cess any non-RAM regions. Applications have been us-
ing a mmap of /dev/mem for multiple uses. Chang-
ing mmap of /dev/mem behavior to go along well with
PAT changes was one of the major challenges we had.

For example, X drivers use mmap to map a PCI re-
source first, followed by adding a new MTRR to make
that physical address either uncached or write-combine.
This will work, as the current mmap will just use write-
back mapping in PAT, and MTRR uncached or write-
combine takes higher precedence and changes the effec-
tive memory type for this region.

We will look at all the different usage scenarios of
/dev/mmap below:

• mmap with O_SYNC: Applications can open
/dev/mem with the O_SYNC flag and then do
mmap on it. With that, applications will be access-
ing that address with an uncached memory type.
mmap will succeed only if there is no other con-
flicting mappings to the same region.

• mmap without O_SYNC and existing mapping for
the same region: Applications that do not use
O_SYNC, when there is an existing mapping for
the same region, will inherit the memory type from
the existing mapping. This will be the case with ap-
plications mapping memory with a driver already
having used ioremap to set the memory as write-
back, write-combining, or uncached.

• mmap without O_SYNC, no existing mapping, and
write-back region: The ACPI data region and a few
other such regions are non-RAM, but can be ac-
cessed as write-back. There are applications like
acpidump that mmap such regions. There is also
a legacy BIOS region that is write-back that appli-
cations like dmidecode want to mmap. To be
friendly to such usages, on an mmap of /dev/mem
without O_SYNC and with no existing mappings,
we look at the MTRR to figure out the actual type.
If the MTRR says that region is write-back, then
we use write-back mapping for the /dev/mem
mmap as well.

• mmap without O_SYNC, no existing mapping, and
not a write-back region: For an mmap that comes
under this category, we use uncached-minus type
mapping. In the absence of any MTRR for this
region, the effective type will be uncached. But
in cases where there is an MTRR, making this re-
gion write-combine, then the effective type will
be write-combine. This behavior was added for a
very special case, to handle existing X drivers with-
out breakage. The X model of mmaping graphics
memory and then adding write-combining MTRR
to it will work with this mapping.

Table 1 is a API cheat-sheet for application/driver inter-
faces to make any memory type changes.

6 Future Work

Given the success rate of earlier PAT patches, our first
goal here is to ensure that the basic PAT patches make
it to the upstream kernel with minimal disruptions, and
also to provide APIs to applications and drivers that will
remove long-standing MTRR limitations. As a result,
our initial patchset does not address all the problems as-
sociated with PAT. Specifically, we have the following
items in our immediate to-do list.

142 • PATting Linux

• Provide an API for drivers using pgprot_
noncached() or handling the page table flags
by hand to manipulate PAT, PCD, and PWT bits, so
that they can do so ensuring no aliases. Currently,
such drivers (mostly framebuffer and video drivers)
do various things like mapping the pages as write-
back in the page table and then calling MTRR to
mark it write-combine, directly map the pages as
uncached, etc.

• Ensure that PAT is not breaking any architectural
guidelines while changing memory type attributes.
Specifically, [1] mentions a sequence of steps that
needs to be followed while changing the memory
type attribute of a page from cacheable to write-
combining. We need to make sure that the Linux
kernel is not breaking any such rules.

• The future of the /proc/mtrr and mtrr_
add() interfaces needs to be determined. The
options are: deprecate those APIs and encourage
the drivers and applications to switch to new PAT
APIs, or emulate those APIs using PAT internally.
This can be better addressed as current PAT patches
makes into upstream and we get more feedback
from the users about the PAT APIs and their us-
ability.

7 Acknowledgements

Thanks to the developers and testers in the community
who took time to comment on, report issues with, and
contribute to PAT discussion on the mailing list. Special
thanks to Asit Mallick and Arjan van de Ven for their
continued support during our work on PAT pacthes; Ingo
Molnar, Thomas Glexiner, H Peter Anvin for reviewing
and fixing problems with PAT patches and also push-
ing the PAT patches through into x86 testing tree; Andi
Kleen, Eric Biederman for their PAT patches which
formed the basis for our first implementation; and every-
one else who worked on PAT feature before or affected
by PAT/MTRR issues on their platform and took time to
report it on lkml mailing list.

References

[1] Intel R© 64 and IA-32 architectures software
developer’s manuals: Volume 3A.
http://developer.intel.com/
products/processor/manuals.

[2] Linux 2.6.25.
http://kernel.org/pub/linux/
kernel/v2.6/linux-2.6.25.tar.bz2.

[3] Mailing list archive. MTRR initialization. http:
//lkml.org/lkml/2007/9/14/185.

[4] Mailing list archive. PAT support.
http://www.ussg.iu.edu/hypermail/
linux/kernel/0404.1/0686.html.

[5] Mailing list archive. [patch 00/11] PAT
x86: PAT support for x86.
http://www.uwsg.iu.edu/hypermail/
linux/kernel/0801.1/1428.html.

[6] Mailing list archive. [PATCH] i386, x86_64
initial PAT implementation.
http://www.ussg.iu.edu/hypermail/
linux/kernel/0508.3/1321.html.

[7] Mailing list archive.
[RFC PATCH 00/12] PAT 64b: PAT support
for x86_64.
http://www.uwsg.iu.edu/hypermail/
linux/kernel/0712.1/2268.html.

[8] Mailing list archive. [RFC] [PATCH] PAT
implementation.
http://www.ussg.iu.edu/hypermail/
linux/kernel/0101.3/0630.html.

[9] Mailing list archive. pat support in the kernel.
http://www.ussg.iu.edu/hypermail/
linux/kernel/0305.2/0896.html.

[10] Mailing list archive. type mismatch for
e0000000,8000000 old: write-back new:
write-combining on kernel 2.6.12.
http://lkml.org/lkml/2005/6/18/52.

[11] Mailing list archive. type mismatch for f0000000,
1000000 old: write-back new: write-combining.
http://lists.us.dell.com/
pipermail/linux-poweredge/
2006-March/025043.html.

[12] Mailing list archive. What will be in the
x86-64/x86 2.6.21 merge.
http://www.ussg.iu.edu/hypermail/
linux/kernel/0702.1/0832.html.

[13] Mailing list archive. x86: PAT support updated -
v3.
http://lwn.net/Articles/274175/.

2008 Linux Symposium, Volume Two • 143

This paper is (c) 2008 by Intel. Redistribution rights are
granted per submission guidelines; all other rights reserved.
* Other names and brands may be claimed as the property of
others.

144 • PATting Linux

Pathfinder—A new approach to Trust Management

Patrick Patterson
Carillon Information Security Inc.
ppatterson@carillon.ca

Dave Coombs
Carillon Information Security Inc.

dcoombs@carillon.ca

Abstract

PKI has long promised to solve the problem of scalable
identity management for us. Until now, that promise
has been rather empty, especially in the Free and Open-
Source Software (FOSS) space. Generally speaking,
the problem is that making the proper trust decisions
when presented with a certificate involves such esoteric
magic as checking CRLs and OCSP and validating trust
and policy chains, all of which are expressed as arcane
ASN.1 structures; usually this is not the application de-
veloper’s primary focus. Coupled with the lack of cen-
tral PKI management tools in the FOSS environment,
the result is a whole lot of applications that sort of do
PKI, but not in any truly useful fashion. That is, an
administrator cannot really replace username/password
systems with certificates, which is what PKI was sup-
posed to let us do. Microsoft has finally built a decent
certificate-handling framework into their products, and
we believe that Pathfinder adds this level of support to
FOSS products. This presentation will focus on what
Pathfinder is, how it can be used to deploy a scalable
trust management framework, and, most importantly,
will demonstrate how easy it is to make your own ap-
plication “Pathfinder aware.”

1 Introduction

Before we discuss Pathfinder in detail, it is useful to take
a look at Public Key Infrastructure in general, its his-
tory, and the current directions within this field. This
provides a backdrop and common reference for under-
standing why we have chosen the architecture for trust
management with Pathfinder that we have.

While PKI is, generally speaking, not new technology,
it has been quite slow to find mainstream adoption and
use. This is partly because of the difficulty in designing
an implementation that satisfies everybody’s require-
ments, and partly because of interoperability problems

arising from a range of implementations that interpret
the standards differently. Recent developments, how-
ever, show great promise in growing interoperable de-
ployments.

Formerly it was thought that the “holy grail” of PKI was
a single, global Certificate Authority, or small group of
such CAs, that would issue all the certificates, and that
everybody would trust these CAs. This would eventu-
ally prove to be impossible, and the biggest problem
is a political one: who runs the global CA? Who is,
therefore, the global trust authority, and why should one
group have so much power? These questions could not
be satisfactorily answered. Furthermore, many differ-
ent groups and interests are represented in such a sys-
tem, and it is probably impossible to create a meaningful
global PKI policy framework that is consistent with the
needs of these different groups and different industries
and different legal regulations.

In the past several years a new model has emerged, rep-
resented by interoperable communities of trust. Groups
of people or companies with similar requirements, be
they industry requirements, legal requirements or other-
wise, can define a community of trust and a set of poli-
cies and procedures that are suitable for that community,
which then can be adopted and followed by all partici-
pants.

The current way forward for these communities of trust
is to use Bridge Certificate Authorities. A Bridge CA
is one that doesn’t issue certificates to subscribers it-
self, but rather exists to facilitate the trust fabric within
a community. If a bridge CA is set up inside a
specific community, participating community members
with their own CAs can cross-certify with the bridge,
using policy mapping to create equivalence among as-
surance levels which can allow trust to flow through the
community. There are two principal benefits of using a
bridge. The first is that participant CAs do not have to
cross-certify with every other CA in the community, and
instead only manage a single audited trust relationship.

• 145 •

146 • Pathfinder—A new approach to Trust Management

The second benefit is that a user can declare an identity
to the community, and all the participants in the com-
munity can recognize that identity. The bridge CA can
also then cross-certify with other bridges, allowing trust
to flow to other communities as well.

Figure 1 shows the current status of certain intercon-
nected communities of trust that already exist. Currently
the US Federal Bridge CA is acting as a “super bridge,”
cross-certified with government departments, but also
cross-certified with an aerospace and defence bridge, a
pharmaceutical bridge, and a higher education bridge. It
is to be noted that each of these communities is stand-
alone, and each of the companies listed operates its own
PKI. The arrows only represent policy mapping between
each of the participants.

Pathfinder was conceived as a method to allow FOSS
projects to seamlessly handle the complexities inherent
in this cross-certified “community PKI” framework.

2 Technical Expressions of Trust

IETF RFC3280 describes a detailed, standard profile
for expressing an identity in a PKI context, and meth-
ods for ascertaining the status and current validity of
such an identity. X.509 certificates have a Subject
field, which can hold some representation of “identity,”
and the RFC3280 standard Internet profile also includes
Subject Alternative Names that can express email ad-
dresses, DNS names, any many other forms (some peo-
ple think that too many things can be expressed here!)
There is also the Authority Information Access exten-
sion, which can contain an LDAP or HTTP pointer to
download the signing certificate of the CA that issued
and signed a given certificate, as well as a pointer to
the Online Certificate Status Protocol (OCSP) service
that can give revocation status about this certificate. If
the CA doesn’t support OCSP, a relying party can fall
back to checking the Certificate Revocation List (CRL),
a pointer to which can be found in the certificate’s CRL
Distribution Points extension. We can check the pol-
icy under which a certificate was issued, as found in
the Certificate Policies extension. In a bridged environ-
ment, we may encounter Policy Mapping, so we will
have to check that extension as well. And we mustn’t
forget Name Constraints, which, within a bridged (or
even a hierarchical) PKI allow delegation of authority
over name spaces such as email, DNS, and X.500, to
particular Certificate Authorities.

Given the above, we can identify several hurdles. First
of all, performing certificate validation correctly pretty
much requires one to be a PKI expert, as there is a high
degree of complexity involved. We shouldn’t necessar-
ily expect application programmers, who are experts in
building web servers, mail servers, RADIUS servers, or
other applications where using certificates for authen-
tication may be desirable, to stop and learn how to do
this validation correctly. It probably isn’t their primary
concern. Secondly, we shouldn’t necessarily expect li-
braries commonly used for functions like TLS to help us
out of this, at least not fully. For instance, OpenSSL and
libNSS are very good security libraries, but there are
just too many details involved in building a trust path
to expect these libraries to possess all of the required
capability. As a specific example, we rather strongly
doubt that the OpenSSL maintainers will ever want to
integrate an HTTP and LDAP client in their library and
provide all the hooks necessary to synchronously and/or
asynchronously fetch certificates, CRLs, and OCSP in-
formation from Certificate Authorities.

2.1 So, where does this leave us?

The situation today is that most applications that imple-
ment any form of certificate support do a rather poor job
of it. Most commonly, they implement the capability to
act as the server portion of a TLS connection, and either
stop there or offer very rudimentary (in our experience)
client authentication support, often limited to checking
whether the certificate presented is signed by a known
and trusted CA and is in its validity period. The need to
somehow check certificate status, for example by CRL
or OCSP, is mostly ignored, as is the requirement in
some communities to only accept certificates issued to
a certain policy. There is certainly no thought given to
how to deploy such an application in an environment
with a complex trust fabric, such as the above cross-
certified domains, where the aforementioned name con-
straints and policy mappings need to be evaluated. Fur-
thermore, client side validation of server certificates is
almost never properly implemented, which is under-
standable in that it is very difficult to communicate to
an end user what to do when, for example, the server’s
certificate is revoked.

To solve these issues, it is unrealistic to expect each ap-
plication developer to be a PKI expert and correctly im-
plement all the complexity and nuance of the Path Dis-

2008 Linux Symposium, Volume Two • 147

FBCA CERTIPATH

BOEING

Raytheon

Lockheed
Mar t in

Nor thrup
Grumman

EADS

SITA

ARINC

EXOSTAR

SAFE

HEBCA

CANADA

UK

Treasury
Dept .

DHS DoD

Sta te Dept . DoE

Colleges

Universi t ies

Research
Centers

Merck GSK etc .

Higher Educat ion

Aerospace

Pharmaceut ica l

Figure 1: Interconnected Communities of trust, present and planned

covery and Validation algorithm described in RFC 3280.
Therefore, another solution is needed.

Pathfinder solves the above problem by providing two
components. The first is a series of client libraries that
provide callbacks for certificate validation for all ma-
jor security libraries (currently OpenSSL and libNSS,
but hooks to the Java CryptoAPI and GNUTLS are also
planned), and which imposes on applications only one
additional dependency: the need to link with DBus,
which the client uses to talk to the daemon

The second component is a system daemon that pro-
vides all of the certificate validation functions in a trans-
parent and centrally manageable fashion. This approach
allows an application to grow the capability of handling
a complex trust environment simply, usually by only re-
placing a single line of code, and perhaps by adding an
option for the policy to be set for that application by its
configuration. All of the hard work is done in the dae-
mon.

3 Advantages of Pathfinder

Pathfinder was written with the credo “Do the hard stuff
once, let everyone benefit” in mind.

In a complex trust environment such as a bridged PKI,
it is critical that any Policy Mapping and Name Con-
straints extensions are correctly handled. As illustrated
by Figure 2, Policy Mapping enables a company to de-
clare that its policy for issuing certificates is equiva-
lent to another company’s policy, often via a central,
community-endorsed policy (that of the bridge.) Differ-
entiation by policy, when evaluating a given certificate,
is also useful as it is now fairly common not to include
policy information in the Distinguished Name, includ-
ing it instead only where it belongs, in the Certificate
Policies extension. So, it would be possible to have two
certificates with the same Distinguished Name (they re-
fer to the same security principal after all), but issued
according to a different policy. Without a way to tell an
application only to accept certificates issued according
to a certain policy, we have a security issue if the user
presents a certificate issued according to a less stringent
policy.

148 • Pathfinder—A new approach to Trust Management

Cert i f icate
Author i ty

Company A

Cert i f icate
Author i ty

Company B

Bridge
Cert i f icate
Author i ty

A Pol icy 1 .2 .3 .4 == Br idge Pol icy 2 .3 .4 .5
Bridge Signs Company A’s Cert i f icate
Company A Signs Bridge’s Cert i f icate

B Pol icy 5 .6 .7 .8 == Br idge Pol icy 2 .3 .4 .5
Bridge Signs Company B’s Cert i f icate
Company B Signs Bridge’s Cert i f icate

After both X-Cert :
A Pol icy 1 .2 .3 .4 == B Pol icy 5 .6 .7 .8

Company can trust cert i f icates issued
by Company B wi thout having to have a

separate audi t wi th Company B

Figure 2: Policy Mapping in a bridge environment

Name constraints are required to ensure that only a sin-
gle organisation in the trust fabric can be authoritative
for a particular instance of a security principal (in plain
terms, you usually only want John Doe who works at
Company A to have a certificate issued by Company
A.) Another way to put this is that name constraints can
be used to state that a given CA can only issue certifi-
cates to Subjects inside a given namespace (for instance,
email domain), and can be used to state that no other
CA, for example across the bridge, can issue certificates
in that namespace.

The procedures for correctly handling policy mapping
and name constraints run to several dozens of pages
within various RFCs and specifications, and it is cer-
tainly a sufficiently tricky task that one would hope it
is only done once on a given platform. As more and
more applications are being deployed into the, rather
large, communities mentioned in the introduction, it is
becoming more and more desirable for applications to
all handle these complex issues, and to handle them in a
consistent manner.

It is equally important that the status of a certificate
be validated, to ensure that the certificate has not been
revoked. And, perhaps most interesting for those de-
ploying an application in a complex trust environment,
?missing? certificates must be obtained, and a trust
path between the client certificate and the configured
trust anchor must be built. These transactions may in-
volve round trips to external LDAP, HTTP, and OCSP

servers, and thus, unless done very efficiently, may in-
duce transaction delays and substantially impact server
performance.

Which leads us to the question of providing a scalable
caching layer.

When performing Path Discovery and Validation, there
are several potential bottlenecks. Clearing these bottle-
necks is highly desirable, since performing the certifi-
cate validation is a blocking function in the establish-
ment of protocols such as IPsec and TLS. That is, there
is no opportunity to send the request in an asynchronous
manner. A Certificate is presented, and it must be vali-
dated there, on the spot, before proceeding with the rest
of the establishment of the session. The functions where
caching is most desirable are Authority Information Ac-
cess (AIA) chasing, CRL downloading, and making an
OCSP request. For all of these we have to worry about,
from a performance point of view, the latency of per-
forming the query, and the DNS or TCP timeouts if the
host listed is not available. For CRLs, we have the addi-
tional problem that what we download is of an unknown,
arbitrary size, and may be quite large (for instance, the
US Department of Defence CRL was over 50MB at one
point).

Optimization of the above functions is perhaps one of
the greatest reasons for choosing a centralized daemon
model for Pathfinder. By performing everything in the
daemon, we can optimise these functions in a single lo-

2008 Linux Symposium, Volume Two • 149

Apache:

Before:
Incomplete support for complex trust environments:
No support for Policy Mapping
Must supply all intermediate certificates, which is undesirable in a
properly configured bridge environment.
No support for Name Constraints, as a matter of fact, if they are present
and critical, the certificate will not validate at all, which is correct
behaviour, but it means that Apache can’t be deployed using Certificate
based authentication in much of the aerospace industry).
No support for OCSP
No support for certificate validation based on Certificate Policy
CRL update requires re-starting the server.
Per server configuration of trust anchors

After:
Support for full RFC3280 Path Discovery and Validation
Full support for CRL and OCSP.
Specification of policy against which a certificate would be validated.
Full support for policy mapping.
All servers within a farm may be configured at once, and trust anchors
updated to all.

Time to implement:
2 days

Biggest Challenge:
Dealing with the apache configure/makefile system.

Additional Dependencies:
libdbus

Figure 3: A concrete example

cation to minimise a very critical performance bottle-
neck, and we also have the greatest opportunity to re-use
information already obtained. For instance, if applica-
tion A requests the certificate chain W->X -> Y -> Z ,
and we need to fetch X and Y, then we can cache those
certificates for the duration of their lifetimes, and can
therefore avoid having to re-fetch the same certificates,
thus saving time for application B that requests the same
chain at some future date. Changes to the chain can be
managed by having a maintenance thread which periodi-
cally checks the chain for any changes, such as refreshed
certificates with different CRL or OCSP URIs, or differ-
ent lifetimes. The same can be done with the CRL and
OCSP responses, although, of course, the maintenance
thread will have to refresh more frequently, due to the
shorter lifetimes of these artifacts.

Performing these functions in one location also offers
the option of a graceful “offline” mode, in case the vali-
dation is performed offline, such as a user validating an
S/MIME signature while on a flight. Instead of each ap-
plication needing built-in logic for permissible failure
modes, Pathfinder can be centrally configured to per-
form the appropriate level of validation, thereby ensur-
ing that each application handles offline validation in
a consistent manner. An example of such a validation
scheme is to have three settings, the first of which is to
require full validation, which will fail to validate the sig-
nature because it can’t find the revocation information
when offline, and may not be able to chase AIA infor-
mation. The second setting is to require a valid trust
chain but not necessarily fresh revocation info, which
may work, depending on how fresh the cache is, and

150 • Pathfinder—A new approach to Trust Management

the the third setting is to blindly accept all certificates
if offline, which will always validate, assuming that the
certificate hasn’t expired.

This last feature is not yet implemented, but is definitely
on the roadmap.

4 Conclusion

Proper handling of certain X.509 certificate extensions
when performing certificate validation is essential in or-
der to maintain a viable trust fabric in a bridged PKI
framework serving a community of trust. In such a
community, each participant need only be responsi-
ble for one trust relationship: its relationship with the
bridge. The bridge, then, brokers trust among the com-
munity participants who have agreed to a common pol-
icy framework. However, in order for this to work, there
is a substantial requirement on the various server soft-
ware packages used in the community to correctly pro-
cess the trust path and policy tree. Until now, due to
the complexity of handling this processing, it has been
difficult for application developers to deploy full PKI
support in their applications. Pathfinder not only makes
this simple, it provides a scalable and manageable way
to deploy true PKI-enabled applications using only open
source software.

Linux Data Integrity Extensions

Martin K. Petersen
Oracle

martin.petersen@oracle.com

Abstract

Many databases and filesystems feature checksums on
their logical blocks, enabling detection of corrupted
data. The scenario most people are familiar with in-
volves bad sectors which develop while data is stored
on disk. However, many corruptions are actually a re-
sult of errors that occurred when the data was originally
written. While a database or filesystem can detect the
corruption when data is eventually read back, the good
data may have been lost forever.

A recent addition to SCSI allows extra protection infor-
mation to be exchanged between controller and disk. We
have extended this capability up into Linux, allowing
filesystems (and eventually applications) to be able to at-
tach integrity metadata to I/O requests. Controllers and
disks can then verify the integrity of an I/O before com-
mitting it to stable storage. This paper will describe the
changes needed to make Linux a data-integrity-aware
OS.

1 Data Corruption

As witnessed by the prevalence of RAID deployment in
the IT industry, there is a tendency to focus on data cor-
ruption caused by disk drive failures. While head misses
and general bit corruptions on the platter are common
problems, there are other possible corruption scenarios
that occur frequently enough to warrant being remedied
as well.

When corruption is experienced, hardware is often
blamed. However, modern systems feature extensive
protection on system buses, error checking and correct-
ing memory, etc. In the Fibre Channel environments
commonly used in enterprises, wire traffic is protected
by a cyclic redundancy check. So in many ways the
physical hardware level is becoming increasingly re-
silient against failures.

The software stack, however, is rapidly growing in com-
plexity. This implies an increasing failure potential:
Harddrive firmware, RAID controller firmware, host
adapter firmware, operating system code, system li-
braries, and application errors. There are many things
that can go wrong from the time data is generated in
host memory until it is stored physically on disk.

Most storage devices feature extensive checking to pre-
vent errors. However, these protective measures are al-
most exclusively being deployed internally to the de-
vice in a proprietary fashion. So far, there have been
no means for collaboration between the layers in the I/O
stack to ensure data integrity.

An extension to the SCSI family of protocols tries to
remedy this by defining a way to check the integrity of
an request as it traverses the I/O stack. This is done
by appending extra information to the data. This extra
information is known as integrity metadata or protection
information.

The integrity metadata enables corrupted write requests
to be detected and aborted, thereby preventing silent
data corruption.

2 Data Integrity Field

A harddisk is generally divided into blocks of 512 bytes,
called sectors. On the physical platter, the sector al-
location is actually a bit bigger to allow for CRC and
information internal to the drive. However, this extra
information is not available outside of the disk drive
firmware. Consumer-grade disks often trade capacity
for reliability and use less space for the error checking
information. Enterprise disks feature stronger protec-
tion schemes and as a result, expose less storage capac-
ity to the user.

Unlike drives using parallel and serial ATA interfaces,

• 151 •

152 • Linux Data Integrity Extensions

SCSI1 disks allow for sectors bigger than 512 bytes to
be exposed to the operating system. Sizes of 520 or 528
bytes are common. It is important to note that these
‘fat’ sectors really are bigger, and that the extra bytes
are orthogonal to space used for the drive’s internal er-
ror checking.

Traditionally these extra few bytes of information have
been used by RAID controllers to store their own inter-
nal checksums. The drives connected to the RAID head
are formatted using 520-byte sectors. When talking to
the host operating system, the RAID controller only ex-
poses 512-byte blocks; the remaining 8 bytes are used
in a way proprietary to the RAID controller firmware.

A few years ago, an extension to the SCSI Block Com-
mands specification was approved by the T10 technical
committee that governs the SCSI family of protocols.
The extension, known as Data Integrity Field, or DIF,
standardizes the contents of the extra 8 bytes of infor-
mation per 520-byte sector.

This allows the integrity metadata to be visible outside
of the domain of disk or RAID controller firmware. And
as a result, this opens up the possibility of doing true
end-to-end data integrity protection.

2.1 The DIF Format

Each 8-byte DIF tuple (see Figure 1) contains 3 tags:

• Guard tag: a 16-bit CRC of the sector data.

• Application tag: a 16-bit value that can be used by
the operating system.

• Reference tag: a 32-bit number that is used to en-
sure the individual sectors are written in the right
order, and in some cases, to the right physical sec-
tor.

A DIF-capable host adapter will generate the 8 bytes of
integrity metadata on a write and append it to the 512-
byte sectors received from the host operating system.
For read commands, the controller will receive 520-byte
sectors from the disk, verify that the integrity metadata
matches the data, and return 512-byte sectors to the op-
erating system.

1We will use the term ‘SCSI’ to refer to any device using the
SCSI protocol, regardless of whether the physical transport is SPI,
Fibre Channel, or SAS.

512 bytes of data APP REFGRD

16-bit guard tag (CRC of 512-byte data portion)

16-bit application tag

32-bit reference tag

5120 514 516 519

Figure 1: 520-byte sector containing 512 bytes of data
followed by 8-byte DIF tuple

A DIF-capable disk drive can compare the data with the
integrity metadata received from the host adapter and
reject the I/O if there is a mismatch. How to interpret
the DIF tuple content depends on the protection type the
drive has been formatted with. The current specification
allows three types, and they all mandate use of the guard
tag to protect the contents of the 512-byte data portion
of the sector.

• DIF Type 1: reference tag must match lower 32 bits
of the target sector number.

• DIF Type 2: reference tag must match the seed
value in the SCSI command + offset from begin-
ning of I/O.

• DIF Type 3: this reference tag is undefined.

The drive must be low-level reformatted to switch be-
tween the three protection types or to turn off DIF and
return to 512-byte sectors.

3 Data Integrity Extensions

The T10 standards committee only defines communi-
cation between SCSI controllers and storage devices.
The DIF specification contains no means for sending/
receiving integrity metadata to/from host memory, and
traditionally host adapter programming interfaces have
been proprietary and highly vendor-specific.

Oracle approached several fibre channel adapter vendors
putting forth a set of requirements for controllers to al-
low exchanging integrity metadata with the host operat-
ing system. This resulted in a specification [2] for what
is now known as the Data Integrity Extensions, or DIX.

DIX defines a set of interfaces that host adapters must
provide in order to send and receive I/O requests with
integrity metadata attached. This in turn enables us to
extend the exchange of protection information all the
way up to the application.

2008 Linux Symposium, Volume Two • 153

If the controller is DIX-capable and the storage device
is DIF-capable, we can create a protection envelope that
covers the entire I/O path, thus providing true end-to-
end data integrity (see Figure 2).

3.1 Performance Impact

The 16-bit CRC mandated by the DIF specification is
somewhat expensive to calculate in software. Bench-
marks showed that for some workloads, calculating the
CRC16 in software had a detrimental impact on perfor-
mance. One of Oracle’s partners had hardware capa-
ble of using the IP checksum instead of CRC16. The
IP checksum is much cheaper to calculate and offers
weaker protection than the CRC, so there is a trade-off
between data integrity and performance. Consequently,
the IP checksum feature is optional and can be enabled
at will.

If the IP feature is enabled, Linux will put IP check-
sums in the guard tag instead of CRC16. The controller
will verify the checksums and convert them to the T10-
mandated CRC before passing the data to the drive. On
reads, the opposite conversion takes place.

From a performance perspective, the cost is very low.
It has less impact on system performance than software
RAID5.

4 SCSI Layer

We have implemented support for both DIF and DIX
in the Linux kernel. The work has been done from the
bottom up, starting with the SCSI layer. The following
sections will describe the changes required.

4.1 Discovery

For the exchange of integrity metadata to happen, it
would seem reasonable to require that controller and
storage device are DIX- and DIF-capable, respectively.
However, even in a setup where the disk does not sup-
port DIF, there is still value in having the host adapter
verify the data integrity before sending the command on
to the drive.

Similarly, some controllers may support DIF while talk-
ing to the drive, but may not have the capability to ex-
change integrity metadata with Linux. In that situation

it is still desirable to have communications between host
adapter and disk protected.

Consequently two orthogonal negotiations are taking
place at discovery time: One for DIX between Linux
and the SCSI controller, and one for DIF between con-
troller and storage device.

The controller driver indicates its DIF and DIX capabili-
ties when it registers itself with the SCSI layer. The DIF
type is probed when a drive is scanned. If both DIX and
DIF are supported, integrity metadata can be exchanged
end-to-end.

4.2 Scatter-Gather List Separation

A buffer in host memory that needs to be transferred to
or from a storage device is virtually contiguous. This
means that the application sees it as one linear blob
of data. In reality the buffer is likely to be physically
discontiguous, made up of several scattered portions of
physical memory. Consequently, a more complex con-
struct is needed to describe what to transfer.

Network and storage controllers use a scatter-gather list
for this purpose. The list consists of one or more <page
address, offset, length> tuples, each identify-
ing a region in memory to transfer as part of the request.

Linux performs all block I/O in multiples of 512 bytes
and it would be highly inconvenient to support 520-byte
sectors and buffers throughout the kernel.

On the wire between controller and disk, however, in-
tegrity metadata must be interleaved with the data sec-
tors; therefore, the buffer sent to the disk must be a mul-
tiple of 520 bytes long.

As a result, DIX requires separating the data and in-
tegrity metadata in host memory. The data buffer re-
mains unchanged, while the integrity metadata is stored
in a separate buffer. The two buffers are then mapped
into separate scatter-gather lists which are handed to the
I/O controller.

When writing, the controller will transfer the memory
described by the two scatterlists from the host, check
them, and interleave data and integrity metadata before
the request goes out on the wire as 520-byte sectors.

154 • Linux Data Integrity Extensions

OS Disk DriveI/O Controller SAN Disk ArrayApplication

Normal I/O vendor specific
integrity measures

vendor specific
integrity measures

vendor specific
integrity measures

t ransport CRC vendor specific
integrity measures

vendor specific
integrity measures

DIF T10 Data Integrity Field protect ion envelope

DIX Data Integrity Ext . protect ion envelope

DIX + DIF Data Integrity Extensions + T10 Data Integrity Field combined protect ion envelope

Figure 2: Protection Envelopes: The ‘Normal I/O’ line shows disjoint protection domains in a normal setup. Above
that, the ‘DIF’ line illustrates the area covered by the T10 DIF standard. ‘DIX’ displays the coverage of the Data
Integrity Extensions, and at the top, ‘DIX+DIF’ combined yields a full end-to-end protection envelope.

On read, the 520-byte sectors sent by the drive are ver-
ified, split up, and transferred into the host memory de-
scribed by the two scatter-gather lists provided by the
kernel.

This separation of data and integrity metadata makes it
much less intrusive to support DIF in the kernel.

The integrity buffer is described by an extra scsi_

data_buffer in struct scsi_cmnd, which is the
container for SCSI requests in the kernel.

4.3 Reference Tag Remapping

When a drive is formatted with Type 1 protection, the
reference tag must contain a value corresponding to the
physical sector the data is being written to for the I/O
to complete successfully. Thanks to partitioning and
stackable devices such as MD or the Device Mapper, the
physical sector LBA is often very different from what
the filesystem requests when submitting the I/O. The
reference tag needs to be remapped accordingly.

One solution would be to postpone filling out the ref-
erence tag until the physical sector number is actually
known. However, we would like to leverage the pro-
tection offered by the reference tag’s ability to tie the
individual sectors of an I/O together.

Another option would be for the filesystem to recur-
sively query the underlying block devices requesting the
start LBA. Unfortunately, this will not work, as an I/O
may straddle physical devices. The solution is to have a
virtual reference tag filled out when the I/O is submitted
by the filesystem. That virtual tag is then remapped to
the physical value at the bottom of the I/O stack when
writing. Similarly, when data is read, the physical ref-
erence tags received from the drive are remapped to the
virtual numbers expected by the filesystem.

This approach also avoids multiple remapping steps as
the request traverses a layered I/O stack.

5 Block Layer

Conceptually, DIF and DIX constitute a blatant layer-
ing violation. Applications do not know or care whether
they are accessing a SATA or a SCSI disk, or whether
the data is mounted over the network. On the other hand,
for the end-to-end protection to work, applications or
filesystems need to know how to prepare integrity meta-
data in a format understood by the actual physical de-
vice.

Thankfully, the provider of the integrity metadata does
not have to be aware of the intricate details of what is
inside the integrity buffer, and consequently the block
layer treats the integrity metadata in an opaque fashion.

2008 Linux Symposium, Volume Two • 155

It has no idea what is stored inside the extra structure
attached to the bio.2

5.1 Block Integrity Payload

The integrity metadata is stored in the block integrity
payload, or bip struct which attached to the bio. The
bip is essentially a trimmed-down version of the I/O
vector portions of a struct bio with a few extra fields
for housekeeping, including the virtual sector number
used for remapping.

A series of bio_integrity_* calls allows interaction
with the protection information, and these have been
designed to closely mirror the calls for allocating bio

structures, adding pages to them, etc.

5.2 Integrity Properties, Splitting and Merging

There are only a few things the block layer really needs
to be aware of with respect to the attached protection
information:

• Because a bio can be split and merged, the block
layer needs to know how much integrity metadata
goes with each chunk of data.

• The layer needs to know whether the device is ca-
pable of storing extra information in the application
tag.

• It must be capable of generating and verifying the
integrity metadata.

All this information is communicated to the block
layer when a storage device registers itself using blk_

integrity_register(). In the DIF case, this is
done just after the SCSI disk makes its presence known
to the kernel.

The 16 bits of space in the DIF application tag may or
may not be used internally by the storage device. A bit
in the device’s SCSI Control Mode Page indicates
whether it is available. If it is, the SCSI disk driver will
signal to the block layer that the space is available for
use by the filesystem.

As part of that registration process, the SCSI disk driver
also provides two callback functions to the block layer:

2struct bio is the fundamental block I/O container in the
Linux kernel.

one for generating integrity metadata, and one for veri-
fying integrity metadata. This way, the block layer can
call the functions to opaquely generate and check pro-
tection information without knowing the intricate details
of SCSI, DIF, or how the drive has been formatted.

5.3 Stacked Devices

Servers often use software RAID (MD) and/or the Log-
ical Volume Manager. These are implemented as virtual
block devices inside the kernel. If all the disks that con-
stitute an MD disk or a logical volume support the same
type of protection, the virtual block device is tagged as
being integrity-capable.

A similar approach is taken for virtual block devices ex-
posed to virtualized guests, allowing the protection en-
velope to reach all the way from the application running
on the guest through the hypervisor to the storage de-
vice.

5.4 Automatic Generation/Verification

Filesystems that allow integrity metadata to be trans-
ferred to/from userland are expected to interact directly
with the bip calls. However, legacy filesystems like
ext3 and ext4 are not integrity-aware. There are also
other I/O code paths that either originate inside the ker-
nel or map user pages directly. For those cases, the
integrity infrastructure allows protection information to
be automatically generated by the block layer (writes)
or verified before the bio is returned to the submitter
(reads).

Normally, I/O completion is run in interrupt context, as
it usually only involves marking the pages referenced by
the request as being up-to-date. However, calculating a
checksum for the entire I/O is a time-consuming pro-
cess. If the request needs to be verified, completion is
postponed using a work_queue.

The automatic generation/verification of integrity meta-
data enables integrity protection of all I/O from the
block layer to the disk without any changes to the
filesystem code.

6 Filesystem Interface

6.1 Protection Information Passthrough

Filesystems that wish to allow transfer of integrity meta-
data to and from userland applications will need to man-

156 • Linux Data Integrity Extensions

ually attach it to the bio. This is done by attaching a
bip to the bio and then adding the protection informa-
tion pages using bio_integrity_add_page().

6.2 Tagging

As mentioned above, the DIF tuple includes a 16-bit ap-
plication tag that is stored by the block device as any
other type of data; i.e., it is not used for integrity verifi-
cation in any of the existing protection types.

These 16 bits can be used freely by the owner of the
block device—in this case the filesystem—to tag the
sectors. One possible use is to identify which inode a
sector belongs to. This will significantly improve the
fsck process’ ability to recover a damaged filesystem.

Filesystems generally use blocks that are bigger than
512 bytes. Because two bytes per sector is a very lim-
ited space, the block integrity infrastructure allows tag-
ging at the bio level instead. An opaque buffer contain-
ing the filesystem-internal information can be supplied
at integrity-metadata-generation time. The data in the
buffer is then interleaved between the application tags
in the sectors targeted by the bio, enabling the filesys-
tem to store 16 bytes of recovery information for each
4KB logical block.

The tag data can subsequently be read back by running
bio_integrity_get_tag() upon completion of a
read bio.

7 Future Work

Work is in progress to implement support for the data
integrity extensions in btrfs [1], enabling the filesystem
to use the application tag. The next step will be defin-
ing the interfaces that will allow applications to perform
syscalls that include integrity metadata.

We are working on three different interfaces that expose
integrity metadata to userspace applications:

1. Transparent: Integrity metadata is generated by the
C library transparently to the application.

2. Opaque: This interface will allow the application
to protect a buffer in memory prior to submitting
the I/O to disk. Just like the block layer, the appli-
cation will not know that the actual integrity meta-
data is in DIF format.

3. Explicit: Some applications will need direct ac-
cess to the native integrity metadata, bypassing the
filesystem. Examples are the mkfs and fsck pro-
grams that need to be able to read and write the
application tag directly.

T13, the committee that governs the SATA specification,
has proposed a feature called External Path Protection
which is essentially the same as DIF. The Linux ker-
nel data integrity infrastructure has been designed to ac-
commodate DIF as well as EPP. A similar data integrity
feature for SCSI tape drives is also in development.

Products supporting DIF and DIX are scheduled for
general availability in 2008. The Linux Data Integrity
Project can be found at http://oss.oracle.
com/projects/data-integrity/.

Acknowledgements

Thanks to Randy Dunlap, Joel Becker, and Zach Brown
for their feedback on this paper.

References

[1] Chris Mason. btrfs. http:
//oss.oracle.com/projects/btrfs/.

[2] Martin K. Petersen. I/O Controller Requirements
for Data Integrity Aware Operating Systems.
http://oss.oracle.com/projects/
data-integrity/dist/documentation/
dif-dma.pdf.

Red Hat Linux 5.1 vs. CentOS 5.1: ten years of change

D. Hugh Redelmeier
hugh@mimosa.com

Abstract

Red Hat Linux 5.1 was released in 1998. Almost ten
years later, its direct descendant CentOS5.1 was re-
leased in 2007. How much has changed in the years
since the first Ottawa Linux Symposium?

To investigate these changes, both systems were in-
stalled and used on the same hardware. What were the
important changes? Did we use or abuse new resources
as hardware developed along Moore’s Law? Were the
times as golden as some old-timers remember them to
be? Can the youngsters still be taught a thing or two?

1 Introduction

In what ways has Linux changed? Most of us experience
changes release by release. Taking a longer term view
should yield a different set of insights.

Although recollection is a good tool, actual investiga-
tion seems worthwhile. To this end, I have installed Red
Hat Linux 5.1 and CentOS5.1 on the same hardware.
By using and examining these two platforms, I hope to
investigate and compare them.

These platforms were chosen for several reasons. I have
used each when they were current. Both were popular
in their respective eras. One is a logical successor of
the other (Red Hat Linux evolved to Red Hat Enterprise
Linux, and CentOS is a clone of RHEL) so the code-
bases are strongly related. Finally, it is appealing that
their version numbers happen to be identical.

2 Environment

Computer hardware made great capacity advances be-
tween the releases. Computers have become more
pervasive in that same period. These environmental
changes have affected the releases.

Date 1997 Oct 2007 June
price ÷5 C$1965 C$400
brand local shop Acer Aspire E380
CPU ×2 AMD K6 AMD Athlon 64 x2
CPU clock ×11 200MHz 2200MHz
RAM ×16 64M 1024M
RAM type PC66 PC2-5300
hard disk ×39 6.4G 250G
HD RPM ×1.3 5400 7200
optical CD reader DVD writer

This table illustrates the changes in hardware capac-
ity. It sketches the dimensions of two computers that
I bought to be Linux workstations. The first system’s
components were selected to be the most powerful I
could get without leaving the mainstream whereas the
second system was designed by Acer for normal home
or office users.

The changes are large enough that they should drown
out the effects of whether I selected a high-end or main-
stream system at either time.

The changes in most dimensions are so large that one
would expect them to be experienced as qualitative dif-
ferences, not just quantitative. Think what it would be
like if your house had forty times the floor space, the
frequency of your piano’s A key went up by a factor of
eleven, or you desk had sixteen times the surface area.

The increased disk and RAM speeds are much less im-
pressive. This suggests that algorithms, programs, and
systems ought to be rebalanced to effectively use the
new hardware.

In part, this paper was prompted by the question: how
did Linux spend this increased capacity?

3 Installing RHL5.1 and CentOS5.1

To compare the distributions, I installed them both on
the same computer.

• 157 •

158 • Red Hat Linux 5.1 vs. CentOS 5.1: ten years of change

The disparity in the hardware requirements made find-
ing a computer that would support both a bit of a chal-
lenge. For example, only old video controllers are sup-
ported by RHL5.1; CentOS5.1 will only run on ma-
chines with perhaps 256M or more RAM (the graphical
install requires 512M).

Just to see what would happen, I booted the RHL5.1 in-
stallation disk on my new HP Pavilion A6245n. It was
quite confused by the 320G hard drive (fdisk, the ker-
nel, and Disk Druid had varying wrong opinions of its
size, based on various geometry lies) and about the 6G
of RAM (it recognized only 64M). It saw one of the four
CPU cores. Still, I expect RHL5.1 could have been in-
stalled.

For the actual installation, I chose a Compaq EN SFF
box manufactured in 1999 April. I stuffed it with 320M
of RAM and 120G of hard disk (it was probably orig-
inally shipped with 64M of RAM and a 6.4G hard
drive). I expect that very few machines old enough to
run RHL5.1 were initially assembled with enough RAM
to install CentOS5.1.

The machine has no CD or DVD drive. Installation was
through the network. In RHL5.1, the installation boot
floppy can be told to find the installation tree via FTP,
HTTP, or NFS. In CentOS5.1 the kernel has outgrown
floppies so PXE netbooting was necessary for bootstrap-
ping the installation.

RHL5.1 uses the LILO bootloader and this version does
not use the extended int 13 features of modern BIOSes
to access large disks. It could only access content on the
first 1023 notional cylinders of the hard drive. So most
of the drive was out of reach.

One approach to this problem is to create a separate
/boot partition that is within the first 1023 cylinders.
It appears as if RHL5.1 was not set up to support this.
I did manage to accomplish this but there were a few
odd failures that had to be dealt with. In the end, I used
CentOS5.1’s Grub to boot RHL5.1.

Even with the LILO problem dealt with, RHL5.1
seemed to only be able to use CHS mode to address the
disk and thus was limited to the first 8.5G of the disk.
After installation and updates, it seems to be able to
use LBA addressing (thus supporting disks up to 137G).
Making my way through a twisty maze of fdisk and
hdparm seemed unrewarding so I did not resolve all of
these mysteries.

RHL5.1 and CentOS5.1 cannot share swap partitions.
RHL5.1 uses an older form of swapfile that is limited to
127M. From the standpoint of 2008, that limit is hard to
believe.

To install CentOS5.1, I had to set up a PXE booting
environment, something that I had never done before.
This was made slightly more difficult by the fact that the
documented technique for configuring CentOS5.1 as a
boot server is to use the system-config-netboot package
which turns out not to exist.

CentOS5.1 installed quite uneventfully, if slowly. The
subsequent update process took an unreasonably long
time. This seems to be a well-known problem even on
current machines.

Lessons learned:

• It is possible to find hardware supported by distri-
butions separated by a decade.

• Grub is a lot friendlier than LILO.

• The historical path of increasing disk size is littered
with awkward limitations.

4 Experience with RHL5.1

In order to get current experience with RHL5.1, I at-
tempted to use it to prepare this paper. This does not
constitute a comprehensive survey but it was instructive.

Overall, I found using RHL5.1 was quite easy and effec-
tive. This depends on what the user is used to: someone
habituated to current desktops would be much less com-
fortable. But even for me, the devil is in the details.
What follows is a catalogue of issues.

RHL5.1 cannot be expected to support modern hard-
ware. After all, the last changes to it were made in 1999
and they were just bug fixes. I used hardware from 1999
and found that worked.

The X desktop looks quite crude by current standards. It
is based around FVWM. Looks don’t matter very much.
I didn’t use the X desktop much, preferring to login from
another desktop. That is mostly a reflection of the layout
of my lab.

There is no SSH included in RHL5.1. I’ve grown very
accustomed to its convenience and security so I missed
it.

2008 Linux Symposium, Volume Two • 159

I tried to build a current version of OpenSSH on
RHL5.1. I could have gone looking for a version of
SSH’s SSH (what I used in 1998) but I didn’t really want
to miss the years of bug fixes and other improvements.

I gave up on building OpenSSH because it demanded a
newer version of Zlib and the addition of OpenSSL. It
looked as if a cascade of backports would be required.
This kind of barrier is probably typical when trying to
backport current programs.

rlogin(1) worked. I hope that the security issues are
not critical on my LAN. Unencrypted NFS is likely to
be a juicier target.

JOVE is a text editor that I’ve used on UNIX-like sys-
tems for about 25 years. It has changed very little be-
tween the release of RHL5.1 and now. I built it on each
system. CentOS5.1 was easy because the tarball in-
cludes a suitable .spec file for rpmbuild. For RHL5.1
a little work was required. The .spec file had com-
ments that said how to change compile-time options
to match RHL5.1 (mostly to do with POSIX confor-
mance). One surprise was that RPM’s macro processing
seems to handle quoting differently—adjusting to that
required an experimental approach.

The experience building JOVE would suggest that it
isn’t hard to make a program that can build in both envi-
ronments. I don’t think that this is accurate. JOVE had
at least two advantages over most programs: it had been
run on both systems before (albeit separated by many
years), and its rate of change in that period has been
very slow.

Building this paper using the OLS configuration did
not work on RHL5.1. It failed with an unknown flag
to latex: -interaction=nonstopmode. Even
xdvi failed (missing fonts) on the .dvi file created by
CentOS5.1. Being new to the LATEX world, I decided not
to attempt a work-around.1

The standard web browser is Netscape Communicator
4.08. Out of the box, the web pages I tried were blank or
were missing a large part of their content (slashdot.org,
google.ca). It turned out that turning off javascript
helped considerably. The pages looked wrong or crude
but the content was there. I had a look at some Gopher

1Ed. Note: Workarounds would have failed due to requirements
on a newer geometry.sty and other packages. —Formatting
Team

sites and they seemed fine. I would not like being lim-
ited to this browser these days.

In order to share files between the RHL5.1 and
CentOS5.1 installations on the same machine, I tried
to have each mount the others partition. CentOS5.1
could mount the RHL5.1 ext2 partition but RHL5.1
could not mount the CentOS5.1 ext3 partition,
even though ext3, when properly unmounted, is
supposed to be compatible with ext2. Mount’s di-
agnostic was the infuriating “wrong fs type, bad
option, bad superblock on /dev/hda5 or too many
mounted file systems.” dmesg(8) showed the
more specific EXT2-FS:03:05: couldn’t
mount because of unsupported optional
features.

To solve the file sharing problem, I made a partition on
another computer available via NFS. This worked well
for both distributions.

5 Size of Programs

The two distributions share a lot of programs. How has
their size changed?

I looked at all binary programs in /bin, /usr/bin,
/sbin, and /usr/sbin. Symlinks were ignored but
each hard link was counted. There were 1174 in RHL5.1
and 2413 in CentOS5.1. Of these, 655 were common to
both (by name).

This attrition rate seems surprisingly high: 44% per-
cent of the commands of RHL5.1 did not make it to
CentOS5.1. A large number are probably explained
by the fact that I did a “kitchen sink” installation of
RHL5.1. Many of the programs that disappeared might
have been short-lived marginal programs.

As reported by size(1), the cumulative text space
used by programs that were common to the two distribu-
tions has gone up by a factor of 2.7. Similarly, the size
of data went up by 1.6 and BSS by 2.2.

Perhaps the programs found in /bin are in some sense
more fundamental. Did they grow at a different rate?
For programs found on both distributions and in /bin
in either one of them, I find similar figures: a factor of
2.6 for text, 3.0 for data, and 1.4 for BSS.

I was surprised to find that for programs found in
/sbin in either distribution, the growth was much

160 • Red Hat Linux 5.1 vs. CentOS 5.1: ten years of change

higher: a factor of 5.3 for text, 2.6 for data, and 5.3 for
BSS.

bash(1) is an important program, so it is worth look-
ing at by itself. Text has grown by a factor of 2.1, data
by 1.04, and BSS by 3.08. These figures are consistent
with our cumulative ones.

I installed JOVE on both distributions. The text grew by
a factor of 1.13; data and bss changed insignificantly.
This was true whether the CentOS5.1 installation ex-
ploited the new POSIX capabilities or was configured
identically to the RHL5.1 version.

This table shows programs whose text size shrank or
grew by a factor larger than 10. rmt is included twice
because RHL5.1 has two different versions.

Program RHL CentOS Factor
gs 646943 3928 0.00607163
python 267795 2024 0.00755802
perl 419638 10186 0.0242733
symlinks 88660 6199 0.0699188
chroot 1377 14039 10.1954
tac 7802 82939 10.6305
repquota 5392 61268 11.3628
smbd 323322 4126046 12.7614
automount 14108 204301 14.4812
usleep 1495 22652 15.1518
mailstats 4113 63414 15.4179
warnquota 4347 70036 16.1113
smbpasswd 131262 2256936 17.1941
quotaon 3506 64400 18.3685
restore 53855 1040290 19.3165
praliases 2804 78458 27.9807
dump 33775 1101649 32.6173
rmt 4841 465708 96.2008
rmt 4296 465708 108.405
makedb 6136 815640 132.927

Each program that shrank did so because code moved
to dynamic libraries and hence was not counted. In the
case of symlinks(8), the RHL5.1 version was stati-
cally linked for some reason.

Excluding these programs made only a modest change
to the ratios: the text factor became 2.4, the data factor
1.7, and the BSS factor 2.1.

Almost every program uses libc. It has grown by a factor
of two:

text data bss
591554 25728 48964

1282529 10072 11352

It seems as if there is a real expansion in the size of bina-
ries but it is quite modest compared with the concurrent
growth in hardware capacity.

As a point of comparison, I applied the same scripts
to compare binary commands on CentOS5.1 i386 and
x86_64. Of course there were many more commands in
common. The cumulative text size went up by a factor
of 1.24, the data size went up by a factor of 1.62, and the
bss size went up by 1.07. I was surprised that the text of
/usb/bin/mbchk was 139 times larger on x86_64.
On the other hand gedit shrank by a factor of .40. In
both cases the package versions were the same.

The RHL5.1 CD contains 528 packages taking up
298568 blocks. The CentOS5.1 DVD contains 2401
packages taking up 3570804 blocks. That is 4.5 times
as many packages and 12 times as many blocks.

6 Functionality: the Qualitative Difference

Not only has hardware capability increased over the ten
years, but open source developers have been working
hard to exploit it. Here’s a subjective list of important
additions:

• Desktop integration, primarily GNOME and KDE.
Or choose your own.

• Open Office

• support for a large portion of the proliferation of
I/O devices and ways of connecting them (USB,
FireWire, SATA, . . .).

• scalable support for multiple processors

• scalable support for large memories and disk drives

• support for new architectures (although processor
diversity on the desktop has gone down)

• complex and powerful tools for building internet
services

• support for various media such as video (seriously
constrained by patents). Official MP3 support has
been dropped.

2008 Linux Symposium, Volume Two • 161

• Asterisk for telephony (not part of CentOS5.1, but
available)

• MythTV for PVR replacement and much more (not
part of CentOS5.1 but available)

• significant shift to higher level but less efficient lan-
guages such as Perl, Python, and Ruby.

• improved support for UNICODE (which itself has
improved). But mention of support for Klingon has
been dropped from the unicode(7) manpage.

7 Security or Don’t try this at home

Best practices for security have changed quite a bit since
RHL5.1 was released. ssh has replaced rlogin. Firewalls
can be configured during installation. Servers are gener-
ally not installed listening to the internet. A system has
evolved to publish security holes and patches for them
in a timely fashion.

RHL5.1 did have ipfwadm(8) for implementing a
firewall, but no canned configuration or easy-to-use con-
figuration tool. Building a firewall out of this involved
fairly arcane knowledge.

rlogin(1)was “kerberized” so its authentication was
reasonable. It doesn’t seem to pay attention to ~/
.rhosts by default. But the traffic is still passed in
the clear.

Wietse Venema’s TCP Wrappers is included and used.

There have been almost ten years of work discovering
holes in the software without any patches for RHL5.1
(of course this isn’t negligent: the intended fix is to
move to a newer release). Maybe the holes are so ob-
solete that current attackers don’t know of them or think
of using them. But I would not count on that.

8 Bit Rot

My RHL5.1 disks were commercially pressed by Red
Hat, Inc. They still work well. But when I went back in
my archives to find the errata for RHL5.1, I found that a
number of my burned CDRs had become damaged.

I stored the CDRs in paper envelopes with plastic win-
dows. This was much more compact than storing them

in jewel cases. Unfortunately the plastic widows de-
teriorated and began to stick to the label side of the
disks. When I tried to remove the debris from a disk,
it seemed as if the disk partially delaminated. I’ve put
off attempted recovery until another day.

On the other hand, I have not been able to find .iso
images for RHL5.1 on the internet. The errata are still
available, but have been relocated. This is explained
in a note on http://www.redhat.com/security/

updates/eol/, at least for now.

It is unlikely that a store would stock a box of RHL5.1.
Software does not seem to be like books in this regard.
In fact, the legal regime for most commercial software
makes used software stores legally suspect.

All this may seem inconsequential. But the problem is
only going to get worse as time passes and yet there
might be more interest in RHL5.1 in some years. This
seems to be how antiques become so valuable: the ob-
jects must pass through a valley of interest during which
most are lost, broken, or discarded. Mundane objects
are the most subject to this attrition.

I touched on other types of bit-rot earlier: the difficulty
in porting code back, dealing with the cumulative grad-
ual (and not so gradual) changes to libraries and other
requisites; the difficulty in running old operating sys-
tems on new hardware. At some point, genetic drift
is sufficient for the systems to be considered different
species.

The cure for bit rot is constant maintenance. It isn’t clear
who would find it worthwhile to perform this mainte-
nance on RHL5.1.

9 The Structure of Growth

The subject of how systems grow is deep and interest-
ing. You will have to look elsewhere for a thorough
treatment. I commend Stewart Brand’s book [3] on how
buildings change as one place to look.

The skeleton of Linux is traditional UNIX [4], as elabo-
rated by POSIX standards [2] [1]. Like a skeleton, these
parts don’t change very quickly. Most critically, little is
removed from their interfaces since they are the bedrock
on which other parts of the system are built.

This means that most programs from the RHL5.1 era
should be easily moved to CentOS5.1.

162 • Red Hat Linux 5.1 vs. CentOS 5.1: ten years of change

One exception is that several programming language im-
plementations have become more restrictive about what
a proper program is. For example, many C programs
need to be cleaned up to compile on current systems.

Some of the recent additions to Linux may turn out to
be as important and (one hopes) long-lived and stable.
HAL is an example. Various object models seem as im-
portant but not as convincingly right.

I expect that the vast majority of new packages in
CentOS5.1 are not skeletal, and that is a good thing.
That means they may well come and go without seri-
ously disrupting other packages. This hypothesis should
be investigated.

10 Observations

Since the code base for RHL5.1 has suffered serious bit
rot, it seems unlikely that there are remaining practical
applications for it.

The fact that RHL5.1 is strongly related to CentOS5.1,
and yet so much smaller, suggests that it might be possi-
ble to subset the CentOS5.1 codebase to produce a mod-
ern lightweight system. A key advantage would be that
the burden of maintaining the packages would be widely
shared.

I would imagine that this approach would fit better with
a project like Debian because it is directed by a diverse
community of developers and not one coherent corpo-
rate strategy.

Understanding the trajectory from RHL5.1 to
CentOS5.1 may help us prepare for the trajectory
of the next ten years.

One thing that I have not observed is significant removal
of complexity. It would be wonderful if that were pos-
sible, but it seems to violate some law of software ther-
modynamics. It seems to require starting over, and that
seems too expensive for most situations.

References

[1] American National Standards Institute. IEEE
standard for information technology: Portable
Operating System Interface (POSIX) : part 2, shell
and utilities. IEEE Computer Society Press, 1109
Spring Street, Suite 300, Silver Spring, MD 20910,
USA, September 1993.

[2] American National Standards Institute. IEEE
standard for information technology: Portable
Operating Sytem Interface (POSIX). Part 1, system
application program interface (API) — amendment
1 — realtime extension [C language]. IEEE
Computer Society Press, 1109 Spring Street, Suite
300, Silver Spring, MD 20910, USA, 1994.

[3] Stewart Brand. How Buildings Learn: What
Happens After They’re Built. Penguin, 1995.

[4] Dennis W. Ritchie and Ken Thompson. The UNIX
time-sharing system. Communications of the
Association for Computing Machinery,
17(7):365–375, July 1974.

Measuring DCCP for Linux against TCP and UDP
With Wireless Mobile Devices

Leandro Melo de Sales, Hyggo Oliveira, Angelo Perkusich
Embedded Systems and Pervasive Computing Lab

{leandro,hyggo,perkusic}@embedded.ufcg.edu.br

Arnaldo Carvalho de Melo
Red Hat, Inc.

acme@redhat.com

Abstract

Multimedia applications are very popular in the Inter-
net. The use of UDP in most of them may result in
network collapse due to the lack of congestion con-
trol. To solve this problem, a promissing protocol is
DCCP. DCCP1 is a new protocol to deliver multimedia
congestion-controlled unreliable datagrams.

This paper presents experimental results for DCCP in
the Linux kernel while competing with TCP and UDP.
DCCP behaves better than UDP, while it is fair with re-
spect to TCP. The goal in this work is to help develop-
ers choose the proper protocol to use, as well as dis-
seminate the DCCP Linux project. It was used with
four Nokia N800s, three WLAN access points, and one
router to emulate congestion. Some parameters were
evaluated: throughput, loss/delay, and effects of hand-
offs performed by mobile hosts.

1 Introduction

With the rapid growth in popularity of wireless data ser-
vices and the increasing demand for wireless connectiv-
ity, Wireless Local Area Networks (WLANs) have be-
come more widespread and are making their way into
commercial and public areas. They are available in al-
most everywhere including business, office and home
deployments. WLANs based on the IEEE 802.11 stan-
dards enjoy high popularity due to setup simplicity,
increased deployment flexibility, unlicensed frequency
band, low cost and connectivity with minimal infrastruc-
ture changes. Lately, the need for Real Time (RT) mul-
timedia services over WLANs have been dramatically
increased, including Voice over IP (VoIP), audio/video
(AV) streaming, Internet video conference, IPTV, enter-
tainment and gaming, and so forth.

1Datagram Congestion Control Protocol

In this scenario, companies are adopting this technology
to easily connect devices and offer new mobile services.
The main reasons for this growth are:

1. the improvements on the quality of wireless trans-
missions;

2. the provision of security mechanisms to safely
transmit application data, thus increasing the num-
ber of available services;

3. users can walk and still have their devices
connected—this can contribute to the new era of
mobile services;

4. efficient and seamless connection to a wireless net-
work, reducing the time for network setup and the
necessity of any kind of cable;

5. the increasing number of low-cost mobile
devices—allowing home users to have access to
the world of wireless Internet access; and

6. everytime/everywhere computing, enabling Inter-
net access in public spaces.

Based on this visible growth, multimedia applications
receive special attention due to the popularization of
high-speed residential Internet access and wireless con-
nections, considering also new standards such as IEEE
802.16 (WiMax). This enables network applications
that transmit and receive multimedia contents through
the Internet to become feasible once developers and in-
dustry invest money and software development efforts
in this area. They are developing specialized multime-
dia applications based on technologies such as Voice
over IP (e.g., Skype, GoogleTalk, Gizmo), Internet Ra-
dio (e.g., SHOUTcast, Rhapsody), online games (e.g.,
Half Life, World of Warcraft), video conferencing, and
others; these have also become popular in the context

• 163 •

164 • Measuring DCCP for Linux against TCP and UDP With Wireless Mobile Devices

of mobile computing. These applications offer sophis-
ticated solutions that can approximate a face-to-face di-
alog for people, although they can be physically sep-
arated by hundreds or thousands of kilometers in dis-
tance.

There are at least three reasons for the growth of the
popularity on the usage of mobile multimedia appli-
cations. First, the availability of new development li-
braries for mobile multimedia applications focusing on
data processing optimizations. Second, the availability
of smaller mobile devices with higher processing power
and data storage capacities. And third, the necessity of
people to communicate considering cost and benefits.
For instance, VoIP applications can, at least, halve the
original costs of a voice call when compared to tradi-
tional means.

For these types of applications, non-functional require-
ments such as end-to-end delay (latency) and the varia-
tion of the delay (jitter) must be taken into account. Usu-
ally multimedia applications use TCP and UDP as their
transport protocol, but they may present many draw-
backs regarding these non-functional requirements, and
hence decrease the quality of the multimedia content be-
ing transmitted. In order to deal with those types of re-
quirements, IETF standardized the Datagram Conges-
tion Control Protocol (DCCP) [4], which appears as an
alternative to transport congestion controlled flows of
multimedia data, mainly for those applications focusing
on the Internet.

In this article we present the results of an experimental
evaluation using TCP, UDP, and DCCP to transmit mul-
timedia data over a test bed 802.11g wireless network,
considering wireless mobile scenarios. In these scenar-
ios, several parameters were evaluated, such as through-
put, packet loss, jitter, and the execution of hand-off.
Hand-off is a process of transferring a wireless connec-
tion in progress from one access point to another without
interrupting the data transmission.

The remainder of this article is organized as follows: in
Section 2, an overview of some characteristics available
in the DCCP protocol is presented. In Section 3, the
methods used to evaluate the experiments are explained.
Results of the experiments are discussed in Section 4.
Finally, we present conclusions and future works in Sec-
tion 5.

2 Overview and Background

DCCP [4] was first introduced by Kohler et al. in July,
2001, at the IETF transport group. It provides spe-
cific features designed to fulfill the gap between TCP
and UDP protocols for multimedia application require-
ments. It provides a connection-oriented transport layer
for congestion-controlled but unreliable data transmis-
sion. In addition, DCCP provides a framework that en-
ables addition of a new congestion control mechanism,
which may be used and specified during the connec-
tion handshake, or even negotiated in an already estab-
lished connection. DCCP also provides a mechanism to
get connection statistics, which contain useful informa-
tion about packet loss, a congestion control mechanism
with Explicit Congestion Notification (ECN) support,
and Path Maximum Transmission Unit (PMTU) discov-
ery.

From TCP, DCCP implements the connection-oriented
and congestion-controlled features, and from UDP,
DCCP provides an unreliable data transmission. The
main reasons to specify a connection-oriented protocol
is to facilitate the implementation of congestion control
algorithms and enable firewall traversal, a UDP limita-
tion that motivated network researchers to specify the
STUN [10] (Simple Traversal of UDP through NATs
(Network Address Translation)). STUN is a mechanism
that helps UDP applications to work over firewalled net-
works. An important feature of DCCP is the modular
congestion control framework. The congestion control
framework was designed to allow extending the con-
gestion control mechanism, as well as to load and un-
load new congestion control algorithms based on the
application requirements. All of these operations can
be performed before the connection setup or during an
already-established connection through the feature ne-
gotiation mechanism [4]. Each congestion control algo-
rithm has an identifier called Congestion Control Iden-
tifier (CCID).

Considering motivations to design a new protocol, one
of them is the way in which TCP provides conges-
tion control and reliable data transfer. When loss of
packets occurs, TCP decreases its transmission rate and
increases the transmission rate again when it success-
fully sends data packets. To implement a reliable data
transfer, when TCP losses packets, it retransmits them.
In this case, new data generated by the application is
queued until all lost packets have been sent. Because

2008 Linux Symposium, Volume Two • 165

of this way of implementing reliable data transfer, using
TCP may lead to a high level of flow delay. As a con-
sequence, the user may experience interruptions in the
multimedia content being transmitted. In addition, the
TCP congestion control mechanism limits the transmis-
sion rate for a given connection. This means that TCP is
fair with respect to other TCP flows and can be fair with
other congestion controlled flows, such as those trans-
mitted by DCCP. These characteristics of TCP make it
proper for those applications that require reliable data
transfers, such as web browsers, instant messengers, e-
mail, file sharing, and so forth.

On the other hand, UDP is a very simple protocol work-
ing on top of the best-effort IP protocol, implementing
minimal functions to transport data from one computer
to another. It provides a connectionless service and it
does not care about data packets’ delivery, nor about net-
work congestion control. In addition, it does not provide
packet reordering on the receiver end, if taking into ac-
count the original ordering of packets transmitted by the
sender. Due to the lack of any type of congestion con-
trol, UDP may lead to a network congestion collapse,
where TCP-based applications may also become unus-
able. Hence, a UDP application can send data as much
as it can, but much of that data may be lost or discarded
by the routers due to network congestion. Some exam-
ples of UDP applications are VoIP applications, video-
conferencing, and Internet radio.

When developing multimedia applications using TCP as
the transport protocol, end users may experience high
streaming delays due to high packet retransmission rates
caused by network congestion. On the other hand, the
use of UDP may lead to a network collapse or bad
streaming quality, since UDP does not provide any kind
of congestion control. The new option is DCCP, which
combines the good features of each protocol to provide
better quality for multimedia data streaming, as well as
to share network bandwidth with TCP.

2.1 DCCP Congestion Control Identifiers

Nowadays, DCCP provides two CCIDs already stan-
dardized: the TCP-Like Congestion Control (or CCID-
2) [5] and the TCP-Friendly Rate Control (or CCID-
3) [6]. The goal behind this feature is to provide a way
to control the flow of packets according to the type of
data being transmitted. A CCID may be used at any
time of a DCCP connection, and it is possible to have

one CCID running in one direction, and other in the op-
posite direction. The flexibility on the CCID usage is
important because the transmitted multimedia flow may
present different characteristics. For example, a VoIP
flow is characterized by a burst of small packets—when
one interlocutor says something—between periods of
silence—when this interlocutor stops talking and waits
the other peer to talk. Another example is the Video-
on-Demand traffic characteristic, which is smoothly and
generally based on a Constant Bit Rate (CBR).

Thus, considering different types of multimedia appli-
cations, DCCP designers defined the congestion control
framework for supporting the addition of new conges-
tion control algorithms, as well as the deletion of them
regardless of the core of the protocol. In addition to
the initial standardized CCIDs, the DCCP IETF is spec-
ifying the CCID-4 [7], which is a new congestion con-
trol algorithm for DCCP to be used by applications that
transmit small packets of data in a short period, such as
VoIP applications.

TCP-Like Congestion Control

CCID-2 [5] is based on window flow control and resem-
bles TCP congestion control. When a host receives a
DCCP packet, it sends an ACK back to the sender. Af-
ter receiving that packet, the sender adjusts the window
size and the expiration time. The CCID-2 algorithm
is based on the AIMD [1] algorithm for window-based
flow control. Similarly TCP, the window size used in
the algorithm is given as the congestion window size
(cwsize), which is equal to the maximum number of
in-transit packets allowed in the network at any time.

The sending host itself adjusts cwsize through conges-
tion estimation according to the sequence of the ACK
packet received. In this way, the cwsize is increased
by one packet in the following cases:

1. every acknowledged packet arrives in a slow-start
phase, and

2. every window of data is acknowledged without lost
packets in a congestion-avoidance phase.

On the other hand, the cwsize is halved when the
sender can infer that loss of packets occurs due to du-
plicate acknowledgments, which is equivalent to TCP.

166 • Measuring DCCP for Linux against TCP and UDP With Wireless Mobile Devices

If an ACK packet does not arrive at the sender before
the timeout timer expires (i.e., when an entire window
of packets is lost), the sender sets cwsize to one. The
CCID-2 is proper for applications that want to use as
much bandwidth as possible and are able to adapt to sud-
den changes in the available bandwidth [2, 8].

TCP-Friendly Rate Control TFRC

The CCID-3 [5] implements a receiver-based conges-
tion control algorithm where the sender is rate-limited
by packets sent by the receiver with information such
as receive rate, loss intervals, and the time packets are
kept in queues before being acknowledged. This CCID
is intended for applications that smoothly support rate
changes. Since the changes are not abrupt, it responds
more slowly than TCP or TCP-like congestion controls.

The transmission rate is changed by varying the num-
ber of packets sent and is not suitable for applications
that prefer variation in the sending rate by changing the
packet size. In the CCID-3 implementation, the sending
rate is computed by analyzing the loss event rate based
on a throughput equation named TFRC Equation [5].
It supports Explicit Congestion Notification (ECN) and,
to verify whether the receiver reported an accurate loss
event, it also reports the ECN Nonce Sum [5] for all
packets reported as received.

2.2 Summary of TCP, UDP and DCCP features

According to Table 1, which shows a comparison be-
tween the features of TCP, UDP, and DCCP, one may
observe that DCCP is different from TCP in four points
that are highlighted in bold. The first of them is the
size of the header of each packet, which varies depend-
ing on the value of the X field presented in the header.
The X field represents the Extended Sequence Number.
If it is equals 0, the length of the packet is 12 bytes;
if X is equal to 1, the length of the packet is 16 bytes.
The second item is conceptual: while TCP sends seg-
ments, DCCP sends datagrams. The third difference
between TCP and DCCP is that DCCP does not guar-
antee the delivery of data transmitted, except when the
data transmitted is related to a feature negotiation pro-
vided by DCCP. The last difference is that DCCP does
not guarantee packet reordering, even though it uses a
sequence number in the packet header.

3 Methods and Experiments

In this section we describe two scenarios used to per-
form the experiments using the DCCP protocol, pre-
senting the parameters and methods adopted to obtain
the data for each metric collected during the experi-
ments, such as instantaneous throughput and latency.
We use a statistical method based on the probability the-
ory [3] to calculate how many times it is necessary to
repeat a given experiment to obtain an acceptable con-
fidence level for each collected metric. In this work, it
was considered 95% for the confidence level. By using
this mechanism, it is possible to compare each protocol
in terms of its respective performance while competing
with each other.

The network topology used to execute the experiments
was an 802.11g wireless network composed of both
computers and Internet Tablets, in this case, Nokia
N800. The experiments also examined the execution
of hand-offs, where the internet tablets performed hand-
offs at the link level of the 802.11g wireless network
during data transmission. After explaining the general
considerations adopted in the experiments, the network
topology is presented.

3.1 General Considerations

The DCCP implementation used to run the experiments
is available in the Linux kernel version 2.6.25, which
can be obtained from the DCCP development git tree.
Because the version of the Linux kernel for the Inter-
net Tablets was 2.6.21, we backported the DCCP imple-
mentation from Linux kernel version 2.6.25 to version
2.6.21. Therefore, all the devices used in the experi-
ments had the same DCCP implementation.

To generate TCP, UDP, and DCCP data flows, IPerf was
used; it provides statistical reports about the connec-
tion during data transmissions. This includes statistics
about packets lost and received, jitter, and throughput
for a given instant. We defined the scenarios of experi-
ments, which mean specifying values for IPerf parame-
ters and the devices to be used in each experiment con-
sidering confronts between two given protocols (TCP×
UDP, TCP × DCCP, and UDP × DCCP). Experiments
with packet sizes of 512 bytes and 1424 bytes were per-
formed. In this case, the idea was to verify whether
varying the packet size would produce any impact on
the protocol performance, since varying the packet size

2008 Linux Symposium, Volume Two • 167

Table 1: Comparison of TCP, UDP and DCCP features

Feature UDP TCP DCCP
Packet size 8 bytes 20 bytes 12 or 16 bytes
Transport layer packet entity Datagram Segment Datagram
Port numbering Yes Yes Yes
Error detection Optional Yes Yes
Reliability: Error recovery by ARQ No Yes No
Sequence numbering and reordering No Yes Yes/No
Flow control No Yes Yes
Congestion Control No Yes Yes
ECN support No Yes Yes

during the transmission may lead to fragmentation of
packets in the IP layer. If this is the case, it may affect
the multimedia data quality being transmitted. Varying
the packet size during the multimedia data streaming is
one of the well-known techniques adopted by multime-
dia applications to adapt the quality of the flow in re-
sponse to network congestion.

Regarding congestion control algorithms for TCP and
DCCP, Reno, Cubic, and Veno were used for TCP; and
for DCCP, CCID-2 and CCID-3 were used. The device
used in the experiments was the Nokia N800, with an
ARM 330 MHz processor, 128 MB and a Texas Instru-
ments wireless network interface.

3.2 Network Topology

The goal was to study the performance of TCP, UDP,
and DCCP when running on resource-limited devices,
considering processor and memory capacities. An im-
portant point was to analyze the behavior of the proto-
cols studied when the user application performs hand-
offs between two consecutive 802.11g wireless access
points. In this case, two Internet Tablets working as
clients performed hand-offs, while the other two worked
as servers and did not perform hand-offs. The execution
time for each of the experiments was 300 s, where the
hand-offs were performed in 100 s and 200 s.

The network topology defined for this scenario is shown
in Figure 1. In this case we used three Internet Tablets
to transmit two UDP or DCCP flows—each flow in one
Internet Tablet—and the third one was used to transmit
one TCP flow. In practice, this means two multimedia
flows using UDP or DCCP (audio and video) against a
data-oriented application such as HTTP.

3.3 Parameters for the Experiments

Four parameters were considered for the experiments:
protocol confront; packet size; congestion control al-
gorithm; and the existence of hand-offs. As discussed
before, to transmit data in any scenario of a given ex-
periment, the protocols were combined between them
two-by-two. In Table 2, the quantity of flows transmit-
ted during the experiments for each protocol is shown,
according to each confront. The goal to define these
confronts is to analyze the fairness among the three pro-
tocols in terms of network bandwidth usage.

For each scenario, the packet size was varied. For each
confront of the protocols, the experiments were per-
formed with different packet sizes, either 512 bytes or
1424 bytes. The goal for variation is to analyze whether
the transmitted packet size impacts the performance of
the studied protocols. As discussed before, some appli-
cations perform adaptation in the quality of the flow be-
ing transmitted as a response to the network congestion.
To perform this task, codecs that support such a feature
are called VBR, which varies the bit rate for each gener-
ated packet—or for a small set of continuous packets—
according to the multimedia content being transmitted,
which dynamically changes the packet size during data
transmission.

Varying the congestion control algorithm allows the per-
formance analysis of each congestion control algorithm
during data transmission. Besides, fairness with respect
to the network bandwidth usage can be evaluated. Also,
by varying this parameter, is possible to study the behav-
ior of each protocol when network congestion occurs.

The last parameter taken into account is the existence or

168 • Measuring DCCP for Linux against TCP and UDP With Wireless Mobile Devices

Figure 1: Network topology for the experiments.

Confronts TCP flow UDP flows DCCP flows
1 TCP × UDP 1 2 0
2 TCP × DCCP 1 0 2
3 UDP × DCCP 0 2 1

Table 2: Number of flows used in each protocols confronts

not of hand-offs. Two of the four Internet Tablets per-
formed hand-offs. It is known that during hand-off there
are packet losses, but some congestion control algo-
rithms mistake these losses as congestion, such as TCP
Reno and the DCCP CCID-2. When a packet is lost,
these algorithms assume congestion on the network and
wrongly react by decreasing the allowed sending rate of
the connection, but theses losses are temporary—they
only occur during the hand-off. The goal in this case
is to study the behavior of the congestion control algo-
rithms in the existence of hand-off.

3.4 Collected Metrics and Derived Metrics

For all executed experiments, a TCP flow was first trans-
mitted, and after 20 s, the other flows were started. By
executing the experiments in this way, it was possible to
evaluate how fair the protocols are with each other when
new flows are introduced in the network. This enables
analyzing whether any of them can impact the perfor-
mance of the other—mainly whether DCCP and UDP
impact the performance of TCP. In addition, the idea is
to look for the most suitable TCP and DCCP congestion
control algorithms to transmit multimedia data over the
network.

To reach all of these goals, a set of metric values was
collected for the flows transmitted during the experi-
ments. The metrics were the throughput, packet loss,
and latency. Considering these metrics, it is possible to

obtain other two metrics: jitter and the rate of how many
packets reached the receiver, which can be obtained
from the quantity of transmitted packets. Through la-
tency, it is possible to calculate jitter for a given in-
stant; from throughput and the quantity of lost pack-
ets, it is possible to obtain the effective amount of data
transmitted—how much data effectively reached the re-
ceiver.

3.5 Obtaining Throughput, Jitter and the Amount
of Data Lost and Transmitted

The mean throughput and the amount of data transmit-
ted for TCP was obtained through the average of the
means in each repetition r of a given experiment. This
is shown in Equations 1 and 2, where n is the total of
repetitions.

µthoughput_tcp = ∑
n
r=1 throughput_meanr

n
(1)

µload_tcp = ∑
n
r=1 load_meanr

n
(2)

However, to obtain the means for the UDP and DCCP
throughput and amount of data transmitted, the proce-
dure was different. Considering that two UDP/DCCP
flows have been transmitted—taken regardless—against
a TCP flow, and considering also that the UDP/DCCP

2008 Linux Symposium, Volume Two • 169

flows started only 20 s after the TCP flow started, it was
necessary to define a mechanism that does not penalize
both protocols in a confront. In this case the calculation
of the means would not be an arithmetic average of the
sum of the throughput and the amount of data transmit-
ted by the two UDP/DCCP flows. Instead, it should be
the mean throughput and the mean amount of data trans-
mitted of each flow. This observation is represented in
Equation 3, where each thoughput_meanr of this equa-
tion can be obtained from Equation 4.

µpartial_throughput(ud p/dccp) = ∑
n
r=1 thoughput_meanr

n
(3)

thoughput_meanr = ∑
F
k=1 thoughput_mean_flowk

F
(4)

Based on the same assumptions presented before, in
Equation 4, the term thoughput_mean_flowk is obtained
through the arithmetic means of the throughput in each
instant (per second) of the experiment. Therefore, the fi-
nal value for the throughput for a given transmitted flow
(connection) of UDP and DCCP can be obtained from
Equation 5.

µ f inal_throughput(ud p/dccp) =µpartial_throughput(ud p/dccp)+

S× (
µpartial_throughput(ud p/dccp)

T
)

(5)

where F is the number of flows, FUDP = FDCCP = 2 for
TCP × UDP/DCCP and FDCCP = 1 for UDP × DCCP;
S, is the await time to start the UDP or DCCP flows
(S = 20s); and T , is the total time of the experiments
(T = 100s without hand-offs or T = 300s with hand-
off).

The means were normalized according to Equation 5,
to avoid penalizing the protocols in the terms discussed
before.

In a similar way the latency and effective amount of
data transmitted can be obtained. Note that for UDP ×
DCCP confronts, the term FDCCP is equal to 1. In these
cases the throughput and amount of data transmitted are
obtained through Equations 1 and 2, respectively.

Jitter

The calculation to obtain the mean jitter for a transmit-
ted flow is very similar to the calculation of the mean
throughput. The value for the jitter can be obtained
through Equation 8 and it can be obtained as follows:

µpartial_jitter(udp/dccp) = ∑
n
r=1 jitter_meanr

n
(6)

and,

jitter_meanr =
∑

F
k=1(

∑
QI
k=1 VAk

QI)

F
(7)

then,

µfinal_jitter(udp/dccp) =µpartial_jitter(udp/dccp)+

S× (
µpartial_jitter(udp/dccp)

T
)

(8)

where: F is the number of flows used in the experi-
ments, FUDP = FDCCP = 2 for TCP × UDP/DCCP and
FDCCP = 1 for UDP × DCCP, QI, is the quantity of in-
tervals (QI = T − 1) for two consecutives read of col-
lected data, VA, is the variation of the delay between
packets of the same flow, for instance time1 = 10ms and
time2 = 11ms, VA = 1ms, T , is the total time of the ex-
periments (T = 100s without hand-off or T = 300s with
hand-off).

3.6 Statistic Methodology for the Final Calculation
of the Collected Metrics

The results presented in this work—for instance, to de-
termine what protocol performed better than the other
in terms of bandwidth usage—were based on samples
of data collected while performing the experiments. The
methodology adopted was based on the concepts of con-
fidence interval [3], considering ρ = 95% (confidence
level) and therefore α = 5% (significance level, or er-
ror).

170 • Measuring DCCP for Linux against TCP and UDP With Wireless Mobile Devices

Determining the Confidence Interval for ρ = 95%

The principle for the confidence interval is based on the
fact that it is impossible to determine a perfect mean
µ for a infinite population of N samples, considering a
finite number n of samples {x1, ...,xn}. However, it is
possible to determine in a probabilistic way an interval
where µ will belong to this interval, with probability
equals to ρ , and that will be not in this interval with
probability of α .

To determine the minimum value c1 and the maximum
value c2 for this interval, called a confidence interval, it
is considered the probability 1−α , where the µ value
will belong to this interval, for n repetitions of a certain
executed experiment. The Equation 9 summarizes this
consideration.

Probability{c1 ≤ µ ≤ c2}= 1−α (9)

where (c1, c2) is the confidence interval; α is the signif-
icance level, expressed by a fraction and typically close
to zero, for instance, 0.05 or 0.1; (1−α) coefficient of
confidence; and ρ = 100 * (1−α), is the confidence
level, traditionally expressed in percent and closer to
100 %; this work uses 95 %.

From the Central Limit Theorem2 [3], if a set of sam-
ples {x1, ...,xn} is independent, has a mean x̄, and be-
longs to the same population N, with mean µ and stan-
dard deviation σ , then the average of the samples is in
a normal distribution with x̄ = µ and standard deviation
σ/
√

n,x̄' N(µ, σ√
n).

Considering Relation 9 and the Central Limit Theorem,
the confidence interval (c1,c2) for ρ = 95% and α =
0.05 can be obtained as shown in Equation 10.

(µ− z1−α/2×
s√
n

,µ + z1−α/2×
s√
n
) (10)

where µ is the average for n repetition; z1−α/2 is equal to
1.96, this value determines 95 % of confidence level; n is
equal to the number of repetitions; and s is the standard
deviation of the means for n repetitions.

2Central Limit Theorem: the sum of a large number of indepen-
dent and identically-distributed random variables will be approxi-
mately normally distributed if the random variables have a finite
variance.

Regarding the value for z1−α/2, also named quantile, is
based on the Central Limit Theorem and since it is fre-
quently used, it can be found in a table named Quantile
Unit of the Normal Distribution. This table can be found
in the reference [3], Table A.2 of Appendix A. Using the
Relation 11, next it is explained how to determine the
value 1.96 for the term z1−α/2.

z1−α/2 = (1−0.05)/2 = 0.975 (11)

According to the table Quantile Unit of the Normal Dis-
tribution available in reference [3], the corresponding
value for the result of the Equation 11 is 1.96, which is
the value to be used as the variable z of the the Equa-
tion 10.

Therefore, based on the confidence interval of each av-
erage for each metric collected during the experiments
(see Section 3.5), it is possible to perform comparisons
with these values for the defined scenarios of experi-
ments for 95 % of confidence with 5 % of error.

Determining the Value for n to obtain ρ = 95%

The confidence level depends on the quantity of samples
n collected for a certain metric of a given experiment.
Thus, the higher the value of n is, the more precise the
confidence level will be. However, to obtain big samples
requires more effort and time. Therefore, it is important
to define a value for n and avoid repeating a specific
experiment unnecessarily, but maintaining the desired
confidence level ρ = 95%.

To start the process of the experiment performed in this
work, each experiment was repeated 3 times (nbase = 3).
For example, the initial throughput mean of a given
trasmitted flow was obtained from the means obtained
by running the experiment 3 times. This means that
firstly we obtain a high value for the variance, which
is used to determine the real value for n to obtain 95 %
of confidence level.

Based on Equation 10, the confidence interval for a
given value of n samples is defined by Equation 12.

µ± z× s√
n

(12)

2008 Linux Symposium, Volume Two • 171

Thus, for the confidence level of ρ = 95% and α = 0.05,
the confidence interval is determined by Equation 13.

(µ(1−0.05),µ(1+0.05)) (13)

Then, equating the confidence interval specified in Ex-
pression 13 with the confidence interval specified in Ex-
pression 12 (general), Equation 14 is obtained.

µ± z× s√
n

= µ(1±0.05) (14)

Therefore, organizing the expression by isolating the
variable n, each experiment was repeated n times de-
termined in Equation 15, considering a confidence level
ρ = 95%, which implies in z = 1.96 (from Equation 11),
and the 3 initial times of experiment repetition (nbase).
For example, if the value for n is 12 for a given experi-
ment, it was repeated n = n−nbase, which is equal to 9,
and the three first means is also considered for the value
of the final average of a given metric.

n = (
1.96× s
0.05×µ

)2 (15)

4 Results

Using the definitions and methods presented in Sec-
tion 3, in this section the results and discussions about
the experiments are presented according to methods dis-
cussed in Section 3.

The results are organized in two tables considering the
packet size used in the transmission. The results for the
evaluated metrics for transmissions using packets of size
512 bytes are presented in Table 3. The results for trans-
missions using packets of size 1424 bytes are presented
in Table 4.

The values presented in these tables have a 95% confi-
dence level with a 5% margin of error. The confidence
interval is presented immediately below the value for
the corresponding metric. For the UDP and DCCP pro-
tocols the confidence interval for the metric Transmit-
ted / Lost corresponds to the effective load of transmit-
ted data, that is, the subtraction of Transmitted−Lost.
Also, consider that the values presented in the two ta-
bles correspond to the execution of the experiments fol-
lowing the process described in Section 3.1, consider-
ing that: the execution time is 300 s, the instants that

the hand-off was performed were at 100 s and 200 s, the
confront among protocols were TCP × UDP, TCP ×
DCCP, and UDP × DCCP. Also, the congestion con-
trol algorithms for TCP were: Reno, Cubic and Veno,
and for DCCP: CCID-2 and CCID-3. The metrics an-
alyzed were throughput, the amount of transmitted and
lost data, and latency/jitter.

4.1 Discussions about the Experiments

The major point considered in the experiments is related
to:

1. the impact of changing the data packet size on the
performance of the protocol during transmissions;

2. the impact caused in terms of throughput and the
amount of data transmitted and lost when perform-
ing hand-off during data transmission; and

3. the behavior of TCP, UDP, and DCCP in terms of
fairness.

For the first item, there were no considerable changes
in the behavior of the transmitted flow for all protocols
taken regardless, mainly related to the metrics through-
put and jitter. But it is possible to observe changes in the
performance of TCP Reno, Cubic, and Veno algorithms
for TCP × UDP and TCP × DCCP.

For the TCP× UDP test, the amount of transmitted data
using the algorithms TCP Reno, Cubic, and Veno were
not satisfactory if the result of the experiments is di-
vided into two groups: one with experiments using a
packet size of 512 bytes (Table 3) and another with ex-
periments using packet size of 1424 bytes (Table 4). If
the throughput of the TCP and UDP protocols is almost
the same for the two groups of experiments (see lines 1,
2, and 3), we expect to observe that the bigger packet
size is, bigger the amount of transmitted data should be,
considering that there is no packet fragmentation in the
network layer, since the MTU for the 802.11g connec-
tion is 1500 bytes.

On the other hand, there are no changes for TCP ×
DCCP, regardless of the algorithm used. Comparing
the throughput values for the TCP × UDP and TCP
× DCCP confronts presented in Tables 3 and 4, a bal-
ance among these values can be observed. For instance,
in Tables 3 and 4 the mean throughput of TCP Reno

172 • Measuring DCCP for Linux against TCP and UDP With Wireless Mobile Devices

Confronts Throughput (Kbits/s) Transmitted / Lost
(KBytes) Jitter (ms) n

1
TCP Reno 3359,12 123006,72 2,11

11× (3202,15−3516,09) (117258,69−128754,75) (1,72−2,21)

UDP 2956,09 394825,25/293967,67 1,60
(2935,81−2976,36) (100164,37−101550,79) (1,57−1,64)

2
TCP Cubic 3364,12 121855,28 7,51

5× (3232,15−3496,09) (118258,44−125452,12) (6,32−8,7)

UDP 2919,76 419803,17/320187 1,71
(2893,96−2945,57) (98735,37−100496,97) (1,69−1,74)

3
TCP Veno 3121,69 114322,77 4,2

7× (3042,26−3201,13) (111412,94−117232,60) (3,4−5,0)

UDP 3002,75 378833,83/276384,92 1,5
(2994,15−3011,36) (102150,85−102746,97) (1,50−1,54)

4
TCP Reno 3042,90 111433,62 4,8

9× (2951,57−3134,23) (108090,21−114777,03) (4,36−5,24)

DCCP-2 2162,51 73688,67/287,51 5,4
(2138,56−2186,47) (73401,16−74234,14) (5,02−5,75)

5
TCP Cubic 3862,58 104830,49 3,32

9× (3775,82−3949,34) (101653,65−108007,32) (3,11−3,53)

DCCP-2 2119,10 72256,17/367,92 4,2
(2109,87−2128,33) (71888,25−72215,14) (4,02−4,48)

6
TCP Veno 2395,97 87744,27 7,81

20× (2289,27−2502,67) (83836,15−91652,39) (7,33−8,29)

DCCP-2 2899,25 64653,08/314,42 6,1
(2810,27−2988,24) (61289,36−67387,96) (5,50−6,64)

7
TCP Reno 3291,67 120549,10 3,6

6× (3265,40−3317,94) (119587,17−121511,03) (3,42−3,78)

DCCP-3 2851,59 97234/1181,92 0,85
(2841,67−2861,52) (95725,77−96378,39) (0,83−0,87)

8
TCP Cubic 3598,81 131790,21 4,13

8× (3496,79−3700,84) (128052,30−135528,13) (3,77−4,49)

DCCP-3 2665,55 90895/1533,67 1,18
(2571,62−2759,48) (86127,94−92594,72) (0,95−1,41)

9
TCP Veno 3734,55 136765,27 2,31

11× (3634,92−3834,18) (133115,41−140415,13) (2,15−2,47)

DCCP-3 2824,84 96381,08/1472,58 0,89
(2815,48−2834,20) (92753,94−97063,06) (0,85−0,93)

10
DCCP-2 1792,20 65194,33/303,33 4,91

11× (1749,55−1834,86) (62404,79−64891,03) (4,75−5,08)

UDP 2552,41 562465,08/475381 2,02
(2475,76−2629,06) (84469,96−89698,20) (1,87−2,18)

11
DCCP-3 2519,84 91559,83/1696,83 1,01

13× (2461,98−2577,70) (85041,99−94684,01) (0,91−1,12)

UDP 2898,34 427356,58/328470,17 1,82
(2841,75−2954,93) (96902,29−100870,53) (1,73−1,92)

Table 3: Summary for the results of phase 1 for ρ = 95%. Packet of size 512 bytes, execution of hand-off and
considering the confronts between two protocols among the protocols TCP, UDP and DCCP.

was 3359.12 Kbits/s and 3162.41 Kbits/s, respectively.
Moreover, if the throughput is almost the same, the big-
ger the packet size is, more data the flow should trans-
mit. This happened only for the TCP × DCCP. In
this case, TCP transmitted more data when the packet
size was 1424 bytes for all the congestion control al-
gorithms used. This was expected because DCCP also
implements congestion control and it allows TCP flow

to transmit more data when increasing the packet size,
considering that the maximum size for a packet is the
MTU value minus the space occupied by the headers of
protocols in the network, transport, and application lay-
ers.

Therefore, it is possible to conclude that in transmis-
sions where the TCP and UDP protocols share the same
communication channel, to increase the packet size

2008 Linux Symposium, Volume Two • 173

Confronts Throughput (Kbits/s) Transmitted / Lost
(KBytes) Jitter (ms) n

1
TCP Reno 3162,41 112156,65 3,21

4× (2968,61−3156,21) (108719,62−115593,67) (3,09−3,33)

UDP 5773,26 730078,67/659256,67 2,37
(5493,16−6053,36) (67701,48−73942,52) (2,28−2,47)

2
TCP Cubic 3201,33 80614,73 4,51

6× (3063,57−3339,09) (75572,17−85657,29) (4,42−4,60)

UDP 2575,34 1213656,83/1182062,33 3,17
(2544,25−2606,43) (27053,38−36135,62) (3,05−3,29)

3
TCP Veno 3221,97 117998,49 5,12

8× (3072,96−3370,99) (112542,56−123454,43) (5,04−5,2)

UDP 2301,01 682801,67/605503,92 2,27
(2288,97−2313,06) (73433,54−81161,96) (2,20−2,35)

4
TCP Reno 3776,63 166004,14 6,3

4× (3717,94−3835,31) (163776,65−168231,63) (6,21−6,34)

DCCP-2 3372,64 141343,33/375,92 6,68
(3217,38−3527,90) (139722,68−142963,98) (5,40−7,97)

5
TCP Cubic 3969,39 172124,00 4,12

3× (3901,75−4037,04) (169648,29−174599,72) (4,03−4,21)

DCCP-2 3611,59 187001,58/1303,25 5,16
(3578,69−3644,49) (182247,13−189149,53) (4,90−5,43)

6
TCP Veno 4561,88 180149,85 6,51

3× (4218,12−4905,64) (178025,55−182274,15) (5,81−7,21)

DCCP-2 2685,21 13600,533/1150 6,25
(2442,01−2928,41) (133295,41−136415,25) (5,47−7,02)

7
TCP Reno 2735,82 100189,53 3,71

7× (2576,05−2895,60) (94338,37−106040,69) (3,28−4,14)

DCCP-3 3469,30 118268,52/5685,50 2,80
(3299,87−3638,73) (111483,27−113682,77) (2,56−3,05)

8
TCP Cubic 2980,47 109147,54 4,1

5× (2950,09−3010,85) (108034,15−110260,92) (3,49−4,71)

DCCP-3 3482,36 118835,16/1549,83 2,63
(3319,60−3645,13) (112236,44−122334,22) (2,34−2,92)

9
TCP Veno 2998,39 109806,54 2,33

6× (2867,97−3128,80) (105029,84−114583,24) (2,21−2,45)

DCCP-3 4831,47 184765,16/4835,08 1,69
(4576,48−5086,45) (175018,62−180930,08) (1,65−1,73)

10
DCCP-2 3452,93 125611,37/482,50 7,81

11× (3315,24−3590,62) (122601,76−127655,98) (7,55−8,07)

UDP 5236,62 806485,67/742278,17 4,30
(4892,45−5580,79) (62959,4−65455,6) (3,70−4,90)

11
DCCP-3 4053,65 147460,73/3415 1,84

13× (3904,76−4202,54) (142043,27−146048,19) (1,63−2,04)

UDP 5935,79 699595,58/626779,58 2,46
(5884,42−5987,15) (71211−74421) (2,42−2,51)

Table 4: Summary for the results of phase 1 for ρ = 95%. Packet of size 1424 bytes, execution of hand-off and
considering the confronts between two protocols among the protocols TCP, UDP and DCCP.

from 512 bytes to 1424 bytes does not lead to perfor-
mance improvement, even when considering the Veno
congestion control algorithm. This suggests that TCP
lost more data when packets with size 1424 bytes (with-
out considering the packet retransmission mechanism
implemented by TCP to provide reliability) were used.
In this case, a future work can evaluate what the best
packet size should be to minimize the amount of TCP

packets lost in this scenario. A discussion in this con-
text is presented in [12].

Regarding the hand-off executions, in Figure 2 the pro-
gression of the transmission for TCP Cubic × UDP is
depicted, which corresponds to line 2 of Table 3. In Fig-
ure 2(a), the mean throughput for the protocols TCP and
UDP are presented. In Figure 2(b), the relation between
the amount of transmitted and lost data for UDP in this

174 • Measuring DCCP for Linux against TCP and UDP With Wireless Mobile Devices

transmission is shown. The values for each point plot-
ted in the graph shown in Figure 2 were calculated as
an average for the values of each point for all repetitions
of the experiment, in this case n = 5 (last column of the
line 2 of Table 3).

It is important to observe that in Figure 2(a) the through-
put for the TCP connection decreased due to hand-off,
where packet loss occurred; that is reflected in the con-
gestion control algorithms of TCP and DCCP. In the
case of UDP, the throughput remained constant during
all the transmission time. In Figure 2(b), it is possi-
ble to observe a high level of data loss when using UDP,
mainly during hand-off. Around second 35, it is possible
to observe another declining point for the TCP through-
put. This fact can be explained by the introduction of
the two UDP flows, where packet loss also happened.

In Figure 3, the transmission for TCP-Cubic× DCCP is
presented, which corresponds to line 5 of Table 4. The
values for each point were calculated in a similar way
of previous ones, with n = 9. This procedure was also
used for the other graphs in this section.

As it can be seen in Figure 3(a), the TCP throughput also
decreased due to the hand-off, for the same reasons as
in TCP × UDP. In the case of the DCCP protocol, there
was a small drop in the throughput during the hand-off.
Figure 3(b) shows the evolution for TCP×DCCP, and it
is possible to observe that DCCP lost a small amount of
data when compared to UDP in the confronts against to
TCP. In addition, it can be seen that during the transmis-
sion, the DCCP and TCP protocols shared the channel
in a fair way.

Regarding the fairness of the protocols in terms of net-
work bandwidth usage, a congestion in the network
caused by UDP was expected, but this did not happen.
Therefore, it is possible to conclude that there is data
contention in the source, in this case the Internet Tablets
(N800 devices). As the processing power of such de-
vices is limited, there is a throughput limitation of data
processing and transmission, considering that the pro-
cess (at the operating system level) of the IPerf applica-
tion used less CPU clocks compared to a desktop com-
puter, for instance. In Section 5 a discussion on this
subject is presented, where a different behavior is ob-
served: the wireless network presented a high level of
congestion caused by the UDP protocol and in some
cases avoiding TCP and DCCP protocols to transmit
data.

It is also important to comment on two additional facts
observed in the experiments.

• Sudden wireless disconnections of the Internet
Tablet were observed. This is probably associated
with the processing and management capacity of
the applications executing in this device, particu-
larly the wireless interface driver running in the
device. In order to have a more elaborate explana-
tion of this, a deeper study is suggested; the focus
should be to analyze situations where the processor
is overloaded, leading to a malfunction of the wire-
less interface driver. In addition, the study should
examine whether the disconnections were caused
by hand-offs;

• In addition to the weak performance of the UDP
protocol for wireless data transmission in terms of
packet loss, in all transmissions using the UDP pro-
tocol, it was observed that the protocol delivered
out-of-order packets. The out-of-order data deliv-
ery also occurred with the DCCP protocol, but in
smaller proportion compared to UDP. This propor-
tion is equivalent to the packet loss with the DCCP
protocol in the TCP × DCCP confronts—Tables 3
and 4, field Transmitted/Lost, lines 4 to 9 (inclu-
sive).

5 Conclusion

In this article, an experimental evaluation of the DCCP
protocol over a 802.11g testbed wireless network is pre-
sented. We presented an overview of DCCP, an ex-
planation of how the experiments were performed, and
explored the methods adopted to calculate each metric
studied in this work. An important issue in this case is
the use of a statistical method based on probability the-
ory to achieve a 95% confidence level in all the values of
the studied metrics. The results obtained by executing
the experiments are presented. The experiments used
only resource-limited devices.

Considering the results discussed in Section 4, some
conclusions can be presented. First, the UDP protocol
when used in resource limited devices is not capable of
generating high network traffic resulting in congestion.
This is due to data generation contention on the Internet
Tablets.

2008 Linux Symposium, Volume Two • 175

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300

T
hr

o
ug

h
pu

t
(K

bi
ts

/s
)

Time (s)

TCP−Cubic x UDP: Throughput (512 bytes)

TCP−1
UDP−1
UDP−2

(a) Throughput achieved by TCP Cubic and UDP protocols.

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200 250 300

T
ra

ns
m

it
te

d
/L

os
t

(K
B

yt
es

)

Time (s)

TCP−Cubic x UDP: Effective Load (512 bytes)

Transmitted (KBytes)
Lost (KBytes)

(b) Relation between the amount of data transmitted and lost by the
UDP protocol.

Figure 2: TCP × UDP: thoughput and effective amount of data for TCP-Cubic × UDP with 300 s of transmission,
with packet size of 512 bytes and execution of hand-offs in 100 s and in 200 s.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300

T
hr

ou
gh

pu
t

(K
b
it

s/
s)

Time (s)

TCP−Cubic x DCCP−2: Throughput (512 bytes)

TCP−1
DCCP−1
DCCP−2

(a) Throughput achieved by TCP Cubic and DCCP CCID-2 proto-
cols.

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300

T
ra

ns
m

it
te

d/
L

os
t

(K
B

yt
es

)

Time (s)

TCP−Cubic x DCCP−2: Effective Load (512 bytes)

Transmitted (KBytes)
Lost (KBytes)

(b) Relation between the amount of data transmitted and lost by the
DCCP protocol with CCID-2.

Figure 3: TCP × UDP: thoughput and effective amount of data of the TCP-Cubic × DCCP CCID-2 with 300 s of
transmission, with packet size of 512 bytes and execution of hand-offs in 100 s and in 200 s.

176 • Measuring DCCP for Linux against TCP and UDP With Wireless Mobile Devices

It is important to point out that even though the UDP
protocol was unable to cause network congestion, its
use to transmit multimedia flows is not recommended,
at least in the network topology used in this work. This
recommendation is based on the observations that UDP
lost a lot of packets when compared to DCCP, mostly
in a network congestion period. This directly reflects in
the multimedia quality being transmitted. In addition to
the high level of packet loss, UDP interferes with the
performance of other protocols that implement network
congestion control, such as TCP and DCCP.

Unlike the discussion in [11], the hand-off execution
during data transmission did not affect either the TCP or
DCCP congestion control algorithms. In the results pre-
sented in this previous work, laptops were used, rather
than resource-limited devices. There are two hypotheses
to explain the non-effect of hand-offs using resource-
limited devices: first, by using devices such as the N800,
the hand-off occurs very fast and hence few packets are
lost, if compared with hand-offs performed using com-
puters (such as laptops) and considering that they are not
manufactured with this type of service in mind, unlike
the mobile devices. Thus, since the amount of the packet
loss is small and considering that resource-limited de-
vices are not capable of generating a big set of data in
a short period (due to the short slice of time allocated
to each application by the operating system), the small
amount of data lost does not affect the congestion con-
trol algorithms. The second hypothesis completes the
first one. Since N800-like devices are manufactured to
work in wireless networks, the network driver is opti-
mized for hand-off executions, unlike those available for
the network interface of the laptops. For this point, it is
necessary to conduct a more specific study to provide a
more accurate conclusion.

Another important conclusion is that when the packet
size for TCP was varied in data transmission against
UDP flows, the results were not satisfactory. As ob-
served in the results presented in Section 4, there is not a
significant improvement in the amount of data transmit-
ted when using 1424-byte (rather than 512-byte) pack-
ets. But for TCP × DCCP confronts, one may con-
clude that if the packet size is increased from 512 bytes
to 1424 bytes, it is possible to improve the performance
of both TCP and DCCP. Therefore, this procedure is en-
couraged. Although it was possible to observe this, it
is necessary to run more experiments with packet size
other than 1424 bytes and 512 bytes.

The current congestion control algorithms for DCCP
performed worse than TCP when used to compete
against UDP flows (except in the TCP Reno × UDP,
where DCCP performed better than TCP in the DCCP
CCID-3 × UDP), although DCCP seems to reach one
of its goals: to be fair in respect to TCP. For this case
DCCP performed very well, properly sharing the net-
work bandwidth with TCP.

Supposing that the other part of the wireless and Inter-
net traffic is TCP Veno, or TCP Cubic, the default con-
gestion control algorithm for Linux, the UDP protocol
must be fair in respect to TCP, since TCP Cubic and
Veno performed very well in terms of the available net-
work bandwidth. Until the end of this work, no refer-
ences were found that explored possible congestion con-
trol algorithms for UDP, nor official comparative studies
between TCP Cubic/Veno against UDP, since our work
focused in the DCCP point of view. According to the
results presented in this work, it is not recommended to
use TCP Reno for data transmission mainly over wire-
less links and in the Internet. Moreover, based on the
results presented in this work, for TCP transmissions it
is recommended to use of TCP Cubic than TCP Veno,
even though the official documentation for TCP Veno
indicates that its main focus is on wireless networks.
It is necessary to analyze the congestion control algo-
rithms for DCCP in order to optimize them or provide
new congestion control algorithms for it, equivalent to
TCP Cubic and TCP Veno, preferentially.

The current work we are developing is a mVoIP appli-
cation based on DCCP for mobile devices, focusing on
the maemoTMplatform [9].

6 Additional Authors and Acknowledgments

The Additional authors are Heverton Stuart and Vinícius
Nóbrega from Embedded Systems and Pervasive Com-
puting Lab. Thanks to CAPES Brazil, for the scholar-
ship and Nokia Institute of Technology Brazil, for the
research and sponsor supports.

References

[1] J. Gao and N. S. V. Rao. TCP AIMD Dynamics
over Internet Connections. In IEEE
Communication Latter, pages 4–6, 1 2005.

2008 Linux Symposium, Volume Two • 177

[2] X. Gu, P. Di, and L. Wolf. Performance
Evaluation of DCCP: A Focus on Smoothness and
TCP-friendliness. In Annals of
Telecommunications Journal, Special Issue on
Transport Protocols for Next Generation
Networks, volume 1, pages 191–206, 1 2005.

[3] Raj Jan. The Art of Computer Systems
Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation,
and Modeling. John Wiley & Sons, Inc, 1 edition,
3 1991.

[4] Eddie Kohler, Mark Handley, and Sally Floyd.
Datagram Congestion Control Protocol (DCCP),
3 2006. http://www.ietf.org/rfc/rfc4340.txt. Last
access on June 2008.

[5] Eddie Kohler, Mark Handley, and Sally Floyd.
Profile for Datagram Congestion Control Protocol
(DCCP) Congestion Control ID 2: TCP-like
Congestion Control, 3 2006.
http://www.ietf.org/rfc/rfc4341.txt. Last access on
June 2008.

[6] Eddie Kohler, Mark Handley, and Sally Floyd.
Profile for Datagram Congestion Control Protocol
(DCCP) Congestion Control ID 3: TCP-Friendly
Rate Control (TFRC), 3 2006.
http://www.ietf.org/rfc/rfc4342.txt. Last access on
June 2008.

[7] Eddie Kohler, Mark Handley, and Sally Floyd.
Profile for Datagram Congestion Control Protocol
(DCCP) Congestion Control ID 4: TCP-Friendly
Rate Control for Small Packets, 6 2007.
http://tools.ietf.org/wg/dccp/draft-ietf-dccp-ccid4.
Last access on June 2008.

[8] P. Navaratnam, N. Akhtar, and R. Tafazolli. On
the Performance of DCCP in Wireless Mesh
Networks. In Proceedings of the international
workshop on Mobility management and wireless
access, volume 1, pages 144–147, 3 2006.

[9] Nokia Corporation. Maemo Platform, 2 2008.
http://www.maemo.org/. Last access on
June 2008.

[10] J. Rosenberg, J. Weinberger, C. Huitema, and
R. Mahy. STUN - Simple Traversal of User
Datagram Protocol (UDP) through Network
Address Translators (NATs), 3 2003.

http://www.ietf.org/rfc/rfc3489.txt. Last access on
June 2008.

[11] Leandro M. Sales, Hyggo O. Almeida, Angelo
Perkusich, and Marcello Sales Jr. On the
Performance of TCP, UDP and DCCP over
802.11g Networks. In In Proceedings of the SAC
2008 23rd ACM Symposium on Applied
Computing Fortaleza, CE, pages 2074–2080, 1
2008.

[12] D. Wu, Song Ci, H. Sharif, and Yang Yang.
Packet Size Optimization for Goodput
Enhancement of Multi-Rate Wireless Networks.
In Consumer Communications and Networking
Conference Proceedings, pages 3575–3580, 3
2007.

178 • Measuring DCCP for Linux against TCP and UDP With Wireless Mobile Devices

Smack in Embedded Computing

Casey Schaufler
The Smack Project

casey@schaufler-ca.com

Abstract

Embedded computing devices are often called upon to
provide multiple functions using special purpose soft-
ware supplied by unrelated and sometimes mutually
hostile parties. These devices are then put into the
least well protected physical environment possible, your
pocket, and connected to an unprotected wireless net-
work.

This paper explores use of the Smack Linux Security
Module (LSM) as a tool for improving the security of
embedded devices with rich feature sets. The internet
enabled cell phone is used to identify application inter-
action issues and describe how they can be addressed
using Smack. The paper compares Smack-based solu-
tions to what would be required to approach the prob-
lems using other technologies.

1 Mandatory Access Control

Mandatory Access Control (MAC) refers to any mecha-
nism for restricting how a process is allowed to view or
manipulate storage objects that does not allow unprivi-
leged processes to change either their own access con-
trol state or the access control state of storage objects.
This differs from Discretionary Access Control (DAC)
in that a DAC mechanism, such as the traditional file
permission bits or POSIX access control lists, may allow
unprivileged processes to change their own access con-
trol state or that of storage objects. MAC is the mecha-
nism best suited to providing strong separation of sensi-
tive information while allowing controlled data sharing
and communications between processes that deal with
controlled data.

1.1 Alternatives To MAC

Isolation is easy. Sharing is hard.

Virtualization is currently getting the most attention of
all the mechanisms available for providing strong sep-
aration. It is also the most expensive scheme, short
of multiple instances of hardware, requiring additional
processor speed, memory, and storage to provide multi-
ple copies of the operating system. While sharing can be
done using virtual network interfaces and authenticating
application and system level protocols like NFS, it of-
fers no improvement over having those processes on the
same real machine. Further, there is no way to share IPC
objects such as memory segments and message queues.

Chroot jails also provide limited isolation. While the
filesystem name space can be broken up, the socket and
IPC name spaces remain shared. Data sharing can also
be achieved using a variety of mount options.

Mandatory Access Controls can isolate the IPC and net-
working name spaces as well as the filesystem name
space while still allowing for appropriate sharing.

1.2 Bell and LaPadula

Prior to the current era of enlightened MAC, the only
scheme available was the Bell and LaPadula sensitiv-
ity model. This model is a digital approximation of the
United States Department of Defense paper document
sensitivity policy. This model is fine for its intended
purpose, but scales neither upward for more sophisti-
cated polices nor downward to simpler ones. While it
is possible to implement interesting protections for em-
bedded systems using this scheme, 1 the combination of
rigid access rules, the size of the implementations, and
the sometimes excessive price of the products offering
it prevented this model from ever gaining traction in the
embedded space.

1HP actually sold a B&L based email appliance for some time.

• 179 •

180 • Smack in Embedded Computing

1.3 Security Enhanced Linux - SELinux

Security Enhanced Linux, or SELinux for short, is a
security infrastructure that provides type enforcement,
role based access control, Bell & LaPadula sensitivity,
and a mechanism to extend into future realms of secu-
rity management including, but not limited, to control
over the privilege scheme. SELinux associates a label
with each executable that identifies the security charac-
teristics of a process that invokes that program. The la-
bel applied to the process is influenced by the label of
the program, but the previous label of the process has an
impact as well. The access control decisions made by
SELinux are based on a policy, which is a description of
security transitions.

For an embedded system, SELinux has some draw-
backs. Because the label attached to a program file
impacts the security characteristics of the process, pro-
grams like busybox that perform multiple functions de-
pending on their invocation have to be given all the
rights any of its functions may require. The policy must
be programmed to take into account the behavior of
the applications, making it difficult to incorporate third
party programs. The policy can be large, in excess of
800,000 lines for the Fedora distribution, with a signifi-
cant filesystem data footprint as well as substantial ker-
nel memory impact. If the policy changes, for example
to accommodate a program being added to the system,
it may require that the entire filesystem be relabeled and
the policy be reloaded into the kernel. Finally, SELinux
requires that the filesystem support extended attributes,
a feature that can add cost to the system.

2 Smack

The Simplified Mandatory Access Control Kernel
(Smack, as a name not an acronym) implements a gen-
eral MAC scheme based on labels that are attached to
tasks and storage objects. The labels are NULL termi-
nated character strings, limited somewhat arbitrarily to
23 characters. The only operation that is carried out on
these labels is comparison for equality.

Unless an explicit exception has been made, a task can
access an object if and only if their labels match. There
is a small set of predefined system labels for which ex-
plicit exceptions have already been defined. A system
can be configured to allow other exceptions to suit any
number of scenarios.

Unlike SELinux, which bases the label that a task runs
with on the label of the program being run, Smack takes
an approach more in line with that of the multilevel se-
cure systems of the late twentieth century and allows
only the explicit use of privilege as a mechanism for
changing the label on a task. This means that security
is a attribute of the task, not an attribute of the program.
This is an especially important distinction in an envi-
ronment that includes third party programs, programs
written in scripting languages, and environments where
a single program is used in very different ways, as is the
case with busybox.

The label given a new storage object will be the label
of the task that creates it, and only a privileged task can
change the label of an object. This is another behav-
ior that is consistent with multilevel secure systems and
different from SELinux, which labels files based on a
number of attributes that include the label of the task,
but also the label on the containing directory.

2.1 Access Rules

The Smack system defines a small set of labels that are
used for specific purposes and that have predefined ac-
cess rules. The rules are applied in this order:

• * Pronounced star. The star label is given to a
limited set of objects that require universal access
but do not provide for information sharing, such as
/dev/null. A process with the star label is de-
nied access to all objects including those with the
star label. A process with any other label is allowed
access to an object with the star label.

• _ Pronounced floor. The floor label is the default
label for system processes and system files. Pro-
cesses with any label have read access to objects
with the floor label.

• ˆ Pronounced hat. The hat label is given to pro-
cesses that need to read any object on the system.
Processes with the hat label are allowed read access
to all objects on the system.

• matching labels A process has access to an object
if the labels match.

• unmatched labels If there is an explicit access de-
fined for that combination of process and object la-
bels and it includes the access requested, access is

2008 Linux Symposium, Volume Two • 181

cardfs /card cardfs smackfsroot=ESPN,smackfsdefault=ESPN 0 0

Table 1: Mount Options Example

permitted. If there is an explicit access defined for
that combination of process and object labels and
it does not include the access requested or there is
no explicit definition, the access is denied.

2.2 Defining Access Rules

A Smack access rule consists of a subject label, an ob-
ject label, and the access mode desired. This triple is
written to /smack/load, which installs the rule in the
kernel.

2.3 Unlabeled Filesystems

As previously mentioned, not all of the filesystems
popular in embedded systems support the extended at-
tributes required to label each file individually. In some
cases, such as that of removable media, it is unreason-
able to trust the labels that would be on the filesystem
if it did support them. A reasonably common situa-
tion involves an embedded system with two filesystems,
one that contains all the system data and a second that
is devoted to user data and which may be removable.
Even if neither filesystem supports extended attributes
this is easily supported by Smack via filesystem mount
options. The mount options supported by Smack are:

• smackfsroot=label Specifies the label to be used
for the root of the filesystem.

• smackfsdefault=label Specifies the label to be
used for files that do not have labels stored in ex-
tended attributes. For filesystems that do not sup-
port extended attributes this will be all files on the
filesystem.

An easy way to isolate the system from applications that
use external data then is to run the applications with a
label other than the floor label and to mount the external
data at that label. An entry in /etc/fstab for this
might resemble Table 1.

The application running with the ESPN label can read
the system data and modify anything on /card. Should

the application run a program found on /card the pro-
cess will continue running with the ESPN label and will
have the same access.

2.4 Networking

Network based interprocess communications are far and
away the dominant mechanism for passing information
between processes. Smack imposes the same restric-
tions on writing information to another process as it does
writing information to a storage object. The general
rule is that the sending process and the receiving pro-
cess must have the same label. If an explicit rule allows
a process with the sender’s label to write to an object
with the receiver’s label then a message can be sent. For
UDP packets the sender need only have write access to
the receiver. For TCP connections both ends must have
write access to the other, but neither is required to have
read access.

2.5 Network Labeling

Network labeling is accomplished by adding a CIPSO
IP option that represents the sender’s label to the packet
header. With the label of the sender in hand an access
decision can be made at the time of delivery, when the
label of the receiver is known.

One label is designated the ambient label. All pack-
ets that have no CIPSO tag are given the ambient la-
bel. Symmetrically, packets created by processes run-
ning with the ambient label are not given CIPSO tags.

2.6 Sockets

Sockets are not themselves elements in the Smack secu-
rity model. Sockets are data structures associated with
processes, and can sometimes be shared. Socket at-
tributes can be set by privileged processes to associate
a particular label with outgoing packets and to change
the label used on incoming checks. The labels attached
to TCP connections and to individual UDP packets can
be fetched by server processes.

182 • Smack in Embedded Computing

3 Secure Embedded Systems

There are probably as many notions of what defines an
embedded system as there are of what defines system se-
curity. For the purposes of embedded systems security,
there is a specific set of characteristics that are interest-
ing.

An embedded system will usually be resource con-
strained. Processor power, storage size, and system
memory are only some of the things that can add cost
and that are subject to scrutiny and reduction where
possible. Security solutions that require significant ad-
ditional resources introduce cost and may even push a
product out of viability.

Embedded systems often do not have multiple users.
Google’s Android project assumes this to be universal
and co-opts the userid mechanism for program isolation.
Systems are designed around data flows or application
sets rather than providing general purpose user environ-
ments. They may also assume that programs have re-
stricted use patterns and limit security concerns to vari-
ations from those patterns.

Systems deployed in embedded environments are ex-
pected to function for extended periods of time without
modification or with as few as possible. It is important
to get the software and its configuration correct prior to
release as it may never have the opportunity to be re-
paired. Even those systems that can be repaired in the
field will usually require that changes be as few and as
small as is absolutely possible. A security scheme based
on regular updates to threat profiles would be inappro-
priate to a flight data recorder.

3.1 Filesystems

Embedded systems can have particularly sensitive
filesystem requirements. The devices that they use are
often slow and may have media with limits on the num-
ber of times it can be updated. They may also be limited
in the amount of data they can store. These characteris-
tics in particular encourage the use of filesystems that do
a minimum of physical accesses and that are optimized
for size in favor of functionality. Support for extended
attributes is often eschewed because the additional me-
dia space required, the increase in code size, and the
consequences of maintaining extended attributes on the
media make them unappealing for the environment.

3.2 Networking

Networking is important to embedded systems for inter-
process communications and external access.

Because IP protocols do not normally carry any sort
of security identification information, application level
protocols are often required to provide identification and
authentication on their own. This requirement can add
significantly to the application size and complexity, the
number of libraries required, and the time required to
perform communications, especially simple ones.

Some embedded systems communicate with the world
at large and for many, including mobile phones and
more sophisticated devices, this is their primary func-
tion. In many cases it is quite important that information
be kept segregated based on its role on the device, and
that the information be delivered only to appropriate ap-
plications which may themselves have come in over the
airwaves. Clearly a mechanism needs to be available for
distributing this information safely.

4 The Mobile Phone

It is probably impossible to identify a typical embedded
system, but the mobile phone will serve for purposes of
discussion because the mobile phone is familiar, some
are known to run Linux, and they have obvious security
concerns. Those who are unfamiliar with these devices
are encouraged to have a look at Google’s Android sys-
tem 2 for a working example of how the software for one
of these devices can be assembled.

Mobile phone service providers do not make money by
selling phones. They make money by selling services
that use the information network with which the mobile
phone communicates. It is thus very important to the
service company that the system software and user ac-
count data stored on the phone be protected from any
user of the device. It is also important that access to fea-
tures of the phone that the user is expected to pay extra
for is tightly controlled. It is further a significant con-
cern that only the applications the service provider gets
paid for wind up on the phone, otherwise the consumer
may not have to buy the provider’s offerings to get the
functionality desired.

2http://code.google.com/android

2008 Linux Symposium, Volume Two • 183

An important but often overlooked aspect of the mobile
phone is that one of the most critical design criteria for
the software it runs is time to market. It can be the case
that a particular date, usually early in the holiday shop-
ping season, is a hard deadline and software develop-
ment must be completed sufficiently in advance of that
date to allow volume manufacturing. Any architecture
with a long time to market or that may interfere with
the ability to deploy third party applications in a timely
fashion will come into question even if it is adopted for
reasons of security.

4.1 A Simple Application Example

Let us now consider a mobile phone that incorporates
third party applications to provide its differentiation.
The third party applications will have been delivered
slightly late and will have little or nothing to say about
any interactions they might have with their operating
environment. The applications will certainly not have
gone through any sort of security analysis. If only to
prevent the applications from accidently interfering with
each other it is prudent to isolate them.

For the sake of simplicity, our phone implements a dis-
play manager, a keypad manager, and a radio man-
ager. These managers communicate with applications
and each other using UDP datagrams. Each of these
managers runs as a separate process, started when the
phone is turned on, and all with the Smack label phone.
Because they all have the same label they can share in-
formation freely, but because they are not running with
the floor label they cannot modify the system files. All
the device files that these managers access are also la-
beled phone.

The first application might be a news update service that
queries a database at ABC, presenting a ticker tape of
interesting headlines on the display. It is run with the
Smack label ABC. To achieve this, the application will
send messages to the radio manager asking it to call out
for updates, and sending text to the display manager to
put on the ticker tape. The radio manager needs to send
responses to the ABC application. To allow this com-
munication two Smack access rules are required.

• phone ABC w

• ABC phone w

Notice that read access is not provided in either case.
Processes with either label can send datagrams to pro-
cesses with the other, but neither can read their peer’s
data.

The second application is from a sports network and of-
fers animated recreations of football highlights. It is run
with the Smack label ESPN. The application will send
messages to the radio manager asking it to call out for
updates, and send animation frames to the display man-
ager. The radio manager needs to send responses to the
ESPN application and the keypad manager needs to send
keystrokes for control purposes. As before two Smack
access rules are required.

• phone ESPN w

• ESPN phone w

Notice that even though both ABC and ESPN processes
can communicate with the manager processes they can-
not communicate directly with each other.

It turns out that in the example here both applications
provide service based on information from a common
source, that being the shared parent company of the
news service and the sports network. If the sports an-
imation application understands the data stored by the
news application and has read access to that information
it could pre-load sport event information that appears on
the ticker tape, improving the user experience. A single
Smack rule makes this possible.

• ESPN ABC r

Now the sports animation application can read the news
application’s data and take whatever actions it deems
appropriate. Notice that it cannot execute the news ap-
plication or search directories because it does not have
execute permissions.

If at some point in the future the parent company sells
the sports network, access can be revoked without rela-
beling any files by changing the access rule.

• ESPN ABC -

Now access is explicitly denied.

184 • Smack in Embedded Computing

4.2 Software Update

A common problem on embedded devices is live, con-
trolled application software update. While getting new
software onto the device may be straightforward, mak-
ing sure that the transition occurs and that the new
software is used while retaining the old in case of un-
foreseen issues can be tricky. One popular solution to
this problem is to provide multiple filesystems, each of
which is loaded with a different version of the complete
set of software. One filesystems is mounted in the ac-
tive path while the others are mounted to the side and
the transition is made by unmounting the active path
and mounting an alternative in its stead. Updates are
performed on the out-of-path filesystems.

The Smack solution is to include all possible paths, but
to label each set differently, and to determine which gets
used by a particular process by access rules. The start-
up script running with an appropriate label, in this case
ESPN, sets its path

export PATH=/slot-a:/slot-b

then invokes the desired program

spiffyapp -color -football

which will of course use the version in /slot-a if it is
accessible, and the version in /slot-b if it is not. The
installer labels /slot-a and all the files therein with
the same label, for simplicity Slot-A and similarly the
contents of /slot-b with Slot-B. To allow access to
either version the rules would be

• ESPN Slot-A rx

• ESPN Slot-B rx

When it comes time to update /slot-a setting the ac-
cess rule

• ESPN Slot-A -

• ESPN Slot-B rx

ensures that the version in /slot-b gets used. Once
/slot-a is updated setting the access rules

• ESPN Slot-A rx

• ESPN Slot-B -

ensures that the new version is used. Note that the files
in each of the slot directories do not get relabeled as
part of this process, they retain the label that they are
given by the installer. The only change required is in the
access rules.

5 Comparisons and Conclusions

From the examples provided it should be clear that many
of the security concerns that are typical of an embedded
system can be addressed readily by Smack. It is not
enough to provide the security facilities, it is also neces-
sary to provide them in a way that is appropriate to the
problem at hand. Other schemes, including virtualiza-
tion and SELinux, can be used to address specific secu-
rity concerns, but Smack is better suited to the resource-
constrained embedded environment.

5.1 Distributions

The purpose of a distribution is to provide a set of
configuration files, documentation, programs, libraries,
scripts, and various other digital components with which
a complete system can be composed. Most distributions
available today are full-featured, offering as complete
a set of utilities as possible, often even including mul-
tiple alternatives for email services, web servers, and
window systems environments. Distributions targeted
for the embedded space will offer a slightly different set
of content and configuration, but are not fundamentally
different from their desktop or enterprise peers.

A MAC scheme based on the behavior of applications
will have to be customized to each distribution on which
it is available. The Red Hat distributions include cus-
tomized SELinux policies that match the programs they
contain. The SuSE distributions include configurations
for AppArmor. Other distributions claim support for
SELinux as well.

The embedded systems developer is typically not look-
ing for the advantages of integration that a distribu-
tion provides. The embedded systems developer will be
carefully choosing the components that go onto the box
and while it will be convenient if they all come from the
same place it is perfectly reasonable for a legacy ver-
sion of certain applications to be chosen for size, com-
patibility, or performance. This is a major problem for

2008 Linux Symposium, Volume Two • 185

a system like SELinux that depends on specific versions
of specific applications for the policy to be correct. A
system like Smack that is strictly based on processes,
rather than programs, in its security view has a serious
advantage.

5.2 User Space Impact

The user space component of a security mechanism
ought not to be a major concern for an embedded sys-
tem. Because Smack rules are trivial, the program that
loads them into the kernel need only ensure that they are
formatted correctly and can hence be kept very small.
Because labels are text strings there is no need for func-
tions that compose or format them. The current Smack
user space library provides only two functions.

• smackaccess Takes a process label, an object
label, and an access string as arguments and re-
turns an access approval or denial based on the ac-
cess rules currently loaded in the kernel. Using this
function an application can make the same deci-
sions that the kernel would. Because the kernel ta-
ble is readable, any program can use this function
to determine what the answer is to a specific access
question.

• smackrecvmsg This is a wrapper around
recvmsg that does control message processing
associated with SCM_SECURITY. It is typically
used by label-cognizant server programs that may
change their behavior based on the label of a con-
nection. These programs will require privilege to
allow connections at multiple labels and will hence
be required to be treated as trusted components of
the system.

One reason that there are so few library functions is the
direct scheme that Smack uses for labeling. Because la-
bels are text strings that require no interpretation, their
manipulation is limited to setting and fetching. The ex-
isting extended attribute interfaces are sufficient for ma-
nipulating labels on files. Process labels are dealt with
through the /proc/self/attr/current virtual
files. Socket labeling is manipulated using fsetxattr
to set outbound labels and set inbound labeling, but only
by privileged processes.

5.3 Configuration Issues

Embedded systems are usually designed to be as simple
as possible. Sophisticated configuration requirements
go against this design principle the same way that ex-
cesses in scripting would.

One problem with a virtualization solution is having
multiple operating system configurations to maintain.
Another is the hypervisor configuration. Finally, there
is the configuration required for the virtual machines to
share or communicate.

SELinux is notoriously difficult to administer. Because
the security model labels programs based on their be-
havior, any change, even a simple version update, may
require a change to the system security policy configu-
ration. A policy that does not take the entire set of appli-
cations on the system into account does not provide the
controls necessary for accurate containment. This is true
regardless of how much of the full utility of SELinux is
actually required to achieve the security goals.

Simplicity is a design goal of Smack. The coarser gran-
ularity of access control provided by a process-oriented
scheme requires much less detail in the configuration
than does a fine-grained scheme such as SELinux. Be-
cause it is an access control mechanism that can be con-
figured, it is much easier to use than the multiple con-
figurations required in a virtualized scheme.

5.4 Summation

Embedded systems are not general purpose computers.
Smack is intended to address clearly identifiable and
specific access control issues without requiring exten-
sive theoretical understanding of security lore. It does
not require the intervention of a highly trained secu-
rity professional. The low impact and strong control of
Smack make it ideal for solving the controlled access
problems of applications in embedded systems. Free-
dom from dependence on a distribution makes it attrac-
tive to developers inclined to "roll their own" system
software. With process oriented access control empha-
sis can be placed on the pragmatic security issues that
matter in the embedded space.

186 • Smack in Embedded Computing

Energy-aware task and interrupt management in Linux

Vaidyanathan Srinivasan, Gautham R Shenoy,
Srivatsa Vaddagiri, Dipankar Sarma

IBM Linux Technology Center
{svaidy, vatsa}@linux.vnet.ibm.com, {ego, dipankar}@in.ibm.com

Venkatesh Pallipadi
Intel Open Source Technology Center
venkatesh.pallipadi@intel.com

Abstract

As multi-core and SMP systems become more gener-
ally available, energy management needs in LinuxTM

have also become more complex. Energy management
in Linux was primarily designed for interactive sys-
tems where relatively simple inactivity based strategies
worked effectively for most cases. Modern enterprise
class hardware needs a more complex power manage-
ment strategy to save energy with the least impact on the
performance of enterprise workloads. Traditionally, the
Linux kernel for servers has been optimized for through-
put and not power efficiency.

This paper discusses the behaviour of the current task
management subsystem (scheduler and loadbalancer)
on a multi-core SMP system and its effectiveness in sav-
ing energy consumption under several situations (idle,
moderate load). It then describes several techniques
such as timer migration, task wakeup biasing and related
heuristics for reducing energy consumption. The pa-
per also looks at possible methods to mitigate interrupts
for energy savings during different workloads and con-
cludes by discussing some results of these new strate-
gies.

1 Introduction

Traditionally, operating systems designers have fo-
cussed on optimizing for performance. The key design
goals have been to make maximum usage of resources
to get the most out of the underlying systems. On multi-
processor and multi-core systems, this approach led to

1With additional contributions from Suresh B. Siddha, Intel
Open Source Technology Center, suresh.b.siddha@intel.com

using all CPU resources in parallel as much as possible.
This approach to system design had to be re-evaluated
when battery operated low-power devices became im-
portant. Various system technologies like DVFS (Dy-
namic voltage and frequency scaling) and exploitation
of them in operating systems led to significant improve-
ment in power consumption [1][4]. Various operat-
ing system techniques were adopted to manage tasks
with a goal of reducing power consumption [17][6][18].
With the advent of multiprocessor systems, additional
techniques have been used to do CPU power manage-
ment [15]. With the cost of energy going up in recent
years, the need for energy efficiency has been acutely
felt across the entire spectrum of systems—small hand-
held computers to large multi-processor servers in data-
centers. Due to increased computation density of mod-
ern enterprise servers, the thermal limits of the design is
beginning to constrain the integration and performance.
Power management in enterprise servers primarily help
data centers improve their computation density by get-
ting more computation done without increasing power
consumption. The objective of power management in
laptops and other battery powered devices has been pri-
marily to extend the battery life, while on enterprise
server and datacenters, power management forms the
building blocks to provide higher level services like
power trending and power capping. Thermal manage-
ment, which is an interesting side effect of power man-
agement, and power capping are of great interest to en-
terprise customers. Fundamentally, enterprise customer
would like to control parameters that have been previ-
ously considered passive and hence ignored.

This paper investigates power management in two areas
to simplify the discussion, namely

• 187 •

188 • Energy-aware task and interrupt management in Linux

1. Idle system power management

2. Power management in under-utilized (or non-idle)
systems

An idle system is one where no useful work is done by
the system with respect to its workload and applications.
Such a system could be waiting for inputs from user or
requests on the network. On this kind of system, it is
usually the system house keeping jobs that are active.

On a non-idle system, the system is actively running the
workload or application but the overall system capacity
is under-utilised. This provides scope to perform sev-
eral run-time power management strategies such as fre-
quency and voltage scaling. In the Linux kernel, the
ondemand governor [11] does the job of selecting the
correct CPU capacity or frequency that would match the
current workload.

The new SPECPower benchmark [2] tries to charac-
terise performance-per-watt under various system loads.

Avoiding the periodic scheduler tick in an idle system
with the tickless kernel feature significantly helps to
save power in an idle system, while process scheduler
tweaks are needed to save power in an non-idle system.
The next section explains the problem space and exist-
ing solutions in detail.

2 Scheduler Overview

In a multi-processor system, an important goal for a
power-aware operating system is to consolidate all ac-
tivity (like execution of tasks, interrupt handling etc) on
fewer CPUs so that remaining CPUs can become idle
and enter low-power states. That implies a constant tug
between providing good throughput for applications and
providing good energy savings.

We now provide a brief overview of Linux CPU sched-
uler, how it is currently meeting the needs of a power-
aware operating system and some potential enhance-
ments to make it more energy-concious.

• CFS scheduler
From the primitive v2.4 scheduler, to the scalable
O(1) scheduler in v2.5, to the more recent scal-
able and responsive CFS scheduler, the Linux cpu
scheduler has significantly changed several times.

The most recent rewrite, termed CFS (Completely
Fair Scheduler), was authored by Ingo Molnar [8]
and has been adopted since v2.6.23 (July ’07). It
was mainly written to address several interactivity
woes that the Linux community complained about.
Its salient highlights are:

– More modular scheduler core by introducing
scheduler classes

– Time indexed rb-tree as runqueue for
SCHED_OTHER tasks

– Excellent interactivity for desktop users by
doing away with concept of fixed timeslice

– Scheduler tunables

– Group scheduler – divide bandwidth fairly
between task-groups first and then between
tasks in the group

• Power awaress existing in current Linux sched-
uler

socket0 socket1

Figure 1: Two socket quad-core system

socket0 socket1

T2

T0 T1

T3

Figure 2: Good task distribution from power perspective

socket0 socket1

T0 T1 T2 T3

Figure 3: Bad task distribution from power perspective

Linux CPU scheduler has options, both compile

2008 Linux Symposium, Volume Two • 189

time and runtime [10], through which it can be
directed to consolidate tasks across fewer CPUs
rather than spreading them apart on all available
CPUs for improved throughput. This lets more
CPUs to become idle and thus enter low-power
states when system is not heavily loaded. Addi-
tionally, the Linux scheduler is aware of the under-
lying multi-core and NUMA topology. This makes
it possible for the scheduler to further optimize
power-savings. For example, consider a multi-core
system as shown in Figure 1. The system has two
sockets, each of which can accommodate a quad-
core chip. Typically in such systems, the granular-
ity at which frequency/voltage can be varied is at
each chip or package level [5]. In other words, the
frequency/voltage cannot be different for different
cores resident in the same chip. In such a scenario,
the CPU scheduler is required to recognize such
power domains and work towards not only consol-
idating tasks on just fewer cpus but also on fewer
power domains (in this case, the chips). As an ex-
ample consider that the system in Figure 1 had just
four tasks. Then it is better for a power-aware CPU
scheduler to consolidate these 4 tasks on the 4 cpus
in same chip (as in Figure 2) rather than on any 4
arbitrary cpus (as in Figure 3). Linux CPU sched-
uler has the capability to do this chip-wise consol-
idation of tasks when required.

• Areas for improving power-awareness in sched-
uler

Consolidating tasks on fewer cpus and chips relies
on accurate cpu load (number of tasks on a cpu)
calculation. Since cpu load is sampled periodically,
it is possible that short lived tasks (ex: daemon that
run periodically for short intervals of time) don’t
show up as cpu load, which can result in failure
to consolidate on fewer cpus/chips. This is dis-
cussed in detail in the Section 3.5. Typically the
total CPU time utilised by the daemons in an idle
system will be less than 1% but the distribution of
this jobs across all CPUs influence the CPU’s low
power sleep time thereby affecting the power con-
sumption at idle. Section 3 describes the idle sys-
tem in detail.

In addition, CPUs that are in their low-power states
can be interrupted prematurely by task wakeup
code, which attempts to schedule waking tasks on

the same cpu where they last slept.

3 Idle system power management

Apart from the applications or the workload, there are
a host of system daemons, device drivers, and interrupt
processing that happen in an idle system. If the oper-
ating system and hardware can be optimised to signif-
icantly reduce these house keeping tasks, then an idle
system can sleep for longer duration leading to power
savings. There are significant activities even on a tick-
less idle [12][7] system that reduce the duration of a
CPU’s low power sleep time leading to an increase in
the energy consumption at idle.

The objective of idle system power management in an
enterprise server is to consolidate daemon tasks and in-
terrupts to fewer CPUs or packages in an idle system.
Typically an enterprise server would have more than
one CPU in SMP configuration. Multi-core processors
have helped increase the number of cores in an enter-
prise system. Dual socket server can have dual core pro-
cessor modules thus forming a 4-way SMP configura-
tion. Optionally processor threading feature can be en-
abled which would further increase the number of logi-
cal CPUs to eight. In this sample configuration, (assume
no threading) we have 4 logical CPUs in two physical
packages.

Under low system utilisation or idle, if all the house-
keeping work can be consolidated to one package, then
the other package can continue to be in low power sleep
state, thus saving power. In general the SMP scheduler
will try to spread the workload across different package
for better throughput. This is the main design point in
power savings and performance trade off.

If the number of tasks to run is less than the number
of cores, spreading the tasks to one core on each phys-
ical package will provide better throughput (assuming
the tasks do not share data), while consolidating them
on one physical package is better for power savings.

In the following subsections we shall discuss the chal-
lenges involved in consolidating daemon jobs in an idle
system to one physical package in a dual package sys-
tem.

3.1 Process, timers, and interrupts at idle

The daemon process that are running in an idle sys-
tem can be easily identified using ps or top commands.

190 • Energy-aware task and interrupt management in Linux

Other than the processes that use CPU time, there could
be interrupts from IO devices like ethernet and harddisk
that wakeup CPUs and consume power. Timers pro-
grammed by applications and device drivers are actually
interrupts that wakeup CPUs when the timer expires.

CPU utilisation and interrupt rate can give a good idea
of the idleness of the system. All these events are re-
quired for normal system operation, however in an idle
system, these events contribute to reduced sleep time of
the CPU.

In a typical distro installation,1 CPU utilisation from
top and process wakeup rate from powertop at idle are
shown in Table 3.1.

The number of interrupts observed during the 15-second
duration is listed in Table 1.

IRQ CPU0 CPU1 CPU2 CPU3 Description
17 21 ata_piix
214 61 eth0
LOC 66 55 95 71 Local timer

interrupts
TLB 1 1 TLB Shoot-

downs

Table 1: /proc/interrupts diff for 15 seconds

In order to improve CPU sleep time, idle polling ac-
tivities should be reduced and moved to asynchronous
notification. USB inherently needs to have time based
polling loops. USB auto suspend will work as long as
there are no devices connected, but if the USB port is
being connected even to an idle keyboard, the polling
loops are needed.

Since the introduction of powertop utility, the behaviour
of user space applications and drivers have significantly
improved and moved away from unnecessary polling.
On an enterprise hardware with multiple CPU packages,
the timers and interrupts that cannot be reduced can be
consolidated to one CPU package. This provides new
opportunity for power savings by allowing parts of the
system to be more idle. The objective of idle system
power management is to significantly increase the idle
time for some of the CPU packages in the system.

For our discussion lets assume idle time is the duration
over which a CPU is in tickless idle state. During this
time, no task is scheduled on the CPU. Thus, the CPU

1Fedora 9 beta was used in this experiment.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000

sa
m

pl
e

co
un

t

idle time (milli seconds)

CPU0 Average = 565ms

Figure 4: Fedora 9 distro on 4 CPU system

can potentially go to low power sleep state and save
power. However in this state, the CPU can receive in-
terrupts. The interrupts can be from an IO device or
a programmed timer. Hence the idle time duration can
further be fragmented by interrupts and timers. Lets call
the time interval between such interrupts where the CPU
can really sleep in low power mode as sleep time. Tick-
less kernels that turn off periodic timer interrupts have a
significantly long idle time. However only the uninter-
rupted sleep time contributes to power savings. Hence,
to characterise various scenarios, we extract two param-
eters, namely the CPU idle time and sleep time. Sleep
time can be obtained by idle time divided by the number
of interrupts and timers received during the interval.

Idle time distribution can be obtained by instrumenting
tick_nohz_stop_sched_tick() and tick_nohz_

restart_sched_tick() code [13]. Figure 4 plots
the histogram of idle time obtained on one of the CPU
in a typical distro. Basically the idle time values for
120 seconds in an idle system has been converted to a
histogram for easy visualisation. The x-axis is the idle
time and y-axis is the sample count observed during 120
seconds. This gives an idea of expected sleep time for a
given CPU in a multi-cpu system. Actually this exper-
iment was done on a two socket dual core system and
such histograms are available for each of the four CPUs.
The distribution is similar in other CPUs and thus we
will not discuss the histogram for all four CPUs. As
observed in the histogram, the maximum idle time was
2 seconds while most of the samples are concentrated at
less than 10ms. There is a pattern of 1s idle time as well.

Figure 5 is a histogram of sleep time. Sleep time is much
smaller than the idle time and inversely proportional to

2008 Linux Symposium, Volume Two • 191

Utilisation from top:

Cpu(s): 0.0%us, 0.1%sy, 0.0%ni, 99.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Output of powertop -d:

PowerTOP 1.8 (C) 2007 Intel Corporation

Collecting data for 15 seconds
< Detailed C-state information is only available on Mobile CPUs (laptops) >
P-states (frequencies)

2.40 Ghz 0.0%
2.13 Ghz 0.0%
1.87 Ghz 0.0%
1.60 Ghz 100.0%

Wakeups-from-idle per second : 10.8 interval: 15.0s
Top causes for wakeups:

28.7% (4.0) <kernel module> : usb_hcd_poll_rh_status (rh_timer_func)
27.3% (3.8) <interrupt> : eth0
10.0% (1.4) <interrupt> : ata_piix
7.2% (1.0) ip : bnx2_open (bnx2_timer)

the interrupt rate. The maximum sleep time was 400ms
while the typical sleep time was less than 10ms.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400

sa
m

pl
e

co
un

t

sleep time (milli seconds)

CPU0 Average = 137ms

Figure 5: Fedora 9 distro on 4 CPU system

In order to analyse the effect of various kernel tunables
and scheduler changes we need to derive a metric for
comparison. The obvious and simplest metric is the av-
erage idle time and average sleep time on each CPU. Ba-
sically the weighted average of samples obtained from
the histogram for each CPU in the system gives the av-
erage idle and sleep time values. The approximation in
assuming average value per CPU over long duration is
that even marginal change in average value could sig-
nificantly affect the power savings. The longer the CPU
is in sleep state, the more power is saved. Small num-
ber of long sleep intervals is better than large number

of small sleep intervals. Hence to improve the accu-
racy of the evaluation model and its correlation with
real power consumption, a weight factor may be needed
for each sleep duration corresponding to the processor’s
deep sleep state transition latency. Based on typical pro-
cessor sleep state transition latencies and power values,
we can perhaps assume that a sleep duration of more
than 100ms is good enough for the CPU to transition
into deep sleep state. We have omitted the power penalty
for transition into various sleep states as well. The aver-
age value has been marked in the histogram.

3.2 Multi core scheduler heuristics

One of the first tunables in the kernel to tweak in an
multi core, multi socket system is /sys/devices/

system/cpu/sched_mc_power_savings. When
the multi-core power saving mode [3] is enabled, the
scheduler’s load balancer is biased to keep workload
on single physical package. This has significant im-
pact when the number of tasks running in the system
is less than the number of cores. Figure 6 plots the to-
tal idle time for each CPU for a 120 second observa-
tion interval. The system topology was a two socket
dual core, with CPU0 and CPU1 sharing a package and
CPU2 and CPU3 sharing the other package. Power sav-
ings can be improved if CPU0-1 are idle or CPU2-3
are idle allowing the other package to go to low power
sleep state. Ebizzy is a simple cpu intensive bench-
marking tool. It was simple to use and demonstrate

192 • Energy-aware task and interrupt management in Linux

the effect of sched_mc_power_savings. Figure 7
shows that the idle time on first package has improved
by consolidating the workload on CPU2 and CPU3.
Ebizzy2 was run with two threads for a duration of 120
seconds. There is a power savings of 5.4% by en-
abling sched_mc_power_savings for such cpu in-
tensive tasks where the number of threads are less than
the total number of cores available in the system.

 0

 20

 40

 60

 80

 100

 120

 140

CPU0 CPU1 CPU2 CPU3

T
ot

al
 id

le
 ti

m
e

(s
ec

on
ds

)

CPU Number

Ebizzy: 3,706,554 records/s

Total idle time for 120s

Figure 6: ebizzy with sched_mc_power_savings=0

 0

 20

 40

 60

 80

 100

 120

 140

CPU0 CPU1 CPU2 CPU3

T
ot

al
 id

le
 ti

m
e

(s
ec

on
ds

)

CPU Number

Ebizzy: 4,242,595 records/s (+14.5%)Avg power savings = 17W (5.4%)

Total idle time for 120s

Figure 7: ebizzy with sched_mc_power_savings=1

However, the tunable will bias the scheduler loadbal-
ancer and will not explicitly move tasks to different
package. The impact is that short running daemon jobs
that wakeup on various CPUs in the system will finish
execution before the loadbalancer is invoked or a CPU
load imbalance is detected. Hence they will continue to
wakeup idle CPUs in the system.

The ineffectiveness of sched_mc_power_savings

for short running jobs can be observed in case of ker-

2ebizzy -t 2 -s 4096 -S 120

nel compilation (kernbench) workload. Figure 8 shows
the idle time for make-j2 on the same box used
in the ebizzy experiment. When sched_mc_power_

savings is enabled as shown in Figure 9, there is not
much variation in the total idle time across all CPUs and
hence there is no influence in the power value. The
effectiveness of the heuristics is workload dependent.
Kernel compilation consist of large number of short run-
ning jobs and high rate of process creation and exit as
compared to pure CPU burn type workload. The vari-
ation in characteristics is mainly due to the mix of IO
operations.

 0

 10

 20

 30

 40

 50

 60

 70

 80

CPU0 CPU1 CPU2 CPU3

T
ot

al
 id

le
 ti

m
e

(s
ec

on
ds

)

CPU Number

Idle time for make -j2 for 90.4s

Figure 8: make -j2 with sched_mc_power_savings=0

 0

 10

 20

 30

 40

 50

 60

 70

 80

CPU0 CPU1 CPU2 CPU3

T
ot

al
 id

le
 ti

m
e

(s
ec

on
ds

)

CPU Number

No Power Savings

Idle time for make -j2 for 87.4s

Figure 9: make -j2 with sched_mc_power_savings=1

3.3 Interrupt Migration

Interrupts in the system can be routed to one or many
CPU cores in an SMP system. Default kernel routing
of interrupts is to broadcast to all available CPU if that
is supported by the hardware or else the interrupts stay

2008 Linux Symposium, Volume Two • 193

with the boot-up CPU or logical CPU0. There are in-
kernel interrupt balancing thread and user space solu-
tions available. The user space solution to manage in-
terrupt routing in an SMP system is the irqbalance dae-
mon [16] which is already included by most distros. The
latest version 0.55 of the daemon includes power man-
agement feature where interrupts will be consolidated
to CPU0 at very low interrupt rate. Once the system
activity increases, the interrupt rate will increase and
then the daemon will re-calculate the load and distribute
the interrupts among different CPUs appropriately. The
irqbalance daemon takes into account the system topol-
ogy, threads, cores and packages while making the in-
terrupt routing decision. The class of interrupt is also
considered since cost of migrating ethernet interrupts is
higher than that of storage interrupts.

Why does interrupt routing matter for power savings?
Any CPU in its low power sleep state can be woken-up
by an interrupt. Interrupts are critical for system opera-
tion and they cannot be avoided. If the interrupts are dis-
tributed to all CPUs, then even at low interrupt rate (idle
system), more CPUs in the system need to wake-up for
a short duration and process the interrupt. Effectively
the low power sleep time of the CPU is reduced. In the
case of SMP system where many CPUs are available,
the interrupts can be routed to one of the CPU package
or core. This leads to only one CPU package in the sys-
tem to paying the power penalty for wake-up while rest
of the CPU packages in the system can continue to be in
low power sleep state for longer time.

Interrupt routing can be modified by writing the bitmask
corresponding to the destination CPU to /proc/irq/

<irq_nr>/smp_affinity.

echo2>/proc/irq/214/smp_affinity would
route eth0 interrupt to CPU1 in the experimental setup
described in Section 3.1, Table 1.

The user space irqbalance daemon controlls interrupt
routing by writing appropriate bitmask to /proc/irq/

<irq_nr>/smp_affinity. More than one bit can be
set in the bitmask which enables the hardware to dis-
tribute the interrupt to the subset of CPUs if such in-
terrupt broadcasting is supported by the platform and
chipset.

Interrupt migration helps to improve CPU sleep time on
some of the CPUs in an SMP system, but timers queued
by the device drivers and applications are not affected

since timers are triggered when the CPU receives an in-
terrupt from the per-cpu tick-device. Timers queued on
various CPUs in an SMP system significantly contribute
to CPU wake-up from deep sleep state.

3.4 Timer Migration

3.4.1 Timers—an Introduction

Device drivers and other subsystems keep a sense of
time in the kernel by means of timers. The kernel
provides APIs such as add_timer(), mod_timer(),
add_timer_on() that allow the subsystems to add or
modify a timer to expire sometime in the future. With
the introduction of High Resolution timer infrastruc-
ture, users can now opt for timers with finer granular-
ity should they need it. The APIs present in the Linux
kernel for the High-Resolution timers are hrtimer_

start() and hrtimer_forward().

When a timer expires, the timer subsystem will call the
associated handler function which will perform the re-
quired task.

At the time this paper was written, the Non-High-
Resolution timers in the Linux kernel can be classified
into two types:

1. Non-Deferrable Timers: These are normal timers
which expire when a specified amount of time
elapses

2. Deferrable Timers: These are timers, which on
a busy system behave the same way as a normal
timer. But on an idle system they can be ignored
while determining the next timer event. Thus they
will expire when the next non-deferrable timer on
the idle CPU expires. [9]

Most of these timers are initialized and queued for the
first time from the task context. However, the handler
function gets called from the softirq context. The re-
queuing of a timer can occur from the softirq context or
the task context. It is easy to observe that currently, the
timers which get requeued from the softirq context will
be pinned to the CPU where they had been first initial-
ized. However, those timers which are queued from the
task context can migrate as the tasks queueing them get
migrated. Thus the timer distribution on an SMP sys-
tem is currently dependent on which CPU did the timer
initialization happen and the load balancing.

194 • Energy-aware task and interrupt management in Linux

3.4.2 Effect of timers on Idle CPU

On an idle CPU which is in a NO_HZ state, we program
the timer hardware to interrupt the idle cpu to coincide
with the nearest non-deferrable timer expiry time. Thus
if there are device drivers which had initialized timers on
a CPU which is now mostly idle, we would nevertheless
have to wake up the idle cpu to service this timer.

This highlights the importance of consolidation of
timers onto a fewer number of CPUs. Migration of these
timers in a idle system is possible. As of now, the timers
are migrated during CPU offline operation.

However CPU hotplug for the sake of idle system power
management is too heavy. We will need to implement
light weight timer migration framework that can be in-
voked in a idle system for power management purposes.

Typical distribution of timers in a distro3 at idle in a 120
second duration is detailed in Tables 2 and 3. These
results were obtained by instrumenting the timer code
__next_timer_interrupt in kernel/timer.c

and post processing the trace data [14].

As mentioned earlier, timers can re-queue themself in
task context or softirq context. Table 2 details the list
of timers that were queued in softirq context. They are
generally stuck to the same CPU until forcefully moved
or the application or device driver removes the timer.
Table 3 details the timers that were queued in task con-
text. These timers will generally be queued on the CPU
where the corresponding task has run. The idea behind
this data is to assess the percentage of timers that can be
consolidated by just moving or biasing the tasks. From
the data it can be observed that almost half of the timers
are from task context and they can be moved by moving
the task which is much easier than migrating the timer.
Migrating the timer may need notification and opportu-
nity for the task to cancel the timer all together.

3.5 Workload Migration and Consolidation

As mentioned in Section 2, the load consolidation al-
gorithm in the current scheduler relies on accurate cpu
load, i.e., the number of tasks on a cpu as an input pa-
rameter. This value is updated by sampling periodi-
cally. Since, every task running on a system need not
be CPU intensive, it is possible that techniques such

3Fedora 9 beta

as sched_mc_power_savings fail to capture the
characteristics of such tasks when it comes to workload
consolidation.

To prove this, consider an experiment where we have a
cpuset A, which has a bash shell as a member, that runs
make-j2 of a Linux kernel. The experiment is run on
a 2 socket dual core machine. The logical CPUs 0 and
1 are core siblings in the first socket and logical CPUs 2
and 3 are the core siblings in the other socket. We vary
the number of CPUs allocated to the cpuset by writing
different values to cpuset.cpus file. The time taken
to complete the make, the avg power consumed (nor-
malised value) during this interval, and the utilization of
the individual CPUs in the system are recorded. During
the experiment, sched_mc_power_savings is set
to 1 and the cpufreq governor is set to ondemand.
Table 4 details the result of this experiment.

Ideally, one would expect that running the job with only
two cpus would yield the same results as running the
job with all the four cpus with sched_mc_power_
savings enabled. However, from the experiment, we
observe that sched_mc_power_savings does not
seem to have much effect when we run with all the four
CPUs. There are only two active tasks in the system but
they get distributed across all the CPUs.

In the experiment, the energy consumed for the case
with only two CPUs is:

E2 = 71.751×1.045x
= 74.980xJ

(1)

Energy consumed for the case with all the four CPUs is:

E4 = 85.185×0.941x
= 80.159xJ

(2)

Thus, additional amount of energy spent would be:

Eextra = E4−E2
= 80.159x−74.980x
= 5.179xJ

(3)

Eextra% = Eextra
E2
×100

= 6.91%
(4)

From Table 4 we can also observe that the time taken
to complete the job is higher when all the 4 CPUs were

2008 Linux Symposium, Volume Two • 195

Function_Name CPU0 CPU1 CPU2 CPU3 Total
rh_timer_func 483 483
delayed_work_timer_fn 62 59 60 71 252
bnx2_timer 119 119
neigh_periodic_timer 30 60 90
dev_watchdog 48 48
process_timeout 32 1 5 38
wb_timer_fn 24 24
peer_check_expire 4 4
neigh_timer_handler 4 4
hangcheck_fire 3 3
commit_timeout 1 2 3
addrconf_verify 3 3
Total 156 226 611 78 1071

Table 2: Timer in SOFTIRQ context at idle for 120s

Function_Name CPU0 CPU1 CPU2 CPU3 Total
hrtick 159 132 107 81 479
delayed_work_timer_fn 62 60 60 72 254
ide_timer_expiry 34 30 33 29 126
scsi_times_out 40 1 3 1 45
process_timeout 31 2 6 39
wb_timer_fn 24 24
blk_unplug_timeout 19 1 3 1 24
hrtimer_wakeup 2 2
commit_timeout 2 2
tcp_write_timer 1 1
it_real_fn 1 1
Total 374 225 208 190 997

Table 3: Timer in task context at idle for 120s

Experiment ’make -j2’ of linux-2.6.25-rc7
CPUs allocated Time taken Power Consumed % Utilization of the CPUs

0 120.678 s 1.000x W 99, 02, 00, 00
0-1 71.751 s 1.045x W 83, 89, 01, 01
0-3 85.185 s 0.941x W 34, 33, 59, 57

Table 4: ’make -j2’ with varying number of cpus

196 • Energy-aware task and interrupt management in Linux

used, when compared to the case where only 2 CPUs
were used. Since the ondemand governor changes the
processor frequency based on the processor utilization,
when 2 threads were bouncing across all 4 processors,
the system utilization was not high enough to increase
the frequency to the maximum, and hence it took longer
time. However, in the case of allocating just 2 proces-
sors, we note that the utilization is sufficiently high for
the ondemand governor to run the job at the maximum
frequency, thus finishing it faster.

Thus we observe that by allocating more processors than
what is required, we’re not only degrading the power
savings, but also the performance in this case. Hence
there is scope for power savings by improving the power
aware task/workload consolidation in an under utilised
system.

One of the possible solutions could be to consider the
following parameters during scheduler load balancing
or consolidation decision apart from just counting the
number of waiting tasks:

• The nature of each task, whether it is CPU intensive
or IO bound

• The overall utilization of the system.

• Any hints from the tasks themselves

Using some of these parameters, it is also possible to
bias the wake up of a task onto a non-idle CPU, thereby
avoiding waking up an idle CPU when the number of
tasks on a particular runqueue is nonzero.

4 Sleep states

Coming to the core of the issue, why do we want the
CPUs to be idle for long duration. Modern processors
supports multiple idle states that vary from high power
low latency idle states to low power high latency idle
states.

With CPUs being idle for extended period, they can be
put into low power high latency idle state, conserving
significant power in the process. On the other end, fre-
quently waking up CPUs cannot use deepest idle state,
as if they do, they end up paying significant overhead
due to higher transition latency in and out of the deepest
idle state.

Other factors to keep note of with regard to idle CPUs
are:

• Most of the current generation CPUs control the
CPU voltage at the socket level. This means, if
some cores in a socket are idle and other cores are
busy, idle cores may not be at optimal power state
due to the higher voltage on the socket leading to
higher leakage power.

• Most of the current generation multi-core CPUs
have some shared resources across all the cores,
like last level cache. This shared resource will not
be able to go to low power state unless all cores in
the socket are idle.

This means it is important to keep as many cores and
as many sockets in idle state as long as possible. That
helps the CPUs to be at the most optimal power state.

The current Linux kernel has cpuidle governor that takes
care of entering the right idle state based on the indi-
vidual CPU activity and requirements. The scheduler
power savings tunable takes care of keeping the entire
socket idle in case of long running tasks. Newer ver-
sions of irqbalance take care of routing interrupts to one
CPU while the system is relatively idle.

The things that are missing include:

• power-aware scheduling for short-running tasks

• smart routing of timers interrupts in the idle sce-
narios, and

• making the CPU latency requirements per CPU (in-
stead of system-wide) so that processes and inter-
rupts with critical latency requirements continue to
have good response time in partially idle case, with
other idle cores being in deepest idle state.

5 Conclusion

Every watt saved is a watt that doesn’t have to be gen-
erated! Doing more computation with less power helps
the environment and every power management feature
makes the world greener. System power management
helps to improve compute density and manage power as
a resource by matching the power consumption to work-
load just as in an automobile.

2008 Linux Symposium, Volume Two • 197

The Linux kernel already takes advantage of various
power management features available in the platform,
however there is still scope for improvement as new
platform features will become available in future.

6 Acknowledgments

We owe thanks to Ingo Molnar, Arjan van de Ven and
members of linux-pm and lesswatts-discuss for their in-
puts on Linux kernel issues. We are also indebted to Pa-
tricia Gaughen, Vani S. Kulkarni, Sudarshan Rao, and
Premalatha M. Nair for their support of this effort.

7 Legal Statement

c©International Business Machines Corporation 2008.
c©Intel Corporation 2008.

Permission to redistribute in accordance with Linux Sympo-
sium submission guidelines is granted; all other rights re-
served.

This work represents the view of the authors and does not
necessarily represent the view of IBM or Intel.

IBM, IBM logo, ibm.com, and WebSphere, are trademarks of
International Business Machines Corporation in the United
States, other countries, or both.

Intel is a trademark or registered trademark of Intel Corpo-
ration or its subsidiaries in the United States and other coun-
tries.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in all
countries in which IBM operates.

INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS" WITH-
OUT WARRANTY OF ANY KIND, EITHER EX-
PRESS OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not al-
low disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or ty-
pographical errors. Changes are periodically made to the in-
formation herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) de-
scribed in this publication at any time without notice.

References

[1] A. P. Chandrakasan, S. Sheng, and R. W.
Brodersen. Low-power cmos digital design.
JSSC, 27:473–484, 1992.

[2] Standard Performance Evaluation Corporation.
SPECpower_ssj2008. http:
//www.spec.org/power_ssj2008/.

[3] Suresh B Siddha et al. Chip multi processing
aware linux kernel scheduler.
http://www.linuxsymposium.org/
2005/linuxsymposium_procv2.pdf.

[4] Kinshuk Govil, Edwin Chan, and Hal Wasserman.
Comparing algorithm for dynamic speed-setting
of a low-power cpu. In MobiCom ’95:
Proceedings of the 1st annual international
conference on Mobile computing and networking,
pages 13–25, New York, NY, USA, 1995. ACM.

[5] Intel Technology Journal. Power and thermal
management in the intel core duo processor.
http://download.intel.com/
technology/itj/2006/
volume10issue02/vol10_art03.pdf.

[6] Jacob R. Lorch and Alan Jay Smith. Reducing
processor power consumption by improving
processor time management in a single-user
operating system. In MobiCom ’96: Proceedings
of the 2nd annual international conference on
Mobile computing and networking, pages
143–154, New York, NY, USA, 1996. ACM.

[7] LWN. Tickless, acpi and thermal management.
http://lwn.net/Articles/240253/.

[8] Ingo Molnar. CFS scheduler.
http://kerneltrap.org/node/8059.

[9] Venkatesh Pallipadi. Deferrable timers.
http://lwn.net/Articles/228143/.

198 • Energy-aware task and interrupt management in Linux

[10] Venkatesh Pallipadi and Suresh B Siddha.
Processor power management fatures and process
scheduler: Do we need to tie them together.
http://www.linuxconf.eu/2007/
papers/Pallipadi.pdf.

[11] Venkatesh Pallipadi and Alexiy Starikovsky. The
ondemand governor - past, present and future. In
Proceedings of the Linux Symposium, volume 2,
Ottawa, ON, Canada, 2006. Linux Symposium.

[12] Suresh Siddha. Getting maximum mileage out of
tickless. http://ols.108.redhat.com/
2007/Reprints/siddha-Reprint.pdf.

[13] Vaidyanathan Srinivasan. Instrumenting idle time.
http://lkml.org/lkml/2008/1/8/243.

[14] Vaidyanathan Srinivasan. Instrumenting timers at
idle.
http://lkml.org/lkml/2008/3/2/109.

[15] Jinwoo Suh, Dong-In Kang, and Stephen P.
Crago. Dynamic power management of
multiprocessor systems. ipdps, 2:0097b, 2002.

[16] Arjan van de Ven. Irqbalance - handholding your
interrupts for power and performance.
http://irqbalance.org.

[17] Mark Weiser, Brent Welch, Alan Demers, and
Scott Shenker. Scheduling for reduced cpu
energy. In OSDI ’94: Proceedings of the 1st
USENIX conference on Operating Systems Design
and Implementation, page 2, Berkeley, CA, USA,
1994. USENIX Association.

[18] Fan Zhang and Samuel T. Chanson. Power-aware
processor scheduling under average delay
constraints. In RTAS ’05: Proceedings of the 11th
IEEE Real Time on Embedded Technology and
Applications Symposium, pages 202–212,
Washington, DC, USA, 2005. IEEE Computer
Society.

Choosing an application framework for your Linux mobile device

Shreyas Srinivasan and Phaneendra Kumar
Geodesic Information Systems
shreyas@geodesic.com

Abstract

Application Frameworks define the user experience.
For consumer mobile devices, choosing a feature-rich
and high-performance application framework becomes
a premium. Creators of Linux mobile devices have a
range of application frameworks (gtk/qt/efl) to choose
from, but this choice also makes it hard to pick a frame-
work which suits a specific set of requirements.

This paper evaluates various open source application
frameworks and their underlying technologies. It also
explains performance benchmarks of the frameworks on
different types of hardware and the capability of the
framework to use specific hardware features to improve
performance.

The Application frameworks which will be evaluated
are Gtk/Gnome, QT/KDE, Clutter/Tidy, and EFL/E.
The talk will present performance benchmarks of these
frameworks on Omap, Freescale, and Intel mobile pro-
cessors.

1 Introduction

User interfaces have become an important factor to de-
cide the popularity and success of a consumer device.
The launch of the IPhone has showed the importance
of a well designed and intuitive user interface, and has
heightened expectations of users all over the world. In-
creasingly, most processors have built-in floating-point
processors and support open standardes like Open GL
ES, so the ability to support fluid interfaces and anima-
tions exists.

Processors for embedded devices have largely been
dominated by ARM-based processors, but with X86
processors improving rapidly, it is important to under-
stand the current features and capabilities of each of
these architectures.

ARM

The ARM architecture has always dominated the em-
bedded device market due to its low power consump-
tion. There have been various versions of ARM
over time, but with performance improvements plateau-
ing, most ARM processors have chosen to add co-
processors to provide specialized performance to appli-
cations. Some of the widely used embedded processors
based on ARM are:

• OMAP
The Omap series of processors are based on ARM
Cortext A8. Different families can have co-
processors like PowerVR SGX 530 2D/3D and a
DSP Video accelerator. The OMAP 2430 proces-
sor range is used by Nokia for their internet tablets.

• Freescale I.MX
The I.MX range of processors by Freescale is based
on an ARM 1136JF-S core. Different families have
options of different co-processors like the VFP11
numeric processor, IPU, H.263/MPEG4 encoding
accelerator, and ARM MBX R-S graphics acceler-
ator. The I.Mx31 processor is used in the Microsoft
Zune.

X86

The X86 architecture has always been seen as the one
valid for desktops but unsuitable for embedded devices,
mainly due to power consumption. With the Menlow
family of processors, X86 processors can finally com-
pete with ARM ones, even in power consumption.

• Pentium Mobile
The Pentium mobile range of processors are X86-
based processors with 1 GHz processor, a built-
in FPU, and power consumption of 14.44 Watts.

• 199 •

200 • Choosing an application framework for your Linux mobile device

These are mainly used for laptops, but some de-
vices like the Founder also use this chip because of
its very high performance.

• Menlow
The Menlow (Atom) series of processors are the
first of Intel’s chips to foray into low power for
embedded hardware. The major difference is re-
moval of predictive instruction execution; this re-
duces power consumption. The Menlow range of
processors range from 800 MHz to 1.6 GHz, have
a built-in floating point unit, and consume just 5W
of power.

The trends of hardware means different requirements for
application platforms depending on the underlying ar-
chitecture.

2 Characteristics of a good Application
Framework

Timeline and Animation Support. Creating intuitive
and fluid interfaces requires a state-aware canvas
which can move different objects over a sequence
of coordinates with regards to time.

Hardware support. The ability to use specific hard-
ware features to increase performance is of pre-
mium importance. Embedded hardware-based ren-
dering has been standardized around OpenGLES.
This is particularly important on the ARM architec-
ture, where graphics performance can be consider-
ably improved by using the Graphical Processing
Unit and conserving the relatively low computa-
tional power of the CPU.

Multi Language Bindings. Multi Language bindings
make the application framework viable to a wide
variety of programmers.

Email Libraries. Email is one of the core applica-
tions. Email libraries which support a range of pro-
tocols like POP, IMAP, and Exchange are of great
importance.

Browser Support. Support for rendering and embed-
ding web pages is a powerful feature which enables
applications to enrich the user experience by sup-
porting local and cloud-based applications.

Multimedia. Capability of rendering video and audio.

Gstreamer EDS GtkWebkit Telepathy

Gtk

Pango Cairo ATK

Xlib Glib Dbus

Python,C,C++ Bindings

Figure 1: Architecture of Gnome Mobile Application
Framework

Inter Process Communication. Communication be-
tween various applications helps build a good user
experience.

This paper evaluates multiple application frameworks
and their performance in some of the aforementioned
categories.

3 Application Frameworks

Gnome Gtk

The GNOME Mobile Platform is a subset of the proven,
widely used GNOME Platform. The platform defini-
tion represents components that are currently shipping
in production devices.

• Components

1. Cairo
Cairo is a 2D graphics library with sup-
port for multiple output devices. Currently
supported output targets include the X Win-
dow System, Quartz, Win32, image buffers,
PostScript, PDF, and SVG file output. Exper-
imental backends include OpenGL (through
glitz), XCB, BeOS, OS/2, and DirectFB.

2. EDS
Evolution Data Server is a PIM server which
manages access to calendar, addressbooks,
and tasks. All these items are served over
Dbus.

2008 Linux Symposium, Volume Two • 201

3. GtkWebKit
WebKit/GTK+ is the new GTK+ port of the
WebKit, an open-source web content engine
that powers numerous applications such as
web browsers, email clients, feed readers, and
web and text editors.

4. GStreamer
GStreamer is a library that allows the con-
struction of graphs of media-handling com-
ponents, ranging from simple Ogg/Vorbis
playback to complex audio (mixing) and
video (non-linear editing) processing. Ap-
plications can take advantage of advances in
codec and filter technology transparently. De-
velopers can add new codecs and filters by
writing a simple plugin with a clean, generic
interface.

• Advantages

1. Existing precedent of devices which ship with
this platform.

2. Well defined roadmap and enthusiastic devel-
oper community.

3. High profile industry support.

4. Focus on minimal footprint.

5. Non-free codecs can be licensed on top of
gstreamer and shipped legally.

• Disadvantages

1. No current support for offscreen rendering.

2. Cairo OpenGL backend is extremely unsta-
ble.

3. Gobject API has a steep learning curve.

EFL E

• Components

1. Evas
Evas is a hardware-accelerated canvas API
for the X Window System that can draw anti-
aliased text, smooth super and sub-sampled
images, alpha-blend, as well as drop down
to using normal X11 primitives such as
pixmaps, lines, and rectangles for speed if
your CPU or graphics hardware is too slow.

OS(Kernel,libc,libX11,libjpeg,libpng,zlib)

Embryo EET EPEG/IMLIB2/EDB

Enl ightenment ETK

Evas

ECore

Epsilon

Edje

Ewl Esmart

Figure 2: Architecture of Enlightenment Foundation li-
braries

2. Ecore
Ecore is the core event abstraction layer and
X abstraction layer that makes doing selec-
tions, Xdnd, general X stuff, and event loops,
timeouts, and idle handlers fast, optimized,
and convenient. It’s a separate library so any-
one can make use of the work put into Ecore
to make this job easy for applications.

3. Edje
Edje is a graphical design and layout library
based on Evas that provides an abstraction
layer between the application code and the in-
terface, while allowing extremely flexible dy-
namic layouts and animations.

4. EWL
The Enlightened Widget Library (EWL) is a
high-level toolkit providing all of the widgets
you’ll need to create your application. The
expansive object-oriented-style API provides
tools to easily expand widgets and containers
for new situations.

5. Emotion
Emotion is a library providing video-playing
capabilities through the use of smart objects.
Emotion is based on libxine, a well estab-
lished video playing library, and so supports
all of the video formats that libxine supports,
including Ogg Theora, DiVX, MPEG2, etc.

• Advantages

1. Small Memory footprint

2. Evas is a state-aware canvas which supports
timeline-based animations.

202 • Choosing an application framework for your Linux mobile device

3. Evas has an OpenGL backend and hence can
be hardware accelerated.

• Disadvantages

1. Long release cycles.

2. Rapidly changing mainline; makes it hard to
keep up.

Clutter

X11, GLX,SDL,Opengles,OSX and EGL

Clutter

Clutter Cairo Clutter GST Clutter Webkit

Clutter Gtk Tidy

Figure 3: Architecture of Clutter

• Components

1. Clutter
Clutter uses OpenGL (and optionally
OpenGL ES for use on Mobile and embed-
ded platforms) for rendering, but with an API
which hides the underlying GL complexity
from the developer.

2. Clutter-GST
Clutter-GStreamer (clutter-gst) is an integra-
tion library for using GStreamer with Clut-
ter. GStreamer is a streaming media frame-
work, based on graphs of filters which oper-
ate on media data. Applications using this li-
brary can do anything from real-time sound
processing to playing videos, and just about
anything else media-related.

3. Clutter-Webkit
Clutter Webkit is an integration library which
allows HTML rendering on GL textures. This
could also provide hardware acceleration for
video rendering through the browser.

• Advantages

1. Clutter has a OpenGLES backend, which
makes it suitable for ARM-based devices
with a GLES-based GPU.

2. Most hardware provides gstreamer-based li-
braries for hardware codec support.

• Disadvantages

1. Clutter is not production-ready.

2. Tidy, the toolkit built on top of clutter, is still
nascent and does not have a comprehensive
set of widgets.

4 Benchmarks and suitability

Frame Rate

Frame rate, or frame frequency, is the measurement of
the frequency (rate) at which an imaging device pro-
duces unique consecutive images called frames. The
term applies equally well to computer graphics, video
cameras, film cameras, and motion capture systems.
Frame rate is most often expressed in frames per sec-
ond (FPS) and in monitors as Hertz (Hz). To create a
fluid interface, the underlying framework should at least
output between 25–30 frames per second. This section
benchmarks the frame rate across various hardware.

1. Intel Mobile Processor
The Intel Mobile Processor range consists of high-
performance chips which are mainly used in ultra-
mobile PCs.

• Hardware Specifications
• Processor: Intel Mobile 1 Ghz

• Memory: 1 GB

• Power Consumption: 14.44 Watts

2. Freescale IMX.31
The Freescale chip consists of an ARM 1136JF-S
core with an onboard GPU which supports Open-
GLES.

• Hardware Specifications
• Processor: 533 MHz

• Memory: 128 MB

• Power Consumption: 6.5 Watts

2008 Linux Symposium, Volume Two • 203

5

10

40

35

30

25

20

15

45

50

55

Cairo
(Software X11
/Xrender)

GLUT EFL GL QT

Frame
Per
Second

Framework

Figure 4: Frame Rate on Intel Mobile Processors

5

10

40

35

30

25

20

15

45

50

55

Cairo
(Software X11
/Xrender)

GLUT EFL QT

Frame
Per
Second

Framework

Figure 5: Frame Rate on Freescale I.MX 31

Quality vs. performance

Pixel-perfect drawing is necessary for accurate event
processing and coherent visual representation. Current
hardware access abstractions like OpenGL/GLES don’t
provide pixel-exact hardware aliasing. This may result
in substantial pain when trying to deal with constant user
input and interaction.

Time to draw 1000 polygons (i .mx31)

Cairo
XSurface

GLES

GLES with
Shading

Figure 6: Time taken to draw 1000 polygons

To understand the tradeoffs involved in rendering versus
quality, this test draws shaded polygons using OpenGL
and compares the time taken to draw 1000 such poly-
gons against a software-only API provided by Cairo. We
show the output of both tests to understand quality.

5 Future

As we compete with application frameworks like Cocoa,
FOSS application frameworks need to accomplish the
following:

1. Look nicer and feel intuitive
Implement aspects of physics and 3D to create a
new intuitive paradigm which feels natural and ex-
citing.

2. Easier to develop, extend, and deploy
Learning lessons from web development are ex-
tremely necessary, a bridge needs to be built be-
tween application developers and graphic artists.

3. Flexible design to handle multiple interaction
modes
Increasingly new methods to interact with the com-
puter are gaining popularity. An open design
which can easily handle multiple interaction modes
makes it easier to build quick support for new input
devices.

4. Established method for hardware acceleration
The FOSS application frameworks continue to
have a varied approach to hardware acceleration.
An accepted approach preferably using X (DRI)
would help in making it easy to differentiate one
framework from other on a functional basis while
also allowing them to work well in unison.

6 Conclusion

This paper analyzes and benchmarks various application
development frameworks. There are a lot of applica-
tion development frameworks which one can use right
now, but the ability to build cutting-edge, hardware-
accelerated interfaces is still in its infancy. We are still
seeing a multitude of approaches, all of which are works
in progress. Issues such as hardware acceleration, ani-
mation support, and multi-input handling all need more

204 • Choosing an application framework for your Linux mobile device

work to challenge current market leaders. The bench-
marks presented cover most of the important usage sce-
narios and various directions currently being pursued.

Making a decision on choosing an application platform
continues to be a subjective decision over a purely ob-
jective one. The current bout of approaches need to sta-
bilize for us to make a complete set of benchmark tests
which can help you decide one way or the other, for
sure!

References

[Keith] Keith Packard, Getting X Off The Hardware,
http://keithp.com/~keithp/talks/
xserver_ols2004/
xserver-ols2004-html/

[Zack] Zack Rusin, Benchmarking tesselation,
http://zrusin.blogspot.com/2006/
10/benchmarks.html

[Michael Dominic] Michael Dominic, OpenGL
Shaders and Cairo,
http://www.mdk.org.pl/2007/8/6/
vector-drawing-opengl-shaders-and-cairo

[OpenGLES] OpenGLES, OpenGLES 1.1 and 2.0
specification, http:
//www.khronos.org/registry/gles/
specs/1.1/es_full_spec.1.1.12.pdf

[Tim] Tim Janik, OpenGL for Gdk/Gtk+,
http://blogs.gnome.org/timj/2007/
07/17/17072007-opengl-for-gdkgtk/

[QT and OpenGL] Qt and OpenGL, QT and OpenGL,
http://doc.trolltech.com/3.3/
opengl.html

[GTK+3.0] GTK+3.0, Imendio’s GTK+ 3.0 vision,
http://developer.imendio.com/
sites/developer.imendio.com/
files/gtk-hackfest-berlin2008.pdf

[Carl] Carl Worth, EXA,
http://cworth.org/tag/exa/

SCSI Fault Injection Test

Kenichi Tanaka
NEC Corporation

k-tanaka@ce.jp.nec.com

Masayuki Hamaguchi
NEC Software Tohoku, Ltd.

m-hamaguchi@ys.jp.nec.com

Takatoshi Sato
NEC Software Tohoku, Ltd.
t-sato@wm.jp.nec.com

Kosuke Tatsukawa
NEC Corporation

tatsu@ab.jp.nec.com

Abstract

It has been widely recognized that the testing of Linux
kernel is important. However, error handling code is one
of the places where testing is difficult. In this paper, a
new block I/O test tool is introduced. This makes test-
ing of error handling codes easy. The new test tool has
driver level fault injectors which have flexible and fully
controllable interface for user level programs to simu-
late real device errors. This paper describes the detailed
design of the new test tool and a fault injector implemen-
tation for SCSI. Also, the usefulness of the new test tool
is shown by actual evaluation of Linux software RAID
drivers.

1 Introduction

There is an increasing opportunity to use Linux in en-
terprise systems, where the users expect very high relia-
bility. Storage is one of the areas for which the highest
reliability is required because its failure may cause sys-
tem downtime and data loss. For the case of hardware
failures, the operating system must provide high quality
error handling. That means thorough testing of the error
handling code is inevitable.

However, error handling code is one of the places where
testing is difficult. There are two reasons why evaluation
of error handling code is difficult;

• Error handling code is rarely executed. It can not
be tested just by running the system under normal
operation.

• Fault patterns vary. They can occur during various
timings, and it is difficult to thoroughly test each
combination.

Fault injection is a generally used technique to over-
come the difficulty by controlling the fault occurrence
and forcing the execution of error handling code. Sev-
eral fault injection methods are already available for
Linux but all of them lack either variety of fault pat-
terns or flexibility to inject faults as intended, which are
needed for systematic evaluation of error handling code.
For example, with the existing fault injection methods, it
is difficult to make a test program which tests error han-
dling code of a hard disk drive (HDD) access timeout
while the software RAID recovery is in progress.

In this paper, a new test tool with SCSI fault injection
is introduced. The test tool is capable of injecting SCSI
faults with realistic fault patterns and includes a set of
test programs to cover various combinations of fault
conditions. Since SCSI is the most widely used stor-
age subsystem in Linux, this test tool enables system-
atic evaluation of error handlings in Linux block device
drivers.

In section 2, design overview of the test tool and com-
parison with other existing fault injection tools are de-
scribed. Design and implementation details are ex-
plained in section 3. Section 4 shows an example of
evaluation using the test tool for Linux software RAID
drivers, that was the original motivation of developing
this test tool, and the result of the evaluation. We con-
clude in section 5 and explain possible future works.

2 Testing Error Handler Using SCSI Fault In-
jection

In order to systematically test error handling code using
fault injection for a target kernel component which is be-
ing tested, a set of test programs is necessary where each
individual test program checks whether a certain type of

• 205 •

206 • SCSI Fault Injection Test

fault occurring when the target kernel component is in a
certain state is handled correctly. It is necessary for the
test program to prepare the target kernel module to be in
the desired state, and then inject the desired fault on the
desired access which the test program will trigger, and
test if the result is correct.

In order to achieve this goal, the fault injector provides
an interface to specify the type of fault which will be
injected, and on which access will cause the injection.

2.1 Specifying the Type of Fault

The SCSI HDD fault patterns will be categorized to de-
termine the fault pattern which the fault injector has to
generate.

SCSI fault can be classified in two patterns. One is “The
SCSI device respond with an error” pattern, which is the
case when the drive explicitly returns an error condition
to the OS. The other is “The device does not respond”
pattern, which is the case when the drive does not return
any status to the OS resulting in a timeout. For example,
the former can be caused by media error and the latter
can be caused by SCSI cable fault.

Alternatively, HDD hardware fault can be divided into
temporary faults and permanent faults. A temporary
fault can be caused by an accidental and recoverable
HDD fault. A permanent fault can be caused by a se-
vere HDD fault.

Based on the type of access which will cause the fault
in each of the above four areas, we have categorized the
HDD faults into the following eight categories.

Temporary faults with error return can be classified into
the following two cases, based on the type of access.

1. Temporary read error – This type of fault is acciden-
tally caused by read access, which occurs just once.

2. Temporary write error – This type of fault is acci-
dentally caused by write access, which occurs just
once.

Permanent error with error return can be classified into
the following three cases.

3. Read error correctable by write – This type of fault is
a medium error which can be corrected by writing
data to the failed sector. After writing to the sector,
subsequent reads and writes will both succeed.

4. Permanent read error – This type of fault is a perma-
nent medium error on a particular sector. Any read
access to the sector fails, but write will succeed, be-
cause many disks can not detect errors while writ-
ing data to the medium.

5. Permanent read/write error – This type of fault is a
severe error. Both read and write fail permanently.

Temporary timeout errors can be classified into the fol-
lowing two cases, based on the type of request.

6. Temporary no response on read access – This type
of fault can be caused by congestion, resulting in
SCSI command timeout on a read access. After
the congestion disappears, both read and write ac-
cesses will succeed.

7. Temporary no response on write access – This type
of fault can be caused by congestion, resulting in
SCSI command timeout on a write access. After
the congestion disappears, both read and write ac-
cesses will succeed.

Practically, permanent timeout errors occur regardless
of the type of request, read or write. So we have only
one class for this type of error.

8. Permanent no response on either read or write access
– This type of fault is a device failure resulting in
SCSI command timeout. Both read and write re-
quests fail permanently.

2.2 Specifying the Access to Trigger the Fault

Fault location of a SCSI HDD can be identified by the
disk device and the failed sector within the disk. In
Linux, the disk device can be specified by the major
number and minor number of the block device.

The failed sector can be specified by the sector num-
ber. However it is difficult for a user-level test program
to be aware of the sector number. So, the fault injec-
tor also accepts either the file system block number or
the inode number to specify the fault location. Those
numbers will be automatically converted to the corre-
sponding sector number by the fault injector.

2008 Linux Symposium, Volume Two • 207

2.3 Design Comparison with Existing Methods

Several methods have already been proposed for inject-
ing faults into block I/O processing, which can be used
for evaluation of block I/O error handling code;

• Linux scsi_debug driver – This is a SCSI low
level driver used for debugging. This driver cre-
ates a simulated SCSI device using a ramdisk and
is capable of injecting various SCSI faults when ac-
cessed. However, the condition for injecting faults
is limited. For example medium error can only be
injected by accessing sector 0x1234 [6].

• Linux Fault Injection Framework – This kernel fea-
ture, which was merged into 2.6.20 kernel, is used
to inject various types of errors into Linux kernel.
The framework also supports I/O fault injection,
but the fault pattern it can simulate is very limited.
For example, it can not inject faults to simulate de-
vice timeouts.

• Using special hardware – This method uses special
hardware for fault injection such as failed HDD.
The most precise evaluation result can be obtained
since actual hardware is used to inject faults. How-
ever, the availability of such hardware is very lim-
ited and they are typically expensive.

These existing fault injection methods do not have
enough flexibility to inject various faults into the sys-
tem as intended, which is needed for systematic evalu-
ation of error handling code. The proposed SCSI fault
injector described in this paper has a following benefits
compared with existing methods.

• A flexible fault injection trigger – The SCSI fault
injector can trigger a fault on accessing the user
specified location of any SCSI device, which is
missing in the scsi_debug driver.

• A realistic fault simulation – The SCSI fault injec-
tor can simulate a realistic fault condition by in-
serting a fault generation code in the SCSI driver,
which is missing in the Linux Fault Injection
Framework.

• No needs for external hardware – The SCSI fault
injector provides a realistic fault simulation with-
out any external hardware. Also it does not require
software modification including Linux kernel.

3 SCSI Fault Injector

In this section, the design and implementation of the
SCSI fault injector is explained in detail.

The SCSI fault injector is implemented as a set of Sys-
temTap scripts. SystemTap is used to track information
when an I/O request is passed between various layers
within the kernel, and to add a hook to inject a fault.

SystemTap provides infrastructure to embed a hook in
the kernel dynamically, and to change the value of vari-
ables or function return values. Also, SystemTap makes
it possible to keep these values in SystemTap variables.
By using SystemTap, a fake response from a SCSI de-
vice can be created as if a SCSI device had reported an
error to the OS [7].

The SCSI fault injector takes a fault pattern and a trig-
ger condition as arguments from a test program. Once
started, the injector tracks I/O requests and injects a fault
if the condition is met.

The fault injection works in 2 steps.

1. Identify the target SCSI command matching the
user-specified condition

2. Inject a fault in the processing of the target SCSI
command

3.1 Identifying the target SCSI command

The flow of block I/O processing from a user space test
program to the SCSI middle layer is described. Also it is
explained how the SCSI fault injector tracks the request
to identify the target SCSI command in the flow.

A test program can initiate an I/O request with a read or
write system call to the Linux kernel (see Figure 1).

The system call is sent to filesystem layer and eventually
translated into a struct bio, which is passed to the
block I/O layer by the submit_bio() function.

The bio contains the necessary information for per-
forming I/O. Especially, a bio has bi_sector and
bi_size, which represent the logical I/O destination
of the target block device and access length respectively
at the beginning of submit_bio().

208 • SCSI Fault Injection Test

user-space test program

submit_bio()

BIO

 md RAID1

BIO

generic_make_request()

SCSI Command

To low level driverscsi_dispatch_cmd()

The final destination
is found

Internally
allocated BIO

 SCSI middle
 layer

BIO

make_request()

BIOBIO

REQUEST

System call

SCSI Device

Figure 1: I/O flow from userspace to SCSI device

The software RAID driver resides in the middle of the
block I/O layer. If software RAID is used, a bio is also
generated by the software RAID driver, and the physical
I/O destination and access length are stored in the bio
accordingly.

Then, the bio is converted to a struct request.
At that time, the bi_sector and bi_size of bio
are stored in sector and nr_sector of request.
request also includes a rq_disk member which
links to struct gendisk representing the associ-
ated disk. The gendisk includes major and minor
number of the disk.

Next, the request is sent to the SCSI middle layer
from the I/O scheduler in a form of struct scsi_
cmnd, which represents a SCSI command and it is
linked to an associated request.

The physical I/O destination can be retrieved from
scsi_cmnd through associated request’s sector
member. A physical I/O access length can be retrieved
from scsi_cmnd’s request_bufflen member.

Also, the target device of the SCSI command is found
in the associated request’s rq_disk member.

The SCSI command is issued to SCSI devices through
SCSI lower level drivers. The command result is sent to
SCSI middle layer and handled accordingly. When the
command completed, the result is sent back to the block
I/O layer.

The target SCSI command corresponding to the I/O re-
quest needs to be identified to inject a SCSI fault trig-
gered by the I/O request represented by a bio. The
SCSI fault injector will find the bio which corresponds
with the trigger I/O request from the test program, find
the bio sent to the SCSI middle layer, and finally find
the SCSI command which corresponds to the bio re-
quested from the block I/O layer. The target SCSI com-
mand is found by tracking the bio in the I/O flow
described above, and comparing its members with a
scsi_cmnd (see Figure 2).

Linux block I/O is classified into two types; cached I/O
and direct I/O. Both types use submit_bio() func-
tion and struct bio to send a request to the block
layer. The inode number of the file corresponding to
the I/O request can be identified from struct bio
for cached I/O or from struct dio for direct I/O.

At submit_bio(), which is the entry of block layer,
the target struct bio can be distinguished by com-
paring block number, access length, inode number, and
access direction taken from bio or dio, with those
given by a test program. By tracking the bio in the
I/O flow, the bio which contains the physical I/O desti-
nation, can be identified.

Before issuing a SCSI command to SCSI devices, the
SCSI fault injector identifies the target SCSI command
by comparing information taken from scsi_cmnd
with that information given by the test program and
taken from target bio found in the previous step. The
compared information includes physical I/O destination,
access length, access direction, and device major/minor
number.

The struct scsi_cmnd representing the target
SCSI command identified in this process is saved in a
SystemTap variable for later use.

3.2 Injecting SCSI fault

First, the method to inject a fault for a single disk access
is explained. Next, we show how each fault pattern de-

2008 Linux Symposium, Volume Two • 209

submit_bio()

 md RAID1

 Filesystem

generic_make_request()

To low level driverscsi_dispatch_cmd()

 SCSI middle
 layer

make_request()

 Block I/O

scsi_cmnd
- maj/min num
- destination
- access len
- direction

- maj/min num
- inode num
- block num
- direction

BIO
 bi_sector
 bi_size
 bi_rw

inode number

given

Compare to find
target BIO

Compare to
find SCSI
command

Track a
corresponding
BIO

BIO
 bi_sector
 bi_size
 bi_rw

unplug_fn()

user-space test program

DIO
 BIO
 inode

BIO
 bi_sector
 bi_size
 bi_rw

Figure 2: Block I/O tracking from BIO to SCSI com-
mand

scribed in Section 2.1 can be generated by changing the
behavior in sequence.

3.2.1 Fault Injection Method

Once the target SCSI command is found, the SCSI fault
injector modifies the target SCSI command both before
issuing it to the lower layer driver and after returning the
result, to simulate a SCSI fault.

The implementation details of “The SCSI device re-
spond with an error” pattern and “The device does not
respond” pattern described in Section 2.1 are as follows.

Error Response Case

To simulate device error response, modification of the
result of the target SCSI command is needed to fake an
error response to the upper layer. Also, actual data trans-
fer generated by the SCSI command should not com-
plete because when a real SCSI fault occurs, the DMA
buffer may contain incomplete data (see Figure 3).

SCSI disk

 Upper layer

 SCSI middle layer

I/O request

SCSI Command

Issue a command

scsi_dispatch_cmd()

Receive a command
result from device

Replace
with a fake
result

reply from device

Changed
SCSI Command

Command Result

scsi_decide_dispos-
ition()

SCSI ERROR

Change data
length to 0

Changed
Command Result

I/O ERROR

Find the target
SCSI command

Error handling

Figure 3: Simulating a fault with error response

For simulating incomplete data transfer to test whether
the poisoned data is not sent to the upper layers, the
data transfer length of the SCSI command is modified
before issuing the SCSI command. When entering the
scsi_dispatch_cmd() function before issuing a
target SCSI command to lower layer driver, the data
transfer length in scsi_cmnd->cmnd is overwritten
to be zero. By this modification, the actual data transfer
will not happen as expected.

To simulate error response, the result of target SCSI
command needs to be modified before it is sent back
to the upper layer. The SCSI command result is
analyzed to be sent back to the upper layer in the
scsi_decide_disposition() function. At the
beginning of the function, to identify the target SCSI
command, a scsi_cmnd which is given as an argu-
ment of the function is compared with the scsi_cmnd
previously saved in a SystemTap variable. If it is the
target command, the result stored in scsi_cmnd
is modified using SystemTap so that the OS detects
a medium error which is the most common HDD

210 • SCSI Fault Injection Test

SCSI disk

 Upper layer

 SCSI middle layer

I/O request

No command is issued to the device

scsi_dispatch_cmd()

 Command Result

 Timeout handler

Skip issuing the
SCSI command
to the device

I/O ERROR

Find the target
SCSI command

Error handling

SCSI Command

SCSI Command Timeout handling
including retry

A “real” SCSI
command timeout
occurs

Pretend issuing
success

 Command TIMEOUT

Figure 4: Simulating a fault with no response

error. More precisely, the following error values are
stored in scsi_cmnd respectively; (scsi_cmnd.

result, scsi_cmnd.sense_buffer[2], scsi_

cmnd.sense_buffer[12], scsi_cmnd.sense_

buffer[13]) = (2, 3, 11, 4). This means
“medium error, unrecovered read error, auto reallocated
fail” which is one of the medium errors. Then, the
changed status will be sent back to the upper layer.

No Response (Timeout) Case

The target SCSI command issued to the low level driver
is skipped to simulate no device response (see Figure 4).

All SCSI commands are sent to low level drivers by the
queuecommand operation in the Linux SCSI middle
layer. If the queuecommand operation is skipped, the
upper layer thinks that SCSI command is issued suc-
cessfully. But actually it is not issued, consequently the
SCSI command results in a timeout.

When the target scsi_cmnd is given as an argu-
ment of the scsi_dispatch_cmd() function, the
queuecommand operation is skipped by using Sys-
temTap.

3.2.2 Fault Patterns

A single error caused by a SCSI fault (medium error or
timeout) can be injected as previously explained. The
target SCSI command may be detected several times at
scsi_dispatch_cmd() after accessing the faulty
disk from the test program once, because the error han-
dling code of the upper layer may retry the failed I/O
request by an error handling code. The fault patterns
described in Section 2.1 can be created by changing
the SCSI command manipulation behavior at scsi_
dispatch_cmd() in sequence as follows.

1. Temporary read error

2. Temporary write error – When a target SCSI com-
mand is detected at scsi_dispatch_cmd(),
inject a fault just once. If the target SCSI command
is detected at scsi_dispatch_cmd() again,
the fault will not be injected any more.

3. Read error correctable by write – In this case,
a fault is injected for read access to the tar-
get sector until error handling code tries to write
data to the sector by tracking scsi_dispatch_
cmd(). After the error handling code writes to the
target sector, no fault will be injected because the
error sector is assumed to be corrected.

4. Permanent read error

5. Permanent read/write error – When a target
SCSI command is detected at scsi_dispatch_
cmd() the fault is injected every time.

6. Temporary no response on read access

7. Temporary no response on write access – If a target
SCSI command is detected at scsi_dispatch_
cmd(), inject a fault by using “No Response
(Timeout) Case” method. If the target SCSI com-
mand is detected at scsi_dispatch_cmd()
again, the fault will not be injected again.

2008 Linux Symposium, Volume Two • 211

8. Permanent no response on both read and write ac-
cess – A “No Response (Timeout) Case” fault will
be injected every time a target SCSI command is
detected at scsi_dispatch_cmd().

Thus, all HDD fault patterns can be simulated.

4 Linux Software RAID Evaluation Using
SCSI Fault Injection Test Tool

This section describes an example of evaluation using
the proposed test tool by applying it to test error han-
dling in the software RAID drivers.

The software RAID drivers were evaluated by injecting
various SCSI faults to various RAID drivers and check-
ing if SCSI middle layer and software RAID driver error
handling code work properly.

First, the expected behavior of the fault handling code is
explained for each fault pattern described in Section 2.1.
Next, the test environment and procedure are explained.
Finally, the test results and detected bugs are shown.

4.1 Expected Error Handling of Software RAID

The following are the expected error handling behavior
of normal RAID array for each of the HDD fault patterns
defined in Section 2.1. The test program will check if the
system will behave this way when the fault is injected.

1. Temporary read error – The SCSI layer detects a
read error and the error handler in the RAID driver
retries the failed sector. The I/O completes suc-
cessfully.

2. Temporary write error – The SCSI layer detects a
write error and the RAID driver’s error handler will
detach the failed disk immediately. The I/O com-
pletes successfully because the write access is is-
sued to both failed disk and redundant disk. The
error is recorded in syslog.

3. Read error correctable by write – After detecting
a read error, the RAID driver retries once, which
also fails, the RAID driver may try to write data to
the failed sector and re-read from the failed sector.
The failed sector will be corrected and the subse-
quent reads will succeed. The write fix behavior is
recorded in syslog.

4. Permanent read error – This is the case that a read
access fails even after sector correction attempts.
As a result, the RAID driver will detach the failed
device, read access is issued to another mirror disk,
and the I/O completes successfully. The error is
recorded in syslog.

5. Permanent read /write error – When a fault is trig-
gered by read access, the error handling behavior
is same as “Permanent read error.” When a fault is
caused by write access, it is the same as “Tempo-
rary write error.”

6. Temporary no response on a read access – The
SCSI layer detects timeout on target read access
and the error handler of the SCSI layer retries the
SCSI command. After the SCSI layer gives up, the
read error is sent to the RAID driver. After that,
the behavior is the same as “Temporary read error”
and the I/O completes successfully.

7. Temporary no response on a write access – In this
case, timeout detection and error handling by SCSI
layer is same as “Temporary no response on a read
access.” After the write access error is sent to the
RAID driver, the behavior is the same as “Tempo-
rary write error” and the failed disk is detached and
the I/O completes successfully.

8. Permanent no response on both read and write ac-
cess – This case is the same as “Temporary no re-
sponse on a read access” for timeout detection and
error handling by SCSI layer, and the read/write
request error is sent to the RAID driver. After that
the behavior is the same as “Permanent read/write
error” and the failed disk is detached and the I/O
completes successfully.

4.2 Test Environment

The following test environment was used for the evalu-
ation.

• A server with a single Xeon CPU, 4GB of RAM,
and six 36GB SCSI HDDs.

• Fedora 7(i386) running Linux kernel 2.6.22.6

• The tested software RAID drivers were md RAID1,
md RAID10, md RAID5, md RAID6, and dm-
mirror in the following array conditions.

212 • SCSI Fault Injection Test

The hardware fault can occur on any of the disks con-
stituting a software RAID volume. Evaluation was done
for each case where the fault was injected when access-
ing each of the following disks in the software RAID
volume.

1. Active disk of redundant (normally working) array
with spare disks – In this case the failure occurs in
one of the disks constructing a RAID array, which
has redundancy with spare disks. If a disk is de-
tached from this array as a result of the fault, the
RAID array will start recovery using a spare disk.

2. Active disk of redundant array without spare disks
– In this case, failure occurs in one of the disks
constructing a RAID array, which has redundancy,
but no spare disk. If a disk is detached from this
RAID array as a result of the fault, it will lose its
redundancy and become a degraded array.

3. Active disk of degraded array – In this case, fail-
ure occurs in one of the disks constructing a RAID
array, which has no redundancy. If a disk is de-
tached from this array as a result of the fault, the
RAID array will collapse because this array has no
redundancy.

4. Active disk of recovering array – In this case, fail-
ure occurs in one of the disks constructing a RAID
array, on which the recovery process of the de-
graded array is running.

5. Resyncing disk of recovering array – In this case,
failure occurs in a disk which is currently resyncing
in the recovery process of the degraded array.

4.3 Test Procedure

The following procedure was performed in the evalua-
tion.

• Install the OS on one of the SCSI disks. Using the
rest of the SCSI disks, each of which has a single
8GB ext3 partition, construct a software RAID ar-
ray.

• Inject various patterns of HDD fault defined in Sec-
tion 2.1 to various conditions of software RAID ar-
ray defined in Section 4.2. The fault injections are
triggered by accessing a file located in the tested
RAID device.

• Check if the target I/O request results in a SCSI er-
ror and inspect if the SCSI error is treated properly
by error handler of the SCSI layer and the software
RAID driver.

Since a set of operations needs to be repeated for all
of the many test patterns, the evaluation used the test
program to automatically perform the following works.

• Configure one of the five software RAID types (md
RAID1, md RAID10, md RAID5, md RAID6, and
dm mirror.)

• Set one of the five status of a RAID condition de-
scribed in Section 4.2.

• Invoke one of eight SystemTap scripts correspond-
ing to one of the HDD fault patterns defined in Sec-
tion 2.1.

• Generate a SCSI I/O to inject a fault and log the
results.

• Loop through all combinations to cover all patterns
automatically.

The test program was implemented as a set of shell
scripts.

4.4 Bugs Detected in the Software RAID Drivers
Evaluation

All combinations of RAID volume types, fault patterns,
and RAID volume conditions were tested. The evalu-
ation revealed the following bugs related to error han-
dling of software RAID.

md RAID1 issue is as follows:

• The kernel thread of md RAID1 could cause a
deadlock when the error handler of md RAID1
contends with the write access to the md RAID1
array [2].

md RAID10 issues are as follows:

• The kernel thread of md RAID10 could cause a
deadlock when the error handler of md RAID10
contends with the write access to the md RAID10
array [2].

2008 Linux Symposium, Volume Two • 213

• When a SCSI command timeout occurs dur-
ing RAID10 recovery, the kernel threads of md
RAID10 could cause a md RAID10 array deadlock
[3].

• When a SCSI error results in disabling a disk dur-
ing RAID10 recovery, the resync threads of md
RAID10 could stall [4].

dm-mirror issue is as follows:

• dm-mirror’s redundancy doesn’t work. A read er-
ror detected on a disk constructing the array will be
directly passed to the upper layer, without reading
from the other mirror. It turns out that this was a
known issue, but the patch was not merged [1].

All these bugs have already been reported to the com-
munity and a fix will be incorporated into future ker-
nels. Many bugs found in our evaluation were caused by
race conditions between the normal I/O operation and
threads in the RAID driver. Probably such bugs were
hard to detect. However the proposed test tool using
SCSI fault injection was able to find such issues.

5 Conclusion and Future Works

The evaluation result proves that the proposed test tool,
which is a combination of the SCSI fault injector and
test programs, has the powerful functionality to inject
various patterns of HDD fault on various configurations
of a software RAID volume to be used for error handler
testing. Especially, the flexible user interface of the pro-
posed SCSI fault injector, which existing test methods
do not have, realizes a user-controllable fault injection.
Also, by applying the proposed test tool, some delicate
timing issues in Linux software RAID drivers are found,
which are difficult to detect without thorough testing.
Therefore, it can be concluded that the proposed test
tool using SCSI fault injection is useful for systematic
SCSI block I/O test.

The authors are planning to propose the SCSI fault in-
jector to SystemTap community so that the injector be-
comes available as a SystemTap-embedded tool. Con-
tribution of the injectors for other drivers are welcome
as the wider set of fault injectors can form a more gen-
eralized block I/O test framework.

Acknowledgments

This project is supported by the Information Technology
Promotion Agency (IPA), Japan.

References

[1] Announcement of SCSI fault injection test
framework (mail archive).
http://marc.info/?l=linux-raid&m=
120036612032066&w=2.

[2] Bug report of md RAID1 deadlock problem (mail
archive). http://marc.info/?l=
linux-raid&m=120036652032432&w=2.

[3] Bug report of md RAID10 kernel thread deadlock
(mail archive). http://marc.info/?l=
linux-raid&m=120289135430654&w=2.

[4] Bug report of md RAID10 resync thread deadlock
(mail archive). http://marc.info/?l=
linux-raid&m=120416727002584&w=2.

[5] Fault Injection Test project site on SourceForge.
https://sourceforge.net/projects/
scsifaultinjtst/.

[6] scsi_debug adapter driver. http:
//sg.torque.net/sg/sdebug26.html.

[7] SystemTap project site. http://sourceware.
org/systemtap/index.html.

214 • SCSI Fault Injection Test

A Survey of Virtualization Workloads

Andrew Theurer
IBM Linux Technology Center
habanero@us.ibm.com

Karl Rister
IBM Linux Technology Center

kmr@us.ibm.com

Steve Dobbelstein
IBM Linux Technology Center

steved@us.ibm.com

Abstract

We survey several virtualization benchmarks, including
benchmarks from different hardware and software ven-
dors, comparing their strengths and weaknesses. We
also cover the development (in progress) of a new vir-
tualization benchmark by a well known performance
evaluation group. We evaluate all the benchmarks’ ease
of use, accuracy, and methods to quantify virtualization
performance. For each benchmark, we also detail the ar-
eas of a virtualization solution they stress. In this study,
we use Linux where applicable, but also use other oper-
ating systems when necessary.

1 Introduction

Although the concept of virtualization is not new [1],
there is a recent surge of interest in exploiting it. Vir-
tualization can help with several challenges in comput-
ing today, from host and guest management, energy
consumption reduction, reliability, and serviceability.
There are now several virtualization offerings, such as
VMware R© ESX [2], IBM PowerVMTM , Xen [3][4] tech-
nology from Citrix, Virtual Iron, RedHat, and SUSE,
and Microsoft R© Windows Server R© 2008 Hyper-V [5].
As the competition heats up, we are observing a growth
of performance competitiveness across these vendors,
yielding “marketing collateral” in the form of bench-
mark publications.

1.1 Why are Virtualization Benchmarks Different?

A key difference in benchmarking a virtualization-based
solution is that a hypervisor is included. The hypervi-
sor is responsible for sharing the hardware resources for
one or more guests in a safe way. The use of a hypervi-
sor and the sharing of hardware can introduce overhead.
One of the goals of benchmarking virtualization is to
quantify this overhead and ideally show that virtualiza-
tion solution X has lower overhead than virtualization

solution Y. Another difference in benchmarking virtu-
alization is that the benchmark scenarios can be very
different than one without virtualization. Server consol-
idation is such a scenario. Server consolidation may not
typically be benchmarked without the use of a hypervi-
sor (but not out of the realm of possibility; for example,
containers may be used). Server consolidation bench-
marks strive to show how effective a virtualization so-
lution can host many guests. Since many guests can be
involved in this scenario, it may require the use of sev-
eral benchmarks running concurrently. This concept is
not common on traditional benchmarks.

2 Recently Published Benchmarks

The following are virtualization benchmarks with pub-
lished specifications and run rules that users can repli-
cate in their own environment. These benchmarks strive
to set a standard for virtualization benchmarking. In
this section, we discuss the strengths and weaknesses
of these benchmarks.

2.1 vConsolidate

The vConsolidate benchmark [6] was developed by
Intel R© to measure the performance of a system running
consolidated workloads. As one of the earlier proposals
for a virtualization benchmark, vConsolidate was writ-
ten to prompt the industry to discuss how the perfor-
mance of a system running with virtualization should be
measured.

vConsolidate runs a benchmark for a web server, a mail
server, a database server, and a JavaTM server, each in a
separate guest. There is also a guest that runs no bench-
mark, which is meant to simulate an idle server. These
five guests make up a consolidation stack unit, or CSU,
as illustrated in Figure 1.

The tester starts with running 1 CSU, obtaining the
benchmark score and the processor utilization of the

• 215 •

216 • A Survey of Virtualization Workloads

CSU 1 CSU 2 CSU 3
Idle Idle Idle

Java Java Java

Database Database Database

Mail Mail Mail

Web Web Web

Figure 1: Consolidation stack units

system. The tester does three iterations and then uses the
median score and its processor utilization. The tester in-
crementally adds additional CSUs, recording the bench-
mark score and processor utilization, until the bench-
mark score for the set of N CSUs is less than the score
for N-1 CSUs, or until all the system processors are fully
utilized. The final benchmark score is the maximum of
the scores reported along with the number of CSUs and
the processor utilization for that score.

The vConsolidate benchmark score is calculated by
first summing each of the component benchmark scores
across the individual CSUs. The sums are then normal-
ized against the score of the benchmark running on a
reference system, giving a ratio of the sum compared to
the score of the reference platform. The reference sys-
tem scores can be obtained from a 1 CSU run on any
system. It is Intel’s desire to define a “golden” reference
system for each profile. The vConsolidate score for the
test run is the geometric mean of the ratios for each of
the benchmarks. Figure 2 shows sample results from a
vConsolidate test run. In this example, the maximum
score was achieved at 4 CSUs with a processor utiliza-
tion of 78.3%.

The reporting of the processor utilization along with the
score is not common. Most standard benchmarks sim-
ply report the benchmark score and are not concerned
with the processor utilization. The processor utilization,
however, is a useful metric in characterizing the per-
formance of the system running the consolidated work-
loads. It can also be useful in spotting performance is-
sues in other areas of the system (for example, disk I/O,
network), for example, when the score starts dropping
off before the processors get fully utilized, as seen in
Figure 2.

 0

 1

 2

 3

 4

 5

1-CSU

2-CSUs

3-CSUs

4-CSUs

5-CSUs

 0

 20

 40

 60

 80

 100

vC
on

so
lid

at
e

sc
or

e

P
ro

ce
ss

or
 u

til
iz

at
io

n

vConsolidate score Processor utilization

Figure 2: Sample results for vConsolidate

2.1.1 Benchmark Implementation

vConsolidate specifies which benchmarks are run for
each of the workloads: WebBenchTM [7] from PC Maga-
zine for the web server, Exchange Server Load Simula-
tor (LoadSim) [8] from Microsoft for the mail server,
SysBench [9] for the database server, and a slightly
modified version of SPECjbb2005 [10] for the Java
server.

WebBench is implemented with two programs—a con-
troller and a client. The controller coordinates the run-
ning of the WebBench client(s). vConsolidate uses only
one client program, which runs eight engine threads.
The client and the controller can be run on the same
system because neither is processor intensive. The only
interface to WebBench is through its GUI, making it dif-
ficult to automate.

vConsolidate indirectly specifies which mail server to
run. Microsoft’s LoadSim only works against a Mi-
crosoft Exchange Server, therefore, the mail server must
be Exchange Server running on the Windows operating
system. Although it runs in a GUI, LoadSim can be eas-
ily automated because it can be started from the com-
mand line.

vConsolidate runs a version of SysBench that has been
modified so that it prints out a period after a certain num-
ber of database transactions. The output is then redi-
rected to a file, which is processed by vConsolidate to
calculate the throughput score.

vConsolidate has instructions for modifying the
SPECjbb2005 source to add a think time, so that the test

2008 Linux Symposium, Volume Two • 217

doesn’t run full bore, and to have it print out some statis-
tics at a periodic interval. The output is then redirected
to a file that is processed by vConsolidate to calculate
the throughput score. The benchmark specifies the ver-
sion of Java to run: BEA R© JRockit R© 5.0.

One observation of the benchmark implementation is
that most of the workloads are modified or configured
such that the benchmark does not run all out, but sim-
ulates a server running with a given load. LoadSim is
configured to run with 500 users. SysBench is config-
ured to run only four threads. SPECjbb2005 is modified
to add a delay. However, WebBench is not modified to
limit its load. The delay time and think time are both
zero. It may be that this is an oversight of the bench-
mark configuration. Or it may be that even with no de-
lay and no think time that WebBench does not generate
enough load to consume the network and/or processor
utilization on the server. That is, WebBench may gener-
ate a moderate load even with the delay and think time
set to zero.

Certain components of vConsolidate are portable
to other applications and other operating systems.
WebBench makes standard HTTP requests, conse-
quently it doesn’t matter which web server software is
run nor the OS on which it runs. The POSIX version
of SysBench has support for MySQL, PostgreSQL, and
Oracle R© database, making it conceivable that vConsol-
idate could be easily modified to use those databases.
SPECjbb will run on any OS that has a Java Virtual
Machine. SPECjbb will also run on any Java Vir-
tual Machine (JVM), so although vConsolidate specifies
JRockit 5.0, it is conceivable that it could run with any
other JVM. Other components of vConsolidate are not
portable, e.g., the mail benchmark is LoadSim which re-
quires Microsoft Exchange Server. vConsolidate could
be made more portable by not requiring specific soft-
ware, e.g., JRockit 5.0, and by using more portable, in-
dustry standard bench marks, such as SPECweb2005 for
the web server and SPECmail2008 for the mail server.

However, vConsolidate has achieved its purpose of get-
ting the discussion started on benchmarking virtualiza-
tion. Intel is not concerned with trying to make vConsol-
idate and industry standard benchmark. Comments on
how to improve the benchmark are now being fed to the
Standard Performance Evaluation Corporation (SPEC)
and they are developing an industry standard benchmark
for virtualization. In fact, the portability issue is still up
for debate among the SPEC members. Some are of the

mind that the benchmark should specify the software
and benchmarks used so that fair comparisons can be
made between different hardware platforms. Others see
that specifying the software and benchmarks favors the
software selected, does not allow for comparisons to be
made between software stacks, and reduces the concept
of the benchmark being open.

2.1.2 Running the Benchmark

As mentioned above, the test setup requires client ma-
chines to run LoadSim and to run the WebBench con-
troller and client. In the current version of vConsoli-
date (1.1), each client runs one instance of LoadSim and
one instance of the WebBench controller and client. Es-
sentially, one machine runs all of the client drivers for
one CSU. This is an improvement over the previous ver-
sion of vConsolidate that specified separate clients for
LoadSim and WebBench. Having one client machine
per CSU makes for an easier test setup, not to mention
the savings in hardware, energy, and rack space.

The test setup also requires one machine to run the
vConsolidate controller. The controller coordinates the
start and stop of each test run so that all benchmarks
start at the same time via a daemon that runs on the
LoadSim and WebBench clients, and on the database
and Java servers. The controller kicks off the LoadSim
clients first and then delays some time to let the Load-
Sim clients finish logging into the mail servers before
starting the other benchmarks. The controller collects
the benchmarks’ results when the run is complete.

The vConsolidate controller, LoadSim client, and
WebBench controller and client are all Windows appli-
cations. As with the servers, this prevents a person from
running a single OS other than Windows for the test bed.
When testing a Linux environment one must still deal
with Windows clients.

vConsolidate has nice automation of the benchmarks.
The Linux daemons kickoff and kill a run.sh script to
start and stop the test, respectively. The run.sh script
can can have any commands in it. We were able to add
commands to run.sh to kickoff and kill profilers. The
Windows daemon is capable of starting and stopping
LoadSim and is able to press the “Yes” button on the
WebBench GUI to start WebBench.

On the other hand, vConsolidate itself is hard to auto-
mate. Much of this arises from a common mentality

218 • A Survey of Virtualization Workloads

when writing a Windows application, which is to as-
sume that everything is controlled by a user sitting in
front of the screen. Many Windows benchmarks are
written with GUIs that are nice for user interaction but
terrible for automating the benchmark. We have a so-
phisticated, well-developed automation framework for
running benchmarks that allows us to, for example, kick
off a batch of benchmarks to be run over night and come
back in the morning and look at the results. It is dif-
ficult to run GUI-based benchmarks from the scripted
automation framework.

The vConsolidate controller uses a GUI interface. Thus,
you cannot automate a test run suite of 1, 2, and 3 CSUs,
for example. Each test run must be started by a user
pressing the “Start!” button on the vConsolidate GUI.
It would be nice if vConsolidate could be started from a
command line, thus enabling it to be scripted.

Our test runs of vConsolidate used a version prior to
1.1 which required the user manually to press a “Stop!”
button when the WebBench clients finished. The tester
had to keep an eye on the WebBench tests and when
they finish, go to the vConsolidate controller and push
the “Stop!” button. If the tester was not alert, he could
miss the end of the test run and end up with bad re-
sults because the other benchmarks would have con-
tinued to run beyond the end of the WebBench test
and would have logged throughput numbers including
the time when WebBench was not running. We man-
aged to automate the test termination by making use of
EventcorderTM [11], a Windows program for automating
keyboard and mouse input. vConsolidate version 1.1 ad-
dressed this issue and will stop the tests by itself.

As mentioned above, vConsolidate uses WebBench to
test the web server. WebBench is also a GUI-based
Windows benchmark. For each test run, and for each
client, the tester must manually setup the test on the
WebBench controller up to the point of clicking the
“Yes” button to start the test. The vConsolidate con-
troller does coordinate the pushing of the Yes button on
all the WebBench controllers at the same time so the
tests start at the same time. However, the tester must
manually setup each WebBench controller before each
test run. This could be avoided by using a more recent
benchmark (WebBench is six years old) that is not GUI-
based, such as SPECweb2005.

vConsolidate is still a work in progress. Some issues,
such as test termination, have been addressed. Other is-

sues have been deferred to the SPEC virtualization work
group. We hope to see many of the issues raised here ad-
dressed in future releases of the benchmark.

2.2 VMmark

We must note up front that we have not had any hands-
on experience with VMmarkTM . The following analysis
is based on the paper VMmark: A Scalable Benchmark
for Virtualized Systems [12].

VMmark was developed by VMware R©. VMmark was
the first performance benchmark for virtualization. Like
vConsolidate, VMmark is a benchmark to measure the
performance of a system running consolidated work-
loads. And like vConsolidate, VMmark runs a bench-
mark for a web server, a mail server, a database server,
and a Java server, and has an idle server. VMmark adds
another benchmark for a file server. In VMmark’s ter-
minology, the combination of the six guests is called a
tile.

VMmark constrains each of its benchmarks so that it
runs at less than full capacity so that it emulates a server
that is usually running at less than full capacity. A given
tile should then generate a certain amount of load on
the system. The tester starts with a test run on a single
tile and then incrementally adds tiles until the system is
fully utilized.

VMmark specifies which benchmarks to use: Ex-
change Server Load Simulator (LoadSim) from Mi-
crosoft for the mail server, a slightly modified version of
SPECjbb2005 for the Java server, SPECweb2005 [13]
for the web server, SysBench for the database server,
and a slightly modified version of dbench [15] for the
file server. The paper mentions using Oracle database
and Oracle’s SwingBench benchmark, but the latest ver-
sion of VMmark specifies MySQL and SysBench.

A normal run of LoadSim increases the number of users
until a maximum is reached. The benchmark score is
the maximum number of users. VMmark is concerned
with maintaining a specific load, therefore it keeps the
number of users set at 1000 and instead measures the
number of transactions executed by the server.

VMmark uses a modified version of SPECjbb2005.
SPECjbb2005 is designed to do short runs over an in-
creasing number of warehouses. The VMmark version
of SPECjbb2005 is set to run eight warehouses for a

2008 Linux Symposium, Volume Two • 219

long period of time. It is also modified to report periodic
status instead of a final score at the end of a run. As with
vConsolidate, VMmark requires BEA R© JRockit R© 5.0.

VMmark uses a modified version of SPECweb2005.
The VMmark version of SPECweb changes the think
time from ten seconds to two seconds to generate the
desired load. The run rules for SPECweb benchmark
specify three separate runs, each with a warm up and
a cool down period. VMmark, however, does one long
run to keep a consistent load on the system. VMmark
makes use of the internal polling feature of SPECweb to
get periodic measurements of the number of pages ac-
cessed. VMmark runs both the SPECweb2005 backend
simulator and the web server in the same guest “to sim-
plify administration and keep the overall workload tile
size down.”

VMmark does not need to modify SysBench. The de-
sired workload can be obtained by setting the number of
threads. (The same is true of SwingBench. In the paper,
SwingBench is configured for 100 users.)

VMmark uses a modified version of dbench. The bench-
mark is modified to run repeatedly so that it keeps run-
ning during the full VMmark run. The benchmark is
also modified to connect to an external program that
keeps track of the benchmark’s progress and controls
the benchmark’s resource use so that it generates a pre-
dictable load. VMmark also runs a small program that
allocates and mlocks a large block of memory to keep
the page cache small and force most of the dbench I/O
to go to the physical disk.

As with vConsolidate, VMmark requires one client ma-
chine per tile. The client machines run Microsoft Win-
dows Server 2003 Release 2 Enterprise Edition (32-bit).

A VMmark test runs at least three hours. Periodic mea-
surements are taken every minute. After the system has
achieved a steady state, the benchmark is run for two
hours. The two hours are split into three 40 minute runs.
The median score of the three runs is used to calculate
the score for the tile. This method has an advantage
over vConsolidate, since the tester only has to start the
test once instead of having to start three separate runs.

The overall benchmark score is determined by the num-
ber of tiles run and the individual scores of the bench-
marks. Similar to vConsolidate, the individual bench-
mark scores are first normalized with respect to a refer-
ence system. The score for a tile is the geometric mean

of the normalized scores for each benchmark in the tile.
The overall VMmark score is the sum of the scores for
each tile. This is different from vConsolidate, which
sums the normalized scores across the CSUs for each
benchmark and then takes the geometric mean of each
of the benchmark sums for the overall score.

VMmark is less portable than vConsolidate. It specifies
which operating systems, server software, and bench-
marks are to be used. And, of course, it only runs on
VMware R© ESX Server. Apparently VMmark is only
concerned with comparing hardware platforms.

It is not clear how much effort VMware will spend on
updating VMmark. VMware is on the SPEC Virtualiza-
tion subcommittee and is spending effort there to help
build an industry standard virtualization benchmark.

3 Other Benchmark Studies

These studies focus on virtualization benchmarks that
do not implement a reference standard, and did not at-
tempt to be adopted as such. They can be considered
“ad-hoc,” but certainly could be adapted or replicated.

3.1 Server Consolidation on POWER5

In 2006, we conducted a study [17] to help understand
the effectiveness of server consolidation using an IBM
System p5TM 550 server and Linux guests. The goal
was to see how many servers tasked with common ser-
vices such as web, file and e-mail could be consolidated.
New methods were constructed to capture representative
loads for such servers and to measure the server consol-
idation capacity of a virtualization solution.

3.1.1 Workload Definition

A goal of this project was to devise a metric that was tai-
lored to a virtualization solution, not just an application
solution. Typically, a single benchmark is designed to
be ramped-up to achieve peak throughput while main-
taining a specified quality-of-service level, and the met-
ric is a measure of throughput. This study instead used
many benchmarks, each configured to inject a fixed load
with no ramp-up. Similar to some server consolidation
benchmarks, aggregate load for the host was increased
by adding more guests and benchmarks. This study

220 • A Survey of Virtualization Workloads

achieved this with three benchmark types, targeting a
mail, web, and file server. Initially, one instance of the
three benchmark types was used (concurrently), inject-
ing load to three guests. Host load was increased iter-
atively by adding another instance of the three bench-
mark types along with three more guests. This was re-
peated until either 50% of host processor utilization was
reached or quality of service from any benchmark in-
stance could not be maintained.

In this study, there was a desire to have each server that
was consolidated represent a load that might be typical
on a stand-alone server. This was achieved by taking a
common x86 server, and for each benchmark type, in-
jecting a low load, then ramping up the load until the
server reached 15% processor utilization. The load level
to achieve 15% processor was our reference load. This
reference load was then used to target guests on the
POWER5TM system.

3.1.2 Resource Characterization

This workload exhibited a significant amount of disk
and network I/O due to both file server and web server
benchmarks involved. This flows logically to/from
guest and its client. However, there is significant traf-
fic between the guests and the guest designated as the
Virtual I/O Server (VIOS). Unless a guest has an I/O
adapter dedicated to its exclusive use, the VIOS must
handle I/O requests for the guests. This requires an effi-
cient method to move this data as well as adequate pro-
cessor resources for the VIOS.

3.1.3 Issues and Challenges

This study required an effective way to ensure that the
host did not exceed 50% processor utilization. This lim-
itation was placed on this study to ensure ample head-
room, should a guest or multiple guests need to accom-
modate spikes in load. One could have monitored sys-
tem utilization tools, but there was a concern that all
processor cycles may not be accounted for. For exam-
ple, processor cycles used by the hypervisor, which may
not be attributed to one particular guest, may not be
accounted for in a host utilization tool. To avoid this
problem, half the processors were disabled, ensuring no
chance of exceeding 50% host processor utilization

When dealing with benchmarks that have different
strategies to begin injecting load, warming up, enter-
ing a measurement period, ramping down, and stopping,
a method was required that allowed one to accurately
measure the load of all three benchmark types. Ide-
ally, one would have individual benchmarks that have
their measurement period coincide at the exact same
time. In absence of this, one must record the results
of each benchmark type individually, while ensuring the
load of the other two benchmarks is the load desired and
is generated throughout the entire measurement period
of the first benchmark. For example, to get results for
the web server benchmark, one must ensure the file and
mail server benchmarks’ steady state began before, and
ended after, the web server benchmark’s measurement
period. This technique should be followed for mail and
file server benchmark measurements as well. Because
each of these benchmarks can align their measurement
period with benchmarks of the same type, all instances
of that server type can be measured concurrently. For
example, if one is testing 10 sets of consolidated servers
(10 web, 10 file, 10 e-mail), three passes of measure-
ments are made. The first pass has all web bench-
marks execute in unison, while mail and file bench-
marks’ steady state begin before, and end, after the web
benchmarks’ measurement period occurs. The second
pass has measurements from file benchmarks, and the
third pass has measurements from mail benchmarks.

3.2 LAMP Server Consolidation

One of the primary workloads that we have targeted for
consolidation has been the underutilised LAMP (Linux
Apache MySQL PHP/Perl/Python/etc.) servers, simi-
lar to what a web-hosting company might have. Tra-
ditionally, these types of servers are some of the low-
est utilized and therefore have a high capacity for con-
solidation. Additionally, as detailed further when dis-
cussing the workload characteristics, these workloads
stress many parts of the system stack and are therefore
more representative as a generic workload than some-
thing that stresses one area.

In order to compare the consolidation capabilities of
various virtualization solutions (Xen, VMware, Pow-
erVM, and KVM) on various hardware platforms (x86,
x86_64 and POWER), a consolidation benchmark was
developed using a LAMP stack application and addi-
tional open-source tools. In order to ensure cross plat-
form availability, all stack components were built from

2008 Linux Symposium, Volume Two • 221

source (with the exception of the Linux kernel and the
distribution being tested). The benchmark consists of
two data collection steps that combine to form a con-
solidation metric which is the number of underutilized
servers that can be consolidated as guests on a single
virtualized system. The first data collection step is to
run the target workload on a system that is representa-
tive of the historically underutilized servers that are to
be virtualized. Existing surveys and reports by industry
consulting services provide metrics such as the average
processor utilization of the underutilized servers; these
processor utilization metrics are used to determine the
injection rate (the amount of work for the benchmark
drivers to “inject” into the test system) that the client
drivers should use to drive the baseline system. This
injection rate combined with the workload itself defines
the baseline workload that is then run simultaneously on
each of the virtualized guests on the test system in the
second data collection step. The more guests that a test
system can host while maintaining similar performance
and quality-of-service to the baseline system, the higher
the consolidation metric it achieves.

In order to understand the workload characteristics that
the virtualized system must be capable of handling, the
characteristics of the workload when running on the
baseline system must first be understood. A LAMP
stack application consists of the Apache web server, the
MySQL database, and an interpreted language (PHP in
this particular example) all running on top of the Linux
operating system. These applications inherently have
properties that need to be understood.

The Apache web server accepts connections from client
systems and responds appropriately depending on the
request. Servicing a simple request with non-dynamic
code will usually consist of reading the requested object
from disk or fetching it from cache, and returning it to
the client. Servicing a more complicated request, such
as PHP code, will involve fetching the script from disk
or cache, invoking the interpreter, and then returning the
generated content to the client. All requests are logged,
which consists of a sequential I/O write that will even-
tually be forced to flush to disk.

When the dynamic code interpreter is invoked, the ex-
ecution possibilities are quite expansive, but there are
some basic concepts that can be summarized: first, the
dynamic code may have never been requested before,
which means that it will have to be compiled before ex-
ecution; second, if the dynamic code has been executed

before and was not cached, such as by a PHP accelera-
tor, it will have to be compiled again; third, in a LAMP
scenario, the dynamic code will most likely involve con-
necting to the database and waiting for data to be re-
turned or processed. Any compilation of dynamic code
will require processor cycles so caching of the compiled
code is desirable in order to reduce processor utilization.

When requests are made to the database from the dy-
namic code execution, a combination of reads and writes
are likely, and the I/O pattern can vary depending on the
operation required. Database read queries will likely
result in small random, read I/O operations. Database
write queries will likely consist of a combination of ran-
dom I/O writes for the data and sequential I/O writes for
the log.

When you combine the characteristics of the various
stack components you get the following: TCP/IP socket
connections handled by the web server, disk reads and
writes by the web server, processor intensive compila-
tion and execution of dynamic code, and disk reads and
writes (both sequential and random) from the database
engine. For an underutilized system, the magnitude
of these characteristics is relatively low and of little
concern, however, in a consolidation scenario that can
change.

When large numbers of guests are consolidated on a sin-
gle system, the workload properties of the consolidated
guests are stacked on top of each other. In the case of
the TCP/IP connections, due to the fact that these are
lightly loaded servers being consolidated, the number
of requests are quite low and therefore not an overrid-
ing factor in the test. The processor utilization is cause
for some concern, but it is one of the finite resources
that consolidation is trying to maximize, so it will in-
herently run out at some point anyway. The real area
of concern is the disk I/O that the workload drives. In
an ideal world of spinning disks, all I/O would be se-
quential in order to minimize the penalty of head seeks.
Unfortunately, this is not the case, and most workloads,
such as this LAMP stack application, have a mix of se-
quential and random I/O patterns. Virtualization exac-
erbates the problem, though because due to the fact that
all guests have their own carved out disk space and the
drive heads are forced to seek more and more with each
added guest. This means that drive I/O capacity will
decrease with each added guest until the I/O pattern be-
comes completely random, and the ability to complete
requests will be bounded by the random I/O capabili-

222 • A Survey of Virtualization Workloads

ties of the storage system. In some of the consolidation
studies we have done, on systems with large amounts of
processor power (large numbers of fast processor cores)
the maximum consolidation factor could be not reached
due to the I/O capacity of available storage systems be-
ing maxed out well before processor horsepower was
exhausted. A reality of today’s storage systems is that
systems capable of high random I/O performance are
quite expensive, and for workloads with large amounts
of I/O, success of consolidation will depend greatly on
the ability to pair the target virtualization system with
the the proper storage.

3.3 Processor Scalability Workloads

For the 2006 Ottawa Linux Symposium, we conducted
several scalability tests [18]. These workloads were de-
signed specifically to measure and improve the scala-
bility of hypervisors and the guests they manage. Un-
like other workloads discussed here, these are more syn-
thetic, and are designed to isolate and study specific
scalability problems. They do not necessarily strive to
represent typical virtualization scenarios, but try to tar-
get extreme scalability situations.

3.3.1 Two Types of Scalability

Typically, one would measure scalability by testing a
scenario with N resources (in our case, processors), then
testing again with N*M resources, and observing the
relative increase in throughput. A benchmark would
normally run “all out” to maximize the use of the re-
source. Without virtualization, this is fairly straight for-
ward. One would boot with one processor enabled, run
a test (for example dbench), record the result, then boot
with N processors and run the test again. The scalabil-
ity would be the N-way throughput divided by the 1-
way throughput. There are, of course, variations of this
theme—for example, using 1 and N sockets or NUMA
nodes instead of processors. For virtualization scalabil-
ity, we alter this method slightly in order to study two
types of scenarios: scalability of a single guest and scal-
ability of many guests.

3.3.2 Single Guest Scalability

Scaling just one guest involves assigning the guest one
processor resource (or socket, or NUMA node), test-

ing, then assigning the guest N processors (or sock-
ets, NUMA nodes) and testing again. This is probably
the easiest way to test virtualization, as it follows the
methodology that one would use for traditional scala-
bility testing. With just one guest, there is no plurality
of benchmarks to manage and synchronize, and no sets
of results to aggregate. One complication is that there
may be a service and/or I/O guest which should also be
accounted for.

3.3.3 Multiple Guest Scalability

For scaling many guests, we start with one guest, assign
a fixed processor resource (core, socket, etc.), then test
with N guests, running the same benchmark at the same
time, each assigned the same resource amount (core,
socket, etc.), such that we have enough guests to maxi-
mize that resource. Our goal is to analyze the scalability
of the hypervisor, and not necessarily the scalability of
the guests. In the previous scenario, any scalability in-
hibitor within the guest could affect the overall scaling,
while in this scenario that is not true. In this type of scal-
ability test, we do have a little more work to do. Because
we are running many guests, one must ensure that all of
the benchmarks begin and end at the same time. One
must also sum the benchmarks’ results into one result.

3.4 SPEC and Virtualization

The Standard Performance Evaluation Corporation
(SPEC) is a non-profit corporation that creates, main-
tains and endorses a standardized set of benchmarks.
Members of SPEC include many computer hardware
and software manufacturers across the world. Recently,
SPEC has formed a new sub-committee, Virtualization,
to create and maintain virtualization benchmarks.

3.4.1 SPECvirt_sc2009

SPECvirt_sc2009 is the first virtualization benchmark
from SPEC. As of this writing, this benchmark is still
under development. The characteristics, methodolo-
gies, and run rules described here are subject to change.
The SPEC virtualization sub-committee contains mem-
bers who have been involved in many of the virtu-
alization benchmarks outside of SPEC, including the
benchmarks mentioned earlier in this paper. As such,

2008 Linux Symposium, Volume Two • 223

SPECvirt_sc2009 takes influence from these bench-
marks, both from their methodologies and from the
lessons learned.

SPECvirt_sc2009 follows a server consolidation sce-
nario, similar to other benchmarks described here. The
benchmark uses the same tile concept as VMmark, sim-
ilar to the vConsolidate CSU and server sets on the
POWER5 Server Consolidation Study. The benchmark
metric is the number of tiles one can run while maintain-
ing the quality of service of all benchmarks participat-
ing. However, there are some attributes that differentiate
this benchmark from the others previously mentioned

SPEcvirt_sc2009 also addresses the issue of portabil-
ity. There are no restrictions on the type of architecture
or operating system. All services tested can be imple-
mented with proprietary and/or open-source solutions.
The client driver also makes no requirement of architec-
ture or operating system.

The proposed SPECvirt_sc2009 tile consists of 6
guests: a web server, mail server, application server,
database server, infrastructure server, and an idle server.
To drive a single tile, three SPEC benchmarks are
used: SPECweb2005, SPECmail2009, and SPEC-
jAppServer2004. SPECweb2005 injects requests to a
web server guest. A back-end database simulator, or
Besim, resides on the infrastructure guest, simulating
database requests from the web guest. In addition, the
web server has part of its document root NFS mounted
from the infrastructure server, so some HTTP requests
are served by just the web guest, and some involve the
infrastructure guest as well. The SPECmail2009 bench-
mark injects requests using the IMAP mail protocol to
the mail server, driving load on the mail server guest
only. The SPECjAppServer2005 benchmark injects re-
quests to the application server. The application server
guest requires a database, located on the database server
guest. The SPECjAppServer2004 benchmark drives
load on both the application server and database server.
The idle guest is used to represent the overhead of a
guest which is running but not actually doing anything.
It does not interact with any of the other tile compo-
nents.

One of the big issues for other virtualization bench-
marks, which had heterogeneous guests and load gen-
erators, was synchronization. When using the origi-
nal SPEC benchmarks to prototype SPECvirt, one en-
counters similar issues. It is possible to configure each

benchmark type such that they begin and end their mea-
surement period at nearly the same time, however it can
not be done with a high level of confidence. The SPEC
virtualization sub-committee is changing these bench-
marks to support a more tightly controlled apparatus,
ensuring the benchmarks’ start and stop times coincide
exactly.

SPECvirt_sc2009 aims to introduce a characteristic
which is not too prominent on most of the other vir-
tualization benchmarks: intra-guest network communi-
cation. The benchmark introduces dependencies which
will require network communication between guests
within a tile. A portion of the document root for the web
server guest is served by the infrastructure server guest,
generating a significant amount of NFS traffic between
these two guests. SPECjAppServer is required to use
two guests, one for the application server and one for
the database server, so that communication between the
two services is between guests, compared to both ser-
vices on the same guest communicating over loopback.

4 Considerations for Future Virtualization
Benchmarking

After working with these benchmarks, we would like to
propose some ideas for consideration when designing,
running, and analysing virtualization workloads. These
ideas are not strictly for benchmarking or marketing col-
lateral, but also for general testing of virtualization.

4.1 Simplification

Many of today’s benchmarks are already quite com-
plicated. Configuring a multi-tier benchmark such as
SPECweb2005 or SPECjAppServer2004, can be quite a
task by itself. Combining several instances of bench-
marks like this can be daunting at first. We propose
leveraging the concept of virtual appliances for both the
server under test and the client driver system. Main-
taining a library of virtual appliances allows the user to
spend more time on evaluation and analysis of the total
solution instead of dealing with details of service imple-
mentation, OS configuration, and related tasks.

4.2 New Workload types

Our strategy here is to test more of the emerging fea-
tures that virtualization provides. Currently we have

224 • A Survey of Virtualization Workloads

embarked on just one of the common scenarios for vir-
tualization but have not fully explored that area yet. For
example, most of the server consolidation workloads use
benchmarks that have a fixed load level. However, in
real-world situations, all guests do not run a constant
load all the time. The dynamic nature of guests’ re-
source requirements needs to be explored. A hypervi-
sor’s ability to accommodate these changes may vary
greatly from one solution to another.

Another area to look into could center around the RAS
features that virtualization offers. Scenarios that in-
clude BIOS and other software updates, requiring the
live migration of guests during such operations, could
be tested. Other serviceability scenarios could be con-
sidered, like impact of guest provisioning on hosts that
have active guests. Benchmarking scenarios like these
may not be traditionally covered, but with a much more
dynamic data-center, these situations need to be studied
more closely.

In addition, one might want to explore the concept
of whole data-center management using virtualization.
This builds on previous concepts like server consolida-
tion and availability, but takes it further. For example,
a benchmark may evaluate the performance per watt of
an entire data-center. A virtualization management so-
lution and the hypervisors in use can significantly im-
pact the performance and power consumption, espe-
cially when the load is dynamic, driving actions like
migration to and from hosts to meet quality of service
guarantees while conserving the most energy possible.

Another area that probably needs attention is the desk-
top virtualization scenario. This solution is quickly
becoming very competitive, and drawing any conclu-
sions from a server consolidation benchmark may not
be prudent. Desktop virtualization has significantly dif-
ferent characteristics than a server consolidation sce-
nario. Desktop users’ perceived performance, rather
than throughput, may be far more important to this so-
lution.

5 Conclusions

This paper surveys various virtualization benchmarks,
comparing their strengths and weaknesses. The art of
virtualization benchmarks is in its infancy, however, we
believe it is making progress. We are still seeing grow-
ing pains in most implementations, as we try to go

beyond what traditional benchmarking scenarios have
done. Issues such as overall complexity, heterogeneous
workload control, quality of service guarantees, and ver-
ification all need improvement. These benchmarks have
also just begun to simulate the vast number of present
and future usage cases that virtualization introduces. We
are confident, as long as there is a need for improv-
ing virtualization, there will be a drive to improve these
benchmarks.

6 Trademarks and Disclaimer

Copyright c© 2008 IBM.

This work represents the view of the authors and does not
necessarily represent the view of IBM.

IBM and the IBM logo are trademarks or registered trade-
marks of International Business Machines Corporation in the
United States and/or other countries.

Xen is a trademark of XenSource, Inc. in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Intel is a registered trademark of Intel Corporation in the
United States and other countries.

Microsoft and Windows are registered trademarks of Mi-
crosoft Corporation in the United States and other countries.

BEA and JRockit are registered trademarks of BEA Systems,
Inc.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered
trademarks of Oracle Corporation and/or its affiliates.

VMware is a registered trademark of VMware, Inc.

Other company, product, and service names may be trade-
marks or service marks of others. References in this publi-
cation to IBM products or services do not imply that IBM
intends to make them available in all countries in which IBM
operates.

This document is provided “AS IS,” with no express or im-
plied warranties. Use the information in this document at
your own risk.

References

[1] IBM Corporation, Virtualization,
http://www-03.ibm.com/servers/
eserver/zseries/virtualization/
features.html

2008 Linux Symposium, Volume Two • 225

[2] VMware Corporation, Build the Foundation of a
Responsive Data Center, http:
//www.vmware.com/products/vi/esx/

[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, Andrew Warfield, Xen and the Art of
Virtualization SOSP’03, October 19–22, 2003,
Bolton Landing, New York, USA.

[4] Ian Pratt, Keir Fraser, Steven Hand, Christain
Limpach, Andrew Warfield, Xen 3.0 and the Art
of Virtualization, Ottawa Linux Symposium 2005

[5] Microsoft Corporation, Virtualization and
Consolidation, http://www.microsoft.
com/windowsserver2008/en/us/
virtualization-consolidation.aspx

[6] Jeffrey P. Casazza, Michael Greenfield, Kan Shi,
Redefining Server Performance Characterization
for Virtualization Benchmarking,
http://http://www.intel.com/
technology/itj/2006/v10i3/
7-benchmarking/6-vconsolidate.htm

[7] Ziff Davis Media, PC Magazine benchmarks,
http://www.lionbridge.com/
lionbridge/en-US/services/
outsourced-testing/zdm-eula.htm

[8] Microsoft Exchange Server 2003 Load Simulator,
http://www.microsoft.com/downloads/

details.aspx?FamilyId=

92EB2EDC-3433-47CA-A5F8-0483C7DDEA85

&displaylang=en

[9] Alexey Kopytov, SysBench: a system
performance benchmark,
http://sysbench.sourceforge.net

[10] Standard Performance Evaluation Corporation
(SPEC), SPECjbb2005,
http://www.spec.org/jbb2005

[11] CMS Eventcorder,
http://www.eventcorder.com

[12] Vikram Makhija, Bruce Herndon, Paula Smith,
Lisa Roderick, Eric Zamost, Jennifer Anderson,
VMmark: A Scalable Benchmark for Virtualized
Systems, http://www.vmware.com/pdf/
vmmark_intro.pdf

[13] Standard Performance Evaluation Corporation
(SPEC), SPECweb2005,
http://www.spec.org/web2005/

[14] Oracle Corporation, SwingBench,
http://www.dominicgiles.com/
swingbench.html

[15] Andrew Tridgell, dbench benchmark, http:
//samba.org/ftp/tridge/dbench/

[16] VMware, Measure Virtualization Performance
with Industry’s First Benchmark, http:
//www.vmware.com/products/vmmark/

[17] Yong Cai, Andrew Theurer, Mark Peloquin Server
Consolidation Using Advanced POWER
Virtualizatin and Linux, http://www-03.
ibm.com/systems/p/software/
whitepapers/scon_apv_linux.html

[18] Andrew Theurer, Karl Rister, Orran Krieger, Ryan
Harper, Steve Dobbelstein, Virtual Scalability:
Charting the Performance of Linux in a Virtual
World, Ottawa Linux Symposium 2006

226 • A Survey of Virtualization Workloads

Thermal Management in User Space

Sujith Thomas
Intel Ultra-Mobile Group

sujith.thomas@intel.com

Zhang Rui
Intel Open Source Technology Center

zhang.rui@intel.com

Abstract

With the introduction of small factor devices like Ultra
Mobile PC, thermal management has gained a higher
level of importance. Existing thermal management so-
lutions in the Linux kernel lack a standard interface to
user space. This mandates that all the thermal manage-
ment policy control needs to reside in the kernel. As
more and more complex algorithms are being developed
for thermal management, it makes sense to allow mov-
ing the policy control decisions part into user space and
allow the kernel to just facilitate these decisions.

In this paper, we will introduce a generic solution for
Linux thermal management, which usually contains
a user application for policy control; a generic ther-
mal sysfs driver, which provides a set of platform-
independent interfaces; native sensor drivers; and device
drivers for thermal monitoring and device throttling. We
will also take a look at the software stack of Intel’s Men-
low platform, where this solution is already enabled.

1 Thermal Modeling

Even though there are many thermal modeling concepts
out there, the crux still remains the same.

• There are sensors associated with devices. The de-
vices have various throttle levels and by putting the
device into a lower performance state, the temper-
ature of the device as well as the overall platform
will decrease.

• There may be provisions for programming sensor
trips to send notifications to the monitoring appli-
cation.

• There may be a fan in the platform and it may have
multi-speed control.

Provided these hardware features are available, how can
the software manage thermals for a platform? This can
be implemented either in kernel space or in user space.
The kernel-space implementation by using the frame-
work is enough as long as there are only a few thermal
contributors, and mainly the CPU.

But with the Ultra Mobile PCs (UMPC) and Mobile In-
ternet Devices (MID), the CPU is no longer the major
thermal contributor. There may be cases where, over
a period of time, multiple devices’ contributions cause
the platform temperature to rise significantly. So, the
real challenge here is to choose the right device(s) and
to pick up the right performance levels.

2 The Concept of ‘Thermal management in
User Space’

Thermal management in user space would imply that
all the policy decisions will be taken from user space
and the kernel’s job would be only to facilitate those
decisions. This model gives us the these advantages:

• The algorithms can scale well from simple scripts
to complex algorithms involving neural networks.

• The kernel is freed from consuming CPU cycles for
non-critical tasks. Response to a non-critical ther-
mal scenario, which is the most common case, is
not immediately required—that is, we don’t have
to account for decisions which are in milliseconds
or microseconds. This is because raising the plat-
form temperature about one degree Celsius takes
around 20s–30s on most platforms. So moving
thermal management from kernel space, where we
have critical things to do, is the right thing to do.

• This also guarantees that the same application will
work on different platforms even though the ther-
mal modeling is different at the hardware level.

• 227 •

228 • Thermal Management in User Space

But for the thermal management to shift to user space,
applications still need to get support from the kernel.
That’s the role the generic thermal management frame-
work plays.

3 ACPI vs. Generic Thermal Management

The ACPI 2.0 thermal model was a good start for ther-
mal management. But for new platforms with small
form factors like the Mobile Internet Devices (MID),
this model is no longer sufficient. Some of the reasons
are:

• ACPI proposes active trip points, but there may not
be any fans on the handhelds.

• ACPI assumes that the CPU is the major thermal
contributor and doesn’t discuss other thermal con-
tributors.

• ACPI doesn’t support sensors with programmable
AUX trip points.

Even with these limitations, many platforms still use
ACPI because of its other benefits. As a matter of
fact, the generic thermal management is not a thermal
model itself; instead it complements existing models
like ACPI.

The generic thermal management solution was designed
to support thermal models (like ACPI 2.0) and to go
beyond, to complement such models with proprietary
platform-based sensors and devices. Intel’s Menlow
platform is a good example of using ACPI as the back-
bone for thermal management. Along with that, it uses
sensors with programmable AUX trip points and it can
even throttle the memory controller. A case study in the
latter part of this paper illustrates this solution.

4 Generic Thermal Management Architecture

The generic thermal management has these key compo-
nents:

• Thermal zone drivers for thermal monitoring and
control.

• Cooling device drivers for device throttling.

• An event framework to propagate the platform
events to user-space applications.

• A generic thermal sysfs driver which provides a set
of platform-independent interfaces.

Figure 1 shows the software stack of the generic thermal
solution.

4.1 Thermal Zone Drivers

A thermal zone, by definition, not only gives the temper-
ature reading of a thermal sensor, but also gives the list
of cooling devices associated with a sensor. The driver
or application may in turn control these devices to bring
down the temperature of this thermal zone. The thermal
zone driver abstracts all the platform-specific sensor in-
formation and exposes the platform thermal data to the
thermal sysfs driver. This may include data like temper-
ature and trip points. In addition, it also binds cooling
devices to the associated thermal zones. This driver is
also responsible for notifying user space about thermal
events happening in the platform.

4.2 Cooling Device Drivers

The cooling device drivers are associated with thermal
contributors in the platform. The cooling device drivers
can register with the generic thermal sysfs driver, thus
becoming the part of platform thermal management. By
registering, these drivers provide a set of thermal ops
that they can support, like the number of cooling states
they support and the current cooling state they are in.
The generic thermal sysfs driver will redirect all the
control requests to the appropriate cooling device driver
when the user application sets a new cooling state. It is
up to the cooling device driver to implement the actual
thermal control.

4.3 Eventing Framework

Events will be passed from kernel to user space us-
ing the netlink facility. The applications may use
libnetlink to receive these events and to do further
processing.

2008 Linux Symposium, Volume Two • 229

Thermal Driver

Platform hardware, BIOS, Firmware

 Processor
 Driver

Native Sensor
 Driver

Native Device
 Driver

Thermal Sysfs I/F

Sysfs I/F

Thermal management pol icy control appl icat ion

Sysfs throttle I/F

Application

Kernel

Platform

Figure 1: Generic thermal management architecture

4.4 Generic Thermal sysfs Driver

The generic thermal sysfs driver is a platform-
independent driver which interacts with the platform-
specific thermal zone drivers and cooling device drivers.
This driver, in turn, builds a platform-independent sysfs
interface (or I/F) for user space application. It mainly
works on device management and sysfs I/F management
for registered sensors and cooling devices.

4.4.1 Device Management

The thermal sysfs driver exports the following interfaces

• thermal_zone_device_register()

• thermal_zone_device_unregister()

• thermal_cooling_device_register()

• thermal_cooling_device_
unregister()

• thermal_zone_bind_cooling_
device()

• thermal_zone_unbind_cooling_
device()

for the thermal zone drivers and cooling device drivers
to register with the generic thermal solution and to be a
part of it. The thermal sysfs driver creates a sysfs class
during initialization and creates a device node for each
registered thermal zone device and thermal cooling de-
vice. These nodes will be used later on to add the ther-
mal sysfs attributes.

The bind/unbind interfaces are used by the thermal
zones to keep a mapping of the cooling devices asso-
ciated with a particular thermal zone. Thermal zone
drivers usually call this function during registration, or
when any new cooling device is registered.

4.4.2 Sysfs Property

The generic thermal sysfs driver interacts with all
platform-specific thermal sensor drivers to populate the
standard thermal sysfs entries. Symbolic links are cre-
ated by the generic thermal driver to indicate the binding
between a thermal zone and all cooling devices associ-
ated with that particular zone. Table 1 gives all the at-
tributes supported by the generic thermal sysfs driver.

The generic thermal management uses a concept of
cooling states. The intent of a cooling state is to define
thermal modes for supporting devices. The higher the
cooling state, the lower the device/platform temperature
would be. This can be used for both passive and active
cooling devices. It’s up to the cooling device driver to

230 • Thermal Management in User Space

Sysfs Location Description RW
type /sys/class/thermal/thermal_zone[0-*] The type of the thermal zone RO
mode /sys/class/thermal/thermal_zone[0-*] One of the predefined values in [kernel, user] RW
temp /sys/class/thermal/thermal_zone[0-*] Current temperature RO
trip_point_[0-*]_temp /sys/class/thermal/thermal_zone[0-*] Trip point temperature value RO
trip_point_[0-*]_type /sys/class/thermal/thermal_zone[0-*] Trip point type RO
type /sys/class/thermal/cooling_device[0-*] The type of the cooling device RO
max_state /sys/class/thermal/cooling_device[0-*] The maximum cooling state supported RO
cur_state /sys/class/thermal/cooling_device[0-*] The current cooling state RW
cdev[0-*] /sys/class/thermal/thermal_zone[0-*] Symbolic links to a cooling device node NA
cdev[0-*]_trip_point /sys/class/thermal/thermal_zone[0-*] The trip point that this cooling device is associated with RO

Table 1: Thermal sysfs file structure

implement the cooling states. In most of the cases, it
may map directly to the power modes of the device. But
in some other cases, it may not. The CPU is the exam-
ple of when power modes are controlled by P states, but
thermal is controlled by a combination of P and T states.

Besides the generic thermal sysfs files, the generic ther-
mal sysfs driver also supports the hwmon thermal sysfs
extensions. The thermal sysfs driver registers an hwmon
device for each type of registered thermal zones. With
the hwmon sysfs extensions, an attempt has been made
to support applications which use the hwmon style of in-
terfaces. Currently, using this interface, the temperature
and critical trip point of the platform are exposed.

Table 2 shows the hwmon thermal sysfs extensions.

5 User Space Policy Control

The generic thermal management framework enables
thermal management applications to collect all the rele-
vant thermal data. The data will be pre-processed and
then passed on to the intelligent algorithm where the
throttling decisions are taken. The algorithm may con-
sider user preferences before executing any decisions,
again through the generic thermal management frame-
work.

Here are the operations which applications can perform
using the generic thermal management framework.

• Enumerate the list of thermal sensors in the plat-
form.

• Enumerate the list of thermal contributors (CPU,
Memory, etc.) in the platform.

• Enumerate the list of active cooling devices (fans)
in the platform.

• Enumerate the thermal zones (to get device sensor
associations) in the platform.

• Get sensor temperatures and trip points of various
sensors.

• Set the threshold trip points if the underlying plat-
form supports this feature.

• Get notifications on thermal events happening in
the platform.

• Get exclusive control of any thermal zone in the
platform.

6 Thermal Management on Intel’s Menlow
Platform

Menlow is Intel’s handheld platform for the 2008 time
frame. It is a small form-factor device (screen size of
about 5 inches), which makes its thermal management a
challenge. The goal of the solution was that at any time,
the skin temperature (top and bottom) should be below
45◦C. The other challenge was that the CPU was not
the major thermal contributor. There are other devices,
like the memory controller and communication devices,
which contributed equally to the platform’s skin tem-
perature. There was clearly a need for a complex algo-
rithm to perform the thermal management by throttling
the devices at the same time, while not compromising
the performance.

6.1 Why ACPI Was Not Enough. . .

Menlow’s thermal management solution leverages many
of the ACPI standards available on the platform. But

2008 Linux Symposium, Volume Two • 231

Sysfs Location Description RW
Name /sys/class/hwmon/hwmon[0-*] Same as the thermal zone ’type’ RO
Temp[1-*]_temp /sys/class/hwmon/hwmon[0-*] Current temperature value RO
Temp[1-*]_crit /sys/class/hwmon/hwmon[0-*] Critical temperature value RO

Table 2: Hwmon support file structure

relying only on the ACPI standards was not enough be-
cause sensors available in the platform were capable of
doing more things than in ACPI 2.0. Hence the concept
of generic thermal management was proposed.

The Menlow platform has many thermal sensors at-
tached to the platform’s embedded controller. The
embedded controller firmware was in charge of read-
ing the temperature from the sensors. These sensors
had the additional capability of programming the AUX
trips, wherein the application can program the upper
and lower thresholds, based on the current temperature.
Whenever the temperature exceeds any of these thresh-
olds, the application will get an event and can make
a decision based on the user policy. ACPI 2.0 didn’t
have support for AUX trip point programming. Generic
thermal management was used to complement the ACPI
standards.

6.2 How the Generic Thermal Management Works
on Menlow Platform

Menlow’s thermal management is the first use of the
generic thermal solution. Thermal management on
Menlow is made up of these components.

• An intelligent user-space application which can
make throttling decisions based on thermal events
it receives.

• ACPI thermal management, which has its thermal
zone driver (ACPI thermal driver) and cooling de-
vice drivers (processor, fan, and video driver) reg-
istered with the thermal sysfs driver.

• intel_menlow platform driver, which provides
required, extra thermal management, such as mem-
ory controller throttling and AUX trip point pro-
gramming.

• ACPI BIOS which has objects for controlling the
processor’s P and T states.

• Embedded controller firmware which reads the
sensor temperature and programs the temperature
thresholds.

Figure 2 shows the thermal sysfs architecture on the
Menlow platform.

6.3 Thermal Zone Driver on Menlow

The ACPI thermal driver plays a key role on Menlow,
which is registered with the thermal sysfs driver to ex-
port the temperature and trip point information to user
space. The ACPI thermal driver does the thermal man-
agement to some extent—that is, it controls the pro-
cessor P and T states whenever the temperature crosses
the configured _PSV temperature. The generic thermal
management provides a way for a user-space application
to override kernel algorithm using the sysfs-exported file
named mode. If ACPI thermal zones’ modes are set to
“user,” ACPI thermal zones will no longer follow ther-
mal policy control. Instead, they will only export tem-
perature change events to user space through netlink.
Whenever the application exits, it can give back the ther-
mal management control by writing “kernel” into the
file mode. This was needed to guarantee the mutual ex-
clusivity of the thermal management between the kernel
and the user-space application.

6.4 Menlow’s Native Driver

Intel_Menlow is a platform-specific driver which
handles:

• AUX trip point programming for platform thermal
sensors.

• Throttling of memory controller.

232 • Thermal Management in User Space

Thermal Sysfs I/F

Sysfs I/F Sysfs throttle I/F

Sysfs wrapper

Netl ink event
 manager

Configuration
 file

Thermal management
 algorithm

ACPI Thermal
 Driver

ACPI Processor
 Driver

Menlow Sensor
 Driver

Fan

LCD

Memory control ler

Hardware

ACPI BIOSTZ01
TZ02

Embedded Controller
Sensor 1
Sensor 2

Platform

Kernel

Application

Figure 2: Menlow using the generic thermal management

6.5 Cooling device driver on Menlow

The following cooling devices are registered with the
thermal sysfs driver on Menlow:

• Memory controller, which controls the temperature
by throttling the memory bandwidth.

• ACPI processor cooling state is a combination of
the processor P-state and T-state. The ACPI CPU
frequency driver prefers to reduce the frequency
first, and then to throttle.

• The ACPI fan driver supports only two cooling
states: state 0 means the fan is off, state 1 means
the fan is on.

• ACPI video throttles the LCD device by reducing
the backlight brightness levels.

7 Conclusion

For handheld devices it is viable to move the thermal
management to user space applications. By doing so the

application are given the freedom to implement the al-
gorithm that would be the best to handle thermals for a
particular class of devices. The job of the kernel would
be limited to delivering events and exposing device spe-
cific throttle controls. This approach can be used on
platforms with ACPI, without ACPI, or to compliment
thermal models like ACPI.

8 Acknowledgment

This paper is based on “Cool Hand Linux—Handheld
Thermal Extensions” co-written by Len Brown and
Harinarayan Seshadri. We would also like to acknowl-
edge Nallaselan Singaravelan, Vinod Koul, and Sailaja
Bandarupali of the Ultra Mobility Group, Intel Corpo-
ration, for their valuable contributions.

9 References

• “Cool Hand Linux—Handheld Thermal Exten-
sions” by Len Brown and Harinarayan Seshadri,

2008 Linux Symposium, Volume Two • 233

Proceedings of the Linux Symposium, Ottawa,
Canada, 2007.

• ACPI Hewlett-Packard, Intel, Microsoft, Phoenix,
Toshiba. Advanced Configuration and Power Inter-
face 3.0b, October, 2006. http://www.acpi.
info

234 • Thermal Management in User Space

A Model for Sustainable Student Involvement in Community Open
Source

Chris Tyler
Seneca College

chris.tyler@senecac.on.ca

Abstract

A healthy community is the lifeblood of any open source
project. Many open source contributors first get in-
volved while they are students, but this is almost always
on their own time. At Seneca College we have devel-
oped an approach to sustainably involving students in
open source communities that has proven successful in
a course setting.

This paper outlines Seneca’s approach and discusses the
results that have been obtained with it. I will examine
the key factors for successful student integration into
open source communities and steps that educational in-
stitutions and open source projects can each take to im-
prove student involvement.

1 The Challenge

To effectively teach Open Source, it’s necessary to move
each student into the role of contributor. At first blush
this appears straightforward, but it ultimately proves to
be an enormous challenge because Open Source is as
much a social movement as a technical one and because
many Open Source practices are the exact opposite of
traditional development practices.

1.1 Barriers to Teaching Open Source Develop-
ment

Many attempts to involve students in Open Source
within a course have failed because everyone is over-
whelmed:

• The students, because they’re suddenly facing an
established codebase several orders of magnitude
larger than any they have previously encountered in

their courses, a community culture that they do not
understand, and principles and ideals which are the
opposite of what they’ve learned in other courses—
for example, that answers and solutions should not
be openly shared on the web [15], that building on
other’s work by pasting it into your own is academ-
ically dishonest, and that it’s wrong to deeply col-
laborate with peers on individual projects.

• The professor and institution, because they’re deal-
ing with a continuously-changing, amorphous en-
vironment.

• The Open Source project, because it is very diffi-
cult to deal with a sudden influx of students who
tie up other contributors’ time with questions and
yet are unlikely to become long-term participants.

1.2 Distinctive Qualities of Open Source Develop-
ment

In order to develop an effective approach to Open
Source development, it’s important to understand the
qualities which make it unique:

• Open Source development is based around commu-
nities. These are generally much larger and more
geographically diverse than closed-source develop-
ment teams, and they are enabled and empowered
by the web, leading to an increased focus on com-
munication tools and internationalization and lo-
calization issues. Social issues become significant,
and there is a productive tension between the need
to maintain group discipline for coherence and the
possibility of provoking a fork. Often, the culture
of the community is not the culture of any particu-
lar member, but a synthetic intermediate culture.

• The codebases managed by the larger communi-
ties range up to millions of lines in size and can

• 235 •

236 • A Model for Sustainable Student Involvement in Community Open Source

date back many years or even decades. Further-
more, they often use tools and languages that are
different from those taught in post secondary in-
stitutions, or employ common languages in unex-
pected ways—for example, using custom APIs that
dwarf the language in which they are written (such
as Mozilla’s XPCOM and NSPR). These code-
bases require specialized, heavy-duty tools such as
bug tracking systems, code search tools, version
control systems, automated (and sometimes multi-
platform) build and test farms and related water-
fall and alert systems, toolchains for compiling and
packaging each of the source languages used in
the project, and release and distribution systems.
Smaller Open Source projects which do not main-
tain their own infrastructure use some subset of
these tools through a SourceForge account [20], fe-
dorahosted.org Trac instance [8], or other mecha-
nism.

• Most Open Source systems have an organic archi-
tecture. Since it’s impossible to anticipate the even-
tual interests and use-cases of the community—
including downstream needs—at the inception of a
project, the project requirements and development
direction change over time and the project grows
into its final form (I’ve never seen UML for an
Open Source project!). Although the lack of top-
down design can be a disadvantage, the flexible,
modular, and extensible architecture that often re-
sults has many benefits.

1.3 Turning Challenges into Strengths

Each of these distinctive qualities presents a challenge to
a traditional lecture-and-assignment or lecture-and-lab
format course, but can be a strength in a community-
immersed, project-oriented course. Carefully applied,
these strengths can be used to overcome the barriers
identified above.

2 Preparing to Teach Open Source

2.1 Select a Faculty Member

A prerequisite for teaching Open Source effectively is
a professor who has one foot firmly planted in the
Open Source community and the other in the educa-
tional world. In order to turn students into contributors,

you need a dedicated conduit and liaison who can intro-
duce students to the right people within the Open Source
community.

On the academic side, the professor needs to connect
with students on a personal level and to be aware of
and able to navigate within the learning and adminis-
trative context of the educational institution. On the
Open Source side, the professor must have deep contacts
(and friendships!) within the community, understand the
community culture, and know what matters to the com-
munity so that projects selected for the students have
traction. She must also know and effectively use the
community’s tools—for example, knowing when to use
IRC (Internet Relay Chat), when to use Bugzilla, and
when to use e-mail to communicate. The faculty mem-
ber must have bought-in to Open Source principles, and
use the community’s products in a production environ-
ment (“eating your own dogfood”)—there’s no credibil-
ity to lecturing about bugzilla.mozilla.org using Safari,
or presenting PowerPoint slides about OpenOffice.org.

The massive size of most large Open Source codebases
prevent any one person from effectively knowing the en-
tire codebase in detail, a problem that is compounded
when multiple languages, layers, or major components
are involved. This leads to the need to be produc-
tively lost in the code—moving beyond being over-
whelmed and becoming effective at searching, navigat-
ing, and reading code. The professor must demonstrate
how to cope in this state instead of pretending to know
each line, and this includes pulling back the curtain
and showing the students how she uses community re-
sources and contacts to find answers to questions. There
is no textbook for this; it is behavior that must be mod-
eled.

2.2 Select an Open Source Community

An effective Open Source course also requires the sup-
port of a large Open Source project. This selection of
project is usually informed by the involvements of the
faculty member(s) who will be teaching the course.

The Open Source community selected must have a suf-
ficiently large scope to provide opportunities for many
different types and levels of involvement. Its products
must also have many angles and components, so stu-
dents can innovate in corners that aren’t being touched
by the mainline developers. This likely narrows the list

2008 Linux Symposium, Volume Two • 237

of potential candidates down to the top one hundred
or so Open Source projects, which includes the major
desktop applications, graphical desktop environments,
key server applications, kernels, and community-based
Linux distributions.

The reasons for selecting a larger community are
straightforward:

• A large community can absorb a large number of
students spread across the various components and
sub-projects within the community. This enables
students with a broad range of interests and skills
to get involved in a way that interests them, using
the Open Source model of having people work on
things they are passionate about. It also spreads
the student contact across the community so that
few developers will have direct contact with more
than one or two students, preventing overload of
the existing contributors. At the same time, work-
ing within a single community provides a level of
coherence that makes it much easier to hold class
discussions and plan labs and lectures than if the
students’ involvement was spread across a number
of smaller, independent Open Source communities.

• The project’s infrastructure has usually been scaled
up to the point where it will readily support the ex-
tra contributors.

• Large projects tend to have broad industry sup-
port, opening up possibilities for spin-off research
projects and broadening the value of the students’
experience.

To make this work, you will need the support of the
community; they must buy into the idea of teach-
ing students to become productive contributors—not a
hard sell, because most communities are hungry for
contributors—and there must be open lines of commu-
nication with the community’s leaders.

It is counter-intuitive to select a large community be-
cause it seems easier to manage the students’ involve-
ment in a smaller project—but the key is to select some-
thing so big that the professor cannot directly manage
the students and they are forced to interact with the com-
munity in order to succeed.

2.3 Select Potential Student Projects

Open Source communities know what is interesting and
valuable within their own space and are in the best po-
sition to suggest potential student projects. They’re not
always able to verbalize these projects, so the professor
may need to poke and prod to shake out good ideas, but
the community will recognize the value of ideas as they
are proposed.

Some of the best project ideas as ones that existing com-
munity members would like to pursue, but can’t due to a
lack of available time (or in some cases, a lack of appro-
priate hardware). These issues should not be blocker
bugs or critical issues that will directly affect release
timelines or major community goals, but they may be
of significant strategic value to the community. Each
person proposing a project idea should be willing to be
a resource contact for that project.

Potential projects can include a wide range of activi-
ties: feature development, bug fixing, performing test-
ing, writing test cases, benchmarking, documenting,
packaging, and developing or enhancing infrastructure
tools.

The projects must then be screened for viability within
the course context:

• Are they the right size for the course? This does
not mean that the project should be fully completed
during the course; we’ve taken an idea from Open
Source—the “dot release”—to replace the idea of
“complete work,” and we look for projects that are
not likely to be completed but which can be devel-
oped to a usable state in three months.

• Are the necessary hardware and software resources
available?

• Is the level of expertise required appropriate for the
type of student who will be taking the course? Ide-
ally, each project should make the student reach
high, but be neither stratospherically difficult nor
trivially easy.

2.4 Prepare the Infrastructure

Each Open Source community has its own set of tools,
and it’s crucial that students use those native tools so that

238 • A Model for Sustainable Student Involvement in Community Open Source

community members can share with, guide, and encour-
age the new contributors. The existing community mail-
ing lists, wikis, IRC channels, version control systems,
and build infrastructure should be used by the students
as they would by any other contributor.

Most academic institutions have their own computing
and communications infrastructure, including tools such
as Moodle, Blackboard, version control systems, instant
messaging systems, forums and bulletin boards, and so
forth. It’s tempting to use these resources because they
are familiar and to avoid placing a burden on the com-
munity’s resources, but doing so draws a fatal line be-
tween the students and the rest of the community. Stu-
dents can learn to use any tools, but the community will
continue to use the tools they have established; when the
students meet them there, as fellow contributors, great
interaction takes place.

However, there’s a certain amount of additional infras-
tructure needed to support an Open Source course, in-
cluding:

• A course wiki for schedules, learning materials,
labs, project status information, and student de-
tails. If this wiki is compatible with the commu-
nity’s wiki (using the same software and similar
navigation), it will be easier for the community to
contribute to learning materials.

• An IRC channel set up in parallel to the commu-
nity’s developer channel(s), on the same network
or server. We have established #seneca channels
on irc.freenode.net and irc.mozilla.org, for exam-
ple; these provide a safe place for students to ask
the sorts of questions which may provoke intense
flaming in developer channels.

• A blog planet to aggregate the student’s blog post-
ings so that all community members, including the
students themselves, can easily stay up-to-date on
what all of the students are doing. This should
be separate from the community’s main planet be-
cause some of the material will be course-specific.
(It’s a good idea for the professor to feed the com-
munity planet to keep the community up-to-date
with what the students are doing.)

• Server farms and/or development workstations (as
appropriate to the projects undertaken), to ensure
that the students have access to all relevant hard-
ware and operating system platforms.

3 Teaching the Course

We start our Open Source courses by briefly teaching the
students the history and philosophy of Open Source. We
do this using classic resources such as The Cathedral
and the Bazaar [24] and the film Revolution OS [23],
but we don’t spend a lot of time on this topic because
the philosophy will be explained and modeled in every
aspect of the course.

3.1 Communication

Since Open Source is by its very nature open, we get stu-
dents communicating immediately so that they get used
to working in the open. They are required to establish
a blog (on their own website, or on any of the blogging
services such as blogger.com or livejournal) and sub-
mit a feed to the course planet. Almost all work is sub-
mitted by blogging, and students are expected to enter
comments and to blog counterpoints to their colleagues’
postings.

All course materials and labs are placed on the course
wiki, and both students and community members are
encouraged to expand, correct, and improve the mate-
rial. These resources and the knowledge they represent
grow over time and are not discarded at the end of each
semester. This body of knowledge eventually becomes
valuable to the entire community. Students are also re-
quired to get onto IRC. Since the main developers’ chan-
nels can be daunting to use, students are initially en-
couraged to lurk in those channels while communicat-
ing with classmates and faculty on the student channel.
The parallel channel enables students (and faculty) to
provide commentary on #developers chatter in real time
without annoying the developers, and it provides an ap-
propriate context for course-related discussion. Since
the student channel is on the same network/server as the
developers’ channels, some existing community devel-
opers will join the student channel.

3.2 Project Selection

At the very start of the course, students begin review-
ing the potential project list, and are required to select
a project by the third week. As part of the selection
process, students will often use IRC or e-mail to con-
tact the community member who proposed a project that

2008 Linux Symposium, Volume Two • 239

they are interested in. This is the first direct contact be-
tween the student and a community member, and since
the student is expressing interest in something that the
member proposed, the contact is usually welcome. It is
critical that students choose projects that are important
to the community and attract community support, so we
prohibit them from proposing their own projects. Stu-
dents do find it intimidating to select from the potential
project list, since the things that matter to the commu-
nity are big, hard, and mysterious (or at least appear that
way). The professor will often need to serve as a guide
during project selection.

We strongly prefer that each student select an individ-
ual project, with some rare two-person groups where
warranted by the project scope; larger groups are al-
most always less successful. Students need to collab-
orate in the community—both inside the class commu-
nity and within the larger Open Source community—
instead of doing traditional, inward-focused academic
group work. Students claim a specific project from the
potential project list by moving it to the active project
list and creating a project page within the course wiki.

3.3 Learning How to Build

Each community has a unique build process. This is
often the first non-trivial, cross-platform build that stu-
dents have encountered, so it’s a significant learning ex-
perience, and one that has a gratifying built-in reward.
There’s a lot of easy experimentation available here, so
students often go to great lengths testing different build
options and approaches (discovering, for example, that
a particular build takes 8 or more hours on an Windows
XP system, but only about 40 minutes on a Linux VM
under that same XP system). The students also learn
how to run multiple versions of the software for produc-
tion and test purposes.

One of the challenges with building is finding an appro-
priate place to build, since many of the laptop computer
models favored by students may have low CPU “horse-
power” or memory, while student accounts on lab sys-
tems may not have sufficient disk space or student stor-
age may be shared over a congested institutional net-
work. Possible solutions include using external flash or
disk drives with lab systems, or providing remote access
to build systems.

3.4 Tools and Methodologies

As the students start work on their project, the course
topics and labs teach the tools and methodologies used
within the community. In most cases, the bug or issue
tracking system (such as Bugzilla) drives the develop-
ment, feature request, debugging, and review processes,
providing an effective starting point. It’s best that stu-
dent projects have a bug/issue within the community
tracking system, so students must either take on an ex-
isting bug or create a bug/issue for each project.

One useful exercise at this stage is to have the students
“shadow” an active developer; on Bugzilla, a student
can do this by entering that developer’s e-mail address in
their watch list [4], which forwards to the student a copy
of all bugmail sent to the developer. After coming to
grips with the e-mail volume, students learn a lot about
the lifecycle of a bug through this process.

Next, the students need to learn how to cope with be-
ing productively lost by using code search tools (such as
LXR [9], MXR [10], and OpenGrok [11]), learning to
skim code, and most importantly, learning who to talk
to about specific pieces of code, including module and
package owners and community experts. By working
shoulder-to-shoulder with community members, partic-
ularly on IRC, they learn the ins-and-outs of the de-
velopment process, including productivity shortcuts and
best practices. The professor can keep his finger on the
pulse of the activity through IRC, guiding students when
they get off track and connecting them with appropriate
community members as challenges arise.

As with all of the activity in the course, students are
expected to blog about their experiences on a regular
basis, and all of the students benefit from this shared
knowledge (as does the community, which does not have
to answer the same questions over and over again). At
the same time, differences between the student projects
prevents one student from riding entirely on the coattails
of other students.

3.5 Meeting the Community

Guest lectures by community developers have an enor-
mously powerful impact on students: meeting a coding
legend on IRC is great, but talking to him face-to-face
and seeing a demonstration of how he works or hearing

240 • A Model for Sustainable Student Involvement in Community Open Source

first-hand about the direction the software is headed has
exceptional value.

We film these meetings and share the talks under
open content licenses, making them available to people
around the world. We’ve been surprised at the number
of views these videos have received, and who is viewing
them: for example, we’ve found that new Mozilla em-
ployees often read our wiki and view the videos of our
Mozilla developer talks as they come up to speed on the
Mozilla codebase.

3.6 Releases

Following the “release early, release often” mantra, stu-
dents are required to make releases on a predetermined
schedule: for the first Open Source course, three re-
leases from 0.1 to 0.3 are required, and for the follow-on
course, six biweekly releases from 0.4 to 1.0.

We define the 0.3 release as “usable, even if not pol-
ished,” reflecting the fact that a lot of Open Source soft-
ware is used in production even before it reaches a 1.0
state. This means that the 0.3 release should be prop-
erly packaged, stable, and have basic documentation,
although it may be missing features, UI elegance, and
comprehensive user documentation. The slower release
rate in the first course is due to the initial learning curve
and the fact that setting up a project and preparing an
initial solution are time-consuming.

3.7 Contribution to Other Projects

As active members of an Open Source community, stu-
dents are required to contribute to other Open Source
projects, either those of other students or other mem-
bers within the community. This contribution—which
can take the form of code, test results, test cases, doc-
umentation, artwork, sample data files, or anything else
useful to the project—accounts for a significant portion
of the student’s mark. Each project is expected to ac-
knowledge external contributions on their wiki project
page, and to welcome and actively solicit contributions
from other students and community members. This in
turn requires that they make contribution easy, by pro-
ducing quality code, making it available in convenient
forms, and by explicitly blogging about what kind of
contributions would be appreciated.

Students are often surprised to find community members
contributing to their projects (and community members
are sometimes unsure whether doing so is permissible
from an academic point of view), but that is part of the
authentic Open Source experience; it’s important not to
choke off collaboration for the sake of traditional aca-
demics.

In order to receive credit for contribution, students must
blog about their contributions to other projects. At first
this seems immodest to students, but the straight-facts
reporting of work accomplished is a normal part of open
development.

4 Seneca’s Experience

4.1 History

Seneca College has been involved with Open Source for
over 15 years, starting with Yggdrasil Linux installa-
tions in 1992. In 1999 we started a one-year intensive
Linux system administration graduate program; in 2001
we introduced the Matrix server cluster and desktop in-
stallation, converting all of hundreds of lab systems to a
dual-boot configuration, which enabled us to teach the
Linux platform and GNU development toolchain to stu-
dents right from their first day at the college. In addition,
a number of college faculty members released small
Open Source software packages, including Nled [25],
VNC# [22], and EZED [21].

In 2002, John Selmys started the annual Seneca Free
Software and Open Source Symposium [17], which has
since has grown to a two-day event attracting partici-
pants from across North America.

In 2005, an industry-sponsored research project on ad-
vanced input devices created the need to modify a com-
plex application. The lead researcher on this project,
David Humphrey, contacted Mozilla to discuss the pos-
sibility of modifying Firefox. This contact led to a deep
relationship between Mozilla and Seneca which out-
lasted that research project and led to the eventual de-
velopment of the Open Source teaching model described
here.

Seneca College’s DPS909/OSD600 Open Source De-
velopment course [19] implemented this model within
the Mozilla community. David subsequently devel-
oped the Real World Mozilla seminar, which packs

2008 Linux Symposium, Volume Two • 241

that course into an intensive one-week format, and the
DPS911/OSD700 continuation course was eventually
added to enable students to continue development on
their Open Source projects and take them to a fully-
polished 1.0 release with faculty support.

4.2 Failures

The unpredictable nature of working within a function-
ing Open Source community poses peculiar challenges.
We’ve had situations where a developer appears unex-
pectedly and posts a patch that fully completes a stu-
dent’s half-done project. Sometime students encounter
reviewers who can’t be bothered to do a review, stalling
a student’s work for weeks at a time, and some module
and package owners have a complete lack of interest in
the students’ work.

On the other hand, we’ve also had students drop the ball
on high-profile work, or fail to grasp how to leverage the
community and end up just annoying other contributors.
In both cases our relationship with the community has
taken a beating.

We’ve found that most students rise to the challenge pre-
sented to them in the Open Source development courses.
This has meant that, properly supported, students thrive
when presented with big challenges. Conversely, trying
to protect students by coddling them in terms of project
scope or expectations (“throwing them into the shallow
end of the pool”) almost certainly leads to failure.

4.3 Successes

By and large, the Open Source Development courses
have been successful for the majority of students. No-
table projects successes by Seneca students include:

• APNG [1] – Animated PNG format, an exten-
sion of the PNG [14] high-colour-depth, full-alpha
graphic format. While the PNG Development
Group favored the use of MNG as the animated
version of PNG, that standard had proven to be
large and difficult to implement effectively, and
Mozilla wanted to try a lightweight, backward-
compatible animated PNG format. Andrew Smith
implemented this format [2] and his work has been
incorporated into Firefox 3; Opera now also sup-
ports APNG.

• Buildbot integration – The Mozilla build system
was adapted to work with the BuildBot automation
system by Ben Hearsum [6].

• Plugin-Watcher – Many Firefox performance prob-
lems are believed to originate with 3rd-party bi-
nary plugins such as media players and document
viewers. Fima Kachinski (originally working with
Brandon Collins) implemented an API to moni-
tor plugin performance, and created a correspond-
ing extension to provide a visual display of plugin
load [13].

• DistCC on Windows – A distributed C compila-
tion tool originally written to work with GCC. Tom
Aratyn and Cesar Oliveira added support for Mi-
crosoft’s MSVC compiler, allowing multi-machine
builds in a Windows environment [5].

• Automated Localization Build Tool – There are
many localizations that deviate in a very minor
way from another localization (for example, en_US
and en_CA). Rueen Fiez, Vincent Lam, and Ar-
men Zambrano developed a Python-based tool that
will apply a template to an existing localization
to create the derivative version, which eliminates
the need for extensive maintenance on the deriva-
tive [3].

In addition, 4 out of 25 student interns at Mozilla this
summer are from our courses, and a number of gradu-
ates are now employed full-time by Mozilla and compa-
nies involved in Open Source as a result of their work.

The Open Source courses have also led to a number
of funded research projects in collaboration with Open
Source projects and companies.

4.4 What We’ve Learned

There are many lessons which students repeatedly take
away from the Open Source development courses:

• It’s important to persevere.

• It’s OK to share and to copy code (within the con-
text of the applicable Open Source licenses) in-
stead of guarding against plagiarizing or having
your code “stolen.”

242 • A Model for Sustainable Student Involvement in Community Open Source

• Work in public instead of in secret.

• Tell the world about your mistakes instead of pub-
licizing only your successes—there’s a lot of value
in knowing what does not work.

• You are a full community member, which makes
you a teacher as well as a student. Write down what
you’ve done, and it will become a resource. (It’s in-
teresting to note that many of the Google searches
which the students are performing now return our
own course wiki and blogs.)

• Ask for help instead of figuring things out on your
own.

• Key figures in this industry do not stand on
pedestals—they are real people and are approach-
able. Relationships are important and communica-
tion is critical.

• Code is alive.

We’ve also learned that Open Source is definitely not
for everyone. The least successful students are those
who do not engage the community and who attempt to
work strictly by themselves. However, even students
who don’t continue working with Open Source take an
understanding of Open Source into their career, along
with an understanding of how to work at scale—which
is applicable even in closed-source projects.

Finally, we’ve learned that Open Source communities
and companies have a huge appetite for people who
know how to work within the community.

4.5 Where We’re Headed

The OSD/DPS courses are growing and will continue to
work within the Mozilla project. In addition, we will
also be working with OpenOffice.org [12] this fall.

Our Linux system administration graduate program
(LUX [18]) is being revised to incorporate many of the
principles that we’ve used in the other Open Source
courses. LUX students will be working directly with
the Fedora project [7], but on a much larger scale than
the Mozilla and OpenOffice.org projects: LUX projects
will span three courses across two semesters.

One other course is in development: a build automation
course, scheduled to be introduced into our system ad-
ministration and networking programs in January 2009.
This course will also be based on work within the Fe-
dora project.

In order to effectively leverage our Open Source teach-
ing, research projects, and partnerships, we’ve created
the Seneca Centre for the Development of Open Tech-
nology (CDOT) [16] as an umbrella organization for this
work.

5 Steps an Open Source Community Can Take
to Improve Student Involvement

Most Open Source communities actively welcome new
contributors, but don’t always make it easy to join.
Many of the steps a project will take to encourage con-
tributors of any sort will improve student involvement:

• Make it easy for new contributors to set up your
build environment. Create an installable kit of
build dependencies, generate a metapackage, or
provide a single web page with links to all of the
required pieces.

• Create a central web page with links to basic infor-
mation about your project that a new contributor
will need, such as build instructions, communica-
tion systems, a list of module owners, a glossary or
lexicon of community-specific technical terms and
idioms, and diagrams of the software layers and
components used in your products. It’s challeng-
ing for new contributors to even map IRC nicks to
e-mail addresses and blog identities!

• Create sheltered places or processes to enable new
people to introduce themselves and get up to speed
before being exposed to the full flaming blow-
torch of the developer’s lists and channels. This
might include an e-mail list for new-contributor
self-introductions or a process for self-introduction
on the main lists, or an IRC channel for new devel-
opers.

In addition, in a course context:

• Ensure that the community is aware of the course
and course resources.

2008 Linux Symposium, Volume Two • 243

• Feel free to join the student IRC channel, con-
tribute to student projects as you would any other
project, and read the student planet.

• Contribute to learning materials on the course wiki.

• Apart from recognizing the students as new com-
munity members, treat them as any other contribu-
tor.

6 Conclusion

Open Source development is dramatically different from
other types of software development, and it requires
some radically different pedagogical approaches. A
community-immersed, fully-open, project-oriented ap-
proach led by professor who is also a member of the
Open Source community provides a solid foundation for
long-term, sustainable student involvement in that Open
Source community.

7 Acknowledgments

I would like to acknowledge the pioneering work of
my colleague David Humphrey in establishing the Open
Source Development courses at Seneca, and for his
thoughtful review of this paper.

References

[1] Animated PNG Information Site.
http://animatedpng.com/.

[2] APNG project page. http://zenit.
senecac.on.ca/wiki/index.php/APNG.

[3] Automated Localization Build Tool project page.
http://zenit.senecac.on.ca/wiki/
index.php/Automated_localization_
build_tool.

[4] Bugzilla Watch Lists.
http://www.bugzilla.org/docs/3.0/
html/userpreferences.html#
emailpreferences.

[5] DiscCC with MSVC project page.
http://zenit.senecac.on.ca/wiki/
index.php/Distcc_With_MSVC.

[6] Extending the Buildbot project page.
http://zenit.senecac.on.ca/wiki/
index.php/Extending_the_Buildbot.

[7] Fedora Project.
http://fedoraproject.org/.

[8] Fedorahosted Trac instances.
https://fedorahosted.org/web/.

[9] LXR. http://lxr.linux.no/.

[10] MXR. http://mxr.mozilla.org/.

[11] OpenGrok. http://opensolaris.org/
os/project/opengrok/.

[12] OpenOffice.org.
http://openoffice.org/.

[13] Plugin-watcher project page.
http://zenit.senecac.on.ca/wiki/
index.php/Plugin-watcher.

[14] PNG - Portable Network Graphics.
http://www.libpng.org/pub/png/.

[15] The Ryerson Facebook Dilemma.
http://www.wikinomics.com/blog/
index.php/2008/03/12/
the-ryerson-facebook-dilemma/.

[16] Seneca Centre for Development of Open
Technology (CDOT).
http://cdot.senecac.on.ca/.

[17] Seneca Free Software and Open Source
Symposium.
http://fsoss.senecac.on.ca/.

[18] Seneca LUX Graduate Program. http://cs.
senecac.on.ca/?page=LUX_Overview.

[19] Seneca Open Source Development Wiki.
http://zenit.senecac.on.ca/wiki/.

[20] Sourceforge. http://sourceforge.net/.

[21] John Flores. EZED - Easy Editor. http://
cdot.senecac.on.ca/software/ezed/.

[22] David Humphrey. VNC#. http://cdot.
senecac.on.ca/projects/vncsharp/.

244 • A Model for Sustainable Student Involvement in Community Open Source

[23] J. T. S. Moore. Revolution OS, 2001.
http://www.revolution-os.com/
(available online at http:
//video.google.com/videoplay?
docid=7707585592627775409).

[24] Eric Raymond. The Cathederal and the Bazaar,
2000. http://catb.org/~esr/
writings/cathedral-bazaar/
cathedral-bazaar/.

[25] Evan Weaver. NLED—Nifty Little Editor.
http://cdot.senecac.on.ca/
software/nled/.

A Runtime Code Modification Method for Application Programs

Kazuhiro Yamato
Miracle Linux Corporation

kyamato@miraclelinux.com

Toyo Abe
Miracle Linux Corpration
tabe@miraclelinux.com

Abstract

This paper proposes a runtime code modification
method for application programs and an implementa-
tion. It enables the bugs and security problems to be
fixed at runtime. Such software is notably useful for
applications used in telecom, which cannot be stopped
because of the need to maintain the required level of sys-
tem availability. The advantages of the proposed method
are short interruption of the target application and easy
maintenance using trap instructions and utrace.

This paper also shows evaluation results with three con-
ditions. The interruption times by the proposed method
were comparable to, or shorter than those by existing
similar software, livepatch and pannus. In a certain con-
dition, our implementation’s interruption time was three
orders of magnitude shorter in comparison.

1 Introduction

Although there have been a number of activities to im-
prove software quality, there is no way to completely
prevent bugs and security problems. These are gener-
ally fixed by rebuilding the program with patches to the
source code. This fix naturally requires termination and
restarting of the program. The termination of the pro-
gram not only interrupts the service, but also loses vari-
ous data such as variables, file descriptors, and network
connections. It is impossible to recover these proper-
ties unless a recovery mechanism is built in the program
itself.

Fixing with a termination is a serious problem especially
for application programs used in telecom, because they
cannot easily be terminated to keep the required level
of system availability.1 Therefore, the problems should

1The CGL (Carrier Grade Linux) specification requires 99.999%
availability.

be fixed at runtime with binary patches. In addition, in-
terruption time to apply binary patches should be short
because long interruption degrades the quality of voice
and video, which are major services of telecom.

In this paper, we call an application program to be fixed
by RBP (Runtime Binary Patcher) a target. Two major
open source RBPs, livepatch [1] and pannus [2], already
exist. However, livepatch potentially interrupts the ex-
ecution of a target for a long time. The maintenance of
pannus doesn’t seem to be easy.

This paper proposes a runtime code modification
method for application programs, and, an implemented
RBP. It achieves short interruption and easy mainte-
nance using the trap instruction and the utrace APIs [3].

2 Existing Methods

2.1 ptrace system call and gdb

The ptrace system call provides debug functions,
such as reading/writing memory in the target’s virtual
memory space, acquisition/modification of the target’s
registers, and catching signals delivered to the target.
These functions are enough to realize runtime code
modification. Actually, we can modify a target’s mem-
ory with gdb [4], which is one of the most popular de-
buggers in the GNU/Linux environment and also a typ-
ical application using ptrace.

For example, the gdb command "set variable

((unsigned short)0x8048387)=0x0dff"
overwrites 0x0dff (dec instruction on i386) at
address 0x8048387 by calling ptrace(PTRACE_

POKEDATA, pid, addr, data), where pid, addr,
and data are the process ID of the target, the address
to be overwritten, and the address of data to overwrite,
respectively.

However, this approach potentially causes long inter-
ruption of target execution when the target has many

• 245 •

246 • A Runtime Code Modification Method for Application Programs

main()
{

}

{
 ...

{
 ...

Newly Allocated
Memory

func()

func();
...

}

main()
{

}

{
 ...

}

(a) before (b) after

func();
...

}

func_fix()

func()jmp

Figure 1: Function call path before and after applying a
binary patch

threads or the patch is large. gdb frequently stops
all threads in a target. As the number of threads in-
creases, interruption time increases, too. The writ-
ing size of PTRACE_POKEDATA is a ‘word,’ which is
architecture-dependent—four bytes on i386.

Some practical cases will require additional memory to
apply a binary patch whose size is greater than the orig-
inal code. ptrace doesn’t provide a direct function
to allocate memory. However, livepatch solves this by
making a target execute instructions to allocate memory
as described in Section 2.2.1.

2.2 Open Source RBPs

livepatch and pannus are two major open source RBPs.
They both fix problems by adding a binary patch in the
target’s virtual memory space and overwriting the jmp
instruction to the binary patch at the top of the function
to be fixed (we call it the target function) as shown in
Figure 1. This means problems are fixed by the func-
tion unit. Thus a patch is provided as a function (fixed-
function) in an ELF shared library (patch file). The ba-
sic processes of livepatch and pannus are similar and
roughly divided into the following four stages.

1. Preparation: opens a patch file, obtains the size of

int prot = PROT_READ|PROT_WRITE;
int flags = MAP_PRIVATE|MAP_ANONYMOUS;
mmap(NULL, size, prot, flags, -1, 0);
asm volatile("int $3");

Figure 2: The code written in the target stack

the patch, gives addresses to unresolved symbols,
and so on.

2. Memory Allocation: allocates memory for the
patch in the target.

3. Load: loads the patch into the allocated memory.

4. Activation: overwrites an instruction to jump to the
patch at the top of the target function.

2.2.1 livepatch

livepatch [1] was developed by F. Ukai, and consists
only of a utility in user space, which is about 900
lines of code. In the preparation stage, livepatch gets
the information about the patches in the ELF file with
libbfd. In the memory allocation stage, livepatch first
obtains the stack pointer of the target using PTRACE_
GETREGS. Then it writes the machine code correspond-
ing to the source shown in Figure 2 on the stack. The
code is executed by setting the program counter to the
top address of the stack using PTRACE_SETREGS, fol-
lowed by PTRACE_CONT. The mmap() in the code
allocates memory in the target, because the target it-
self calls the mmap(). The assembler instruction ‘int
$3’ generates the SIGTRAP to bring back the control to
livepatch, which is sleeping by wait(NULL) after the
PTRACE_CONT.

In the load stage, livepatch writes the patch in the allo-
cated memory by repeating PTRACE_POKEDATA. In
the activation stage, PTRACE_POKEDATA is also used
to overwrite the instruction to jump.

2.2.2 pannus

pannus [2] was developed by a group from NTT Cor-
poration. It consists of a utility in user space and a ker-
nel patch. In the preparation stage, livepatch analyzes a

2008 Linux Symposium, Volume Two • 247

patch file by itself without external libraries and obtains
necessary data. The memory allocation is mainly per-
formed by a mmap3() kernel API which is provided
by the kernel patch. Actually it also plays a role in a
portion of the load stage, because the mmap3() maps
the patch file. The mmap3() is an enhanced version
of mmap2(), which is a standard kernel API. It enables
other processes to allocate memory for the specified pro-
cess, directly accessing the core kernel structures such
as mm_struct, vm_area_struct, and so on. Be-
cause members of the structures or access rules are often
changed, the maintenance of the patch doesn’t seem to
be easy.

In the load stage, the access_process_vm() ker-
nel API is used via the kernel patch to set relocation
information in the allocated memory. The API reads/
writes any size of memory in the specified process.

In the activation stage, pannus also uses access_
process_vm() to overwrite the instruction to jump.
Note that pannus checks whether the status is safe be-
fore the overwriting. The safety means that the number
of threads whose program counters point the region to
be overwritten is zero. The program counter is obtained
by PTRACE_GETREGS, after the target was stopped by
PTRACE_ATTATCH. If the status is not ‘safety,’ pannus
resumes the target once by PTRACE_DETATCH, and
tries to check again. If the result of the second check
is not also safety, pannus aborts the overwriting. The
probability that this situation happens increases with the
call frequency of the target function.

3 Proposed Method and its Implementation

3.1 Patching process

We propose a new patching method, which is used in our
project kaho, which means Kernel Aided Hexadecimal
code Operator. The patching process of kaho is divided
into four stages similarly to livepatch and pannus. They
are shown in Figure 3 with detailed steps. Its implemen-
tation consists of a user-space utility program and a ker-
nel patch. The white boxes in the figure are processing
by the utility. The shaded steps are processed in the ker-
nel via IOCTLs. The supported architectures of kaho are
x86_64 and i386 at this moment. All these steps are de-
scribed here and details of IOCTLs and ‘Safety check’
are explained in the following sections.

Init ializat ion

Patch instant iat ion

Patch file analysis

Target execut ion file analysis

Compat ibilit y check

Memory allocat ion

Address resolut ion

Patch loading request

Patch loading

Allocat ion request

Safety check

Act ivat ion

Patch code analysis

Memory
Allocat ion
Stage

Load Stage

Act ivat ion
Stage

Allocated address check

Preparat ion
Stage

Figure 3: The patching process of kaho

The Preparation Stage consists of seven steps. Initial-
ization interprets the command line options, which in-
clude information about the target and the command
file. The command file defines the name of a target,
a fixed function, a patch file, and a map file. Patch
file analysis opens the patch file and reads ELF infor-
mation such as ELF header, section headers, program
headers, symbol table, dynamic sections, and versions.
Target execution file analysis finds the executable from
/proc/<PID>/exe and acquires ELF information.
Compatibility check confirms that byte order (endian),
file class, OS ABI,2 and ABI version of the patch file,
which are contained in the ELF header, are identical to
those of the target execution file. Patch code analysis
searches for an entry whose st_name member is iden-
tical to the name of the fixed function from the symbol
table, and its file position from the st_value. Ad-
dress resolution works out the addresses of unresolved
symbols using a target executable, the depending li-
braries, and /proc/<PID>/maps. When symbols

2such as UNIX – System V, UNIX – HP-UX, UNIX – NetBSD,
GNU/Hurd, UNIX – Solaris, etc.

248 • A Runtime Code Modification Method for Application Programs

are stripped out in the executable and libraries, the map
file must be specified in the command file, because the
map file lists function names and the corresponding ad-
dresses. Patch instantiation allocates the data structure
to manage binary patches in the kernel space, and gen-
erates a unique handle for every a patch instance.

The Memory Allocation Stage consists of three steps.
Allocation request finds a vacant-address range near the
target function using /proc/<PID>/maps and calls
the Memory allocation IOCTL. Allocated address check
confirms that the address3 is within a ±2GB range from
the target function. Note that Allocated address check
is needed for the x86_64 architecture only, because the
immediate operand of the jmp instruction is relative-32-
bit despite having a 64-bit accessible memory space.

Load Stage consists of Patch loading request and Patch
loading. Patch loading request calls an IOCTL with a
patch instance handle, the fixed function’s address in
kaho utility virtual memory, size of the fixed function,
and the target function’s virtual memory address. Patch
loading is an IOCTL to load the fixed function in the
target.

Activation Stage consists of Safety check and Activation.
Safety check confirms that no threads are executing code
on the region to be overwritten by Activation. If this
is not checked, threads may fetch illegal instructions.
There are two modes to check safety, standard mode and
advanced mode. In the standard mode, the check is per-
formed by the kaho utility program. In the advanced
mode, Activation performs it. Activation overwrites the
instruction to jump to the fixed function at the top of the
target function.

In fact, kaho can deactivate and remove the activated
patches. In addition, kaho can modify the data in the
target. In the case, Loading Stage stores the data from
the utility in the kernel. Activation Stage overwrites the
data with access_process_vm().

3.2 Patch instantiation

The Patch instantiation IOCTL receives the process
ID of the target and the number of patches. It first
takes an available handle from its own handle pool and
creates the data structure to manage patches, which

3The address in which the fixed-function is loaded in a precise
sense.

static const struct
utrace_engine_ops kaho_utrace_ops =
{

.report_exec = kaho_report_exec,

.report_quiesce = kaho_report_quiesce,

.report_reap = kaho_report_reap,
};

Figure 4: kaho’s utrace callbacks

is named patch instance. Patch instance’s member
variables include the number of patches, the pointer
to the target’s task_struct, addresses of the tar-
get functions, sizes of the patches, and so on. Then
it gets the pointer to target’s task_struct with
find_task_by_pid(), adds the patch instance to
the dedicated list named patch-instance list, and at-
taches the target by calling utrace_attach() with
the callbacks shown in Figure 4. After the target is at-
tached, utrace_set_flags() with flag UTRACE_

EVENT(EXEC)|UTRACE_EVENT(REAP)4 is called to
delete the patch instance from the patch-instance list and
release it for the case in which the patch becomes no
longer needed. Finally, Patch instantiation returns the
handle to be used in the other IOCTLs.

3.3 Memory Allocation

Memory Allocation IOCTL receives a handle, a request
address, and a request size. It first finds that the patch
instance which has the handle is in the patch-instance
list and stores the request address and the request size in
the patch instance. Then it enables the callback kaho_
report_quiesce() by calling utrace_set_
flags() with flags UTRACE_ACTION_QUIESCE |

UTRACE_EVENT(QUIESCE). Shortly after the flags
are set, utrace executes the callback specified
in .report_quiesce (that is kaho_report_
quiesce() in this case) on the target context as shown
in Figure 5.

kaho_report_quiesce() calls do_mmap()
with the requested address and size on the target
context. As a result, memory is allocated in the target’s
virtual memory space. The basic idea is similar to

4The flag enables callbacks specified in .report_exec and
.report_reap to be called when the target calls the exec()
family and when the target terminates, respectively.

2008 Linux Symposium, Volume Two • 249

sleep

kaho_report_quiesce()

set_utrace_flags()

kaho's
context

Target
context

down(&sem)

up(&sem)

do_mmap()

t im e

Target processing

set_utrace_flags()

kaho's processing

Figure 5: Mechanism of memory allocation

that of livepatch. Next kaho_report_quiesce()
executes up(&sem) to wake up the kaho utility
program which is sleeping by down(&sem). Finally,
kaho_report_quiesce() stores the address of
the allocated memory in the patch instance and calls
utrace_set_flags() without flags UTRACE_

ACTION_QUIESCE|UTRACE_EVENT(QUIESCE) to
disable this callback and resume the target’s processing.
After the sleep finishes, the address is returned.

3.4 Patch Loading

Patch Loading IOCTL receives the handle, the address
at which the fixed function is in the kaho’s memory
space, the address to be loaded in the target’s mem-
ory space, the address of the target function in the tar-
get’s memory space, the size to be loaded, and the sub-
patch ID. The sub patch ID is the sequential number
to identify patches which are applied at one time. Af-
ter Patch Loading stores them in the patch instance,
it loads the fixed functions into the target by calling
access_process_vm().

access_process_vm() is the standard kernel API
which reads or writes the memory in the specified pro-
cess. It is also used from the ptrace system call and
some kernel functions to handle /proc/<PID>/mem.
This means that memory in the target can be written
by calling ptrace and writing /proc/<PID>/mem.
However, This works only when the target is in a traced
state; namely, the target must be stopped. Although this
is necessary to prevent unexpected results in usual cases,
we don’t access memory loading fixed functions. There-
fore, Patch Loading calls access_process_vm()
without stopping the target.

0 55 push %ebp
1 89 mov %ebp,%ebp
2 e5
3 8b mov 0x08(%ebp),%eax
4 45
5 08
6 40 inc %eax

0 e9 jmp $01020304
1 01
2 02
3 03
4 04
5 08
6 40 inc %eax

push

inc

jmp
illegal

illegal

inc

mov

mov

Figure 6: The example of the safety and danger

3.5 Safety check

Safety check confirms that program counters of the all
threads in the target don’t point the region to be fixed.
If a thread’s program counter points to such a region,5

it gets illegal instructions after the instruction to jump is
overwritten, as shown in Figure 6. kaho has two modes
to check the safety. One is the standard mode in which
the kaho utility program checks. The other is the ad-
vanced mode in which the Activation IOCTL checks be-
fore the instruction to jump to the fixed function is over-
written in kernel space. The interruption of the target in
the advanced mode is shorter than that in the standard
mode, because the target is not stopped in the advanced
mode. However, the number of fixed functions which
are applied at one time in the advanced mode is limited
to only one.

3.5.1 Standard mode

Safety check in the standard mode consists of Quick
check and Forced displacement. Quick check attaches
the target with ptrace and checks the value of the pro-
gram counter with PTRACE_GETREGS. When the pro-
gram counters of all threads do not point the region to
be overwritten, the check successfully finishes. Other-
wise, the check is retried. If the failures continue a few
times, Forced displacement is executed as the threads
are attached.

5The first byte of the region is exempted, because some sort of
valid instruction should be overwritten.

250 • A Runtime Code Modification Method for Application Programs

Forced displacement tries to bring about a safety state
using the trap instruction (int 3). It first overwrites a
trap instruction at the top of the target function. Then
it resumes only the threads whose program counters
point the region to be fixed with PTRACE_CONT. Af-
ter that, some threads will stop by the trap instruction.
Consequently such threads become safe. Other threads
including threads which do not run on the code with
trap instruction are checked periodically with PTRACE_
ATTACH and PTRACE_GETREGS. If safety of all
threads is confirmed, the check successfully finishes.
Otherwise, it fails.

3.5.2 Advanced mode

Safety check in the advanced mode is further broken
down into four steps. These consist of Preparation,
Trap handler, Thread safety check, and Target safety
check. The basic strategy is to mark the thread which
has executed the overwritten trap instruction at top of
the target function for safety. This method is inspired
by djprobes [5]. Preparation first makes a checklist
in which pointers to the task struct of all threads and
corresponding check statusus are contained and adds
the pointer of the target’s task struct to the list called
trapped-targets. Then it overwrites the trap instruction
at top of the target function. After this, the check in
the Trap handler becomes active as described below.
Finally, it calls utrace_attach() and utrace_
set_flags() to execute the callback specified in
.report_quiesce for all threads, which is Thread
safety check in this case.

Trap handler is registered by register_die_
notifier() when a system is initialized. It is called
when any process or a thread in the system executes a
trap instruction. Therefore it must confirmed whether
the thread which executes the trap instruction and the
address are included in the trapped-targets list. If it is
included, Trap handler marks the thread as safety. Then
it changes the program counter of the thread to the ad-
dress of the fixed function by setting rip or eip in
struct pt_regs given by the lower-common layer
of kernel, as shown in Figure 7. This means that the
thread executes the fixed function.

Thread safety check is called on the context of the target
thread. It first reads the check list and confirms that the
safety of the thread was already checked by Trap han-
dler. If the thread is ‘safety,’ it finishes immediately.

{
 ...

main()
{

}

{
 ...

}

func();
...

}

func_fix()

func()int3

Trap
hander

(in kernel)

Figure 7: Function call path during safety check in ad-
vanced mode

Otherwise, it checks for safety, reading program coun-
ters in user space, which is saved in the kernel mode
stack. The result is written in the check list. After the
Thread safety check is executed on the all threads, Target
safety check reads the check list and deletes safe threads
from the list. When the check list becomes empty, Tar-
get safety check successfully finishes. Otherwise, it re-
peats Thread safety check for the remaining threads in
the check list.

3.6 Activation

Activation IOCTL receives the handle and the flag.
It overwrites instructions to jump to the fixed func-
tion at the top of the target function using access_
process_vm(). The addresses of the fixed function,
address of the target function, and the sizes of the fixed
functions are obtained from the patch instance. The ex-
amples of the instructions to be overwritten are shown
in Figure 8 and Figure 9. In Figure 8, the jmp instruc-
tion which takes a 32-bit relative address is used and
its total size is 5 bytes. The instructions shown in Fig-
ure 9 are used only when the architecture is x86_64 and
KAHO_X86_64_ABS_JMP is set in the flag. The condi-
tion in which the instructions in Figure 9 is needed is
rare. Code, data, and stack regions in the memory space
are usually sparsely placed in memory.

2008 Linux Symposium, Volume Two • 251

jmpq $0x12345678

Figure 8: Example of instruction to be written

pushq $0x12345678
movl $0x9abcdef0, 4(%rsp)
ret

Figure 9: Example of instructions to be written when
the flag X86_64_ABS_JUMP is specified on the 86_64
architecture

3.7 Usage of kaho utility program

We introduce brief usage for the kaho utility program
named kaho. The usage is greatly influenced from that
of pannus. First of all, environment variable KAHO_
HOME must be set. It specifies the base directory in
which the command file, the patch file, and the map
file are placed. Then users perform the following three
steps.

1. Prepare a command file, a patch file, and a map file.

2. Execute kaho with the load option.

3. Execute kaho with the activation option.

3.8 Limitations

3.8.1 Handling of C++ exception

kaho cannot apply a binary patch to code which can po-
tentially generate C++ exceptions. When the exception
happens, the code compiled by g++ tries to find the
frame to be caught with the .eh_frame_section
in the ELF file which contains the target function. How-
ever, the information about the fixed function is not in
the .eh_frame_section. As a result, the exception
is not caught correctly.

3.8.2 Static variables

When a target function contains static variables and a
patch uses them, the patch may not work correctly. The

reason is that the patch refers not to the variable in the
target, but in itself. This can be avoided by replacing
the static keyword with the extern keyword and
adding the address of the static variable in the target
function to the map file.

3.8.3 Loading new shared libraries

kaho fails to load patches when the fixed functions in the
ELF file require additional functions which are not in
the ELF file itself, the target executable file, or already-
loaded shared libraries.

3.8.4 Multiple binary patch in advanced mode

The present algorithm of the safety check in the ad-
vanced mode allows only one fixed function to be ap-
plied at a time. However, there is a certain situation in
which multiple fixed functions should be applied at one
time. Therefore, we plan to extend the number of fixed
functions which are applied at one time in advanced
mode.

4 Evaluation

4.1 Evaluation method

We evaluated performance of RBPs (livepatch, pannus,
and kaho) by the interruption time in target execution.
This section describes our definition of the interruption
time, our measuring method, the target programs used
for the measurement, and our evaluation environment.

4.1.1 Interruption time

We defined five categories of interruption; Allocation,
Load, Check, Trap, and Setup. Allocation is the inter-
ruption due to memory allocation for a binary patch.
All RBPs but pannus allocate memory in the target con-
text. pannus does it from the outside of the target via
mmap3(). Load is the interruption due to loading the
binary patch. Only livepatch does it in the target con-
text. Check is the interruption due to the safety check
for the target to be safely patched. pannus, kaho in
the standard mode (kaho-std), and kaho in the advanced

252 • A Runtime Code Modification Method for Application Programs

mode (kaho-adv) have safety check mechanisms, which
work in the target context. livepatch doesn’t have such
a step. Trap is the interruption due to the in-kernel trap
handler; it also happens in the safety check step. Only
kaho-adv uses this functionality. Setup is the interrup-
tion due to processing the _init function in the binary
patch. Only pannus executes it in the activation.

4.1.2 Measurement

We placed probe points statically in the kernel to de-
termine the interruption time in each category listed in
Section 4.1.1. Also, we measured the interruption time
in the Trap category from the target by getting proces-
sor’s cycle counter.

The followings are the probe points we placed in kernel.

(A) ptrace-triggered stop/cont point (i.e., TASK_
TRACED stop/cont). The ptrace is used for the
Allocation, Load, or Check category.

(B) kaho’s utrace quiesce handler entry/exit for mem-
ory allocation. This is used for the Allocation cate-
gory in kaho-std and kaho-adv.

(C) kaho’s utrace quiesce handler entry/exit for safety
check. This is used for the Check category in kaho-
adv.

(D) Setupper entry and restorer exit of the _init
function in a patch. This is used used for the Setup
category in pannus.

The following one is in user space (i.e., the target).

(E) Right before calling the fixed function and at the
top of the fixed function. This is used for the Trap
category in kaho-adv.

We conducted our measurements a hundred times per
target. We took the mean value as a result.

4.1.3 Targets for the evaluation

To determine the performance and the characteristics of
each RBP, three typical target programs described below
were used.

• Single: Single-threaded application. The target
function is continuously called and immediately re-
turns. Because safety checks are very easy, this
type of target can be used to determine the shortest
time of the interruption.

• Multi-I: Multi-threaded application. The target
function is frequently called from all of the threads.
A hundred threads simultaneously access the func-
tion without any control. There is no outstanding
resource contention across the threads in this tar-
get. Safety checks are very tough work, so this type
of target can be used to determine the longest time.
This is the most unfavorable condition for kaho-
adv because it uses the trap handler for the check.

• Multi-II: Multi-threaded application and the target
function is never called from any of the threads.
A hundred threads run without accessing the func-
tion. There is no outstanding resource contention
across the threads in this target. This target is the
most favorable condition for kaho-adv because no
one hits its trap handler. We used this target to esti-
mate the effect of the trap on the interruption time.

4.1.4 Evaluation environment

We conducted our measurements on a Dual 2.66GHz In-
tel Quad-Core CPU machine with 4GB of RAM, which
was installed with the Fedora Core 6 Linux distribution.
When testing pannus, the 2.6.15.1 kernel plus the pan-
nus patch was running on the machine, because the lat-
est patch of pannus is against this kernel version. When
testing livepatch and kaho, the 2.6.24 version of the
utrace kernel plus the kaho kernel module was run-
ning on it. Because livepatch supports only the i386 ar-
chitecture, we evaluated livepatch in ia32e mode on the
x86_64 kernel.

4.2 Results

The evaluation results are summarized in Table 1 and
in Figures 10-12. We can see that the results depend
largely on the target, at first glance. For any targets,
the interruptions by kaho-adv were shorter than those
by kaho-std and pannus. The interruptions by kaho-std
were of the same order as those by pannus. Although
the results of livepatch are also presented, it is naïve to
compare the results with pannus and kaho in terms of

2008 Linux Symposium, Volume Two • 253

Target RBP Total Interupt. (µs) Allocation Load Check Trap Setup
Single livepatch 2486 569 (A) 1916 (A) – – –
Single pannus 48 – – 29 (A) – 19 (D)
Single kaho-std 43 5 (B) – 37 (A) – –
Single kaho-adv 10 6 (B) – 3 (C) 0 (E) –
Multi-I livepatch 502253 100055 (A) 402197 (A) – – –
Multi-I pannus 4673323 – – 4657529 (A) – 15794 (D)
Multi-I kaho-std 1034518 119 (B) – 1034399 (A) – –
Multi-I kaho-adv 1017455 111 (B) – 594 (C) 1016750 (E) –
Multi-II livepatch 513139 99107 (A) 414032 (A) – – –
Multi-II pannus 5040145 – – 5020773 (A) – 19372 (D)
Multi-II kaho-std 895451 121 (B) – 895330 (A) – –
Multi-II kaho-adv 634 112 (B) – 522 (C) 0 (E) –

Table 1: Total and break-down interruption time. ‘–’ means N/A. The characters in parentheses indicate the probe
point listed in Section 4.1.2.

the total interruption time. Because livepatch doesn’t
have a safety check, which is an necessary function to
prevent unexpected results, the interruptions are short,
especially for Multi-I and Multi-II. Therefore, we dis-
cuss the results without livepatch in the following sec-
tions.

4.2.1 Single-threaded target

The interruption-time distribution for the ‘Single’ case
is shown in Figure 10. The interruptions by kaho-adv,
kaho-std, and pannus were 10µs, 43µs, and 48µs re-
spectively. The interruption by kaho-adv was about a
quarter of that by kaho-std and pannus. We think the
reason is that context switch of the target doesn’t hap-
pen in Check by kaho-adv, which utilizes utrace.
On the other hand, because kaho-std and pannus use
PTRACE_ATTACH and PTRACE_DETACH for Check,
the context switch happens at least twice.

4.2.2 Multi-threaded target I

The interruption-time distribution for Multi-I is shown
in Figure 11. The interruptions by kaho-adv, kaho-std,
and pannus were 1.02s, 1.03s, and 4.67s, respectively.
This shows that the performance of all RBPs is compa-
rable in this situation.

The interruption due to Check by kaho-adv was 594µs.
This is three orders of magnitude shorter than that of

pannus and kaho-std. However, almost all of the inter-
ruption by kaho-adv was consumed by Trap. When the
fixed function was called via Trap, the time was 2.2µs
longer than the time via direct jump in our evaluation.
Even so, Trap happened about 440,000 times until Acti-
vation was completed. As a result, about 1s of interrup-
tion happened in total.

In the kaho-std and pannus, over 99% of interruptions
were consumed by Check. Although their safety-check
algorithms are almost the same, the interruption by
kaho-adv is about a quarter of pannus’s result. The rea-
son is unclear. It may be due to the difference of the
base kernel versions.

4.2.3 Multi-threaded target II

The interruption-time distribution for Multi-II is shown
in Figure 12. The interruptions by kaho-adv, kaho-std,
and pannus were 634µs, 0.90s, and 5.04s, respectively.
The interruptions by kaho-std and pannus differed little
from the interruptions for Multi-I. However, the inter-
ruption by kaho-adv was notably reduced, because Trap
was not used at all for the target. This means kaho-adv
is much better than kaho-std and pannus when the target
function is not called frequently.

5 Conclusion

This paper has proposed a runtime code modification
method for application programs and an implementation

254 • A Runtime Code Modification Method for Application Programs

Interruption time (us)
1 10 210

3
10 410

5
10

6
10 710

F
re

q
u

e
n

c
y

0

20

40

60

80

100 Single
livepatch

pannus

kaho-std

kaho-adv

1 10 210
3

10 410
5

10
6

10 710
0

20

40

60

80

100

Figure 10: Interruption-time distribution for the single-
thread target

Interruption time (us)
1 10 210

3
10 410

5
10

6
10 710

F
re

q
u

e
n

c
y

0

20

40

60

80

100 Multi-I

livepatch
pannus

kaho-std

kaho-adv

1 10 210
3

10 410
5

10
6

10 710
0

20

40

60

80

100

Figure 11: Interruption-time distribution for the multi-
thread target I

Interruption time (us)
1 10 210

3
10 410

5
10

6
10 710

F
re

q
u

e
n

c
y

0

20

40

60

80

100 Multi-II
livepatch

pannus

kaho-std

kaho-adv

1 10 210
3

10 410
5

10
6

10 710
0

20

40

60

80

100

Figure 12: Interruption-time distribution for the multi-
thread target II

named kaho. Such software is called Runtime Binary
Patcher (RBP). The RBP is notably useful for applica-
tions used in telecom, which must continue running to
keep the required level of system availability. The ba-
sic process of kaho is based on that of existing open
source RBPs, livepatch and pannus. However, kaho has

two major advantages. One is short interruption of tar-
get execution by the safety check using the trap instruc-
tion, which is inspired by djprobes. The other is easy
maintenance using the utrace kernel APIs instead of
the ptrace system call.

This paper also has shown the evaluation results with
three conditions. Although the results depended largely
on the condition, the interruptions by kaho were com-
parable to or shorter than interruptions by livepatch
and pannus in all conditions. In a certain condition,
the interruption by kaho was three orders of magnitude
shorter than that by livepatch and pannus.

Acknowledgement

I wish to express my special thanks to Mr. I. Shikase and
Mr. A. Kato of AIR Co., Ltd., who have developed the
kaho utility program.

References

[1] http:
//ukai.jp/Software/livepatch/

[2] http://pannus.sourceforge.net/

[3] http://people.redhat.com/roland/
utrace/

[4] http://sourceware.org/gdb/

[5] http://lkst.sourceforge.net/
djprobe.html

SynergyFS: A Stackable File System Creating Synergies between
Heterogeneous Storage Devices

Keun Soo Yim and Jae C. Son
Samsung Advanced Institute of Technology
{keunsoo.yim, jcson}@samsung.com

Abstract

Hybrid storage architecture is one efficient method that
can optimize the I/O performance, cost, and power con-
sumption of storage systems. Thanks to the advances in
semiconductor and optical storage technology, its appli-
cation area is being expanded. It tries to store data to the
most proper medium by considering I/O locality of the
data. Data management between heterogeneous storage
media is important, but it was manually done by system
users.

This paper presents an automatic management tech-
nique for a hybrid storage architecture. A novel soft-
ware layer is defined in the kernel between virtual and
physical file systems. The proposed layer is a variant
of stackable file systems, but is able to move files be-
tween heterogeneous physical file systems. For exam-
ple, by utilizing the semantic information (e.g., file type
and owner process), the proposed system optimizes the
I/O performance without any manual control. Also as
the proposed system concatenates the storage space of
physical file systems, its space overhead is negligible.
Specific characteristics of the proposed systems are an-
alyzed through performance evaluation.

1 Motivation

The primary design objectives of storage systems in-
clude high performance, low cost, and low power con-
sumption. In practice there exists no single storage de-
vice satisfying this design requirement. The faster the
access speed of storage device is, the higher the cost
per bit ratio. Despite the efforts toward an ideal stor-
age device, we now have storage devices, partially ideal
and biased to the requirement of specific applications.
This stresses the importance of hybrid storage architec-
ture because this can utilize the strong points of storage
devices and hide the weaknesses in an efficient manner.

Read Perf.
(MB/s)

1000

100

10

1
100101<0.1

SSD

Flash Card

HDD
(Enterprise)

HDD
(Mobile)

HDD
(Desktop)

Paper
& File

BB-RAM

Active
Power (W)

DVD/CD

<0.5 >155-150.5-5

Cost/Bit
(USD/GB)

Figure 1: Characteristics of modern storage devices

2 Heterogeneous Storage Devices

The advances in semiconductor and optical storage tech-
nology are magnifying the efficiency of hybrid storage
architecture. Figure 1 shows the spectrum. Semicon-
ductor storage devices (e.g., solid-state disk, flash card,
and battery-backed DRAM) are being used as a mass
storage medium [1]. This is because the price of NAND
flash becomes cheaper than the price of paper and film,
often considered as an entry point of mass storage, and
that of DRAM gets closer to this barrier. Also, optical
storage (e.g., CD/DVD+RW) can be used for a mutable
storage solution thanks to its rewrite support. Not only
that, there are several different types of HDD and each
has a different characteristic that the hybrid storage sys-
tem can take advantage of.

The advent of novel storage technology facilitates the
use of hybrid storage systems, especially in desktops
and entry-level servers where Linux is popular. Let us
assume that a device A has x times higher I/O opera-
tions per second (IOPS) than device B. If frequently ac-
cessed data are stored in A, both I/O performance and
the ensuing user experience will be improved. The high
cost-per-bit ratio of A can be compensated by its perfor-
mance, as device A can replace x number of device B

• 255 •

256 • SynergyFS: A Stackable File System Creating Synergies between Heterogeneous Storage Devices

in terms of IOPS. Also the energy consumption can be
optimized. If A and B are used together and A absorbs
a significant portion of I/O traffic, B faces a longer idle
period, which gives more chances to the power manage-
ment technique applied in B. If A consumes less energy
than the energy saving of B, the overall energy consump-
tion is lowered.

3 Previous Management Techniques

The efficiency of hybrid storage depends heavily on the
I/O locality of the I/O pattern of the storage systems,
and how this locality is exploited when placing data be-
tween heterogeneous storage devices. Strong locality is
typically found in desktops and servers, as they are con-
trolled by humans and human behavior causes this. For
example, a file used in yesterday is likely to be used to-
day, implying temporal locality, and a software package
has its own working directory where most of its I/O op-
erations are done, producing spatial locality. By storing
files having strong locality to a faster device, the overall
performance, cost, and energy consumption of a hybrid
storage system can be optimized.

Until recent years, data placement between heteroge-
neous storage media was explicitly controlled by com-
puter administrators. For example, a software package
is installed to a fast medium if its expected usage fre-
quency is high. Similarly the administrator stores large
multimedia files to a slow but cost-efficient medium.
Conventional users are not good at placing and migrat-
ing files. Even when they are good at this, automatic
management is still desired, as it is more convenient.
Automatic management techniques shall abstract the ad-
dress spaces of heterogeneous storage devices in order
to provide a unified view of them to applications and
users.

In the previous automatic management techniques, ab-
straction was done by using the memory hierarchy
shown in Figure 2(a). Specifically, a faster medium is
used as a nonvolatile cache memory, and block-level
management technique is used to place data into non-
volatile memory and evict the data to a permanent stor-
age device. Both in Vista [2] and Solaris ZFS [3],
NAND flash storage is utilized as a buffer memory of
HDD. Vista identifies blocks used for booting and ap-
plication launching, and the identified blocks are kept
in the flash storage. In ZFS, two SSD devices are used
as a write buffer and the storage of file system log data,
respectively.

(a) Previous Architecture

(b) Proposed Architecture

Block

On-Chip
Cache

Nonvolatile Cache

Permanent Storage

Device B

Device A

DRAM

On-Chip
Cache

DRAM

File

Permanent
Storage

Permanent
Storage

Figure 2: Hybrid storage architectures

4 Proposed Synergy File System

This paper presents the design and analysis of synergy
file system (SynergyFS) that can manage hybrid storage
architecture in an efficient manner. The following is a
summary of the key features of the proposed technique.
Because of this, SynergyFS is able to create synergies
between heterogeneous file systems and also heteroge-
neous storage devices.

First, the memory hierarchy assumed by SynergyFS is
shown in Figure 2(b). Both faster medium and cheaper
medium are used as a permanent storage. Each medium
has its own physical file system that is particularly op-
timized for its I/O characteristics. This is helpful, espe-

2008 Linux Symposium, Volume Two • 257

Application
Process

Application
Process

Application

Process

Library

Virtual File System

Synergy File System

AFile System

For SSD
File Systems For HDD

HDD FirmwareFlash Translation Layer

Flash Device Driver

SSD Driver Block Device Driver for HDD

Figure 3: The proposed software architecture

cially in novel storage devices having distinct I/O char-
acteristics.

Second, SynergyFS is a descendant of the stackable file
system; thus it unifies the multiple physical file systems
it manages. Figure 3 shows the software stack. It has
ability to place and move files between the physical file
systems. This ability is not available in the existing
stackable file systems, as they were not designed for this
purpose. Since SynergyFS is an intermediate software
layer between virtual and physical file systems, modifi-
cation of existing kernel modules is not required.

Third, the proposed SynergyFS supports file-level data
placement and migration, and this enables the utiliza-
tion of semantic information (e.g., file type and owner
process) that were not accessible in the previous block-
level management techniques. It decides where a file
will be stored in by taking into account the locality ob-
served in the access pattern of file. On the other hand,
the block-level management techniques need a large size
of memory to maintain the mapping information and a

relatively long lookup time is involved in their I/O oper-
ations. Also the block-level management is not good at
exploiting the spatial locality. For example, a file can be
spread all over the storage address space, but it is diffi-
cult for the block-level technique to know which physi-
cal blocks belong to which file.

Fourth, SynergyFS concatenates the storage space of
physical file systems and thus its space overhead is neg-
ligible. However, in the previous techniques, the non-
volatile cache capacity is not visible to users and is not
added up to the whole storage capacity. As the non-
volatile cache size becomes increasingly larger, the pro-
posed scheme is more efficient in terms of user-visible
storage capacity.

5 Effectiveness Evaluations

In order to evaluate the effectiveness of hybrid storage
architecture, we have analyzed the user experience (UX)
of computer systems using an HDD, an SSD, and a de-
vice combining these two. The UX affected by storage
device includes cost per bit ratio, boot-up time, file sys-
tem I/O performance, power consumption, and storage
device portability. Figure 4 shows the evaluation results
of these factors where a generic Linux-based PC system
was used.

First, in terms of cost per bit ratio both HDD and
SSD/HDD hybrid drive are better than SSD. Currently
an SLC(Single-Level Cell) SSD is about five times more
expensive than a 2.5-inch HDD having the same ca-
pacity. As the price of NAND flash memory is being
dropped quickly and high-density NAND flash memory
technologies (e.g., Multi-Level Cell) are being commer-
cialized, the price gap between HDD and SSD will be

Figure 4: Performance evaluation results

258 • SynergyFS: A Stackable File System Creating Synergies between Heterogeneous Storage Devices

alleviated. In this analysis, the cost per bit ratio of the
hybrid drive is about four percent higher than that of
HDD. This gap in fact depends on the ratio of SSD and
HDD storage capacities used in the hybrid drive. The
hybrid drive used in this analysis had a 16GB SSD and
a 320GB HDD. SSD capacity was limited to 16GB be-
cause this capacity is sufficient to hold all files related to
operating system and basic application programs. This
shows that with only a small amount of additional cost,
hybrid storage devices can be realized in practice.

Second, for the performance evaluation, the system
boot-up time and file system I/O performance were ana-
lyzed. Application launching time was not taken into ac-
counted as it can be predicted by using the boot-up time
analysis result. SSD provides superb I/O performances
as compared to HDD thanks to its internal I/O paral-
lelism. The performance of the hybrid drive is compa-
rable to that of SSD, and this shows the effectiveness of
the proposed SynergyFS. Specifically, the hybrid drive
had a short boot-up time because most files required for
boot-up were stored in the SSD part. This drive was also
able to provide high-performance file I/Os as the SSD
part maintained files that were frequently-accessed. The
hybrid drive used in this experiment [4] has a dedicated
data path between SSD and HDD. This is helpful at re-
ducing the time required for copying data from one de-
vice to the other and the I/O traffics observed in the host
system I/O bus.

Third, the energy consumption of storage device was an-
alyzed. Unlike HDD having power-hungry mechanical
arm and motor, SSD has no mechanical parts and thus
it consumed significantly lower power than HDD. Even
the hybrid drive consumed lower power than HDD. In
the hybrid drive, most I/O operations were handled by
the SSD part. This means that its HDD part had more
chances to stay in either idle or stand-by power mode.

On the other hand, in terms of portability SSD is bet-
ter than both HDD and the hybrid drive. Portability of
storage device means the weight, volume, shock resis-
tance, and power consumption. Although the hybrid
drive uses a small size of SSD, the volume and weight
of the hybrid drive is slightly larger than that of HDD.
Tight-integration of HDD and SSD using system-on-
chip (SoC) and multi-chip packaging (MCP) technolo-
gies can address this problem [4].

Overall effectiveness of these three storage devices is
analyzed. The UX score is calculated by multiplying

the normalized scores of boot-up time, file system I/O
performance, and power consumption. The UX score
is then divided by the normalized score of cost per bit
ratio, and this is the overall score depicted in Figure 4.

These evaluation results clearly suggest the application
area of each type of devices. The hybrid drive has a high
potential to replace both HDD and SSD in desktop and
workstation computers because it gives better user ex-
perience and the extra cost it brings out is tolerable in
this market. Note that the hybrid drive consists of both
HDD and SSD and thus the amount of HDDs supplied
to these computers will not be reduced. Also as HDD is
one of the most cost effective solution, it will be widely
used in large-capacity storage clusters continuously. On
the other hand, SSD is appropriate for high-performance
servers where the high cost per bit ratio can be compen-
sated by the fast I/O performance. Portable computers
are another application area for SSD because these com-
puters use relatively small size of storage device that can
hide the high price of SSD.

6 Conclusion

In this paper, we reviewed the requirement of storage
systems and suggested the hybrid storage architecture
as a solution. An automatic management technique for
the hybrid storage architecture was presented and its ef-
fectiveness was analyzed by using an SSD/HDD hybrid
storage drive. The proposed SynergyFS can be effec-
tively used for the desktop and workstation computers
in order to improve the user experience of the system in
a cost-efficient manner.

References

[1] Samsung Electronics, "Samsung Solid-State
Drive (SSD)," http://www.samsung.com/
global/business/semiconductor/
products/flash/ssd

[2] Microsoft Corporation, "Windows PC
Accelerators: Performance Technology for
Windows Vista,"
http://www.microsoft.com/whdc/
system/sysperf/accelerator.mspx

[3] Sun Microsystems, "ZFS: the last word in file
systems," http:
//www.sun.com/2004-0914/feature

2008 Linux Symposium, Volume Two • 259

[4] Samsung Electronics, "Samsung S-Drive:
Imagine Revolutionary Convergence,"
http://www.samsung.com

260 • SynergyFS: A Stackable File System Creating Synergies between Heterogeneous Storage Devices

Live Migration with Pass-through Device for Linux VM

Edwin Zhai, Gregory D. Cummings, and Yaozu Dong
Intel Corp.

{edwin.zhai, gregory.d.cummings, eddie.dong}@intel.com

Abstract

Open source Linux virtualization, such as Xen and
KVM, has made great progress recently, and has been
a hot topic in Linux world for years. With virtualization
support, the hypervisor de-privileges operating systems
as guest operating systems and shares physical resources
among guests, such as memory and the network device.

For device virtualization, some mechanisms are intro-
duced for improving performance. Paravirtualized (PV)
drivers are implemented to avoid excessive guest and
hypervisor switching and thus achieve better perfor-
mance, for example Xen’s split virtual network inter-
face driver (VNIF). Unlike software optimization in PV
driver, IOMMU, such as Intel R© Virtualization Technol-
ogy for Directed I/O, AKA VT-d, enables direct passing
through of physical devices to guests to take advantage
of hardware DMA remapping, thus reducing hypervisor
intervention and achieving high bandwidth.

Physically assigned devices impose challenges to live
migration, which is one of the most important virtualiza-
tion features in server consolidation. This paper shows
how we solve this issue using virtual hot plug technol-
ogy, in addition with the Linux bonding driver, and is or-
ganized as follows: We start from device virtualization
and live migration challenges, followed by the design
and implementation of the virtual hotplug based solu-
tion. The network connectivity issue is also addressed
using the bonding driver for live migration with a direct
assigned NIC device. Finally, we present the current
status, future work, and other alternative solutions.

1 Introduction to Virtualization

Virtualization became a hot topic in Linux world re-
cently, as various open source virtualization solutions
based on Linux were released. With virtualization,

the hypervisor supports simultaneously running multi-
ple operating systems on one physical machine by pre-
senting a virtual platform to each guest operating sys-
tem. There are two different approaches a hypervisor
can take to present the virtual platform: full virtualiza-
tion and paravirtualization. With full virtualization, the
guest platform presented consists of all existing compo-
nents, such as a PIIX chipset, an IDE controller/disk, a
SCSI controller/disk, and even an old Pentium R© II pro-
cessor, etc. which can be already supported by mod-
ern OS without any modification. Paravirtualization
presents the guest OS with a synthetic platform, with
components that may not have existed in the real world
to date, and thus are unable to run a commercial OS di-
rectly. Instead, paravirtualization requires modifications
to the guest OS or driver source code to match the syn-
thetic platform, which is usually designed to avoid ex-
cessive context switches between guest and hypervisor,
by using the underlying hypervisor knowledge, and thus
achieving better performance.

2 Device Virtualization

Most hardware today doesn’t support virtualization, so
device virtualization could only rely on pure software
technology. Software based virtualization shares phys-
ical resources between different guests, by intercepting
guest access to device resource, for example trapping
I/O commands from a native device driver running in
the guest and providing emulation, that is an emulated
device, or servicing hypercalls from the guest front-end
paravirtualized drivers in split device model, i.e. a PV
device. Both sharing solutions require hypervisor inter-
vention which cause additional overhead, which limits
performance.

To reduce this overhead, a pass-through mechanism is
introduced in Xen and KVM (work in progress) to al-
low assignment of a physical PCI device to a specific
guest so that the guest can directly access the physical

• 261 •

262 • Live Migration with Pass-through Device for Linux VM

resource without hypervisor intervention [8]. A pass-
through mechanism introduces an additional require-
ment for the DMA engines. A DMA engine transac-
tion requires the host physical address but a guest can
only provide the guest physical address. So a method
must be invoked to convert a guest physical address to a
host physical address for correctness in a non-identical
mapping guest and for secure isolation among guests.
Hardware IOMMU technologies, such as Intel R© Virtu-
alization Technology for devices, i.e. VT-d [7], are de-
signed to convert guest physical addresses to host physi-
cal addresses. They do so by remapping DMA addresses
provided by the guest to host physical addresses in hard-
ware via a VT-d table indexed by a device requestor ID,
i.e. Bus/Device/Function as defined in the PCI specifica-
tion. Pass-through devices have close to native through-
put while maintaining low CPU usage.

PCI SIG I/O Virtualization based Single Root I/O Vir-
tualization, i.e. SR-IOV, is another emerging hardware
virtualization technology which specifies how a single
device can be shared between multiple guest via a hard-
ware mechanism. A single SR-IOV device can have
multiple virtual functions (VF). Each VF has its own
requestor ID and resources which allows the VF to be
assigned to a specific guest. The guest can then di-
rectly access the physical resource without hypervisor
intervention and the VF specific requestor ID allows the
hardware IOMMU to convert guest physical addresses
to host physical addresses.

Of all the devices that are virtualized, network devices
are one of the most critical in data centers. With tra-
ditional LAN solutions and storage solutions such as
iSCSI and FCoE converging on to the network, network
device virtualization is becoming increasingly impor-
tant. In this paper, we choose network devices as a case
study.

3 Live Migration

Relocating a virtual machine from one physical host to
another with very small down-time of service, such as
100 ms [6], is one major benefit of virtualization. Data
centers can use the VM relocation feature, i.e. live mi-
gration, to dynamically balance load on different host-
ing platforms, to achieve better throughput. It can also
be used to consolidate services to reduce the number of
hosting platforms dynamically to achieve better power
savings, or be used to maintain the physical platform

after running for a long time because each physical plat-
form has its life cycles, while VMs can run far longer
than the life cycle of a physical machine. Live migra-
tion, or its similar features, like VM save and VM re-
store, is achieved by copying VM state from one place
to another including memory, virtual devices, and pro-
cessor states. The virtual platform, where the migrated
VM is running, must be the same as the one where it
previously ran, and it must provide the capability that
all internal states can be saved and restored, which de-
pends on how the devices are virtualized.

The guest memory subsystem, making up the guest plat-
form, is kept identical when the VM relocates, assigning
the same amount of memory in the target VM with the
same layout. The live migration manager will copy con-
tents from the source VM to the target, using an incre-
mental approach, to reduce the service outage time [5],
given that the memory a guest owns may vary from tens
of megabytes to tens of gigabytes, and even more in the
future, which means a relatively long time to transmit
even in a ten gigabit Ethernet environment.

The processor type the guest owns and features the host
processor have usually need to be the same across VM
migration, but certain exceptions can be taken if all the
features the source VM uses exist in the target host-
ing processor, or if the hypervisor could provide emu-
lation of those features which do not exist on the tar-
get side. For example, live migration can request the
same CPUID in host side, or just hide the difference in
host side by providing the guest a common subset of
physical features. MSRs are more complicated, except
that the host platform is identical. Fortunately, today’s
guest platform presented is pretty simple and won’t use
those model-specific MSRs. The whole CPU context
size saved at the final step of live migration is usually
in the magnitude of tens of kilobytes, which means just
several milliseconds of out of service time.

On the device side, cloning source device instances to
the target VM after live migration is much more com-
plicated. If the source VM includes only those software
emulated devices or paravirtualized devices, identical
platform device could be maintained by generating ex-
actly the same configuration for the target VM startup,
and the device state could be easily maintained since
the hypervisor knows all of its internal state. Those
devices are called migration friendly devices. But for
guests who have pass-through devices or SR-IOV Vir-
tual Functions on the source VM side, things are totally

2008 Linux Symposium, Volume Two • 263

different.

3.1 Issues of Live Migration with pass-through de-
vice

Although guest with pass-through device can achieve
almost native performance, maintaining identical plat-
form device after migration may be impossible. The tar-
get VM may not have the same hardware. Furthermore,
even if the target guest has the identical platform device
as the source side, cloning the device instance to target
VM is also almost impossible, because some device in-
ternal states may not be readable, and some may be still
in-flight at migration time, which is unknown to the hy-
pervisor without the device-specific knowledge. Even
without those unknown states, knowing how to write
those internal states to the relocated VM is another big
problem without device-specific knowledge in the hy-
pervisor. Finally, some devices may have unique infor-
mation that can’t be migrated, such as a MAC address.
Those devices are migration unfriendly.

To address pass-through device migration, either the hy-
pervisor needs to have the device knowledge to help mi-
gration or the guest needs to do those device-specific
operations. In this paper, we ask for guest support by
proposing a guest hot plug based solution to request co-
operation from the guest to unplug all the migration un-
friendly devices before relocation happens, so that we
can have identical platform devices and identical de-
vice states after migration. But hot unplugging an Eth-
ernet card may lead to network service outage, usually
in the magnitude of several seconds. The Linux bond-
ing driver, originally developed for aggregating multiple
network interfaces, is used here to maintain connectiv-
ity.

4 Solution

This section describes a simple and generic solution to
resolve the issue of live migration with pass-through de-
vice. This section also illustrates how to address the fol-
lowing key issues: save/restore device state and keeping
network connectivity for NIC device.

4.1 Stop Pass-through Device

As described in the previous section, unlike emulated
devices, most physical devices can’t be paused to save

and restore their hardware states, so a consistent de-
vice state across live migration is impossible. The only
choice is to stop the guest from using physical devices
before live migration.

How to do it? One easy way is to let the end user stop ev-
erything using a pass-through device including applica-
tions, services, and drivers, and then restore them on the
target machine after the hypervisor allocates a new de-
vice. This method works, but it’s not generic, as differ-
ent Linux distributions have different operations. More-
over, a lot of user intervention is needed inside the Linux
guest.

Another generic solution is ACPI [1] S3 (suspend-to-
ram), in which the operating system freezes all pro-
cesses, suspends all I/O devices, then goes into a sleep
state with all context lost except system memory. But
this is overkill because the whole platform is affected,
besides the target device, and service outage time is in-
tolerable. PCI hotplug is perfect in this case, because:

• Unlike ACPI S3, it is a device-level, fine-grained
mechanism.

• It’s generic, because the 2.6 kernel supports various
PCI hotplug mechanisms.

• No huge user intervention, because PCI hotplug
can be triggered by hardware.

The solution using PCI hotplug looks like the following:

1. Before live migration, on the source host, the con-
trol panel triggers a virtual PCI hot removal event
against the pass-through device into the guest.

2. The Linux guest responds to the hot removal event,
and stops using the pass-through device after un-
loading the driver.

3. Without any pass-through device, Linux can be
safely live migrated to the target platform.

4. After live migration, on the target host, a virtual
PCI hot add event, against a new pass-through de-
vice, is triggered.

5. Linux guest loads the proper driver and starts using
the new pass-through device. Because the guest re-
initializes a new device that has nothing to do with
the old one, the limitation described in 3.1 doesn’t
hold.

264 • Live Migration with Pass-through Device for Linux VM

4.2 Keeping Network Connectivity

The most popular usage model for a pass-through device
is assigning a NIC to a VM for high network throughput.
Unfortunately, using PCI NIC hotplug within live mi-
gration breaks the network connectivity, which leads to
an unpleasant user experience. To address this issue, it
is desired that the Linux guest can automatically switch
to a virtual NIC after hot removal of the physical NIC,
and then migrate with the virtual NIC. Thanks to the
powerful and versatile Linux network stack, the Ether-
net bonding driver [3] already supports this feature.

The Linux bonding driver provides a mechanism for en-
slaving multiple network interfaces into a single, log-
ical “bonded” interface with the same MAC address.
Behavior of the bonded interfaces depends on modes.
For instance, the bonding driver has the ability to detect
link failure and reroute network traffic around a failed
link in a manner transparent to the application, which
is active-backup mode. It also has the ability to ag-
gregate network traffic in all working links to achieve
higher throughput, which is referred to as trunking [4].

The active-backup mode can be used for an automatic
switch. In this mode, only one slave in the bond is ac-
tive, while another acts as a backup. The backup slave
becomes active if, and only if, the active slave fails. Ad-
ditionally, one slave can be defined as primary that will
always be the active while it is available. Only when the
primary is off-line will secondary devices be used. This
is very useful when bonding pass-through device, as the
physical NIC is preferred over other virtual devices, for
performance reasons.

It’s very simple to enable bonding driver in Linux. The
end user just needs to reconfigure the network before us-
ing a pass-through device. The whole configuration in
the Linux guest is shown in Figure 1, where a new bond
is created to aggregate two slaves: the physical NIC as
primary, and a virtual NIC as secondary. In normal con-
ditions, the bond would rely on the physical NIC, and
take the following actions in response to hotplug events
in live migration:

• When hot removal happens, the virtual NIC be-
comes active and takes over the in/out traffic, with-
out breaking the network inside of the Linux guest.

• With this virtual NIC, the Linux guest is migrated
to target machine.

• When hot add is complete on the target machine,
the new physical NIC recovers as the active slave
with high throughput.

In this process, no user intervention is required to switch
because the powerful bonding driver handles everything
well.

4.3 PCI Hotplug Implementation

PCI hotplug plays an important role in live migration
with a pass-through device. It should be implemented
in the device model, according to the hardware PCI hot-
plug spec. Currently, the device model of most popular
Linux virtualization solutions such as Xen and KVM,
are derived from QEMU. Unfortunately, QEMU did not
support virtual PCI hotplug when this solution was de-
veloped, so we implemented a virtual PCI hotplug de-
vice model from scratch.

4.3.1 Choosing Hotplug Spec

The PCI spec doesn’t define a standard hotplug mecha-
nism. Here are the three existing categories of PCI hot-
plug mechanisms:

• ACPI Hotplug: This is a similar mechanism as the
ACPI dock hot insert/ejection, where some ACPI
control methods work with ACPI GPE to service
the hotplug.

• SHPC [2] (Standard HotPlug Controller): It’s
the spec from PCI-SIG to define a complicated
controller to handle the PCI hotplug.

• Vendor-specific: There are other vendor-specific
standards, such as Compaq and IBM, which have
their own hardware on servers for PCI hotplug.

Linux 2.6 supports all of the above hotplug standards,
which gives us more choices to select a simple, open,
and efficient one. SHPC is a really complicated device,
so it’s hard to implement. Vendor-specific controllers
are not well supported in other OS. ACPI hotplug is best
suited to being emulated in the device model, because
interface exposed to OSPM is very simple and well de-
fined.

2008 Linux Symposium, Volume Two • 265

������

�����	

��������

�����	

��������

��������
���
����

�����

�����������

� ������

�����������

��� !��"��� !��"

������������������
�"�"

#�$����%

���������
����
����

� ������

�%������������

��������	
�����	

Figure 1: Live Migration with Pass-through Device

4.3.2 Virtual ACPI hotplug

Making an ACPI hotplug controller in device model is
something like designing a hardware platform to support
ACPI hotplug, but using software emulation. Virtual
ACPI hotplug needs several parts in the device model
to coordinate in a sequence similar to native. For sys-
tem event notification, ACPI introduces GPE (General
Purpose Event), which is a bitmap, and each bit can be
wired to different value-added event hardware depend-
ing on design.

The virtual ACPI hotplug sequence is described in Fig-
ure 2. When the end user issues the hot removal com-
mand for the pass-through device, analogous to pushing
the eject button, the hotplug controller updates its status,
then asserts the GPE bit and raises a SCI (System Con-
trol Interrupt). Upon receiving a SCI, the ACPI driver in
the Linux guest clears the GPE bit, queries the hotplug
controller about which specific device it needs to eject,
and then notifies the Linux guest. In turn, the Linux
guest shuts down the device and unloads the driver. At
last, the ACPI driver executes the related control method
_EJ0, to power off the PCI device, and _STA to verify
the success of the ejection. Hot add is similar to this
process, except it doesn’t call the _EJ0.

In the process shown above, it’s obvious that following
components are needed:

• GPE: A GPE device model, with one bit wired

to the hotplug controller, is described in the guest
FADT (Fixed ACPI Description Table).

• PCI Hotplug Controller: A PCI hotplug con-
troller is needed to respond to the user’s hotplug ac-
tion and maintain the status of the PCI slots. ACPI
abstracts a well-defined interface so we can imple-
ment internal logic in a simplified style, such as
stealing some reserved ioports for register status.

• Hotplug Control Method: ACPI control methods
for hotplug, such as _EJ0 and _STA, should be
added in the guest ACPI table. These methods in-
teract with the hotplug controller for device ejec-
tion and status check.

5 Status and Future Work

Right now, hotplug with a pass-through device works
well on Xen. With this and the bonding driver, Linux
guests can successfully do live migration. Besides live
migration, pass-through device hotplug has other useful
usage models, such as dynamically switching physical
devices between different VMs.

There is some work and investigation that needs to be
done in future:

• High-level Management Tools: Currently, hot-
plug of a pass-through device is separated from
generic live migration logic for a clean design, so

266 • Live Migration with Pass-through Device for Linux VM

��������	�
�������

����������������������

���

��
����������
��������

�	���������

������������

��������	
��

��������

���	�

����

�	���	�
�������� ���	���	�
�������� ��

����

!
" #��
����

$

	�
�������
��	�
�������
��

%��&�

Figure 2: ACPI Hotplug Sequence

the end user is required to issue hotplug commands
manually before and after live migration. In the
future, these actions should be pushed into high
level management tools, such as a friendly GUI or
scripts, in order to function without user interven-
tion.

• Virtual S3: The Linux bonding driver works per-
fectly for a NIC, but bonding other directly as-
signed devices, such as graphics cards, is not as
useful. Since Linux has good support for ACPI S3,
we can try virtual S3 to suspend all devices before
live migration and wakeup them after that. Some
drawbacks of virtual S3 need more consideration:

– All other devices, besides pass-through de-
vices, go into this loop too, which takes more
time than virtual hotplug.

– With S3, the OS is in sleep state, so a long
down time of the running service is unavoid-
able.

– S3 has the assumption that the OS would
wake up on the same platform, so the same
type of pass-through devices must exist in the
target machine.

– S3 support in the guest may not be complete
and robust.

Although virtual S3 for pass-through device live
migration has its own limitation, it is still useful in

some environments where virtual hotplug doesn’t
work, for instance, hot removal of pass-through
display cards which are likely to cause a guest
crash.

• Other Guest: Linux supports ACPI hotplug and
has a powerful bonding driver, but other guest OS
may not be lucky enough to have such a frame-
work. We are in the process of extending support
to other guests.

6 Conclusion

VM direct access of physical device achieves close to
native performance, but breaks VM live migration. Our
virtual ACPI hotplug device model allows VM to hot
remove the pass-through device before relocation and
hot add another one after relocation, thus making pass-
through devices coexist with VM relocation. By inte-
grating the Linux bonding driver into the relocation pro-
cess, we enable continuous network connectivity for di-
rectly assigned NIC devices, which is the most popular
pass-through device usage model.

References

[1] “Advanced Configuration & Power
Specification,” Revision 3.0b, 2006,
Hewlett-Packard, Intel, Microsoft, Phoenix,
Toshiba. http://www.acpi.info

2008 Linux Symposium, Volume Two • 267

[2] “PCI Standard Hot-Plug Controller and
Subsystem Specification,” Revision 1.0, June,
2001, http://www.pcisig.info

[3] “Linux Ethernet Bonding Driver,” T. Davis, W.
Tarreau, C. Gavrilov, C.N. Tindel Linux Howto
Documentation, April, 2006.

[4] “High Available Networking,” M. John, Linux
Journal, January, 2006.

[5] “Live Migration of Virtual Machines,” C. Clark,
K. Fraser, S. Hand, J.G. Hansen, E. Jul, C.
Limpach, I. Pratt, and A. Warfiled, In
Proceedings of the 2nd Symposium on
Networked Systems Design and Implementation,
2005.

[6] “Xen 3.0 and the Art of Virtualization,” I. Pratt,
K. Fraser, S. Hand, C. Limpach, A. Warfield, D.
Magenheimer, J. Nakajima, and A. Mallick, In
Proceedings of the Linux Symposium (OLS),
Ottawa, Ontario, Canada, 2005.

[7] “Intel Virtualization Technology for Directed
I/O Architecture Specification,” 2006,
ftp://download.intel.com/
technology/computing/vptech/
Intel(r)_VT_for_Direct_IO.pdf

[8] “Utilizing IOMMUs for Virtualization in Linux
and Xen,” M. Ben-Yehuda, J. Mason, O. Krieger,
J. Xenidis, L.V. Doorn, A. Mallick, and J.
Nakamima, In Proceedings of the Linux
Symposium, Ottawa, Ontario, Canada, (OLS),
2006.

Intel may make changes to specifications, product descrip-
tions, and plans at any time, without notice.

Intel and Pentium are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and
other countries (regions).

*Other names and brands may be claimed as the property of
others.

Copyright (c) 2008, Intel Corporation. Redistribution rights
are granted per submission guidelines; all other rights re-
served.

268 • Live Migration with Pass-through Device for Linux VM

