
Proceedings of the
Linux Symposium

Volume Two

June 27th–30th, 2007
Ottawa, Ontario

Canada

Contents
Unifying Virtual Drivers 9

J. Mason, D. Shows, and D. Olien

The new ext4 filesystem: current status and future plans 21
A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, & L. Vivier

The 7 dwarves: debugging information beyond gdb 35
Arnaldo Carvalho de Melo

Adding Generic Process Containers to the Linux Kernel 45
P.B. Menage

KvmFS: Virtual Machine Partitioning For Clusters and Grids 59
Andrey Mirtchovski

Linux-based Ultra Mobile PCs 65
Rajeev Muralidhar, Hari Seshadri, Krishna Paul, & Srividya Karumuri

Where is your application stuck? 71
S. Nagar, B. Singh, V. Kashyap, C. Seethraman, N. Sharoff, & P. Banerjee

Trusted Secure Embedded Linux 79
Hadi Nahari

Hybrid-Virtualization—Enhanced Virtualization for Linux 87
J. Nakajima and A.K. Mallick

Readahead: time-travel techniques for desktop and embedded systems 97
Michael Opdenacker

Semantic Patches 107
Y. Padioleau & J.L. Lawall

cpuidle—Do nothing, efficiently. . . 119
V. Pallipadi, A. Belay, & S. Li

My bandwidth is wider than yours 127
Iñaky Pérez-González

Zumastor Linux Storage Server 135
Daniel Phillips

Cleaning up the Linux Desktop Audio Mess 145
Lennart Poettering

Linux-VServer 151
H. Pötzl

Internals of the RT Patch 161
Steven Rostedt

lguest: Implementing the little Linux hypervisor 173
Rusty Russell

ext4 online defragmentation 179
Takashi Sato

The Hiker Project: An Application Framework for Mobile Linux Devices 187
David Schlesinger

Getting maximum mileage out of tickless 201
Suresh Siddha

Containers: Challenges with the memory resource controller and its performance 209
Balbir Singh and Vaidyanathan Srinivasan

Kernel Support for Stackable File Systems 223
Sipek, Pericleous & Zadok

Linux Rollout at Nortel 229
Ernest Szeideman

Request-based Device-mapper multipath and Dynamic load balancing 235
Kiyoshi Ueda

Short-term solution for 3G networks in Linux: umtsmon 245
Klaas van Gend

The GFS2 Filesystem 253
Steven Whitehouse

Driver Tracing Interface 261
David J. Wilder, Michael Holzheu, & Thomas R. Zanussi

Linux readahead: less tricks for more 273
Fengguang Wu, Hongsheng Xi, Jun Li, & Nanhai Zou

Regression Test Framework and Kernel Execution Coverage 285
Hiro Yoshioka

Enable PCI Express Advanced Error Reporting in the Kernel 297
Y.M. Zhang and T. Long Nguyen

Enabling Linux Network Support of Hardware Multiqueue Devices 305
Zhu Yi and PJ. Waskiewicz

Concurrent Pagecache 311
Peter Zijlstra

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Unifying Virtual Drivers

Jon Mason
3Leaf Systems

jon.mason@3leafsystems.com
Dwayne Shows
3Leaf Systems

dwayne.shows@3leafsystems.com
Dave Olien

3Leaf Systems
dave.olien@3leafsystems.com

Abstract

Para-virtualization presents a wide variety of issues to
Operating Systems. One of these is presenting virtual
devices to the para-virtualized operating system, as well
as the device drivers which handle these devices. With
the increase of virtualization in the Linux kernel, there
has been an influx of unique drivers to handle all of these
new virtual devices, and there are more devices on the
way. The current state of Linux has four in-tree versions
of a virtual network device (IBM pSeries Virtual Eth-
ernet, IBM iSeries Virtual Ethernet, UML Virtual Net-
work Device, and TUN/TAP) and numerous out-of-tree
versions (one for Xen, VMware, 3leaf, and many oth-
ers). Also, there are a similar number of block device
drivers.

This paper will go into why there are so many, and the
differences and commonalities between them. It will
go into the benefits and drawbacks of combining them,
their requirements, and any design issues. It will discuss
the changes to the Linux kernel to combine the virtual
network and virtual block devices into two common de-
vices. We will discuss how to adapt the existing virtual
devices and write drivers to take advantage of this new
interface.

1 Introduction to I/O Virtualization

Virtualization is the ability of a system through hard-
ware and/or software to run multiple instances of Oper-
ating Systems simultaneously. This is done through ab-
stracting the physical hardware layer through a software
layer, known as a hypervisor. Virtualzation is primarily

implemented through two distinct ways: Full Virtualiza-
tion and Para-virtualization.

Full Virtualization is a method that fully simulates hard-
ware devices through emulating physical hardware com-
ponents in software. This simulation of hardware allows
the OS and other components to run their software un-
modified. In this technique, all instructions are trans-
lated through the hypervisor into hardware system calls.
The hypervisor controls the devices and I/O, and simu-
lated hardware devices are exported to the virtual ma-
chine. This hardware simulation does have a signifi-
cant performance penalty when compared to running the
same software on native hardware, but allows the user
to run multiple instances of a VM (virtual machine) si-
multaneously (thus allowing a higher utilization of the
hardware and I/O). Examples of this type of virtualiza-
tion are QEMU and VMware.

Para-virtualization is a method that modifies the OS run-
ning inside the VM to run under the hypervisor. It is
modified to support the hypervisor and avoid unneces-
sary use of privileged instructions. These modifications
allow the performance of the system to be near native.
However, this type of virtualization requires that vir-
tual devices be exposed for access to the underlying I/O
hardware. UML and Xen are examples of such virtu-
alization implimentations. The scope of this paper is
in considering only para-virtualized virtual machine ab-
stractions; this is where virtual device implementations
have proliferated.

To have better I/O performance in a virtual machine, the
VMs have virtual devices exported to them and have the
native device located in another VM or in the hypervi-
sor. These virtual devices have virtual device drivers for

• 9 •

10 • Unifying Virtual Drivers

them to appear in the VM as if they were native, physi-
cal devices. These virtual device drivers allow the data
to be passed from the VM to the physical hardware. This
hardware then does the required work, and may or may
not return information to the virtual device driver. This
level of abstraction allows for higher performance I/O,
but the underlying procedure to perform the requested
operation differs on each para-virtualzation implemen-
tation.

2 Linux Virtualization support

There are many Linux-centered virtualization imple-
mentations, both in the kernel and outside the kernel.
The implementations that are currently in the Linux ker-
nel have been there for some time and have matured
over that time to be robust. Those implementations are
UML, IBM’s POWER virtualization, and the tun/tap de-
vice driver. Those implementations that are currently
living outside the kernel tree are gaining popularity, and
may one day be included in the mainline kernel. The
implementations of note are Xen and 3leaf Systems vir-
tualization (though many others exist).

2.1 In-tree Linux Virtualization support

2.1.1 User Mode Linux

User Mode Linux (UML) provides virtual block and
network interfaces with a couple of predominant drivers.

Briefly, the network drivers recommended for UML are
TUN/TAP. These are described in a later section. The
virtual devices created can be used with other virtual
devices on other VMs or with systems on the external
network. To configure for forwarding to other VMs,
UML comes with a switch daemon that allows user-
level forwarding of packets. UML supports hot plug
devices: new virtual devices can be configured dynam-
ically while the system is up. As long as a multicast-
capable NIC is available on the host, UML supports
multicast devices and it is possible to multicast to all
the VMs.

UML’s virtual storage solution consists of exporting a
file from a filesystem on storage known by the host to
the guest. That storage can be used directly through
reads and writes or with a feature called IO memory em-
ulation that allows a file to be mapped as an IO region.

From the kernel address space the driver can use for user
processes to mmap to their own address spaces.

All the guest reads and writes go through an API to the
host and are translated to host reads and writes. As such,
these operations are using the buffer cache on the host.
This causes a disproportionate amount of memory to be
consumed by the UMLs without limits as to how much
they can utilize. As is characteristic to Linux, flushing
modified buffers back to disk will be done when appro-
priate, based upon memory pressure in the host.

Another feature of UML virtual block device is supports
“copy on write” (COW) partitions. COW partitions al-
low a common image of a root device to be shared
among many instances of UML. Writes to blocks on the
COW partition are kept in a unique device for that UML
instance. This is more convenient than the Xen recom-
mendation for using the LVM to provide COW function-
ality.

UML provides a number of APIs for file IO. These APIs
hook into native versions largely unmodified Linux
code. These APIs provides the virtual interface to the
physical device on the host. Examples of these in-
terfaces are os_open_file, os_read_file, and
os_write_file.

2.1.2 IBM POWER virtualization

IBM’s PowerPC-based iSeries and pSeries hardware
provides a native hypervisor in system firmware, allow-
ing the system to be easily virtualized. The user-level
tools allow the underlying hardware to be assigned to
specific virtual machines, and in certain cases no I/O
hardware at all. In the latter case, one virtual machine
is assigned the physical adapters and manages all I/O to
and from those adapters. The hypervisor then exposes
virtual devices to the other virtual machines. The virtual
devices are presented to the OS via the system’s Open
Firmware device tree, and from the OS’s perspective ap-
pear to be on a system bus [4]. Currently, the hypervisor
supports virtual SCSI, ethernet, and TTY devices.

For the virtual ethernet device, the hypervisor imple-
ments a system-wide, VLAN-capable switch [4]. This
enables a virtual ethernet device in one VM to have a
connection to another VM via its virtual ethernet device.
This virtual switch can be connected to the external net-
work only by connecting a virtual ethernet device to a

2007 Linux Symposium, Volume Two • 11

physical device in one of the VMs. In Linux, this would
be done via the kernel level ethernet bridging code.

For the virtual SCSI device, the connection is based
on a client-server model [4]. The SCSI virtual client
device works like most SCSI host controllers. It han-
dles the SCSI commands via the SCSI mid-layer and
issues SCSI commands to those devices. The SCSI vir-
tual server device receives all SCSI commands and is
responsible for handling them. The virtual SCSI inter-
partition communication protocol is the SCSI RDMA
Protocol.

2.1.3 TUN/TAP driver

The tun/tap driver has two basic funtions, a network
tap and a network tunnel. The network tap simulates a
ethernet device, and encapsulates incoming data inside
an ethernet frame. The network tunnel simulates an IP
layer device, and encapsulates the incoming data in an
IP packet. It can be viewed as a simple Point-to-Point or
Ethernet device, which instead of sending and receiving
packets from a physical media, sends and receives them
from user-space programs [5].

This enables virtualization programs running in user
space (for example UML) access to the network with-
out needing exclusive access to a network device, or any
additional network configuration or OS kernel changes.

2.2 Out-of-tree Linux Virtualization support

2.2.1 Xen

Xen provides an architecture for device driver isolation
using a split driver architecture. The virtual device func-
tionality is provided by front-end and back-end device
drivers. The front-end driver runs in the unprivileged
“guest” domain, and the back-end runs in a “privileged”
domain with access to the real device hardware. For
block devices, these drivers are called blkfront and blk-
back; and for the network devices, netfront and netback.
On the front end, the virtual device appears as a physical
device and receives IO requests from the guest kernel.

The front-end driver must issue requests to the back-end
driver since it doesn’t have access to physical hardware.
The back-end verifies that the request is safe and issues

it to the real device. The back-end appears to the hy-
pervisor as a normal user of in-kernel IO functionality.
When the IO completes, the back-end notifies the front-
end that its data is ready. The front-end driver reports IO
completions to its own kernel. The back-end is respon-
sible for translating device addresses and verifying that
requests are correct and do not violate isolation guaran-
tees.

Xen accomplishes device virtualization through a set of
clean and simple device abstractions. IO data is trans-
ferred to and from each domain via grant tables using
shared-memory, asynchronous buffer-descriptor rings.
These are said to provide a high-performance commu-
nication mechanism for passing buffer information ver-
tically through the system, while allowing Xen to ef-
ficiently perform validation checks—for example, of
a domain’s credits. This shared-memory interface is
the fundamental mechanism supporting the split device
drivers for network and block IO.

Each domain has its own grant table. This data structure
is shared with the hypervisor, allowing the domain to
tell Xen what kinds of permissions other domains have
on its pages. Entries in the grant table are identified by a
grant reference, an integer, which indexes into the grant
table. It acts as a capability which the grantee can use
to perform operations on the granter’s memory. This
mechanism allows shared-memory communications be-
tween unprivileged domains. A grant reference also en-
capsulates the details of a shared page, removing the
need for a domain to know the real machine address of a
page it is sharing. This makes it possible to share mem-
ory correctly among domains running in fully virtual-
ized memory.

Grant table manipulation, the creation and destruction
of grant references, is done by direct access to the grant
table. This removes the need to involve the hypervisor
when creating grant references, changing access permis-
sions, etc. The grantee domain invokes hypercalls to use
the grant reference.

Xen uses event-delivery mechanism for sending asyn-
chronous notifications to a domain, similar to a hard-
ware interrupt. These notifications are made by updat-
ing a bitmap of pending event types, and optionally call-
ing an event handler specified by the guest. The events
can be held off at the discretion of the guest.

Xenstore is the mechanism by which these event chan-
nels are set up, along with the shared memory frame.

12 • Unifying Virtual Drivers

It is used for setting up shared memory regions and
event channels for use with the split device drivers. The
store is arranged as a hierarchical collection of key-
value pairs. Each domain has a directory structure con-
taining data related to its configuration.

The setup protocol for a device channel should consist
of entering the configuration data into the Xenstore area.
The store allows device discovery without requiring the
relevant device structure to be loaded. The probing code
in the guest should see the Xen “bus.”

Once communications is established between a pair of
front- and back-end drivers, the two can communicate
by directly placing requests/responses into shared mem-
ory and then on the event channel. This separation al-
lows for message batching, making for efficient device
access.

Xen Network IO

As mentioned, the shared memory communication area
is shared between front-end and back-end domains.
From the point of view of other domains, the back-end
is viewed as a virtual ethernet switch, with each domain
having one or more virtual network interfaces connected
to it.

From the reference point of the back-end domain, the
network driver on the back end consists of a number of
ethernet devices. Each of these has a connection to a
virtual network device in another domain. This allows
the back-end domain to route, bridge, firewall, etc. all
traffic from and to the other domains using the usual
Linux mechanisms.

The back end is responsible for:

• Validation of data. The back end ensures the front
ends do not attempt to generate invalid traffic. The
back end may look at headers to validate MAC or
IP addresses, making sure they match the interface
they have been sent from.

• Scheduling. Since a number of domains can share
the same physical NIC, the back end must sched-
ule between domains that can have packets queued
for transmission, or that may have ingress traf-
fic. The back end is capable of traffic-shaping or
rate-limiting schemes. Logging/Accounting on the
back end can be configured to track/record events.

Ingress packets from the network are received by
the back end. The back end simply acts as a demul-
tiplexer, forwarding incoming packets to the cor-
rect front end via the appropriate virtual interface.

The asynchronous shared buffer rings described earlier
are used for the network interface to implement trans-
mit and receive rings. Each descriptor ring identifies a
block of contiguous machine memory allocated to the
domain. The transmit ring carries packets to transmit
from the guest to the back-end domain. The return path
of this ring carries messages indicating contents have
been transmitted. This signals that the back-end driver
does not need the pages of memory associated with that
request.

To receive packets, the guest puts descriptors for unused
pages of memory on the receive ring. The back end ex-
changes these pages in the domain’s memory with new
pages containing the received packet and passing back
descriptors regarding the new packets in the ring. This
is a zero-copy approach, allowing the back end to main-
tain a pool of free pages to receive packets into, deliv-
ering them to the associated domains after reading their
headers. This is known as page flipping.

A domain that doesn’t keep its receive ring filled with
empty buffers will have dropped packets. This is seen
as an advantage by Xen because it limits live-lock prob-
lems because the overloaded domain will stop receiv-
ing further data. Similarly, on the transmit path, it pro-
vides the application the feedback on the rate at which
the packets can leave the system.

Flow control on the rings is managed by an independent
mechanism from the flow of data on the transmit/receive
rings. In this way the ring is divided into two message
queues, one in each direction.

Xen Block IO

All disk access uses the virtual block device interface. It
allows domains access to block storage devices visible
to the block back-end device. The virtual block device is
a split driver, like the network interface. A single shared
memory ring is used between the front and back end for
each virtual device. This memory ring handles all IO
requests and responses for that virtual device.

Many storage types can be exported by the back-end do-
main for use by the front end—various network-based

2007 Linux Symposium, Volume Two • 13

block devices such as iSCSI, or NBD, as well as loop-
back and multipath devices. These devices get mapped
to a device node on the front end in a static way defined
by the guest’s startup configuration.

The ring used by block IO supports two message types,
read and write. For a read, the front end identifies the
device and location to read from and attaches pages for
data to be copied into. The back end acknowledges
completed reads after the data is transferred from the
device into the buffer, typically the underlying physical
device’s DMA engine. Writes are analogous to reads,
except data moves from the front end to the back end.

Xen IO Configuration

Domains with physical device access (i.e., driver do-
mains) receive access to certain PCI devices on a lim-
ited basis, acquiring access to interrupts and bus ad-
dress space. Many guests attempt to determine the PCI
configuration by accessing the PCI BIOS. Xen forbids
such access and provides a hypercall, physdev_op to
set/query configuration details.

2.2.2 3leaf Virtualization

3leaf Systems provides virtual storage and network in-
terfaces built on top of typical Linux APIs. Their de-
vices span physical machine boundaries so that front-
end drivers can be on one system and the back-end
drivers hosted where the physical devices reside.

Their front-end drivers communicate to the back-end
drivers through a transport-agnostic interface that lends
itself to running on any number of transports that meet
some minimal set of requirements.

Front-end network devices look like a normal ether-
net interface for the purposes of the front-end applica-
tion/user. Such devices have their own MAC addresses
randomly generated. Egress packets get wrapped with
header information before being passed to the lower lay-
ers of the transport. This header is used for demulti-
plexing. The corresponding virtual NIC on the back end
passes the packet to the bridge, where the packet gets
forwarded to its recipient.

The storage front end looks like a SCSI device, usually
having a SCSI device backing the back-end driver. The
front-end registers with the block device layer so the

SCSI mid-layer can pass off requests with scatterlists.
These get wrapped with header information before be-
ing passed to the lower layers of transport. This header
is used for demultiplexing on the back end where the
request is forwarded to the SCSI device. Completions
come back to the back end where they are wrapped with
the header information for the return trip through the
transport to the front end. The front-end driver forwards
the completion to the SCSI midlayer.

The 3leaf stack can manage multiple devices, and hot-
plug events, but can entail software queuing at differ-
ent levels, especially the networking stack. Interac-
tions between front and back ends are mitigated through
thoughtful use of scatter-gather lists to chain requests.
3leaf services do not rely on an operating system be-
ing fully or para-virtualized; it is more of a distributed
IO services mechanism. In some ways the hardware
where the back-end runs is analogous to a hypervisor,
whereas the front-end systems can be many and serve
as the guests in the model of the virtual IO services sur-
veyed here.

3Leaf virtual storage virtualization supports a number of
useful features for providing diskless front-end clients
with controlled, high-availability, high-performance ac-
cess to storage. It also includes tools for assisting cen-
tralized provisioning to these distributed clients.

Following is a list of capabilities supported by this stor-
age virtualization implementation. Each capability will
be followed by a brief description of its implementation.

Features supported include:

• Multiple redundant access paths to storage. A typi-
cal configuration has two or more back-end servers,
each with redundant paths to storage on a fibre
channel SAN. The fail-over and fail-back between
redundant fibre channel paths on the back-end re-
dundant paths is managed by the Linux device
mapper multipathing. A front end then has paths to
storage through two or more back-end servers. The
front-end and back-end storage software manages
fail over and fail back between back-end servers.

• Block or SCSI storage devices. The virtual storage
devices can appear on the front-end clients as either
block or SCSI devices.

• Name persistence. The Linux hotplug software
also includes mechanisms that can be used give

14 • Unifying Virtual Drivers

storage devices persistent names. For example,
these names can be based on the UUID of the
physical storage device. This mechanism requires
some intervention on the front-end client to estab-
lish these mappings. The hotplug mechanism is
still available for use on the 3leaf front-end clients.
But the 3leaf virtual storage software also main-
tains its own stable naming mechanism. This can
be administered centrally from the back-end stor-
age server.

• Boot support for diskless front-end clients. The
front-end client is able to load its operating system
from the back-end server and then use a virtual disk
as its root device. Access to this root device will
also be highly available using the redundant paths
provided by the storage virtualization.

• COW virtual devices. As with UML, the 3leaf
COW devices are especially useful for root disks.
It allows several client front ends to share a com-
mon root file system, allocating additional storage
only for each client’s modifications to that shared
image.

• NPIV. N-port interface virtualization is another
mechanism which allows the owner of the SAN to
regulate access to devices on that SAN by individ-
ual front-end clients. This is based upon a virtual
host bus adapter model, where the SAN adminis-
trator can associate sets of storage devices with vir-
tual HBAs and then associate individual VHBAs
with different client machines.

• Centralized provisioning. The back-end servers in-
teract with a distributed set of tools to specify the
virtual storage environment for the storage client.
Storage devices can be added or removed from the
client’s environment, generating hotplug events to
update the client’s storage name space.

The 3leaf virtual storage implementation is conceptually
similar to the Xen storage device implementation. Both
are based on an efficient and reliable means for passing
messages and DMA data transfers between the “guest”
or front-end clients, and the “host” or back-end servers.

The messaging mechanism is used to implement an
rpc-like communication between the back-end servers
and the front-end clients. This rpc mechanism is used
to simulate SCSI/Fibre channel behavior when needed,

and to support the creation/deletion of virtual disks, the
construction of COW devices, and VHBAs.

When the underlying transport supports it (e.g., infini-
band RDMA), the transfer of disk data is transferred us-
ing RDMA read and RDMA write operations. RDMA
read and write operations are initiated on the client.
The RDMA operations use “opaque” handles to iden-
tify memory on the back-end servers that are the source
or target of RDMA reads and writes, respectively. The
client memory to be used is identified by a scatter/gather
list.

These opqaue rdma handles are generated on the back-
end servers as part of registering portions of the server’s
physical memory to be used for RDMA operations. In
the case of infiniband, these handles are encoded in so
that they cannot be forged. This provides some isolation
between client front ends, making it difficult for clients
to maliciously generate RDMA handles to memory they
should not have access to. The opaque memory han-
dles are transmitted from the back end server nodes to
the front end’s servers using the RPC mechanism. Each
client is given a set of RDMA handles for segments of
server memory. These memory segments sets are not
shared between clients. Thus there is no chance of mis-
directed RDMA operations. Each client has ownership
and control of its set of RDMA handles until it releases
them. To perform a disk IO transfer, a client allocates an
RDMA handle from the set given to it by the destination
server. In the case of a write, it first transfers data using
RDMA into the server’s client memory. Then issues an
rpc call to the server instructing it to write that memory
to a disk device. In the case of a disk read, the client first
sends an rpc to the server instructing it to read data from
disk into the server’s memory. It then uses its RDMA
handle for that memory to transfer that data from the
server’s memory to the client’s.

The rest of the virtual disk implementation is built upon
these messaging and RDMA primitives. On the client,
the virtual disk implementation appears to the Linux op-
erating system’s block layer and SCSI mid-layer as just
another disk driver. The driver accepts either SCSI re-
quests or block request structures, and translates them
into rpc messages and RDMA operations targeted to-
wards one of the servers providing access to disk stor-
age. If the targeted server fails, these operations will be
re-directed to one of the redundant servers for that stor-
age.

2007 Linux Symposium, Volume Two • 15

On the server side, the disk virtualization is logically at
the same level in the Linux disk software stack as the
Linux page cache. The client and server’s virtualization
software manages its own pool of memory for RDMA
operations. RPC requests from the client cause block
requests to be submitted to the server’s block layer to
cause disk read and write operations. In this way, disk
data transfers are performed without any copying of disk
data by the CPUs on either the clients or the servers.

2.2.3 Non-local memory transport of data via IB

OpenFabrics.org is another player in the fabric of virtual
IO solutions. Their solutions use infiniband as the trans-
port to provide network and storage solutions to low-
cost, front-end machines that run with their drivers and
commodity HCA cards.

In this paradigm, virtual network interfaces are provided
over the HCA ports with a protocol built on the verbs/
access layer called the IPoIB module. This uses the two
physical interfaces for each HCA; however, the MAC
used is the GUID, which means it becomes difficult to
put these packets on ipv4 networks. The ethernet header
then needs to be massaged before transmitted packets
can go out. When the virtual device’s MAC is tied to the
hardware, it becomes difficult to migrate virtual devices
to other ports. The packets have to be bridged from the
IB network to the ethernet network, much as packets
from other solutions.

The storage solution provided is a module based on
SCSI Request Protocol (SRP) initiator. It provides ac-
cess to IB-based SRP storage targets.

3 Virtualized I/O

3.1 Virtualized Networking

The need for unified virtual ethernet drivers are many.
First, the multitude of pre-existing code, and the poten-
tial for more in the future. The partial addition of fea-
tures in an uncoordinated effort when many of the rest
could also benefit from these features. UML provides
switching from a user-level daemon which will have less
performance than a kernel module. Not all implemen-
tations support hot-plug additions of virtual devices to
the VM. Self-virtualizing devices are soon to be on the
market and a common architecture should be adapted to
take advantage of that functionality in the NICs.

3.2 Virtualized Storage

The need for unification of virtualized storage drivers is
several fold. First, file-based partitions are slow. While
convenient for desktop users, they do not meet the needs
of an enterprise-scaled organization. It is well doc-
umented that read/write performance in the interfaces
UML uses are slow. Additionally, file-based partitions
also suffer from unchecked buffer cache growth on the
host system. That tends to help performance, keeping
much of the disk/partition resident in memory; however,
as the number of disks group, it can cause inequities as
to which VM has the lion’s share of memory tied up.
Attempted solutions to resolve that have been contro-
versial and seem too specialized for the particular hy-
pervisor running. mmap performance is not much better
as an alternative, as some experiences indicate.

Inconsistent CoW implemenatations. The market has
shown the need to have a single master root drive that is
read-only, backed by a writable device to manage VM-
based configuration differences which CoW provides a
per-block mechanism for satisfying. Using the Linux
Volume Manager as a solution goes beyond its original
design; likewise there are limitations in using a bitmap
implementation exclusively.

As far as disk-based partitions vs. file-based partitions,
a disk gives a better unit of granularity that SAN stor-
age providers have deployed with. It makes concepts
like zoning and n-port virtualization much more achie-
veable.

SCSI-based devices seem a familiar and dependable
mechanism to build a framework under. This mecha-
nism is used by many other drivers and is itself a de-
pendable framework supporting multiple device types.
SCSI request blocks are already a well defined way to
format requests and completions. A flexible back end
should support all device types; however, for the scope
of this document the discussion will be focused on SCSI
disks. Such disks could be SAS (serial attached scsi) or
storage that is allocted from a SAN fabric through an
HBA (host bus adapter).

Lastly, a single flexible implementation will be better
supported by the Linux community.

4 Design requirements and open issues

Abstracting the existing virtual drivers into a generic im-
plementation raises interesting design requirements and

16 • Unifying Virtual Drivers

issues. Regardless of how the underlying virtualization
actually works, there are a few basic interfaces for the
network transport layer to interlock with the virtual eth-
ernet driver, and the storage transport layer to interlock
with the virtual SCSI driver.

4.1 Net

All the virtual ethernet device drivers described above
contain certain basic features which are common,
though the underlying methods of transfer the data from
one point to another differs. All virtual network de-
vice drivers have functions which create and delete the
device, start and stop the network stack, and transmit
and receive data. These basic functions can be created
in a generic virtual ethernet driver, which would then
be supplemented by a specific module that handles any
transport-specific calculations and transports the data
from one point to another.

By providing a veth_ops data structure, with the
pointers to the transport layer “helper” functions, this
division of labor can greatly increase the ability to sep-
arate the existing virtual ethernet driver into a generic
and transport layer.

For example in Xen, the packet to be transmitted has a
few transport-specific calculations that need to be done
(like insertion into the grant table and calculation for the
number of pages the skb fits into). Those can be pushed
down into a transmit transport layer, to which the skb is
handed for transmission. In contrast, the tun/tap driver
simply queues the packet onto a skb queue.

veth_ops−>tx(struct sk_buff ∗skb,
struct net_device ∗netdev);

This enables generic error checking and setup that all
data transmission routes need in the generic tx stub, and
the transport-specific work can be done in the function
pointed to by the veth_ops.

For receiving, things can be significantly simplier us-
ing NAPI. Registering a generic poll routine on device
open, and providing a skb queue to pull from, makes this
very generic. The transport layer populates the queue as
packets are pulled off its transport layer (via interrupt,
etc.).

Open and close will need generic and transport-layer
constructs to set up the virtual device to transmit and

receive data, as well as destroy any resources allocated.
While some of these functions are specific to the trans-
port layer (like creating buffer pools), most of the drivers
require the very basic setup of zeroing statistics and
starting the transmit queue.

veth_ops->open(struct net_device

*netdev);
veth_ops->close(struct net_device

*netdev);

Unfortunately, driver probe and create are very depen-
dent on how the attributes are passed to the driver. Since
some are passed via hcall and others are provided by
the user-space tools, there really is no abstract way to do
this.

There are other generic functions that can easily be
made generic. Specificly, functions to change the MTU,
transmit timeout, and get statistics are all generic and
really do not need any hooks in them to work for all
virtualization implementations.

There are currently some offloading technologies which
have been implemented in some of the drivers via
software, and which have not been proliferated into
all of the existing drivers. For example, GSO and
checksum offloads. Integrating these functions into
existing implementations might be easy; they are
very implementation-dependent and should only be ab-
stracted after further investigation.

Our current implementation uses the API defined above
to communicate between the generic virtual ethernet
driver and a few generic transport layers. Specificly, we
generalized the Xen network to behave in the above way,
as well as UML and 3leaf.

4.2 Disk

We propose virtualization-aware devices using a unified
generic stub. This allows for a transport/virtualization-
specific layer. If a transport were to be connected
through the generic stubs, the front end and back end
would not have to be co-located on the same piece of
hardware.

By providing a vstore_ops structure, with the struc-
ture elements being pointers to transport layer “helper”

2007 Linux Symposium, Volume Two • 17

functions, one can separate existing virtual storage
drivers into a generic and transport layer.

In Xen the IO request results in pages inserted into the
grant table for the blkback driver for reads and writes.
They can be pushed down to the transport layer in a way
that shields the upper layers from the transport. In con-
trast, UML with its UBD driver does reads and writes
to the host operating system, largely driven through the
os_* interfaces. These are block device interfaces, but
the pertinent information is available from the ioreq
struct. The 3leaf front-end driver can accomodate both.
Writes and reads have the same prototypes:

vstore_ops−>dma_write(struct scatterlist

local_buf_list[],

int nbuf, int size);

vstore_ops−>dma_read(struct scatterlist

local_buf_list[],

int nbuf, int size);

Open and release of block devices are generic enough
that the transport-specific portion is easily isolated. The
open causes caches of buffers to be allocated and data
structure initialization. The release causes those re-
sources to be freed.

vstore_ops−>open(struct inode ∗inode,
struct file ∗filp);

vstore_ops−>release(struct inode ∗inode,
struct file ∗filp);

The auto-provisioning in the 3leaf model is preferable
for many reasons. There needs to be a way for a VM to
probe for devices; this callback fills that requirement,
not unlike Xen—when it reads its configuration, it’s
technically accessing the Xen bus.

5 Roadmap/Future work

We plan on extending this work into all virtualization
implementations mentioned in this paper. However, due
to certain logistical limitations, we have not been able
to do this. For example, there was no access to IBM
POWER-enabled hardware.

Self-virtualizing devices which can be offloaded with
certain virtualization functionality are becoming more
prevalent. These devices require that one physical de-
vice appear as multiple devices, each VM having a semi-
programmable device exclusively for its own. Exporting

the generic driver to these devices could be quite bene-
ficial.

A performance analysis of the merged drivers, with a
contrast to the existing drivers, should be done prior to
any merging into mainline.

The driver should be expanded to accomodate block de-
vices as well as scsi, using the 3leaf model for support-
ing both types.

Features in the 3leaf solution should be addressed, in-
cluding multiple redundant paths to storage, name per-
sistence, and centralized provisioning.

6 Conclusion

We implemented a generic virtual device driver with
implementation-specific transportation layer for UML,
Xen, and 3leaf Systems. We have shown a breadth of
virtualization technologies that would benefit from us-
ing this, and the generic API which can be used to do
this.

We will continue to clean and extend the usage of this
implementation in Linux. Hopefully, by the time this is
read, it will be submitted for inclusion into the Linux
kernel.

7 Terms

front end, back end
One class of distributed computer system in which the
computers are divided into two types: back-end comput-
ers and front-end computers. Front-end computers typ-
ically have minimal peripheral hardware (e.g., storage
and ethernet) and interact with users and their applica-
tions. Back-end computers provide the front ends with
access to expensive peripheral devices or services (e.g.,
a database), so as to share the cost of those peripherals
across the front ends.

Also: client, server.

bridge
A mechanism to forward network packets between ports
or interfaces.

VM (virtual machine)
Software that provides a virtual environment on top of

18 • Unifying Virtual Drivers

the hardware platform. This virtual environment pro-
vides services for creating and managing virtual IO de-
vices such as disks and network interfaces.

CoW (Copy on Write)
A technique for efficiently sharing the un-modified con-
tents of a disk or file system whose contents are “read
mostly”—for example, a root file system. Writes to this
shared content are re-directed to a write-able device that
is unique to each user.

DMA (Direct Memory Access)
A hardware mechanism used by peripheral devices to
transfer data between the pre-determined locations in
computer memory and the peripheral device, without
using the computer’s cpu to copy that data.

RDMA (Remote Direct Memory Access)
An extension of DMA where data is transferred between
pre-determined memory locations on two computer sys-
tems over a network connection, without utilizing cpu
cycles to copy data.

MAC (Media Acess Control) address
A unique identifier associated with a network adapter.

GUID (Globally Unique Identifier)
A 128-bit number, unique identifier that is associated
with an infiniband HCA.

IPoIB (Internet Protocol over InfiniBand)
An implementation of the internet protocol on the In-
finiband network fabric.

SRP (SCSI RDMA Protocol)
A combination of the SCSI protocol with Infiniband
RDMA, providing SAN storage.

UML (User Mode Linux)
A virtual machine implementation where one or more
guest Linux operating systems run in user-mode Linux
processes.

hypvervisor (also, virtual machine monitor)
The software that provides the virtual machine mecha-
nisms to support guest operating systems.

infiniband
A point-to-point communications link used to provide
high performance data and message transfer between
computer nodes.

NIC (Network Interface Controller)
A hardware device that allows computers to communi-
cate over a network.

page cache, buffer cache
A cache of disk-backed memory pages. The Linux op-
erating system uses a page cache for holding process
memory pages as well as file data.

scatterlist
A list (typically an array) of physical memory addresses
and lengths used to specify the source or destination for
a DMA transfer.

RPC (Remote Procedure Call)
A protocol where software on one computer can invoke
a function on a remote computer.

SCSI (Small Computer System Interconnect)
A standard for physically connecting and transferring
data between computer systems and peripheral storage
devices.

API (Application Programming Interface)
A software interface definition for providing services.

HCA (Host Channel Adapter)
A hardware device for connecting a computer system to
an infiniband communications link.

HBA (Host Bus Adapter)
A hardware device that connecting a computer system
to a SCSI or Fibre Channel link.

hotplug (hot plugging)
A method for adding or removing devices from a com-
puter system while that computer system is operating.

N-Port (Node Port)
a Fibre Channel node connection.

Fibre Channel
A network implementation that is used mostly for ac-
cessing storage.

SAN (Storage Area Network)
A network architecture for attaching remote storage to a
server computer.

Volume Manager
Software for managing and allocating storage space.

2007 Linux Symposium, Volume Two • 19

8 Legal Statement

All statements regarding future direction and intent are sub-
ject to change or withdrawal without notice, and represent
goals and objectives only. Information is provided “AS IS”
without warranty of any kind. This article could include tech-
nical inaccuracies and typographical errors. Improvements
and/or changes in the product(s) and/or the program(s) de-
scribed in this publication may be made at any time without
notice. This paper represents the view of its authors and not
necessarily the view of 3leaf Systems. Other company, prod-
uct, or service names may be the trademarks of others. Void
where prohibited.

References

[1] M.D. Day, R. Harper, M. Hohnbaum, A. Liguori,
& A. Theurer. “Using the Xen Hypervisor to
Supercharge OS Deployment,” Proceedings of the
2005 Linux Symposium, Ottawa, Vol. 1, pp.
97–108.

[2] K. Fraser, S. Hand, C. Limpach, and I. Pratt. “Xen
and the Art of Open Source Virtualization,”
Proceedings of the 2004 Linux Symposium,
Ottawa, Vol. 2, p. 329.

[3] Xen 3.0 Virtualization Interface Guide
http://www.linuxtopia.org/online_

books/linux_virtualization/xen_3.0_

interface_guide/linux_virualization_

xen_interface_25.html

[4] Dave Boutcher, Dave Engebretsen. “Linux
Virtualization on IBM POWER5 Systems,”
Proceedings of the 2004 Linux Symposium,
Ottawa, Vol. 1, p. 113.

[5] http://www.kernel.org/pub/linux/

kernel/people/marcelo/linux-2.4/

Documentation/networking/tuntap.txt

[6] Raj, Ganev, Schwan, and Xenidis. Scalable IO
Virtualization via Self-Virtualizing Devices,
http://www-static.cc.gatech.edu/

~rhim/Self-VirtTR-v1.pdf

[7] Jeff Dike, User Mode Linux, Prentice Hall, 2006.

[8] http://wiki.openvz.org

20 • Unifying Virtual Drivers

The new ext4 filesystem: current status and future plans

Avantika Mathur, Mingming Cao, Suparna Bhattacharya
IBM Linux Technology Center

mathur@us.ibm.com, cmm@us.ibm.com, suparna@in.ibm.com
Andreas Dilger, Alex Tomas

Cluster Filesystem Inc.
adilger@clusterfs.com, alex@clusterfs.com

Laurent Vivier
Bull S.A.S.

laurent.vivier@bull.net

Abstract

Ext3 has been the most widely used general Linux R©

filesystem for many years. In keeping with increasing
disk capacities and state-of-the-art feature requirements,
the next generation of the ext3 filesystem, ext4, was cre-
ated last year. This new filesystem incorporates scalabil-
ity and performance enhancements for supporting large
filesystems, while maintaining reliability and stability.
Ext4 will be suitable for a larger variety of workloads
and is expected to replace ext3 as the “Linux filesys-
tem.”

In this paper we will first discuss the reasons for start-
ing the ext4 filesystem, then explore the enhanced ca-
pabilities currently available and planned for ext4, dis-
cuss methods for migrating between ext3 and ext4, and
finally compare ext4 and other filesystem performance
on three classic filesystem benchmarks.

1 Introduction

Ext3 has been a very popular Linux filesystem due to its
reliability, rich feature set, relatively good performance,
and strong compatibility between versions. The conser-
vative design of ext3 has given it the reputation of being
stable and robust, but has also limited its ability to scale
and perform well on large configurations.

With the pressure of increasing capabilities of new hard-
ware and online resizing support in ext3, the require-
ment to address ext3 scalability and performance is
more urgent than ever. One of the outstanding limits
faced by ext3 today is the 16 TB maximum filesystem

size. Enterprise workloads are already approaching this
limit, and with disk capacities doubling every year and
1 TB hard disks easily available in stores, it will soon be
hit by desktop users as well.

To address this limit, in August 2006, we posted a series
of patches introducing two key features to ext3: larger
filesystem capacity and extents mapping. The patches
unavoidably change the on-disk format and break for-
wards compatibility. In order to maintain the stability of
ext3 for its massive user base, we decided to branch to
ext4 from ext3.

The primary goal of this new filesystem is to address
scalability, performance, and reliability issues faced by
ext3. A common question is why not use XFS or start
an entirely new filesystem from scratch? We want to
give the large number of ext3 users the opportunity to
easily upgrade their filesystem, as was done from ext2
to ext3. Also, there has been considerable investment in
the capabilities, robustness, and reliability of ext3 and
e2fsck. Ext4 developers can take advantage of this pre-
vious work, and focus on adding advanced features and
delivering a new scalable enterprise-ready filesystem in
a short time frame.

Thus, ext4 was born. The new filesystem has been in
mainline Linux since version 2.6.19. As of the writing
of this paper, the filesystem is marked as developmen-
tal, titled ext4dev, explicitly warning users that it is not
ready for production use. Currently, extents and 48-bit
block numbers are included in ext4, but there are many
new filesystem features in the roadmap that will be dis-
cussed throughout this paper. The current ext4 develop-
ment git tree is hosted at git://git.kernel.org/

• 21 •

22 • The new ext4 filesystem: current status and future plans

pub/scm/linux/kernel/git/tytso/ext4. Up-
to-date ext4 patches and feature discussions can be
found at the ext4 wiki page, http://ext4.wiki.

kernel.org.

Some of the features in progress could possibly continue
to change the on-disk layout. Ext4 will be converted
from development mode to stable mode once the layout
has been finalized. At that time, ext4 will be available
for general use by all users in need of a more scalable
and modern version of ext3. In the following three sec-
tions we will discuss new capabilities currently included
in or planned for ext4 in the areas of scalability, frag-
mentation, and reliability.

2 Scalability enhancements

The first goal of ext4 was to become a more scalable
filesystem. In this section we will discuss the scalability
features that will be available in ext4.

2.1 Large filesystem

The current 16 TB filesystem size limit is caused by the
32-bit block number in ext3. To enlarge the filesystem
limit, the straightforward method is to increase the num-
ber of bits used to represent block numbers and then fix
all references to data and metadata blocks.

Previously, there was an extents[3] patch for ext3 with
the capacity to support 48-bit physical block numbers.
In ext4, instead of just extending the block numbers to
64-bits based on the current ext3 indirect block map-
ping, the ext4 developers decided to use extents map-
ping with 48-bit block numbers. This both increases
filesystem capacity and improves large file efficiency.
With 48-bit block numbers, ext4 can support a maxi-
mum filesystem size up to 2(48+12) = 260 bytes (1 EB)
with 4 KB block size.

After changing the data block numbers to 48-bit,
the next step was to correct the references to meta-
data blocks correspondingly. Metadata is present in
the superblock, the group descriptors, and the jour-
nal. New fields have been added at the end of the
superblock structure to store the most significant 32
bits for block-counter variables, s_free_blocks_count,
s_blocks_count, and s_r_blocks_count, extending them
to 64 bits. Similarly, we introduced new 32-bit fields at

the end of the block group descriptor structure to store
the most significant bits of 64-bit values for bitmaps and
inode table pointers.

Since the addresses of modified blocks in the filesys-
tem are logged in the journal, the journaling block layer
(JBD) is also required to support at least 48-bit block ad-
dresses. Therefore, JBD was branched to JBD2 to sup-
port more than 32-bit block numbers at the same time
ext4 was forked. Although currently only ext4 is using
JBD2, it can provide general journaling support for both
32-bit and 64-bit filesystems.

One may question why we chose 48-bit rather than full
64-bit support. The 1 EB limit will be sufficient for
many years. Long before this limit is hit there will be
reliability issues that need to be addressed. At current
speeds, a 1 EB filesystem would take 119 years to finish
one full e2fsck, and 65536 times that for a 264 blocks (64
ZB) filesystem. Overcoming these kind of reliability is-
sues is the priority of ext4 developers before addressing
full 64-bit support and is discussed later in the paper.

2.1.1 Future work

After extending the limit created by 32-bit block num-
bers, the filesystem capacity is still restricted by the
number of block groups in the filesystem. In ext3, for
safety concerns all block group descriptors copies are
kept in the first block group. With the new uninitial-
ized block group feature discussed in section 4.1 the
new block group descriptor size is 64 bytes. Given the
default 128 MB(227 bytes) block group size, ext4 can
have at most 227/64 = 221 block groups. This limits the
entire filesystem size to 221 ∗227 = 248 bytes or 256TB.

The solution to this problem is to use the metablock
group feature (META_BG), which is already in ext3
for all 2.6 releases. With the META_BG feature, ext4
filesystems are partitioned into many metablock groups.
Each metablock group is a cluster of block groups
whose group descriptor structures can be stored in a sin-
gle disk block. For ext4 filesystems with 4 KB block
size, a single metablock group partition includes 64
block groups, or 8 GB of disk space. The metablock
group feature moves the location of the group descrip-
tors from the congested first block group of the whole
filesystem into the first group of each metablock group
itself. The backups are in the second and last group of
each metablock group. This increases the 221 maximum

2007 Linux Symposium, Volume Two • 23

047 3195

logical block #physical block #

lengthuninitialized extent flag

ext4_extent structure

ext4_extent_header

eh_magic
eh_entries
eh_max
eh_depth
eh_generation

ext4_extent_idx

ei_block
ei_leaf
ei_leaf_hi
ei_unused

Figure 1: Ext4 extents, header and index structures

block groups limit to the hard limit 232, allowing support
for the full 1 EB filesystem.

2.2 Extents

The ext3 filesystem uses an indirect block mapping
scheme providing one-to-one mapping from logical
blocks to disk blocks. This scheme is very efficient for
sparse or small files, but has high overhead for larger
files, performing poorly especially on large file delete
and truncate operations [3].

As mentioned earlier, extents mapping is included in
ext4. This approach efficiently maps logical to physical
blocks for large contiguous files. An extent is a single
descriptor which represents a range of contiguous phys-
ical blocks. Figure 1 shows the extents structure. As
we discussed in previously, the physical block field in
an extents structure takes 48 bits. A single extent can
represent 215 contiguous blocks, or 128 MB, with 4 KB
block size. The MSB of the extent length is used to flag
uninitialized extents, used for the preallocation feature
discussed in Section 3.1.

Four extents can be stored in the ext4 inode structure
directly. This is generally sufficient to represent small
or contiguous files. For very large, highly fragmented,
or sparse files, more extents are needed. In this case
a constant depth extent tree is used to store the extents
map of a file. Figure 2 shows the layout of the extents
tree. The root of this tree is stored in the ext4 inode
structure and extents are stored in the leaf nodes of the
tree.

Each node in the tree starts with an extent header (Fig-
ure 1), which contains the number of valid entries in

i_block

. . .
eh_header

root

node header

extent index

extent index

. . .

node header

extent

. . .
extent

node header

extent

. . .
extent

disk blocksext4_inode
index node

leaf nodes

Figure 2: Ext4 extent tree layout

the node, the capacity of entries the node can store, the
depth of the tree, and a magic number. The magic num-
ber can be used to differentiate between different ver-
sions of extents, as new enhancements are made to the
feature, such as increasing to 64-bit block numbers.

The extent header and magic number also add much-
needed robustness to the on-disk structure of the data
files. For very small filesystems, the block-mapped files
implicitly depended on the fact that random corruption
of an indirect block would be easily detectable, because
the number of valid filesystem blocks is a small sub-
set of a random 32-bit integer. With growing filesystem
sizes, random corruption in an indirect block is by itself
indistinguishable from valid block numbers.

In addition to the simple magic number stored in the
extent header, the tree structure of the extent tree
can be verified at runtime or by e2fsck in several
ways. The ext4_extent_header has some internal con-
sistency (eh_entries and eh_max) that also depends on
the filesystem block size. eh_depth decreases from the
root toward the leaves. The ext4_extent entries in a leaf
block must have increasing ee_block numbers, and must
not overlap their neighbors with ee_len. Similarly, the
ext4_extent_idx also needs increasing ei_block values,
and the range of blocks that an index covers can be veri-
fied against the actual range of blocks in the extent leaf.

Currently, extents mapping is enabled in ext4 with the
extents mount option. After the filesystem is mounted,

24 • The new ext4 filesystem: current status and future plans

any new files will be created with extent mapping. The
benefits of extent maps are reflected in the performance
evaluation Section 7.

2.2.1 Future work

Extents are not very efficient for representing sparse or
highly fragmented files. For highly fragmented files, we
could introduce a new type of extent, a block-mapped
extent. A different magic number, stored in the extent
header, distinguishes the new type of leaf block, which
contains a list of allocated block numbers similar to an
ext3 indirect block. This would give us the increased ro-
bustness of the extent format, with the block allocation
flexibility of the block-mapped format.

In order to improve the robustness of the on-disk data,
there is a proposal to create an “extent tail” in the extent
blocks, in addition to the extent header. The extent tail
would contain the inode number and generation of the
inode that has allocated the block, and a checksum of
the extent block itself (though not the data). The check-
sum would detect internal corruption, and could also de-
tect misplaced writes if the block number is included
therein. The inode number could be used to detect
corruption that causes the tree to reference the wrong
block (whether by higher-level corruption, or misplaced
writes). The inode number could also be used to recon-
struct the data of a corrupted inode or assemble a deleted
file, and also help in doing reverse-mapping of blocks
for defragmentation among other things.

2.3 Large files

In Linux, file size is calculated based on the i_blocks
counter value. However, the unit is in sectors (512
bytes), rather than in the filesystem block size (4096
bytes by default). Since ext4’s i_blocks is a 32-bit vari-
able in the inode structure, this limits the maximum file
size in ext4 to 232 ∗ 512 bytes = 241 bytes = 2 TB. This
is a scalability limit that ext3 has planned to break for a
while.

The solution for ext4 is quite straightforward. The
first part is simply changing the i_blocks units in the
ext4 inode to filesystem blocks. An ROCOMPAT fea-
ture flag HUGE_FILE is added in ext4 to signify that
the i_blocks field in some inodes is in units of filesys-
tem block size. Those inodes are marked with a flag

EXT4_HUGE_FILE_FL, to allow existing inodes to
keep i_blocks in 512-byte units without requiring a full
filesystem conversion. In addition, the i_blocks variable
is extended to 48 bits by using some of the reserved in-
ode fields. We still have the limitation of 32 bit logi-
cal block numbers with the current extent format, which
limits the file size to 16TB. With the flexible extents for-
mat in the future (see Section 2.2.1), we may remove
that limit and fully use the 48-bit i_blocks to enlarge the
file size even more.

2.4 Large number of files

Some applications already create billions of files today,
and even ask for support for trillions of files. In theory,
the ext4 filesystem can support billions of files with 32-
bit inode numbers. However, in practice, it cannot scale
to this limit. This is because ext4, following ext3, still
allocates inode tables statically. Thus, the maximum
number of inodes has to be fixed at filesystem creation
time. To avoid running out of inodes later, users often
choose a very large number of inodes up-front. The con-
sequence is unnecessary disk space has to be allocated
to store unused inode structures. The wasted space be-
comes more of an issue in ext4 with the larger default
inode. This also makes the management and repair of
large filesystems more difficult than it should be. The
uninitialized group feature (Section 4.1) addresses this
issue to some extent, but the problem still exists with
aged filesystems in which the used and unused inodes
can be mixed and spread across the whole filesystem.

Ext3 and ext4 developers have been thinking about sup-
porting dynamic inode allocation for a while [9, 3].
There are three general considerations about the dy-
namic inode table allocation:

• Performance: We need an efficient way to translate
inode number to the block where the inode struc-
ture is stored.

• Robustness: e2fsck should be able to locate inode
table blocks scattered across the filesystem, in the
case the filesystem is corrupted.

• Compatibility: We need to handle the possible in-
ode number collision issue with 64-bit inode num-
bers on 32-bit systems, due to overflow.

These three requirements make the design challenging.

2007 Linux Symposium, Volume Two • 25

4-bit
offset

15-bit relative
block #

32-bit block group #

 63 50 18 3 0

Figure 3: 64-bit inode layout

With dynamic inode tables, the blocks storing the inode
structure are no longer at a fixed location. One way to
efficiently map the inode number to the block storing
the corresponding inode structure, is encoding the block
number into the inode number directly, similar to what is
done in XFS. This implies the use of 64-bit inode num-
bers. The low four to five bits of the inode number store
the offset bits within the inode table block. The rest
store the 32-bit block group number as well as 15-bit
relative block number within the group, shown in Fig-
ure 3. Then, a cluster of contiguous inode table blocks
(ITBC) can be allocated on demand. A bitmap at the
head of the ITBC would be used to keep track of the
free and used inodes, allowing fast inode allocation and
deallocation.

In the case where the filesystem is corrupted, the ma-
jority of inode tables could be located by checking the
directory entries. To further address the reliability con-
cern, a magic number could be stored at the head of the
ITBC, to help e2fsck to recognize this metadata block.

Relocating inodes becomes tricky with this block-
number-in-inode-number proposal. If the filesystem is
resized or defragmented, we may have to change the lo-
cation of the inode blocks, which would require chang-
ing all references to that inode number. The proposal
to address this concern is to have a per-group “inode
exception map” that translates an old block/inode num-
ber into a new block number where the relocated inode
structure is actually stored. The map will usually be
empty, unless the inode was moved.

One concern with the 64-bit inode number is the possi-
ble inode number collision with 32-bit applications, as
applications might still be using 32-bit stat() to access
inode numbers and could break. Investigation is under-
way to see how common this case is, and whether most
applications are currently fixed to use the 64-bit stat64().
One way to address this concern is to generate 32-bit
inode numbers on 32-bit platforms. Seventeen bits is
enough to represent block group numbers on 32-bit ar-
chitectures, and we could limit the inode table blocks
to the first 210 blocks of a block group to construct the

32-bit inode number. This way user applications will be
ensured of getting unique inode numbers on 32-bit plat-
forms. For 32-bit applications running on 64-bit plat-
forms, we hope they are fixed by the time ext4 is in pro-
duction, and this only starts to be an issue for filesystems
over 1TB in size.

In summary, dynamic inode allocation and 64-bit inode
numbers are needed to support large numbers of files in
ext4. The benefits are obvious, but the changes to the
on-disk format may be intrusive. The design details are
still under discussion.

2.5 Directory scalability

The maximum number of subdirectories contained in a
single directory in ext3 is 32,000. To address directory
scalability, this limit will be eliminated in ext4 providing
unlimited sub-directory support.

In order to better support large directories with many en-
tries, the directory indexing feature[6] will be turned on
by default in ext4. By default in ext3, directory entries
are still stored in a linked list, which is very inefficient
for directories with large numbers of entries. The di-
rectory indexing feature addresses this scalability issue
by storing directory entries in a constant depth HTree
data structure, which is a specialized BTree-like struc-
ture using 32-bit hashes. The fast lookup time of the
HTree significantly improves performance on large di-
rectories. For directories with more than 10,000 files,
improvements were often by a factor of 50 to 100 [3].

2.5.1 Future work

While the HTree implementation allowed the ext2 direc-
tory format to be improved from linear to a tree search
compatibly, there are also limitations to this approach.
The HTree implementation has a limit of 510 * 511 4
KB directory leaf blocks (approximately 25M 24-byte
filenames) that can be indexed with a 2-level tree. It
would be possible to change the code to allow a 3-level
HTree. There is also currently a 2 GB file size limit on
directories, because the code for using the high 32-bits
for i_size on directories was not implemented when the
2 GB limit was fixed for regular files.

Because the hashing used to find filenames in indexed
directories is essentially random compared to the lin-
ear order in which inodes are allocated, we end up do-
ing random seeks around the disk when accessing many

26 • The new ext4 filesystem: current status and future plans

inodes in a large directory. We need to have readdir
in hash-index order because directory entries might be
moved during the split of a directory leaf block, so to
satisfy POSIX requirements we can only safely walk the
directory in hash order.

To address this problem, there is a proposal to put the
whole inode into the directory instead of just a directory
entry that references a separate inode. This avoids the
need to seek to the inode when doing a readdir, because
the whole inode has been read into memory already in
the readdir step. If the blocks that make up the directory
are efficiently allocated, then reading the directory also
does not require any seeking.

This would also allow dynamic inode allocation, with
the directory as the “container” of the inode table. The
inode numbers would be generated in a similar manner
as previously discussed (Section 2.4), so that the block
that an inode resides in can be located directly from
the inode number itself. Hard linked files imply that
the same block is allocated to multiple directories at the
same time, but this can be reconciled by the link count
in the inode itself.

We also need to store one or more file names in the in-
ode itself, and this can be done by means of an extended
attribute that uses the directory inode number as the EA
name. We can then return the name(s) associated with
that inode for a single directory immediately when do-
ing readdir, and skip any other name(s) for the inode that
belong to hard links in another directory. For efficient
name-to-inode lookup in the directory, we would still
use a secondary tree similar to the current ext3 HTree
(though it would need an entry per name instead of per
directory block). But because the directory entries (the
inodes themselves) do not get moved as the directory
grows, we can just use disk block or directory offset or-
der for readdir.

2.6 Large inode and fast extended attributes

Ext3 supports different inode sizes. The inode size can
be set to any power-of-two larger than 128 bytes size up
to the filesystem block size by using the mke2fs -I [inode
size] option at format time. The default inode structure
size is 128 bytes, which is already crowded with data
and has little space for new fields. In ext4, the default
inode structure size will be 256 bytes.

Fixed Fields

127

255

0

Fast Extended
Attributes

Ext4 Large Inode
Original

128-bit Inode

i_extra_isize
i_pad1
i_ctime_extra
i_mtime_extra
i_atime_extra
i_crtime
i_crtime_extra
i_version_hi

Figure 4: Layout of the large inode

In order to avoid duplicating a lot of code in the kernel
and e2fsck, the large inodes keep the same fixed layout
for the first 128-bytes, as shown in Figure 4. The rest
of the inode is split into two parts: a fixed-field section
that allows addition of fields common to all inodes, such
as nanosecond timestamps (Section 5), and a section for
fast extended attributes (EAs) that consumes the rest of
the inode.

The fixed-field part of the inode is dynamically sized,
based on what fields the current kernel knows about.
The size of this area is stored in each inode in the
i_extra_isize field, which is the first field beyond the
original 128-byte inode. The superblock also contains
two fields, s_min_extra_isize and i_want_extra_isize,
which allow down-level kernels to allocate a larger
i_extra_isize than it would otherwise do.

The s_min_extra_isize is the guaranteed mini-
mum amount of fixed-field space in each inode.
s_want_extra_isize is the desired amount of fixed-field
space for new inode, but there is no guarantee that
this much space will be available in every inode. A
ROCOMPAT feature flag EXTRA_ISIZE indicates
whether these superblock fields are valid. The ext4
code will soon also be able to expand i_extra_isize
dynamically as needed to cover the fixed fields, so
long as there is space available to store the fast EAs or
migrate them to an external EA block.

The remaining large inode space may be used for storing
EA data inside the inode. Since the EAs are already in
memory after the inode is read from disk, this avoids
a costly seek to external EA block. This can greatly

2007 Linux Symposium, Volume Two • 27

improve the performance of applications that are using
EAs, sometimes by a factor of 3–7 [4]. An external EA
block is still available in addition to the fast EA space,
which allows storing up to 4 KB of EAs for each file.

The support for fast EAs in large inodes has been avail-
able in Linux kernels since 2.6.12, though it is rarely
used because many people do not know of this capabil-
ity at mke2fs time. Since ext4 will have larger inodes,
this feature will be enabled by default.

There have also been discussions about breaking the 4
KB EA limit, in order to store larger or more EAs. It is
likely that larger single EAs will be stored in their own
inode (to allow arbitrary-sized EAs) and it may also be
that for many EAs they will be stored in a directory-like
structure, possibly leveraging the same code as regular
ext4 directories and storing small values inline.

3 Block allocation enhancements

Increased filesystem throughput is the premier goal for
all modern filesystems. In order to meet this goal, de-
velopers are constantly attempting to reduce filesystem
fragmentation. High fragmentation rates cause greater
disk access time affecting overall throughput, and in-
creased metadata overhead causing less efficient map-
ping.

There is an array of new features in line for ext4, which
take advantage of the existing extents mapping and are
aimed at reducing filesystem fragmentation by improv-
ing block allocation techniques.

3.1 Persistent preallocation

Some applications, like databases and streaming media
servers, benefit from the ability to preallocate blocks for
a file up-front (typically extending the size of the file
in the process), without having to initialize those blocks
with valid data or zeros. Preallocation helps ensure con-
tiguous allocation as far as possible for a file (irrespec-
tive of when and in what order data actually gets writ-
ten) and guaranteed space allocation for writes within
the preallocated size. It is useful when an application
has some foreknowledge of how much space the file will
require. The filesystem internally interprets the preallo-
cated but not yet initialized portions of the file as zero-
filled blocks. This avoids exposing stale data for each

block until it is explicitly initialized through a subse-
quent write. Preallocation must be persistent across re-
boots, unlike ext3 and ext4 block reservations [3].

For applications involving purely sequential writes, it is
possible to distinguish between initialized and uninitial-
ized portions of the file. This can be done by maintain-
ing a single high water mark value representing the size
of the initialized portion. However, for databases and
other applications where random writes into the preal-
located blocks can occur in any order, this is not suffi-
cient. The filesystem needs to be able to identify ranges
of uninitialized blocks in the middle of the file. There-
fore, some extent based filesystems, like XFS, and now
ext4, provide support for marking allocated but unini-
tialized extents associated with a given file.

Ext4 implements this by using the MSB of the extent
length field to indicate whether a given extent contains
uninitialized data, as shown in Figure 1. During reads,
an uninitialized extent is treated just like a hole, so that
the VFS returns zero-filled blocks. Upon writes, the ex-
tent must be split into initialized and uninitialized ex-
tents, merging the initialized portion with an adjacent
initialized extent if contiguous.

Until now, XFS, the other Linux filesystem that imple-
ments preallocation, provided an ioctl interface to ap-
plications. With more filesystems, including ext4, now
providing this feature, a common system-call interface
for fallocate and an associated inode operation have
been introduced. This allows filesystem-specific imple-
mentations of preallocation to be exploited by applica-
tions using the posix_fallocate API.

3.2 Delayed and multiple block allocation

The block allocator in ext3 allocates one block at a time
during the write operation, which is inefficient for larger
I/O. Since block allocation requests are passed through
the VFS layer one at a time, the underlying ext3 filesys-
tem cannot foresee and cluster future requests. This also
increases the possibility of file fragmentation.

Delayed allocation is a well-known technique in which
block allocations are postponed to page flush time,
rather than during the write() operation [3]. This method
provides the opportunity to combine many block allo-
cation requests into a single request, reducing possible

28 • The new ext4 filesystem: current status and future plans

fragmentation and saving CPU cycles. Delayed alloca-
tion also avoids unnecessary block allocation for short-
lived files.

Ext4 delayed allocation patches have been imple-
mented, but there is work underway to move this sup-
port to the VFS layer, so multiple filesystems can benefit
from the feature.

With delayed allocation support, multiple block alloca-
tion for buffered I/O is now possible. An entire extent,
containing multiple contiguous blocks, is allocated at
once rather than one block at a time. This eliminates
multiple calls to ext4_get_blocks and ext4_new_blocks
and reduces CPU utilization.

Ext4 multiple block allocation builds per-block group
free extents information based on the on-disk block
bitmap. It uses this information to guide the search for
free extents to satisfy an allocation request. This free
extent information is generated at filesystem mount time
and stored in memory using a buddy structure.

The performance benefits of delayed allocation alone
are very obvious, and can be seen in Section 7. In a
previous study [3], we have seen about 30% improved
throughput and 50% reduction in CPU usage with the
combined two features. Overall, delayed and multi-
ple block allocation can significantly improve filesystem
performance on large I/O.

There are two other features in progress that are built on
top of delayed and multiple block allocation, trying to
further reduce fragmentation:

• In-core Preallocation: Using the in-core free ex-
tents information, a more powerful in-core block
preallocation/reservation can be built. This further
improves block placement and reduces fragmenta-
tion with concurrent write workloads. An inode
can have a number of preallocated chunks, indexed
by the logical blocks. This improvement can help
HPC applications when a number of nodes write to
one huge file at very different offsets.

• Locality Groups: Currently, allocation policy deci-
sions for individual file are made independently. If
the allocator had knowledge of file relationship, it
could intelligently place related files close together,
greatly benefiting read performance. The locality
groups feature clusters related files together by a

given attribute, such as SID or a combination of
SID and parent directory. At the deferred page-
flush time, dirty pages are written out by groups,
instead of by individual files. The number of non-
allocated blocks are tracked at the group-level, and
upon flush time, the allocator can try to preallocate
enough space for the entire group. This space is
shared by the files in the group for their individual
block allocation. In this way, related files are place
tightly together.

In summary, ext4 will have a powerful block allocation
scheme that can efficiently handle large block I/O and
reduce filesystem fragmentation with small files under
multi-threaded workloads.

3.3 Online defragmentation

Though the features discussed in this section improve
block allocation to avoid fragmentation in the first
place, with age, the filesystem can still become quite
fragmented. The ext4 online defragmentation tool,
e4defrag, has been developed to address this. This tool
can defragment individual files or the entire filesystem.
For each file, the tool creates a temporary inode and al-
locates contiguous extents to the temporary inode using
multiple block allocation. It then copies the original file
data to the page cache and flushes the dirty pages to the
temporary inode’s blocks. Finally, it migrates the block
pointers from the temporary inode to the original inode.

4 Reliability enhancements

Reliability is very important to ext3 and is one of the
reasons for its vast popularity. In keeping with this
reputation, ext4 developers are putting much effort into
maintaining the reliability of the filesystem. While it is
relatively easy for any filesystem designer to make their
fields 64-bits in size, it is much more difficult to make
such large amounts of space actually usable in the real
world.

Despite the use of journaling and RAID, there are invari-
ably corruptions to the disk filesystem. The first line of
defense is detecting and avoiding problems proactively
by a combination of robust metadata design, internal re-
dundancy at various levels, and built-in integrity check-
ing using checksums. The fallback will always be doing

2007 Linux Symposium, Volume Two • 29

integrity checking (fsck) to both detect and correct prob-
lems that will happen anyway.

One of the primary concerns with all filesystems is the
speed at which a filesystem can be validated and recov-
ered after corruption. With reasonably high-end RAID
storage, a full fsck of a 2TB ext3 filesystem can take
between 2 to 4 hours for a relatively “clean” filesystem.
This process can degrade sharply to many days if there
are large numbers of shared filesystem blocks that need
expensive extra passes to correct.

Some features, like extents, have already added to the
robustness of the ext4 metadata as previously described.
Many more related changes are either complete, in
progress, or being designed in order to ensure that ext4
will be usable at scales that will become practical in the
future.

4.1 Unused inode count and fast e2fsck

In e2fsck, the checking of inodes in pass 1 is by far the
most time consuming part of the operation. This re-
quires reading all of the large inode tables from disk,
scanning them for valid, invalid, or unused inodes, and
then verifying and updating the block and inode alloca-
tion bitmaps. The uninitialized groups and inode table
high watermark feature allows much of the lengthy pass
1 scanning to be safely skipped. This can dramatically
reduce the total time taken by e2fsck by 2 to 20 times,
depending on how full the filesystem is. This feature
can be enabled at mke2fs time or using tune2fs via the
-O uninit_groups option.

With this feature, the kernel stores the number of un-
used inodes at the end of each block group’s inode table.
As a result, e2fsck can skip both reading these blocks
from disk, and scanning them for in-use inodes. In or-
der to ensure that the unused inode count is safe to use
by e2fsck, the group descriptor has a CRC16 checksum
added to it that allows validation of all fields therein.

Since typical ext3 filesystems use only in the neighbor-
hood of 1% to 10% of their inodes, and the inode alloca-
tion policy keeps a majority of those inodes at the start
of the inode table, this can avoid processing a large ma-
jority of the inodes and speed up the pass 1 processing.
The kernel does not currently increase the unused inodes
count, when files are deleted. This counter is updated on
every e2fsck run, so in the case where a block group had

0 0.5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

3000

3500

4000

4500

fsck time vs. Inode Count

ext3: 0 files

ext3 100k files

ext3 2.1M files

ext4 100kfiles

ext4 2.1M files

Total Inode Count (millions)

fs
ck

 ti
m

e
(s

ec
)

Figure 5: e2fsck performance improvement with unini-
tialized block groups

many inodes deleted, e2fsck will be more efficient in the
next run.

Figure 5 shows that e2fsck time on ext3 grows linearly
with the total number of inodes in filesystem, regardless
of how many are used. On ext3, e2fsck takes the same
amount of time with zero used files as with 2.1 million
used files. In ext4, with the unused inode high water-
mark feature, the e2fsck time is only dependent on the
number of used inodes. As we can see, fsck of an ext4
filesystem with 100 000 used files takes a fraction of the
time ext3 takes.

In addition to the unused inodes count, it is possible
for mke2fs and e2fsck to mark a group’s block or in-
ode bitmap as uninitialized, so that the kernel does not
need to read them from disk when first allocating from
the group. Similarly, e2fsck does not need to read these
bitmaps from disk, though this does not play a major
role in performance improvements. What is more sig-
nificant is that mke2fs will not write out the bitmaps or
inode tables at format time if the mke2fs -O lazy_bg fea-
ture is given. Writing out the inode tables can take a
significant amount of time, and has been known to cause
problems for large filesystems due to the amount of dirty
pages this generates in a short time.

4.2 Checksumming

Adding metadata checksumming into ext4 will allow it
to more easily detect corruption, and behave appropri-
ately instead of blindly trusting the data it gets from

30 • The new ext4 filesystem: current status and future plans

disk. The group descriptors already have a checksum
added, per the previous section. The next immediate tar-
get for checksumming is the journal, because it has such
a high density of important metadata and is constantly
being written to, so has a higher chance of wearing out
the platters or seeing other random corruption.

Adding checksumming to the ext4 journal is nearly
complete [7]. In ext3 and ext4, each journal transac-
tion has a header block and commit block. During nor-
mal journal operation the commit block is not sent to
the disk until the transaction header and all metadata
blocks which make up that transaction have been writ-
ten to disk [8]. The next transaction needs to wait for the
previous commit block to hit to disk before it can start
to modify the filesystem.

With this two-phase commit, if the commit block has the
same transaction number as the header block, it should
indicate that the transaction can be replayed at recovery
time. If they don’t match, the journal recovery is ended.
However, there are several scenarios where this can go
wrong and lead to filesystem corruption.

With journal checksumming, the journal code computes
a CRC32 over all of the blocks in the transaction (in-
cluding the header), and the checksum is written to the
commit block of the transaction. If the checksum does
not match at journal recovery time, it indicates that one
or more metadata blocks in the transaction are corrupted
or were not written to disk. Then the transaction (along
with later ones) is discarded as if the computer had
crashed slightly earlier and not written a commit block
at all.

Since the journal checksum in the commit block allows
detection of blocks that were not written into the journal,
as an added bonus there is no longer a need for having
a two-phase commit for each transaction. The commit
block can be written at the same time as the rest of the
blocks in the transaction. This can actually speed up the
filesystem operation noticeably (as much as 20% [7]),
instead of the journal checksum being an overhead.

There are also some long-term plans to add check-
summing to the extent tail, the allocation bitmaps, the
inodes, and possibly also directories. This can be
done efficiently once we have journal checksumming in
place. Rather than computing the checksum of filesys-
tem metadata each time it is changed (which has high
overhead for often-modified structures), we can write

the metadata to the checksummed journal and still be
confident that it is valid and correct at recovery time.
The blocks can have metadata-specific checksums com-
puted a single time when they are written into the
filesystem.

5 Other new features

New features are continuously being added to ext4. Two
features expected to be seen in ext4 are nanosecond
timestamps and inode versioning. These two features
provide precision when dealing with file access times
and tracking changes to files.

Ext3 has second resolution timestamps, but with today’s
high-speed processors, this is not sufficient to record
multiple changes to a file within a second. In ext4, since
we use a larger inode, there is room to support nanosec-
ond resolution timestamps. High 32-bit fields for the
atime, mtime and ctime timestamps, and also a new cr-
time timestamp documenting file creation time, will be
added to the ext4 inode (Figure 4). 30 bits are sufficient
to represent the nanosecond field, and the remaining 2
bits are used to extend the epoch by 272 years.

The NFSv4 clients need the ability to detect updates to
a file made at the server end, in order to keep the client
side cache up to date. Even with nanosecond support
for ctime, the timestamp is not necessarily updated at
the nanosecond level. The ext4 inode versioning feature
addresses this issue by providing a global 64-bit counter
in each inode. This counter is incremented whenever the
file is changed. By comparing values of the counter, one
can see whether the file has been updated. The counter is
reset on file creation, and overflows are unimportant, be-
cause only equality is being tested. The i_version field
already present in the 128-bit inode is used for the low
32 bits, and a high 32-bit field is added to the large ext4
inode.

6 Migration tool

Ext3 developers worked to maintain backwards compat-
ibility between ext2 and ext3, a characteristic users ap-
preciate and depend on. While ext4 attempts to retain
compatibility with ext3 as much as possible, some of
the incompatible on-disk layout changes are unavoid-
able. Even with these changes, users can still easily
upgrade their ext3 filesystem to ext4, like it is possible

2007 Linux Symposium, Volume Two • 31

from ext2 to ex3. There are methods available for users
to try new ext4 features immediately, or migrate their
entire filesystem to ext4 without requiring back-up and
restore.

6.1 Upgrading from ext3 to ext4

There is a simple upgrade solution for ext3 users to start
using extents and some ext4 features without requiring a
full backup or migration. By mounting an existing ext3
filesystem as ext4 (with extents enabled), any new files
are created using extents, while old files are still indi-
rect block mapped and interpreted as such. A flag in the
inode differentiates between the two formats, allowing
both to coexist in one ext4 filesystem. All new ext4 fea-
tures based on extents, such as preallocation and mul-
tiple block allocation, are available to the new extents
files immediately.

A tool will also be available to perform a system-wide
filesystem migration from ext3 to ext4. This migration
tool performs two functions: migrating from indirect to
extents mapping, and enlarging the inode to 256 bytes.

• Extents migration: The first step can be performed
online and uses the defragmentation tool. During
the defragmentation process, files are changed to
extents mapping. In this way, the files are being
converted to extents and defragmented at the same
time.

• Inode migration: Enlarging the inode structure size
must be done offline. In this case, data is backed
up, and the entire filesystem is scanned and con-
verted to extents mapping and large inodes.

For users who are not yet ready to move to ext4, but
may want to in the future, it is possible to prepare their
ext3 filesystem to avoid offline migration later. If an
ext3 filesystem is formatted with a larger inode struc-
ture, 256 bytes or more, the fast extended attribute fea-
ture (Section 2.6) which is the default in ext4, can be
used instantly. When the user later wants to upgrade
to ext4, then other ext4 features using the larger inode
size, such as nanosecond timestamps, can also be used
without requiring any offline migration.

6.2 Downgrading from ext4 to ext3

Though not as straightforward as ext3 to ext4, there is
a path for any user who may want to downgrade from
ext4 back to ext3. In this case the user would remount
the filesystem with the noextents mount option, copy
all files to temporary files and rename those files over
the original file. After all files have been converted
back to indirect block mapping format, the INCOM-
PAT_EXTENTS flag must be cleared using tune2fs, and
the filesystem can be re-mounted as ext3.

7 Performance evaluation

We have conducted a performance evaluation of ext4, as
compared to ext3 and XFS, on three well-known filesys-
tem benchmarks. Ext4 was tested with extents and de-
layed allocation enabled. The benchmarks in this anal-
ysis were chosen to show the impact of new changes
in ext4. The three benchmarks chosen were: Flexible
Filesystem Benchmark (FFSB) [1], Postmark [5], and
IOzone [2]. FFSB, configured with a large file work-
load, was used to test the extents feature in ext4. Post-
mark was chosen to see performance of ext4 on small
file workloads. Finally, we used IOzone to evaluate
overall ext4 filesystem performance.

The tests were all run on the 2.6.21-rc4 kernel with de-
layed allocation patches. For ext3 and ext4 tests, the
filesystem was mounted in writeback mode, and ap-
propriate extents and delayed allocation mount options
were set for ext4. Default mount options were used for
XFS testing.

FFSB and IOzone benchmarks were run on the same
4-CPU 2.8 Ghz Intel(R) Xeon(tm) System with 2 GB
of RAM, on a 68GB ultra320 SCSI disk (10000 rpm).
Postmark was run on a 4-CPU 700 MHz Pentium(R) III
system with 4 GB of RAM on a 9 GB SCSI disk (7200
rpm). Full test results including raw data are available
at the ext4 wiki page, http://ext4.wiki.kernel.
org.

7.1 FFSB comparison

FFSB is a powerful filesystem benchmarking tool, that
can be tuned to simulate very specific workloads. We
have tested multithreaded creation of large files. The test

32 • The new ext4 filesystem: current status and future plans

��������������� ���� ��������������

	

�	

�

�	

�

�	

�

�	

�

	

�����������������������

�����������
�����

!��"#������

Figure 6: FFSB sequential write comparison

���� ���� ���

	

	
�

�

�
�

�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

��������

����

�����

��
��
��
�
��
!"#

$%
�&

Figure 7: Postmark read write comparison

runs 4 threads, which combined create 24 1-GB files,
and stress the sequential write operation.

The results, shown in Figure 6, indicate about 35% im-
provement in throughput and 40% decrease in CPU uti-
lization in ext4 as compared to ext3. This performance
improvement shows a diminishing gap between ext4 and
XFS on sequential writes. As expected, the results ver-
ify extents and delayed allocation improve performance
on large contiguous file creation.

7.2 Postmark comparison

Postmark is a well-known benchmark simulating a mail
server performing many single-threaded transactions on
small to medium files. The graph in Figure 7 shows
about 30% throughput gain with with ext4. Similar per-
cent improvements in CPU utilization are seen, because
metadata is much more compact with extents. The write
throughput is higher than read throughput because ev-
erything is being written to memory.

����� ���
�����

���	 ���
���	

��
	��
�����

��
	��
���	

�

�����

�����

�����

�����

�����

�����

�����

�����

�����

����
�

����

����

���

 !
��
"#
!$
"�
%&

'
()
*

Figure 8: IOzone results: throughput of transactions on
512 MB files

These results show that, aside from the obvious perfor-
mance gain on large contiguous files, ext4 is also a good
choice on smaller file workloads.

7.3 IOzone comparison

For the IOzone benchmark testing, the system was
booted with only 64 M of memory to really stress disk
I/O. The tests were performed with 8 MB record sizes on
various file sizes. Write, rewrite, read, reread, random
write, and random read operations were tested. Figure 8
shows throughput results for 512 MB sized files. Over-
all, there is great improvement between ext3 and ext4,
especially on rewrite, random-write and reread opera-
tions. In this test, XFS still has better read performance,
while ext4 has shown higher throughput on write opera-
tions.

8 Conclusion

As we have discussed, the new ext4 filesystem brings
many new features and enhancements to ext3, making it
a good choice for a variety of workloads. A tremendous
amount of work has gone into bringing ext4 to Linux,
with a busy roadmap ahead to finalize ext4 for produc-
tion use. What was once essentially a simple filesystem
has become an enterprise-ready solution, with a good
balance of scalability, reliability, performance and sta-
bility. Soon, the ext3 user community will have the op-
tion to upgrade their filesystem and take advantage of
the newest generation of the ext family.

2007 Linux Symposium, Volume Two • 33

Acknowledgements

The authors would like to extend their thanks to Jean-
Noël Cordenner and Valérie Clément, for their help on
performance testing and analysis, and development and
support of ext4.

We would also like to give special thanks to Andrew
Morton for supporting ext4, and helping to bring ext4 to
mainline Linux. We also owe thanks to all ext4 devel-
opers who work hard to make the filesystem better, es-
pecially: Ted T’so, Stephen Tweedie, Badari Pulavarty,
Dave Kleikamp, Eric Sandeen, Amit Arora, Aneesh
Veetil, and Takashi Sato.

Finally thank you to all ext3 users who have put their
faith in the filesystem, and inspire us to strive to make
ext4 better.

Legal Statement

Copyright c© 2007 IBM.

This work represents the view of the authors and does not
necessarily represent the view of IBM.

IBM and the IBM logo are trademarks or registered trade-
marks of International Business Machines Corporation in the
United States and/or other countries.

Lustre is a trademark of Cluster File Systems, Inc.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in all
countries in which IBM operates.

This document is provided “AS IS,” with no express or im-
plied warranties. Use the information in this document at
your own risk.

References

[1] Ffsb project on sourceforge. Technical report.
http://sourceforge.net/projects/ffsb.

[2] Iozone. Technical report. http://www.iozone.org.

[3] Mingming Cao, Theodore Y. Ts’o, Badari
Pulavarty, Suparna Bhattacharya, Andreas Dilger,
and Alex Tomas. State of the art: Where we are
with the ext3 filesystem. In Ottawa Linux
Symposium, 2005.

[4] Jonathan Corbet. Which filesystem for samba4?
Technical report.
http://lwn.net/Articles/112566/.

[5] Jeffrey Katcher. Postmark a new filesystem
benchmark. Technical report, Network Appliances,
2002.

[6] Daniel Phillips. A directory index for ext2. In 5th
Annual Linux Showcase and Conference, pages
173–182, 2001.

[7] Vijayan Prabhakaran, Lakshmi N.
Bairavasundaram, Nitin Agrawal, Haryadi S.
Gunawi, Andrea C. Arpaci-Dusseau, and Remzi
H. Arpaci Dusseau. Iron file systems. In SOSP’05,
pages 206–220, 2005.

[8] Stephen Tweedie. Ext3 journalling filesystem. In
Ottawa Linux Symposium, 2000.

[9] Stephen Tweedie and Theodore Y Ts’o. Planned
extensions to the linux ext2/3 filesystem. In
USENIX Annual Technical Conference, pages
235–244, 2002.

34 • The new ext4 filesystem: current status and future plans

The 7 dwarves: debugging information beyond gdb

Arnaldo Carvalho de Melo
Red Hat, Inc.

acme@redhat.com
acme@ghostprotocols.net

Abstract

The DWARF debugging information format has been so
far used in debuggers such as gdb, and more recently in
tools such as systemtap and frysk.

In this paper the author will show additional scenarios
where such information can be useful, such as:

• Showing the layout of data structures;

• Reorganizing such data structures to remove align-
ment holes;

• Improving CPU cache utilization;

• Displaying statistics about inlining of functions;

• Re-creating structs and functions from the debug-
ging information;

• Showing binary diffs to help understand the effects
of any code change.

And much more.

1 Introduction

This paper talks about new ways to use the DWARF de-
bugging information inserted into binaries by compilers
such as gcc.

The author developed several tools that allow:

• Extracting useful information about data structures
layout;

• Finding holes and padding inserted by the compiler
to follow alignment constraints in processor archi-
tectures;

• To find out possibilities for reduction of such data
structures;

• Use of information about function parameters and
return types to generate Linux kernel modules for
obtaining data needed for generation of callgraphs
and values set to fields at runtime;

• A tool that given two object files shows a binary
diff to help understanding the effects of source
code changes on size of functions and data struc-
tures.

Some use cases will be presented, showing how the tools
can be used to solve real world problems.

Ideas discussed with some fellow developers but not yet
tried will also be presented, with the intent of hopefully
having them finally tested in practice by interested read-
ers.

2 DWARF Debugging Format

DWARF [3] is a debugging file format used by many
compilers to store information about data structures,
variables, functions and other language aspects needed
by high level debuggers.

It has had three major revisions, with the second being
incompatible with the first, the third is an expansion of
the second, adding support for more C++ concepts, pro-
viding ways to eliminate data duplication, support for
debugging data in shared libraries and in files larger than
4 GB.

The DWARF debugging information is organized in
several ELF sections in object files, some of which will
be mentioned here. Please refer to the DWARF [3] spec-
ification for a complete list. Recent developments in
tools such as elfutils [2] allow for separate files with the

• 35 •

36 • The 7 dwarves: debugging information beyond gdb

debugging information, but the common case is for the
information to be packaged together with the respective
object file.

Debugging data is organized in tags with attributes.
Tags can be nested to represent, for instance, variables
inside lexical blocks, parameters for a function and other
hierarchical concepts.

As an example let us look at how the ubiquitous hello
world example is represented in the “.debug_info” sec-
tion, the one section that is most relevant to the subject
of this paper:

$ cat hello.c

int main(void)

{
printf("hello, world!\n");

}

Using gcc with the -g flag to insert the debugging infor-
mation:

$ gcc −g hello.c −o hello

Now let us see the output, slightly edited for brevity,
from eu-readelf, a tool present in the elfutils package:

$ eu−readelf −winfo hello

DWARF section ‚.debug_info‚ at offset

0x6b3:

[Offset]

Compilation unit at offset 0:

Version: 2, Abbrev section offset: 0,

Addr size: 4, Offset size: 4

[b] compile_unit

stmt_list 0

high_pc 0x0804837a

low_pc 0x08048354

producer "GNU C 4.1.1"

language ISO C89 (1)

name "hello.c"

comp_dir "~/examples"

[68] subprogram

external

name "main"

decl_file 1

decl_line 2

prototyped

type [82]

low_pc 0x08048354

high_pc 0x0804837a

frame_base location list [0]

[82] base_type

name "int"

byte_size 4

encoding signed (5)

Entries starting with [number] are the DWARF tags that
are represented in the tool’s source code as DW_TAG_
tag_name. In the above output we can see some: DW_
TAG_compile_unit, with information about the
object file being analyzed, DW_TAG_subprogram,
emitted for each function, such as “main” and DW_
TAG_base_type, emitted for the language basic
types, such as int.

Each tag has a number of attributes, represented in
source code as DW_AT_attribute_name. In the
DW_TAG_subprogram for the “main” function we
have some: DW_AT_name (“main”), DW_AT_decl_
file, that is an index into another DWARF section
with the names for the source code files, DW_AT_
decl_line, the line in the source code where this
function was defined, DW_AT_type, the return type
for the “main” routine. Its value is a tag index, that in
this case refers to the [82] tag, which is the DW_TAG_
base_type for “int,” and also the address of this func-
tion, DW_AT_low_pc.

The following example exposes some additional
DWARF tags and attributes used in the seven dwarves.
The following struct:

struct swiss_cheese {
char a;

int b;

};

is represented as:

[68] structure_type

name "swiss_cheese"

byte_size 8

[7d] member

name "a"

type [96]

data_member_location 0

[89] member

name "b"

type [9e]

data_member_location 4

[96] base_type

name "char"

byte_size 1

2007 Linux Symposium, Volume Two • 37

[9e] base_type

name "int"

byte_size 4

In addition to the tags already described we have now
DW_TAG_structure_type to start the representa-
tion of a struct, that has the DW_AT_byte_size
attribute stating how many bytes the struct takes (8
bytes in this case). There is also another tag, DW_
TAG_member, that represents each struct member. It
has the DW_AT_byte_size and the DW_AT_data_
member_location attribute, the offset of this mem-
ber in the struct. There are more attributes, but for
brevity and for the purposes of this paper, the above are
enough to describe.

3 The 7 dwarves

The seven dwarves are tools that use the DWARF
debugging information to examine data struct layout
(pahole), examine executable code characteristics
(pfunct), compare executables (codiff), trace exe-
cution of functions associated with a struct (ctracer),
pretty-print DWARF information (pdwtags), list
global symbols (pglobal), and count the number of
times each set of tags is used (prefcnt).

Some are very simple and still require work, while oth-
ers, such as pahole and pfunct, are already being
helpful in open source projects such as the Linux kernel,
xine-lib and perfmon2. One possible use is to pretty-
print DWARF information accidentally left in binary-
only kernel modules released publicly.

All of these tools use a library called libdwarves,
that is packaged with the tools and uses the DWARF
libraries found in elfutils [2]. By using elfutils, many of
its features such as relocation, reading of object files for
many architectures, use of separate files with debugging
information, etc, were leveraged, allowing the author to
concentrate on the features that will be presented in the
next sections.

Unless otherwise stated, the examples in the following
sections use a Linux kernel image built for the x86-64
architecture from recent source code.1

The Linux kernel configuration option CONFIG_

DEBUG_INFO has to be selected to instruct the compiler

1circa 2.6.21-rc5.

to insert the DWARF information. This will make the
image much bigger, but poses no performance impact on
the resulting binary, just like when building user space
programs with debug information.

3.1 pahole

Poke-a-hole, the first dwarf, is used to find alignment
holes in structs. It is the most advanced of all the tools
in this project so far.

Architectures have alignment constraints, requiring data
types to be aligned in memory in multiples of their
word-size. While compilers do automatically align data
structures, careful planning by the developer is essential
to minimize the paddings (“holes”) required for correct
alignment of the data structures members.

An example of a bad struct layout is in demand to better
illustrate this situation:

struct cheese {
char name[17];

short age;

char type;

int calories;

short price;

int barcode[4];

};

Adding up the sizes of the members one could expect
that the size of struct cheese to be 17 + 2 + 1 + 4 + 2 +
16 = 42 bytes. But due to alignment constraints the real
size ends up being 48 bytes.

Using pahole to pretty-print the DWARF tags will
show where the 6 extra bytes are:

/∗ <11b> ∼/examples/swiss_cheese.c:3 ∗/
struct cheese {

char name[17]; /∗ 0 17 ∗/

/∗ XXX 1 byte hole, try to pack ∗/

short age; /∗ 18 2 ∗/
char type; /∗ 20 1 ∗/

/∗ XXX 3 bytes hole, try to pack ∗/

int calories; /∗ 24 4 ∗/
short price; /∗ 28 2 ∗/

38 • The 7 dwarves: debugging information beyond gdb

/∗ XXX 2 bytes hole, try to pack ∗/

int barcode[4]; /∗ 32 16 ∗/
}; /∗ size: 48, cachelines: 1 ∗/

/∗ sum members: 42, holes: 3 ∗/
/∗ sum holes: 6 ∗/
/∗ last cacheline: 48 bytes ∗/

This shows that in this architecture the alignment rule
state that short has to be aligned at a multiple of 2
offset from the start of the struct, and int has to be
aligned at a multiple of 4, the size of the word-size on
the example architecture.

Another alignment rule aspect is that a perfectly ar-
ranged struct on a 32-bit architecture such as:

$ pahole long

/∗ <67> ∼/examples/long.c:1 ∗/
struct foo {

int a; /∗ 0 4 ∗/
void ∗b; /∗ 4 4 ∗/
char c[4]; /∗ 8 4 ∗/
long g; /∗ 12 4 ∗/

}; /∗ size: 16, cachelines: 1 ∗/
/∗ last cacheline: 16 bytes ∗/

has holes when built on an architecture with a different
word-size:

$ pahole long

/∗ <6f> ∼/examples/long.c:1 ∗/
struct foo {

int a; /∗ 0 4 ∗/

/∗ XXX 4 bytes hole, try to pack ∗/

void ∗b; /∗ 8 8 ∗/
char c[4]; /∗ 16 4 ∗/

/∗ XXX 4 bytes hole, try to pack ∗/

long g; /∗ 24 8 ∗/
}; /∗ size: 32, cachelines: 1 ∗/

/∗ sum members: 24, holes: 2 ∗/
/∗ sum holes: 8 ∗/
/∗ last cacheline: 32 bytes ∗/

This is because on x86-64 the size of pointers and long
integers is 8 bytes, with the alignment rules requiring
these basic types to be aligned at multiples of 8 bytes
from the start of the struct.

To help in these cases, pahole provides the
--reorganize option, where it will reorganize the
struct trying to achieve optimum placement regarding
memory consumption, while following the alignment
rules.

Running it on the x86-64 platform we get:

$ pahole −−reorganize −C foo long

struct foo {
int a; /∗ 0 4 ∗/
char c[4]; /∗ 4 4 ∗/
void ∗b; /∗ 8 8 ∗/
long g; /∗ 16 8 ∗/

}; /∗ size: 24, cachelines: 1 ∗/
/∗ last cacheline: 24 bytes ∗/
/∗ saved 8 bytes! ∗/

There is another option, --show_reorg_steps that
sheds light on what was done:

$ pahole −−show_reorg_steps
−−reorganize −C foo long

/∗ Moving ’c’ from after ’b’ to after ’a’ ∗/
struct foo {

int a; /∗ 0 4 ∗/
char c[4]; /∗ 4 4 ∗/
void ∗b; /∗ 8 8 ∗/
long g; /∗ 16 8 ∗/

}; /∗ size: 24, cachelines: 1 ∗/
/∗ last cacheline: 24 bytes ∗/

While in this case there was just one step done, us-
ing this option in more complex structs can involve
many steps, that would have been shown to help un-
derstanding the changes performed. Other steps in the
--reorganize algorithm includes:

• Combining separate bit fields

• Demoting bit fields to a smaller basic type when the
type being used has more bits than required by the
members in the bit field (e.g. int a:1, b:2;
being demoted to char a:1, b:2;)

• Moving members from the end of the struct to fill
holes

• Combining the padding at the end of a struct with
a hole

2007 Linux Symposium, Volume Two • 39

Several modes to summarize information about all the
structs in object files were also implemented. They will
be presented in the following examples.

The top ten structs by size are:

$ pahole −−sizes vmlinux | sort −k2 −nr
| head
hid_parser: 65784 0

hid_local: 65552 0

kernel_stat: 33728 0

module: 16960 8

proto: 16640 2

pglist_data: 14272 2

avc_cache: 10256 0

inflate_state: 9544 0

ext2_sb_info: 8448 2

tss_struct: 8320 0

The second number represents the number of alignment
holes in the structs.

Yes, some are quite big and even the author got im-
pressed with the size of the first few ones, which is one
of the common ways of using this tool to find areas that
could get some help in reducing data structure sizes. So
the next step would be to pretty-print this specific struct,
hid_local:

$ pahole −C hid_local vmlinux

/∗ <175c261>

∼/net-2.6.22/include/linux/hid.h:300 ∗/
struct hid_local {

uint usage[8192]; // 0 32768
// cacheline 512 boundary (32768 bytes)
uint cindex[8192]; // 32768 32768
// cacheline 1024 boundary (65536 bytes)
uint usage_index; // 65536 4
uint usage_minimum; // 65540 4
uint delimiter_depth; // 65544 4
uint delimiter_branch;// 65548 4

}; /∗ size: 65552, cachelines: 1025 ∗/
/∗ last cacheline: 16 bytes ∗/

So, this is indeed something to be investigated, not a bug
in pahole.

As mentioned, the second column is the number of
alignment holes. Sorting by this column provides an-
other picture of the project being analyzed that could
help finding areas for further work:

$ pahole −−sizes vmlinux | sort −k3 −nr
| head
net_device: 1664 14

vc_data: 432 11

tty_struct: 1312 10

task_struct: 1856 10

request_queue: 1496 8

module: 16960 8

mddev_s: 672 8

usbhid_device: 6400 6

device: 680 6

zone: 2752 5

There are lots of opportunities to use --reorganize
results, but in some cases this is not true because the
holes are due to member alignment constraints specified
by the programmers.

Alignment hints are needed, for example, when a set of
fields in a structure are “read mostly,” while others are
regularly written to. So, to make it more likely that the
“read mostly” cachelines are not invalidated by writes in
SMP machines, attributes are used on the struct mem-
bers instructing the compiler to align some members at
cacheline boundaries.

Here is one example, in the Linux kernel, of an align-
ment hint on the struct net_device, that appeared on
the above output:

/∗
∗ Cache line mostly used on receive
∗ path (including eth_type_trans())
∗/
struct list_head poll_list

____cacheline_aligned_in_smp;

If we look at the excerpt in the pahole output for this
struct where poll_list is located we will see one of
the holes:

/∗ cacheline 4 boundary (256 bytes) ∗/
void ∗dn_ptr; /∗ 256 8 ∗/
void ∗ip6_ptr; /∗ 264 8 ∗/
void ∗ec_ptr; /∗ 272 8 ∗/
void ∗ax25_ptr; /∗ 280 8 ∗/

/∗ XXX 32 bytes hole, try to pack ∗/

/∗ cacheline 5 boundary (320 bytes) ∗/
struct list_head poll_list;

/∗ 320 16 ∗/

40 • The 7 dwarves: debugging information beyond gdb

These kinds of annotations are not represented in the
DWARF information, so the current --reorganize
algorithm can not be precise. One idea is to use the
DWARF tags with the file and line location of each
member to parse the source code looking for alignment
annotation patterns, but this has not been tried.

Having stated the previous possible inaccuracies in the
--reorganize algorithm, it is still interesting to use
it in all the structs in an object file to present a list of
structs where the algorithm was successful in finding a
new layout that saves bytes.

Using the above kernel image the author found 165
structs where holes can be combined to save some bytes.
The biggest savings found are:

$ pahole −−packable vmlinux | sort −k4
−nr | head
vc_data 432 176 256

net_device 1664 1448 216

module 16960 16848 112

hh_cache 192 80 112

zone 2752 2672 80

softnet_data 1792 1728 64

rcu_ctrlblk 128 64 64

inet_hashinfo 384 320 64

entropy_store 128 64 64

task_struct 1856 1800 56

The columns are: struct name, current size, reorga-
nized size and bytes saved. In the above list of structs
only a few clearly, from source code inspection, do not
have any explicit alignment constraint. Further analy-
sis is required to verify if the explicit constraints are
still needed after the evolution of the subsystems that
use such structs, if the holes are really needed to isolate
groups of members or could be reused.

The --expand option is useful in analyzing crash
dumps, where the available clue was an offset from a
complex struct, requiring tedious manual calculation to
find out exactly what was the field involved. It works by
“unfolding” structs, as will be shown in the following
example.

In a program with the following structs:

struct spinlock {
int magic;

int counter;

};

struct sock {
int protocol;

struct spinlock lock;

};

struct inet_sock {
struct sock sk;

long daddr;

};

struct tcp_sock {
struct inet_sock inet;

long cwnd;

long ssthresh;

};

the --expand option, applied to the tcp_sock
struct, produces:

struct tcp_sock {
struct inet_sock {

struct sock {
int protocol; /∗ 0 4 ∗/
struct spinlock {

int magic; /∗ 4 4 ∗/
int counter; /∗ 8 4 ∗/

} lock; /∗ 4 8 ∗/
} sk; /∗ 0 12 ∗/
long daddr; /∗ 12 4 ∗/

} inet; /∗ 0 16 ∗/
long cwnd; /∗ 16 4 ∗/
long ssthresh; /∗ 20 4 ∗/

}; /∗ size: 24 ∗/

The offsets are relative to the start of the top level struct
(tcp_sock in the above example).

3.2 pfunct

While pahole specializes on data structures, pfunct
concentrates on aspects of functions, such as:

• number of goto labels

• function name length

• number of parameters

• size of functions

• number of variables

2007 Linux Symposium, Volume Two • 41

• size of inline expansions

It also has filters to show functions that meet several cri-
teria, including:

• functions that have as parameters pointers to a
struct

• external functions

• declared inline, un-inlined by compiler

• not declared inline, inlined by compiler

Also, a set of statistics is available, such as the number
of times an inline function was expanded and the sum
of these expansions, to help finding candidates for un-
inlining, thus reducing the size of the binary.

The top ten functions by size:

$ pfunct −−sizes vmlinux | sort −k2 −nr
| head
hidinput_connect: 9910

load_elf32_binary: 6793

load_elf_binary: 6489

tcp_ack: 6081

sys_init_module: 6075

do_con_write: 5972

zlib_inflate: 5852

vt_ioctl: 5587

copy_process: 5169

usbdev_ioctl: 4934

One of the attributes of the DW_AT_subprogram
DWARF tag, that represents functions, is DW_AT_
inline, which can have one of the following values:

• DW_INL_not_inlined – Neither declared in-
line nor inlined by the compiler

• DW_INL_inlined – Not declared inline but in-
lined by the compiler

• DW_INL_declared_not_inlined – De-
clared inline but not inlined by the compiler

• DW_INL_declared_inlined – Declared in-
line and inlined by the compiler

The --cc_inlined and --cc_uninlined options in
pfunct use this information. Here are some examples
of functions that were not explicitly marked as inline by
the programmers but were inlined by gcc:

$ pfunct −−cc_inlined vmlinux | tail
do_initcalls

do_basic_setup

smp_init

do_pre_smp_initcalls

check_bugs

setup_command_line

boot_cpu_init

obsolete_checksetup

copy_bootdata

clear_bss

For completeness, the number of inlined functions was
2526.

3.3 codiff

An object file diff tool, codiff, takes two versions of a
binary, loads from both files the debugging information,
compares them and shows the differences in structs and
functions, producing output similar to the well known
diff tool.

Consider a program that has a print_tag function,
handling the following struct:

struct tag {
int type;

int decl_file;

char ∗decl_line;
};

and in a newer version the struct was changed to this
new layout, while the print_tag function remained
unchanged:

struct tag {
char type;

int decl_file;

char ∗decl_line;
int refcnt;

};

The output produced by codiff would be:

$ codiff tag−v1 tag−v2
tag.c:

42 • The 7 dwarves: debugging information beyond gdb

struct tag | +4

1 struct changed

print_tag | +4

1 function changed, 4 bytes added

It is similar to the diff tool, showing how many bytes
were added to the modified struct and the effect of this
change in a routine that handles instances of this struct.

The --verbose option tells us the details:

$ codiff −V tag−v1 tag−v2

tag.c:

struct tag | +4

nr_members: +1

+int refcnt /∗ 12 4 ∗/

type

from: int /∗ 0 4 ∗/

to: char /∗ 0 1 ∗/

1 struct changed

print_tag | +4 # 29 → 33

1 function changed, 4 bytes added

The extra information on modified structs includes:

• Number of members added and/or removed

• List of new and/or removed members

• Offset of members from start of struct

• Type and size of members

• Members that had their type changed

And for functions:

• Size difference

• Previous size -> New size

• Names of new and/or removed functions

3.4 ctracer

A class tracer, ctracer is an experiment in creating
valid source code from the DWARF information.

For ctracer a method is any function that receives as
one of its parameters a pointer to a specified struct. It
looks for all such methods and generates kprobes en-
try and exit functions. At these probe points it collects
information about the data structure internal state, sav-
ing the values in its members in that point in time, and
records it in a relay buffer. The data is later collected
in userspace and post-processed, generating html + CSS
callgraphs.

One of the techniques used in ctracer involves cre-
ating subsets of data structures based on some criteria,
such as member name or type. This tool so far just fil-
ters out any non-integer type members and applies the
--reorganize code2 on the resulting mini struct to
possibly reduce the memory space needed for relaying
this information to userspace.

One idea that probably will be pursued is to generate
SystemTap [1] scripts instead of C language source files
using kprobes, taking advantage of the infrastructure
and safety guards in place in SystemTap.

3.5 pdwtags

A simple tool, pdwtags is used to pretty-print DWARF
tags for data structures (struct, union), enumerations and
functions, in a object file. It is useful as an example of
how to use libdwarves.

Here is an example on the hello world program:

$ pdwtags hello

/∗ <68> /home/acme/examples/hello.c:2 ∗/
int main(void)

{
}

This shows the “main” DW_TAG_subprogram tag, with
its return type.

In the previous sections other examples of DWARF tag
formatting were presented, and also tags for variables,
function parameters, goto labels, would also appear if
pdwtags was used on the same object file.

2Discussed in the pahole section.

2007 Linux Symposium, Volume Two • 43

3.6 pglobal

pglobal is an experimentation to print global vari-
ables and functions, written by a contributor, Davi Ar-
nault.

This example:

$ cat global.c
int variable = 2;

int main(void)
{

printf("variable=%d\n",
variable);

}

would present this output with pglobal:

$ pglobal −ve hello
/∗ <89> /home/acme/examples/global.c:1 ∗/
int variable;

which shows a list of global variables with their types,
source code file, and line where they were defined.

3.7 prefcnt

prefcnt is an attempt to do reference counting on
tags, trying to find some that are not referenced any-
where and could be removed from the source files.

4 Availability

The tools are maintained in a git repository that can
be browsed at http://git.kernel.org/?p=
linux/kernel/git/acme/pahole.git, and
rpm packages for several architectures are avail-
able at http://oops.ghostprotocols.net:
81/acme/dwarves/rpm/.

Acknowledgments

The author would like to thank Davi Arnault for pglobal,
proving that libdwarves was not so horrible for a tool
writer; all the people who contributed patches, sug-
gestions, and encouragement on writing these tools;
and Ademar Reis, Aristeu Rozanski, Claudio Mat-
suoka, Glauber Costa, Eduardo Habkost, Eugene Teo,
Leonardo Chiquitto, Randy Dunlap, Thiago Santos, and
William Cohen for reviewing and suggesting improve-
ments for several drafts of this paper.

References

[1] Systemtap.
http://sourceware.org/systemtap.

[2] Ulrich Drepper. elfutils home page.
http://people.redhat.com/drepper.

[3] DWARF Debugging Information Format
Workgroup. Dwarf debugging information format,
December 2005. http://dwarfstd.org.

44 • The 7 dwarves: debugging information beyond gdb

Adding Generic Process Containers to the Linux Kernel

Paul B. Menage∗

Google, Inc.
menage@google.com

Abstract

While Linux provides copious monitoring and control
options for individual processes, it has less support
for applying the same operations efficiently to related
groups of processes. This has led to multiple proposals
for subtly different mechanisms for process aggregation
for resource control and isolation. Even though some of
these efforts could conceptually operate well together,
merging each of them in their current states would lead
to duplication in core kernel data structures/routines.

The Containers framework, based on the existing
cpusets mechanism, provides the generic process group-
ing features required by the various different resource
controllers and other process-affecting subsystems. The
result is to reduce the code (and kernel impact) required
for such subsystems, and provide a common interface
with greater scope for co-operation.

This paper looks at the challenges in meeting the needs
of all the stakeholders, which include low overhead,
feature richness, completeness and flexible groupings.
We demonstrate how to extend containers by writing
resource control and monitoring components, we also
look at how to implement namespaces and cpusets on
top of the framework.

1 Introduction

Over the course of Linux history, there have been and
continue to be multiple efforts to provide forms of mod-
ified behaviour across sets of processes. These ef-
forts have tended to fall into two main camps, resource
control/monitoring, and namespace isolation (although
some projects contain elements of both).

*With additional contributions by Balbir Singh
and Srivatsa Vaddagiri, IBM Linux Technology Center,
{balbir,vatsa}@in.ibm.com

Technically resource control and isolation are related;
both prevent a process from having unrestricted access
to even the standard abstraction of resources provided
by the Unix kernel. For the purposes of this paper, we
use the following defintions:

Resource control is any mechanism which can do either
or both of:

• tracking how much of a resource is being com-
sumed by a set of processes

• imposing quantative limits on that consumption, ei-
ther absolutely, or just in times of contention.

Typically resource control is visible to the processes be-
ing controlled.

Namespace isolation1 is a mechanism which adds an
additional indirection or translation layer to the nam-
ing/visibility of some unix resource space (such as pro-
cess ids, or network interfaces) for a specific set of pro-
cesses. Typically the existence of isolation itself is in-
visible to the processes being isolated.

Resource Control and Isolation are both subsets of the
general model of a subsystem which can apply be-
haviour differently depending on a process’ membership
of some specific group. Other examples could include:

• basic job control. A job scheduling system needs
to be able to keep track of which processes are
part of a given running “job,” in the presence of
fork() and exit() calls from processes in that
job. This is the simplest example of the kind of

1We avoid using the alternative term virtualization in this paper
to make clear the distinction between lightweight in-kernel virtual-
ization/isolation, and the much more heavyweight virtual machine
hypervisors such as Xen which run between the kernel and the hard-
ware.

46 • Adding Generic Process Containers to the Linux Kernel

process tracking system proposed in this paper, as
the kernel need do nothing more than maintain the
membership list of processes in the job.

• tracking memory pressure for a group of processes,
and being able to receive notifications when mem-
ory pressure reaches some particular level (e.g. as
measured by the scanning level reached in try_
to_free_pages()), or reaches the OOM stage.

Different projects have proposed various basic mech-
anisms for implementing such process tracking. The
drawbacks of having multiple such mechanisms include:

• different and mutually incompatible user-space and
kernel APIs and feature sets.

• The merits of the underlying process grouping
mechanisms and the merits of the actual resource
control/isolation system become intertwined.

• systems that could work together to provide syner-
gistic control of different resources to the same sets
of processes are unable to do so easily since they’re
based on different frameworks.

• kernel structures and code get bloated with addi-
tional framework pointers and hooks.

• writers of such systems have to duplicate large
amounts of functionally-similar code.

The aim of the work described in this paper is to pro-
vide a generalized process grouping mechanism suitable
for use as a base for current and future Linux process-
control mechanisms such as resource controllers; the in-
tention is that writers of such controllers need not be
concerned with the details of how processes are being
tracked and partitioned, and can concentrate on the par-
ticular resource controller at hand, and the resource ab-
straction presented to the user. (Specifically, this frame-
work does not attempt to prescribe any particular re-
source abstraction.) The requirements for a process-
tracking framework to meet the needs of existing and fu-
ture process-management mechanisms are enumerated,
and a proposal is made that aims to satisfy these require-
ments.

For the purposes of this paper, we refer to a tracked
group of processes as a container. Whether this is a

suitable final name for the concept is currently the sub-
ject of debate on various Linux mailing lists, due to its
use by other development groups for a similar concept in
userspace. Alternative suggestions have included parti-
tion and process set.

2 Requirements

In this section we attempt to enumerate the properties re-
quired of a generic container framework. Not all mecha-
nisms that depend on containers will require all of these
properties.

2.1 Multiple Independent Subsystems

Clients of the container framework will typically be
resource accounting/control systems and isolation sys-
tems. In this paper we refer to the generic client as a sub-
system. The relationship between the container frame-
work and a subsystem is similar to that between the
Linux VFS and a specific filesystem—the framework
handles many of the common operations, and passes no-
tifications/requests to the subsystem.

Different users are likely to want to make use of differ-
ent subsystems; therefore it should be possible to se-
lectively enable different subsystems both at compile
time and at runtime. The main function of the container
framework is to allow a subsystem to associate some
kind of policy/stats (referred to as the subsystem state)
with a group of processes, without the subsystem hav-
ing to worry in too much detail about how this is actually
accomplished.

2.2 Mobility

It should be possible for an appropriately-privileged
user to move a process between containers. Some sub-
systems may require that processes can only move into
a container at the point when it is created (e.g. a virtual
server system where the process becomes the new init
process for the container); therefore it should be possi-
ble for mobility to be configurable on a per-subsystem
basis.

2007 Linux Symposium, Volume Two • 47

2.3 Inescapability

Once a process has been assigned to a container, it
shouldn’t be possible for the process (or any of its chil-
dren) to move to a different container without action by
a privileged (i.e. root) user, or by a user to whom that
capability has been delegated, e.g. via filesystem per-
missions.

2.4 Extensible User Interface

Different subsystems will need to present different con-
figuration and reporting interfaces to userspace:

• a memory resource controller might want to allow
the user to specify guarantees and limits on the
number of pages that processes in a container can
use, and report how many pages are actually in use.

• a memory-pressure tracker might want to allow the
user to specify the particular level of memory pres-
sure which should cause user notifications.

• the cpusets system needs to allow users to specify
various parameters such as the bitmasks of CPUs
and memory nodes to which processes in the con-
tainer have access.

From the user’s point of view it is simplest if there is at
least some level of commonality between the configu-
ration of different subsystems. Therefore the container
framework should provide an interface that captures the
common aspects of different subsystems but which still
allows subsystems sufficient flexibility. Possible candi-
dates include:

• A filesystem interface, where each subsystem can
register files that the user can write (for configura-
tion) and/or read (for reporting) has the advantages
that it can be manipulated by many standard unix
tools and library routines, has built-in support for
permission delegation, and can provide arbitrary
input/output formats and behaviour.

• An API (possibly a new system call?) that allows
the user to read/write named properties would have
the advantages that it would tend to present a more
uniform interface (although possibly too restrictive
for some subsystems) and potentially have slightly
better performance than a filesystem-based inter-
face.

2.5 Nesting

For some subsystems it is desirable for there to be mul-
tiple nested levels of containers:

• The existing cpusets system inherently divides and
subdivides sets of memory nodes and CPUs be-
tween different groups of processes on the system.

• Nesting allows some fraction of the resources
available to one set of processes to be delegated to
a subset of those processes.

• Nested virtual servers may also find hierarchical
support useful.

Some other subsystems will either be oblivious to the
concept of nesting, or will actively want to avoid it;
therefore the container system should allow subsystems
to selectively control whether they allow nesting.

2.6 Multiple Partitions

The container framework will allow the user to partition
the set of processes. Consider a system that is config-
ured with the cpusets and beancounters subsystems. At
any one time, a process will be in one and exactly one
cpuset (a cpuset A may also be a child of some other
cpuset B, in which case in a sense all processes in A are
indirectly members of cpuset B as well, but a process is
only a direct member of one cpuset). Similarly a process
is only a direct member of one beancounter. So cpusets
and beancounters are each a partition function on the set
of processes.

Some initial work on this project produced a system that
simply used the same partition function for all subsys-
tems, i.e. for every cpuset created there would also be
a beancounter created, and all processes moved into the
new cpuset would also become part of the new bean-
counter. However, very plausible scenarios were pre-
sented to demonstrate that this was too limiting.

A generic container framework should support some
way of allowing different partitions for different sub-
systems. Since the requirements suggest that support-
ing hierarchical partitions is useful, even if not re-
quired/desired for all subsystems, we refer to these par-
titions, without loss of generality, as hierarchies.

For illustration, we consider the following examples of
dividing processes on a system.

48 • Adding Generic Process Containers to the Linux Kernel

/

sys staff students

Cpusets
/

sys staff students

Memory
/

www NFS other

Network

(a) University Server

/

R1 R2

Cpusets Memory
/

R1 R2

VS1 VS2 VS3 VS4

Network
/

R1 R2

VS1 VS2 VS3 VS4

Isolation
/

R1 R2

VS1 VS2 VS3 VS4

(b) Hosting Server

Figure 1: Example container divisions with independent (single-subsystem) hierarchies

A University Timesharing System2

A university server has various users—students,
professors, and system tasks. For CPU and mem-
ory, it is desired to partition the system according
to the process owner’s user ID, whereas for net-
work traffic, it is desired to partition the system ac-
cording to the traffic content (e.g. WWW browser
related traffic across all users shares the same limit
of 20%). Any single way of partitioning the sys-
tem will make this kind of resource planning hard,
potentially requiring creating a container for each
tuple of the cross-product of the various config-
ured resource subsystems.. Allowing the system
to be partitioned in multiple ways, depending on
resource type, is therefore a desirable feature.

A Virtual Server System
A large commercial hosting server has many
NUMA nodes. Blocks of nodes are sold to re-
sellers (R1, R2) to give guaranteed CPU/memory
resources. The resellers then sell virtual servers
(VS1–VS4) to end users, potentially overcommit-
ting their resources but not affecting other resellers
on the system.

The server owner would use cpusets to restrict each
reseller to a set of NUMA memory nodes/CPUs;
the reseller would then (via root-delegated capa-
bilities) use a server isolation subsystem and a re-
source control subsystem to create virtual servers
with various levels of resource guarantees/limits,
within their own cpuset resources.

2Example contributed by Srivatsa Vaddagiri.

Two possible approaches to supporting these examples
are given below; the illustrative figures represent a ker-
nel with cpusets, memory, network, and isolation sub-
systems.

2.6.1 Independent hierarchies

In the simplest approach, each hierarchy provides the
partition for exactly one subsystem. So to use e.g.
cpusets and beancounters on the same system, you
would need to create a cpuset hierarchy and a beancoun-
ters hierarchy, and assign processes to containers sepa-
rately for each subsystem.

This solution can be used to implement any of the
other approaches presented below. The drawback is that
it imposes a good deal of extra management work to
userspace in the (we believe likely) common case when
the partitioning is in fact the same across multiple or
even all subsystems. In particular, moving processes
between containers can have races—if userspace has to
move a process as two separate actions on two different
hierarchies, a child process forked during this operation
might end up in inconsistent containers in the two hier-
archies.

Figure 1 shows how containers on the university and
hosting servers might be configured when each subsys-
tem is an independent hierarchy. The cpusets and mem-
ory subsystems have duplicate configurations for the
university server (which doesn’t use the isolation sub-
system), and the network, memory and isolation subsys-

2007 Linux Symposium, Volume Two • 49

/

sys staff students

Cpusets / Memory
/

www NFS other

Network

(a) University Server

Memory / Network /
Cpusets / Isolation

/

R1 R2

VS1 VS2 VS3 VS4

(b) Hosting Server

Figure 2: Example container divisions with multi-subsystem hierarchies

tems have duplicate configurations for the hosting server
since they’re the same for each virtual server.

2.6.2 Multi-subsystem hierarchies

An extension to the above approach allows multiple sub-
systems to be bound on to the same hierarchy; so e.g.
if you were using cpusets and beancounters, and you
wanted the cpuset and beancounter assignments to be
isomorphic for all processes, you could bind cpusets and
beancounters to the same hierarchy of containers, and
only have to operate on a single hierarchy when creat-
ing/destroying containers, or moving processes between
containers.

Figure 2 shows how the support for multiple subsystems
per hierarchy can simplify the configuration for the two
example servers. The university server can merge the
configurations for the cpusets and memory subsystems
(although not for the network subsystem, since that’s us-
ing an orthogonal division of processes). The hosting
server can merge all four subsystems into a single hier-
archy.

2.7 Non-process references to containers

Although the process is typically the object most uni-
versally associated with a container, it should also be
possible to associate other objects—such as pages, file

handles or network sockets—with a container, for ac-
counting purposes or in order to affect the kernel’s be-
haviour with respect to those objects.

Since such associations are likely to be subsystem-
specific, the container framework needs primarily to be
able to provide an efficient reference-counting mecha-
nism, which will allow references to subsystem state ob-
jects to be made in such a way that they prevent the de-
struction of the associated container until the reference
has been released.

2.8 Low overhead

The container framework should provide minimal addi-
tional runtime overhead over a system where individ-
ual subsystems are hard-coded into the source at all ap-
propriate points (pointers in task_struct, additional
fork() and exit() handlers, etc).

3 Existing/Related Work

In this section we consider the existing mechanisms for
process tracking and control in Linux, looking at both
those already included in the Linux source tree, and
those proposed as bases for other efforts.

3.1 Unix process grouping mechanisms

Linux has inherited several concepts from classical Unix
that can be used to provide some form of association be-

50 • Adding Generic Process Containers to the Linux Kernel

tween different processes. These include, in order of in-
creasing specificity: group id (gid), user id (uid), session
id (sid) and process group (pgrp).

Theoretically the gid and/or uid could be used as the
identification portion of the container framework, and
a mechanism for configuring per-uid/gid state could be
added. However, these have the serious drawbacks that:

• Job-control systems may well want to run multiple
jobs as the same user/group on the same machine.

• Virtual server systems will want to allow processes
within a virtual server to have different uids/gids.

The sid and/or the pgrp might be suitable as a track-
ing base for containers, except for the fact that tradi-
tional Unix semantics allow processes to change their
sid/pgrp (by becoming a session/group leader); remov-
ing this ability would be possible, but could resulting in
unexpected breakage in applications. (In particular, re-
quiring all processes in a virtual server to have the same
sid or pgrp would probably be unmanageable).

3.2 Cpusets

The cpusets system is the only major container-like sys-
tem in the mainline Linux kernel. Cpusets presents a
pseudo-filesystem API to userspace with semantics in-
cluding:

• Creating a directory creates a new empty cpuset (an
analog of a container).

• Control files in a cpuset directory allow you to con-
trol the set of memory nodes and/or CPUs that
tasks in that cpuset can use.

• A special control file, tasks can be read to list the
set of processes in the cpuset; writing a pid to the
tasks file moves a process into that cpuset.

3.3 Linux/Unix container systems

The Eclipse [3] and Resource Containers [4] projects
both sought to add quality of service to Unix. Both
supported hierarchical systems, allowing free migration
of processes and threads between containers; Eclipse

used the independent hierarchies model described in
Section 2.6.1; Resource Containers bound all schedulers
(subsystems) into a single hierarchy.

PAGG [5] is part of the SGI Comprehensive System
Accounting project, adapted for Linux. It provides a
generic container mechanism that tracks process mem-
bership and allows subsystems to be notified when pro-
cesses are created or exit. A crucial difference between
PAGG and the design presented in this paper is that
PAGG allows a free-form association between processes
and arbitrary containers. This results in more expensive
access to container subsystem state, and more expensive
fork()/exit() processing.

Resource Groups [2] (originally named CKRM – Class-
based Kernel Resource Management) and BeanCoun-
ters [1] are resource control frameworks for Linux. Both
provide multiple resource controllers and support addi-
tional controllers. ResGroups’ support for additional
controllers is more generic than the design proposed
in this paper—we feel that the additional overheads
that it introduces are unnecessary; BeanCounters is less
generic, in that additional controllers have to be hard-
coded into the existing BeanCounters source. Both
frameworks also enforce a particular resource model
on their resource controllers, which may be inappro-
priate for resource controllers with different require-
ments from those envisaged—for example, implement-
ing cpusets with its current interface (or an equivalent
natural interface) on top of either the BeanCounters or
ResGroups abstractions would not be possible.

3.4 Linux virtual server systems

There have been a variety of virtual server systems de-
veloped for Linux; early commercial systems included
Ensim’s Virtual Private Server [6] and SWSoft’s Vir-
tuozzo [7]; these both provided various resource con-
trollers along with namespace isolation, but no support
for generic extension with user-provided subsystems.

More recent open-sourced virtualization systems have
included VServer [8] and OpenVZ [9], a GPL’d subset
of the functionality of Virtuozzo.

3.5 NSProxy-based approaches

Recent work on Linux virtual-server systems [10]
has involved providing multiple copies of the various

2007 Linux Symposium, Volume Two • 51

namespaces (such as for IPC, process ids, etc) within
the kernel, and having the namespace choice be made
on a per-process basis. The fact that different pro-
cesses can now have different IPC namespaces results
in the requirement that these namespaces be reference-
counted on fork() and released on exit(). To
reduce the overhead of such reference counting, and
to reduce the number of per-process pointers required
for all these virtualizable namespaces, the struct
nsproxy was introduced. This is a reference-counted
structure holding reference-counted pointers to (theoret-
ically) all the namespaces required for a task; therefore
at fork()/exit() time only the reference count on
the nsproxy object must be adjusted. Since in the
common case a large number of processes are expected
to share the same set of namespaces, this results in a
reduction in the space required for namespace pointers
and in the time required for reference counting, at the
cost of an additional indirection each time one of the
namespaces is accessed.

4 Proposed Design

This section presents a proposed design for a container
framework based on the requirements presented in Sec-
tion 2 and the existing work surveyed above. A pro-
totype implementation of this design is available at
the project website [11], and has been posted to the
linux-kernel@vger.kernel.org mailing list and
other relevant lists.

4.1 Overview

The proposed container approach is an extension of
the process-tracking design used for cpusets. The cur-
rent design favours the multiple-hierarchy approach de-
scribed in Section 2.6.2.

4.2 New structure types

The container framework adds several new structures
to the kernel. Figure 3 gives an overview of the rela-
tionship between these new structures and the existing
task_struct and dentry.

4.2.1 container

The container structure represents a container ob-
ject as described in Section 1. It holds parent/child/
sibling information, per-container state such as flags,
and a set of subsystem state pointers, one for the state
for each subsystem configured in the kernel. It holds
no resource-specific state. It currently3 holds no refer-
ence to a list of tasks in the container; the overhead of
maintaining such a list would be paid whenever tasks
fork() or exit(), and the relevant information can
be reconstructed via a simple walk of the tasklist.

4.2.2 container_subsys

The container_subsys structure represents a sin-
gle resource controller or isolation component, e.g. a
memory controller or a CPU scheduler.

The most important fields in a container_subsys
are the callbacks provided to the container framework;
these are called at the appropriate times to allow the sub-
system to learn about or influence process events and
container events in the hierarchy to which this subsys-
tem is bound, and include:

create is called when a new container is created

destroy is called when a container is destroyed

can_attach is called to determine whether the subsys-
tem wants to allow a process to be moved into a
given container

attach is called when a process moves from one con-
tainer to another

fork is called when a process forks a child

exit is called when a process exits

populate is called to populate the contents of a con-
tainer directory with subsystem-specific control
files

bind is called when a subsystem is moved between hi-
erarchies.

3The possibility of maintaining such a task list just for those sub-
systems that really need it is being considered.

52 • Adding Generic Process Containers to the Linux Kernel

Apart from create and destroy, implemention of
these callbacks is optional.

Other fields in container_subsys handle house-
keeping state, and allow a subsystem to find out to which
hierarchy it is attached.

Subsystem registration is done at compile time—
subsystems add an entry in the header file include/

linux/container_subsys.h. This is used in con-
junction with pre-processor macros to statically allocate
an identifier for each subsystem, and to let the container
system locate the various container_subsys ob-
jects.

The compile-time registration of subsystems means that
it is not possible to build a container subsystem purely
as a module. Real-world subsystems are expected to re-
quire subsystem-specific hooks built into other locations
in the kernel anyway; if necessary, space could be left in
the relevant arrays for a compile-time configurable num-
ber of “extra” subsystems.

4.2.3 container_subsys_state

A container_subsys_state represents the base
type from which subsystem state objects are derived,
and would typically be embedded as the first field in the
subsystem-specific state object. It holds housekeeping
information that needs to be shared between the generic
container system and the subsystem. In the current de-
sign this state consists of:

container – a reference to the container object with
which this state is associated. This is primarily
useful for subsystems which want to be able to ex-
amine the tree of containers (e.g. a hierarchical re-
source manager may propagate resource informa-
tion between subsystem state objects up or down
the hierarchy of containers).

refcnt – the reference count of external non-process ob-
jects on this subsystem state object, as described in
Section 2.7. The container framework will refuse
to destroy a container whose subsystems have non-
zero states, even if there are no processes left in the
container.

To access its state for a given task, a subsystem can
call task_subsys_state(task, <subsys_id>).

This function simply dereferences the given subsystem
pointer in the task’s css_group (see next Section).

4.2.4 css_group

For the same reasons as described in Section 3.5, main-
taining large numbers of pointers (per-hierarchy or per-
subsystem) within the task_struct object would re-
sult in space wastage and reference-counting overheads,
particularly in the case when container systems com-
piled into the kernel weren’t actually used.

Therefore, this design includes the css_group (con-
tainer subsystem group) object, which holds one
container_subsys_state pointer for each reg-
istered subsystem. A reference-counted pointer field
(called containers) to a css_group is added to
task_struct, so the space overhead is one pointer per
task, and the time overhead is one reference count op-
eration per fork()/exit(). All tasks with the same
set of container memberships across all hierarchies will
share the same css_group.

A subsystem can access the per-subsystem state for a
task by looking at the slot in the task’s css_group

indexed by its (statically defined) subsystem id. Thus
the additional indirection is the only subsystem-state ac-
cess overhead introduced by the css_group; there’s
no overhead due to the generic nature of the container
framework. The space/time tradeoff is similar to that
associated with nsproxy.

It has been proposed (by Srivatsa Vaddagiri and oth-
ers) that the css_group should be merged with the
nsproxy to form a single per-task object containing
both namespace and container information. This would
be a relatively straightforward change, but the current
design keeps these as separate objects until more expe-
rience has been gained with the system.

4.3 Code changes in the core kernel

The bulk of the new code required for the container
framework is that implementing the container filesys-
tem and the various tracking operations. These are
driven entirely by the user-space API as described in
Section 4.5.

Changes in the generic kernel code are minimal and con-
sist of:

2007 Linux Symposium, Volume Two • 53

T1 T2 T3

CG1 CG2

A1

A2 A3

B1

B2 B3

C1

/

/foo /bar

task_struct

css_group

container_subsys_state

container / dentry

Figure 3: Three subsystems (A, B, C) have been compiled into the kernel; a single hierarchy has been mounted
with A and B bound to it. Container directories foo and bar have been created, associated with subsystem states
A2/B2 and A3/B3 respectively. Tasks T1 and T2 are in container foo; task T3 is in container bar. Subsystem C is
unbound so all container groups (and hence tasks) share subsystem state C1.

• A hook early in the fork() path to take an ad-
ditional reference count on the task’s css_group
object.

• A hook late in the fork() path to invoke
subsystem-specific fork callbacks, if any are re-
quired.

• A hook in the exit() path to invoke any
subsystem-specfic exit callbacks, if any, and to
release the reference count on the task’s css_

group object (which will also free the css_group
if this releases the last reference.)

4.4 Locking Model

The current container framework locking model re-
volves around a global mutex (container_mutex),
each task’s alloc_lock (accessed via task_
lock() and task_unlock()) and RCU critical sec-
tions.

The container_mutex is used to synchronize per-
container operations driven by the userspace API. These

include creating/destroying containers, moving pro-
cesses between containers, and reading/writing sub-
system control files. Performance-sensitive operations
should not require this lock.

When modifying the containers pointer in a task,
the container framework surrounds this operation with
task_lock()/task_unlock(), and follows with
a synchronize_rcu() operation before releasing
the container_mutex.

Therefore, in order for a subsystem to be sure that it is
accessing a valid containers pointer, it suffices for
at least one of the following three conditions to be true
of the current task:

• it holds container_mutex

• it holds its own alloc_lock.

• it is in an RCU critical section.

The final condition, that of being in an RCU critical sec-
tion, doesn’t prevent the current task being concurrently
moved to a different container in some hierarchy—it

54 • Adding Generic Process Containers to the Linux Kernel

simply tells you that the current task was in the spec-
ified set of containers at some point in the very recent
past, and that any of the subsystem state pointers in that
css_group object won’t be candidates for deletion
until after the end of the current RCU critical section.

When an object (such as a file or a page) is accounted
to the value that has been read as the current subsystem
state for a task, it may actually end up being accounted
to a container that the task has just been moved from;
provided that a reference to the charged subsystem state
is stored somewhere in the object, so that at release
time the correct subsystem state can be credited, this is
typically sufficient. A subsystem that wants to reliably
migrate resources between containers when the process
that allocated those resources moves (e.g. cpusets, when
the memory_migratemode is enabled) may need ad-
ditional subsystem-specific locking, or else use one of
the two other locking methods listed above, in order to
ensure that resources are always accounted to the correct
containers.

The subsystem state pointers in a given css_group are
immutable once the object has been created; therefore
as long as you have a pointer to a valid css_group, it
is safe to access the subsystem fields without additional
locking (beyond that mandated by subsystem-specific
rules).

4.5 Userspace API

The userspace API is very similar to that of the existing
cpusets system.

A new hierarchy is created by mounting an instance of
the container pseudo-filesystem. Options passed to
the mount() system call indicate which of the avail-
able subsystems should be bound to the new hierarchy.
Since each subsystem can only be bound to a single hier-
archy at once, this will fail with EBUSY if the subsystem
is already bound to a different hierarchy.

Initially, all processes are in the root container of this
new hierarchy (independently of whatever containers
they might be members of in other hierarchies).

If a mount request is made for a set of subsystems that
exactly match an existing active hierarchy, the same su-
perblock is reused.

At the time when a container hierarchy is unmounted, if
the hierarchy had no child containers then the hierarchy

is released and all subsystems are available for reuse.
If the hierarchy still has child containers, the hierarchy
(and superblock) remain active even though not actively
attached to a mounted filesystem.4

Creating a directory in a container mount creates a new
child container; containers may be arbitrarily nested,
within any restrictions imposed by the subsystems
bound to the hierarchy being manipulated.

Each container directory has a special control file,
tasks. Reading from this file returns a list of pro-
cesses in the container; writing a pid to this file moves
the given process into the container (subject to success-
ful can_attach() callbacks on the subsystems bound
to the hierarchy).

Other control files in the container directory may be cre-
ated by subsystems bound to that hierarchy; reads and
writes on these files are passed through to the relevant
subsystems for processing.

Removing a directory from a container mount destroys
the container represented by the directory. If tasks re-
main within the container, or if any subsystem has a non-
zero reference count on that container, the rmdir()
operation will fail with EBUSY. (The existence of sub-
system control files within a directory does not keep it
busy; these are cleared up automatically.)

The file /proc/PID/container lists, for each ac-
tive hierarchy, the path from the root container to the
container of which process PID is a member.5

The file /proc/containers gives information
about the current set of hierarchies and subsystems in
use. This is primarily useful for debugging.

4.6 Overhead

The container code is optimized for fast access by sub-
systems to the state associated with a given task, and a
fast fork()/exit() path.

Depending on the synchronization requirements of a
particular subsystem, the first of these can be as simple
as:

4They remain visible via a /proc reporting interface.
5An alternative proposal is for this to be a directory holding con-

tainer path files, one for each subsystem.

2007 Linux Symposium, Volume Two • 55

struct task_struct *p = current;
rcu_read_lock()
struct state *st =

task_subsys_state(p,
my_subsys_id);

...
<Do stuff with st>
...
rcu_read_unlock();

On most architectures, the RCU calls expand to no-
ops, and the use of inline functions and compile-time
defined subsystem ids results in the code being equiv-
alent to struct state *st = p->containers->

subsys[my_subsys_id], or two constant-offset
pointer dereferences. This involves one additional
pointer dereference (on a presumably hot cacheline)
compared to having the subsystem pointer embedded
directly in the task structure, but has a reduced space
overhead and reduced refcounting overhead at fork()
/ exit() time.

Assuming none of the registered subsystems have reg-
istered fork() / exit() callbacks, the overhead
at fork() (or exit()) is simply a kref_get()
(or kref_put()) on current->containers->

refcnt.

5 Example Subsystems

The containers patches include various examples of sub-
systems written over the generic containers framework.
These are primarily meant as demonstrations of the way
that the framework can be used, rather than as fully-
fledged resource controllers in their own right.

5.1 CPU Accounting Subsystem

The cpuacct subsystem is a simple demonstration of
a useful container subsystem. It allows the user to eas-
ily read the total amount of CPU time (in milliseconds)
used by processes in a given container, along with an
estimate of the recent CPU load for that container.

The 250-line patch consists of:

• callback hooks added to the account_*_
time() functions in kernel/sched.c to in-
form the subsystem when a particular process is
being charged for a tick.

• declaration of a subsystem in include/linux/

container_subsys.h

• Kconfig/Makefile additions

• the code in kernel/cpuacct.c to implement
the subsystem. This can focus on the actual details
of tracking the CPU for a container, since all the
common operations are handled by the container
framework.

Internally, the cpuacct subsystem uses a per-
container spinlock to synchronize access to the us-
age/load counters.

5.2 Cpusets

Cpusets is already part of the mainline kernel; as part of
the container patches it is adapted to use the generic con-
tainer framework (the primary change involved removal
of about 30% of the code, that was previously required
for process-tracking).

Cpusets is an example of a fairly complex subsystem
with hooks into substantial other parts of the kernel (par-
ticularly memory management and scheduler parame-
ters). Some of its control files represent flags, some
represent bitmasks of memory nodes and cpus, and oth-
ers report usage values. The interface provided by the
generic container framework is sufficiently flexible to
accomodate the cpusets API.

Internally, cpusets uses an additional global mutex—
callback_mutex—to synchronize container-driven
operations (moving a task between containers, or updat-
ing the memory nodes for a container) with callbacks
from the memory allocator or OOM killer.

For backwards compatibility the existing cpuset
filesystem type remains; any attempt to mount it gets
redirected to a mount of the container filesystem,
with a subsystem option of cpuset.

5.3 ResGroups

ResGroups (formerly CKRM [2]) is a hierarchical re-
source control framework that specifies the resource
limits for each child in terms of a fraction of the re-
sources available to its parent. Additionally resources

56 • Adding Generic Process Containers to the Linux Kernel

may be borrowed from a parent if a child has reached its
resource limits.

The abstraction provided by the generic containers
framework is low-level, with free-form control files.
As an example of how to provide multiple subsys-
tems sharing a common higher-level resource abstrac-
tion, ResGroups is implemented as a container subsys-
tem library by stripping out the group management as-
pects of the code and adding container subsystem call-
backs. A resource controller can use the ResGroups
abstraction simply by declaring a container subsystem,
with the subsystem’s private field pointing to a Res-
Groups res_controller structure with the relevant
resource-related callbacks.

The ResGroups library registers control files for that
subsystem, and translates the free-form read/write in-
terface into a structured and typed set of callbacks. This
has two advantages:

• it reduces the amount of parsing code required in a
subsystem

• it allows multiple subsystems with similar (re-
source or other) abstractions to easily present the
same interface to userspace, simplifying userspace
code.

One of the ResGroups resource controllers
(numtasks, for tracking and limiting the number
of tasks created in a container) is included in the patch.

5.4 BeanCounters

BeanCounters [1] is a single-level resource accounting
framework that aims to account and control consump-
tion of kernel resources used by groups of processes. Its
resource model allows the user to specify soft and hard
limits on resource usage, and tracks high and low water-
marks of resource usage, along with resource allocations
that failed due to limits being hit.

The port to use the generic containers framework con-
verts between the raw read/write interface and the struc-
tured get/store in a similar way to the ResGroups port,
although presenting a different abstraction.

Additionally, BeanCounters allows the accounting con-
text (known as a beancounter) to be overridden in par-
ticular situations, such as when in an interrupt handler or

when performing work in the kernel on behalf of another
process. This aspect of BeanCounters is maintained un-
changed in the containers port—if a process has an over-
ride context set then that is used for accounting, else the
context reached via the css_group pointer is used.

5.5 NSProxy / Container integration

A final patch in the series integrates the NSProxy system
with the container system by making it possible to track
processes that are sharing a given namespace, and (po-
tentially in the future) create custom namespace sets for
processes. This patch is a (somewhat speculative) ex-
ample of a subsystem that provides an isolation system
rather than a resource control system.

The namespace creation paths (via fork() or
unshare()) are hooked to call container_
clone(). This is a function provided by the container
framework that creates a new sub-container of a task’s
container (in the hierarchy to which a specified subsys-
tem is bound) and moves the task into the new con-
tainer. The ns container subsystem also makes use of
the can_attach container callback to prevent arbi-
trary manipulation of the process/container mappings.

When a task changes its namespaces via either of these
two methods, it ends up in a fresh container; all of its
children (that share the same set of namespaces) are in
the same container. Thus the generic container frame-
work provides a simple way to export to userspace the
sets of namespaces in use, their hierarchical relation-
ships, and the processes using each namespace set.

6 Conclusion and Future Work

In this paper we have examined some of the existing
work on process partitioning/tracking in Linux and other
operating systems, and enumerated the requirements for
a generic framework for such tracking; a proposed de-
sign was presented, along with examples of its use.

As of early May 2007, several other groups have
proposed resource controllers based on the containers
framework; it is hoped that the containers patches can
be trialled in Andrew Morton’s -mm tree, with the aim
of reaching the mainline kernel tree in time for 2.6.23.

2007 Linux Symposium, Volume Two • 57

7 Acknowledgements

Thanks go to Paul Jackson, Eric Biederman, Srivatsa
Vaddagiri, Balbir Singh, Serge Hallyn, Sam Villain,
Pavel Emelianov, Ethan Solomita, and Andrew Mor-
ton for their feedback and suggestions that have helped
guide the development of these patches and this paper.

References

[1] Kir Kolyshkin, Resource management: the
Beancounters, Proceedings of the Linux
Symposium, June 2007

[2] Class-based Kernel Resource Management,
http://ckrm.sourceforge.net

[3] J. Blanquer, J. Bruno, E. Gabber, M. Mcshea, B.
Ozden, and A. Silberschatz, Resource
management for QoS in Eclipse/BSD. In
Proceedings of FreeBSD’99 Conf., Berkeley, CA,
USA, Oct. 1999

[4] Gaurav Banga, Peter Druschel, and Jeffrey C.
Mogul. Resource containers: A new facility for
resource management in server systems. In
Proceedings of the Third Symposium on
Operating Systems Design and Implementation
(OSDI ’99), pages 45–58, 1999

[5] SGI. Linux Process Aggregates (PAGG),
http://oss.sgi.com/projects/pagg/

[6] Ensim Virtual Private Server,
http://www.ensim.com

[7] SWSoft Virtuozzo, http:
//www.swsoft.com/en/virtuozzo/

[8] Linux VServer,
http://www.linux-vserver.org/

[9] OpenVZ, http://www.openvz.org/

[10] Eric W. Biederman, Multiple Instances of the
Global Linux Namespaces, Proceedings of the
Linux Symposium, July 2006.

[11] Linux Generic Process Containers, http://
code.google.com/p/linuxcontainers

58 • Adding Generic Process Containers to the Linux Kernel

KvmFS: Virtual Machine Partitioning For Clusters and Grids

Andrey Mirtchovski
Los Alamos National Laboratory

andrey@lanl.gov

Latchesar Ionkov
Los Alamos National Laboratory

lionkov@lanl.gov

Abstract

This paper describes KvmFS, a synthetic file system
that can be used to control one or more KVM virtual
machines running on a computer. KvmFS is designed
to provide its functionality via an interface that can
be exported to other machines for remote configuration
and control. The goal of KvmFS is to allow a multi-
CPU, multi-core computer to be partitioned externally
in a fashion similar to today’s computational nodes on
a cluster. KvmFS is implemented as a file server using
the 9P protocol and its main daemon can be mounted lo-
cally via the v9fs kernel module. Communication with
the KvmFS occurs through standard TCP sockets. Vir-
tual machines are controlled via commands written to
KvmFS’ files. Status information about KVM virtual
machines is obtained by reading KvmFS. KvmFS al-
lows us to build clusters in which more than one ap-
plication can share the same SMP/Multi-core node with
minimalistic full system images tailored specifically for
the application.

1 Introduction

The tendency in high-performance computing is to-
wards building processors with many computational
units, or cores, with the goal of parallelizing compu-
tation so that many units are performing work at the
same time. Dual and quad-core processors are already
on the market, and manufacturers are hinting at 8, 32,
or even 80 cores for a single CPU, with a single com-
putational node composed of two, four, or more CPUs.
This will result in applications running and contending
for resources on large symmetric multiprocessor sys-
tems (SMPs) composed of hundreds of computational
units.

There is a problem with this configuration, however:
since clusters are currently the dominant form of node
organization in the HPC world (as seen in the latest

breakdown by machine type on the Top 500 list of su-
percomputers), most applications are designed to either
run on a single 2- or 4-core machine, or so that separate
parts of the program will run on separate 2- or 4-core
nodes, and will communicate via some message-passing
framework such as MPI. This has resulted in most of
the applications running here, at Los Alamos National
Laboratory, scaling to at most 8 CPUs on a single node.
Furthermore, many applications assume that they are the
only ones running on a single node and will not have
to contend for resources. To satisfy the requirements
of such applications, large SMP computers will have to
be partitioned so that applications are ensured dedicated
resources without contention. Fail-over and resilience,
two very hot topics in High Performance Computing,
also require the means to transfer an application from
one machine to another in the case of hardware or soft-
ware component failures on the original computer.

One solution for partitioning hardware and providing
resilience has gained widespread adoption and is con-
sidered feasible for the HPC world: virtualization us-
ing hypervisors. Borrowing from the mainframe, it al-
lows separate instances of an operating system (or in-
deed separate operating systems) to be run on the same
hardware or parts thereof. The two major CPU manu-
facturers have added support for virtualization to their
newest offerings, which provides even greater perfor-
mance gains than previously thought.

KVM has recently emerged as a fast and reliable (with
the hardware support on modern processors) subsystem
for virtualizing the hardware on a computer. Our goal
with KvmFS is to enable KVM to be remotely con-
trolled by either system operators or schedulers and to
allow it to be used for partitioning on clusters composed
of large SMP machines, such as the ones already being
proposed here at LANL.

Virtualization benefits the system administrator, as
well as programmers and scientists running high-
performance code on large clusters. One benefit is the

• 59 •

60 • KvmFS: Virtual Machine Partitioning For Clusters and Grids

full control over the operating system installation that
an application requires. For example, it is not neces-
sary to have all support libraries and software installed
on all machines of a cluster, instead, the application is
run in an OS instance that already contains all that is re-
quired. This greatly simplifies installations in the case
where conflicting libraries and support software may be
required by different applications. Another possibility is
to run a completely different operating system under vir-
tualization, something impossible in current monolithic
cluster environments.

With the fast and reliable means of running applications
on their own slice of a SMP, it is convenient to be able
to extend the control of partitioning and virtualization
across the cluster to a control or a head node. This is the
niche that KvmFS fills: it provides the fast and secure
means to control VMs across a cluster, or indeed a grid
environment.

1.1 KVM

KVM [14] is a hypervisor support module in the Linux
kernel which utilizes hardware-assisted x86 virtualiza-
tion on modern Intel processors with Intel Virtualiza-
tion technology or AMD’s Secure Virtual Machine. By
adding virtualization capabilities to a standard Linux
kernel, KVM provides the benefits of the optimizations
that exist in a standard kernel to virtualized programs,
greatly increasing performance over “full hypervisors”
such as Xen [1] or VMWare [9]. Under the KVM model,
every virtual machine is a regular Linux process sched-
uled by the standard Linux scheduler. Its memory is
allocated by the Linux memory allocator.

KVM works in conjunction with QEMU to deliver the
processor’s virtualization capabilities to the end user.

1.2 QEMU

QEMU [2] is a machine emulator which can run an
unmodified target operating system (such as Windows
or Linux) and all its applications in a virtual machine.
QEMU runs on several host operating systems such as
Linux, Windows, and Mac OSX.

The primary usage of QEMU is to run one operating
system on another, such as Windows on Linux or Linux
on Windows. Another usage is debugging, because the
virtual machine can be easily stopped, and its state can

be inspected, saved, and restored. Moreover, specific
embedded devices can be simulated by adding new ma-
chine descriptions and new emulated devices.

Although the host and target operating systems can be
different, our software will focus on Linux as the host
system since Linux is the primary OS on all of our re-
cent clusters at LANL and is widely adopted for HPC
environments. Also, KVM currently exists only for the
Linux kernel.

2 Design

KvmFS was created allow its users to run and control
virtual machines in a heterogeneous networked environ-
ment. As such, KvmFS was designed to fulfill the fol-
lowing tasks:

functionality provide an interface that allows manage-
ment of VMs on a cluster

scalability provide the ability for fast creation of multi-
ple identical VMs on different nodes connected via
a network

checkpoint and restart provide the ability to suspend
virtual machines and resume their execution, po-
tentially on a different node

The design of KvmFS follows the well established
model of providing functionality in the form of synthetic
file systems which clients operate on using standard I/O
commands such as read and write. This method has
proven successful in various operating systems descen-
dant from UNIX. The /proc [7] file system is a very
well established example. The “Plan 9” operating sys-
tem further extends this concept. It presents the net-
work communication subsystem as mountable files [13]
or even the graphics subsystem and the window man-
ager written on top of it, as a file system.

Implementations such as the above suggest that the con-
cept is feasible and that implementing interfaces to re-
sources in the form of a file system and exporting them
to other machines is a very good way to quickly al-
low access to them from remote machines, especially
since files are the single most exported resource in a net-
worked environment such as a cluster.

KvmFS is structured as a two-tiered file server to which
clients connect either from the local machine or across

2007 Linux Symposium, Volume Two • 61

the network. The file server allows them to copy image
files and boot virtual machines using those image files.
The file server also allows controlling running virtual
machines (start, stop, freeze), as well as migrating them
from one computer to another.

The top-level directory KvmFS serves contains two files
providing information about the architecture of the ma-
chine as well as starting a new session for a new VM.
Each session already started is presented as a num-
bered subdirectory. The subdirectory itself presents files
which can be used to control the execution of the VM,
as well as a subdirectory which allows arbitrary image
files to be copied to it and used by the VM. The KvmFS
filesystem is presented in detail in section 3.

3 The KVM File System

KvmFS presents a synthetic file system to its clients.
The file system can be used for starting and controlling
all aspects of the runtime of the virtual machines run-
ning on the machine on which kvmfs is running.

clone
arch
vm#/

ctl
info
id
fs/

3.1 Top-level files

Arch is a read-only file; reading from it returns the ar-
chitecture of the compute node in a format operating-
system/processor-type.

Clone is a read-only file. When it is opened, KvmFS
creates a new session and the corresponding session di-
rectory in the filesystem.

Reading from the file returns the name of the session
directory.

Vm# is a directory corresponding to a session created
by a KvmFS client. Even though a session may not be
running, Vm# will exist as long as that client keeps the
clone file open. If the virtual machine corresponging
to a session is running the clone file may be closed
without causing the Vm# file to disappear.

3.2 Session-level files

These files are contained in the session directory which
is created when a client opens the clone file of a
KvmFS server.

Ctl is used to execute and control a session’s main pro-
cess. Reading from the file returns the main process pid
if the process is running, and –1 otherwise. The opera-
tions on the session are performed by writing to it.

Reading from info returns the current memory and de-
vice configuration of the virtual machine. The format of
the information is identical to the commands written to
ctl file.

Id is used to set and get the user-specified VM identi-
fier.

The fs directory points to the temporary storage created
for the virtual machine. The user can copy disk images
and saved VM state files that can be used in the VM
configuration.

4 KvmFS Commands

The following section describes the set of commands
available for controlling KvmFS instances:

dev name image Specifies the device image for a spe-
cific device. Name is one of hda, hdb, hdc, hdd. If
image is not an absolute path, it should point to a
file that is copied in the fs directory. An optional
boot parameter can be provided to specify that the
device should be used to boot from.

net id mac Creates a network device with ID id and
MAC mac.

loadvm file Loads a saved VM state from file file. If
file is not an absolute path, it should point to a file
in the fs directory.

storevm file Stores the state of the VM to file file. If
file is not an absolute path, the file is created in the
fs directory.

power on|off Turns VM power on or off.

freeze Suspends the execution of the VM.

unfreeze Resumes the execution of the VM.

62 • KvmFS: Virtual Machine Partitioning For Clusters and Grids

clone max-vms address-list Creates copies of the VM
on the nodes specified by address-list. Copies the
content of the fs directory to the remote VMs and
configures the same device configuration. If the
virtual machine is already running, stores the cur-
rent VM state (as in storevm) and loads it in the
remote VMs. If max-vms is greater than zero,
and the number of the specified sessions is bigger
than max-vms, clone pushes its content to up
to max-sessions and issues clone commands to
some of them to clone themselves to the remaining
VMs from the list.

The format of the address-list is:

address-list = \
1*(vm-address ‘,’’)

vm-address = node-name \
[‘!’’port]

‘/’’ vm-id
node-name = ANY
port = NUMBER
vm-id = ANY

5 Implementation

There are two ways of implementing accesses to pro-
grams or system resources as files in Linux, either us-
ing Fuse [3] or the 9P [8] protocol. We chose the 9P
protocol because it is better suited for communicating
with file systems over networks. 9P has also been in use
for the past twenty years and is sufficiently hardened to
be able to handle various workloads on environments
ranging from a single machine to thousands of cluster
nodes [5]. Furthermore, our team is well familiarized
with 9P through the implementation of V9FS, the kernel
module allowing 9P servers to be mounted on a Linux
filesystem [10] [4]. It is important to point out, how-
ever, that there is no significant barrier to implementing
KvmFS using FUSE.

5.1 9P

Representing operating system resources as files is a rel-
atively old concept exploited to some extent in the orig-
inal UNIX operating system, but it matured extensively
with the development and release of the “Plan 9 from
Bell-Labs” operating system [12].

“Plan 9 from Bell-Labs” uses a simple, yet very pow-
erful communication protocol to facilitate communica-
tion between different parts of the system. The protocol,

named “9P” [8], allows heterogeneous resource sharing
by allowing servers to build a hierarchy of files corre-
sponding to real or virtual system resources, which then
clients access via common (POSIX-like) file operations
by sending and receiving 9P messages. The different
types of 9P messages are described in Table 1.

There are several benefits of using the 9P protocol:

Simplicity The protocol has only a handful of messages
which encompass all major file operations, yet it
can be implemented (including the co-routine code
explained above) in around 2,000 lines of C code.

Robustness 9P has been in use in the Plan 9 operating
system for over 15 years.

Architecture independence 9P has been ported to and
used on all major computer architectures.

Scalability Our Xcpu [11] suite uses 9P to control and
execute programs on thousands of nodes at the
same time.

A 9P session between a server and its clients consists
of requests by the clients to navigate the server’s file
and directory hierarchy and responses from the server to
those requests. The client initiates a request by issuing
a T-message, the server responds with an R-messages.
A 9P transaction is the combined act of transmitting a
request of particular type by the client and receiving a
reply from the server. There may be more than one re-
quest outstanding; however, each request requires a re-
sponse to complete a transaction. There is no limit on
the number of transactions in progress for a single ses-
sion.

Each 9P message contains a sequence of bytes repre-
senting the size of the message, the type, the tag (trans-
action id), control fields depending on the message type,
and a UTF-8 encoded payload. Most T-messages con-
tain a 32-bit unsigned integer called Fid, used by the
client to identify the “current file” on the server, i.e.,
the last file accessed by the client. Each file in the file
system served by our library has an associated element
called Qid used to uniquely identify it in the file system.

5.2 KvmFS

KvmFS is implemented in C using the SPFS and Sp-
client [6] libraries for writing 9P2000-compliant user-
space file servers and accessing them over a network.

2007 Linux Symposium, Volume Two • 63

9P type Description
version identifies the version of the pro-

tocol and indicates the maximum
message size the system is pre-
pared to handle

auth exchanges auth messages to estab-
lish an authentication fid used by
the attach message

error indicates that a request (T-
message) failed and specifies the
reason for the failure

flush aborts all outstanding requests
attach initiates a connection to the server
walk causes the server to change the cur-

rent file associated with a fid
open opens a file
create creates a new file
read reads from a file
write writes to a file
clunk frees a fid that is no longer needed
remove deletes a file
stat retrieves information about a file
wstat modifies information about the file

Table 1: Message types in the 9P protocol

It is a single-threaded code which uses standard net-
working via the socket() routines. Although our
implementation is in C, both 9P2000 and KvmFS are
language-agnostic and can be reimplemented in any
other programming language that has access to network-
ing.

OS Image files used by virtual machines can grow to be
quite large (sometimes up to the size of a complete sys-
tem installation: several gigabytes) and can take a long
time to be transferred to a remote node. To start a sin-
gle VM on all the nodes of a cluster can potentially take
upwards of an hour for large clusters, with literally a
hundred percent of the time being spent transferring the
disk images of the VM either from a head node or from
a networked file system such as NFS. To alleviate this
problem we can employ tree-based spawning of virtual
machines via cloning. During tree-spawning, if an end
node has received the complete image (or in some cases
a partial image), that node can retransmit the image to
another node, potentially located only a hop away on the
network. To allow tree-spawns each KvmFS server can
also serve as a client to another server by implement-

ing routines which connect over 9P, create new sessions,
set-up and start a new VM with the image from the lo-
cal session. This reduces logarithmically the amount of
fetches that need to occur from the head node and signif-
icantly increases the scale at which KvmFS can be de-
ployed. We have tested tree-spawn algorithms for small
images on several thousand nodes on LANL’s clusters.

The total number of lines for KvmFS, not including the
SPFS libraries, is less than two thousand lines of code.
SPFS itself is 5,158 lines of code, and Spclient is an-
other 2,381 lines of code.

6 Sample Sessions

Several examples of using KvmFS follow. The exam-
ples show systems mounted remotely using the v9fs [4]
kernel module and consequently being accessed via
common shell commands. In the examples below, the
names n1, n2, etc., are names of nodes on our cluster.

6.1 Create a virtual machine

This example creates a virtual machine using two files
copied from the home directory. Disk.img is set to
correspond to hard drive hda and vmstate is used as
a previously saved virtual machine.

mount -t 9p n1 /mnt/9
cd /mnt/9
tail -f clone &
cd 0
cp ~/disk.img fs/disk.img
cp ~/vmstate fs/vmstate
echo dev hda disk.img > ctl
echo net 0 00:11:22:33:44:55 > ctl
echo power on freeze > ctl
echo loadvm vmstate > ctl
echo unfreeze > ctl

6.2 Migrate a virtual machine to another node

This example shows the migration of a virtual machine
from one node to another.

mount -t 9p n1 /mnt/9/1
mount -t 9p n2 /mnt/9/2
tail -f /mnt/9/2/clone &
cd /mnt/9/1/0
echo freeze > ctl
echo ‘clone 0 n2!7777/0’ > ctl
echo power off > ctl

64 • KvmFS: Virtual Machine Partitioning For Clusters and Grids

6.3 Create clones of a virtual machine

This example shows the cloning of a virtual machine
onto a new computer.

mount -t 9p n1 /mnt/9
cd /mnt/9/0
echo ‘clone 2 n2!7777/0,\

n3!7777/0,\
n4!7777/0‘ > ctl

7 Conclusions And Future Work

We have described the KvmFS file system which
presents an interface to virtual machines running on
Linux in the form of files accessible locally or remotely.
KvmFS allows us to extend the control of the partition-
ing and running of virtual machines on a computer be-
yond the system on which the virtual machines are run-
ning and onto a networked environment such as a cluster
or a computational grid. KvmFS benefits large cluster
environments such as the ones in use here, at the Los
Alamos National Laboratory, by enabling fine-grained
control over the software running on them from a cen-
tralized location. Status information regarding the pa-
rameters on currently running VMs can also easily be
obtained from computers other than the ones they are
executing on. Our system also allows checkpointing and
migration of VMs to be controlled from a centralized
source, thus enabling partitioning schedulers to be built
on top of KvmFS.

Future work we have planned for KvmFS is in the area
of fine-grained control of the execution parameters of
virtual machines running under KvmFS such as their
CPU affinity. Also, we plan to integrate KvmFS with
existing schedulers at LANL to provide a seamless way
of partitioning our clusters.

Another interesting issue we are exploring is exporting
the resources of running virtual machines, such as their
/proc filesystem, through the KvmFS interface so that
processes running under the VM can be controlled ex-
ternally or even over a network.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, and R. Neugebauer. Xen and the
art of virtualization. 2004.

[2] F. Bellard. Qemu, a fast and portable dynamic
translator. USENIX 2005 Annual Technical
Conference, FREENIX Track, 2005.

[3] FUSE. Filesystems in userspace.
http://fuse.sourceforge.net/.

[4] Eric Van Hensbergen and Latchesar Ionkov. The
v9fs project.
http://v9fs.sourceforge.net.

[5] Eric Van Hensbergen and Ron Minnich. Grave
robbers from outer space: Using 9p2000 under
linux. In Freenix Annual Conference, pages
83–94, 2005.

[6] L. Ionkov. Library for writing 9p2000 compliant
user-space file servers. http:
//sourceforge.net/projects/npfs/.

[7] T.J. Killian. Processes as files. USENIX Summer
1984 Conf. Proc., 1984.

[8] AT&T Bell Laboratories. Introduction to the 9p
protocol. Plan 9 Programmer’s Manual, 3, 2000.

[9] R. Meushaw and D. Simard. Nettop: Commercial
technology in high-assurance applications.
http://www.vmware.com, 2000.

[10] R. Minnich. V9fs: A private name space system
for unix and its uses for distributed and cluster
computing.

[11] R. Minnich and A. Mirtchovski. Xcpu: a new,
9p-based, process management system for
clusters and grids. In Cluster 2006, 2006.

[12] R. Pike, D. Presotto, S. Dorward, B. Flandrena,
K. Thompson, H. Trickey, and P. Winterbottom.
Plan 9 from Bell Labs. Computing Systems,
8(3):221–254, Summer 1995.

[13] D. Presotto and P. Winterbottom. The
organization of networks in plan 9. USENIX
Winter 1993 Conf. Proc., pages 43–50, 1993.

[14] Qumranet. Kvm: Kernel-based virtualization
driver. http://kvm.qumranet.com/
kvmwiki/Documents.

Linux-based Ultra Mobile PCs

Rajeev Muralidhar, Hari Seshadri, Krishna Paul, Srividya Karumuri
Mobility Group, Intel Corporation

Rajeev.D.Muralidhar@intel.com, Harinarayanan.Seshadri@intel.com
Krishna.Paul@intel.com, Srividya.Karumuri@intel.com

Abstract

Ultra Mobile PCs present a new class of challenges for
system designers since they are perceived to be versatile,
low power devices and yet with the full functionality
of larger handhelds/laptops. User experience of being
ubiquitously connected and access to data anytime and
anywhere is a fundamental requirement for this class of
devices. However, access to data across wireless inter-
faces has a direct impact on battery life of such handheld
devices. This paper presents detailed analysis of some
of Linux file systems and data access across wireless.
Based on our observations and analysis, we make some
key design recommendations for file systems for Linux-
based Ultra-Mobile PCs.

1 Introduction

The new generation of Ultra-Mobile PCs offer con-
sumers significantly better capabilities than ever before
to access the Internet, be productive and enjoy their fa-
vorite digital content while on the go. Consumers now
want and expect access to their personal data and the In-
ternet no matter where they are around the world, and
take their laptops/ultra-portable PCs with them. Shar-
ing data and content is an expected feature of any new
technology—users want to be connected with the impor-
tant people in their lives anytime, everywhere they go
and want technology to make their lives easier. Some of
the important technology features of such Ultra-Mobile
PCs (UMPCs) are:

• Full PC and Internet capabilities: Full PC ca-
pability capable of running mainstream OSes like
Linux and Windows, allowing consumers to run fa-
miliar applications.

• Location Adaptibility: Personalized information
and services based on location, environment recog-
nition, and adaptability and interaction with other

devices at home, office, or in an automobile while
driving.

• Anytime connectivity: Connectivity in several
ways such as WLAN, WWAN, WPAN, WiMAX,
etc. enabling “always reachability” via email, IM,
or VoIP.

• Ultra mobility: Small, thin, light form factor with
high battery life.

In addition to the more generic UMPCs which can es-
sentially compute and communicate with rich produc-
tivity features and anytime, anywhere data access, there
are other categories of ultra-mobile devices that are tar-
getted to specific usages such as ruggedness (for appli-
cation in environmental sciences, health/medicine, etc.),
affordability (such as education devices), etc.

Regardless of the targeted usage or form factor of such
devices, one of the fundamental visions driving perva-
sive computing research is access to personal and shared
data anywhere and anytime. In many ways, this vision
is close to being realized with multipe wireless connec-
tivity options such as WLAN, WWAN, WPAN, and the
upcoming WiMAX connectivity options to such small,
mobile devices. Additionally, with several devices be-
coming the norm at home, sharing data between these
devices in an efficient manner is an important aspect
of usage, and it is important that the underlying plat-
form and system support for such usages is done in
an energy efficient manner. For example, it is quite
likely that a home is equipped with multiple devices
such as a desktop, media box (possibly with network
connectivity options), home entertainment system with
connectivity to a desktop/media storage, laptop, high-
end cell phones, and also ultra-mobile PCs, all con-
nected to the Internet through an external broadband
connection and internally via high throughput wireless,
like the IEEE 802.11n. This is becoming quite com-
mon in some of the economies of the world today. In

• 65 •

66 • Linux-based Ultra Mobile PCs

such a scenario, a UMPC can be used to play locally
stored media on the home entertainment device. Alter-
natively, it could be used to play remote digital media
from set top box/desktop locally on the UMPC via wire-
less/streaming.

In such scenarios, we believe that substantial barriers
remain to pervasive, energy efficient data access across
wireless. Some of the key challenges are:

• Low power platform design: Although devices
such as cell phones have matured to provide long
talk time and standy battery lives, they lack the full
featuredness expected in order to run producitiv-
ity applications, mainstream OSes, etc. We believe
that the platform design of UMPCs pose significant
challenges in order to meet the battery life and full
PC capability expectations.

• Low power communication / connectivity op-
tions: Most connectivity options such as WLAN,
WPAN, WWAN are power hungry. Usage scenar-
ios such as media streaming over wireless connec-
tions will pose significant limitations on battery life
since power-hungry network and storage devices
tax the limited battery capacity of UMPCs.

• Disconnected operation and access to data via
local/network caches: Disconnected operation is
a way of life in wireless networks. Some research
file systems have explored the use of local and net-
work caches for faster access to data.

• Energy efficient data sharing and file systems:
Power efficient file systems are critical since mo-
bile data access performance can suffer due to vari-
able storage access times caused by dynamic power
management, mobility, and use of heterogeneous
storage devices/connectivity options.

This paper focuses on the last aspect above, namely, en-
ergy efficiency in file systems, and makes the following
contributions.

1. We analyze the platform power consumption of a
Linux-based Ultra-mobile PC during different sce-
narios and quantify the impact of different platform
components towards total platform power.

2. We then analyze the popular Network File System
(NFS) for some of the common UMPC usage sce-
narios and identify the power bottlenecks.

3. Subsequently, we analyze one of the recent energy
efficient file systems, BlueFS, and understand its
impact on platform power.

4. Finally, based on our experiments and analysis, we
make recommendations that we believe are critical
to designing low power Linux-based ultra-mobile
PCs.

This paper is organized as follows: Section 1 is this in-
troduction. Section 2 reviews some of the related work.
Section 3 describes the experimental analysis we per-
formed with NFS and BlueFS. Subsequently, in Sec-
tion 4, we make key observations and design recommen-
dations. We finally conclude the paper with a summary
and areas of future work.

2 Related Work

Energy efficiency in file systems is typically not a pri-
mary design consideration; this is true for distributed
file systems as well. However, several recent projects
target energy reduction in local file systems. In [5],
the authors provided interfaces to applications to create
energy-efficient device access patterns. Moving down
the operating system stack, one of the primay compo-
nents of a file system is its cache—file systems differ
substantially in their choice and use of cache hierarchy.
For example, NFS [2] uses only the kernel page cache
and the file server. The Andrew File System (AFS) [4]
adds a single local disk cache; however, it always tries
to read data from the disk before going to the server.
Coda [1], which is also designed for mobile computing,
much like AFS, uses a single disk cache on the client;
this cache is always accessed in preference to the server.

BlueFS [3] is different from other file systems in that it
uses an adaptive cache hierarchy to reduce energy usage
and efficiently integrate portable storage. BlueFS fur-
ther reduces client energy usage by dynamically mon-
itoring device power states and fetching data from the
device that will use the least energy. BlueFS borrows
several techniques from Coda including support for dis-
connected operation and asynchronous reintegration of
modifications to the file server. BlueFS also can proac-
tively trigger power mode transitions of storage devices
that can lead to improved performance and energy sav-
ings. As reported in [3], mechanisms like this can
greatly improve energy efficiency on the platform as a
whole.

2007 Linux Symposium, Volume Two • 67

There has been a lot of analysis of power and perfor-
mance of handhelds, but we believe this is the first anal-
ysis of platform power and power efficiency of full-
featured ultra-mobile PCs.

3 Experimental Analysis

The experimental setup used consisted of a Linux-based
Ultra-mobile PC that was instrumented to enable power
measurements using a FLUKE Data acquisition sys-
tem, 2680A/2686A Data Acquisition System. The fol-
lowing components were measured for power in dif-
ferent scenarios—processor, memory, chipset (GMCH),
IO Hub (ICH), Hard drive (PATA), Buses (PCI-E, USB),
and peripherals (Audio, WLAN card).

Data Acquisition system

Host Computer
Linux based

Ultra mobile

PC

Figure 1: Experimental Setup

The experimental setup is shown in Figure 1 and the
system configuration used for the UMPC is shown in
Table 1.

The following experiments were performed:

• Idle state

• Audio playback over NFS

• Audio playback over BlueFS

• Rich Media (high-definition movie) playback over
NFS

• Rich Media (high-definition movie) playback using
BlueFS using local hard drive as cache

• Rich Media (high-definition movie) playback using
BlueFS using USB drive as cache

4 Observations and File System Design Rec-
ommendations

Based on our analysis of NFS and BlueFS, here are a
few observations:

0

1

2

3

4

5

6

7

8

9

10

P
o
w

e
r

(i
n
 w

a
tt

)

Idle Audio

Playback

(over NFS)

Video PB

(over NFS)

1080p_H264

video clip

Audio

Playback

(over

BlueFS)

Video PB

(over

BlueFS)

1080p_H264

video clip

Media playback over NFS Vs BlueFS

CPU Memory PATA ICH_TOTAL

USB GMCH Azalia_audio WLAN

Figure 2: Performance of Media playback over NFS and
BlueFS over the wireless link

1. Idle power on the platform was surprising higher,
around 4.5W (Figure 2), as compared to other
OSes which were around 3.2W; a closer look at
the data reveals that the idle power for the WLAN
component is as same as that of power it consumed
when its exercising the work load, leading us to be-
lieve that we had an inefficient driver.

2. Another interesting aspect of the data was that the
CPU power drawn when the system was idle was
about 0.5W and a closer look at the processor’s
C3 residency state revealed that the CPU has C3
residency of only about 75%. Ideally this should
be around 90–95% to get maximum platform idle
power. We believe this is a critical piece to resolve
to get better power for Linux based platform.

3. In addition to the impact of CPU residency, it is
very important that all the devices in the platform
support a low power idle state. As seen in our ob-
servations above, an inefficient device driver can
spoil overall platform idle power and we need to
make sure we have well optimized devices and
drivers for a low ideal power. In the observa-
tion above, if we consider the ideal idle and trans-
mit power for WLAN device, the idle power of
the platform improves. This is shown in Figure 3
which considers the projected ideal WLAN power
and shows the performance of Media playback over
NFS and BlueFS.

4. NFS power bottlenecks: The WLAN power con-
sumption is among the top 3 in the list, next only
to CPU and GMCH. This is as expected, all the

68 • Linux-based Ultra Mobile PCs

Component Configuration

CPU Intel R© Core Duo 800 MHz
Memory 512 MB DDR2

ICH ICH7
GMCH Intel R© 945GM Express Chipset Family
Audio Intel R© High Definition Audio
WLAN Intel R© 3945 ABG Network Connection

Table 1: Configuration of Linux-based Ultra-Mobile PC used for experimental analysis

NFS transactions are network centric. Assuming
the network stack and the device are well optimized
for the power, better platform power saving can be
attained through file system specifically designed
for low power.

0

1

2

3

4

5

6

7

8

9

10

P
o

w
e

r
(i

n
 w

a
tt

)

Idle Audio PB
(over NFS)

Video PB
(over NFS)

1080p_H264
video clip

Audio PB
(over

BlueFS)

Video PB
(over

BlueFS)
1080p_H264

video clip

Media playback over NFS Vs BlueFS (projected WLAN power)

CPU Memory PATA

ICH_TOTAL USB GMCH

Azalia_audio Projected WLAN

Figure 3: Performance of Media playback over NFS and
BlueFS (with projected WLAN power)

4.1 BlueFS impact on Platform Power

1. BlueFS did show more effiency in terms of plat-
form power for the given workload, as compared
to NFS. The latency did come down drastically
for BlueFS and this clearly brought down the net
power consumed by the platform for a given work-
load to complete.

2. Caching mechanisms also helped in improving the
user experience, and overall usage scenario. How-
ever, the choice of the caching device does have an
impact on the system power. For example, from
Figure 4 BlueFS running over a local disk as cache

consumed less power compared to USB drive as
cache, suggesting that if we have an optimized lo-
cal solid state drive like Robson flash drive [6] as
cache for BlueFS will have significant impact on
the platform power.

3. We did not see any significant impact on the write
performance as compared to NFS though one pos-
sible optimization could be to re-evaluate the write
to many strategy in terms of power efficiency.

0

1

2

3

4

5

6

7

8

9

10

P
o

w
e

r
(i

n
 w

a
tt
)

Audio PB
(local disk

cache)

Video PB
(local disk

cache)
1080p_H264

video clip

Audio PB
(USB cache)

Video PB
(USB cache)
1080p_H264

video clip

Media playback over BlueFS: Local disk cache Vs USB cache

CPU Memory PATA ICH_TOTAL

USB GMCH Azalia_audio WLAN

Figure 4: Performance of Media playback over BlueFS
using local disk cache and USB cache

4. We also observed that while the Wolverine user
daemon dynamically selects the device to read or
write on run time, it does not do anything to the de-
vices that are not being used. One possible power
saving option would be to modify Wolverine to
power down the devices that are not being selected
for read or write operation.

2007 Linux Symposium, Volume Two • 69

5. Caching being a critical piece of BlueFS efficiency,
proper focus needs to be made on the cache hierar-
chy selection. Other power efficient caching tech-
nologies like co-operative caching needs to be ex-
plored for more optimized power saving.

5 Summary and Future Work

Ultra-Mobile PCs present a new class of challenges for
system designers since they are perceived to be high per-
formance, low power devices and yet with the full func-
tionality of larger handhelds/laptops. User experience
of being ubiquitously connected and access to data any-
time and anywhere is a fundamental requirement for this
class of devices. However, access to data across wire-
less interfaces has a direct impact on battery life of such
handheld devices.

This paper presented detailed analysis of the Network
File System (NFS) and Blue File System (BlueFS) for
specific usage scenarios targetting network data access
across wireless interfaces and makes. Based on the
power and performance analysis of these file systems,
we made some key design recommendations to design-
ers of file systems for Linux-based Ultra-Mobile PCs.

We plan to extend this work further in the following ar-
eas:

1. Evaluate BlueFS for multiple storage devices—
USB, newer storage mechanisms like Robson
Flash memory recently introduced on Intel’s
newest platforms. We believe that although BlueFS
has an excellent mechanism for caching data, the
choice of the device will be important in total plat-
form power consumption.

2. Evaluate other wireless interfaces and usage mod-
els, specifically mobile digital TV, IP TV, since
such scenarios would be critical for ultra-mobile
PCs.

6 Acknowledgements

We would like to thank Bernie Keany for his valuable
discussions and inputs, Adarsh Jain, Arvind Singh and
Vanitha Raju for all their help with power measurements
and analysis on the Ultra-mobile PC platforms. We
would also like to thank Ananth Narayan for the tools
he provided for our analysis.

References

[1] J.J. Kistler and M. Satyanarayanan, Disconnected
operation in the Coda File system, ACM
Transactions on Computer Systems, 10(1),
February, 1992.

[2] Network Working Group, NFS: Network File
System, Protocol specification, March 1989. RFC
1094.

[3] Edmund B. Nightingale and Jason Flinn,
Energy-Efficiency and Storage Flexibility in the
Blue File System, Proceedings of the 6th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), San Francisco, CA,
December, 2004.

[4] J.H. Howard, M.L. Kazar, S.G. Menees, D.A.
Nichols, M. Satyanarayanan, R.N. Sidebotham,
and M.J. West, Scale and performance in a
distributed file system, ACM Transactions on
Computer Systems, 6(1), February, 1988.

[5] T. Heath, E. Pinheiro, and R. Bianchini,
Application-supported device management for
energy and performance, In Proceedings of the
2002 Workshop on Power-Aware Computer
Systems, pages 114–123, February, 2002.

[6] Michael Trainor, Overcoming Disk Drive Access
Bottlenecks with Intel Robson Technology,
Technology at Intel Magazine, Volume 4, Issue 9,
December, 2006.

70 • Linux-based Ultra Mobile PCs

Where is your application stuck?

Shailabh Nagar
IBM India Research Lab
nagar1234@in.ibm.com

Balbir Singh Vivek Kashyap Chandra Seetharaman

Narasimha Sharoff Pradipta Banerjee

IBM Linux Technology Center

{balbir@linux.vnet,vivk@us,sekharan@linux.vnet}.ibm.com,
nsharoff@beaverton.ibm.com, bpradipt@in.ibm.com

Abstract

Xen migration or Container mobility promise better sys-
tem utiliztion and system performance. But how does
one know if the effort will improve the workload’s
progress? Resource management solutions promise op-
timal performance tuning. But how does one determine
the resources to be reallocated and the impact of the al-
lotment? Most customers develop their own benchmark
that is used for purchasing a solution, but how does one
know that the bottleneck is not in the customer bench-
mark?

Per-task delay accounting is a new functionality in-
troduced for the Linux kernel which provides a direct
measurement of resource constraints delaying forward
progress of applications. Time spent by Linux tasks
waiting for CPU time, completion of submitted I/O and
in resolving page faults caused by allocated real mem-
ory, delay the forward progress of the application being
run within the task. Currently these wait times are ei-
ther unavailable at a per-task granularity or can only by
obtained indirectly, through measurement of CPU us-
age and number of page faults. Indirect measurements
are less useful because they make it harder to decide
whether low usage of a resource is due to lack of de-
mand from the application or due to resource contention
with other tasks/applications.

Direct measurement of per-task delays has several ad-
vantages. They provide feedback to resource manage-
ment applications that control a task’s allocation of sys-
tem resources by altering its CPU priority, I/O priority
and real memory limits and enable them to fine tune

these parameters more quickly to adapt to resource man-
agement policies and application demand. They are also
useful for accurate metering/billing of resource usage
which is particularly useful for shared systems such as
departmental servers or hosting platforms. For desktop
users, these statistics provide a quick way of determin-
ing the resource bottleneck, if any, for applications that
are not running as fast as expected.

In this paper, we describe the design, implementation
and usage of per-task delay accounting functionality
currently available in the Linux kernel tree. We demon-
strate the utility of the feature by studying the delay pro-
files of some commonly used applications and how their
resource usage can be tuned using the feedback pro-
vided. We provide a brief description of the alternative
mechanisms proposed to address similar needs.

1 Introduction

Linux is supported on a wide range of systems, from
embedded to desktop to mainframe, running a diverse
set of applications ranging from business and scientific
to office productivity and entertainment. Linux provides
multiple metrics and “knobs” for achieving optimal per-
formance in these various deployments. There are a
myriad of well known benchmarks and tools available
to help gather and analyze and then tune the systems for
desired performance.

However, after elaborate tuning as well the applications
or system may still perform unsatisfactorily. The re-
source bottlenecks blocking the progress must be ad-
dressed through additional provisioning, resource real-

• 71 •

72 • Where is your application stuck?

location or even load-balancing by migration of the ap-
plication/service to another system.

There is on-going work such as resource groups and
‘containers’ to re-allocate resources to desired work-
loads for better system utilization and performance. Xen
and Linux containers support the notion of migrating
live workloads to consolidate systems when load is low
and migrate to other systems for better load-balancing.
However, all these mechanisms will work ‘blind’ with-
out a good method to pinpoint the resources that need
tuning.

The delay-accounting framework is built on the obser-
vation that: since ultimately the application’s progress
is most important, the bottlenecks impeding the appli-
cations progress must be easily identifiable. The delay-
accounting framework therefore gathers the time spent
on behalf of the task (or task group) in queues contend-
ing for system resources. This information may then
be utilised by workload management applications to dy-
namically increase the desired applicaton’s access to the
bottlenecked resource by raising its priority, or share of
the resource pool, or even initiating service or applica-
tion migration to a different system.

This paper discusses the design, implementation and
utility of the per-task delay accounting framework de-
veloped to address this issue. The following sectons
outline the use cases

2 Motivation

The traditional focus of operating system accounting is
the time spent by a Linux task doing a particular activ-
ity e.g. time spent by a task executing on a cpu in sys-
tem mode, user mode, in interrupts etc. There is also a
measure of the system activity that happens e.g. number
of system calls, I/O blocks transferred, network pack-
ets sent/received. While these metrics are often use-
ful for measuring overall system utilization or for high
level detection of performance anomalies, they are not
directly usable for determining what is delaying for-
ward progress of a specific application, except perhaps
by skilled and experienced system administrators.

Hence there is a need for answering the simple question:
what resource, managed by the operating system, is my
application waiting for? To start with, the resources of
interest can be high level such as cpu time, block I/O

bandwidth and physical memory. These, respectively,
translate to knowing how long a Linux task (or groups
of tasks) spend in, i.e. get delayed, in

• waiting to run on a CPU after becoming runnable
waiting for block

• I/O operations inititated by the task to complete
waiting for page

• faults to complete

The information is useful in at least two distinct scenar-
ios:

Simple hand tuning: If a favorite task seems to be
spending most of its time waiting for I/O com-
pletion, raising its I/O priority (compared to other
tasks) may help. Similarly, if a task is mainly wait-
ing on page faults, increasing its RSS limit (or run-
ning other memory hogs at a much lower cpu pri-
ority) may help alleviate the resource bottleneck.

Workload management: One of the objectives of
modern workload management tools is to manage
the forward progress of aggregates of tasks which
are involved in a given business function. The idea
being that if business function A is more impor-
tant than another one B, the applications (tasks and
processes from an OS viewpoint) involved in the
former should get preferential access to the OS re-
sources compared to B.

To achieve this, workload managers need to period-
ically know the bottlenecked resource for all tasks
running on the system and use that information, in
conjunction with policies that determine prioritiza-
tion, to adjust the resource priorities like nice val-
ues, I/O priorities and RSS limits. Workload man-
agers may also make a decision to shift a given ap-
plication off a system if it determines that priority
boosting isn’t helping.

Per-task delay accounting was designed and imple-
mented to meet the above needs. We next describe the
design considerations in detail.

3 Design and implementation

The design and implementation of per-task delay ac-
counting had to take the following three major factors
into consideration.

2007 Linux Symposium, Volume Two • 73

3.1 Measurement of delays

The design objective was to measure the most signifi-
cant sources of delay for a process to the highest accu-
racy possible, preferably at nanosecond granularity. The
approach taken was to take high resolution timestamps
at the appropriate kernel functions and accumalate the
timestamp differences into per-process data structures.

The delay sources chosen and the manner in which they
are collected are:

1. Waiting to run on a cpu after becoming runnable:
Here we needed to take timestamps when a pro-
cess was added to a cpu runqueue and again when
it was selected to be run on a cpu. The sched-
stats codebase, added to help gather cpu sched-
uler statistics for development and debugging pur-
poses, came in handy since it already had code to
gather these timestamps and take their differences.
The schedstats functions sched_info_arrive

and sched_info_depart which gathered other
statistics that were not of interest to delay account-
ing had to be refactored to minimize the perfor-
mance impact. Another decision made to keep the
performance impact low was to stick to the jiffie
level timestamp resolution used by schedstats in-
stead of higher resolution ones available in the ker-
nel.

2. Waiting for block I/O submitted to complete: Here
we had a choice of trying to accurately measure
the entire delay in submitting block I/O as well as
the delay incurred in the block device performing
the I/O. However, it was finally decided that we
would measure only the time spent by a process in
sleeping for submitted I/O to complete. Measur-
ing the delays in the I/O submission path as well
turned out to be quite complex, given the diversity
of functions that are involved in block I/O submis-
sion as well as the difficulty of correctly attributing
the delays to the right process in all these paths.
These factors would have necessitated a number of
timestamps being collected all over the kernel code
which affects maintainability. Moreover, much
of the delays seen in I/O submission cannot be
changed by the user (other than indirectly by affect-
ing the cpu scheduling of the submitting process)
whereas delays incurred after I/O submission can
be affected by tweaking the I/O scheduling priority

of the process. Hence it was decided to only mea-
sure the time spent in sched.c/io_schedule()
using high resolution timestamps.

3. Waiting for a page fault to complete We had briefly
considered measuring the delays seen in both major
and minor page faults but later concentrated only
on the former to minimize impact of delay collec-
tion code on the virtual memory management code
paths. Delays for major page faults are a subset
of the block I/O delays which were already being
measured so the only change needed was to record
the fact that a process was in the middle of a ma-
jor page fault and use this information at block I/O
delay recording time.

Delay accounting also measures and returns an interval-
based measurement of time spent running on a cpu. This
is more accurate than the sampling-based cpu time mea-
sures normally available from the kernel (via a task’s
utime, stime fields in task struct). Accurate cpu usage
times are valuable in accurate workload management.
One factor that has to be considered for cpu time is the
possibility of the kernel running as a guest OS in a virtu-
alized environment. These “guest OSes” are scheduled
by the hypervisor in accordance with its scheduling poli-
cies and priorities for the OS instance. As a result, the
times spent waiting for a particular resource need to be
measured in wall-clock times. In contrast the the uti-
lization of the resource occurs only when the Guest is
executing. This differentiation enables an educated as-
sessment of resource allocation (such as additional CPU
share) needed by the “guest” or the resources within the
the “guest OS.”

The delay accounting framework retuns both the real
and virtual cpu utilization on virtual systems (currently
implemented for LPARs on ppc64) as well as the de-
lays experienced by the individual task groups in the OS
instances.

3.2 Storing the delay accounting data

Each of the delay data recorded above needed to be
stored taking into account two important constraints:

1. The data structures should be expandable to add
other per-task delays that were deemed useful in

74 • Where is your application stuck?

future. While the current per-task delay account-
ing only looks at wait for cpu, block I/O and ma-
jor page fault delays, it is well possible that other
delays associated with kernel resource allocation
would be of interest and measured in future.

2. The data should be collected per-task and also ag-
gregated per-process (i.e. per-tgid) within the ker-
nel. This latter design constraint drew a lot of
comments when the delay accounting code was
proposed since it was felt that per-process delays
could as well be accumulated outside the kernel in
userspace. However, we had observed that accurate
measures of per-process delays were very useful
for performance analysis of bottlenecks and also
that accumalating per-task delays in userspace re-
quired far too much overhead and reduced accuracy
due to presence of short-lived tasks in a process.
Hence it was necessary to have a per-process delay
aggregating data structure that would keep the de-
lay data collected for an exiting task and make it
available until all tasks of the process exited.

The taskstats data structure, defined in include/

linux/taskstats.h, took into account these
constraints. It was versioned, mandated that new
fields would be added at the bottom and also took
into account alignment requirements for 32 and 64
bit architectures.

To meet the second constraint, two copies of
the data structure are maintained. One is per-
task, maintained within the task_struct. The
other is per-tgid, maintained within the signal_
struct associated with a tgid. The fields of struct
taskstats are large enough to serve as an accumala-
tor for per-tgid delays.

3.3 Interface to userspace to supply the data

The interface to access delay accounting data from
userspace formed a large part of the discussion preced-
ing the acceptance of delay accounting in the kernel.
The various design constraints for the interface were:

1. Efficient transfer of large volumes of delay data:
Workload managers that are monitoring the entire
system for performance bottlenecks need to gather
delay statistics from each task periodically. In or-
der to allow this period to be small, it is essential

that the data transfer of delay accounting data be
efficient while handling large volumes (due to po-
tentially large number of tasks). A similar require-
ment, albeit less severe, exists even for monitoring
a single application if its degree of multithreading
is sufficiently high.

2. Handle rapid exit rate without data loss: In order
to do workload management at the level of user-
defined groups of processes, workload managers
need to get the cumulative delays seen by a task
(and a thread group) right up to the time it exits.
Hence delay accounting data needs to be available
even after a task (or thread group) exits. Obviously
the kernel cannot keep such data around for a long
time so the choice was made to use a “push” model
(kernel->user) to send such data out to listening
userspace applications rather than require them to
“pull” the data. In such a scenario, its important to
be able to handle a rapid rate of task/thread group
exits, if not on a sustained basis, atleast for short
bursts, without losing data.

3. Exporting data as text or not: This is another
instance of the classic debate whether such data
should be exported as text through /proc or /sysfs
like interfaces allowing it be directly read in user
space using shell utilities or whether it should be
a structured binary stream requiring special user
space utilities to parse. Given the volume of data
needing to be transferred, the latter option was cho-
sen.

4. Bidirectional read/writes: There was a need for
userspace to send commands and configuration in-
formation to the kernel delay accounting and hence
interfaces like relayfs which lacked a user->kernel
write capability were not usable.

Given these constraints, we decided to use the newly in-
troduced genetlink interface. Genetlink is a generalized
version of the netlink interface. Netlink, which exports
a sockets API, has been used to handle large volumes
of kernel<->user data, primarily for networking related
transfers. But it suffered the limitation of having a lim-
ited number of sockets available for use by different ker-
nel subsystems as well as an API that was too network-
centric for some. Genetlink was created to address these
issues. It multiplexes multiple users over a single netlink
socket and simplifies the API they need to use to effect

2007 Linux Symposium, Volume Two • 75

bidirectional data transfer. Delay accounting was one
of the early adopters of the genetlink mechanism and
its usage provided inputs for refining and validating the
genetlink interface as well.

Delay accounting handles the rapid exit rate constraint
by splitting the delay data sent on exit into per-cpu
streams. A listening userspace entity has to explicitly
register interest in getting data for a given cpu in the
system. Once it does so, it receives the exit delay data
for any task which exits while last running on that cpu.
This design allows systems with many cpus (which will
typically have a correspondingly larger number of exit-
ing tasks) to balance the exit data bandwidth amongst
multiple userspace listeners, each listening to a subset
of cpus. CPUs are used as a convenient means of divid-
ing up the exit data requirements. They also help when
the cpusets mechanism is used to physically partition up
machines with very large number of cpus and some of
the physical partitions have strict performance require-
ments that prohibit exit data from being processed. Be-
ing able to regulate the sending of exit delay data by the
kernel by cpu allows fine-grain control over the perfor-
mance impact of delay accounting.

Finally, virtual machine technology enables a single sys-
tem to run multiple OS instances. These “guest OSes”
are scheduled by the hypervisor in accordance with its
scheduling policies and priorities for the OS instance.
As a result, the times spent waiting for a particular re-
source need to be measured in wall-clock times. In con-
trast the the utilization of the resource occurs only when
the Guest is executing. This differentiation enables an
educated assessment of resource allocation (such as ad-
ditional CPU share) needed by the “guest” or the re-
sources within the the “guest OS.”

The delay accounting framework retuns both the real
and virtual cpu utilization on virtual systems (currently
implemented for LPARs on ppc64) as well as the de-
lays experienced by the individual task groups in the OS
instances.

3.4 Delay accounting lifecycle

With the above elements in place, its useful to out-
line how the delay accounting works in practice. The
description is being kept generic without referring to
specifics of the interface since that can be obtained else-
where.

On system startup, the system administrator can option-
ally start userspace “listeners” who register to listen to
exit delay data on one or more cpus. The typical us-
age is to start one listener listening to all the cpus of the
system.

When a task is created (via fork), a taskstats data struc-
tures get allocated. If the task is the first one of a thread
group, a per-tgid taskstats struct is allocated as well. As
the task makes system calls, the delays it encounters get
measured and aggregated into both these data structures.

At any point during the task’s lifetime, a user can query
the delay statistics for a task, or its thread group, via the
genetlink interface by sending an appropriate command.
The reply contains the taskstats data structure for the
task or thread group.

When the task exits, its delay data is sent to any listener
which has registered interest in the cpu on which the exit
happens. If the task is the last one in its thread group,
the accumalated delay data for the thread group is addi-
tionally sent to registered listeners.

3.5 Per Task IO Accounting

An important related work are the per-task I/O account-
ing statistics by Andrew Morton which improve the ac-
curacy of measurement of I/O resource consumption by
a task. The CSA infrastructure also supports per-task IO
statistics, but the data returned by it, can be incorrect.

CSA accounts for per task IO statistics using data
read or written through the sendfile(2), read(2),
readv(2), write(2), and writev(2) system
calls. It does not account for

1. Data read through disk read ahead

2. Page fault initiated reads

3. Sharing data through the page cache. If a page is
already dirty and another task T1, writes to it, both
the task that first dirtied the page and T1 will be
charged for IO.

The following example illustrates the deficiencies of the
current per task IO accounting infrastructure. We wroter
a sample test application that maps a 1.2GB file and
writes to 1GB of the mmap’ed memory. The output be-
low shows the output of /proc/<pid of test>/io

76 • Where is your application stuck?

rchar: 1261
wchar: 237
syscr: 6
syscw: 13
read_bytes: 1048592384
write_bytes: 1317117952
cancelled_write_bytes: 0

The gathered statistics indicate that the existing account-
ing of rchar and wchar present in CSA, failed to capture
the IO that had taken place during the test.

The ideal place to account for IO, is the IO submis-
sion routine, submit_bio(). This works well for ac-
counting data being read in by the task. However, for
write operations, we need some place else to account
for the following reasons

Writes are usually delayed, which means that it is hard
to track the task that initiated the write. Furthermore,
the data might become available long after the task has
exited.

Write accounting is therefore done at page dirtying time.
The routines __set_page_dirty_nobuffers()
and __set_page_dirty_buffers() account the
data as written and charge the current task for IO.

A task can also actually cause negative IO, by truncat-
ing pagecache data, brought in by another task. In-
stead of accounting for possible negative write IO, the
data is stored in the field called cancelled_write_
bytes.

Figures 1, 2, and 3 show the call flow graph for read,
write, and truncate accounting, respectively.

Communicating the per task IO data to user space is
fairly straight forward. It uses the per task taskstats in-
terface for this purpose. The taskstats structure has been
expanded to new fields corresponding to the per task
IO accounting information. The taskstats interface au-
tomatically takes care of sending this data to user space
when either a task exits or information is requested from
user space.

4 Case studies of performance bottleneck
analysis

The following two case studies, taken from a perfor-
mance analyst who used delay accounting to debug per-
formance issues, illustrate the utility of the mechanism.

Application

...

submit_bio

read accounting

Figure 1: Read IO Accounting

1. Analysing performance issue with an MPI based
parallel application:

This is a brief on how per-task delay accounting
was used to find out the root cause for a perfor-
mance problem of an application running on ho-
mogeneous cluster. During the user acceptance test
for the cluster this application successfully com-
pleted its run within the expected time. However
some days later the same application was taking
too much time to complete. Nothing changed in
the cluster wrt to the configuration. However one
strange thing was noted - when the cluster was
compleletely isolated from the public network the
application completed its run within the expected
time. The problem happened only when the clus-
ter was open for use by everyone concerned. This
was an important lead but we didn’t have any clue
on how to proceed. The cluster was pretty large

2007 Linux Symposium, Volume Two • 77

Application

...

set_page_
dirty

__set_page_
dirty_

nobuffers

__set_page_
dirty_
buffers

write accounting

Figure 2: Write IO Accounting

and analysing each and every node manually was a
tedious task.

Some of the possible things to look for were net-
work communication delays, problems with the job
scheduler’s resource reservation functionality and
system configuration of all the nodes (just to be
sure that nothing was changed in between). Even
after doing all these activities we were not able to
identify the root cause of the problem. We didn’t
have a clue whether the issue was with any partic-
ular node/s or with the entire cluster.

Per-task delay accounting came to our rescue here.
We asked the customer not to isolate the cluster and
let it be used like in any normal day. The appli-
cation was run on all the nodes in the cluster and
subsequently the getdelays program was run so as
to get the delay accounting statistics for this partic-
ular application. After completion of the run, the
delay accounting statistics from all the nodes were
compared and it was found that there was huge IO
and CPU delay on one of the nodes in the cluster.

This was affecting the overall performance (execu-
tion time) of the application. We then focussed our
attention on this particular node. Eventually after
monitoring this node for some time, we found that
one of the users was directly running interactive
jobs on this particular node. This in turn pointed
to a security hole in the customer’s overall cluster

Application

...

cancel_dirty_
page

truncate accounting

Figure 3: Truncate IO Accounting

setup which allowed this user to bypass the access
control restrictions put in place and run the jobs di-
rectly on a particular node.

Per task delay accounting made the job of isolat-
ing the problem a lot easier. An added advantage
is that of convincing the customer becomes a lot
easier and effective.

Current per task delay accounting can be taken
a step forward by including per task network IO
delay accounting statistics also and writing a tool
based on per-task delay accounting for identifying
performance problems in a cluster.

2. There was another instance where per-task delay
accounting helped us in dealing with a customer.
The customer had a single threaded program on
a non-Linux platform. The application was later
made multi-threaded on the same platform. The
program typically read X number of records in n
seconds.

The customer ported the multi-threaded version of the
program to Linux (using C programming language).
The ported program was reading significantly less num-
ber of records in n seconds when compared to the
original program on the non-Linux platform (hardware

78 • Where is your application stuck?

configuration was same, only the OS was different).
Tools like top, vmstat, iostat were not very conclusive.
Since source code access for the program was not there,
we asked the customer to provide us with both sin-
gle threaded and multi-threaded version of the program
along with the timings and used per-task delay account-
ing to get the delay stats for both the single-threaded and
multi-threaded version of the program. We found that
for the multi-threaded version IO delay was on a higher
side when compared with the single-threaded version.
Pointed this out to the customer (as source code access
was not there). Convinced them that they need to relook
at the application code.

Per task delay accounting helped us to get specific data
pertaining to the multi-threaded program in question.

5 Summary

Detecting the bottlenecks in resource allocation that af-
fect an application’s performance on a Linux system is
an increasingly important goal for workload manage-
ment on servers and on desktops. In this paper, we de-
scribe per-task delay accounting, a new functionality we
contributed to the Linux kernel, that helps identify the
resource allocation bottleneck impeding an applications
forward progress. We also describe other important re-
lated work that improves the accuracy of CPU and I/O
bandwidth consumption. Finally we demonstrate how
these new mechanisms help identify where applications
can get "stuck" within the kernel.

Trusted Secure Embedded Linux
From Hardware Root Of Trust To Mandatory Access Control

Hadi Nahari
MontaVista Software, Inc.
hnahari@mvista.com

Abstract

With the ever-increasing presence of Linux implemen-
tations in embedded devices (mobile handsets, set-
top boxes, headless computing devices, medical equip-
ments, etc.), there is a strong demand for defining
the security requirements and augmenting, enhancing,
and hardening the operating environment. Currently
an estimated 70% of new semiconductor devices are
Linux-enabled; such a high growth is accompanied
by inevitable security risks, hence the requirement for
hardware-based trusted and secure computing environ-
ment, enhanced with MAC (Mandatory Access Control)
mechanisms for such devices in order to provide appro-
priate levels of protection. Due to stringent security re-
quirements for resource-constrained embedded devices,
establishing trust-chain on hardware root of trust, and
deploying MAC mechanisms to balance performance
and control are particularly challenging tasks.

This paper presents the status of MontaVista Software’s
efforts to implement such solutions based on ARM cores
that provide separated computing environment, as well
as SELinux (Security Enhanced Linux) to provide MAC
for embedded devices. The focus will be on practical as-
pects of hardware integration as well as porting SELinux
to resource-constrained devices.

1 Introduction

The defining line between embedded and non-
embedded systems is becoming more and more blurred
[2]; whether the system has an elaborate UI (User Inter-
face), or if it is operating under a resource-constrained
environment are not sufficiently delineating identifiers
anymore.

The availability of more computing power at a low cost
has also resulted in developers’ and manufacturers’ in-
terest in adding more functionality to devices that were

traditionally either not capable of, or not expected to
have them (smart phones, hand-held computing devices,
complex medical control systems, navigation gear, etc.).
The difficulty in satisfying the security requirements of a
software package is proportional to its design complex-
ity. The default access control method in Linux, that is,
DAC (Discretionary Access Control) is at best consid-
ered insufficient for any security-sensitive implementa-
tion, hence the increase in demand for MAC in recent
years.

HAS (Hardware Assisted Security) has not yet been suf-
ficiently standardized and from the industry adoption
perspective, it is still considered to be in its infancy. Yet
(or however), HAS is one more item in the toolbox of se-
curity architects who need to provide solutions for fun-
damental problems such as establishing TCB (Trusted
Computing Base) using hardware-based root of trust,
managing key material, and security governance of the
system.

In the past years, there has been an increasing growth in
adoption of Linux in various environments. This impor-
tant phenomenon, which is unparalleled by other operat-
ing systems, has resulted in Linux becoming more and
more the de-facto operating system for embedded de-
vices. The recent acceleration of this adoption by said-
devices is partially due to the highly modular architec-
ture of Linux kernel, and partially due to its maturity,
which results in lower COO (Cost Of Ownership.)

One must note, however, that this growth is accompa-
nied by complex and elaborate software solutions build
atop embedded Linux devices to address the ever in-
creasing demands of the market, and hence the complex
security requirements of such devices. This makes im-
plementing a holistic security strategy for Linux more
challenging, especially when one considers the highly
varied selection of embedded devices adopting, or plan-
ning to adopt Linux; from smart phones, hand-held de-

• 79 •

80 • Trusted Secure Embedded Linux

vices, set top boxes, high-end televisions, medical de-
vices, automotive control, navigation systems, assem-
bly line control devices, missile guidance systems, to
the other end of the spectrum such as CGL (Carrier
Grade Linux) in the telecoms industry. Such environ-
ments each possess a very unique set of security char-
acteristics and requirements, and therefore provide dif-
ferent challenges. Figure 1 shows a typical Linux-based
mobile phone architecture.

In this article I will start by describing the most common
security requirements in the embedded industry, and fol-
low it by explaining the design principles and reviewing
the available technologies that were initially considered
viable, both for HAS and MAC, and will propose an ar-
chitecture based on the selected technologies. Where
applicable, I will point out whether the said-method or
technology satisfies a subset of the embedded systems
(mobile handsets and CGL).

The main focus of this article is to provide:

1. A high-level, architectural overview of a design
that provides fundamental and necessary facilities
to establish the trustworthiness of the operating
system services (via connection to a hardware-
based root trust).

2. A mechanism to establish Effective Containment
(that is, a mechanism to prevent an exploited appli-
cation from enabling attacks on another application
possible) via the MAC offered by SELinux.

Security services provided by higher-level software con-
structs, such as middleware and frameworks alike are
not the focus of this article and will not be discussed.

It is also noteworthy to mention that, where the re-
quired security related components exist in the underly-
ing hardware architecture, the proposed design is viable
for non-embedded systems as well.

2 Design Constraints

The following are the most commonly considered con-
straints when designing and developing software com-
ponents for an embedded device:

1. Memory Footprint

2. Performance Trade-off

Memory footprint is important because a big majority
of the embedded devices tend to have limited memory
available at run-time. Any security solution for such de-
vices must therefore have an acceptable and low mem-
ory footprint.

Performance trade-off is important because the comput-
ing power available in an embedded environment is typ-
ically low, due to hardware architecture characteristics,
as well as issues pertaining power management in bat-
tery operated devices. Low power consumption is one
of the fundamental reasons based on which ARM is the
de-facto architecture for such devices.

3 Design Principles

1. Simplicity

2. Modularity

We have made the design as simple as possible. This is
to ensure no unnecessary complexity is introduced into
the system and also the overall security analysis of the
system is easier to perform.

The proposed architecture is modular. This is to en-
sure that the design could also be implemented on hard-
ware architectures that lack the security capabilities in-
troduced, and also environments where the types of at-
tacks, or the security assets of the system would not re-
quire the high degree of protection provided by this de-
sign.

4 Technology Overview

4.1 Secure Boot

Secure Boot (a.k.a. High Assurance Boot) is a technique
for verifying and asserting the integrity of an executable
image prior to passing the control to it. Assuming the
verification mechanism is based on the digital signature
of the image being verified, then the reliability of this
verification is at best as good as the reliability of the pro-
tection mechanism provided in the device for the public
key of the image signer.

The most important assumption here is that the code
which performs the integrity verification process is itself

2007 Linux Symposium, Volume Two • 81

Figure 1: A Typical Linux-based Mobile Phone Architecture

trustworthy. To assert this assumption, the implementa-
tions typically put the public key material, as well as the
verifier code into non-writable areas of memory, which
in turn are protected via a form of hardware protection
mechanism. Figure 2 shows a generic Secure Boot ar-
chitecture.

This design enables the establishment of a chain of trust
by ensuring that the trust, on each layer of the system, is
based on, and is only based on, the trust on the layer(s)
underneath it, all the way down to the hardware secu-
rity component, which serves as the Root Of Trust. If
verification fails to succeed at any given stage, the sys-
tem might be put in a suspended-mode to block possible
attacks.

One must note, however, that this architecture, though
ensuring the integrity of the operating environment
when a hard boot occurs, does not guarantee its in-
tegrity during the runtime; that is, in case of any mali-
cious modification to the operating environment during
the runtime, this architecture will not detect it until the
next hard boot happens.

4.2 Effective Containment

The “Buffer Overflow” class of attacks is practically
impossible to prevent in native environments with no
type- or boundary-checking available at runtime. Exe-
cuting native code in operating environments like Linux
makes it specifically susceptible to this category of at-
tacks. This therefore makes exploiting a buffer over-
flow attack of particular interest to hackers, and success-
fully mounting such an attack is considered a badge of
honor. Effective Containment, in this context, is there-
fore referred to a class of techniques that contain (as
opposed to prevent) such attacks for which there are no
practical prevention mechanism available. This could
be achieved via the use of various software and security
technologies. Applying a MAC mechanism is one way
to implement effective containment.

4.2.1 Embedded SELinux

One method to achieve a MAC is via implementing
RBAC (Role-Based Access Control). NSA’s SELinux,
among other features such as MLS (Multi Level Se-
curity), provides Linux with MAC through RBAC.

82 • Trusted Secure Embedded Linux

Figure 2: A Typical Secure Boot Design

SELinux was not originally designed for the ARM ar-
chitecture, or for embedded devices. There have been,
however, previous and reasonably successful attempts
to port SELinux or parts of it into an embedded device
and on an ARM architecture; the most notable of which
being by Russell Coker [1].

By adding a MAC mechanism such as SELinux on top
of Secure Boot, we will be able to address one of its fun-
damental shortcomings; providing a level of protection
at runtime. Figure 3 shows an architecture, deploying
Secure Boot and MAC mechanisms together.

In this design, not only have we accomplished augment-
ing the Secure Boot mechanism (by way of providing
runtime containment), but have also enabled a way to
expose hardware-security capabilities (e.g. TPM stan-
dard services) to the applications and processes during
the system runtime.

As a side note, it is important to mention that RBAC is
not the only mechanism to implement MAC. Other im-
plementations exist which might also become suitable
for embedded devices; “Tomoyo Linux” and Novell’s
“AppArmor” are both examples of such solutions that
implement a technique called NBAC (Name-Based Ac-
cess Control). LIDS (Linux Intrusion Detection Sys-
tem) is another example. At the time of writing this arti-
cle, however, neither of these implementations seem to
have been able to gain the traction in the industry, nor
by manufacturers of embedded devices to be the default
MAC for such devices. This state, however, may change

in the future as the above-mentioned technologies ma-
ture.

4.2.2 Multi-core and Virtualization

In recent years, the industry has put more focus on
adding more computing power to embedded devices, not
only in adding more processing capabilities to each core,
but also adding to the number of cores available in hard-
ware architectures. One of the objectives of this expan-
sion is have a dedicated hardware resource to each high-
level task, and therefore achieving easier management
of software design and implementation through hard-
ware compartmentalization. This approach has resulted
in recent growth in implementing virtualization tech-
nologies in embedded space. Various types of virtual-
ization techniques exist (hardware- and software-based)
which all provide multiple guest domains, each assum-
ing total access to the underlying hardware, and concep-
tually having no awareness of the other guest domains.
A fundamental element of any virtualization implemen-
tation is a layer called hypervisor, which is responsi-
ble for mediating the interactions among guest domains,
and providing necessary life-cycle management for each
guest domain.

As is in most cases, this technique has existed in
large-scale enterprise systems prior to embedded space;
however, again the implications of this technology in
resource-constrained embedded devices are different

2007 Linux Symposium, Volume Two • 83

Figure 3: Augmenting Secure Boot with Access Control

than those of the enterprise systems. The use cases,
however, remain similar.

Any modern design that attempts to provide a security
solution for embedded space, therefore needs to assume
it might be contained in a virtual, guest domain.

4.2.3 ARM TrustZone Technology

TrustZone is a security technology introduced by ARM
Ltd. in its “ARM 1176” core. TrustZone is a technol-
ogy to provide a hardware-based separation for exe-
cution environment, and divide it into two halves; se-
cure and normal worlds. The security-sensitive appli-
cations are run executed in a separate memory space
which is not accessible to “normal applications.” Trust-
Zone is the first ARM architecture to provide hardware-
based security in its core. Although and if done right
this could potentially provide the operating environ-
ment with an additional level of security, at its core
this could be considered a hardware-based virtualiza-
tion solution, and is conceptually not a new idea. Fur-
thermore compartmentalized-security and separation of
execution environments due to application’s security re-
quirements, along with “separation of concerns,” have
all been well-understood and known concepts in com-
puter science and software engineering for decades [3].

The proposed design in this article considers the avail-
ability of ARM TrustZone technology on the underlying

hardware architecture; however, no parts of this design
rely on such capability. It is also important to mention
that we only assume the TrustZone hardware availablity
in the underlying architecture; analyzing the proprietary
software stacks on top of TrustZone hardware that pro-
vide additional security capabilities to the applications,
is outside the scope of this article.

5 Proposed Architecture

5.1 High-level Analysis

We propose the architecture shown in Figure 4 to ad-
dress the security requirements discussed in this article.

This design is based on a hardware root of trust,
and therefore could provide security as reliable as the
method protecting this root. It implements a MAC
mechanism based on embedded SELinux, and can do
it in a virtualized environment. The proposed design
deploys the security capabilities available in hardware
(that is, TrustZone hardware) to enforce a separation
mechanism among guest domains, via dedicating sep-
arate areas of memory to different processes that exist
in each domain. The overall security management, such
as secure IPC (Inter Process Communication) of such
processes, is the responsibility of the VMM (Virtual
Machine Monitor) which acts as the hypervisor in this
design. This design enables a hardware-enforced sepa-
ration among processes running in each guest domain,

84 • Trusted Secure Embedded Linux

Figure 4: Implementing MAC and Virtualization, Based on Hardware Root Of Trust

with a fine-grained, mandatory access control mech-
anism provided by SELinux infrastructure. The ini-
tial verification of each guest domain happens prior to
bringing it up. After each domain is on-line, ensuring
its health from security perspective is also provided by
the SELinux infrastructure.

It is presumed that due to differences in security re-
quirements during the start-up and runtime, not all the
embedded devices would require all the elements pro-
vided in this design. This, however, does not indicate
a weakness in the architecture, as the main security as-
pects of the design could be implemented/enabled inde-
pendently.

6 Conclusion

We proposed a design that deploys a hardware root of
trust to provide secure execution of applications in a vir-
tualized environment. We also augmented the design by
adding a MAC mechanism to provide enhanced protec-
tion to applications and processes at runtime.

On an system which requires and implements all the ca-
pabilities provided in this architecture, a thorough anal-
ysis must be performed to ensure an appropriate secu-
rity policy is in place to deploy the SELinux capabilities

efficiently; an unnecessarily comprehensive and restric-
tive policy has a potential to hamper the overall runtime
performance, and increase the memory footprint of the
system.

The performance of the hypervisor is also the key in this
design, as it is the layer that arbitrates the interactions
among the processes which exist in separate guest do-
mains. A fast and high-performing hypervisor is the
quintessential key to the successful implementation of
this design.

7 Legal Statement

This work represents the personal views of the author
and is a technical analysis of an architecture; it does not
necessarily represent the views of MontaVista Software,
Inc.

Furthermore, the author is not an attorney and makes
no judgment or recommendation on legal (and specif-
ically GPL) ramifications of the proposed design; such
issues are outside the scope of this article, and should be
dealt with via consulting with a GPL attorney/law prac-
titioner.

2007 Linux Symposium, Volume Two • 85

Linux is the registered trademark of Linus Torvalds in
the United States of America, other countries, or both.
Other company, product, and service names may be
trademarks or service marks of others.

References

[1] Russell Coker. Porting nsa security enhanced linux
to hand-held devices. In Proceedings of the Linux
Symposium. Ottawa Linux Symposium, July 2003.

[2] William R. Hamburgen, Deborah A. Wallach,
Marc A. Viredaz, Lawrence S. Brakmo, Carl A.
Waldspurger, Joel F. Bartlett, Timothy Mann, and
Keith I. Farkas. Itsy: Stretching the Bounds of
Mobile Computing. IEEE Computer, 34(4):28–35,
April 2001.

[3] Jorrit N. Herder, Herbert Bos, Andrew S.
Tenenbaum. A Lightweight Method for Building
Reliable Operating Systems Despite Unreliable
Device Drivers. Technical report, Dept. of
Computer Science, Vrije Universiteit, Amsterdam,
The Netherlands, 2006.

86 • Trusted Secure Embedded Linux

Hybrid-Virtualization—Enhanced Virtualization for Linux*

Jun Nakajima and Asit K. Mallick
Intel Open Source Technology Center

jun.nakajima@intel.com, asit.k.mallick@intel.com

Abstract

We propose hybrid-virtualization that combines para-
virtualization and hardware-assisted virtualization. It
can achieve equivalent or better performance than
software-only para-virtualization, taking the full advan-
tage of each technology. We implemented a hybrid-
virtualization Linux with para-virtualization, which
required much fewer modifications to Linux, and
yet achieved equivalent or better performance than
software-only XenLinux.

The hybrid-virtualization employs para-virtualization
for I/O, interrupt controllers, and timer to simplify the
system and optimize performance. For CPU virtualiza-
tion, it allows one to use the same code as in the original
kernel.

The other benefits are: One, it can run on broader ranges
of VMMs, including Xen and KVM; and Two, it takes
full advantage of all the future extensions to hardware
including virtualization technologies.

This paper assumes basic understanding of the Linux
kernel and virtualization technologies. It provides in-
sights to how the para-virtualization can be extended
with hardware assists for virtualization and take advan-
tage of future hardware extension.

1 Introduction

Today x86 Linux already has two levels of para-
virtualization layers, including paravirt_t and VMI that
communicate with the virtual machine monitor (VMM)
to improve performance and efficiency. However, it
is true that such (ever-changing) extra interfaces com-
plicate code maintenance of the kernel and create in-
evitable confusions. In addition, it can create differ-
ent kernel binaries, potentially for each VMM, such
as Xen*, KVM, VMware, etc. Today, paravirt_ops al-
ready has 76 operations for x86, and it would grow and

change over the time. In fact, patches already have been
sent to update them while we are writing this paper!

One of the main sources of such growth and modifica-
tion seems to be different hypervisor implementations
in support of para-virtualization.

Para-Virtualization

The para-virtualization is a virtualization technique that
presents a software interface to virtual machines that is
similar but not identical to that of the underlying hard-
ware. This technique is often used to obtain better per-
formance of guest operating systems running inside a
virtual machine.

Para-virtualization can be applicable even to hardware-
assisted virtualization as well. Historically, para-
virtualization in the Linux community was used to mean
modifications to the guest operating system so that
it can run in a virtual machine without requiring the
hardware-assisted virtualization features. In this paper,
we use software-only para-virtualization to mean “para-
virtualization that obviates hardware-assisted virtualiza-
tion.”

The nature of the modifications used by para-
virtualization to the kernel matters. We experienced sig-
nificant complexity of software-only para-virtualization
when we ported x86-64 Linux to Xen [4]. The root
cause of such complexity is that software-only para-
virtualization forces the kernel developers to handle the
virtual CPU that has significant limitations and different
behaviors from the native CPU.

For example, such virtual CPU has completely differ-
ent systems state such as, it does not have GDT, IDT,
LDT, or TSS; completely new interrupt/exception mech-
anism; or different protection mechanism. And the vir-
tual CPU does not support any privileged instructions,
requiring them to be executed by hypercalls.

• 87 •

88 • Hybrid-Virtualization—Enhanced Virtualization for Linux

The protection mechanism often has problems with hav-
ing a shared kernel address space as there is no ring-
level protection when both user and kernel are running
at ring 3. This creates an additional overhead of stitch-
ing address space between any transition between the
application and the kernel.

Additionally, system calls are first intercepted by the
Xen (ring 0), and are injected to the guest kernel. Once
the guest kernel completes the service, then it needs to
go back to the user executing a hypercall (and page table
switch because of the reason above).

Benefiting from Para-Virtualization

We also found para-virtualization really simplified
and optimized the system. In fact there are still
significant cases where the native or software-only
para-virtualization outperforms full-virtualization us-
ing hardware-assisted virtualization especially with I/O
or memory intensive workloads (or both).

In this paper we first discuss the advantages and disad-
vantages of para-virtualization, full-virtualization, and
hardware-assisted virtualization. Note that some of
these advantages and disadvantages can be combined
and complimentary. Second, we discuss the hybrid-
virtualization for Linux proposal. Unlike software-
only para-virtualization, hybrid-virtualization employs
hardware-assisted virtualization, and it needs much
fewer para-virtualization operations. Third, we discuss
the design and implementation. Finally we present some
examples of performance data.

2 Para-Virtualization

2.1 Advantages

Obviously para-virtualization is employed to achieve
high performance and efficiency. Since para-
virtualization typically uses a higher level of APIs that
are not available on the underlying hardware, efficiency
is also improved.

Time and Idle Handling

“Time” is a notable example. Even in a virtual system,
the user expects that the virtual machine maintain the

real time, not virtual time! As most operating systems
rely on timer interrupts to maintain its time, the system
expects timer interrupts even when idle. If timer inter-
rupts are missed, it can affect the time keeping of the op-
erating system. Without para-virtualization, the VMM
needs to continue injecting timer interrupts or to inject
back-to-back timer interrupts when the guest operating
system is scheduled back to run. This is not a reliable or
scalable way of virtualization. With para-virtualization,
a typical modification is to change the idle code to re-
quest the VMM to notify itself in a specified time period.
Then time is re-calculated and restored in the guest.

SMP Guests Handling

SMP guest handling is another example. In x86 or x86-
64, local APIC is required to support SMP especially
because the operating systems need to send IPI (Inter-
Processor Interrupt). Figure 1 shows the code for send-
ing IPI on the x86-64 native systems using the flat mode.
As you see, the code needs to access the APIC registers
a couple of times. Each access to the APIC registers
needs to be intercepted for virtualization, causing over-
head (often a transition to the VMM).

Para-virtualization can replace such multiple implicit re-
quests with a single explicit hypercall, achieving faster,
simpler, and more efficient implementations.

I/O Device Handling

Writing software that emulates a complete computer,
for example, is complex and labor-intensive because
various legacy and new devices need to be emulated.
With para-virtualization the operating system can oper-
ate without such devices, and thus the implementation
of the VMM can be simpler.

From the guest operating system’s point view, the
impacts of such modifications would be limited be-
cause the operating system already has the infrastruc-
ture that supports layers of I/O services/devices, such as
block/character device, PCI device, etc.

2.2 Disadvantages

There are certain advantages of para-virtualization as
mentioned above but there are certain disadvantages in
Linux.

2007 Linux Symposium, Volume Two • 89

static void flat_send_IPI_mask(cpumask_t cpumask, int vector)
{
...

/*
* Wait for idle.

*/
apic_wait_icr_idle();
/*
* prepare target chip field

*/
cfg = __prepare_ICR2(mask);
apic_write(APIC_ICR2, cfg);
/*
* program the ICR

*/
cfg = __prepare_ICR(0, vector, APIC_DEST_LOGICAL);
/*
* Send the IPI. The write to APIC_ICR fires this off.

*/
apic_write(APIC_ICR, cfg);

...
}

Figure 1: Sending IPI on the native x86-64 systems (flat mode)

Modified CPU Behaviors

One of the fundamental problems, however, is that
software-only para-virtualization forces the kernel de-
velopers to handle the virtual CPU that has significant
limitations and different behaviors from the native CPU.
And such virtual CPU behaviors can be different on dif-
ferent VMMs because the semantics of the virtual CPU
is defined by the VMM. Because of that, kernel devel-
opers don’t feel comfortable when the kernel code also
needs to handle virtual CPUs because they may break
virtual CPUs even if the code they write works fine for
native CPUs.

Figure 2 shows, for example, part of paravirt_t struc-
ture in x86 Linux 2.6.21(-rcX as of today). As you can
see, it has operations on TR, GDT, IDT, LDT, the ker-
nel stack, IOPL mask, etc. It is barely possible for a
kernel developer to know how those operations can be
safely used without understanding the semantics of the
virtual CPU, which is defined by each VMM. It also is
not guaranteed that the common code between the na-
tive and virtual CPU can be cleanly written.

A notable issue is the CPUID instruction because it is
available in user mode as well, thus software-only para-
virtualization inherently requires modifications to the
operating system. The CPUID instruction is often used

to detect the CPU capabilities available on the proces-
sor. If a user application does so, it may not be possible
to modify the application if provided in a binary object.

2.2.1 Overheads

Although para-virtualization is intended to achieve high
performance, ironically the protection mechanism tech-
nique used by software-only para-virtualization can of-
ten cause overhead. For example, system calls are first
intercepted by the Xen (ring 0), and are injected to the
guest kernel. Once the guest kernel completes the ser-
vice, then it needs to go back to the user executing a
hypercall with the page tables switched to protect the
guest kernel from the user processes. This means that it
is impossible to implement fast system calls.

The same bouncing mechanism is employed when han-
dling exceptions, such as page faults. They are also first
intercepted by Xen even if generated purely by user pro-
cesses.

The guest kernel also loses the global pages for its ad-
dress translation to protect Xen from the guest kernel.

Note that this overhead can be eliminated in hardware-
assisted virtualization because hardware-assisted virtu-

90 • Hybrid-Virtualization—Enhanced Virtualization for Linux

struct paravirt_ops
{
...

void (*load_tr_desc)(void);
void (*load_gdt)(const struct Xgt_desc_struct *);
void (*load_idt)(const struct Xgt_desc_struct *);
void (*store_gdt)(struct Xgt_desc_struct *);
void (*store_idt)(struct Xgt_desc_struct *);
void (*set_ldt)(const void *desc, unsigned entries);
unsigned long (*store_tr)(void);
void (*load_tls)(struct thread_struct *t, unsigned int cpu);
void (*write_ldt_entry)(void *dt, int entrynum,

u32 low, u32 high);
void (*write_gdt_entry)(void *dt, int entrynum,

u32 low, u32 high);
void (*write_idt_entry)(void *dt, int entrynum,

u32 low, u32 high);
void (*load_esp0)(struct tss_struct *tss,

struct thread_struct *thread);
void (*set_iopl_mask)(unsigned mask);

...
};

Figure 2: The current paravirt_t structure (only virtual CPU part of 76 operations) for x86

alization can provide the same CPU behavior as the na-
tive without modifications to the guest operating system.

3 Full-Virtualization

3.1 Advantages

The full-virtualization requires no modifications to the
guest operating systems. This attribute itself clearly
brings significant value and advantage.

3.2 Disadvantages

Full-virtualization requires one to provide the guest op-
erating systems with an illusion of a complete virtual
platform seen within a virtual machine behavior same
as a standard PC/server platform. Today, both Xen and
KVM need Qemu for PC platform emulation with the
CPU being native. For example, its system address
space should look like a standard PC/server system ad-
dress map, and it should support standard PC platform
devices (keyboard, mouse, real time clock, disk, floppy,
CD-ROM drive, graphics, 8259 programmable interrupt
controller, 8254 programmable interval timer, CMOS,
etc.), guest BIOS, etc. In addition, we need to pro-
vide those virtual devices with the DMA capabilities to

obtain optimized performance. Supporting SMP guest
OSes further complicates the VMM design and imple-
mentation.

In addition, as new technologies emerge, the VMM
needs to virtualize more devices and features to min-
imize functional/performance gaps between the virtual
and native systems.

4 Hardware-Assisted Virtualization

The hardware-assisted virtualization is orthogonal to
para or full virtualization, and it can be used for the both.

4.1 Advantages

The hardware-assisted virtualization provides virtual
machine monitors (VMM) with simpler and robust im-
plementation.

Full-virtualization can be implemented by software only
[1], as we see such products such as VMware as well
as Virtual PC and Virtual Server from Microsoft to-
day. However, hardware-assisted virtualization such
as Intel R© Virtualization Technology (simply Intel R© VT
hereafter) can improve the robustness, and possibly per-
formance.

2007 Linux Symposium, Volume Two • 91

4.2 Disadvantages

Obviously hardware-assisted virtualization requires a
system with the feature, but it is sensible to assume that
hardware-assisted virtualization is available on almost
all new x86-64-based systems.

Para-virtualization under hardware-assisted virtualiza-
tion needs to use a certain instruction(s) (such as
VMCALL on Intel R© VT), which is more costly than
the fast system call (such as SYSENTER/SYSEXIT,
SYSCALL/SYSRET) used under software-only para-
virtualization. However, the cost of such instructions
will be lower in the near future.

The hardware-assisted virtualization today does not in-
clude I/O devices, thus it still needs emulation of I/O de-
vices and possibly para-virtualization of performance-
critical I/O devices to reduce frequent interceptions for
virtualization.

5 Hybrid-Virtualization for Linux

Hardware-assisted virtualization does simplify the
VMM design and allows use of the unmodified Linux
as a guest.

There are, however, still significant cases where
software-only para-virtualization outperforms full-
virtualization using hardware-assisted virtualization es-
pecially with I/O or memory intensive workloads (or
both), which are common among enterprise applica-
tions. Those enterprise applications matter to Linux.

For I/O intensive workloads, such performance gaps
have been mostly closed by using para-virtualization
drivers for network and disk. Those drivers are shared
with software-only para-virtualization.

For memory intensive workloads, the current produc-
tion processors with hardware-assisted virtualization
does not have capability to virtualize MMU, and the
VMM needs to virtualize MMU in software [2]. This
causes visible performance gaps between the native or
software-only para-virtualization and hardware-assisted
full-virtualization (See [7], [8]).

5.1 Overview of Hybrid-Virtualization

Hybrid-virtualization that we propose is technically
para-virtualization for hardware-assisted virtualization.

However, we use this terminology to avoid any con-
fusions caused by the connotation from software-only
para-virtualization. And the critical difference is that
hybrid-virtualization is simply a set of optimization
techniques for hardware-assisted full-virtualization.

5.2 Pseudo Hardware Features

The hybrid-virtualization capabilities are detected and
enabled as by the standard Linux for the native as if
they were hardware features, i.e. pseudo hardware fea-
ture, i.e. visible as hardware from the operating system’s
point of view.

We use the CPUID instruction to detect certain CPU
capabilities on the native system, and we include the
ones for hybrid-virtualization without breaking the na-
tive systems. The CPUID instruction is intercepted by
hardware-assisted virtualization so that the VMM can
virtualize the CPUID instruction. In other words, the
kernel does not know whether the capabilities are im-
plemented in software (i.e., VMM) or hardware (i.e.,
silicon).

In order to avoid maintenance problems caused by the
paravirt layer, the interfaces must be in the lowest level
in the Linux that makes the actual operations on the
hardware. If a particular VMM needs a higher level or
new interface in the kernel, it should be detected and
enabled as pseudo hardware feature as well, rather than
extending or modifying the paravirt layer.

5.3 Common Kernel Binary for the Native and
VMMs

One of the goals of hybrid-virtualization is to have
the common kernel binary for the native and various
VMMs, including the Xen hypervisor, KVM [6], etc.
For example, the kernel binary for D0, G, H can be all
same in Figure 3.

With the approach above and the minimal paravirt layer,
we can achieve the goal.

5.4 Related Works

Ingo Molnar also added simple paravirt ops support (us-
ing the shadow CR3 feature of Intel R© VT) to improve
the context switch of KVM [3]. This technique can be
simply incorporated in our hybrid-virtualization.

92 • Hybrid-Virtualization—Enhanced Virtualization for Linux

Hybrid-
Virtualization

Support
Hypervisor

Privilege Linux
(D0)

Linux

Guest (G)
Qemu I/O

Linux

Guest (G)

Normal

User
Process

Linux Kernel (H)
KVM Driver Hybrid-

Virtualization
Support

Normal

User
Process

Linux

Guest (G)

Qemu I/O

Linux

Guest (G)

Qemu I/O

Figure 3: Same Kernel Binary for a hypervisor (D0 and G), KVM (G) and the native (H)

6 Design and Implementation

6.1 Areas for Para-Virtualization

Based of the performance data available in the com-
munity and our experiences with x86-64 Linux port-
ing to Xen, we identified the major areas to use para-
virtualization, while maintaining the same CPU behav-
ior as the native:

• I/O devices, such as network and disk

• Timer – with para-virtualization, the kernel can
have better accounting because of the stolen time
for other guests.

• Idle handling – the latest kernel has no idle ticks,
but the kernel could even specify the time period

for which it will be idle so that the VMM can use
the time for other VMs.

• Interrupt controllers

• MMU

• SMP support – the hypervisor also knows which
physical CPUs actually have (real) TLBs with in-
formation that needs to be flushed. A guest with
many virtual CPUs can send many unnecessary
IPIs to virtual CPU running other guests. This area
is included by the interrupt controller.

In fact all the areas except MMU are straightforward to
support in Linux as it already has the proper infrastruc-
tures to handle without depending on para-virtualization
or virtualization-specific modifications:

2007 Linux Symposium, Volume Two • 93

• I/O devices – obviously Linux needs to han-
dle various I/O devices today, and various para-
virtualization drivers are already available in com-
mercial VMMs.

• Timer – Linux supports various time sources, such
as PIT, TSC, HPET,

• Idle handling – Linux already has a mechanism to
select the proper idle routine.

• Interrupt controller – the genapic (in x86-64) is a
good example.

6.2 MMU Para-Virtualization

This is the outstanding area where Linux benefits
significantly today from para-virtualization even with
hardware-assisted virtualization.

For our implementation, we used the direct page tables
employed by Xen (See [5], [4]). Unlike the shadow page
table mode that builds additional (duplicated) page ta-
bles for the real translation, the direct page tables are
native page tables. The guest operating system use the
hypercalls to request the VMM to update the page tables
entries.

The paravirt_t layer in x86 already has such operations,
and we ported the subset of paravirt operations to x86-
64, extending them to the 4-level page tables as shown
in Figure 4.

6.2.1 Efficient Page Fault Handling

Although hybrid-virtualization uses the direct page table
mode today, it is significantly efficient compared with
the one on software-only para-virtualization because the
page faults can be selectively delivered to guest directly
in hardware-assisted virtualization. For example, VMX
provides page-fault error-code mask and match fields in
the VMCS to filter VM exits due to page-faults based
on their cause (reflected in the error-code). We use this
functionality so that the guest kernel directly get page
faults from user processes without causing a VM exit.
Note that the majority of page faults are from user pro-
cesses under practical workloads.

In addition, now the kernel runs in the ring 0 as the na-
tive, all the native protection and efficiency, including
paging-based protection and global pages, have been re-
turned back to the guest kernel.

6.2.2 Other Optimization Techniques

Since we can run the kernel in ring 0, all the optimiza-
tion techniques used by the native kernel have been back
to the kernel in hybrid-virtualization, including fast sys-
tem call.

6.3 Detecting Hybrid-Virtualization

The kernel needs to detect whether hybrid-virtualization
is available or not (i.e., on the native or unknown VMM
that does not support hybrid-virtualization). As we dis-
cussed, we use the CPUID (leaf 0x40000000, for exam-
ple) instruction. The leaf 0x40000000 is not defined on
the real hardware, and the kernel can reliably detect the
presence of hybrid-virtualization only in a virtual ma-
chine because the VMM can implement the capabilities
of the leaf 0x40000000.

6.4 Hypercall and Setup

Once the hybrid-virtualization capabilities are detected,
the kernel can inform the VMM of the address of the
page that requires the instruction stream for hypercalls
(called “hypercall page”). The request to the VMM is
done by writing the address to an MSR returned by the
CPUID instruction. Then the VMM actually writes the
instruction stream to the page, and then hypercalls will
be available via jumping to the hypercall page with the
arguments (indexed by the hypercall number).

6.5 Booting and Initialization

The hybrid-virtualization Linux uses the booting code
identical to the native at early boot time. It then switches
to the direct page table mode if hybrid-virtualization
is present. Until that point, the guest kernel needs to
use the existing shadow page table mode, and then it
switches to the direct page table mode upon a hypercall.

We implemented the SWITCH_MMU hypercall for
this purpose. Upon that hypercall, the VMM updates the
guest page tables so that they can contain host physical
address (rather than guest physical address) and write-
protect them. Upon completion of the hypercall, the
guest needs to use the set of hypercalls to update its page
tables, and those are seamlessly incorporated by the par-
avirt layer.

94 • Hybrid-Virtualization—Enhanced Virtualization for Linux

struct paravirt_ops
{
...

unsigned long (*read_cr3)(void);
void (*write_cr3)(unsigned long);

void (*flush_tlb_user)(void);
void (*flush_tlb_kernel)(void);
void (*flush_tlb_single)(unsigned long addr);

void (*alloc_pt)(unsigned long pfn);
void (*alloc_pd)(unsigned long pfn);

void (*release_pt)(unsigned long pfn);
void (*release_pd)(unsigned long pfn);

void (*set_pte)(pte_t *ptep, pte_t pteval);
void (*set_pte_at)(struct mm_struct *mm, ...
pte_t (*ptep_get_and_clear)(struct mm_struct *mm, ...

void (*set_pmd)(pmd_t *pmdp, pmd_t pmdval);
void (*set_pud)(pud_t *pudp, pud_t pudval);
void (*set_pgd)(pgd_t *pgdp, pgd_t pgdval);

void (*pte_clear)(struct mm_struct *mm, ...
void (*pmd_clear)(pmd_t *pmdp);
void (*pud_clear)(pud_t *pudp);
void (*pgd_clear)(pgd_t *pgdp);

unsigned long (*pte_val)(pte_t);
unsigned long (*pmd_val)(pmd_t);
unsigned long (*pud_val)(pud_t);
unsigned long (*pgd_val)(pgd_t);

pte_t (*make_pte)(unsigned long pte);
pmd_t (*make_pmd)(unsigned long pmd);
pud_t (*make_pud)(unsigned long pud);
pgd_t (*make_pgd)(unsigned long pgd);

};

Figure 4: The current paravirt_t structure for x86-64 hybrid-virtualization

6.6 Prototype

We implemented hybrid-virtualization x86-64 Linux
in Xen, starting from full-virtualization in hardware-
assisted virtualization, porting the x86 paravirt (with
significant reduction).

We used the existing Xen services for the following:

• I/O devices – virtual block device and network de-
vice front-end drivers.

• Timer

• Idle handling

• Interrupt controller

Since the x86-64 Linux uses 2MB pages for the ker-
nel mapping and the current Xen does not support large
pages, we needed to add the level 1 pages (page tables)
in the kernel code so that SWITCH_MMU hypercall
can work.

We also reused the code for x86-64 XenLinux virtual
MMU code for the paravirt MMU.

2007 Linux Symposium, Volume Two • 95

0

2

4

6

8

10

12

nu
ll c

al
l

nu
ll I

/O sta
t

op
en

/cl
os

e

sig
 in

st

sig
 h
nd

l

u
se

c

para domU

hybrid

KVM

0

1000

2000

3000

4000

5000

6000

7000

fork proc exec proc sh proc

u
se

c

para domU

hybrid

KVM

Figure 5: Preliminary Micro-benchmark Results (lm-
bench)

7 Performance

Although the cost of hypercalls are slightly higher in
hybrid-virtualization, hybrid-virtualization is more effi-
cient than software-only para-virtualization because of
the retained optimization techniques in the native ker-
nel. In fact, hybrid-virtualization showed the equivalent
performance with kernel build, compared with software-
only para-virtualization, which has near-native perfor-
mance for that workload.

For micro-benchmarks, hybrid-virtualization showed

visible performance improvements. Figure 5 shows pre-
liminary results. “para-domU” is x86-64 XenLinux with
software-only para-virtualization, and “hybrid” is the
one with hybrid-virtualization. “KVM” is x86-64 Linux
running on the latest release (kvm-24, as of today). The
smaller are the better, and the absolute numbers are not
so relevant.

As of today, we are re-measuring the performance us-
ing the latest processors, where we believe the cost of
hypercalls are even lower.

8 Conclusion

The hybrid-virtualization is able to combine advantages
from both the hardware assisted full virtualization and
software-only para-virtualization. The initial prototype
results also show performance close to software-only
para-virtualization. This also provides the added ben-
efit that the same kernel can run under native machines.

Acknowledgment

We would like to thank Andi Kleen and Ingo Molnar for
reviewing this paper and providing many useful com-
ments.

Xin Li and Qing He from Intel also have been working
on the development of hybrid-virtualization Linux.

References

[1] Virtual Machine Interface (VMI) Specifications.
http://www.vmware.com/interfaces/
vmi_specs.html.

[2] Y. Dong, S. Li, A. Mallick, J. Nakajima, K. Tian,
X. Xu, F. Yang, and W. Yu. Extending Xen with
Intel R©Virtualization Technology. Auguest 2006.
http://www.intel.com/technology/
itj/2006/v10i3/.

[3] Ingo Molnar. KVM paravirtualization for Linux.
2007.
http://lkml.org/lkml/2007/1/5/205.

[4] Jun Nakajima, Asit Mallick, Ian Pratt, and Keir
Fraser. X86-64 XenLinux: Architecture,
Implementation, and Optimizations. In Preedings
of the Linux Symposium, July 2006.

96 • Hybrid-Virtualization—Enhanced Virtualization for Linux

[5] Ian Pratt, Keir Fraser, Steven Hand, Christian
Limpach, Andrew Warfield, Dan Magenheirmer,
Jun Nakajima, and Asit Mallick. Xen 3.0 and the
Art of Virtualization. In Preedings of the Linux
Symposium, July 2005.

[6] Qumranet. KVM: Kernel-based Virtualization
Driver. 2006. http:
//www.qumranet.com/wp/kvm_wp.pdf/.

[7] VMware. A Performance Comparison of
Hypervisors. 2007.
http://www.vmware.com/pdf/
hypervisor_performance.pdf/.

[8] XenSource. A Performance Comparison of
Commercial Hypervisors. 2007.
http://www.xensource.com/files/
hypervisor_performance_comparison_
1_0_5_with_esx-data.pdf/.

This paper is copyright c© 2007 by Intel. Redistribution rights
are granted per submission guidelines; all other rights are re-
served.

*Other names and brands may be claimed as the property of
others.

Readahead: time-travel techniques for desktop and embedded systems

Michael Opdenacker
Free Electrons

michael@free-electrons.com

Abstract

Readahead techniques have successfully been used to
reduce boot time in recent GNU/Linux distributions like
Fedora Core or Ubuntu. However, in embedded sys-
tems with scarce RAM, starting a parallel thread read-
ing ahead all the files used in system startup is no longer
appropriate. The cached pages could be reclaimed even
before accessing the corresponding files.

This paper will first guide you through the heuristics
implemented in kernelspace, as well as through the
userspace interface for preloading files or just announc-
ing file access patterns. Desktop implementations will
be explained and benchmarked. We will then detail Free
Electrons’ attempts to implement an easy to integrate
helper program reading ahead files at the most appropri-
ate time in the execution flow.

This paper and the corresponding presentation target
desktop and embedded system developers interested in
accelerating the course of Time.

1 Reading ahead: borrowing time from the fu-
ture

1.1 The page cache

Modern operating system kernels like Linux manage
and optimize file access through the page cache. When
the same file is accessed again, no disk I/O is needed
if the file contents are still in the page cache. This dra-
matically speeds up multiple executions of a program or
multiple accesses to the same data files.

Of course, the performance benefits depend on the
amount of free RAM. When RAM gets scarce because
of allocations from applications, or when the contents
of more files have to be loaded in page cache, the kernel
has to reclaim the oldest pages in the page cache.

1.2 Reading ahead

The idea of reading ahead is to speed up the access to
a file by preloading at least parts of its contents in page
cache ahead of time. This can be done when spare I/O
resources are available, typically when tasks keep the
processor busy. Of course, this requires the ability to
predict the future!

Fortunately, the systems we are dealing with are pre-
dictable or even totally predictable in some situations!

• Predictions by watching file read patterns. If pages
are read from a file in a sequential manner, it makes
sense to go on reading the next blocks in the file,
even before these blocks are actually requested.

• System startup. The system init sequence doesn’t
change. The same executables and data files are al-
ways read in the same order. Slight variations can
still happen after a system upgrade or when the sys-
tem is booted with different external devices con-
nected to it.

• Applications startup. Every time a program is run,
the same shared libraries and some parts of the
program file are always loaded. Then, many pro-
grams open the same resource or data files at sys-
tem startup. Of course, file reading behaviour is
still subject to changes, according to how the pro-
gram was started (calling environment, command
arguments. . .).

If enough free RAM is available, reading ahead can
bring the following benefits:

• Of course, reduced system and application startup
time.

• 97 •

98 • Readahead: time-travel techniques for desktop and embedded systems

• Improved disk throughput. This can be true for
storage devices like hard disks which incur a high
time cost moving the disk heads between random
sectors. Reading ahead feeds the I/O scheduler
with more I/O requests to manage. This sched-
uler can then reorder requests in a more efficient
way, grouping a greater number of contiguous disk
blocks, and reducing the number of disk head
moves. This is much harder to do when disk blocks
are just read one by one.

• Better overall utilization for both I/O and proces-
sor resources. Extra file I/O is performed when the
processor is busy. Context switching, which costs
precious CPU cycles, is also reduced when a pro-
gram no longer needs to sleep waiting for I/O, be-
cause the data it is requesting have already been
fetched.

2 Kernel space readahead

2.1 Implementation in stock kernels

The description of the Linux kernel readahead mecha-
nism is based on the latest stable version available at the
time of this writing, Linux 2.6.20.

When the kernel detects sequential reading on a file, it
starts to read the next pages in the file, hoping that the
running process will go on reading sequentially.

As shown in Figure 1, the kernel implements this by
managing two read windows: the current and ahead
one,

While the application is walking the pages in the current
window, I/O is underway on the ahead window. When
the current window is fully traversed, it is replaced by
the ahead window. A new ahead window is then created,
and the corresponding batch of I/O is submitted.

This way, if the process continues to read sequentially,
and if enough free memory is available, it should never
have to wait for I/O.

Of course, any seek or random I/O turns off this reada-
head mode.

The kernel actually checks how effective reading ahead
is to adjust the size of the new ahead window. If a
page cache miss is encountered, it means that some of

its pages were reclaimed before being accessed by the
process. In this case, the kernel reduces the size of
the ahead window, down to VM_MIN_READAHEAD (16
KB). Otherwise, the kernel increases this size, up to
VM_MAX_READAHEAD (128 KB).

The kernel also keeps track of page cache hits, to de-
tect situations in which the file is partly or fully in page
cache. When this happens, readahead is useless and
turned off.

Implementation details can be found in the mm/

readahead.c file in the kernel sources.1

The initial readahead implementation in Linux 2.6 is
discussed in the 2004 proceedings [7] of the Ottawa
Linux Symposium.

2.2 Adaptive readahead patches

Many improvements to the kernel readahead mecha-
nism have been proposed by Wu Fengguang through the
Adaptive readahead patchset, since September 2005 (as
announced on this LWN article [1].

In addition to the standard sequential reading scenario,
this patchset also supports:

• a readahead window which can grow up to 1 MB,
depending on the application behaviour and avail-
able free memory

• parallel / interleaved sequential scans on one file

• sequential reads across file open/close

• mixed sequential / random accesses

• sparse / skimming sequential read

• backward sequential reading

• delaying readahead if the drive is spinned down in
laptop mode

At the time of this writing the latest benchmarks [3]
show access time improvements in most cases.

This patchset and its ideas will be described in detail
by Wu Fengguang himself at this 2007 edition of the
Ottawa Linux Symposium.

1A very convenient way of studying kernel source files is using a
Linux Cross Reference (LXR) website indexing the kernel sources,
such as http://lxr.free-electrons.com.

2007 Linux Symposium, Volume Two • 99

Current

read offset

When this page is reached:

- the ahead window becomes the current one

- a new ahead window is created

(possibly shorter or larger)

Current read window

(already read ahead)

Offset in the open file

(scale: pages)

Ahead read window

(reading ahead in progress)

Figure 1: Stock kernel implementation

3 User-space readahead interface

We’ve seen how the kernel can do its best to predict the
future from recent and present application behaviour, to
improve performance.

However, that’s about all a general purpose kernel can
predict. Fortunately, the Linux kernel allows userspace
to let it know its own predictions. Several system call
interfaces are available.

3.1 The readahead system call

#include <fcntl.h>

ssize_t readahead(
int fd,
off64_t *offset,
size_t count);

Given an open file descriptor, this system call allows ap-
plications to instruct the kernel to readahead a given seg-
ment in the file.

Though any offset and count parameters can be
given, I/O is performed in whole pages. So offset
is rounded down to a page boundary and bytes are read
up to the first page boundary greater than or equal to
offset+count.

Note that readahead blocks until all data have been
read. Hence, it is typically called from a parallel thread.

See the manual page for the readahead system call
[6] for details.

3.2 The fadvise system call

Several variants of this system call exist, depending
on your system or GNU/Linux distribution: posix_
fadvise, fadvise64, fadvise64_64.

They all have the same prototype though:

#define _XOPEN_SOURCE 600
#include <fcntl.h>

int posix_fadvise(
int fd,
off_t offset,
off_t len,
int advice);

Programs can use this system call to announce an in-
tention to access file data in a specific pattern in the fu-
ture, thus allowing the kernel to perform appropriate op-
timizations.

Here is how the Linux kernel interprets the possible set-
tings for the advice argument:

POSIX_FADV_NORMAL: use the default readahead
window size.

POSIX_FADV_SEQUENTIAL: sequential access
with increasing file offsets. Double the readahead
window size.

POSIX_FADV_RANDOM: random access. Disable
readahead.

100 • Readahead: time-travel techniques for desktop and embedded systems

POSIX_FADV_WILLNEED: the specified data will be
accessed in the near future. Initiate a non-blocking
read of the specified region into the page cache.

POSIX_FADV_NOREUSE: similar, but the data will
just be accessed once.

POSIX_FADV_DONTNEED: attempts to free the
cached pages corresponding to the specified region,
so that more useful cached pages are not discarded
instead.

Note that this system call is not binding: the kernel is
free to ignore the given advise.

Full details can be found on the manual page for
posix_fadvise [5].

3.3 The madvise system call

#include <sys/mman.h>

int madvise(
void *start,
size_t length,
int advice);

The madvise system call is very similar to fadvise,
but it applies to the address space of a process.

When the specified area maps a section of a file,
madvise information can be used by the kernel to
readahead pages from disk or to discard page cache
pages which the application will not need in the near
future.

Full details can be found on the manual page for
madvise [4].

3.4 Recommended usage

As the readahead system call is binding, application
developers should use it with care, and prefer fadvise
and madvise instead.

When multiple parts of a system try to be smart and
consume resources while being oblivious to the others,
this often hurts overall performance. After all, resource
management is the kernel’s job. It can be best to let it
decide what to do with the hints it receives from multi-
ple sources, balancing the resource needs they imply.

4 Implementations in GNU/Linux distribu-
tions

4.1 Ubuntu

Readahead utilities are released through the
readahead package. The following description
is based on Ubuntu 6.10 (Edgy).

Reading ahead is started early in the system startup
by the /etc/init.d/readahead init script. This
script mainly calls the /sbin/readahead-list
executable, taking as input the /etc/readahead/
boot file, which contains the list of files to readahead,
one per line.

readahead-list is of course started as a daemon,
to proceed as a parallel thread while other init scripts
run. readahead-list doesn’t just readahead each
specified file one by one, it also orders them first.

Ordering files is an attempt to read them in the most
efficient way, minimizing costly disk seeks. To order
two files, their device numbers are first compared. When
their device numbers are identical, this means that they
belong to the same partition. The numbers of their first
block are then compared, and if they are identical, their
inode numbers are eventually compared.

The readahead-list package carries another util-
ity: readahead-watch. It is used to create or update
the list of files to readahead by watching which files are
accessed during system startup.

readahead-watch is called from /etc/init.d/
readahead when the profile parameter is given in
the kernel command line. It starts watching for all files
that are accessed, using the inotify [8] system call.
This is a non trivial task, as inotify watches have to
be registered for each directory (including subdirecto-
ries) in the system.

readahead-watch eventually gets stopped by the
/etc/init.d/stop-readahead script, at the
very end of system startup. It intercepts this signal and
creates the /etc/readahead/boot file.

For the reader’s best convenience, C source code for
these two utilities and a copy of /etc/readahead/
boot can be found on http://free-electrons.
com/pub/readahead/ubuntu/6.10/.

2007 Linux Symposium, Volume Two • 101

4.2 Fedora Core

Readahead utilities are released through the
readahead package. The following description
is based on Fedora Core 6.

The readahead executable is /usr/sbin/readahead.
Its interface and implementation are similar. It also sorts
files in order to minimize disk seeks, with more sophis-
ticated optimizations for the ext2 and ext3 filesystems.

A difference with Ubuntu is that there are two reada-
head init scripts. The first one is /etc/init.d/

readahead_early, which is one of the first scripts
to be called. It preloads files listed in /etc/
readahead.d/default.early, corresponding to
libraries, executables, and files used by services started
by init scripts. The second script, /etc/init.
d/readahead_later, is one of the last executed
scripts. It uses /etc/readahead.d/default.
later, which mainly corresponds to files used by the
graphical desktop and user applications in general.

Another difference with Ubuntu is that the above lists
of files are constant and are not automatically generated
from application behaviour. They are just shipped in
the package. However, the readahead-check util-
ity (available in package sources) can be used to gener-
ate these files from templates and check for nonexistent
files.

Once more, the readahead.c source code
and a few noteworthy files can be found on
http://free-electrons.com/pub/
readahead/fedora-core/6/.

4.3 Benchmarks

The below benchmarks compare boot time with and
without readahead on Ubuntu Edgy (Linux 2.6.17-11,
with all updates as of Apr. 12, 2007), and on Fedora
Core 6 (2.6.18-1.2798.fc6, without any updates).

Boot time was measured by inserting an init script which
just copies /proc/uptime to a file. This script was
made the very last one to be executed.

/proc/uptime contains two figures: the raw uptime
in seconds, and the amount of time spent in the idle loop,
meaning the CPU was waiting for I/O before being able
to do anything else.

Disabling readahead was done by renaming the
/sbin/readahead-list (Ubuntu) or /usr/sbin/

readahead programs, so that readahead init scripts
couldn’t find them any more and exited at the very be-
ginning.

The Fedora Core 6 results are surprising. An explana-
tion is that readahead file lists do not only include files
involved in system startup, but also files needed to start
the desktop and its applications. Fedora Core readahead
is thus meant to reduce the execution time of programs
like Firefox or Evolution!

As a consequence, Fedora Core is reading ahead
much more files than needed (even if we disable the
readahead-later step) and it reaches the login
screen later than if readahead was not used. The even-
tual benefits in the time to run applications should still
be real. However, they are more difficult to measure.

4.4 Shortcomings

The readahead implementations that we have just cov-
ered are fairly simple, but not perfect though.

4.4.1 Reading entire files

A first limitation is that these implementations always
preload entire files, while the readahead system call
allows to fetch only specific sections in files.

It’s true that it can make sense to assume that plain data
files used in system startup are often read in their en-
tirety. However, this is not true at all with executa-
bles and shared libraries, for which each page is loaded
only when it is needed. This mechanism is called de-
mand paging. When a program jumps to a section of
its address space which is not in RAM yet, a page fault
is raised by the MMU, and the kernel loads the corre-
sponding page from disk.

Using the top or ps commands, you can check that the
actual RAM usage of processes (RSS or RES) is much
smaller than the size of their virtual address space (VSZ
or VIRT).

So, it is a waste of I/O, time, and RAM to load pages in
executables and shared libraries which will not be used
anyway. However, as we will see in the next section,
demand paging is not trivial to trace from userspace.

102 • Readahead: time-travel techniques for desktop and embedded systems

boot time idle time
Ubuntu Edgy without readahead average: 48.368 s average: 29.070 s

std deviation: 0.153 std deviation: 0.281
Ubuntu Edgy with readahead average: 39.942 s (-17.4 %) average: 22.3 s (-23.3 %)

std deviation: 1.296 std deviation: 0.271
Fedora Core 6 without readahead average: 50.422 s average: 28.302 s

std deviation: 0.496 std deviation: 0.374
Fedora Core 6 with readahead average: 59.858 s (+18.7 %) average: 35.446 (+20.2 %)

std deviation: 0.552 std deviation: 0.312

Table 1: Readahead benchmarks on Ubuntu Edgy and Fedora Core 6

4.4.2 Reading ahead too late

Another limitation comes from reading ahead all files in
a row, even the ones which are needed at the very end of
system startup.

We’ve seen that files are preloaded according to their
location on the disk, and not according to when they are
used in system startup. Hence, it could happen that a
file needed by a startup script is accessed before it is
preloaded by the readahead thread.

5 Implementing readahead in embedded sys-
tems

5.1 Embedded systems requirements

Embedded systems have specific features and require-
ments which make desktop implementations not com-
pletely appropriate for systems with limited resources.

The main constraint, as explained before, is that free
RAM can be scarce. It is no longer appropriate to
preload all the files in a row, because some of the reada-
head pages are likely to be reclaimed before being used.
As a consequence, a requirement is to readahead files
just a little while before they are used.

Therefore, files should be preloaded according to the or-
der in which they are accessed. Moreover, most embed-
ded systems use flash instead of disk storage. There is
no disk seek cost accessing random blocks on storage.
Ordering files by disk location is futile.

Still because of the shortness of free RAM, is it also a
stronger requirement to preload only the portions of the
files which are actually accessed during system startup.

Last but not least, embedded systems also require simple
solutions which can translate in lightweight programs
and in low cpu usage.

5.2 Existing implementations

Of course, it is possible to reuse code from readahead
utilities found in GNU/Linux distributions, to readahead
a specific list of files.

Another solution is to use the readahead applet that
we added to the Busybox toolset (http://busybox.
net), which is used in most embedded systems. Thanks
to this applet, developers can easily add readahead com-
mands to their startup scripts, without having to compile
a standalone tool.

5.3 Implementation constraints and plans

Updates, code, benchmarks, and documentation will be
available through our readahead project page [2].

5.3.1 Identifying file access patterns

It is easy to identify files which are accessed during
startup, either by using inotify or by checking the
atime attribute of files (last access time, when this fea-
ture is not disabled at mount time). However, it is much
more difficult to trace which sections are accessed in a
given file.

When the file is just accessed, not executed, it is still
possible to trace the open, read, seek, and close

2007 Linux Symposium, Volume Two • 103

system calls and deduce which parts of each file are ac-
cessed. However, this is difficult to implement.2

Anyway, when the file is executed (in the case of a pro-
gram or a shared library), there doesn’t seem to be any
userspace interface to keep track of accessed file blocks.
It is because demand paging is completely transparent
to processes.

That’s why we started to implement a kernel patch to
log all file reads (at the moment by tracing calls to the
vfs_read function), and demand paging activity (by
getting information from the filemap_nopage func-
tion). This patch also tracks exec system calls, by
watching the open_exec function, for reasons that we
will explain in the next section.

This patch logs the following pieces of information for
each accessed file:

• inode number,

• device major and minor numbers,

• offset,

• number of bytes read.

Code and more details can be found on our project
page [2].

At the time of this writing, this patch is just meant to as-
sess the usefulness of reading ahead only the used sec-
tions in a file. If this proves to be profitable, a clean,
long term solution will be investigated with the Linux
kernel development community.

5.3.2 Postprocessing the file access dump

We are developing a Python script to postprocess file
access information dumped from the kernel.

2Even tracing these system calls is difficult. System call tracing
is usually done on a process and its children with the strace com-
mand or with the ptrace system call that it uses. The problem is
that ptrace cannot be used for the init process, which would
have allowed tracing on all running processes at once.

Another, probably simpler solution would be to use C library in-
terposers, wrappers around the C library functions used to execute
system calls.

The main need is to translate inode and device num-
bers into file paths, as the kernel doesn’t know about
file names.

This is done by identifying the filesystem the inode be-
long to thanks to major and minor number information.
Then, each filesystem containing one of our files is ex-
haustively traversed to build a lookup table allowing to
find a file path for a given inode.

Of course, this can be very costly, but neither data gath-
ering nor this postprocessing is meant to be run on a
production system. This will only be done once during
development.

5.3.3 Improving readahead in GNU/Linux distri-
butions

Our first experiment will be to make minor changes to
the utilities used in GNU/Linux distributions, so that
they can process files lists also specifying which parts
to readahead in each file.

5.3.4 Towards a generic and efficient implementa-
tion

While preloading the right file sections is easy once file
access information is available, another requirement is
to perform readahead at the right time in the execution
flow. As explained before, reading ahead mustn’t hap-
pen too early, and mustn’t happen too late either.

Once more, the challenge is to predict the future by us-
ing knowledge about the past.

A very basic approach would be to collect time informa-
tion together with file access data. However, such infor-
mation wouldn’t be very useful to trigger readahead at
the right time, as reading ahead accelerates time. Fur-
thermore, as processes spend less time waiting for I/O,
the exact ordering of process execution can be altered.

Thus, what is needed is a way to follow the progress
of system startup, and to match the actual events with
recorded ones.

A simple idea is to use inotify to get access notifi-
cations for executables involved in system startup, and
match these notifications with recorded exec calls.

104 • Readahead: time-travel techniques for desktop and embedded systems

Present

Previous readahead window: 1 MB

of data access recorded after event10.

New readahead window: 1 MB

of data access recorded after event11.

event11: second

execution

of /bin/grep.

event10: first

execution of

/sbin/ifconfig.

Past Future

event12: first

execution of

/usr/bin/dillo

Figure 2: Proposed readahead implementation

This would be quite easy to implement, as this would
just involve a list of files, without having to register re-
cursive directory based notifications.

As shown in the example in Figure 2, our idea is to man-
age readahead windows of a given data size. In this ex-
ample, when event11 is recognized, we create a new
readahead window starting from this event, correspond-
ing to 1 MB of recorded disk access starting from this
event.

Actually, we would only need to start new readahead
I/O from the end of the previous window to the end of
the new one. This assumes that the window size is large
enough to extend beyond the next event. Otherwise, if
readahead windows didn’t overlap, there would be parts
of the execution flow with no readahead at all.

Within a given window, before firing readahead I/O, we
would of course need to remove any duplicate read oper-
ations, as well as to merge consecutive ones into single
larger ones.

Here are the advantages of this approach:

• Possibility to readahead the same blocks multiple
times in the execution flow. This covers the possi-
bility that these blocks are no longer in page cache.

• For each specific system, possibility to tune the
window size according to the best achieved results.

• The window size could even be dynamically in-
creased, to make sure it goes beyond the next
recorded event.

• If window size is large enough, we expect it to
compensate for actual changes in the order of
events.

5.3.5 Open issues

Several issues have not been addressed yet in this
project.

In particular, we would need a methodology to support
package updates in standard distributions. Would file
access data harvesting be run again whenever a package
involved in system startup is updated? Or should each
package carry its own readahead information, requiring
a more complex package development process?

5.4 Conclusion

Though the proposed ideas haven’t been fully im-
plemented and benchmarked yet, we have identified
promising opportunities to reduce system startup time,
in a way that both meets the requirements of desktop
and embedded Linux systems.

2007 Linux Symposium, Volume Two • 105

If you are interested in this topic, stay tuned on the
project page [2], join the presentation at OLS 2007, dis-
cover the first benchmarks on embedded and desktop
systems, and share your experience and ideas on accel-
erating the course of Time.

References

[1] Jonathan Corbet. Lwn article: Adaptive file
readahead.
http://lwn.net/Articles/155510/,
October 2005.

[2] Free Electrons. Advanced readahead project.
http://free-electrons.com/
community/tools/readahead/.

[3] WU Fenguang. Linux kernel mailing list: Adaptive
readahead v16 benchmarks.
http://lkml.org/lkml/2006/11/25/7,
November 2006.

[4] Linux Manual Pages. madvise(2) - linux man page.
http://www.die.net/doc/linux/man/
man2/madvise.2.html.

[5] Linux Manual Pages. posix_fadvise(2) - linux man
page. http://www.die.net/doc/linux/
man/man2/posix_fadvise.2.html.

[6] Linux Manual Pages. readahead(2) - linux man
page. http://www.die.net/doc/linux/
man/man2/readahead.2.html.

[7] Ram Pai, Badari Pulavarty, and Mingming Cao.
Linux 2.6 performance improvement through
readahead optimization. In Ottawa Linux
Symposium (OLS), 2004. http://www.
linuxsymposium.org/proceedings/
reprints/Reprint-Pai-OLS2004.pdf.

[8] Wikipedia. inotify. http:
//en.wikipedia.org/wiki/Inotify.

106 • Readahead: time-travel techniques for desktop and embedded systems

Semantic Patches
Documenting and Automating Collateral Evolutions in Linux Device Drivers

Yoann Padioleau
EMN

padator@wanadoo.fr

Julia L. Lawall
DIKU

julia@diku.dk

Gilles Muller
EMN

Gilles.Muller@emn.fr

1 Introduction

Device drivers form the glue code between an operat-
ing system and its devices. In Linux, device drivers
are highly reliant for this on the various Linux internal
libraries, which encapsulate generic functionalities re-
lated to the various busses and device types. In recent
years, these libraries have been evolving rapidly, to ad-
dress new requirements and improve performance. In
response to each evolution, collateral evolutions are of-
ten required in driver code, to bring the drivers up to
date with the new library API. Currently, collateral evo-
lutions are mostly done manually. The large number
of drivers, however, implies that this approach is time-
consuming and unreliable, leading to subtle errors when
modifications are not done consistently.

To address this problem, we propose a scripting lan-
guage for specifying and automating collateral evolu-
tions. This language offers a WYSIWYG approach to
program transformation. In the spirit of Linux develop-
ment practice, this language is based on the patch syn-
tax. As opposed to traditional patches, our patches are
not line-oriented but semantics-oriented, and hence we
give them the name semantic patches.

This paper gives a tutorial on our semantic patch lan-
guage, SmPL, and its associated transformation tool,
spatch. We first give an idea of the kind of pro-
gram transformations we target, collateral evolutions,
and then present SmPL using an example based on
Linux driver code. We then present some further exam-
ples of evolutions and collateral evolutions that illustrate
other issues in semantic patch development. Finally, we
describe the current status of our project and propose
some future work. Our work is directed mainly to de-
vice driver maintainers, library developers, and kernel
janitors, but anyone who has ever performed a repetitive
editing task on C code can benefit from it.

2 Evolutions and Collateral Evolutions

The evolutions we consider are those that affect a library
API. Elements of a library API that can be affected in-
clude functions, both those defined by the library and
the callback functions that the library expects to receive
from a driver, global variables and constants, types, and
macros. A library may also implicitly specify rules for
using these elements. Many kinds of changes in the API
can result from an evolution that affect one of these el-
ements. For example, functions or macros can change
name or gain or lose arguments. Structure types can be
reorganized and accesses to them can be encapsulated in
getter and setter functions. The protocol for using a se-
quence of functions, such as up and down can change,
as can the protocol for when error checking is needed
and what kind of error values should be returned.

Each of these changes requires corresponding collateral
evolutions, in all drivers using the API. When a func-
tion or macro changes name, all callers need to be up-
dated with the new name. When a function or macro
gains or loses arguments, new argument values have to
be constructed and old ones have to be dropped in the
driver code, respectively. When a structure type is re-
organized, all drivers accessing affected fields of that
structure have to be updated, either to perform the new
field references or to use any introduced getter and setter
functions. Changes in protocols may require a whole se-
quence of modifications, to remove the old code and in-
troduce the new. Many of these collateral evolutions can
have a non-local effect, as, for example, changing a new
argument value may trigger a whole set of new compu-
tations, and changing a protocol may require substantial
code restructuring. The interaction of a driver with the
API may furthermore include some device-specific as-
pects. Thus, these changes have to be mapped onto the
structure of each affected driver file.

We have characterized evoluations and collateral evolu-

• 107 •

108 • Semantic Patches

tions in more detail, including numerous examples, in a
paper at EuroSys 2006 [1].

3 Semantic Patch Tutorial

In this section, we describe SmPL (Semantic Patch Lan-
guage), our language for writing semantic patches. To
motivate the features of SmPL, we first consider a mod-
erately complex collateral evolution that raises many
typical issues. We then present SmPL in terms of this
example.

3.1 The “proc_info” evolution

As an example, we consider an evolution and associated
collateral evolutions affecting the SCSI API functions
scsi_host_hn_get and scsi_host_put. These
functions access and release, respectively, a structure of
type Scsi_Host, and additionally increment and decre-
ment, respectively, a reference count. In Linux 2.5.71, it
was decided that, due to the criticality of the reference
count, driver code could not be trusted to use these func-
tions correctly and they were removed from the SCSI
API [2].

This evolution had collateral effects on the “proc_info”
callback functions defined by SCSI drivers, which call
these API functions. Figure 1 shows a slightly sim-
plified excerpt of the traditional patch file updating
the proc_info function of drivers/usb/storage/

scsiglue.c. Similar collateral evolutions were per-
formed in Linux 2.5.71 in 18 other SCSI driver files in-
side the kernel source tree. To compensate for the re-
moval of scsi_host_hn_get and scsi_host_put,
the SCSI library began in Linux 2.5.71 to pass to these
callback functions a Scsi_Host-typed structure as an
argument. Collateral evolutions were then needed in all
the proc_info functions to remove the calls to scsi_

host_hn_get (line 19 for the scsiglue.c driver),
and scsi_host_put (lines 27 and 42), and to add the
new argument (line 4). Those changes in turn entailed
the removal of a local variable (line 11) and of null-
checking code (line 20-22), as the library is assumed
not to call the proc_info function on a null value. Fi-
nally, one of the parameters of the proc_info function
was dropped (line 6) and every use of this parameter was
replaced by a field access (line 33) on the new structure
argument.

0 --- a/drivers/usb/storage/scsiglue.c
1 +++ b/drivers/usb/storage/scsiglue.c
2 @@ -264,33 +300,21 @@
3 -static int usb_storage_proc_info (
4 +static int usb_storage_proc_info (struct Scsi_Host *hostptr,
5 char *buffer, char **start, off_t offset,
6 - int hostno, int inout)
7 + int inout)
8 {
9 struct us_data *us;
10 char *pos = buffer;
11 - struct Scsi_Host *hostptr;
12 unsigned long f;
13
14 /* if someone is sending us data, just throw it away */
15 if (inout)
16 return offset;
17
18 - /* find our data from the given hostno */
19 - hostptr = scsi_host_hn_get(hostno);
20 - if (!hostptr) {
21 - return -ESRCH;
22 - }
23 us = (struct us_data*)hostptr->hostdata[0];
24
25 /* if we couldn’t find it, we return an error */
26 if (!us) {
27 - scsi_host_put(hostptr);
28 return -ESRCH;
29 }
30
31 /* print the controller name */
32 - SPRINTF(" Host scsi%d: usb-storage\n", hostno);
33 + SPRINTF(" Host scsi%d: usb-storage\n", hostptr->host_no);
34 /* print product, vendor, and serial number strings */
35 SPRINTF(" Vendor: %s\n", us->vendor);
36
37 @@ -318,9 +342,6 @@
38 *(pos++) = ’\n’;
39 }
40
41 - /* release the reference count on this host */
42 - scsi_host_put(hostptr);
43
44 /*
45 * Calculate start of next buffer, and return value.
46

Figure 1: Simplified excerpt of the patch file from Linux
2.5.70 to Linux 2.5.71

Of the possible API changes identified in Section 2, this
example illustrates the dropping of two library functions
and changes in the parameter list of a callback function.
These changes have non-local effects in the driver code,
as the context of the dropped call to scsi_host_hn_

get must change as well, to eliminate the storage of the
result and the subsequent error check, and the value of
the dropped parameter must be reconstructed wherever
it is used.

3.2 A semantic patch, step by step

We now describe the semantic patch that will perform
the previous collateral evolutions, on any of the 19 rel-
evant files inside the kernel source tree, and on any rel-
evant drivers outside the kernel source tree. We first
describe step-by-step various excerpts of this semantic

2007 Linux Symposium, Volume Two • 109

patch, and then present its complete definition in Sec-
tion 3.3.

3.2.1 Modifiers

The first excerpt adds and removes the affected parame-
ters of the proc_info callback function:

proc_info_func (
+ struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset,
- int hostno,

int inout) { ... }

Like a traditional patch, a semantic patch consists of a
sequence of lines, some of which begin with the modi-
fiers + and - in the first column. These lines are added
or removed, respectively. The remaining lines serve as
context, to more precisely identify the code that should
be modified.

Unlike a traditional patch, a semantic patch must have
the form of a complete C-language term (an expres-
sion, a statement, a function definition, etc.). Here we
are modifying a function, so the semantic patch has the
form of a function definition. Because our only goal
at this point is to modify the parameter list, we do not
care about the function body. Thus, we have represented
it with “...”. The meaning and use of “...” are de-
scribed in more detail in Section 3.2.4.

Because of the wide range of possible collateral evo-
lutions, as described in Section 2, collateral evolutions
may affect almost any C constructs, such as structures,
initializers, function parameters, if statements, in many
different ways. SmPL, for flexibility, allows to write al-
most any C code in a semantic patch and to annotate
freely any part of this code with the + and - modifiers.
The combination of the unannotated context code with
the - code and the combination of the unannotated con-
text code with the + code must, however, each have the
form of valid C code, to ensure that the pattern described
by the former can match against valid driver code and
that the transformation described by the latter will pro-
duce valid C code as a result.

Another difference as compared to a traditional patch is
that the meaning of a semantic patch is insensitive to
newlines, spaces, comments, etc. Thus, the above se-
mantic patch will match and transform driver code that

has the parameters of the proc_info function all on the
same line, spread over multiple lines as in scsiglue.c,
or separated by comments. We have split the seman-
tic patch over four lines only to better highlight what is
added and removed. We could have equivalently written
it as:

- proc_info_func(char *buffer, char **start, off_t offset,
- int hostno, int inout)
+ proc_info_func(struct Scsi_Host *hostptr, char *buffer,
+ char **start, off_t offset, int inout)

{ ... }

To apply this semantic patch, it should be stored in a
file, e.g., procinfo.spatch. It can then be applied to
e.g. the set of C files in the current directory using our
spatch tool:
spatch *.c < procinfo.spatch.

3.2.2 Metavariables

A traditional patch, like the one in Figure 1, describes
a transformation of a specific set of lines in a specific
driver. This specificity is due to the fact that a patch
hardcodes some information, such as the name of the
driver’s proc_info callback function. Thus a separate
patch is typically needed for every driver. The goal of
SmPL on the other hand is to write a generic semantic
patch that can transform all the relevant drivers, accom-
modating the variations among them. In this section and
the following ones we describe the features of SmPL
that make a semantic patch generic.

In the excerpt of the previous section, the reader may
have wondered about the name proc_info_func,
which indeed does not match the name of the scsiglue
proc_info function, as shown in Figure 1, lines 3 and 4,
or the names of any of the proc_info functions in the
kernel source tree. Furthermore, the names of the pa-
rameters are not necessarily buffer, start, etc.; in
particular, the introduced parameter hostptr is some-
times called simply host. To abstract away from these
variations, SmPL provides metavariables. A metavari-
able is a variable that matches an arbitrary term in the
driver source code. Metavariables are declared before
the patch code specifying the transformation, between
two @@s, borrowing the notation for delimiting line
numbers in a traditional patch (Figure 1, lines 2 and
37). Metavariables are designated as matching terms of
a specific kind, such as an identifier, expression,

110 • Semantic Patches

or statement, or terms of a specific type, such as int
or off_t. We call the combination of the declaration of
a set of metavariables and a transformation specification
a rule.

Back to our running example, the previous excerpt is
made into a rule as follows:

@@
identifier proc_info_func;
identifier buffer, start, offset, inout, hostno;
identifier hostptr;
@@

proc_info_func (
+ struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset,
- int hostno,

int inout) { ... }

This code now amounts to a complete, valid semantic
patch, although it still only performs part of our desired
collateral evolution.

3.2.3 Multiple rules and inherited metavariables

The previous excerpt matches and transforms any func-
tion with parameters of the specified types. A proc_info
function, however, is one that has these properties and
interacts with the SCSI library in a specific way, namely
by being provided by the driver to the SCSI library on
the proc_info field of a SHT structure (for SCSI Host
Template), which from the point of view of the SCSI li-
brary represents the device. To specify this constraint,
we define another rule that identifies any assignment to
such a field in the driver file. SmPL allows a semantic
patch to define multiple rules, just as a traditional patch
contains multiple regions separated by @@. The rules are
applied in sequence, with each of them being applied to
the entire source code of the driver. In our example we
thus define one rule to identify the name of the callback
function and another to transform its definition, as fol-
lows:

@ rule1 @
struct SHT ops;
identifier proc_info_func;
@@

ops.proc_info = proc_info_func;

@ rule2 @
identifier rule1.proc_info_func;
identifier buffer, start, offset, inout, hostno;
identifier hostptr;
@@

proc_info_func (
+ struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset,
- int hostno,

int inout) { ... }

In the new semantic patch, the metavariable proc_

info_func is defined in the first rule and referenced
in the second rule, where we expect it to have the same
value, which is enforced by spatch. In general, a rule
may declare new metavariables and inherit metavari-
ables from previous rules. Inheritance is explicit, in that
the inherited metavariable must be declared again in the
inheriting rule, and is associated with the name of the
rule from which its value should be inherited (the rule
name is only used in the metavariable declaration, but
not in the transformation specification, which retains the
form of ordinary C code). To allow this kind of inheri-
tance, we must have means of naming rules. As shown
in the semantic patch above, the name of a rule is placed
between the two @@s at the beginning of a metavariable
declaration. A name is optional, and is not needed if the
rule does not export any metavariables.

Note that the first rule does not perform any transforma-
tions. Instead, its only role is to bind the proc_info_
func metavariable to constrain the matching of the sec-
ond rule. Once a metavariable obtains a value it keeps
this value until the end of the current rule and in any sub-
sequent rules that inherit it. Metavariables thus not only
make a semantic patch generic by abstracting away from
details of the driver code, but also allow communicating
information and constraints from one part of the seman-
tic patch to another, e.g., from ’–’ code to ’+’ code, or
from one rule to another.

A metavariable may take on multiple values, if the rule
matches at multiple places in the driver code. If such a
metavariable is inherited, the inheriting rule is applied
once for each possible set of bindings of the metavari-
ables it inherits. For example, in our case, a driver
may set the proc_info field multiple times, to different
functions, in which case rule 2 would be applied multi-
ple times, for the names of each of them.

3.2.4 Sequences

So far, we have only considered the collateral evolutions
on the header of the proc_info function. But collateral
evolutions are needed in its body as well: deleting the

2007 Linux Symposium, Volume Two • 111

calls to scsi_host_hn_get and scsi_host_put,
deleting the local variable holding the result of calling
scsi_host_hn_get and the error checking code on
its value. The affected code fragments are scattered
throughout the body of the proc_info function and are
separated from each other by arbitrary code specific to
each SCSI driver. To abstract away from these irrel-
evant variations, SmPL provides the “...” operator,
which matches any sequence of code. Refining rule2 of
the semantic patch to perform these collateral evolutions
gives:

@ rule2 @
identifier rule1.proc_info_func;
identifier buffer, start, offset, inout, hostno;
identifier hostptr;
@@

proc_info_func (
+ struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset,
- int hostno,

int inout) {
...

- struct Scsi_Host *hostptr;
...

- hostptr = scsi_host_hn_get(hostno);
...

- if (!hostptr) { ... return ...; }
...

- scsi_host_put(hostptr);
...

}

The second rule of the semantic patch now has the
form of the definition of a function that first contains
a declaration of the hostptr variable, then a call to
the function scsi_host_hn_get, then an error check,
and finally a call to scsi_host_put sometime be-
fore the end. In practice, however, a proc_info func-
tion may e.g. contain many calls to scsi_host_put,
as illustrated by the scsiglue example (Figure 1,
lines 27 and 42). Closer inspection of the original
scsiglue source code, however, shows that at execu-
tion time, the driver only executes one or the other of
these calls to scsi_host_put, as the one on line 27
is only executed in an error case, and the one on line
42 is only executed in a non-error case. This is illus-
trated by Figure 2, which shows part of the control-
flow graph of the scsiglue proc_info function. Be-
cause the execution pattern declare/scsi_host_hn_
get/error-check/scsi_host_put is what must be fol-
lowed by every SCSI proc_info driver, it is this pattern
that the semantic patch should match against. The oper-
ator “...” thus matches paths in the control-flow graph
rather than an arbitrary block of code in the driver source

code. Thus, in practice, a single minus or plus line in
the semantic patch can delete or add multiple lines in
the source code of the driver.

The transformation specified in a rule is applied on
driver code only if the whole rule matches code,
not if only parts of the rule match code. Thus,
here, the rule only matches proc_info callback func-
tions having 5 parameters of the specified types, and
the sequence of instructions declare/scsi_host_hn_
get/error-check/scsi_host_put, and where these in-
structions share the use of the same variable, represented
in the semantic patch by the repeated use of the same
metavariable hostptr.

As said in the previous section, the repeated use of the
same metavariable, here hostptr, can serve multiple
purposes. First, it is used here to constrain some trans-
formations by forcing two pieces of code to be equal
in the driver code. So, for example, not all conditionals
will be removed in the driver, only those testing the local
structure returned by scsi_host_hn_get. Metavari-
ables are also used to move code from one place to an-
other. Here hostptr is used to move the matched local
variable name into the parameter list. Metavariables de-
clared as expression or statement can be used to
move more complex terms.

3.2.5 Nested Sequences

The last transformation concerning the proc_info func-
tion is the replacement of every reference to the dropped
hostno parameter by a field access. SmPL provides
the <... ...> operator to perform such universal
replacements. This operator is analogous to the /g op-
erator of Perl. In order to avoid having to consider how
references to hostno may interleave with the calls to
scsi_host_hn_get and scsi_host_put, etc., we
define a third rule that simply makes this transformation
everywhere it applies:

@ rule3 @
identifier rule1.proc_info_func;
identifier rule2.hostno;
identifier rule2.hostptr;
@@

proc_info_func(...) {
<...

- hostno
+ hostptr->host_no

...>
}

112 • Semantic Patches

...
��

hostptr = scsi_host_hn_get(hostno);

��
if (!hostptr)

ssfffffffffffffff
,,YYYYYYYYYYYY

,,
{

��
us = hostptr→...;

����
return -ESRCH;

��
if(!us)

rr ��
}

--

{

��
SPRINTF(...);

��
scsi_host_put(hostptr);

��

scsi_host_put(hostptr);

��
return -ESRCH;

��

...

oo

}

��
}

Figure 2: Simplified control-flow graph for part of Figure 1

Note that the operator “...” can be used to represent
any kind of sequence. Here, in the function header, it is
used to represent a sequence of parameters. It can also
be used to provide flexible matching in initializers and
structure definitions.

3.2.6 Isomorphisms

We have already mentioned that a semantic patch is in-
sensitive to spacing, indentation and comments. More-
over, by defining sequences in terms of control-flow
paths, we abstract away from the various ways of se-
quencing instructions that exist in C code. These fea-
tures help make a semantic patch generic, allowing the
patch developer to specify only a few scenarios, while
spatch handles other scenarios that are semantically
equivalent.

Other differences that we would like to abstract away
from include variations within the use of specific C con-
structs. For example, if x is any expression that has
pointer type, then !x, x == NULL, and NULL == x
are all equivalent. For this, we provide a variant of the
SmPL syntax for defining isomorphisms, sets of syntac-
tically different terms that have the same semantics. The
null pointer-test isomorphism is defined in this variant of
SmPL as follows:

// iso file, not a semantic patch
@@ expression *X; @@
X == NULL <=> !X <=> NULL == X

Given this specification, the pattern if(!hostptr) in
the semantic patch matches a conditional in the driver
code that tests the value of hostptr using any of the
listed variants.

In addition to a semantic patch, spatch accepts a file
of isomorphisms as an extra argument. A file of iso-
morphisms is provided with the spatch distribution,
which contains 30 equivalences commonly found in
driver code. Finally, it is possible to specify that a single
rule should use only the isomorphisms in a specific file,
file, by annotating the rule name with using file.

3.3 All Together Now

The complete semantic patch for the proc_info collat-
eral evolutions is shown below. As compared to the
rules described above, this semantic patch contains an
additional rule, rule4, which adjusts any calls to the
proc_info function from within the driver. Note that in
this rule, the metavariables that were declared as identi-
fiers in rule2 to represent the parameters of the proc_info
function are redeclared as expressions, to represent
the proc_info function’s arguments.

The second rule has also been slightly modified, in that
two lines have been annotated with the “?” operator
stating that those lines may or may not be present in
the driver. Indeed, many drivers forget to check the re-
turn value of scsi_host_hn_get or forget to release

2007 Linux Symposium, Volume Two • 113

the structure before exiting the function. As previously
noted, the latter omission is indeed what motivated the
proc_info evolution.

Note that there is no rule for updating the prototype of
the proc_info function, if one is contained in the file.
When the type of a function changes, spatch auto-
matically updates its prototype, if any.

@ rule1 @
struct SHT ops;
identifier proc_info_func;
@@

ops.proc_info = proc_info_func;

@ rule2 @
identifier rule1.proc_info_func;
identifier buffer, start, offset, inout, hostno;
identifier hostptr;
@@

proc_info_func (
+ struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset,
- int hostno,

int inout) {
...

- struct Scsi_Host *hostptr;
...

- hostptr = scsi_host_hn_get(hostno);
...

?- if (!hostptr) { ... return ...; }
...

?- scsi_host_put(hostptr);
...

}

@ rule3 @
identifier rule1.proc_info_func;
identifier rule2.hostno;
identifier rule2.hostptr;
@@

proc_info_func(...) {
<...

- hostno
+ hostptr->host_no

...>
}

@ rule4 @
identifier rule1.proc_info_func;
identifier func;
expression buffer, start, offset, inout, hostno;
identifier hostptr;
@@

func(..., struct Scsi_Host *hostptr, ...) {
<...

proc_info_func(
+ hostptr,

buffer, start, offset,,
- hostno,

inout)
...>

}

On the 30 isomorphisms we have written, 3 of them “ap-
ply” to this semantic patch, accommodating many varia-

tions among the 19 drivers inside the kernel source tree.
We have already mentioned the different ways to write
a test such as if(!hostptr) in the previous section.
There is also the various ways to assign a value in a field,
which can be written ops.proc_info = fn as in our
semantic patch, or written ops->proc_info = fn in
some drivers, or written using a global structure initial-
izer. Indeed, the last case was used for the scsiglue.c
driver as shown by the following excerpt of this driver:

struct SHT usb_stor_host_template = {
/* basic userland interface stuff */
.name = "usb-storage",
.proc_name = "usb-storage",
.proc_info = usb_storage_proc_info,
.proc_dir = NULL,

Finally, braces are not needed in C code when a branch
contains only one statement. So, the pattern { ..

. return ...; } in rule2 also matches a branch con-
taining only the return statement.

It takes 23 seconds to spatch given the whole seman-
tic patch to correctly update the 19 relevant drivers. If
run on all the 2404 driver files inside the kernel source
tree, it takes spatch 3 minutes to correctly update the
same 19 drivers.

4 More Features, More Examples

So far we have written and tested 49 semantic patches
for collateral evolutions found in the Linux 2.5 and
Linux 2.6. By comparing the results produced by the
semantic patch to the results produced by the traditional
patch, we have found that spatch updates 92% of
the driver files affected by these collateral evolutions
correctly. In the remaining cases, there is typically a
problem parsing the driver code, or needed informa-
tion is missing because spatch currently does not parse
header files. Parsing the driver code is a particular
problem in our case, because our goal is to perform a
source-to-source transformation, which means that we
have chosen not to expand macros and preprocessor di-
rectives, and instead parse them directly.

In this section, we consider some other examples from
our test suite, to illustrate some typical issues in seman-
tic patch development.

114 • Semantic Patches

4.1 Replacing one function name by another

In Linux 2.5.22, the function end_request was given
a new first argument, of type struct request *. In
practice, the value of this argument should be the next
request from one of the driver’s queue, as represented
by a reference to the macro CURRENT. This collateral
evolution affected 27 files spread across the directories
acorn, block, cdrom, ide, mtd, s390, sbus.

The following semantic patch implements this collateral
evolution:

@@ expression X; @@
- end_request(X)
+ end_request(CURRENT,X)

This semantic patch updates the 27 affected files in the
Linux source tree correctly.

This example may seem almost too simple to be worth
writing an explicit specification, as one can e.g. write a
one-line sed command that has the same effect. Never-
theless, such solutions are error prone: we found that
in the file drivers/block/swim_iop.c, the trans-
formation was applied to the function swimiop_send_
request, which has no relation to this collateral evolu-
tion. We conjecture that this is the result of applying a
sed command, or some similar script, that replaces calls
to end_request without checking whether this string
is part of a more complicated function name. spatch
enforces the syntactic structure of semantic patch code,
allowing matches on identifier, expression, statement,
etc. boundaries, rather than simply accepting anything
that a superstring of the given pattern.

4.2 Collecting scattered information

In Linux 2.5.7, the function video_generic_ioctl,
later renamed video_usercopy, was introduced to en-
capsulate the copying to and from user space required
by ioctl functions. Ioctl functions allow the user
level to configure and control a device, as they accept
commands from the user level and perform the corre-
sponding action at the kernel level. Without video_
usercopy, an ioctl function has to use functions such as
copy_from_user or get_user to access data passed
in with the command, and functions such as copy_to_
user or put_user to return information to the user

level. With video_usercopy, the ioctl function re-
ceives a pointer to a kernel-level data structure contain-
ing the user-level arguments and can modify this data
structure to return any values to user level.

Making an ioctl function video_usercopy-ready in-
volves the following steps:

• Adding some new parameters to the function.

• Eliminating calls to copy_from_user, put_

user, etc.

• Changing the references to the local structure used
by these functions to use the pointer prepared by
video_usercopy.

The last two points are somewhat complex, because the
various commands interpreted by the ioctl function may
each have their own requirements with respect to the
user-level data. A command may or may not have a
user-level argument, and it may or may not return a re-
sult to the user level. In the case where there is no use
or returned value then no transformation should be per-
formed; in the other cases, the structure containing the
user-level argument or result should be converted to a
pointer. Furthermore, there are multiple possible copy-
ing functions, and there are multiple forms that the ref-
erences to the copied data can take.

Figure 3 shows a semantic patch implementing this
transformation, under the simplifying assumption that
the kernel-level representation of the user-level data is
stored in a locally declared structure. This semantic
patch consists of a single rule that changes the proto-
type of this function (adding some new variables, as in-
dicated by fresh identifier), changes the types of
the local structures, and removes the copy functions.

The many variations in an ioctl function noted above
are visible in this rule. To express multiple possibili-
ties, SmPL provides a disjunction operator, which be-
gins with an open parenthesis in column 0, contains a
list of possible patterns separated by a vertical bar in
column 0, and then ends with a close parenthesis in col-
umn 0. Most of the body of the ioctl function pattern
is represented as one large disjunction that considers the
possibility of there being both a user-level argument and
a user-level return value (lines 14-39), the possibility
of there being a user-level argument but no user-level

2007 Linux Symposium, Volume Two • 115

1 @@
2 identifier ioctl, dev, cmd, arg, v, fld;
3 fresh identifier inode, file;
4 expression E, E1, e1,e2,e3;
5 type T;
6 @@
7 ioctl(
8 - struct video_device *dev,
9 + struct inode *inode, struct file *file,
10 unsigned int cmd, void *arg) {
11 + struct video_device *dev = video_devdata(file);
12 ...
13 (
14 - T v;
15 + T *v = arg;
16 ...
17 (
18 - if (copy_from_user(&v,arg,E)) { ... return ...; }
19 |
20 - if (get_user(v,(T *)arg)) { ... return ...; }
21)
22 <...
23 (
24 - v.fld
25 + v->fld
26 |
27 - &v
28 + v
29 |
30 - v
31 + *v
32)
33 ...>
34 (
35 - if (copy_to_user(arg,&v,E1)) { ... return ...; }
36 |
37 - if (put_user(v,(T *)arg)) { ... return ...; }
38)
39 ...
40 |
41 // a copy of the above pattern with the copy_to_user/put_user
42 // pattern dropped
43 |
44 // a copy of the above pattern with the copy_from_user/get_user
45 // pattern dropped
46 |
47 ... when != \(copy_from_user(e1,e2,e3)\|copy_to_user(e1,e2,e3)
48 \|get_user(e1,e2)\|put_user(e1,e2)\)
49)
50 }

Figure 3: Semantic patch for the video_ usercopy
collateral evolution

return value (elided in comments on line 41), the pos-
sibility of there being a user-level return value but no
user-level argument (elided in comments on line 41-42),
and there being neither a user-level argument nor a user-
level return value (line 44-45). These possibilities are
considered from top to bottom, with only the first one
that matches being applied. This strategy is convenient
in this case, because e.g. code using both a user-level
argument and a user-level return value also matches all
of the other patterns. The last cases uses “...” with
the construct when. The when construct indicates a pat-
tern that should not be matched anywhere in the code
matched by the associated “...”.

Within each of the branches of the outermost disjunc-
tion, there are several nested disjunctions. First, another
disjunction is used to account for the two kinds of copy

functions, copy_from_user or get_user. This case
does not rely on the top-to-bottom strategy, because the
patterns are disjoint. Next, between any copying, there
is a nest (see Section 3.2.5) replacing the different vari-
ations on how to refer to a structure by the pointer-based
counterpart. Here again, the ordering of the disjunction
is essential, as the final case, v, should only be used
when the variable is not used in a field access or address
expression. Finally, there is a third disjunction allowing
either copy_to_user or put_user.

Like the proc_info semantic patch, this semantic patch
relies on isomorphisms. Specifically, the calls to the
copy functions may appear alone in a conditional test
as shown, or may be compared to 0, and as in the
proc_info case, the return pattern in each of the con-
ditional branches can match a single return statement,
without braces.

4.3 Collecting scattered information

In Linux 2.6.20, the strategy for creating work queues
and setting and invoking their callback functions
changed as follows:

• Previously, all work queues were declared with
some variant of INIT_WORK, and then could
choose between delayed or undelayed work dy-
namically, by using either some variant of
schedule_work or some variant of schedule_
delayed_work. Since the changes in Linux
2.6.20, the choice between delayed or undelayed
work has to be made statically, by creating the
work queue with either INIT_DELAYED_WORK or
INIT_WORK, respectively.

• Previously, creation of a work queue took as argu-
ments a queue, a callback function, and a pointer
to the value to be passed as an argument to the
callback function. Since 2.6.20, the third argu-
ment is dropped, and the callback function is sim-
ply passed the work queue as an argument. From
this, it can access the local data structure contain-
ing the queue, which can itself store whatever in-
formation was required by the callback function.

For simplicity, we consider only the case where the work
queue is created using INIT_WORK, where it is the field
of a local structure, and where the callback function

116 • Semantic Patches

passed to INIT_WORK expects this local structure as an
argument.

Figure 4 shows the semantic patch. In this semantic
patch, we name all of the rules, to ease the presen-
tation, but only those with descriptive names, such as
is_delayed, are necessary.

The semantic patch is divided into two sections, the first
for the case where the work queue is somewhere used
with a delaying function such as schedule_delayed_
work and the second for the case where such a func-
tion is not used on the work queue. Both cases can
occur within a single driver, for different work queues.
The choice between these two variants is made at the
first rule, is_delayed, using a trick based on metavari-
able binding. This rule matches all calls to schedule_

delayed_work and other functions indicating delayed
work, for any work queue &device->fld and arbi-
trary task E. The next five rules, up to the commented
dividing line, refer directly or indirectly to the type
of the structure containing the matched work queue
&device->fld, and thus these rules are only applied
to work queues for which the match in is_delayed

somewhere succeeds. The remaining three rules, at the
bottom of the semantic patch, do not depend on the rule
is_delayed, and thus apply to work queues for which
there is no call to any delaying function.

In the first half of the semantic patch, the next task is to
convert any call to a non-delaying work queue function
to a delaying one, by adding a delay of 0 (rule2). The
rule delayed_fn then changes calls to INIT_WORK

to calls to INIT_DELAYED_WORK and adjusts the argu-
ment lists such that the cast on the second argument (the
work queue callback function) is dropped and the third
argument is dropped completely. Note that the casts
on the second and third arguments need not be present
in the driver code, thanks to an isomorphism. Next
(rule4), the work queue is changed from having type
work_struct to having type delayed_work. The last
two rules of this section, rule5 and rule5a, update the
callback functions identified in the call to INIT_WORK.
The first, rule5, is for the case where the current pa-
rameter type is void * and the second, rule5a, is for
the case where the parameter type is the type of the lo-
cal structure containing the work queue. In both cases,
the parameter is given the type struct work_struct,
and then code using the macro container_of is added
to the body of the function to reconstruct the original ar-
gument value.

@ is delayed @
type local type; local type *device; expression E,E1;
identifier fld;
@@
(schedule_delayed_work(&device->fld,E)
| cancel_delayed_work(&device->fld)
| schedule_delayed_work_on(E1,&device->fld,E)
| queue_delayed_work(E1,&device->fld,E)
)

@ rule2 @
is delayed.local type *device;
identifier is delayed.fld; expression E1;
@@
(
- schedule_work(&device->fld)
+ schedule_delayed_work(&device->fld,0)
|
- schedule_work_on(E1,&device->fld)
+ schedule_delayed_work_on(E1,&device->fld,0)
|
- queue_work(E1,&device->fld)
+ queue_delayed_work(E1,&device->fld,0)
)

@ delayed fn @
type T,T1; identifier is delayed.fld, fn;
is delayed.local type *device;
@@
- INIT_WORK(&device->fld, (T)fn, (T1)device);
+ INIT_DELAYED_WORK(&device->fld, fn);

@ rule4 @
type is delayed.local type; identifier is delayed.fld;
@@
local type { ...
- struct work_struct fld;
+ struct delayed_work fld;

... };

@ rule5 @
identifier data, delayed fn.fn, is delayed.fld;
type T, is delayed.local type; fresh identifier work;
@@
- fn(void *data) {
+ fn(struct work_struct *work) {

<...
- (T)data
+ container_of(work,local type,fld.work)

...>
}

@ rule5a @
identifier data, delayed fn.fn, is delayed.fld;
type is delayed.local type; fresh identifier work;
@@
- fn(local type *data) {
+ fn(struct work_struct *work) {
+ local type *data = container_of(work,local type,fld.work);

...
}

//--
@ non delayed fn @
type local type, T,T1; local type *device; identifier fld, fn;
@@
- INIT_WORK(&device->fld, (T)fn, (T1)device);
+ INIT_WORK(&device->fld, fn);

@ rule7 @
identifier data, non delayed fn.fn, non delayed fn.fld;
type T, non delayed fn.local type; fresh identifier work;
@@
- fn(void *data) {
+ fn(struct work_struct *work) {

<...
- (T)data
+ container_of(work,local type,fld)

...>
}

@ rule7a @
identifier data, non delayed fn.fn, non delayed fn.fld;
type non delayed fn.local type; fresh identifier work;
@@
- fn(local type *data) {
+ fn(struct work_struct *work) {
+ local type *data = container_of(work,local type,fld);

...
}

Figure 4: Semantic patch for the INIT_WORK collateral
evolution

2007 Linux Symposium, Volume Two • 117

In the second section, calls to INIT_WORK for non-
delayed work queues have their second and third ar-
guments transformed as in the delayed case. The rules
rule7 and rule7a then update the callback functions
analogously to rules rule5 and rule5a.

Using the Linux 2.6 git repository [3], we have identi-
fied 245 driver files that use work queues. Of these, 45%
satisfy the assumptions on which this semantic patch is
based. This semantic patch applies correctly to 91% of
them. The remaining cases are due to some constructs
that are not treated adequately by our approach, to inter-
file effects, and to some optimizations made by the pro-
grammer that are too special-purpose to be reasonable
to add to a generic transformation rule.

5 Conclusion

In this paper we have presented SmPL, our scripting
language to automate and document collateral evolu-
tions in Linux device drivers. This language is based
on the patch syntax, familiar to Linux developers, but
accommodates many variations among drivers. As op-
posed to a traditional patch, a single semantic patch can
update hundreds of drivers at thousands of code sites
because of the features of SmPL, including the use of
metavariables, isomorphisms, and control-flow paths,
which makes a semantic patch generic. We hope that
the use of semantic patches will make collateral evolu-
tions in Linux less tedious and more reliable. We also
hope that it will help developers with drivers outside the
kernel source tree to better cope with the fast evolution
of Linux.

Until now we have tried to replay what was already done
by Linux programmers. We would like now to inter-
act with the Linux community and really contribute to
Linux by implementing or assisting library developers
in performing new evolutions and collateral evolutions.
As a first step we have subscribed to the janitors ker-
nel mailing list and planned to contribute by automating
some known janitorings [4]. We would also like to in-
vestigate if SmPL could be used to perform collateral
evolutions in other Linux subsystems such as filesys-
tems or network protocols or to perform other kinds of
program transformations.

Finally, introducing semantic patches in the develop-
ment process may lead to new processes, or new tools.
For instance, how can semantic patches be integrated

in versioning tools such as git. We could imagine a
versioning tool aware of semantic patches and of the se-
mantics of C, that could for example automatically up-
date new drivers coming from outside the kernel source
tree with respect to some recent semantic patches. Se-
mantic patches, due to their degree of genericity, can
also help with the problem of conflicts between multi-
ple patches that are developed concurrently and affect
some common lines of code, but in an orthogonal way.
Finally, for the same reason, semantic patches should be
more portable from one Linux version to the next, in the
case of a patch that is not immediately accepted into the
Linux kernel source tree.

All the semantic patches we have written, as well as a bi-
nary version of spatch, are available on our website:
http://www.emn.fr/x-info/coccinelle. Read-
ing those semantic patches can give a better feeling of
the expressivity of SmPL. They can also be used as a
complement to this tutorial.

References

[1] “Understanding Collateral Evolution in Linux
Device Drivers.” Yoann Padioleau, Julia L.
Lawall, and Gilles Muller. Proceedings of the
ACM SIGOPS EuroSys 2006 Conference, Leuven,
Belgium, April, 2006, pages 59–71.

[2] http://lwn.net/Articles/36311/.

[3] http://git.kernel.org/git/?p=linux/

kernel/git/torvalds/linux-2.6.git;a=

summary.

[4] http://kernelnewbies.org/
KernelJanitors/Todo.

118 • Semantic Patches

cpuidle—Do nothing, efficiently. . .

Venkatesh Pallipadi
Shaohua Li

Intel Open Source Technology Center
{venkatesh.pallipadi|shaohua.li}@intel.com

Adam Belay
Novell, Inc.

abelay@novell.com

Abstract

Most of the focus in Linux processor power manage-
ment today has been on power managing the processor
while it is active: cpufreq, which changes the proces-
sor frequency and/or voltage and manages the proces-
sor performance levels and power consumption based on
processor load. Another dimension of processor power
management is processor ‘idling’ power.

Almost all mobile processors in the marketplace today
support the concept of multiple processor idle states
with varying amounts of power consumed in those idle
states. Each such state will have an entry-exit latency
associated with it. In general, there is a lot of at-
tention shifting towards idle platform power and new
platforms/processors are supporting multiple idle states
with different power and wakeup latency characteristics.
This emphasis on idle power and different processors
supporting different number of idle states and different
ways of entering these states, necessitates the need for a
generic Linux kernel framework to manage idle proces-
sors.

This paper covers cpuidle, an effort towards a generic
processor idle management framework in Linux kernel.
The goal is to have a clean interface for any proces-
sor hardware to make use of different processor idle
levels and also provide abstraction between idle-drivers
and idle-governors allowing independent development
of drivers and governors. The target audiences are the
developers who are keen to experiment with new idle
governors on top of cpuidle, and developers who
wants to use the cpuidle driver infrastructure in vari-
ous architectures, and any one else who is keen to know
about cpuidle.

1 Introduction

Almost all the mobile processors today support multiple
idle states and the trend is spreading as processor power

management and system power management gain im-
portance for a variety of reasons.

In typical system usage models, processor(s) spend a lot
of their time idling (like while you are reading this paper
on your laptop, with your favorite pdf-reader). Thus any
power saved when system is idle will have big returns in
terms of battery life, heat generated in the system, need
for cooling, etc.

But there is a trade-off between idling power and
amount of state a processor saves and the amount of
time it takes to enter and exit from this idle state. The
idle enter-exit latency, if it is too high, may be visible
with media applications like a DVD player. Such usage
models will limit the usage of a particular idle state on
the processor running this application, even though the
idle state is power efficient. Similarly, if a processor idle
state does not preserve the the contents of the proces-
sor’s cache, some particular application which has some
idle time may notice a performance degradation when
this particular idle state is used.

In order to manage this trade-off effectively, the kernel
needs to know the characteristics of all idle states and
also should understand the currently running applica-
tions, and should take a well-informed decision about
what idle state it wants to enter when processor goes to
idle.

To do this effectively and cleanly, there is a preliminary
requirement of having clean and simple interfaces. Such
an interface can provide consistent information to the
user and ease the innovation and development in the area
of processor idle management.

cpuidle is a an effort in this direction and this pa-
per provides insight into cpuidle. We start section
2 with a background on processor power management
and idle states. Section 3 provides the design descrip-
tion of cpuidle. Section 4 talks about all the develop-

• 119 •

120 • cpuidle—Do nothing, efficiently. . .

ments and advancements happening in cpuidle and
some conclusions in section 5.

2 Background

2.1 Processor Power management

Processor power management can be broadly classified
into two classes.

Processor active – various states a processor can be in
while actively executing and retiring instructions.
Processor frequency scaling, in which a proces-
sor can run at different frequencies and or voltages
falls under this class. So does processor thermal
throttling, where processor runs slower due to duty
cycle throttling.

Linux cpufreq, extensively discussed in [4], [6],
and [5], is a generic infrastructure that handles
CPU frequency scaling.

Processor idle – various states a processor can be in
while it is idle and not retiring any instructions.
The states here differ in amount of power the pro-
cessor consumes while being in that state and also
the latency to enter-exit this low-power idle state.
There may also be other differences like preserv-
ing the processor state across these idle states, etc.
based on a specific processor. For example, a pro-
cessor may only flush L1 cache in one idle state,
but may flush L1 and L2 caches in another idle
state. There can also be differences around when
an idle state can be entered and what its impact
will be on other logical or physical processors in
the system.

2.2 Processor idle states

Currently, most of the processors in mobile and hand-
held segments support multiple idle states. The prime
objective here is to provide a more power-efficient sys-
tem with longer battery life or fewer cooling require-
ments. This feature is slowly moving up the chain into
desktops and servers. This is much like processor fre-
quency scaling which was mostly present in mobile pro-
cessors a few years back, to most of the servers support-
ing that feature today. Recent EnergyStar idle power
regulations [2] are tending to make this faster, making
this feature more common across a range of systems.

2.3 Current Processor idle state support

Below is a short summary of current processor idle state
management in Linux 2.6.21 [3].

ACPI based idle states For the remainder of this sec-
tion we restrict our attention to idle state support as
in i386 (and x86-64) architectures.

In i386 (and x86-64) architectures, there is support
for ACPI-based [1] processor idle states. These
states are referred to as C-states in ACPI termi-
nology. Each of the ACPI C-states is charac-
terised by its power consumption and wakeup la-
tency, and also based on preservation of the pro-
cessor state, while in this C-state. ACPI-based plat-
forms will report processor idle capability to Linux
using ACPI interfaces. A platform can dynamically
change the number of C-states supported, based on
different platform parameters such as whether it is
running on battery or AC power.

The current Linux support for such idle states is
fully embedded in the drivers/acpi directory
along with all ACPI support code. Code here de-
tects the C-states available at boot time, handles
any changes to the number of C-states during run
time, and has simplistic policy to choose a par-
ticular C-state to enter into whenever a CPU goes
idle. This code includes various platform-specific
bits, specific workarounds for platform ACPI bugs,
and also a /proc-based interface exporting the C-
state-related information to userspace.

Arch specific idle—i386 and x86-64 i386 and x86-64
(and also ia64) have some architecture-specific
processor idle management that does not depend on
ACPI. On i386 and x86-64, it includes support for
poll_idle, halt_idle, and mwait_idle.
poll_idle is a polling-based idle loop, which
is not really power efficient, but will have very lit-
tle wakeup overhead. halt_idle is based on
the x86 hlt instruction, and mwait_idle is
based on the monitor mwait pair of instruc-
tions. There are specific static rules regarding
which of these idle routines will be used on any
system, based on boot options and hardware capa-
bilities. Further, boot options across x86 and x86-
64 are not the same for these three idle routines.

Arch-specific idle—other architectures There are
various other architectures that have their own

2007 Linux Symposium, Volume Two • 121

code for processor idle state management. This
includes ia64 with PAL halt and PAL light halt,
Power with nap and doze modes, and idle support
for different platforms in the ARM architecture.
Each of these types of support for idle states also
comes with its own set of boot parameters and/or
/proc or /sys interfaces to user-space.

Bottom line There is very little sharing of code and
sharing of idle management policies across archi-
tectures. Processor idle state management and var-
ious boot options, etc., are duplicated; this re-
sults in code duplication and maintenance over-
head. This, as well as the increasing focus on pro-
cessor idle power in platforms, highlights the need
for a generic processor idle framework in Linux
kernel.

3 Basic cpuidle infrastructure

Figure 1 gives a high-level overview of the cpuidle
architecture. The basic idea behind cpuidle is to sep-
arate the idle state management policies from hardware-
specific idle state drivers. At this level, the cpuidle
model has similarities with cpufreq [6].

3.1 cpuidle core

The cpuidle core provides a set of generic interfaces
to manage processor idle features.

3.1.1 cpuidle data structures

A per-cpu cpuidle_device structure holds informa-
tion about the number of idle states supported by each
processor, information about each of those idle state (in
an array of cpuidle_state struct), and the sta-
tus of this device, among other things.

cpuidle_state is a structure that contains informa-
tion about each individual state, power usage, exit la-
tency, usage statistics of the state, etc.

cpuidle core maintains separate linked lists of all reg-
istered drivers, all registered governors, and all detected
devices.

cpuidle_lock is the lone mutex that handles all
SMP orderings within cpuidle.

3.1.2 Initialization and Registration

Drivers can register and unregister with cpuidle core
using cpuidle_register_driver and cpuidle_

unregister_driver. Governors can register and un-
register using cpuidle_register_governor and
cpuidle_unregister_governor. Each cpu de-
vice gets detected on cpu add_device callback of
cpu_sysdev. If there is a currently active governor
and active driver, then the device gets initialized with
those governor and driver.

3.1.3 Idle handling

cpuidle core has an idle handler, cpuidle_idle_
call(), that gets plugged into an architecture-
independent pm_idle function pointer, that will be
used by each individual processor when it goes idle. Just
before going into idle, the governor selects the best idle
state to go into. And then cpuidle invokes the entry
point for that particular state in the cpuidle driver. On
returning from that state, there is an optional governor
callback for the governor to capture information about
idle state residency.

3.1.4 Handling system state change

The number and type of idle states can vary dynami-
cally based on a given system state, like battery- or AC-
powered, etc. Such a system state change notification
goes to the idle driver, which will invoke cpuidle_
force_redetect() in the cpuidle core. This re-
sults in the idle handler being temporarily uninstalled
and the idle states being re-detected by the driver, fol-
lowed by re-initialization of the governor state to take
note of this change.

3.2 Design guidelines

There were few conscious design decisions/trade-offs in
cpuidle.

3.2.1 cpu_idle_wait

To make sure we do not take a lock during the normal
idle routine entry-exit, and to be able to safely change

122 • cpuidle—Do nothing, efficiently. . .

Generic cpuidle infrastructure

ladder menu

/sys/devices/system/cpu/cpuidle

/sys/devices/system/cpu/cpuX/cpuidle

acpi-cpuidle

ACPI processor driver

User-level

interfaces

governors

drivers halt_idle

arch/platform specific drivers

Figure 1: cpuidle overview

the governor/driver at run time, cpu_idle_wait was
used. Note that changing of drivers/governors is an un-
common event which will not be performance-sensitive.

3.2.2 system-level governor and driver

Should cpuidle support a single driver and single
governor for the whole system, or should they be per-
cpu? Considering the advantage of keeping things sim-
ple with a system-level governor and driver with respect
to usage of per-cpu-based governor and driver, it was de-
cided to have a single system-level governor and driver.

3.2.3 No cpu_hotplug_lock in cpuidle

Learning from experiences of cpufreq and cpu_
hotplug_lock, cpuidle avoids using cpu_
hotplug_lock in the entire subsystem. This in fact
resulted in a cleaner self-contained SMP and hotplug
synchronization model for cpuidle.

3.2.4 Runtime governor/driver switching

Even though runtime switching of the governor and
driver can result in potential wrong usages by the end-
users, cpuidle supports runtime switching of the gov-
ernor or driver, mostly to help developers and testers of

cpuidle. In the future, this switching of driver and
governor can be disabled by default, in order to avoid
incorrect usage.

3.3 driver interface

The cpuidle_register_driver uses a structure
that defines the cpuidle driver interface:

struct cpuidle_driver {
char name[CPUIDLE_NAME_LEN];
struct list_head driver_list;

int (*init) (struct cpuidle_device *dev);
void (*exit) (struct cpuidle_device *dev);
int (*redetect) (struct cpuidle_device *dev);

int (*bm_check) (void);

struct module *owner;
};

init() is a callback, called by cpuidle to initial-
ize each device in the system with this specific driver.
exit() is called to exit this particular driver for each
device. The redetect() callback is used to re-
detect the device states, on certain system state changes.
bm_check() is used to note the bus mastering status
on the device. In init(), the driver has to initialize all
the states for the particular device and handle the total
state count for that device.

2007 Linux Symposium, Volume Two • 123

struct cpuidle_state {
char name[CPUIDLE_NAME_LEN];
void *driver_data;

unsigned int flags;
unsigned int exit_latency; /* in US */
unsigned int power_usage; /* in mW */
unsigned int target_residency; /* in US */

unsigned int usage;
unsigned int time; /* in US */

int (*enter) (struct cpuidle_device *dev,
struct cpuidle_state *state);

struct kobject kobj;
};

enter() is the callback used to actually enter this idle
state. exit_latency and power_usage will be
characteristic of the idle state. flags denote generic
capabilities, features, and bugs of the idle state. usage
is the count of times this idle state is invoked, and time
is time spent in this state.

cpuidle_register_driver() and cpuidle_

unregister_driver() are used to register and
unregister (respectively) a driver with cpuidle.
cpuidle_force_detect() is used by the driver
to force the cpuidle core to re-detect all the device
states (e.g., after a system state change).

3.4 governor interface

struct cpuidle_governor {
char name[CPUIDLE_NAME_LEN];
struct list_head governor_list;

int (*init) (struct cpuidle_device *dev);
void (*exit) (struct cpuidle_device *dev);
void (*scan) (struct cpuidle_device *dev);

int (*select) (struct cpuidle_device *dev);
void (*reflect) (struct cpuidle_device *dev);

struct module *owner;
};

init() is a callback, called by cpuidle, to initialize
each governor with a specific device. exit() is called
to exit this governor for a device.

scan() is called on a re-detect of the states in the de-
vice. This provides an opportunity for the governor to
note the changes in states during a driver re-detect.

select() is called before each idle entry by a de-
vice, for the governor to make a state selection for

the idle call. reflect() is called after an idle
exit, for the governor to capture information about idle
state residency. Note that time spent in the governor’s
reflect() is in the critical path (on exit from idle,
before starting the work) and hence has to be fast.

cpuidle_register_governor() and cpuidle_

unregister_governor() are used to register and
unregister (respectively) a governor with cpuidle.
cpuidle_get_bm_activity() gets the informa-
tion about bm activity, which can be used by the gover-
nor during its select routine.

3.5 Userspace interface

cpuidle userspace interfaces are split at the following
two places in /sys.

3.5.1 System-generic information

This information is under /sys/devices/system/

cpu/cpuidle/.

available_drivers is a read-only interface that
lists all the drivers that have successfully registered
with cpuidle.

current_driver is a read-write interface that con-
tains the current active cpuidle driver. By writ-
ing a new value to this interface, the idle driver can
be changed at run time.

available_governors is a read-only interface
that lists all the governors that have successfully
registered with cpuidle.

current_governor is a read-write interface that
contains the current active cpuidle governor. By
writing a new value to this interface, the idle gov-
ernor can be changed at run-time.

Note there can be single governor and single driver
for all processors in the system.

3.5.2 Per-cpu information

This information is under /sys/devices/system/

cpu/cpuX/cpuidle/ where X=0,1,2,.... For
each idle state Y supported by the current driver, the fol-
lowing read-only information can be seen under sysfs.

124 • cpuidle—Do nothing, efficiently. . .

stateY/usage: Shows the count of number of
times this idle state has been entered since the last
driver init or redetect.

stateY/time: Shows the amount of time spent
in this idle state in uS. itemstateY/latency:
Shows the wakeup latency for this state.

stateY/power: Shows the typical power consumed
when CPU enters this state in mW.

3.6 Configuring and using cpuidle

To configure cpuidle, select:

Main Kernel Config
Power management options (ACPI, APM) --->

CPU idle PM support --->
[] CPU idle PM support

Once CPU idle PM is selected, there will be further
options for various governors supported in the kernel,
which can then be selected.

<*> ’ladder’ governor (NEW)
<*> ’menu’ governor (NEW)

Currently cpuidle is supported only on i386 and x86-
64, with an ACPI-based idle driver.

4 cpuidle advancements

The current cpuidle changes are the beginning of
things to come. There are a few things under develop-
ment and discussion.

4.1 New governors

The ladder governor takes a step-wise approach to se-
lecting an idle state. Although this works fine with pe-
riodic tick-based kernels, this step-wise model will not
work very well with tickless kernels. The kernel can go
idle for a long time without a periodic timer tick and it
may not get a chance to step-down the ladder to the deep
idle state whenever it goes idle.

A new idle governor to handle this, called the menu
governor, is being worked on. The menu governor looks
at different parameters like what the expected sleep time

is (as seen by dyntick), latency requirements, previous
C-state residency, max_cstate requirement, and bm
activity, etc., and then picks the deepest possible idle
state straight away. This governor aims at getting max-
imum possible power advantage with little impact on
performance.

4.2 Power data

Power/Performance data with various idle policies will
be provided at the time of presentation of this paper.

4.3 Future Work

Below is some of the items from the cpuidle to-do
list. The list below is not exhaustive. Specifically, if you
don’t find your favorite architecture mentioned here and
you would like to use cpuidle on your architecture, let
the authors of this paper know about it.

Today, CPU logical offline does not take CPU to its
deepest idle state. There are thoughts about using
cpuidle to enter the deepest idle state when a CPU
is logically offlined.

cpuidle needs to be more flexible with regards to dif-
ferent non-ACPI-based idle drivers supported, and also
support run-time switching across these drivers.

Make cpuidle simple by default, and make it use the
right driver and right governor for a platform by using a
rating scheme for drivers and governors. This will avoid
all the issues with users/distributions needing to config-
ure cpuidle at every boot.

Experiment with different governors to find the most
power/performance efficient governor for specific plat-
forms. This will be an ongoing exercise as more plat-
forms support multiple idle states and use the cpuidle
infrastructure.

5 Conclusion

The authors hope that cpuidle infrastructure enables
Linux to have a platform-independent, generic infras-
tructure for processor idle management. Such an in-
frastructure will simplify support of idle states on spe-
cific hardware by making it possible to write a simple
plug-in driver. Additionally, such an infrastructure will

2007 Linux Symposium, Volume Two • 125

simplify the writing of idle governors, and hopefully
will increase experimentation and innovation in idle
governors—something similar to the frequency gover-
nors that resulted from the cpufreq infrastructure.

6 Acknowledgements

Thanks to the developers and testers in the community
who took time to comment on, report issues with, and
contribute to cpuidle in various ways. Special thanks
to Len Brown for providing the feedback, directions,
and constant support.

References

[1] Acpi in linux.
http://acpi.sourceforge.net.

[2] Energy star - office equipment - computers.
http://www.energystar.gov.

[3] Linux 2.6.21. http://www.kernel.org.

[4] Linux kernel cpufreq subsystem.
http://www.kernel.org/pub/linux/
utils/kernel/cpufreq/cpufreq.html.

[5] Dominik Brodowski. Current trend in linux kernel
power management, linuxtag 2005. http:
//www.free-it.de/archiv/talks_
2005/paper-11017/paper-11017.pdf.

[6] Venkatesh Pallipadi and Alexey Starikovskiy. The
ondemand governor, ols 2006.
http://www.linuxsymposium.org/
2006/linuxsymposium_procv2.pdf.

This paper is (c) 2007 by Intel. Redistribution rights are
granted per submission guidelines; all other rights reserved.
* Other names and brands may be claimed as the property of
others.

126 • cpuidle—Do nothing, efficiently. . .

My bandwidth is wider than yours
Ultra Wideband, Wireless USB, and WiNET in Linux*

Iñaky Pérez-González
Open source Technology Center, Intel Corporation

inaky.perez-gonzalez@intel.com

Abstract

Imagine a radio technology that gives you 480 Mbps at
short range. Imagine that you don’t have to keep all
those cables around to connect your gadgets. Make it
low-power, too. You even want to be able to stream con-
tent from your super-duper cell phone to your way-too-
many inches flat TV. Top it off, make it an open stan-
dard.

It’s not just a dream: we have it and is called Ultra-
Wide-Band, and it comes with many toppings of your
choice (Wireless USB and WiNET; Bluetooth and 1394
following) to help remove almost every data cable that
makes your day miserable. And Linux already supports
it.

1 What is all this?

UWB is a high speed, short range radio technology in-
tended to be the common backbone for higher level pro-
tocols. It aims to replace most of the data cables in desk-
top systems, home theaters, and other kinds of PAN-like
interconnects. It has been defined by the WiMedia con-
sortium after a long fight in IEEE over the underlying
implementation and now it is ECMA-368 and is back in
IEEE for further standardization.

It provides all the blocks (delivery of payloads, neigh-
borhood and bandwidth management, encryption sup-
port, {broad,multi,uni}cast, etc.) needed by higher level
protocols to build on top without any central infrastruc-
ture.

Wireless USB sits on top of UWB, where it allocates
bandwidth and establishes a virtual cable; WUSB de-
vices connect to the host in the same master-slave fash-
ion as wired USB. The security of the cable is replaced
with strong encryption and an authentication process to

rule out snooping and man-in-the-middle attacks. Back-
wards compatibility is maintained, so we can reuse all
of our drivers with slight modifications in the core host
stack.

WiNET snaps an Ethernet frame over a UWB payload
and adds a few protocols for bridging; devices cluster in
different WiNET networks (similar to WIFI ad-hoc) and
also includes authentication and strong encryption.

Other high level protocols can build on top of UWB
(Bluetooth 3.0 is planning to do so, for example).

2 Ultra Wide Band

This protocol is designed for being low-power (as in lit-
tle usage and efficient), with good facilities for QoS and
streaming (mainly centered in audio and video) and pro-
viding strong cryptography on the transport to compen-
sate for the open medium.

Figure 1: UWB’s spectrum usage

Ultra-Wide-Band operates over the unlicensed 3.1 to
10.6 GHz band, transferring at data rates from 53Mbps
to 480Mbps;1 high rates reach up to 3 meters; lower
rates, all the way to 10 meters. These are split in four-
teen 528 Mhz bands; these are grouped in five band

153.3, 80, 106.7, 160, 200, 320, 400, and 480 Mbps, not all
mandatory.

128 • My bandwidth is wider than yours

Figure 2: Division of time in UWB (credit: ECMA-368 Fig 3)

groups (channels) (composed of three bands each ex-
cept the last one, which are two). Data is encoded MB-
OFDM2 over 122 sub-carriers (100 data, 10 guard, 12
pilot).

The power emission is as low as the maximum specified
in the FCC Part 15 limit for interference: −41dBm/Mhz
(0.074µW/MHz), being the practical radiated power
about 100µW/band (−10dBm). This is more or less
three thousand times less than a cell phone3 and allows
UWB to appear as noise to other devices.

Time is divided in superframes (see Figure 2), com-
posed of 256 media allocation slots (MAS), 256µs each.
Thus a superframe is about 65ms. The MAS is the basic
bandwidth allocation unit.

The superframe starts with the beacon period, which
is divided in 85µs beacon slots (96 maximum, about
32 MAS slots). The first beacon slots are used for sig-
nalling; when a new device wants to join it senses for it
to be empty and transmits its beacon until it is assigned
another empty slot.

It is important to note that devices don’t have a common
concept of start of the superframe. There might be an
offset and devices coordinate among themselves to syn-
chronize in a common start of superframe. That is called
a beacon group, a group of devices that beacon during
a shared beacon period at the beginning of the same su-
perframe. This becomes a complication for a device B

2Multiband Orthogonal Frequency Division Modulation.
3Roughly calculated, about five orders of magnitude less than

WIFI.

Figure 3: Hidden neighbours

that can hear beacons from A and C without A and C
being able to listen to each other.

If A and B are beaconing in the same beacon group and
C gets in range of B (Figure 3), C might be beaconing
at a time different to that of A and B.4 B recognizes C’s
beacon as an alien beacon and tells A about which slots
C is using; thus A and B don’t try to use those slots
to transmit (as their tranmission would get mixed with
C’s).

The rules for use of the media are extremely simple. A
device might only transmit:

• Its beacon, during the beacon slot assigned to it.
4Especially if it has a beacon group formed with device D, for

example.

2007 Linux Symposium, Volume Two • 129

Figure 4: Full WiNET topology

• Data, during the MAS slots reserved by it. This
is called Distributed Reservation Protocol (DRP),
basically a TDMA model. It involves a negotiation
among the devices on which devices own which
MAS slots. Each device can define a maximum
of eight static streams (or allocations) with this
method. They are fixed (as in reserved bandwidth)
until dropped.

• Data, when the media is not being used. Called Pri-
oritized Contention Access, it is a CSMA technol-
ogy: sense the carrier and if empty, transmit. Eight
different priority levels are defined for which de-
vices contend based on the prioritization they give
to their data.

UWB aims to provide a secure enough media, tamper-
and snoop-proof. It is implemented using AES-
128/CCM, one-time pads, and 4-way handshakes for
devising pair-wise and group-wise temporal keys (se-
cret establishment/authentication to avoid man-in-the-
middle attacks is left to the higher level protocols).

Consideration is given to power saving. Devices can
switch off their radio until they have to transmit/receive
(beacon or data), even advertising to each other that they
are suspending beaconing for an amount of time. Trans-
mission rates and emission power can be adjusted to de-
crease consumption of energy, for example, for devices
in close proximity.

In general, UWB becomes a flexible low-level protocol
for building on top. It offers enough flexibility for all
kinds of media and data, and almost no restrictions in
mobility (other than range) and usage models.

3 WiNET: IP over UWB

WiNET slaps an Ethernet payload over UWB frame to
achieve the same functionality that is possible with Eth-
ernet: IP, bridging, etc.

In concept, it is very similar to WIFI, except for the short
range (10m max; a brick wall will stop it short5) and the
nonexistence of access points (all is ad-hoc). It is faster
and more power-efficient for PAN usage models.

WiNET-capable devices group in WiNET Service Sets
(WSSs).6 Devices may belong to more than one at the
same time.

Security is provided using UWB’s framework,7 which
provides data integrity and privacy; there are associa-
tion methods to avoid man-in-the-middle attacks when
establishing a trust relationship (using numeric compar-
ison or simple password comparison).

5Which is an advantage in many usage models
6Roughly equivalent to the ESSID in WIFI terms.
7AES-128/CCM, 4-way handshakes to generate pair and group

wise keys, one time pads.

130 • My bandwidth is wider than yours

QoS is achieved by reserving fixed point-to-point
streams allocated with the UWB Dynamic Reservation
Protocol (for example, the bandwidth required to stream
audio to the living room speakers is known ahead of
time) or by mapping IP traffic prioritization into the
UWB Prioritized Channel Access traffic levels.

As well, 802.1D bridging services are provided (see
Figure 4) to allow different WiNET segments to be
bridged. This is useful, for example, for providing
wireless network connectivity in high density urban
dwellings, where the high number of apartments would
make a WIFI access point on each unfeasible. Under
this model, an Ethernet backbone connects WiNET ac-
cess points that mobile devices connect to while roam-
ing through the apartment without losing connectivity.

4 Wireless USB

Wireless USB by itself is very simple: remove the ca-
ble from USB 2.0, put in its place an UWB radio. The
rest (at the high level) remains the same; with a few
modifications to the USB core stack we can (in theory)
reuse most of our already written drivers for mass stor-
age, video, audio, etc.

WUSB still maintains the master/slave model of the
wired version (even if UWB is peer to peer). The WUSB
host creates a static bandwidth allocation with the Dis-
tributed Reservation Protocol, and in there it creates a
WUSB Channel. Devices that connect to that channel
define (along with the host) a WUSB Cluster.

Figure 5: A WUSB Channel (credit: WUSB1.0 Fig 4-4)

At the beginning of each allocated period of time,
the host emits an MMC (Microscheduled Management
Command). This is a data structure composed of in-
formation elements (IEs) that specifies the length of the
allocated period, which devices can transmit and when,

gives time for devices to query the host (device notifi-
cations, DNs8), and provides a link to the next MMC,
which prefixes another allocation period.

This model allows WUSB devices to be simplified, as
they don’t have to understand (unless desired) UWB,
beaconing, DRP, or PCA. They just look for MMCs and
follow the links, getting their I/O control information
from them.

Cable-based concepts, such as reset, connect, and dis-
connect are implemented via signalling in the device no-
tification time slots (for device to host) and in the MMC
information elements (host to device).

4.1 Wireless USB security

WUSB security builds on top of UWB’s security frame-
work.9

The trust relationships are established via a Connection
Context, which is composed of a Connection Host ID
(CHID), Connection Device ID (CDID), and Connec-
tion Key (CK). The CHID uniquely identifies the host,
the CDID the device, and the CK is the shared secret.
Both host and device keep the same CC as proof of trust.

Establishing the secure connection is done via the 4-way
handshake process. When a device is directed by the
user to connect to the host, it looks for the CHID broad-
casted by it, and then looks up in its internal CC tables
for the CDID it was assigned by that host. Then host and
device prove to each other that they have the CK without
actually exchanging it and derive a pair-wise temporal
key. The host issues a new group key and issues it to all
devices, including the new one. As well, all keys expire
after a certain number of messages have been encoded
with them, time at which new ones are renegotiated us-
ing another 4-way handshake.

When there is no Connection Context established,
WUSB specifies methods for the authentication/pairing
process:

• Cable Based Association: For devices that can
connect with a cable, it is used to establish trust by
transmitting the connection context using a Cable-
Based Association Framework [USB] interface.

8Unlike wired USB, in WUSB devices can initiate transactions
to the host.

9AES-128/CCM, 4-way handshakes, pair and group wise keys,
one time pads.

2007 Linux Symposium, Volume Two • 131

• Numeric Association: Use Diffie-Hellman to cre-
ate a temporary secure channel and avoid man-in-
the middle attacks by having the device and the
host present a short (two to four digits) number to
the user. If they match, the user confirms the pair-
ing. Limited range and explicit user conditioning
make up for the lack of strength in a four-digit dec-
imal hash.

Devices can keep more than one Connection Context
in non-volatile memory, so that there is no need for re-
authenticating when moving a device from one host to
another.

5 The hardware

Hardware comes in the shape of a UWB Radio Con-
troller (RC) with support on top for the higher level pro-
tocols. There is specialization, however: a low-power
device might sacrifice some functionality to save power;
a PC-side controller would offer full support.

We will concentrate mostly on the host side, as we just
want to use the devices.

5.1 USB dongles: HWAs or Host Wire Adapters

Defined by the Wireless USB specification, HWAs con-
sist of a UWB radio controller and a WUSB host con-
troller all connected via USB to the host system. Other
extra interfaces are possible (for example, for WiNET).

WUSB traffic to/from WUSB devices is piped through
wired USB. Imagine a USB controller connected via
USB instead of PCI.

Its main intent is to enable legacy systems to get seam-
less UWB and WUSB connectivity. The drawback is
the high overhead of piping USB traffic over USB.

5.2 Wireless USB hubs: DWAs or Device Wire
Adapters

Defined by the Wireless USB specification, a DWA is
composed of a hub for USB wired devices whose up-
stream connection is wireless USB. Similarly to the
HWA, think of a USB host controller that is connected
to the system via Wireless USB, not PCI.

This is intended to connect your wired devices to your
Wireless-USB-enabled laptop; as well, legacy applica-
tions will use much of this. Take an existing USB
chipset for some kind of device, put in front a DWA
adapter, and suddenly your device is “wireless.”10

It has the same drawbacks as HWA regarding perfor-
mance.

5.3 PCI (and friends) connected adapters: WHCI

Defined by the Wireless Host Controller Interface, the
brother of EHCI. It is a Wireless USB host controller
plugged straight to the PCI bus, which, as HWA, might
contain other interfaces (again, such as a WiNET inter-
face).

This is intended for new systems or those where a PCI or
mini-PCI card can be deployed easily. It gives the best
performance, as there is no extra overhead for delivering
the final data to its destination (as in HWA/DWA).

Exercise for the reader: what happens when you connect
a WUSB printer to a HWA, the HWA to a DWA, and the
DWA to a WHCI, finally to your PC?

6 Linux support

Full-featured Linux support for UWB, Wireless USB,
and WiNET will consist of:

• A UWB Stack to provide radio neighborhood and
bandwidth management.

• Drivers for HWA (USB dongle) and WHCI (PCI)
UWB Radio Controllers plugging into the UWB
stack.

• A Wireless USB stack providing two abstractions
used by the three different kinds of host con-
trollers (Wireless USB Host Controller and Wire
Adapter). It also includes security, authorization/
pairing management, and seamless integration into
the main USB stack.

• Drivers for HWA (USB dongle) and WHCI (PCI)
Wireless USB host controllers, as well as for the
DWA (Wireless USB hub) host controller.

10And yes, if you connect twenty of these, you’ll have twenty
USB hosts in your machine.

132 • My bandwidth is wider than yours

Figure 6: Linux’s support for UWB/WUSB/WiNET

• Driver for WUSB Cable-Based Association, as
well as support for WUSB numeric association.

• WiNET drivers: Our efforts are also to implement,
using the Intel R© Wireless UWB Link 1480, net-
work device drivers for the USB and PCI form fac-
tors.

This adds up to two stacks and six drivers; eight, if we
count the WiNET drivers (Figure 6).

6.1 Current status

In general, the driver set is quite stable and usable with
the available hardware (which is very scarce).

The Linux UWB stack has implemented most of the
basic management features, allowing the discovery of
remote devices and a Distributed Reservation Protocol
bandwidth negotiator. It can work with devices imple-
menting WUSB 1.0 and WHCI 0.95.11 Radio control
drivers have been implemented for HWA (hwa-rc) and
WHCI (whc-rc).

As of April 2007, only the HWA Wireless USB host
controller is implemented, in a limited fashion; only
control, bulk, and interrupt transfers work. However,
it is possible to use an AL-4500 mass storage evaluation

11Both specs are mostly identical; however, as WHCI is develop-
ing on aspects that were not yet known when WUSB 1.0 was final-
ized, errata will be issued to correct them.

device made by Alereon. Authorization/pairing is being
implemented, making the low-level Cable-Based Asso-
ciation driver complete (user space glue is now done
manually).

We have also developed drivers for the Intel 1480 Wire-
less UWB Link WiNET interface, which are quite stable
as of now.

In general, there is still a lot of work to be done. The
UWB stack still needs to handle a lot of complex sit-
uations, like alien beacons, suspend and resume han-
dling in the UWB media, selection of ideal rate and
power transmission parameters, and fine tuning of the
bandwidth allocator. The Wireless USB stack requires
a complete transfer scheduler and implementation of
isochronous support. The driver for DWA needs to be
put together (with pieces from HWA) and a driver for
the WHCI WUSB host controller has to be created.

6.2 Sample usage scenarios

All interaction between the user and the local radio con-
trollers happens through sysfs:

cd /sys
ls -N bus/uwb/devices/
uwb0/
ls -N class/uwb_rc/
uwb0/

2007 Linux Symposium, Volume Two • 133

The radio is kept off by default; we could start beacon-
ing to announce ourselves to others in one of the sup-
ported channels12 on station A:

A# cd /sys/class/uwb_rc
A# echo 13 0 > uwb0/beacon

If now a user starts scanning on station B:

B# echo 13 0 > uwb0/scan

It will find station A’s beacon and will be announced by
the kernel; entries will be created in sysfs:

B# tail /var/log/kern.log
...
uwb-rc uwb0: uwb device \
(mac 00:14:a5:cb:6f:54 dev f8:5c)\
connected to usb 1-4.4:1.0

...
B# ls -N /sys/bus/uwb/devices/
uwb0/
f8:5c/

This indicates that a remote UWB device with address
f8:5c has been detected. At this point, the devices
are not connected, but just B is listening for A’s beacon.
For them to be able to exchange information, B needs
to also beacon so A knows about it—they need to be
linked in the same beacon group. That we accomplish
by asking B to beacon against A’s beacon (in the same
beacon period):

B# echo f8:5c > uwb0/beacon

Now we’ll see in station B a similar message (uwb
device (...) connected) as well as an entry with
its 16-bit address in /sys/bus/uwb/devices. In
the case of the Intel 1480 Wireless UWB Link (USB
form factor), we could now load the WiNET driver
(i1480u-winet) and configure network connections
on both sides:

modprobe i1480u-winet
ifconfig winet0 192.168.2.1

12Most hardware known to our team supports channels 13, 14,
and 15.

Connecting Wireless USB devices

If we had any Wireless USB devices, we would have to
tell the WUSB controller to create a WUSB Channel;
assuming controller usb6 is the one corresponding to
our radio controller:

cd /sys/class/usb_host/usb_host6
echo <16 byte CHID> \

0001 \
mylinux-wusb-01 \

> wusb_chid

With this we have given a 16-byte CHID to the driver,
which has configured it into the host so it broadcasts
a WUSB channel named mylinux-wusb-01. Now
devices that have been paired with this CHID before will
request connection to the host when we ask them to (for
now we allow all of them to connect):

new variable speed Wireless USB \
device using hwa-hc and address 2

From now on, this behaves like yet another USB device.
There are still no controls for selecting rate or power.

If no transactions are done to the device or the device
doesn’t ping back to the host’s keep-alives, then it will
be disconnected. The timeout is specified in a per-
host basis in file /sys/class/usb_host/X/wusb_

trust_timeout. Most devices we’ve seen until now
don’t implement keep-alives, so this value has to be set
high to avoid their disconnection.

7 Conclusion

We have done a quick description of Ultra Wideband,
Wireless USB, and WiNET, a set of technologies that
aim at replacing all the cables that clutter desktops and
living rooms. Designed with streaming and power effi-
ciency in mind, they also provide security comparable
to that of the cable.

We have also described how Linux implements support
for it, its current status, and how to use it. There is basic
support working, but a lot is still to be done.

We expect a huge increase of consumer electronics de-
vices of all kinds (cellphones, cameras, computing, au-
dio, video. . .) supporting this set of technologies in up-
coming years. And with Linux playing an all-the-time

134 • My bandwidth is wider than yours

more important role in those embedded applications, as
well as in the desktop, it is key that it supports them as
soon as they hit the streets en masse.

References

[linuxuwb.org] Linux UWB/WUSB/WiNET,
http://linuxuwb.org

[WiMedia] WiMedia Alliance,
http://wimedia.org

[ECMA368] Ecma International, ECMA-368 High
Rate Ultra Wideband PHY and MAC standard,
1.0,
http://www.ecma-international.org

[WiMedia] WiMedia Alliance, WiNET specification
(still not publicly available)
http://wimedia.org

[WUSB1.0] USB Implementors Forum, Wireless USB
1.0 specification, http://usb.org

[WAM1.0] USB Implementors Forum, Association
Models supplement to the Certified Wireless
Universal Serial Bus Specification, 1.0,
http://usb.org

[WHCI] Intel Corporation, Wireless Host Controller
Interface, 0.95, http://intel.com

c©2007 by Intel Corporation.

*Linux is a registered trademark of Linus Torvalds. Other
names and brands may be claimed as the property of others.

Zumastor Linux Storage Server

Daniel Phillips
Google, Inc.

phillips@google.com

Abstract

Zumastor provides Linux with network storage func-
tionality suited to a medium scale enterprise storage
role: live volume backup, remote volume replication,
user accessible volume snapshots and integration with
Kerberized network filesystems. This paper examines
the design and functionality of the major system com-
ponents involved. Particular attention is paid to the sub-
jects of optimizing server performance using NVRAM,
and reducing the amount of network bandwidth required
for remote application using various forms of com-
pression. Future optimization strategies are discussed.
Benchmark results are presented for currently imple-
mented optimizations.

1 Introduction

Linux has done quite well at the edges of corpo-
rate networks—web servers, firewalls, print servers and
other services that rely on well standardized protocols—
but has made scant progress towards the center, where
shared file servers define the workflow of a modern or-
ganization. The barriers are largely technical in that
Linux storage capabilities, notably live filesystem snap-
shot and backup, have historically fallen short of the
specialized proprietary offerings to which users have be-
come accustomed.

Zumastor provides Linux with network storage func-
tionality suited to medium scale enterprise storage roles:
live volume backup, remote volume replication, user
accessible volume snapshots and integration with Ker-
berized network filesystems. Zumastor takes the form
of a set of packages that can be added to any Linux
server and will happily coexist with other roles that the
server may serve. There are two major components: the
ddsnap virtual block device, which provides base snap-
shot and replication functionality, and the Zumastor vol-
ume monitor, which presents the administrator with a

simple command line interface to manage volume snap-
shotting and replication. We first examine the low level
components in order to gain an understanding of the de-
sign approach used, its capabilities and limitations.

2 The ddsnap Virtual Block Device

The ddsnap virtual block device provides multiple
read/write volume snapshots. As opposed to the incum-
bent lvm snapshot facility, ddsnap does not suffer from
degraded write performance as number of snapshots in-
creases and does not require a separate underlying phys-
ical volume for each snapshot. A ddsnap virtual device
requires two underlying volumes: an origin volume and
a snapshot store. The origin, as with the lvm snapshot, is
a normal volume except that write access is virtualized
in order to protect snapshotted data. The snapshot store
contains data copied from the origin in in the process of
protecting snapshotted data. Metadata in the snapshot
store forms a btree to map logical snapshot addresses to
data chunks in the snapshot store.

The snapshot store also contains bitmap blocks that con-
trol allocation of space in the snapshot store, a list of cur-
rently held snapshots, a superblock to provide configu-
ration information, and a journal for atomic and durable
updates to the metadata. The ddsnap snapshot store re-
sembles a simple filesystem, but with only a single di-
rectory, the btree, indexed by the logical address of a
snapshot. Each leaf of the btree contains a list of logi-
cal chunk entries; each logical chunk entry in the btree
contains a list of one or more physical chunk addresses;
and for each physical chunk address, a bitmap indicates
which snapshots currently share that physical chunk.
Share bits are of a fixed, 64 bit size, hence the ddsnap
limitation of 64 simultaneous snapshots. This limita-
tion may be removed in the future with a redesign of the
btree leaf format.

• 135 •

136 • Zumastor Linux Storage Server

2.1 Client-server design

DDsnap was conceived as a cluster snapshot—DD
stands for distributed data—with a client-server archi-
tecture. Each ddsnap client (a device mapper device)
provides access to either the underlying, physical ori-
gin volume or to some snapshot of the origin volume.
To implement the copy-before-write snapshot strategy,
a ddsnap origin client communicates with a userspace
server over a socket, requesting permission from this
snapshot server before writing any block so that the
server may move any data shared with a snapshot to the
snapshot store. Similarly, a ddsnap snapshot client re-
quests permission from the snapshot server before writ-
ing any block so that space may be allocated in the snap-
shot store for the write. A snapshot client also requests
permission before reading snapshot data, to learn the
physical location of the data and to serialize the read
against origin writes, preventing the data being read
from moving to a new location during the read. On the
other hand, an origin client need not consult the server
before reading, yielding performance nearly identical to
the underlying physical volume for origin reads.

Since all synchronization with the snapshot server is
carried out via messages, the server need not reside on
the same node as an origin or snapshot client, although
with the current single-node storage application it al-
ways does. Some more efficient means of synchroniza-
tion than messages over a socket could be adopted for a
single node configuration, however messaging overhead
has not proved particularly bothersome, with a mes-
sage inter-arrival time measured in microseconds due to
asynchronous streaming. Some functionality required
for clustering, such as failing over the server, upload-
ing client read locks in the process, is not required for
single-node use, but imposes no overhead by its pres-
ence.

Creating or deleting a snapshot is triggered by sending a
message to the snapshot server, as are a number of other
operations such as obtaining snapshot store usage statis-
tics and obtaining a list of changed blocks for replica-
tion. The ddsnap command utility provides a comman-
dline syntax for this. There is one snapshot server for
each snapshot store, so to specify which snapshot server
the command is for, the user gives the name of the re-
spective server control socket. A small extra complexity
imposed by the cluster design is the need for a ddsnap
agent, whose purpose on a cluster is to act as a node’s

central cluster management communication point, but
which serves no useful purpose on a single node. It is
likely that the functionality of agent and snapshot server
will be combined in future, somewhat simplifying the
setup of a ddsnap snapshot server. In any event, the pos-
sibility of scaling up the Zumastor design using cluster-
ing must be viewed as attractive.

2.2 Read/Write Snapshots

Like lvm snapshots, ddsnap snapshots are read/write.
Sometimes the question is raised: why? Isn’t it unnatu-
ral to write to a snapshot? The answer is, writable snap-
shots come nearly for free, and they do have their uses.
For example, virtualization software such as Bochs,
QEMU, UML or Xen might wish to base multiple VM
images on the same hard disk image.1 The copy-on-
write property of a read/write snapshot gives each VM a
private copy in its own snapshot of data that it has writ-
ten. In the context of zumastor, a root volume could be
served over NFS to a number of diskless workstations,
so each workstation is able to modify modify part of its
own copy while continuing to share the unmodified part.

2.3 Snapshotted Volume IO Performance

Like the incumbent lvm snapshot, origin read perfor-
mance is nearly identical to native read performance,
because origin reads are simply passed through to the
underlying volume.

As with the incumbent lvm snapshot, ddsnap uses a
copy-before-write scheme where snapshotted data must
be copied from the origin to the snapshot store the first
time the origin chunk is written to after a new snap-
shot. This can degrade write performance markedly un-
der some loads. Keeping this degradation to a tolerable
level has motivated considerable design effort, and work
will continue in this area. With the help of several opti-
mization techniques discussed below, a satisfactory sub-
jective experience is attained for the current application:
serving network storage.

Compared to the incumbent lvm snapshot, the ddsnap
snapshot design requires more writes to update the
metadata, typically five writes per newly allocated phys-
ical chunk:

1http://en.wikipedia.org/wiki/
Copy-on-write

2007 Linux Symposium, Volume Two • 137

1. Write allocation bitmap block to journal.

2. Write modified btree leaf to journal.

3. Write journal commit block.

4. Write allocation bitmap block to store.

5. Write modified btree leaf to store.

This update scheme is far from optimal and is likely
to be redesigned at some point, but for now a cruder
approach is adopted: add some nonvolatile memory
(NVRAM) to the server.

The presence of a relatively small amount of nonvolatile
RAM can accelerate write performance in a number of
ways. One way we use NVRAM in Zumastor is for
snapshot metadata. By placing snapshot metadata in
NVRAM we reduce the cost of writing to snapshotted
volume locations significantly, particularly since ddsnap
in its current incarnation is not very careful about min-
imizing metadata writes. Unfortunately, this also limits
the maximum size of the btree, and hence the amount of
snapshot data that can be stored. This limit lies roughly
in the range of 150 gigabytes of 4K snapshot chunks
per gigabyte of NVRAM. NVRAM is fairly costly, so
accommodating a large snapshot store be expensive.
Luckily, much can be done to improve the compactness
of the btree, a subject for another paper.

Using NVRAM, snapshot performance is no worse than
the incumbent lvm snapshot, however the size of the
btree and hence the amount of data that can be stored in
the snapshot store is limited by the amount of NVRAM
available. Future work will relax this limitation.

2.3.1 Filesystem Journal in NVRAM

For filesystems that support separate journals, the jour-
nal may be placed in NVRAM. If the filesystem is fur-
ther configured to journal data writes as well as meta-
data, a write transaction will be signalled complete as
soon as it has been entered into the journal, long before
being flushed to underlying storage. At least until the
journal fills up, this entirely masks the effect of slower
writes to the underlying volume. The practical effect of
this has not yet been measured.

2.3.2 Effect of Chunk Size and Number of Snap-
shots on Write Performance

Untar time on the native (Ext3) filesystem is about 14
seconds. Figure 1 shows that untar time on the virtual
block device with no snapshots held is about 20 sec-
onds, or slower by a factor of 1.43. This represents
the overhead of synchronizing with the snapshot server,
and should be quite tractable to optimization. Snapshot-
ted untar time ranges from about 3.5 times to nearly 10
times slower than native untar time.

Figure 1 also shows the effect of number of currently
held snapshots on write performance and of varying the
snapshot chunk size. At each step of the test, a tar
archive of the kernel source is unpacked to a new direc-
tory and a snapshot is taken. We see that (except for the
very first snapshot) the untar time is scarcely affected by
the number of snapshots. For the smallest chunk size,
4K, we see that untar time does rise very slightly with
the number of snapshots, which we may attribute to in-
creased seek time within the btree metadata. As chunk
size increases, so does performance. With a snapshot
store chunk size of 128KB, the untar runs nearly three
times faster.

2.3.3 Effect of NVRAM on Write Performance

Figure 2 shows the effect of placing the snapshot data in
NVRAM. Write performance is dramatically improved,
and as before, number of snapshots has little or no ef-
fect. Interestingly, the largest chunk size tested, 128KB,
is no longer the fastest; we see best performance with
64K chunk size. The reason for this remains to be in-
vestigated, however this is good news because a smaller
chunk size improves snapshot store utilization. Write
performance has improved to about 2 to 5 times slower
than native write performance, depending on chunk size.

2.3.4 NVRAM Journal compared to NFS Write
Log

NVRAM is sometimes used to implement a NFS write
log, where each incoming NFS write is copied to the
write log and immediately acknowledged, before being
written to the underlying filesystem. Compared to the
strategy of putting the filesystem journal in NVRAM,
performance should be almost the same: in either case,

138 • Zumastor Linux Storage Server

 0

 50

 100

 150

 200

 0 5 10 15 20

R
ea

l t
im

e
(s

)
to

 u
nt

ar
 k

er
ne

l

Number of Snapshots

Time to untar a kernel source tree vs Number of Snapshots

native:normal:128k
native:normal:16k

native:normal:4k
native:normal:64k

Figure 1: Write performance without NVRAM

a write is acknowledged immediately after being writ-
ten to NVRAM. There may be a small difference in the
overhead of executing a filesystem operation as opposed
to a potentially simpler transaction log operation, how-
ever the filesystem code involved is highly optimized
and the difference is likely to be small. On the other
hand, the transaction log requires an additional data
copy into the log, likely negating any execution path ef-
ficiency advantage. It is clear which strategy requires
less implementation effort.

2.3.5 Ongoing Optimization Efforts

A number of opportunities for further volume snapshot
write optimization remain to be investigated. For ex-
ample, it has been theorized that writing to a snapshot
instead of the origin can improve write performance a
great deal by eliminating the need to copy before writ-
ing. If read performance from a snapshot can be main-
tained, then perhaps it would be a better idea to serve a
master volume from a snapshot than an origin volume.

3 Volume Replication

Volume replication creates a periodically updated copy
of a master volume at some remote location. Replication

differs from mirroring in two ways: 1) changes to the
remote volume are batched into volume deltas so that
multiple changes to the same location are collapsed into
a single change and 2) a write operation on the master
is not required to wait for write completion on the re-
mote volume. Batching the changes also allows more
effective compression of volume deltas, and because the
changes are sorted by logical address, applying a delta
to a remote volume requires less disk seeking than ap-
plying each write to a mirror member in write comple-
tion order. Replication is thus suited to situations where
the master and remote volume are not on the same local
network, which would exhibit intolerable remote write
latency if mirrored. High latency links also tend to be
relatively slow, so there is much to be gained by good
compression of volume deltas.

Zumastor implements remote replication via a two step
process: 1) Compute difference list; 2) Generate delta.
To generate the difference list for a given pair of snap-
shots, the ddsnap server scans through the btree to find
all snapshot chunks that belong to one snapshot and not
the other, which indicates that the data for the corre-
sponding chunks was written at different times and is
most probably different. To generate the delta, a ddsnap
utility runs through the difference list reading data from
one or both of the snapshots which is incorporated into

2007 Linux Symposium, Volume Two • 139

 0

 50

 100

 150

 200

 0 5 10 15 20

R
ea

l t
im

e
(s

)
to

 u
nt

ar
 k

er
ne

l

Number of Snapshots

Time to untar a kernel source tree vs Number of Snapshots

native:nvram:128k
native:nvram:16k

native:nvram:4k
native:nvram:64k

Figure 2: Write performance with NVRAM

the output delta file. To allow for streaming replication,
each volume delta is composed of a number of extents,
each corresponding to some number of contiguous logi-
cal chunks.

A variety of compression options are available for delta
generation. A “raw” delta incorporates only literal data
from the destination snapshot. An “xdelta” delta com-
putes the binary difference between source and destina-
tion snapshot. Raw delta is faster to generate and re-
quires less disk IO, is faster to apply to the target vol-
ume, and is more robust in the sense that the code is
very simple. Computing an xdelta delta requires more
CPU and disk bandwidth but should result in a smaller
delta that is faster to transmit.

A volume delta may be generated either as a file or as
a TCP stream. Volume replication can be carried out
manually using delta files:

1. Generate a snapshot delta as a file

2. Transmit the delta or physically transport it to the
downstream host

3. Apply the delta to the origin volume of the down-
stream host

It is comforting to be able to place a snapshot delta and
to know that the replication algorithm is easy enough to
carry out by hand, which might be important in some
special situation. For example, even if network connec-
tivity is lost, volume replication can still be carried out
by physically transporting storage media containing a
delta file.

Zumastor uses ddsnap’s streaming replication facility,
where change lists and delta files are never actually
stored, but streamed from the source to target host and
applied to the target volume as a stream. This saves a
potentially large amount of disk space that would be oth-
erwise be required to store a delta file on both the source
and target host.

From time to time it is necessary to replicate an entire
volume, for example when initializing a replication tar-
get. This ability is provided via a “full volume delta”
that generates a raw, compressed delta as if every logical
chunk had appeared in the difference list. Incidentally,
only the method of delta generation is affected by this
option, not the delta file format.

To apply a volume delta, ddsnap overwrites each chunk
of the target volume with the new data encoded in the
delta in the case of a raw delta, or reads the source snap-
shot and applies the binary difference to it in the case

140 • Zumastor Linux Storage Server

of xdelta. Clearly, it is required that the source snap-
shot exist on the downstream host and be identical to
the source snapshot on the upstream host.

To create the initial conditions for replication:

1. Ensure that upstream and downstream origin vol-
umes are identical, for example by copying one to
the other

2. Snapshot the upstream and downstream volumes

The need to copy an entire volume over the network in
the first step can be avoided in some common cases.
When a filesystem is first created, it is easy to zero both
upstream and downstream volumes, which sets them to
an identical state. The filesystem is then created after
step 2. above, so that relatively few changed blocks
are transmitted in the first replication cycle. In the case
where the downstream volume is known to be similar,
but not identical to the upstream volume (possibly as a
result of an earlier hardware or software failure) then the
remote volume differencing utility rdiff may be used to
transmit a minimal set of changes downstream.

Now, for each replication cycle:

1. Set a new snapshot on the upstream volume.

2. Generate the delta from old to new upstream snap-
shot.

3. Transmit the delta downstream.

4. Set a new snapshot on the downstream volume
(downstream origin and new snapshot are now
identical to the old upstream snapshot).

5. Apply the delta to the downstream origin (down-
stream origin is now identical to the new upstream
snapshot).

For the streaming case, step 4 is done earlier so that the
transmit and apply may iterate:

1. Set a new snapshot on upstream and downstream
volumes.

2. Generate the delta from old to new upstream snap-
shot.

3. Transmit the next extent of the delta downstream.

4. Apply the delta extent to the downstream origin.

5. Repeat at 3 until done.

For streaming replication, a server is started via ddsnap
on the target host to receive the snapshot delta and apply
it to the downstream origin.

Fortunately for most users, all these steps are handled
transparently by the Zumastor volume manager, de-
scribed below.

Multi level replication from a master volume to a chain
of downstream volumes is handled by the same algo-
rithm. We require only that two snapshots of the master
volume be available on the upstream volume and that
the older of the two also be present on the downstream
volume. A volume may be replicated to multiple targets
at any level in the chain. In general, volume replica-
tion topology is a tree, with the master volume at the
root and an arbitrary number of target volumes at inte-
rior and leaf nodes. Only the master is writable; all the
target volumes are read-only.

3.1 Delta Compression

Compression of delta extents is available as an op-
tion, either using zlib (gzip) or in the case of xdelta,
an additional Huffman encoding stage. A compressed
xdelta difference should normally be more compact than
gzipped literal data, however, one can construct cases
where the reverse is true. A further (extravagant) “best”
compression option computes both the gzip and xdelta
compression for a given extent and use the smaller for
the output delta. Which combination of delta genera-
tion options is best depends largely on the amount of
network bandwidth available.

Figure 3 illustrates the effect of various compression op-
tions on delta size. For this test, the following steps are
performed:

1. Set snapshot 0.

2. Untar a kernel tree.

3. Set snapshot 1.

2007 Linux Symposium, Volume Two • 141

Figure 3: Delta Compression Effectiveness

4. Apply a (large) patch yielding the next major ker-
nel release.

5. Set snapshot 2.

Three delta files are generated, the two incremental
deltas from snapshot 0 to snapshot 1 and from snapshot
1 to snapshot 2, and the cumulative delta from snapshot
0 to snapshot 2. We observe a very large improvement
in delta size, ranging up to a factor of 10 as compared to
the uncompressed delta.

XDelta performs considerably better on the snapshot 1
to snapshot 2 delta, which is not surprising because this
delta captures the effect of changing many files as op-
posed to adding new files to the filesystem, so it is only
on this delta that there are many opportunities to take
advantage of similarity between the two snapshots.

The “best” method gives significantly better compres-
sion on the snapshot 1 to snapshot 2 delta, which indi-
cates that some delta extents compress better with gzip
than they do with xdelta. (As pointed out by the author
of xdelta, this may be due to suboptimal use of com-
pression options available within xdelta.) Figure 4 re-

expresses the delta sizes of Figure 3 as compression ra-
tios, ranging from 5 to 13 for the various loads.

Delta compression directly affects the time required to
transmit a delta over a network. This is particularly im-
portant when replicating large volumes over relatively
low bandwidth network links, as is typically the case.
The faster a delta can be transmitted, the fresher the re-
mote copy will be. We can talk about the “churn rate” of
a volume, that is, the rate at which it changes. This could
easily be in the neighborhood of 10% a day, which for a
100 gigabyte disk would be 10 gigabytes. Transmitting
a delta of that size over a 10 megabit link would require
10000 seconds, or about three hours. An 800 gigabyte
volume with 10% churn a day would require more than
a day to transmit the delta, so the following delta will
incorporate even more than 10% churn, and take even
longer. In other words, once replication falls behind, it
rapidly falls further and further behind, until eventually
nearly all the volume is being replicated on each cycle,
which for our example will take a rather inconvenient
number of days.

In summary, good delta compression not only improves
the freshness of replicated data, it delays the point at

142 • Zumastor Linux Storage Server

Figure 4: Delta Compression Effectiveness

which replication lag begins to feed on itself and enables
timely replication of larger, busier volumes over lower
speed links.

3.2 NFS Snapshot Rollover

Exporting a replicated volume via NFS sounds easy ex-
cept that we expect the filesystem to change state “spon-
taneously” each time a new volume delta arrives, with-
out requiring current NFS clients to close their TCP con-
nections. To create the effect of jumping the filesystem
from state to state as if somebody had been editing the
filesystem locally, we need to unmount the old snapshot
and mount the new snapshot so that future NFS accesses
will be to the new snapshot. The problem is, the Linux
server will cache some elements of the client connec-
tion state such as the file handle of the filesystem root,
which pins the filesystem and prevents it from being un-
mounted.

Zumastor solves this problem by introducing a nfsd sus-
pend/resume operation. This flushes all cached client
state which forces the use count of the exported filesys-
tem snapshot to one, the mount point. This allows the
old snapshot to be unmounted and the new snapshot to

be mounted in its place, before resuming. Interestingly,
the patch to accomplish this is only a few lines, because
most of the functionality to accomplish it already ex-
isted.

3.3 Incremental Backup using Delta Files

Ddsnap delta files are not just useful for replication, they
can also be used for incremental backup. From time to
time, a “full volume” delta file can be written to tape,
followed periodically by a number of incremental deltas.
This should achieve very rapid backup and economical
use of tape media, particularly if deltas are generated
with more aggressive compression options. To restore,
a full (compressed) volume must be retrieved from tape,
along with some number of delta files, which are applied
sequentially to arrive at a volume state as some particu-
lar point in time. Restoring a single file would be a very
slow process, however it is also expected to be a rare
event. It is more important that backup be fast, so that it
is done often.

2007 Linux Symposium, Volume Two • 143

4 Zumastor volume monitor

The Zumastor volume monitor takes care of most of
the chores of setting up virtual block devices, includ-
ing making socket connections between the ddsnap
user space and kernel components, creating the vir-
tual devices with dmsetup, organizing mount points and
mounting volumes. It maintains a simple database im-
plemented as a directory tree that stores the configura-
tion and operating status of each volume on a particular
host, and provides the administrator with a simple set
of commands for adding and removing volumes from
the database, and defining their operational configura-
tion. Finally, it takes care of scheduling snapshots and
initiating replication cycles.

The Zumastor volume database is organized by vol-
umes, where each volume is completely independent
from the others, not even sharing daemons. Each Zu-
mastor volume is either a master or a target. If a master,
it has a replication schedule. If a target, then it has an
upstream source. In either case, it may have any number
of replication targets. Each replication target has exactly
one source, which prevents cycles and also allows auto-
matic checking that the correct source is replicating to
the correct target.

The replication topology for each volume is completely
independent. A given host may offer write/write access
to volumes that are replicated to other hosts and read-
only access to volumes replicated to it from other hosts.
So for example, two servers at widely separated geo-
graphic locations might each replicate a volume to the
other, which not provides a means of sharing data, but
also provides a significant degree of redundancy, partic-
ularly if each server backs up both its own read/write
volume and the replicated read-only volume to tape.

The replication topology for each volume is a tree,
where only the master (root of the tree) behaves differ-
ently from the other nodes. The master generates snap-
shots either periodically or on command. Whenever one
of its target hosts is ready to receive a new snapshot
delta, the master creates a new snapshot and replicates it
to the target, ensuring that the downstream host receives
as fresh as possible a view of the master volume. On
all other hosts, snapshot deltas are received from an up-
steam source and simply passed along down the chain.

Zumastor replication is integrated with NFS in the sense
that Zumastor knows how to suspend NFS while it re-

mounts a replicated volume to the latest snapshot, ef-
fecting the snapshot rollover described above.

5 The Future

In the future, Zumastor will continue to gain new func-
tionality and improve upon existing functionality. It
would be nice to have a graphical front end to the
database, and a web interface. It would be nice to see
the state of a whole collection of Zumastor servers to-
gether in one place, including the state of any replica-
tion cycles in progress. It would be natural to integrate
more volume management features into Zumastor, such
as volume resizing. Zumastor ought to be able to mir-
ror itself to a local machine and fail over NFS service
transparently. Zumastor should offer its own incremen-
tal backup using delta files. Another creative use of delta
files would be to offer access to “nearline” snapshots,
where a series of archived reverse deltas are applied to
go back further in time than is practical with purely on-
line snapshots.

There is still plenty of room for performance opti-
mization. There is a lot more that can be done with
NVRAM, and things can be done to improve the per-
formance without NVRAM, perhaps making some of
Zumastor’s replication and backup capabilities practical
for use on normal workstations and the cheapest of the
cheap servers.

All in all, there remains plenty of work to do and plenty
of motivation for doing it.

144 • Zumastor Linux Storage Server

Cleaning up the Linux Desktop Audio Mess

Lennart Poettering
Red Hat, Inc.

lennart@poettering.net

Abstract

Desktop audio on Linux is a mess. There are just too
many competing, incompatible sound systems around.
Most current audio applications have to support every
sound system in parallel and thus ship with sound ab-
straction layers with a more or less large number of
back-end plug-ins. JACK clients are incompatible with
ALSA clients, which in turn are incompatible with OSS
clients, which in turn are incompatible with ESD clients,
and so on. “Incompatible” often means “exclusive;”
e.g., if an OSS application gets access to the audio hard-
ware, all ALSA applications cannot access it.

Apple MacOS X has CoreAudio, Microsoft Windows
XP has a new user-space audio layer; both manage to
provide comprehensive APIs that make almost every
user happy, ranging from desktop users to pro audio
people. Both systems provide fairly modern, easy-to-
use audio APIs, and a vast range of features including
desktop audio “bling.”

On Linux we should be able to provide the same: a com-
mon solution that works on the desktop, in networked
thin-client setups and in pro audio environments, scal-
ing from mobile phones to desktop PCs and high-end
audio hardware.

1 Fixing the Linux Audio Stack

In my talk, I want to discuss what we can do to clean
up the mess that desktop audio on Linux is: why we
need a user-space sound system, what it should look
like, how we need to deal with the special requirements
of networked audio and pro-audio stuff, and how we
should expose the sound system to applications for al-
lowing Compiz-style desktop “bling”—but for audio. I
then will introduce the PulseAudio sound server as an
attempt to fix the Linux audio mess.

PulseAudio already provides compatibility with 90% of
all current Linux audio software. It features low-latency

audio processing and network transparency in an exten-
sible desktop sound server. PulseAudio is now part of
many distributions, and is likely to become the default
sound system on Fedora and Ubuntu desktops in the
next releases of these distributions.

The talk will mostly focus on the user-space side of
Linux audio, specifically on the low-level interface be-
tween hardware drivers and user-space applications.

2 Current State of Linux Audio

The current state of audio on Linux and other Free Soft-
ware desktops is quite positive in some areas, but in
many other areas, it is unfortunately very poor. Several
competing audio systems and APIs are available. How-
ever, none of them is useful in all types of applications,
nor does any meet the goals of being easy-to-use, scal-
able, modern, clean, portable, and complete. Most of
these APIs and systems conflict in one way or another.

On the other hand, we have a few components and
APIs for specific purposes that are well accepted and
cleanly designed (e.g., LADSPA, JACK). Also, Linux-
based systems can offer a few features that are not avail-
able on competing, proprietary systems. Among them
is network transparent audio and relatively low-latency
scheduling.

While competing, proprietary systems currently lack a
few features the Linux audio stack can offer, they man-
aged to provide a single (specific to the respective OS)
well-accepted API that avoids the balkanisation we cur-
rently have on Free Software desktops. Most notably,
Apple MacOS X has CoreAudio which is useful for the
desktop as well as for professional audio applications.
Microsoft Windows Vista, on the other hand, now ships
a new user-space audio layer, which also fulfills many of
the above requirements for modern audio systems and
APIs.

• 145 •

146 • Cleaning up the Linux Desktop Audio Mess

In the following sections, I will quickly introduce the
systems that are currently available and used on Linux
desktop, their specific features, and their drawbacks.

2.1 Advanced Linux Sound Architecture (ALSA)

The ALSA system [2] has become the most widely ac-
cepted audio layer for Linux. However, ALSA, both as
audio system and as API, has its share of problems:

• The ALSA user-space API is relatively complicated.

• ALSA is not available on anything but Linux.

• The ALSA API makes certain assumptions about
sound devices that are only true for hardware de-
vices. Implementing an ALSA plug-in for virtual
devices (“software” devices) is not doable without
nasty hacks.

• Not “high-level” enough for many situations.

• dmix is bug-ridden and incomplete.

• Resampling is very low quality.

• You need different configurations for normal desk-
top use (dmix) and pro audio use (no dmix).

On the other hand, it also has some real advantages over
other solutions:

• It is available on virtually every modern Linux in-
stallation.

• It is very powerful.

• It is (to a certain degree) extendable.

2.2 Open Sound System (OSS)

OSS [7] has been the predecessor of ALSA in the Linux
kernel. ALSA provides a certain degree of compatibility
with OSS. Besides that the API is available on several
other Unixes. OSS is a relatively “old” API, and thus
has a number of limitations:

• Doesn’t offer all the functionality that modern sound
hardware provides which needs to be supported by
the software (such as no surround sound, no float
samples).

• Not high-level enough for almost all situations, since
it doesn’t provide sample format or sample rate
conversions. Most software silently assumes that
S16NE samples at 44100Hz are available on all sys-
tems, which is no longer the case today.

• Hardly portable to non-Unix systems.

• ioctl()-based interface is not type-safe, not the
most user-friendly.

• Incompatible with everything else; every applica-
tion gets exclusive access to the sound device, thus
blocking all other applications from accessing it si-
multaneously.

• Almost impossible to virtualize correctly and
comprehensively. Hacks like esddsp, aoss,
artsdsp have proven to not work.

• Applications silently assume the availability of cer-
tain driver functionality that is not necessarily avail-
able in all setups. Most prominently, the 3D game
Quake doesn’t run with drivers that don’t support
mmap()-based access to the DMA audio buffer.

• No network transparency, no support for desktop
“bling.”

The good things:

• Relatively easy to use;

• Very well accepted, even beyond Linux;

• Feels very Unix-ish.

2.3 JACK

The JACK Audio Connection Kit [3] is a sound server
for professional audio purposes. As such, it is well ac-
cepted in the pro-audio world. Its emphasis, besides
playback of audio through a local sound card, is stream-
ing audio data between applications.

Plusses:

• Easy to use;

• Powerful functionality;

• It is a real sound server;

• It is very well accepted in the pro-audio world.

Drawbacks:

• Only floating point samples;

• Fixed sampling rate;

• Somewhat awkward semantics which makes it un-
usable as a desktop audio server (i.e., server doesn’t
start playback automatically, needs a manual “start”
command);

2007 Linux Symposium, Volume Two • 147

• Not useful on embedded machines;

• No network transparency.

2.4 aRts

The KDE sound server aRts [5] is no longer actively de-
veloped and has been orphaned by its developer. Having
a full music synthesiser as desktop sound server might
not be such a good idea, anyway.

2.5 EsounD

The Enlightened Sound Daemon (EsounD or ESD) [4]
has been the audio daemon of choice of the GNOME
desktop environment since GNOME 1.0 times. Besides
basic mixing and network transparency capabilities, it
doesn’t offer much. Latency querying, low-latency be-
haviour, and surround sound are not available at all. It
is thus hardly useful for anything beyond basic music
playback or playing event sounds (“bing!”).

2.6 PortAudio

The PortAudio API [6] is a cross-platform abstraction
layer for audio hardware access. As such it sits on top
of other audio systems, like OSS, ALSA, ESD, the Win-
dows audio stack, or MacOS X’s CoreAudio. PortAudio
has not been designed with networked audio devices in
mind, and also doesn’t provide the necessary function-
ality for clean integration into a desktop sound server.
PortAudio has never experienced wide adoption.

3 What we Need

As shown above, none of the currently available audio
systems and APIs can provide all that is necessary on
a modern desktop environment. I will now define four
major goals which a new desktop audio system should
try to achieve.

3.1 A Widely Accepted, Modern, Portable, Easy-
to-Use, Powerful, and Complete Audio API

None of the described Linux audio APIs fulfills all re-
quirements that are expected from a modern audio API.
On the other hand, Apple’s CoreAudio and Microsoft’s
new Windows Vista user-space audio layer reach this

goal, for the most part. More precisely, a modern sound
API for Free Software desktops should fulfill the follow-
ing requirements:

• Completeness: an audio API should be a general-
purpose interface; it should be suitable for simple
audio playback as well as professional audio pro-
duction.

• Scalability: usable on all kinds of different systems,
ranging from embedded systems to modern desktop
PCs and pro audio workstations.

• Modernness: provide good integration into the Free
Software desktop ecosystem.

• Proper support for networked and “software” (vir-
tual) devices, besides traditional hardware devices.

• Portability: the audio API should be portable across
different operating systems.

• Easy-to-use for both the user, and for the program-
mer. This includes a certain degree of automatic
fine-tuning, to provide optimal functionality with
“zero configuration.”

3.2 Routing and Filtering Audio in Software

Classic audio systems such as OSS are designed to pro-
vide an abstract API around hardware devices. A mod-
ern audio system should provide features beyond that:

• It needs to be possible to play back multiple audio
streams simultaneously, so that they are mixed in
real time.

• Applications should be able to hook into what is cur-
rently being played back.

• Before audio is written to an output device, it might
be transferred over the network to another machine.

• Before audio is played back some kind of post-
processing might take place.

• Audio streams might need to be re-routed during
playback.

3.3 Desktop “Bling”

Free Software desktops currently lack an audio counter-
part for the well known window manager Compiz. A
modern desktop audio systems should be able to pro-
vide:

148 • Cleaning up the Linux Desktop Audio Mess

• Separate per-application and per-window volumes.

• Soft fade-ins and fade-outs of music streams.

• Automatically increasing the volume of the applica-
tion window in the foreground, decreasing the vol-
ume of the application window in the background.

• Forward a stop/start request to any music-playing
applications if a VoIP call takes place.

• Remember per-application and per-window vol-
umes and devices.

• Reroute audio to a different audio device on-the-fly
without interruption, from within the window man-
ager.

• Do “hot” switching between audio devices when-
ever a new device becomes available. For example,
when a USB headset is plugged in, automatically
start using it by switching an in-progress VoIP call
over to the new headset.

3.4 A Compatible Sound System

Besides providing the features mentioned above, a new
sound system for Linux also needs to retain a large de-
gree of compatibility with all the currently available sys-
tems and APIs, as much as possible. Optimally, all cur-
rently available Linux audio software should work si-
multaneously and without manual intervention. A major
task is to marry the pro-audio and desktop audio worlds
into a single audio system.

4 What PulseAudio already provides

The PulseAudio [1] sound server is our attempt to reach
the four aforementioned goals. It is a user-space sound
server that provides network transparency, all kinds of
desktop “bling,” relatively low-latency, and is extensible
through modules. It sits atop of OSS and ALSA sound
devices and routes and filters audio data, possibly over
the network.

PulseAudio is intended to be a replacement for systems
like ESD or aRts. The former is entirely superseded;
PulseAudio may be installed as drop-in replacement for
EsounD on GNOME desktops.

PulseAudio ships with a large set of modules (plug-ins):

• Driver modules (i.e., accessing OSS, ALSA, Win32,
Solaris drivers).

• Protocol support (i.e., native TCP-based protocol,
EsounD protocol, RTP).

• Integration into LIRC, support for multimedia key-
boards.

• Desktop integration (i.e., hooks into the X11 system
for authentication and redirecting the X11 bell).

• Integration with JACK, EsounD.

• Zeroconf support, using Avahi.

• Management: Automatically restore volumes, de-
vices of playback streams, move a stream to a dif-
ferent device if its original devices becomes unavail-
able due to a hot-plug event.

• Auto-configuration: integration with HAL for auto-
matic and dynamic configuration of the sound server
based on the available hardware.

• Combination of multiple audio devices into a single
audio device while synchronising audio clocks.

PulseAudio is not intended to be a competitor to JACK,
GStreamer, Helix, KDE Phonon, or Xine. Quite the op-
posite: we already provide good integration into JACK,
GStreamer, and Xine. We have different goals.

The PulseAudio core is carefully optimised for speed
and low latency. Local clients may exchange data with
the PulseAudio audio server over shared memory data
transfer. The PulseAudio sound server will never copy
audio data blocks around in memory unless it is abso-
lutely necessary. Most audio data operations are based
on liboil’s support for the extended instruction sets
of modern CPUs (MMX, SSE, AltiVec).

Currently the emphasis for PulseAudio is on networked
audio, where it offers the most comprehensive function-
ality.

PulseAudio support is already available in a large
number of applications. For others, we have pre-
pared patches. Currently we have native plug-ins,
drivers, patches, and compatibility for Xine, MPlayer,
GStreamer, libao, XMMS, Audacious, ALSA, OSS
(using $LD_PRELOAD), EsounD, Music Player Dae-
mon (MPD), and the Adobe Flash player.

PulseAudio has a small number of graphical utility ap-
plications:

• Volume Control.

2007 Linux Symposium, Volume Two • 149

• Panel Applet (for quickly changing the output de-
vice, selecting it from a list of Zeroconf-announced
audio devices from the network).

• Volume Meter.

• Preferences panel, for a user-friendly configuration
of advanced PulseAudio functionality.

• A management console to introspect a PulseAudio
server’s internals.

5 PulseAudio Internals

5.1 Buffering Model

PulseAudio offers a powerful buffering model which is
an extension of the model Jim Gettys pioneered in the
networked audio server AF [9]. In contrast to traditional
buffering models it offers flexible buffering control, al-
lowing large buffers—which is useful for networked au-
dio systems—while still providing quick response to ex-
ternal events. It allows absolute and relative addressing
of samples in the audio buffer and supports a notion of
“zero latency.” Samples that have already been pushed
into the playback buffer may be rewritten at any time.

5.2 Zero-Copy Memory Management

Audio data in the PulseAudio sound server is stored in
reference-counted memory blocks. Audio data queues
contain only references to these memory blocks instead
of the audio data itself. This provides the advantage of
minimising copying of audio data in memory, and also
saves memory. In fact the PA core is written in a way
that, in most cases, data arriving on a network socket
is written directly into the sound card DMA hardware
buffer without spending time in bounce buffers or simi-
lar. This helps to keep memory usage down and allows
very low-latency audio processing.

5.3 Shared Memory Data Transfer

Local clients can exchange audio data with a local
PulseAudio daemon through shared-memory IPC. Ev-
ery process allocates a shared memory segment where
it stores the audio data it wants to transfer. Then, when
the data is sent to another process, the recipient receives
only the information necessary to find the data in that

segment. The recipient maps the segment of the origi-
nator in read-only mode and accesses the data.

The shared memory data transfer is the natural extension
of the aforementioned zero-copy memory management,
for communication between processes.

5.4 Synchronisation

Multiple streams can be synchronised together on the
server side. If this is done, it is guaranteed that the play-
back indexes of these streams never deviate. Clients can
label stream channels freely (e.g., “left,” “right,” “rear-
left,” “rear-right,” and so on). Together with the afore-
mentioned buffering model, this allows implementation
of flexible server-side multi-track mixing.

5.5 Buffer Underrun Handling

PulseAudio does its best to ensure that buffer under-
runs have no influence on the time axis. Two modes
are available: In the first mode, playback pauses when a
buffer underrun happens. This is the mode that is usu-
ally available in audio APIs such as OSS. In the sec-
ond mode playback never stops, and if data is available
again, enough data is skipped so that the time function
experiences no discontinuities.

6 Where we are going

While the PulseAudio project in the current state fulfills
a large part of the aforementioned requirements, it is not
complete yet. Compatibility with many sound systems,
a wide range of desktop audio “bling,” networked au-
dio, and low-latency behaviour are already available in
current versions of PulseAudio. However we are still
lacking in other areas:

• Better low-latency integration into JACK.

• Some further low-latency fixes can be made.

• Better portability to systems which don’t support
floating-point numbers.

• The client API PulseAudio currently offers is com-
paratively complicated and difficult to use.

Besides these items, there are also a lot of minor issues
to be solved in the PulseAudio project. In the follow-
ing subsections, I quickly describe the areas we are cur-
rently working on.

150 • Cleaning up the Linux Desktop Audio Mess

6.1 Threaded Core

The current PulseAudio core is mostly single-threaded.
In most situations this is not a problem, since we care-
fully make sure that no operation blocks for longer than
necessary. However, if more than one audio device
is used by a single PulseAudio instance, or when ex-
tremely low latencies must be reached, this may become
a problem. Thus the PulseAudio core is currently be-
ing moved to a more threaded design: every PulseAu-
dio module that is important in low-latency situations
will run its own event loop. Communication between
those separate event loops, the main event loop, and
other local clients is (mostly) done in a wait-free fash-
ion (mostly not lock-free, however). The design we are
currently pursuing allows a step-by-step upgrade to this
new functionality.

6.2 libsydney

During this year’s Foundation of Open Media Software
(FOMS) conference in January in Sydney, Australia, the
most vocally expressed disappointment in the Linux au-
dio world is the lack of a single well-defined, powerful
audio API which fulfills the requirements of a modern
audio API as outlined above. Since the current native
PulseAudio API is powerful but unfortunately overly
complex, we took the opportunity to define a new API
at that conference. People from Xiph, Nokia, and I sat
down to design a new API.

Of course, it might appear as a paradox to try fix the
balkanisation of Linux audio APIs by adding yet an-
other one, but given the circumstances, and after care-
ful consideration, we decided to pursue this path. This
new API was given the new name libsydney [8],
named after the city we designed the first version of the
API in. libsydney will become the only supported
API in future PulseAudio versions. Besides working on
top of PulseAudio, it will natively support ALSA, OSS,
Win32, and Solaris targets. This means that developing
a client for PulseAudio will offer cross-platform support
for free. libsydney is currently in development; by
the time of the OLS conference, an initial public version
will be made available.

6.3 Multi-User

Currently the PulseAudio audio server is intended to be
run as a session daemon. This becomes a problem if

multiple users are logged into a single machine simulta-
neously. Before PulseAudio can be adopted by modern
distributions, some kind of hand-over of the underlying
audio devices will need to be implemented to support
these multi-user setups properly.

7 Where you can get it

PulseAudio is already available in a large number of
distributions, including Fedora, Debian, and Ubuntu.
Since it is a drop-in replacement for EsounD, it is triv-
ial to install it and use it as the desktop sound server in
GNOME.

Alternatively, you may download a version from our
web site [1].

It is planned for PulseAudio to replace EsounD in the
default install in the next versions of Fedora and Ubuntu.

8 Who we are

PulseAudio has been and is being developed by Lennart
Poettering (Red Hat, Inc.) and Pierre Ossman (Cendio
AB).

References

[1] PulseAudio, http://pulseaudio.org/

[2] ALSA, http://alsa-project.org/

[3] JACK Audio Connection Kit,
http://jackaudio.org/

[4] EsounD, http://www.tux.org/
~ricdude/overview.html

[5] aRts, http://www.arts-project.org/

[6] PortAudio, http://www.portaudio.com/

[7] Open Sound System,
http://www.opensound.com/oss.html

[8] libsydney,
http://0pointer.de/cgi-bin/
viewcvs.cgi/trunk/?root=libsydney

[9] AF, http://tns-www.lcs.mit.edu/vs/
audiofile.html

Linux-VServer
Resource Efficient OS-Level Virtualization

Herbert Pötzl
herbert@13thfloor.at

Marc E. Fiuczynski
mef@cs.princeton.edu

Abstract

Linux-VServer is a lightweight virtualization system
used to create many independent containers under a
common Linux kernel. To applications and the user of a
Linux-VServer based system, such a container appears
just like a separate host.

The Linux-Vserver approach to kernel subsystem con-
tainerization is based on the concept of context isola-
tion. The kernel is modified to isolate a container into
a separate, logical execution context such that it can-
not see or impact processes, files, network traffic, global
IPC/SHM, etc., belonging to another container.

Linux-VServer has been around for several years and its
fundamental design goal is to be an extremely low over-
head yet highly flexible production quality solution. It
is actively used in situations requiring strong isolation
where overall system efficiency is important, such as
web hosting centers, server consolidation, high perfor-
mance clusters, and embedded systems.

1 Introduction

This paper describes Linux-VServer, which is a virtu-
alization approach that applies context isolation tech-
niques to the Linux kernel in order to create lightweight
container instances. Its implementation consists of a
separate kernel patch set that adds approximately 17K
lines of code to the Linux kernel. Due to its architec-
ture independent nature it has been validated to work on
eight different processor architectures (x86, sparc, al-
pha, ppc, arm, mips, etc.). While relatively lean in terms
of overall size, Linux-VServer touches roughly 460 ex-
isting kernel files—representing a non-trivial software-
engineering task. Linux-VServer is an efficient and flex-
ible solution that is broadly used for both hosting and
sandboxing scenarios.

Hosting scenarios such as web hosting centers provid-
ing Virtual Private Servers (VPS) and HPC clusters need
to isolate different groups of users and their applications
from each other. Linux-VServer has been in production
use for several years by numerous VPS hosting centers
around the world. Furthermore, it has been in use since
2003 by PlanetLab (www.planet-lab.org), which is a ge-
ographically distributed research facility consisting of
roughly 750 machines located in more than 30 countries.
Due to its efficiency, a large number of VPSs can be
robustly hosted on a single machine. For example, the
average PlanetLab machine today has a 2.4Ghz x86 pro-
cessor, 1GB RAM, and 100GB of disk space and typi-
cally hosts anywhere from 40-100 live VPSes. Hosting
centers typically use even more powerful servers and it
is not uncommon for them to pack 200 VPSes onto a
single machine.

Server consolidation is another hosting scenario where
isolation between independent application services
(e.g., db, dns, web, print) improves overall system ro-
bustness. Failures or misbehavior of one service should
not impact the performance of another. While hypervi-
sors like Xen and VMware typically dominate the server
consolidation space, a Linux-VServer solution may be
better when resource efficiency and raw performance are
required. For example, an exciting development is that
the One Laptop Per Child (OLPC) project has recently
decided to use Linux-VServer for their gateway servers
that will provide services such as print, web, blog, void,
backup, mesh/wifi, etc., to their $100 laptops at school
premises. These OLPC gateways servers will be based
on low cost / low power consuming embedded systems
hardware, and for this reason a resource efficient solu-
tion like Linux-VServer rather than Xen was chosen.

Sandboxing scenarios for generic application plugins
are emerging on mobile terminals and web browsers to
isolate arbitrary plugins–not just Java lets–downloaded
by the user. For its laptops OLPC has designed a secu-
rity framework, called bitfrost [1], and has decided to

152 • Linux-VServer

utilize Linux-VServer as its sandboxing solution, isolat-
ing the various activities from each other and protecting
the main system from all harm.

Of course, Linux-VServer is not the only approach to
implementing containers on Linux. Alternatives in-
clude non-mainlined solutions such as OpenVZ, Vir-
tuozzo, and Ensim; and, there is an active commu-
nity of developers working on kernel patches to incre-
mentally containerize the mainline kernel. While these
approaches differ at the implementation level, they all
typically focus in onto a single point within the over-
all containerization design spectrum: system virtualiza-
tion. Benchmarks run on these alternative approaches to
Linux-VServer reveal non-trivial time and space over-
head, which we believe are fundamentally due to their
focus on system virtualization. In contrast, we have
found with Linux-VServer that using a context isola-
tion approach to containerize critical kernel subsystems
yields neglible overhead compared to a vanilla kernel—
and in most cases performance of Linux-VServer and
Linux is indistinguishable.

This paper has two goals: 1) serve as a gentle intro-
duction to container-based system for the general Linux
community, and 2) highlight both the benefits (and
drawbacks) of our context isolation approach to kernel
containerization. The next section presents a high-level
overview of container-based systems and then describes
the Linux-VServer approach in further detail. Section 3
evaluates efficiency of Linux-VServer. Finally, Sec-
tion 4 offers some concluding remarks.

2 Linux-VServer Design Approach

This section provides an overview of container-based
systems, describes the general techniques used to
achieve isolation, and presents the mechanisms with
which Linux-VServer implements these techniques.

2.1 Container-based System Overview

At a high-level, a container-based system provides a
shared, virtualized OS image, including a unique root
file system, a set of system executables and libraries,
and resources (cpu, memory, storage, etc.) assigned to
the container when it is created. Each container can be
“booted” and “shut down” just like a regular operating
system, and “rebooted” in only seconds when necessary.

Host Context

Admin

Host Services

/proc
/hom

e
/usr
/dev
...

Guest 1

Apache
MySQL

PHP

Guest Admin

/proc
/hom

e
/usr
/dev
...

Guest N

Quake Srv.
Postgresql

...

Guest Admin

/proc
/hom

e
/usr
/dev
...

...

Shared OS Image

H
o

stin
g

 P
latfo

rm

V
irtu

al P
latfo

rm

Figure 1: Container-based Platform

To applications and the user of a container-based sys-
tem, the container appears just like a separate linux sys-
tem.

Figure 1 depicts a container-based system, which is
comprised of two basic platform groupings. The host-
ing platform consists essentially of the shared OS image
and a privileged host context. This is the context that
a system administrator uses to manage containers. The
virtual platform is the view of the system as seen by the
guest containers. Applications running in a guest con-
tainer work just as they would on a corresponding non-
container-based system. That is, they have their own
root file system, IP addresses, /dev, /proc, etc.

The subsequent sections will focus on the main contri-
butions that Linux-VServer makes, rather than being ex-
haustively describing all required kernel modifications.

2.2 Kernel Containerization

This section describes the kernel subsystem enhance-
ments that Linux-VServer makes to support contain-
ers. These enhancements are designed to be low over-
head, flexible, as well as to enhance security in order
to properly confine applications into a container. For
CPU scheduling, Linux-VServer introduces a novel fil-
tering technique in order to support fair-share, work-
conserving, or hard limit container scheduling. How-
ever, in terms of managing system resources such as
storage space, io bandwidth, for Linux-VServer it is
mostly an exercise of leveraging existing Linux resource
management and accounting facilities.

2.2.1 Guest Filesystems

Guest container filesystems could either be imple-
mented using loop-back mounted images—as is typical

2007 Linux Symposium, Volume Two • 153

for qemu, xen, vmware, and uml based systems—or by
simply using the native file systems and using chroot.
The main benefit of using a chroot-ed filesystem over
the loop-back mounted images is performance. Guests
can read/write files at native filesystem speed. How-
ever, there are two drawbacks: 1) chroot() information is
volatile and therefore only provides weak confinement,
and 2) chroot-ed filesystems may lead to significant du-
plication of common files. Linux-VServer addresses
both of these problems, as one of its central objectives is
to support containers in a resource efficient manner that
performs as well as native Linux.

Filesystem Chroot Barrier
Because chroot() information is volatile, it is simple
to escape from a chroot-ed environment, which would
be bad from a security perspective when one wants to
maintain the invariant that processes are confined within
their containers filesystem. This invariant is nice to have
when using containers for generic hosting scenarios, but
clearly is required for sandboxing scenario. To appreci-
ate how easy it is to escape conventional chroot() con-
finement, consider the following three simple steps: a)
create or open a file and retain the file-descriptor, b) ch-
root into a subdirectory at equal or lower level with re-
gards to the file, which causes the ‘root’ to be moved
‘down’ in the filesystem, and then c) use fchdir() on the
file descriptor to escape from that ‘new’ root, which lets
the process escape from the ‘old’ root as well, as this
was lost in the last chroot() system call.

To address this problem Linux-VServer uses a special
file attribute called the chroot barrier. The above trick
does not work when this barrier is set on the root direc-
tory of a chroot-ed filesystem, as it prevents unautho-
rized modification and escape from the chroot confine-
ment.

Filesystem Unification
To appreciate the second drawback mentioned above,
consider that systems with dozens or maybe even hun-
dreds of containers based on the same Linux distribution
will unnecessarily duplicate many common files. This
duplication occurs simply to maintain a degree of sepa-
ration between containers, as it would be difficult using
conventional Linux filesystem techniques to ensure safe
sharing of files between containers.

To address this problem Linux-VServer implements a
disk space saving technique by using a simple unifi-
cation technique applied to whole files. The basic ap-

proach is that files common to more than one container,
which are rarely going to change (e.g., like libraries
and binaries from similar OS distributions), can be hard
linked on a shared filesystem. This is possible because
the guest containers can safely share filesystem objects
(inodes).

The only drawback with hard linking files is that without
additional measures, a container could (un)intentionally
destroy or modify such shared files, which in turn would
harm/interfere other containers.

This can easily be addressed by adding an immutable
attribute to the file, which then can be safely shared be-
tween two containers. In order to ensure that a container
cannot modify such a file directly, the Linux capability
to modify this attribute is removed from the set of capa-
bilities given to a guest container.

However, removing or updating a file with immutable
link attribute set from inside a guest container would be
impossible. To remove the file the additional “permis-
sion to unlink” attribute needs to be set. With this alone
an application running inside a container could manu-
ally implement a poor man’s CoW system by: copying
the original file, making modifications to the copy, un-
linking the original file, and renaming the copy the orig-
inal filename.

This technique was actually used by older Linux-
VServer based systems, but this caused some incom-
patibilities with programs that make in-place modifica-
tions to files. To address this problem, Linux-VServer
introduced CoW link breaking which treats shared hard-
linked files as copy-on-write (CoW) candidates. When
a container attempts to mutate a CoW marked file, the
kernel will create a private copy of the file for the con-
tainer.

Such CoW marked files belonging to more than one
container are called ‘unified’ and the process of finding
common files and preparing them in this way is called
Filesystem Unification. Unification is done as an out-of-
band operation by a process run in the root container—
typically a cron job that intelligent walks all of the con-
tainers’ filesystems looking for identical files to unify.

The principal reason for doing filesystem unification is
reduced resource consumption, not simplified adminis-
tration. While a typical Linux distribution install will
consume about 500MB of disk space, our experience is
that after unification the incremental disk space required

154 • Linux-VServer

when creating a new container based on the same distri-
bution is on the order of a few megabytes.

It is straightforward to see that this technique reduces re-
quired disk space, but probably more importantly it im-
proves memory mappings for shared libraries, reduces
inode caches, slab memory for kernel structures, etc.
Section 3.1 quantifies these benefits using a real world
example.

2.2.2 Process Isolation

Linux-VServer uses the global PID space across all con-
tainers. Its approach is to hide all processes outside a
container’s scope, and prohibits any unwanted interac-
tion between a process inside a container and a process
belonging to another container. This separation requires
the extension of some existing kernel data structures in
order for them to: a) become aware to which container
they belong, and b) differentiate between identical UIDs
used by different containers. To work around false as-
sumptions made by some user-space tools (like pstree)
that the init process has to exist and have PID 1,
Linux-VServer also provides a per container mapping
from an arbitrary PID to a fake init process with PID 1.

When a Linux-VServer based system boots, by default
all processes belong to the host context. To simplify sys-
tem administration, this host context acts like a normal
Linux system and doesn’t expose any details about the
guests, except for a few proc entries. However, to allow
for a global process view, Linux-VServer defines a spe-
cial spectator context that can peek at all processes at
once. Both the host and spectator context are only log-
ical containers—i.e., unlike guest containers, they are
not implemented by kernel datastructures.

A side effect of this approach is that process migration
from one container to another container on the same host
is achieved by changing its container association and up-
dating the corresponding per-container resource usage
statistics such NPROC, NOFILE, RSS, ANON, MEM-
LOCK, etc.

The benefit to this isolation approach for the systems
process abstraction is twofold: 1) that it scales well with
a large number of contexts, 2) most critical-path logic
manipulating processes and PIDs remain unchanged.
The drawback is that one cannot as cleanly implement
container migration, checkpoint and resume, because

it may not be possibly to re-instantiate processes with
the same PID. To overcome this drawback, alternative
container-based systems virtualize the PID space on a
per container basis.

We hope to positively influence the proposed kernel
mainlining of containerized PID space support such that
depending on the usage scenario it is possible to choose
Linux-VServer style isolation, virtualization, or a hybrid
thereof.

2.2.3 Network Isolation

Linux-VServer does not fully virtualize the networking
subsystem. Rather, it shares the networking subsystem
(route tables, IP tables, etc.) between all containers, but
restricts containers to bind sockets to a subset of host
IPs specified either at container creation or dynamically
by the host administrator. This has the drawback that it
does not let containers change their route table entries
or IP tables rules. However, it was a deliberate design
decision, as it inherently lets Linux-VServer containers
achieve native networking performance.

For Linux-VServer’s network isolation approach several
issues have to be considered; for example, the fact that
bindings to special addresses like IPADDR_ANY or the
local host address have to be handled to avoid having
one container receive or snoop traffic belonging to an-
other container. The approach to get this right involves
tagging packets with the appropriate container identifier
and incorporating the appropriate filters in the network-
ing stack to ensure only the right container can receive
them. Extensive benchmarks reveal that the overhead of
this approach is minimal as high-speed networking per-
formance is indistinguishable between a native Linux
system and one enhanced with Linux-VServer regard-
less of the number of concurrently active containers.

In contrast, the best network L2 or L3 virtualization ap-
proaches as implemented in alternative container-based
systems impose significant CPU overhead when scaling
the number of concurrent, high-performance containers
on a system. While network virtualization is a highly
flexible and nice feature, our experience is that it is not
required for all usage scenarios. For this reason, we be-
lieve that our network isolation approach should be a
feature that high-performance containers should be per-
mitted to select at run time.

2007 Linux Symposium, Volume Two • 155

Again, we hope to positively influence the proposed ker-
nel mainlining of network containerization support such
that depending on the usage scenario it is possible to
choose Linux-VServer style isolation, virtualization, or
a hybrid thereof.

2.2.4 CPU Isolation

Linux-VServer implements CPU isolation by overlay-
ing a token bucket scheme on top of the standard Linux
CPU scheduler. Each container has a token bucket that
accumulates tokens at a specified rate; every timer tick,
the container that owns the running process is charged
one token. A container that runs out of tokens has its
processes removed from the run-queue until its bucket
accumulates a minimum amount of tokens. This to-
ken bucket scheme can be used to provide fair sharing
and/or work-conserving CPU reservations. It can also
enforce hard limits (i.e., an upper bound), as is popu-
larly used by VPS hosting centers to limit the number of
cycles a container can consume—even when the system
has idle cycles available.

The rate that tokens accumulate at in a container’s
bucket depends on whether the container has a reser-
vation and/or a share. A container with a reservation
accumulates tokens at its reserved rate: for example, a
container with a 10% reservation gets 100 tokens per
second, since a token entitles it to run a process for
one millisecond. A container with a share that has
runnable processes will be scheduled before the idle task
is scheduled, and only when all containers with reser-
vations have been honored. The end result is that the
CPU capacity is effectively partitioned between the two
classes of containers: containers with reservations get
what they’ve reserved, and containers with shares split
the unreserved capacity of the machine proportionally.
Of course, a container can have both a reservation (e.g.,
10%) and a fair share (e.g., 1/10 of idle capacity).

2.2.5 Network QoS

The Hierarchical Token Bucket (htb) queuing disci-
pline of the Linux Traffic Control facility (tc) [2] can
be used to provide network bandwidth reservations and
fair service. For containers that have their own IP ad-
dresses, the htb kernel support just works without mod-
ifications.

However, when containers share an IP address, as is
done by PlanetLab, it is necessary to track packets in or-
der to apply a queuing discipline to a containers flow of
network traffic. This is accomplished by tagging pack-
ets sent by a container with its context id in the kernel.
Then, for each container, a token bucket is created with
a reserved rate and a share: the former indicates the
amount of outgoing bandwidth dedicated to that con-
tainer, and the latter governs how the container shares
bandwidth beyond its reservation. The htb queuing
discipline then allows each container to send packets
at the reserved rate of its token bucket, and fairly dis-
tributes the excess capacity to other containers in pro-
portion to their shares. Therefore, a container can be
given a capped reservation (by specifying a reservation
but no share), “fair best effort” service (by specifying a
share with no reservation), or a work-conserving reser-
vation (by specifying both).

2.2.6 Disk QoS

Disk I/O is managed in Linux-VServer using the stan-
dard Linux CFQ (“completely fair queuing”) I/O sched-
uler. The CFQ scheduler attempts to divide the band-
width of each block device fairly among the containers
performing I/O to that device.

2.2.7 Storage Limits

Linux-VServer provides the ability to associate limits to
the amount of memory and disk storage a container can
acquire. For disk storage one can specify limits on the
maximum number of disk blocks and inodes a container
can allocate. For memory, a variety of different limits
can be set, controlling the Resident Set Size and Virtual
Memory assigned to each context.

Note that fixed upper bounds on RSS are not appro-
priate for usage scenarios where administrators wish to
overbook containers. In this case, one option is to let
containers compete for memory, and use a watchdog
daemon to recover from overload cases—for example
by killing the container using the most physical mem-
ory. PlanetLab [3] is one example where memory is a
particularly scarce resource, and memory limits with-
out overbooking are impractical: given that there are
up to 90 active containers on a PlanetLab server, this
would imply a tiny 10MB allocation for each container

156 • Linux-VServer

on the typical PlanetLab server with 1GB of memory.
Instead, PlanetLab provides basic memory isolation be-
tween containers by running a simple watchdog dae-
mon, called pl_mom, which resets the container con-
suming the most physical memory when swap has al-
most filled. This penalizes the memory hog while keep-
ing the system running for everyone else, and is effective
for the workloads that PlanetLab supports. A similar
technique is apparently used by managed web hosting
companies.

3 Evaluation

In a prior publication [5], we compared in further de-
tail the performance of Linux-VServer with both vanilla
Linux and Xen 3.0 using lmbench, iperf, and dd as mi-
crobenchmarks and kernel compile, dbench, postmark,
osdb as synthetic macrobenchmarks. Our results from
that paper revealed that Linux-VServer has in the worst
case a 4 percent overhead when compared to an unvir-
tualized, vanilla Linux kernel; however, in most cases
Linux-VServer is nearly identical in performance and
in a few lucky cases—due to gratuitous cache effects—
Linux-VServer consistently outperforms vanilla kernel.
Please consult our other paper [5] for these details.

This section explores the efficiency of Linux-VServer.
We refer to the combination of scale and performance
as the efficiency of the system, since these metrics cor-
respond directly to how well the virtualizing system or-
chestrates the available physical resources for a given
workload. All experiments are run on HP Proliant
servers with dual core processors, 2MB caches, 4GB
RAM, and 7.2k RPM SATA-100 disks.

3.1 Filesystem Unification

As discussed in Section 2.2.1, Linux-VServer supports
a unique filesystem unification model. The reason for
doing filesystem unification is to reduce disk space con-
sumption, but more importantly it reduces system re-
source consumption. We use a real world example to
demonstrate this benefit from filesystem unification.

We configure guest containers with Mandriva 2007. The
disk footprint of a non-unified installation is 150MB per
guest. An activated guest runs a complement of dae-
mons and services such as syslog, crond, sshd, apache,
postfix and postgresql—a typical configuration used in
VPS hosting centers.

We evaluate the effectiveness of filesystem unification
using two tests. The first consists of starting 200 sepa-
rate guests one after the other measuring memory con-
sumption. The second test is identical to the first, except
before all guests are started, their filesystems are unified.
For the latter test, the disk footprint of each unified guest
reduces from 150MB to 10MB, resulting in 140MB of
common and thus shared data on disk.

Tables 1 and 2 summarize the results for this test, cat-
egorizing how much time it takes for the guest to start
up and how much memory it consumes categorized by
memory type such as active, buffer, cache, slab, etc.
What these columns in the two tables reveal is that the
kernel inherently shares memory for shared libraries, bi-
naries, etc. due to the unification (i.e., hard linking) of
files.

Table 3 compares the rows with the 200th guest, which
shows the difference and overhead percentage in con-
sumed memory as well as the time required to start the
same number of guest container. These differences are
significant!

Of course, techniques exist to recoup redundant memory
resources (e.g., VMware’s content-based memory shar-
ing used in its ESX product line [6]). However, such
techniques require the system to actively seek out redun-
dant memory by computing hash keys page data, etc.,
which introduces non-trivial overhead. In contrast, with
the filesystem unification approach we inherently obtain
this benefit.

As a variation of our prior experiment, we have also
measured starting the 200 guest containers in parallel.
The results for this experiment are shown in Figure 2.
The first thing to note in the figure is that the paral-
lel startup of 200 separate guests causes the machine to
spend most of the very long startup (approx. 110min)
paging in and out data (libraries, executeables, shared
files), which causes the cpu to hang in iowait most of
the time (light blue area in the cpu graphs) rendering
the system almost unresponsive. In contrast, the same
startup with 200 unified guests is rather fast (approx.
20min), and most of the startup time is spent on actual
guest processes.

3.2 Networking

We also evaluated the efficiency of network operations
by comparing 2.6.20 based kernels, one unmodified ker-
nel, and one patched with Linux-VServer 2.2. Two sets

2007 Linux Symposium, Volume Two • 157

Guest Time Active Buffers Cache Anon Mapped Slab Recl. Unrecl.
001 0 16364 2600 20716 4748 3460 8164 2456 5708
002 7 30700 3816 42112 9052 8200 11056 3884 7172
003 13 44640 4872 62112 13364 12872 13248 5268 7980
. .
198 1585 2093424 153400 2399560 849696 924760 414892 246572 168320
199 1593 2103368 151540 2394048 854020 929660 415300 246324 168976
200 1599 2113004 149272 2382964 858344 934336 415528 245896 169632

Table 1: Memory Consumption—Separate Guests

Guest Time Active Buffers Cache Anon Mapped Slab Recl. Unrecl.
001 0 16576 2620 20948 4760 3444 8232 2520 5712
002 10 31368 4672 74956 9068 8140 12976 5760 7216
003 14 38888 5364 110508 13368 9696 16516 8360 8156
. .
198 1304 1172124 88468 2492268 850452 307596 384560 232988 151572
199 1313 1178876 88896 2488476 854840 309092 385384 233064 152320
200 1322 1184368 88568 2483208 858988 310640 386256 233388 152868

Table 2: Memory Consumption—Unified Guests

Attribute Difference Overhead
Time 277 s 21.0 %
Active 928848 k 79.5 %
Buffers 60724 k 70.7 %
Cache 100012 k -4.2 %
Anon 632 k 0.0 %
Mapped 623680 k 203.0 %
Slab 29340 k 7.8 %
Recl. 12572 k 5.4 %
Unrecl. 16768 k 11.4 %

Table 3: Overhead Unified vs. Separate

158 • Linux-VServer

17:10 17:20 17:30 17:40 17:50 18:00 18:10 18:20 18:30 18:40 18:50 19:00

 0

 100

 200

 300

 400

 500

 600

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

 short mid long running sleeping/2

20:10 20:20 20:30

 0

 100

 200

 300

 400

 500

 600

 700

 800

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

 short mid long running

17:10 17:20 17:30 17:40 17:50 18:00 18:10 18:20 18:30 18:40 18:50 19:00

 0

 50

 100

 150

 200

 250

 300

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

 syst user wait

20:10 20:20 20:30

 0

 50

 100

 150

 200

 250

 300

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

 syst user wait

17:10 17:20 17:30 17:40 17:50 18:00 18:10 18:20 18:30 18:40 18:50 19:00

 0.5 G

 1.0 G

 1.5 G

 2.0 G

 2.5 G

 3.0 G

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

 slab mapped buffers active

20:10 20:20 20:30

 0.5 G

 1.0 G

 1.5 G

 2.0 G

 2.5 G

 3.0 G

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

 slab mapped buffers active

17:10 17:20 17:30 17:40 17:50 18:00 18:10 18:20 18:30 18:40 18:50 19:00

 0.0

 0.2 M

 0.4 M

 0.6 M

 0.8 M

 1.0 M

 1.2 M

 1.4 M

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

 pagein pageout activate deactivate

20:10 20:20 20:30

 0.0

 0.2 M

 0.4 M

 0.6 M

 0.8 M

 1.0 M

 1.2 M

 1.4 M

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

 pagein pageout activate deactivate

Figure 2: Parallel Startup of 200 Guests—Separate (left) vs. Unified (right)

2007 Linux Symposium, Volume Two • 159

of experiments were conducted: the first measuring the
throughput of packets sent and received over the net-
work for a CPU bound workload, and the second as-
sessing the cost of using multiple heavily loaded Linux-
VServer containers concurrently. While the former eval-
uates the ability of a single container to saturate a high-
speed network link, the latter measures the efficiency
of Linux-VServer’s utilization of the underlying hard-
ware. In both experiments, fixed-size UDP packets were
exchanged between containers and a remote system on
the local network. HP Proliant servers were used for
both the sender and receiver, connected through a Giga-
bit network, equipped with 2.4Ghz Xeon 3060.

The first set of experiments demonstrated that the per-
formance of Linux-VServer is equivalent to that of
vanilla Linux. This is in line with our prior iperf-based
TCP throughput results [5].

The second set of experiments involved continually
increasing the number of clients confined in Linux-
VServer based containers sending UDP packets as in
the previous experiment. We made two observations:
1) the CPU utilization of Linux-VServer containers for
packet sizes with which the network was saturated was
marginally higher (77% as opposed to 72%), and 2)
the increase in the CPU utilization of Linux-VServer,
and the threshold beyond which it saturated the CPU
was identical to that of Native Linux as containers were
added.

These experiments suggest that for average work-
loads, the degradation of performance using the Linux-
VServer network isolation approach is marginal. Fur-
thermore, Linux-VServer can scale to multiple concur-
rent containers exchanging data at high rates with a per-
formance comparable to native Linux.

3.3 CPU Fair Share and Reservations

To investigate both CPU isolation of a single resource
and resource guarantees, we use a combination of CPU
intensive tasks. Hourglass is a synthetic real-time ap-
plication useful for investigating scheduling behavior at
microsecond granularity [4]. It is CPU-bound and in-
volves no I/O.

Eight containers are run simultaneously. Each container
runs an instance of hourglass, which records contiguous
periods of time scheduled. Because hourglass uses no

I/O, we may infer from the gaps in its time-line that
either another container is running or the virtualized
system is running on behalf of another container, in a
context switch for instance. The aggregate CPU time
recorded by all tests is within 1% of system capacity.

We evaluated two experiments: 1) all containers are
given the same fair share of CPU time, and 2) one of
the containers is given a reservation of 1/4th of overall
CPU time. For the first experiment, VServer for both
UP and SMP systems do a good job at scheduling the
CPU among the containers such that each receive ap-
proximately one eights of the available time.

For the second experiment we observe that the CPU
scheduler for Linux-VServer achieves the requested
reservation within 1%. Specifically, the container
having requested 1/4th of overall CPU time receives
25.16% and 49.88% on UP and SMP systems, respec-
tively. The remaining CPU time is fairly shared amongst
the other seven containers.

4 Conclusion

Virtualization technology in general benefits a wide va-
riety of usage scenarios. It promises such features as
configuration independence, software interoperability,
better overall system utilization, and resource guaran-
tees. This paper described the Linux-VServer approach
to providing these features while balancing the tension
between strong isolation of co-located containers with
efficient sharing of the physical resources on which the
containers are hosted.

Linux-VServer maintains a small kernel footprint, but it
is not yet feature complete as it lacks support for true
network virtualization and container migration. These
are features that ease management and draw users to
hypervisors such as Xen and VMware, particularly in
the server consolidation and hosting scenarios. There
is an active community of developers working towards
adding these features to the mainline Linux kernel,
which we expect will be straightforward to integrate
with Linux-VServer.

In the mean time, for managed web hosting, PlanetLab,
the OLPC laptop and gateway server, embedded sys-
tems, etc., the trade-off between isolation and efficiency
is of paramount importance. We believe that Linux-
VServer hits a sweet spot in the containerization design

160 • Linux-VServer

space, as it provides for strong isolation and it performs
equally with native Linux kernels in most cases.

References

[1] Ivan Krstic. System security on the One Laptop per
Child’s XO laptop: the Bitfrost security platform.
http://wiki.laptop.org/go/Bitfrost.

[2] Linux Advanced Routing and Traffic Control.
http://lartc.org/.

[3] Larry Peterson, Andy Bavier, Marc E. Fiuczynski,
and Steve Muir. Experiences building planetlab. In
Proceedings of the 7th USENIX Symposium on
Operating System Design and Implementation
(OSDI ’06), Seattle, WA, November 2006.

[4] John Regehr. Inferring scheduling behavior with
hourglass. In In Proceedings of the Freenix Track
of the 2002 USENIX Annual Technical Conference,
June 2002.

[5] Stephen Soltesz, Herbert Pötzl, Marc E.
Fiuczynski, Andy Bavier, and Larry Peterson.
Container-based operating system virtualization: A
scalable, high-performance alternative to
hypervisors. In Proc. 2nd EUROSYS, Lisboa,
Portugal, March 2007.

[6] Carl Waldspurger. Memory resource management
in vmware esx server. In Proc. 5th OSDI, Boston,
MA, Dec 2002.

Internals of the RT Patch

Steven Rostedt
Red Hat, Inc.

srostedt@redhat.com
rostedt@goodmis.org

Darren V. Hart
IBM Linux Technology Center

dvhltc@us.ibm.com

Abstract

Steven Rostedt (srostedt@redhat.com)

Over the past few years, Ingo Molnar and others have
worked diligently to turn the Linux kernel into a vi-
able Real-Time platform. This work is kept in a patch
that is held on Ingo’s page of the Red Hat web site [7]
and is referred to in this document as the RT patch.
As the RT patch is reaching maturity, and slowly slip-
ping into the upstream kernel, this paper takes you into
the depths of the RT patch and explains exactly what it
is going on. It explains Priority Inheritance, the con-
version of Interrupt Service Routines into threads, and
transforming spin_locks into mutexes and why this all
matters. This paper is directed toward kernel developers
that may eventually need to understand Real-Time (RT)
concepts and help them deal with design and develop-
ment changes as the mainline kernel heads towards a
full fledge Real-Time Operating System (RTOS). This
paper will offer some advice to help them avoid pitfalls
that may come as the mainline kernel comes closer to an
actual RTOS.

The RT patch has not only been beneficial to those
in the Real-Time industry, but many improvements to
the mainline kernel have come out of the RT patch.
Some of these improvements range from race conditions
that were fixed to reimplementation of major infrastruc-
tures.1 The cleaner the mainline kernel is, the easier it
is to convert it to an RTOS. When a change is made to
the RT patch that is also beneficial to the mainline ker-
nel, those changes are sent as patches to be incorporated
into mainline.

1such as hrtimers and generic IRQs

1 The Purpose of a Real-Time Operating Sys-
tem

The goal of a Real-Time Operating System is to create
a predictable and deterministic environment. The pri-
mary purpose is not to increase the speed of the system,
or lower the latency between an action and response, al-
though both of these increase the quality of a Real-Time
Operating System. The primary purpose is to eliminate
“surprises.” A Real-Time system gives control to the
user such that they can develop a system in which they
can calculate the actions of the system under any given
load with deterministic results. Increasing performance
and lowering latencies help in this regard, but they are
only second to deterministic behavior. A common mis-
conception is that an RTOS will improve throughput and
overall performance. A quality RTOS still maintains
good performance, but an RTOS will sacrifice through-
put for predictability.

To illustrate this concept, let’s take a look at a hypothet-
ical algorithm that on a non Real-Time Operating Sys-
tem, can complete some calculation in 250 microsec-
onds on average. An RTOS on the same machine may
take 300 microseconds for that same calculation. The
difference is that an RTOS can guarantee that the worst
case time to complete the calculation is known in ad-
vanced, and the time to complete the calculation will
not go above that limit.2 The non-RTOS can not guar-
antee a maximum upper limit time to complete that algo-
rithm. The non-RTOS may perform it in 250 microsec-
onds 99.9% of the time, but 0.1% of the time, it might
take 2 milliseconds to complete. This is totally unac-
ceptable for an RTOS, and may result in system failure.
For example, that calculation may determine if a device
driver needs to activate some trigger that must be set
within 340 microseconds or the machine will lock up.
So we see that a non-RTOS may have a better average

2when performed by the highest priority thread.

• 161 •

162 • Internals of the RT Patch

performance than an RTOS, but an RTOS guarantees to
meet its execution time deadlines.

The above demonstrates an upper bound requirement for
completing a calculation. An RTOS must also imple-
ment the requirement of response time. For example, a
system may have to react to an asynchronous event. The
event may be caused by an external stimulus (hitting a
big red button) or something that comes from inside the
system (a timer interrupt). An RTOS can guarantee a
maximum response time from the time the stimulant oc-
curs to the time the reaction takes place.

1.1 Latencies

The time between an event is expected to occur and the
time it actually does is called latency. The event may be
an external stimulus that wants a response, or a thread
that has just woken up and needs to be scheduled. The
following is the different kinds and causes of latencies
and these terms will be used later in this paper.

• Interrupt Latency — The time between an
interrupt triggering and when it is actually ser-
viced.

• Wakeup Latency — The time between the
highest priority task being woken up and the time
it actually starts to run. This also can be called
Scheduling Latency.

• Priority Inversion — The time a high pri-
ority thread must wait for a resource owned by a
lower priority thread.

• Interrupt Inversion — The time a high
priority thread must wait for an interrupt to perform
a task that is of lower priority.

Interrupt latency is the easiest to measure since it cor-
responds tightly to the time interrupts are disabled. Of
course, there is also the time that it takes to make it to
the actual service routine, but that is usually a constant
value.3 The duration between the waking of a high pri-
ority process and it actually running is also a latency.
This sometimes includes interrupt latency since waking
of a process is usually due to some external event.

3except with the RT kernel, see Section 2.

Priority inversion is not a latency but the effect of pri-
ority inversion causes latency. The amount of time a
thread must wait on a lower priority thread is the la-
tency due to priority inversion. Priority inversion can
not be prevented, but an RTOS must prevent unbounded
priority inversion. There are several methods to address
unbounded priority inversion, and Section 6 explains the
method used by the RT patch.

Interrupt inversion is a type of priority inversion where
a thread waits on an interrupt handler servicing a lower
priority task. What makes this unique, is that a thread
is waiting on an interrupt context that can not be pre-
empted, as opposed to a thread that can be preempted
and scheduled out. Section 2 explains how threaded in-
terrupts address this issue.

2 Threaded Interrupts

As mentioned in Section 1.1, one of the causes of la-
tency involves interrupts servicing lower priority tasks.
A high priority task should not be greatly affected by
a low priority task, for example, doing heavy disk IO.
With the normal interrupt handling in the mainline ker-
nel, the servicing of devices like hard-drive interrupts
can cause large latencies for all tasks. The RT patch
uses threaded interrupt service routines to address this
issue.

When a device driver requests an IRQ, a thread is cre-
ated to service this interrupt line.4 Only one thread can
be created per interrupt line. Shared interrupts are still
handled by a single thread. The thread basically per-
forms the following:

while (!kthread_should_stop()) {
set_current_state

(TASK_INTERRUPTIBLE);

do_hardirq(desc);

cond_resched();

schedule();

}

Here’s the flow that occurs when an interrupt is trig-
gered:

The architecture function do_IRQ()5 calls one of the
following chip handlers:

4See kernel/irq/manage.c do_irqd.
5See arch/<arch>/kernel/irq.c. (May be different in

some architectures.)

2007 Linux Symposium, Volume Two • 163

• handle_simple_irq

• handle_level_irq

• handle_fasteoi_irq

• handle_edge_irq

• handle_percpu_irq

Each of these sets the IRQ descriptor’s status flag
IRQ_INPROGRESS, and then calls redirect_
hardirq().

redirect_hardirq() checks if threaded interrupts
are enabled, and if the current IRQ is threaded (the
IRQ flag IRQ_NODELAY is not set) then the associ-
ated thread (do_irqd) is awaken. The interrupt line
is masked and the interrupt exits. The cause of the inter-
rupt has not been handled yet, but since the interrupt line
has been masked, that interrupt will not trigger again.
When the interrupt thread is scheduled, it will handle
the interrupt, clear the IRQ_INPROGRESS status flag,
and unmask the interrupt line.

The interrupt priority inversion latency time is only the
time from the triggering of the interrupt, the masking of
the interrupt line, the waking of the interrupt thread, and
returning back to the interrupted code, which takes on a
modern computer system a few microseconds. With the
RT patch, a thread may be given a higher priority than a
device handler interrupt thread, so when the device trig-
gers an interrupt, the interrupt priority inversion latency
is only the masking of the interrupt line and waking the
interrupt thread that will handle that interrupt. Since the
high priority thread may be of a higher priority than the
interrupt thread, the high priority thread will not have to
wait for the device handler that caused that interrupt.

2.1 Hard IRQs That Stay Hard

It is important to note that there are cases where an inter-
rupt service routine is not converted into a thread. Most
notable example of this is the timer interrupt. The timer
interrupt is handled in true interrupt context, and is not
serviced by a thread. This makes sense since the timer
interrupt controls the triggering of time events, such as,
the scheduling of most threads.

A device can also specify that its interrupt handler shall
be a true interrupt by setting the interrupt descriptor flag

IRQ_NODELAY. This will force the interrupt handler
to run in interrupt context and not as a thread. Also
note that an IRQ_NODELAY interrupt can not be shared
with threaded interrupt handlers. The only time that
IRQ_NODELAY should be used is if the handler does
very little and does not grab any spin_locks. If the han-
dler acquires spin_locks, it will crash the system in full
CONFIG_PREEMPT_RT mode.6

It is recommended never to use the IRQ_NODELAY flag
unless you fully understand the RT patch. The RT patch
takes advantage of the fact that interrupt handlers run
as threads, and allows for code that is used by interrupt
handlers, that would normally never schedule, to sched-
ule.

2.2 Soft IRQs

Not only do hard interrupts run as threads, but all soft
IRQs do as well. In the current mainline kernel,7

soft IRQS are usually handled on exit of a hard in-
terrupt. They can happen anytime interrupts and soft
IRQs are enabled. Sometimes when a large number of
soft IRQs need to be handled, they are pushed off to
the ksoftirqd thread to complete them. But a soft
IRQ handler can not assume that it will be running in a
threaded context.

In the RT patch, the soft IRQs are only handled in
a thread. Furthermore, they are split amongst several
threads. Each soft IRQ has its own thread to handle
them. This way, the system administrator can control
the priority of individual soft IRQ threads.

Here’s a snapshot of soft IRQ and hard IRQ threads,
using ps -eo pid,pri,rtprio,cmd.

6see Section 4.
72.6.21 as the time of this writing.

164 • Internals of the RT Patch

PID PRI RTPRIO CMD
4 90 50 [softirq-high/0]
5 90 50 [softirq-timer/0]
6 90 50 [softirq-net-tx/]
7 90 50 [softirq-net-rx/]
8 90 50 [softirq-block/0]
9 90 50 [softirq-tasklet]

10 90 50 [softirq-sched/0]
11 90 50 [softirq-hrtimer]
12 90 50 [softirq-rcu/0]

304 90 50 [IRQ-8]
347 90 50 [IRQ-15]
381 90 50 [IRQ-12]
382 90 50 [IRQ-1]
393 90 50 [IRQ-4]
400 90 50 [IRQ-16]
401 90 50 [IRQ-18]
402 90 50 [IRQ-17]
413 90 50 [IRQ-19]

3 Kernel Preemption

A critical section in the kernel is a series of operations
that must be performed atomically. If a thread accesses a
critical section while another thread is accessing it, data
can be corrupted or the system may become unstable.
Therefore, critical sections that can not be performed
atomically by the hardware, must provide mutual exclu-
sion to these areas. Mutual exclusion to a critical section
may be implemented on a uniprocessor (UP) system by
simply preventing the thread that accesses the section
from being scheduled out (disable preemption). On a
symmetric multiprocessor (SMP) system, disabling pre-
emption is not enough. A thread on another CPU might
access the critical section. On SMP systems, critical
sections are also protected with locks.

An SMP system prevents concurrent access to a critical
section by surrounding it with spin_locks. If one CPU
has a thread accessing a critical section when another
CPU’s thread wants to access that same critical section,
the second thread will perform a busy loop (spin) until
the previous thread leaves that critical section.

A preemptive kernel must also protect those same criti-
cal sections from one thread accessing the section before
another thread has left it. Preemption must be disabled
while a thread is accessing a critical section, otherwise
another thread may be scheduled and access that same
critical section.

Linux, prior to the 2.5 kernel, was a non-preemptive ker-
nel. That means that whenever a thread was running
in kernel context (a user application making a system
call) that thread would not be scheduled out unless it
volunteered to schedule (calls the scheduler function).
In the development of the 2.5 kernel, Robert Love in-
troduced kernel preemption [2]. Robert Love realized
that the critical sections that are protected by spin_locks
for SMP systems, are also the same sections that must
be protected from preemption. Love modified the ker-
nel to allow preemption even when a thread is in kernel
context. Love used the spin_locks to mark the critical
sections that must disable preemption.8

The 2.6 Linux kernel has an option to enable kernel pre-
emption. Kernel preemption has improved reaction time
and lowered latencies. Although kernel preemption has
brought Linux one step closer to an RTOS, Love’s im-
plementation contains a large bottleneck. A high prior-
ity process must still wait on a lower priority process
while it is in a critical section, even if that same high
priority process did not need to access that section.

4 Sleeping Spin Locks

Spin_locks are relatively fast. The idea behind a
spin_lock is to protect critical sections that are very
short. A spin_lock is considered fast compared to sleep-
ing locks because it avoids the overhead of a schedule.
If the time to run the code in a critical section is shorter
than the time of a context switch, it is reasonable to
use a spin_lock, and on contention, spin in a busy loop,
while waiting for a thread on another CPU to release the
spin_lock.

Since spin_locks may cause a thread on another CPU
to enter a busy loop, extra care must be given with the
use of spin_locks. A spin_lock that can be taken in
interrupt context must always be taken with interrupts
disabled. If an interrupt context handler that acquires
a spin_lock is triggered while the current thread holds
that same spin_lock, then the system will deadlock. The
interrupt handler will spin on the spin_lock waiting for
the lock to be released, but unfortunately, that same in-
terrupt handler is preventing the thread that holds the
spin_lock from releasing it.

A problem with the use of spin_locks in the Linux ker-
nel is that they also protect large critical sections. With

8other areas must also be protected by preemption (e.g., interrupt
context).

2007 Linux Symposium, Volume Two • 165

the use of nested spin_locks and large sections being
protected by them, the latencies caused by spin_locks
become a big problem for an RTOS. To address this, the
RT patch converts most spin_locks into a mutex (sleep-
ing lock).

By converting spin_locks into mutexes, the RT patch
also enables preemption within these critical sections.
If a thread tries to access a critical section while another
thread is accessing it, it will now be scheduled out and
sleep until the mutex protecting the critical section is re-
leased.

When the kernel is configured to have sleeping
spin_locks, interrupt handlers must also be converted
to threads since interrupt handlers also use spin_locks.
Sleeping spin_locks are not compatible with not-
threaded interrupts, since only a threaded interrupt may
schedule. If a device interrupt handler uses a spin_lock
and also sets the interrupt flag IRQ_NODELAY, the sys-
tem will crash if the interrupt handler tries to acquire the
spin_lock when it is already taken.

Some spin_locks in the RT kernel must remain a busy
loop, and not be converted into a sleeping spin_lock.
With the use of type definitions, the RT patch can mag-
ically convert nearly all spin_locks into sleeping mu-
texes, and leave other spin_locks alone.

5 The Spin Lock Maze

To avoid having to touch every spin_lock in the kernel,
Ingo Molnar developed a way to use the latest gcc ex-
tensions to determine if a spin_lock should be used as
a mutex, or stay as a busy loop.9 There are places in
the kernel that must still keep a true spin_lock, such as
the scheduler and the implementation of mutexes them-
selves. When a spin_lock must remain a spin_lock
the RT patch just needs to change the type of the
spin_lock from spinlock_t to raw_spinlock_t.
All the actual spin_lock function calls will determine at
compile time which type of spin_lock should be used.
If the spin_lock function’s parameter is of the type
spinlock_t it will become a mutex. If a spin_lock
function’s parameter is of the type raw_spinlock_t
it will stay a busy loop (as well as disable preemption).

Looking into the header files of spinlock.h will drive
a normal person mad. The macros defined in those

9also called raw_spin_lock.

headers are created to actually facilitate the code by
not having to figure out whether a spin_lock function
is for a mutex or a busy loop. The header files, unfor-
tunately, are quite complex. To make it easier to under-
stand, I will not show the actual macros that make up
the spin_lock function, but, instead, I will show what it
looks like evaluated slightly.

#define spin_lock(lock)

if (TYPE_EQUAL((lock),

raw_spinlock_t))

__spin_lock(lock);

else if (TYPE_EQUAL((lock),

spinlock_t))

_spin_lock(lock);

else __bad_spinlock_type();

The TYPE_EQUAL is defined as __builtin_types_
compatible_p(typeof(lock), type *) which is
a gcc internal command that handles the condition at
compile time. The __bad_spinlock_type function
is not actually defined, if something other than a spin-
lock_t or raw_spinlock_t is passed to a spin_lock func-
tion the compiler will complain.

The __spin_lock()10 acts like the original spin_lock
function, and the _spin_lock()11 evaluates to the mu-
tex, rt_spin_lock(), defined in kernel/rtmutex.
c.

6 Priority Inheritance

The most devastating latency that can occur in an RTOS
is unbounded priority inversion. As mentioned earlier,
priority inversion occurs when a high priority thread
must wait on a lower priority thread before it can run.
This usually occurs when a resource is shared between
high and low priority threads, and the high priority
thread needs to take the resource while the low prior-
ity thread holds it. Priority inversion is natural and can
not be completely prevented. What we must prevent is
unbounded priority inversion. That is when a high pri-
ority thread can wait an undetermined amount of time
for the lower priority thread to release the resource.

The classic example of unbounded priority inversion
takes place with three threads, each having a different
priority. As shown in Figure 1, the CPU usage of three

10prefixed with two underscores.
11prefixed with one underscore.

166 • Internals of the RT Patch

threads, A (highest priority) B (middle priority), and C
(lowest priority). Thread C starts off and holds some
lock, then thread A wakes up and preempts thread C.
Thread A tries to take a resource that is held by thread
C and is blocked. Thread C continues but is later pre-
empted by thread B before thread C could release the re-
source that thread A is blocked on. Thread B is of higher
priority than thread C but lower priority than thread
A. By preempting thread C it is in essence preempt-
ing thread A. Since we have no idea how long thread B
will run, thread A is now blocked for an undetermined
amount of time. This is what is known as unbounded
priority inversion.

There are different approaches to preventing unbounded
priority inversion. One way is just simply by design.
That is to carefully control what resources are shared as
well as what threads can run at certain times. This is
usually only feasible by small systems that can be com-
pletely audited for misbehaving threads. The Linux ker-
nel is far too big and complex for this approach. An-
other approach is priority ceiling [3], where each re-
source (lock) knows the highest priority thread that will
acquire it. When a thread takes a resource, it is tem-
porarily boosted to the priority of that resource while
it holds the resource. This prevents any other thread
that might acquire that resource from preempting this
thread. Since pretty much any resource or lock in the
Linux kernel may be taken by any thread, you might as
well just keep preemption off while a resource is held.
This would include sleeping locks (mutexes) as well.

What the RT patch implements is Priority Inheritance
(PI). This approach scales well with large projects, al-
though it is usually criticized that the algorithms to im-
plement PI are too complex and error prone. PI algo-
rithms have matured and it is easier to audit the PI al-
gorithm than the entire kernel. The basic idea of PI is
that when a thread blocks on a resource that is owned
by a lower priority thread, the lower priority thread in-
herits the priority of the blocked thread. This way the
lower priority thread can not be preempted by threads
that are of lower priority than the blocked thread. Fig-
ure 2 shows the same situation as Figure 1 but this time
with PI implemented.

The priority inheritance algorithm used by the RT patch
is indeed complex, but it has been vigorously tested and
used in production environments. For a detailed expla-
nation of the design of the PI algorithm used not only by
the RT patch but also by the current mainline kernel PI

futex, see the kernel source documentation [9].

7 What’s Good for RT is Good for the Kernel

The problem with prior implementations of RT getting
accepted into mainline Linux, was that too much was
done independently from mainline development, or was
focused strictly on the niche RT market. Large intru-
sive changes were made throughout the kernel in ways
that were not acceptable by most of the kernel maintain-
ers. Finally, one day Ingo Molnar noticed the benefits
of RT and started developing a small project that would
incorporate RT methods into the Linux kernel. Molnar,
being a kernel maintainer, could look at RT from a more
general point of view, and not just from that of a niche
market. His approach was not to force the Linux kernel
into the RT world, but rather to bring the beneficial parts
of the RT world to Linux.

One of the largest problems back then (2004) was this
nasty lock that was all over the Linux kernel. This
lock is know as the Big Kernel Lock (BKL). The BKL
was introduced into Linux as the first attempt to bring
Linux to the multiprocessor environment. The BLK
would protect concurrent accesses of critical sections
from threads running on separate CPUs. The BKL was
just one big lock to protect everything. Since then,
spin_locks have been introduced to separate non related
critical sections. But there are still large portions of
Linux code that is still protected by the BKL.

The BKL was a spin_lock that was large and intrusive,
and would cause large latencies. Not only was it a spin-
ning lock, but it was also recursive.12 It also had the
non-intuitive characteristic that a process holding a BKL
is allowed to voluntarily sleep. Spin locks could cause
systems to lock up if a thread were to sleep while hold-
ing one, but the BKL was special, in that the scheduler
magically released the BKL, and would reacquire the
lock when the thread resumes.

Molnar developed a way to preempt this lock [6]. He
changed the BKL from a spin lock into a mutex. To
preserve the same semantics, the BKL would be re-
leased if the thread voluntarily scheduled, but not when
the thread was preempted. Allowing threads to be
preempted while holding the BKL greatly reduced the
scheduling latencies of the kernel.

12Allowed the same owner to take it again while holding it, as
long as it released the lock the same number of times.

2007 Linux Symposium, Volume Two • 167

Blocked

B

C

A

Preempted Preempted

Figure 1: Priority Inversion

Blocked

B

C

A

Wakes up

Releases lock

Sleeps

Preempted Inherits prio

Figure 2: Priority Inheritance

7.1 Death of the Semaphore

Semaphores are powerful primitives that allow one or
more threads access to a resource. The funny thing
is, they were seldom used for multiple accesses. Most
of the time they are used for maintaining mutual ex-
clusion to a resource or to coordinate two or more
threads. For coordination, one thread would down
(lock) a semaphore and then wait on it.13 Some other
thread, after completing some task, would up (unlock)
the semaphore to let the waiting threads know the task
was completed.

13usually the semaphore was just created as locked.

The latter can be replaced by a completion [4]. A
completion is a primitive that has the purpose of no-
tifying one or more threads when another thread has
completed an event. The use of semaphores for this
purpose is now obsolete and should be replaced with
completions.

There was nothing available in the mainline kernel to re-
place the semaphore for a single mutual exclusion lock.
The ability of a semaphore to handle the case of multiple
threads accessing a resource produces an overhead when
only acting as a mutex. Most of the time this overhead
is unnecessary. Molnar implemented a new primitive
for the kernel called mutex. The simpler design of the
mutex makes it much cleaner and slightly faster than a

168 • Internals of the RT Patch

semaphore. A mutex only allows a single thread access
to a critical section, so it is simpler to implement and
faster than a semaphore. So the addition of the mutex
to the mainline kernel was a benefit for all. But Molnar
had another motive for implementing the mutex (which
most people could have guessed).

Semaphores, with the property of allowing more than
one thread into a critical section, have no concept
of an owner. Indeed, one thread may even release
a semaphore while another thread acquires it.14 A
semaphore is never bound to a thread. A mutex, on the
other hand, always has a one-to-one relationship with a
thread when locked. The mutex may be owned by one,
and only one, thread at a time. This is key to the RT ker-
nel, as it is one of the requirements of the PI algorithm.
That is, a lock may have one, and only one, owner. This
ensures that a priority inheritance chain stays a single
path, and does not branch with multiple lock owners
needing to inherit a priority of a waiting thread.

7.2 The Path to RT

Every mainline release includes more code from the RT
patch. Some of the changes are simply clean-ups and
fixes for race conditions. An RTOS on a single CPU sys-
tem exposes race conditions much easier than an 8 way
SMP system. The race windows are larger due to the
preemptive scheduling model. Although race conditions
are easier to exposed on an RT kernel, those same race
conditions still exist in the mainline kernel running on
an SMP system. There have been arguments that some
of the fixed race conditions have never been reported, so
they most likely have never occurred. More likely, these
race conditions have crashed some server somewhere,
but since the race window is small, the crash is hard to
reproduce. The crash would have been considered an
anomaly and ignored. With the RT patch exposing rare
bugs and the RT patch maintainers sending in fixes, the
mainline kernel has become more stable with fewer of
these seemingly unreproducable crashes.

In addition to clean-ups and bug fixes, several major fea-
tures have been already incorporated into the mainline
kernel.

• gettimeofday (2.6.18) – John Stultz’s re-
design of the time infrastructure.

14in the case of completions.

• Generic IRQS (2.6.18) – Ingo Molnar’s
consolidation of the IRQ code to unify all the ar-
chitectures.

• High Resolution Timers Pt. 1
(2.6.16) – Thomas Gleixner’s separation
of timers from timeouts.

• High Resolution Timers Pt. 2
(2.6.21) – Thomas Gleixner’s change to
the timer resolution. Now clock event resolution
is no longer bound to jiffies, but to the underlining
hardware itself.

One of the key features for incorporating the RT patch
into mainline is PI. Linus Torvalds has previously stated
that he would never allow PI to be incorporated into
Linux. The PI algorithm used by the RT patch can also
be used by user applications. Linux implements a user
mutex that can create, acquire, and release the mutex
lock completely in user space. This type of mutex is
known as a futex (fast mutex) [1]. The futex only enters
the kernel on contention. RT user applications require
that the futex also implements PI and this is best done
within the kernel. Torvalds allowed the PI algorithm to
be incorporated into Linux (2.6.18), but only for the use
with futexes.

Fortunately, the core PI algorithm that made it into the
mainline Linux kernel is the same algorithm that is used
by the RT patch itself. This is key to getting the rest
of the RT patch upstream and also brings the RT patch
closer to mainline, and facilitates the RT patch mainte-
nance.

8 RT is the Gun to Shoot Yourself With

The RT patch is all about determinism and being able
to have full control of the kernel. But, like being root,
the more power you give the user the more likely they
will destroy themselves with it. A common mistake for
novice RT application developers is writing code like
the following:

x = 0;
/∗ let another thread set x ∗/
while (!x)
sched_yield();

Running the above with the highest priority on an
RTOS, and wondering why the system suddenly freezes.

2007 Linux Symposium, Volume Two • 169

This paper is not about user applications and an RT ker-
nel, but the focus is on developers working within the
kernel and needing to understand the consequences of
their code when someone configures in full RT.

8.1 yield() is Deadly

As with the above user land code, the kernel has a simi-
lar devil called yield(). Before using this, make sure
you truly understand what it is that you are doing. There
are only a few locations in the kernel that have legiti-
mate uses of yield(). Remember in the RT kernel,
even interrupts may be starved by some device driver
thread looping on a yield(). yield() is usually
related to something that can also be accomplished by
implementing a completion.

Any kind of spinning loop is dangerous in an RTOS.
Similar to using a busy loop spin_lock without disabling
interrupts, and having that same lock used in an interrupt
context handler, a spinning loop might starve the thread
that will stop the loop. The following code that tries to
prevent a reverse lock deadlock is no longer safe with
the RT patch:

retry:
spin_lock(A);
if (!spin_trylock(B)) {
spin_unlock(A);
goto retry;

}

Note: The code in fs/jbd/commit.c has such a sit-
uation.

8.2 rwlocks are Evil

Rwlocks are a favorite with many kernel developers.
But there are consequences with using them. The
rwlocks (for those that don’t already know), allow mul-
tiple readers into a critical section and only one writer.
A writer is only allowed in when no readers are access-
ing that area. Note, that rwlocks which are also imple-
mented as busy loops on the current mainline kernel, are
now sleeping mutexes in the RT kernel.15

Any type of read/write lock needs to be careful, since
readers can starve out a writer, or writers can starve

15mainline kernel also has sleeping rwlocks implemented with
up_read and down_read.

out the readers. But read/write locks are even more
of a problem in the RT kernel. As explained in Sec-
tion 6, PI is used to prevent unbounded priority inver-
sion. Read/write locks do not have a concept of own-
ership. Multiple threads can read a critical section at
the same time, and if a high priority writer were to need
access, it would not be able to boost all the readers at
that moment. The RT kernel is also about determinism,
and known measurable latencies. The time a writer must
wait, even if it were possible to boost all readers, would
be the time the read lock is held multiplied by all the
readers that currently have that lock.16

Presently, to solve this issue in the RT kernel, the
rwlocks are not simply converted into a sleeping lock
like spin_locks are. Read_locks are transformed into a
recursive mutex so that two different threads can not en-
ter a read section at the same time. But read_locks still
remain recursive locks, meaning that the same thread
can acquire the same read_lock multiple times as long as
it releases the lock the same number of times it acquires
it. So in the RT kernel, even read_locks are serialized
among each other. RT is about predictable results, over
performance. This is one of those cases that the over-
all performance of the system may suffer a little to keep
guaranteed performance high.

8.3 Read Write seqlocks are Mischievous

As with rwlocks, read/write seqlocks can also cause a
headache. These are not converted in the RT kernel.
So it is even more important to understand the usage of
these locks. Recently, the RT developers came across a
regression with the introduction of some of the new time
code that added more instances of the xtime_lock.
This lock uses read/write seqlocks to protect it. The way
the read/write seqlocks work, is that the read side enters
a loop starting with read_seqlock() and ending
with read_sequnlock(). If no writes occurred be-
tween the two, the read_sequnlock() returns zero,
otherwise it returns non-zero. If something other than
zero is returned by the read_seqlock(), the loop
continues and the read is performed again.

The issue with the read/write seqlocks is that you can
have multiple writes occur during the read seqlock. If
the design of the seqlocks is not carefully thought out,
you could starve the read lock. The situation with the

16Some may currently be sleeping.

170 • Internals of the RT Patch

xtime_lock was even present in the 2.6.21-rc series.
The xtime_lock should only be written to on one
CPU, but a change that was made in the -rc series that
allowed the xtime_lock to be written to on any CPU.
Thus, one CPU could be reading the xtime_lock but
all the other CPUs could be queueing up to write to
it. Thus the latency of the read_seqlock is not only the
time the read_seqlock is held, but also the sum of all
the write_seqlocks that are run on each CPU. A poorly
designed read/write seqlock implementation could even
repeat the write_seqlocks for the CPUs. That is to say,
while CPU 1 is doing the read_seqlock loop, CPU 2
does a write_seqlock, then CPU 3 does a write_seqlock,
then CPU 4 does a write_seqlock, and by this time,
CPU 2 is doing another write_seqlock. All along, leav-
ing CPU 1 continually spinning on that read_seqlock.

8.4 Interrupt Handlers Are No Longer Supreme

Another gotcha for drivers that are running on the RT
kernel is the assumption that the interrupt handler will
occur when interrupts are enabled. As described in sec-
tion threaded-interrupts, the interrupt service routines
are now carried out with threads. This includes handlers
that are run as soft IRQs (e.g., net-tx and net-rx). If a
driver for some reason needs a service to go off period-
ically so that the device won’t lockup, it can not rely on
an interrupt or soft IRQ to go off at a reasonable time.
There may be cases that the RT setup will have a thread
at a higher priority than all the interrupt handlers. It is
likely that this thread will run for a long period of time,
and thus, starve out all interrupts.17 If it is necessary
for a device driver to periodically tickle the device then
it must create its own kernel thread and put it up at the
highest priority available.

9 Who Uses RT?

The RT patch has not only been around for development
but there are also many users of it, and that number is
constantly growing.

The audio folks found out that the RT patch has sig-
nificantly helped them in their recordings (http://
ccrma.stanford.edu/planetccrma/software).

IBM, Red Hat and Raytheon are bringing the
RT patch to the Department of Defense (DoD).

17besides the timer interrupt.

(http://www-03.ibm.com/press/us/en/
pressrelease/21033.wss)

Financial institutions are expressing interest in using the
RT kernel to ensure dependably consistent transaction
times. This is increasingly important due to recently en-
acted trading regulations [8].

With the growing acceptance of the RT patch, it won’t
be long before the full patch is in the mainline kernel,
and anyone can easily enjoy the enhancements that the
RT patch brings to Linux.

10 RT Benchmarks

Darren V. Hart (dvhltc@us.ibm.com)

Determinism and latency are the key metrics used to
discuss the suitability of a real-time operating system.
IBM’s Linux Technology Center has contributed sev-
eral test cases and benchmarks which test these met-
rics in a number of ways. The results that follow are
a small sampling that illustrates the features of the RT
patch as well as the progress being made merging these
features into the mainline Linux kernel. The tests were
run on a 4 CPU Opteron system with a background load
of make -j8 2.6.16 kernel build. Source for the tests
used are linked to from the RT Community Wiki.18 Full
details of these results are available online [5].

10.1 gettimeofday() Latency

With their dependence on precise response times, real-
time systems are prone to making numerous system
calls to determine the current time. A determin-
istic implementation of gettimeofday() is criti-
cal. The gtod_latency test measures the differ-
ence between the time reported in pairs of consecutive
gettimeofday() calls.

The scatter plots for 2.6.18 (Figure 3) and 2.6.18-
rt7 (Figure 4) illustrate the reduced latency and
improved determinism the RT patch brings to the
gettimeofday() system call. The mainline kernel
experiences a 208 us maximum latency, with a number
of samples well above 20 us. Contrast that with the 17
us maximum latency of the 2.6.18-rt7 kernel (with the
vast majority of samples under 10 us).

18http://rt.wiki.kernel.org/index.php/IBM_
Test_Cases

2007 Linux Symposium, Volume Two • 171

10.2 Periodic Scheduling

Real-time systems often create high priority periodic
threads. These threads perform a very small amount
of work that must be performed at precise intervals.
The results from the sched_latency measure the
scheduling latency of a high priority periodic thread,
with a 5 ms period.

Prior to the high resolution timer (hrtimers) work, timer
latencies were only good to about three times the pe-
riod of the periodic timer tick period (about 3ms with
HZ=1000). This level of resolution makes accurate
scheduling of periodic threads impractical since a task
needing to be scheduled even a single microsecond af-
ter the timer tick would have to wait until the next tick,
as illustrated in the latency histogram for 2.6.16 (Fig-
ure 5).19 With the hrtimers patch included, the RT ker-
nel demonstrates low microsecond accuracy (Figure 6),
with a max scheduling latency of 25 us. The mainline
2.6.21 kernel has incorporated the hrtimers patch.

10.3 Asynchronous Event Handling

As discussed in Section 2, real-time systems depend
on deterministic response times to asynchronous events.
async_handler measures the latency of waking a
thread waiting on an event. The events are generated
using POSIX conditional variables.

Without the RT patch, the 2.6.20 kernel experiences a
wide range of latencies while attempting to wake the
event handler (Figure 7), with a standard deviation of
3.69 us. 2.6.20-rt8 improves on the mainline results,
reducing the standard deviation to 1.16 us (Figure 8).
While there is still some work to be done to reduce the
maximum latency, the RT patch has greatly improved
the deterministic behavior of asynchronous event han-
dling.

References

[1] Futex. http:
//en.wikipedia.org/wiki/Futex.

[2] Preemptible kernel patch makes it into linux kernel
v2.5.4-pre6. http://www.linuxdevices.
com/news/NS3989618385.html.

192.6.16 was used as later mainline kernels were unable to com-
plete the test.

[3] Priority ceiling protocol.
http://en.wikipedia.org/wiki/
Priority_ceiling_protocol.

[4] Jonathan Corbet. Driver porting: completion
events.
http://lwn.net/Articles/23993/.

[5] Darren V. Hart. Ols 2007 - real-time linux latency
comparisons.
http://www.kernel.org/pub/linux/
kernel/people/dvhart/ols2007.

[6] Ingo Molnar.
http://lwn.net/Articles/102216/.

[7] Ingo Molnar. Rt patch. http://people.
redhat.com/mingo/realtime-preempt.

[8] “The Trade News”. Reg nms is driving
broker-dealer investment in speed and storage
technology. http://www.thetradenews.
com/regulation-compliance/
compliance/671.

[9] Steven Rostedt. Rt mutex design.
Documentation/rt-mutex-design.txt.

172 • Internals of the RT Patch

Figure 3: 2.6.18 gtod_latency scatter plot

Figure 5: 2.6.16 sched_latency histogram

Figure 7: 2.6.20 async_handler scatter plot

Figure 4: 2.6.18-rt7 gtod_latency scatter plot

Figure 6: 2.6.20-rt8 sched_latency histogram

Figure 8: 2.6.20-rt8 async_handler scatter plot

lguest: Implementing the little Linux hypervisor

Rusty Russell
IBM OzLabs

rusty@rustcorp.com.au

Abstract

Lguest is a small x86 32-bit Linux hypervisor for run-
ning Linux under Linux, and demonstrating the paravir-
tualization abilities in Linux since 2.6.20. At around
5,000 lines of code including utilities, it also serves as
an excellent springboard for mastering the theory and
practice of x86 virtualization.

This talk will cover the philosophy of lguest and then
dive into the implementation details as they stand at this
point in time. Operating System experience is required,
but x86 knowledge isn’t. By the time the talk is fin-
ished, you should have a good grounding in the range of
implementation issues facing all virtualization technolo-
gies on Intel, such as Xen and KVM. You should also be
inspired to create your own hypervisor, using your own
pets as the logo.

1 Introduction

Around last year’s OLS I was having discussions with
various technical people about Linux support for par-
avirtualization, and Xen in particular. (Paravirtualiza-
tion is where the guest knows it’s being run under a hy-
pervisor, and changes its behaviour).

I wanted the Linux kernel to support Xen, without wed-
ding the Linux kernel to its interface: it seemed to me
that now Xen showed that Free Software virtualization
wasn’t hard, we’d see other virtualization technologies
worth supporting. There was already VMWare’s pro-
posed VMI standard, for example, but that wasn’t a
proven ABI either.

The result was paravirt_ops. This is a single structure
which encapsulates all the sensitive instructions which a
hypervisor might want to override. This was very sim-
ilar to the VMI proposal by Zach Amsden, but some
of the functions which Xen or VMI wanted were non-
obvious to me.

So, I decided to write a trivial, self-contained Linux-
on-Linux hypervisor. It would live in the Linux kernel
source, run the same kernel for guests as for host, and
be as simple as possible. This would serve as a third
testbed for paravirt_ops.

2 Post-rationale for lguest

There turned out to be other benefits to writing such a
hypervisor.

• It turned out to be around 5,000 lines, including
the 1,000 lines of userspace code. This means it is
small enough to be read and understood by kernel
coders.

• It provides a complete in-tree example of how to
use paravirt_ops.

• It provides a simple way to demonstrate the effects
of a new Linux paravirtualization feature: you only
need to patch one place to show the new feature and
how to use it.

• It provides a testbed for new ideas. As other hyper-
visors rush to “productize” and nail down APIs and
ABIs, lguest can be changed from kernel to kernel.
Remember, lguest only promises to run the match-
ing guests and host (i.e., no ABI).

My final point is more social than technical. I said
that Xen had shown that Free Software paravirtualiza-
tion was possible, but there was also some concern that
its lead and “buzz” risked sucking up the groundwater
from under other Free hypervisors: why start your own
when Xen is so far ahead? Yet this field desperately
needs more independent implementations and experi-
mentation. Creating a tiny hackable hypervisor seemed
to be the best way to encourage that.

• 173 •

174 • lguest: Implementing the little Linux hypervisor

As it turned out, I needn’t have worried too much. The
KVM project came along while I was polishing my
patches, and slid straight into the kernel. KVM uses
a similar “linux-centric” approach to lguest. But on the
bright side, writing lguest taught me far more than I ever
thought I’d know about the horribly warty x86 architec-
ture.

3 Comparing With Other Hypervisors

As you’d expect from its simplicity, lguest has fewer
features than any other hypervisor you’re likely to have
heard of. It doesn’t currently support SMP guests, sus-
pend and resume, or 64-bit. Glauber de Oliveira Costa
and Steven Rostedt are hacking on lguest64 furiously,
and suspend and resume are high on the TODO list.

Lguest only runs matching host and guest kernels. Other
hypervisors aim to run different Operating Systems as
guests. Some also do full virtualization, where unmodi-
fied OSs can be guests, but both KVM and Xen require
newer chips with virtualization features to do this.

Lguest is slower than other hypervisors, though not al-
ways noticeably so: it depends on workload.

On the other hand, lguest is currently 5,004 lines for a
total of 2,009 semicolons. (Note that the documentation
patch adds another 3,157 lines of comments.) This in-
cludes the 983 lines (408 semicolons) of userspace code.

The code size of KVM and Xen are hard to compare to
this: both have features, such as 64-bit support. Xen
includes IA-64 support, and KVM includes all of qemu
(yet doesn’t use most of it).

Nonetheless it is instructive to note that KVM 19 is
274,630 lines for a total of 99,595 semicolons. Xen
unstable (14854:039daabebad5) is 753,242 lines and
233,995 semicolons (the 53,620 lines of python don’t
carry their weight in semicolons properly, however).

4 Lguest Code: A Whirlwind Tour

lguest consists of five parts:

1. The guest paravirt_ops implementation,

2. The launcher which creates and supplies external
I/O for the guest,

3. The switcher which flips the CPU between host and
guest,

4. The host module (lg.ko) which sets up the switcher
and handles the kernel side of things for the
launcher, and

5. The awesome documentation which spans the
code.1

4.1 Guest Code

How does the kernel know it’s an lguest guest? The
first code the x86 kernel runs are is startup_32 in
head.S. This tests if paging is already enabled: if it is,
we know we’re under some kind of hypervisor. We end
up trying all the registered paravirt_probe func-
tions, and end up in the one in drivers/lguest/

lguest.c. Here’s the guest, file-by-file:

drivers/lguest/lguest.c Guests know that they can’t do
privileged operations such as disable interrupts:
they have to ask the host to do such things via
hypercalls. This file consists of all the replace-
ments for such low-level native hardware opera-
tions: we replace the struct paravirt_ops
pointers with these.

drivers/lguest/lguest_asm.S The guest needs several
assembler routines for low-level things and placing
them all in lguest.c was a little ugly.

drivers/lguest/lguest_bus.c Lguest guests use a very
simple bus for devices. It’s a simple array of device
descriptors contained just above the top of normal
memory. The lguest bus is 80% tedious boilerplate
code.

drivers/char/hvc_lguest.c A trivial console driver: we
use lguest’s DMA mechanism to send bytes out,
and register a DMA buffer to receive bytes in. It is
assumed to be present and available from the very
beginning of boot.

drivers/block/lguest_blk.c A simple block driver
which appears as /dev/lgba, lgbb, lgbc,
etc. The mechanism is simple: we place the
information about the request in the device page,

1Documentation was awesome at time of this writing. It may
have rotted by time of reading.

2007 Linux Symposium, Volume Two • 175

then use the SEND_DMA hypercall (containing the
data for a write, or an empty “ping” DMA for a
read).

drivers/net/lguest_net.c This is very simple, a virtual
network driver. The only trick is that it can talk di-
rectly to multiple other recipients (i.e., other guests
on the same network). It can also be used with only
the host on the network.

4.2 Launcher Code

The launcher sits in the Documentation/lguest directory:
as lguest has no ABI, it needs to live in the kernel tree
with the code. It is a simple program which lays out
the “physical” memory for the new guest by mapping
the kernel image and the virtual devices, then reads re-
peatedly from /dev/lguest to run the guest. The
read returns when a signal is received or the guest sends
DMA out to the launcher.

The only trick: the Makefile links it statically at a high
address, so it will be clear of the guest memory region.
It means that each guest cannot have more than 2.5G of
memory on a normally configured host.

4.3 Switcher Code

Compiled as part of the “lg.ko” module, this is the code
which sits at 0xFFC00000 to do the low-level guest-
host switch. It is as simple as it can be made, but it’s
naturally very specific to x86.

4.4 Host Module: lg.ko

It is important to that lguest be “just another” Linux ker-
nel module. Being able to simply insert a module and
start a new guest provides a “low commitment” path to
virtualization. Not only is this consistent with lguest’s
experimential aims, but it has potential to open new sce-
narios to apply virtualization.

drivers/lguest/lguest_user.c This contains all the
/dev/lguest code, whereby the userspace
launcher controls and communicates with the
guest. For example, the first write will tell us the
memory size, pagetable, entry point, and kernel
address offset. A read will run the guest until a

signal is pending (-EINTR), or the guest does a
DMA out to the launcher. Writes are also used to
get a DMA buffer registered by the guest, and to
send the guest an interrupt.

drivers/lguest/io.c The I/O mechanism in lguest is sim-
ple yet flexible, allowing the guest to talk to the
launcher program or directly to another guest. It
uses familiar concepts of DMA and interrupts, plus
some neat code stolen from futexes.

drivers/lguest/core.c This contains run_ guest()
which actually calls into the host↔guest switcher
and analyzes the return, such as determining if the
guest wants the host to do something. This file
also contains useful helper routines, and a couple
of non-obvious setup and teardown pieces which
were implemented after days of debugging pain.

drivers/lguest/hypercalls.c Just as userspace programs
request kernel operations via a system call, the
guest requests host operations through a “hyper-
call.” As you’d expect, this code is basically one
big switch statement.

drivers/lguest/segments.c The x86 architecture has
segments, which involve a table of descriptors
which can be used to do funky things with virtual
address interpretation. The segment handling code
consists of simple sanity checks.

drivers/lguest/page_tables.c The guest provides a
virtual-to-physical mapping, but the host can nei-
ther trust it nor use it: we verify and convert it
here to point the hardware to the actual guest pages
when running the guest. This technique is referred
to as shadow pagetables.

drivers/lguest/interrupts_and_traps.c This file deals
with Guest interrupts and traps. There are three
classes of interrupts:

1. Real hardware interrupts which occur while
we’re running the guest,

2. Interrupts for virtual devices attached to the
guest, and

3. Traps and faults from the guest.

Real hardware interrupts must be delivered to the
host, not the guest. Virtual interrupts must be de-
livered to the guest, but we make them look just
like real hardware would deliver them. Traps from

176 • lguest: Implementing the little Linux hypervisor

the guest can be set up to go directly back into the
guest, but sometimes the host wants to see them
first, so we also have a way of “reflecting” them
into the guest as if they had been delivered to it di-
rectly.

4.5 The Documentation

The documentation is in seven parts, as outlined in
drivers/lguest/README. It uses a simple script in
Documentation/lguest to output interwoven code
and comments in literate programming style. It took
me two weeks to write (although it did lead to many
cleanups along the way). Currently the results take
up about 120 pages, so it is appropriately described
throughout as a heroic journey. From the README file:

Our Quest is in seven parts:

Preparation: In which our potential hero is flown
quickly over the landscape for a taste of its scope.
Suitable for the armchair coders and other such per-
sons of faint constitution.

Guest: Where we encounter the first tantalising wisps
of code, and come to understand the details of the
life of a Guest kernel.

Drivers: Whereby the Guest finds its voice and become
useful, and our understanding of the Guest is com-
pleted.

Launcher: Where we trace back to the creation of the
Guest, and thus begin our understanding of the
Host.

Host: Where we master the Host code, through a long
and tortuous journey. Indeed, it is here that our
hero is tested in the Bit of Despair.

Switcher: Where our understanding of the intertwined
nature of Guests and Hosts is completed.

Mastery: Where our fully fledged hero grapples with
the Great Question: “What next?”

5 Benchmarks

I wrote a simple extensible GPL’d benchmark program
called virtbench.2 It’s a little primitive at the moment,

2http://ozlabs.org/~rusty/virtbench

but it’s designed to guide optimization efforts for hyper-
visor authors. Here are the current results for a native
run on a UP host with 512M of RAM and the same con-
figuration running under lguest (on the same Host, with
3G of RAM). Note that these results are continually im-
proving, and are obsolete by the time you read them.

Test Name Native Lguest Factor
Context switch via
pipe

2413 ns 6200 ns 2.6

One Copy-on-
Write fault

3555 ns 9822 ns 2.8

Exec client once 302 us 776 us 2.6
One fork/exit/ wait 120 us 407 us 3.7
One int-0x80
syscall

269 ns 266 ns 1.0

One syscall via libc 127 ns 276 ns 2.2
Two PTE updates 1802 ns 6042 ns 3.4
256KB read from
disk

33333 us 41725 us 1.3

One disk read 113 us 185 us 1.6
Inter-guest ping-
pong

53850 ns 149795 ns 2.8

Inter-guest 4MB
TCP

16352 us 334437 us 20

Inter-guest 4MB
sendfile

10906 us 309791 us 28

Kernel Compile 10m39 13m48s 1.3

Table 1: Virtbench and kernel compile times

6 Future Work

There is an infinite amount of future work to be done. It
includes:

1. More work on the I/O model.

2. More optimizations generally.

3. NO_HZ support.

4. Framebuffer support.

5. 64-bit support.

6. SMP guest support.

7. A better web page.

2007 Linux Symposium, Volume Two • 177

7 Conclusion

Lguest has shown that writing a hypervisor for Linux
isn’t difficult, and that even a minimal hypervisor can
have reasonable performance. It remains to be seen how
useful lguest will be, but my hope is that it will become
a testing ground for Linux virtualization technologies,
a useful basis for niche hypervisor applications, and an
excellent way for coders to get their feet wet when start-
ing to explore Linux virtualization.

178 • lguest: Implementing the little Linux hypervisor

ext4 online defragmentation

Takashi Sato
NEC Software Tohoku, Ltd.
sho@tnes.nec.co.jp

Abstract

ext4 greatly extends the filesystem size to 1024PB com-
pared to 16TB in ext3, and it is capable of storing many
huge files. Previous study has shown that fragmenta-
tion can cause performance degradation for such large
filesystems, and it is important to allocate blocks as con-
tiguous as possible to improve I/O performance.

In this paper, the design and implementation of an online
defragmentation extension for ext4 is proposed. It is de-
signed to solve three types of fragmentation, namely sin-
gle file fragmentation, relevant file fragmentation, and
free space fragmentation. This paper reports its design,
implementation, and performance measurement results.

1 Introduction

When a filesystem has been used for a long time, disk
blocks used to store file data are separated into discon-
tiguous areas (fragments). This can be caused by con-
current writes from multiple processes or by the kernel
not being able to find a contiguous area of free blocks
large enough to store the data.

If a file is broken up into many fragments, file read per-
formance can suffer greatly, due to the large number of
disk seeks required to read the data. Ard Biesheuvel has
shown the effect of fragmentation on file system perfor-
mance [1]. In his paper, file read performance decreases
as the amount of free disk space becomes small because
of fragmentation. This occurs regardless of the filesys-
tem type being used.

ext3 is currently used as the standard filesystem in
Linux, and ext4 is under development within the Linux
community as the next generation filesystem. ext4
greatly extends the filesystem size to 1024PB compared
to 16TB in ext3, and it is capable of storing many huge
files. Therefore it is important to allocate blocks as con-
tiguous as possible to improve the I/O performance.

In this paper, an online defragmentation feature for ext4
is proposed, which can solve the fragmentation problem
on a mounted filesystem.

Section 2 describes various features in current Linux
filesystems to reduce fragmentation, and shows how
much fragmentation occurs when multiple processes
writes simultaneously to disk. Section 3 explains the de-
sign of the proposed online defragmentation method and
Section 4 describes its implementation. Section 5 shows
the performance benchmark results. Existing work on
defragmentation is shown in Section 6. Section 7 con-
tains the summary and future work.

2 Fragmentations in Filesystem

Filesystem on Linux have the following features to re-
duce occurrence of fragments when writing a file.

• Delayed allocation

The decision of where to allocate the block on the
disk is delayed until just before when the data is
stored to disk in order to allocate blocks as con-
tiguously as possible (Figure 1). This feature is al-
ready implemented in XFS and is under discussion
for ext4.

• Block reservation

Contiguous blocks are reserved right after the last
allocated block, in order to use them for successive
block allocation as shown in Figure 2. This feature
is already implemented in ext4.

Although ext4 and XFS already have these features
implemented to reduce fragmentation, writing multiple
files in parallel still causes fragmentation and decrease
in file read performance. Figure 3 shows the differ-
ence in file read performance between the following two
cases:

• 179 •

180 • ext4 online defragmentation

 This block is freed before the data is
 written to disk, we can write it on the
 contiguous blocks

Data

write

Figure 1: Delayed allocation

i. Pick up the
reserved block

Data

reserved blocks

ii. Write to disk

write

Figure 2: Block reservation

• Create the file by writing 32 1GB files sequentially

• Create the file by writing 32 1GB files from 32
threads concurrently

File read performance decreases about 15% for ext3,
and 16.5% for XFS.

Currently ext4 does not have any defragmentation fea-
ture, so fragmentation will not be resolved until the file
is removed. Online defragmentation for ext4 is neces-
sary to solve this problem.

3 Design of Online Defragmentation

3.1 Types of Fragmentation

Fragmentation could be classified into the following
three types [2].

Seconds 1GB file read time(real time)

XFSEXT3

13 252 2 288
16

17

18

19

20

21

22

Fragments in 1GB file
The environment of the measurement:
kernel: 2.6.18-rc4 with Mingming’s ext4 patch set
CPU: Xeon 3.0GHx
Memory: 1GB
Arch: i386

 degrade

14.8%

 degrade

16.5%

Figure 3: The influence of fragments

• Single file fragmentation
Single file fragmentation occurs when a single file
is broken into multiple pieces. This decreases the
performance of accessing a single file.

• Relevant file fragmentation
Relevant file fragmentation occurs when relevant
files, which are often accessed together by ap-
plications are allocated separately on the filesys-
tem. This decreases the performance of applica-
tions which access many small files.

• Free space fragmentation
Free space fragmentation occurs when the filesys-
tem has many small free areas and there is no large
free area consisting of contiguous blocks. This will
make the other two types of fragmentation more
likely to occur.

Online defragmentation should be able to solve these
three types of fragmentation.

3.2 Single File Fragmentation

Single file fragmentation could be solved by moving file
data to contiguous free blocks as shown in Figure 4.

Defragmentation for a single file is done in the following
steps (Figure 5).

1. Create a temporary inode.

2. Allocate contiguous blocks to temporary file as in
Figure 5(a).

2007 Linux Symposium, Volume Two • 181

File

Disk

 Move the data to
 contiguous blocks

Contiguous free blocks

Figure 4: Defragment for a single file

3. Move file data for each page as described in Figure
5(b). The following sequence of events should be
committed to the journal atomically.

(a) Read data from original file to memory page.

(b) Swap the blocks between the original inode
and the temporary inode.

(c) Write data in memory page to new block.

3.3 Relevant File Fragmentation

Relevant file fragmentation could be solved by moving
the files under the specified directory close together with
the block containing the directory data as presented in
Figure 6.

Defragmentation for relevant files is done in the follow-
ing steps (Figure 7).

1. The defragmentation program asks the kernel for
the physical block number of the first block of the
specified directory. The kernel retrieves the physi-
cal block number of the extent which is pointed by
the inode of the directory and returns that value as
in Figure 7(a).

2. For each file under the directory, create a temporary
inode.

3. The defragmentation command passes the physical
block number obtained in step 1 to the kernel. The
kernel searches for the nearest free block after the
given block number, and allocates that block to the
temporary inode as described in Figure 7(b).

4. Move file data for each page, by using the same
method as for single file defragmentation.

User

Kernel

(a) Allocate contiguous blocks

ioctl

Contiguous blocks

Target
inode

Temporary
inode

Create temporary
inode and allocate
contigurous blocks

ioctl

User

Kernel

(b) Replace data blocks

Contiguous blocks

write to
block

read from
block

page cacheTarget
inode

Temporary
inode

Figure 5: Resolving single file fragmentation

directory

File2File1
Block No

60000 70000

Block No = 100

directory

File1
Block No

 101 102

Block No = 100

File2

Figure 6: Defragment for the relevant files

5. Repeat steps 2 to 4 for all files under the specified
directory.

3.4 Free Space Fragmentation

If the filesystem has insufficient contiguous free blocks,
the other files are moved to make sufficient space to allo-
cate contiguous blocks for the target file. Free space de-
fragmentation is done in the following steps (Figure 8).

1. Find out the block group number to which the tar-
get file belongs. This could be calculated by using
the number of inodes in a group and the inode num-
ber as below.

groupNumber =
inodeNumber

iNodesPerGroup

182 • ext4 online defragmentation

(a) Get block mapping

(b) Specify goal as allocation hint

extent1
start = 204

5blocks

extent0
start = 104

5blocks

Specify "0"
as the file

relative block
number

Return "104" as
the physical

block number

ioctl

inode

User

Kernel

User

Kernel

ioctl ()goal = 100

original
inode

temporary
inode

Block No = 101Block No = 60000

goal
Allocate a block
near

Figure 7: Resolving relevant files fragmentation

2. Get the extent information of all the files belonging
to the target group and choose the combination of
files to evict for allocating contiguous blocks large
enough to hold the target file as in Figure 8(a).

3. Reserve the chosen blocks so that it will not be used
by other processes. This is achieved by the kernel
registering the specified blocks to the reservation
window for each file as presented in Figure 8(b).

4. Move the data in the files chosen in step 2 to other
block groups. The destination block group could
be either specified by the defragmentation com-
mand or use the block group which is farthest away
from the target group as in Figure 8(c). The file
data is moved using the same method as for single
file defragmentation.

5. Move the data in the target file to the blocks which
have been just freed. The kernel allocates the freed
blocks to the temporary inode and moves the file
data using the same method as for single file de-
fragmentation as in Figure 8(d).

reservation window

(a) Get extens

extent1
start=108
4blocks

extent0
start=104
4blocks

User

Kernel

ioctl()

inode
(inode No=201)

exten0
start=104

4blos

exten1
start=108

4blocs

extent
start=104
4blocks

inode

extent
start=104
4blocks

(b) Reserve blocks

Register blocks to
avoid being used

by other files.

ioctl()

User

Kernel

User

Kernel

(d) Insert the specified extent to temporary
 inode

ioctl

Contiguous free blocks

Target
inode

Temporary
inode

User

Kernel

(c) Move victim file

ioctl

Target
inode

Temporary
inode

 Search free blocks
 from the farthest
 group from the
 target inode.

 extent
start=104
14blocks

group0 group1 group2 groupN

 extent
start=104
14blocks

Figure 8: Resolving free space fragmentation

2007 Linux Symposium, Volume Two • 183

4 Implementation

The following five ioctls provide the kernel function for
online defragmentation. These ioctls use Alex Tomas’s
patch [3] to implement multi-block allocation feature
to search and allocate contiguous free blocks. Alex’s
multi-block allocation and the proposed five ioctls are
explained below.

The ioctls described in Section 4.3 to 4.6 are still under
development, and have not been tested. Also, moving
file data for each page is currently not registered to the
journal atomically. This will be fixed by registering the
sequence of procedures for replacing blocks to the same
transaction.

4.1 Multi-block allocation

Alex’s multi-block allocation patch [3] introduces a
bitmap called "buddy bitmap" to manage the contigu-
ous blocks for each group in an inode which is pointed
from the on-memory superblock (Figure 9).

The buddy bitmap is divided into areas to keep bitmap
of contiguous free blocks with length of powers of two,
e.g. bitmap for 2 contiguous free blocks, bitmap for 4
contiguous free blocks, etc. The kernel can quickly find
contiguous free blocks of the desired size by using the
buddy bitmap. For example, when the kernel requests
14 contiguous free blocks, it searches in the area for 8,
4, and 2 contiguous free blocks and allocates 14 con-
tiguous free blocks on disk.

Bits for
4 contiguous blocks

Bits for
8 contiguous blocks

Bits for
2 contiguous blocks

Contiguous 14 blocks

Buddy bitmap manages
contiguous blocks in group.

Group nGroup1Group0

i_mapping

inodeext4 superblock

s_buddy_cache

Noral
bitmap

Buddy
bitmap

Disk

 1 1 1 1 1 1 0 1 1 0 0

Figure 9: Multi-block allocation

4.2 Moving Target File Data
(EXT4_IOC_DEFRAG)

This ioctl moves file data from fragmented blocks to the
destination. It uses the structures ext4_ext_defrag_
data and ext4_extent_data shown in Figure 10 for
input parameters. The behavior of this ioctl differs de-
pending on the type of defragmentation it is used for.

• Single file fragmentation
Both the start offset of defragmentation
(start_offset) and the target size (defrag_size)
need to be specified. When both goal and ext.len
are set to 0, the kernel searches for contiguous free
blocks starting from the first block of the block
group which the target file’s inode belongs to, and
replaces the target file’s block with the free blocks.

• Relevant file fragmentation
In addition to start_offset and defrag_size, goal
should be set to the physical block number of the
first block in the specified directory. When goal is
set to a positive number, the kernel searches for free
blocks starting from the specified block, and re-
places the target file’s blocks with the nearest con-
tiguous free blocks.

• Free space fragmentation
In addition to start_offset and defrag_size, ext
should be set to the information of the extent which
represents the new contiguous area for replace-
ment. When ext.len is set to a positive number,
the kernel replaces the target file’s blocks with the
blocks in ext

Since I am still designing the implementation of the fol-
lowing four ioctls, I haven’t tested them yet.

4.3 Get Group Information (EXT4_IOC_GROUP_
INFO)

This ioctl gets the group information. There is no in-
put parameter. The kernel gets the number of blocks
in a group (s_blocks_per_group) and the number of
the inodes (s_inodes_per_group) from ext4 memory su-
perblock (ext4_sb_info) and returns them with the struc-
ture (ext4_group_data) in Figure 11.

blocks_per_group is not used in the current implemen-
tation, but it is returned in case of future use.

184 • ext4 online defragmentation

4.4 Get Extent Information (EXT4_IOC_GET_
EXTENTS_INO)

This ioctl gets the extent information. The structure
shown in Figure 12 is used for both input and output.
The command sets the first extent number of the tar-
get extent to entries. The kernel sets the number of re-
turned extents upon return. Since there might be very
large number of extents in a file, the kernel returns ex-
tents up to max_entries specified as input. If the number
of extents is larger than max_entries, the command can
get all extents by calling this ioctl multiple times with
updated entries.

4.5 Block Reservation (EXT4_IOC_RESERVE_
BLOCK)

This ioctl is used to reserve the blocks, so that it will
not be used by other processes. The blocks to reserve is
specified in the extent information (ext4_extent_data).
The kernel reserves the blocks using the existing block
reservation function.

4.6 Move Victim File (EXT4_IOC_MOVE_
VICTIM)

This ioctl moves a file from the block group where it be-
longs to other block groups. ext4_extents_info structure
is used for input parameter. ino stores the inode number
of the target file, and entries holds the number of extents
specified in ext. ext points to the array of extents which
specify the areas which should be moved, and goal con-
tains the physical block number of the destination.

The kernel searches for a contiguous free area starting
from the block specified by goal, and replaces the tar-
get file’s blocks with the nearest contiguous free blocks.
If goal is 0, it searches from the first block of the
block group which is farthest away from the block group
which contains the target file’s inode.

5 Performance Measurement Results

5.1 Single File Fragmentation

Fifty fragmented 1GB files were created. Read perfor-
mance was measured before and after defragmentation.
Performance measurement result is shown in Table 1. In
this case, defragmentation resulted in 25% improvement
in file read performance.

Fragments
I/O performance

(Sec)
Before defrag 12175 618.3
After defrag 800 460.6

Table 1: The measurement result of the defragmentation
for a single file

5.2 Relevant File Fragmentation

The Linux kernel source code for 2.6.19-rc6 (20,000
files) was extracted on disk. Time required to run find
command on the kernel source was measured before and
after defragmentation. Performance measurement result
is shown in Table 2. In this case, defragmentation re-
sulted in 29% performance improvement.

I/O performance
(Sec)

Before defrag 42.2
After defrag 30.0

Table 2: The measurement result of the defragmentation
for relevant files

Defragmentation for free space fragmentation is still un-
der development. Performance will be measured once it
has been completed.

6 Related Work

Jan Kara has proposed an online defragmentation en-
hancement for ext3. In his patch [4], a new ioctl to
exchange the blocks in the original file with newly al-
located contiguous blocks is proposed. The implemen-
tation is in experimental status and still lacks features
such as searching contiguous blocks. It neither supports
defragmentation for relevant files nor defragmentation
for free space fragmentation.

During the discussion in linux-ext4 mailing list, there
were many comments that there should be a common
interface across all filesystems for features such as free
block search and block exchange. And in his mail [5],
a special filesystem to access filesystem meta-data was
proposed. For instance, the extent information could
be accessed by reading the file data/extents. Also the
blocks used to store file data could be exchanged to con-
tiguous blocks by writing the inode number of the tem-
porary file which holds the newly allocated contiguous

2007 Linux Symposium, Volume Two • 185

struct ext4_ext_defrag_data {
// The offset of the starting point (input)
ext4_fsblk_t start_offset;
// The target size for the defragmentation (input)
ext4_fsblk_t defrag_size;
// The physical block number of the starting
// point for searching contiguous free blocks (input)
ext4_fsblk_t goal
// The extent information of the destination.
struct ext4_extent_data ext;

}

struct ext4_extent_data {
// The first logical block number
ext4_fsblk_t block;
// The first physical block number
ext4_fsblk_t start;
// The number of blocks in this extent
int len;

}

Figure 10: Structures used for ioctl (EXT4_IOC_DEFRAG)

struct ext4_group_data {
// The number of inodes in a group
int inodes_per_group
// The number of blocks in a group
int blocks_per_group;

}

Figure 11: Structures used for ioctl (EXT4_IOC_GROUP_INFO)

struct ext4_extents_info {
//inode number (input)
unsigned long long ino;
//The max number of extents which can be held (input)
int max_entries;
//The first extent number of the target extents (input)
//The number of the returned extents (output)
int entries;
//The array of extents (output)
//NUM is the same value as max_entries
struct ext4_extent_data ext[NUM];

}

Figure 12: Structures used for ioctl (EXT4_IOC_GET_EXTENTS_INO)

186 • ext4 online defragmentation

blocks to data/reloc. During the discussion, two demer-
its were found. One is that common procedures across
all filesystems are very few. The other is that there are a
lot of overheads for encoding informations in both user-
space and the kernel. Therefore this discussion has gone
away. This discussion is for unifying interface and is not
for the implementation for the online defragmentation
which is explained by this paper.

7 Conclusion

Online defragmentation for ext4 has been proposed and
implemented. Performance measurement has shown
that defragmentation for a single file can improve read
performance by 25% on a fragmented 1GB file. For
relevant file fragmentation, defragmentation resulted in
29% performance improvement for accessing all file in
the Linux source tree.

Online defragmentation is a promising feature to im-
prove performance on a large filesystems such as ext4.
I will continue development on the features which have
not been completed yet.

There are also work to be done in the following areas:

• Decrease performance penalty on running pro-
cesses
Since it is possible for defragmentation to purge
data on the page cache which other processes might
reference later, defragmentation may decrease per-
formance of running processes. Using fadvice to
alleviate the performance penalty may be one idea.

• Automate defragmentation
To reduce system administrator’s effort, it is nec-
essary to automate defragmentation. This can be
realized by the following procedure.

1. The kernel notifies the occurrence of frag-
ments to user space.

2. The user space daemon catches the notifica-
tion and executes the defragmentation com-
mand.

References

[1] Giel de Nijs, Ard Biesheuvel, Ad Denissen, and
Niek Lambert, “The Effects of Filesystem

Fragmentation,” in Proceedings of the Linux
Symposium, Ottawa, 2006, Vol. 1, pp. 193–208,
http://www.linuxsymposium.org/2006/

linuxsymposium_procv1.pdf.

[2] “File system fragmentation.”
http://en.wikipedia.org/wiki/File_

system_fragmentation.

[3] Alex Tomas. “[RFC] delayed allocation, mballoc,
etc.” http://marc.info/?l=linux-ext4&m=
116493228301966&w=2.

[4] Jan Kara. “[RFC] Ext3 online defrag,”
http://marc.info/?l=linux-fsdevel&m=

116160640814410&w=2.

[5] Jan Kara. “[RFC] Defragmentation interface,”
http://marc.info/?l=linux-ext4&m=

116247851712898&w=2.

The Hiker Project: An Application Framework for Mobile Linux Devices

David “Lefty” Schlesinger
ACCESS Systems Americas, Inc.

lefty@{hikerproject.org,access-company.com}

Abstract

The characteristics of mobile devices are typically an or-
der of magnitude different than desktop systems: CPUs
run at megahertz, not gigahertz; memory comes in
megabytes, not gigabytes; screen sizes are small and in-
put methods are constrained; however, there are billions
of mobile devices sold each year, as opposed to millions
of desktop systems. Creating a third-party developer
ecosystem for such devices requires that fragmentation
be reduced, which in turn demands high-quality solu-
tions to the common problems faced by applications on
such devices. The Hiker Project’s application frame-
work components present such solutions in a number
of key areas: application lifecycle management, task-to-
task and task-to-user notifications for a variety of events,
handling of structured data (such as appointments or
contact information) and transfer of such data between
devices, management of global preferences and settings,
and general security issues. Together, these components
comprise an “application framework,” allowing the de-
velopment of applications which can seamlessly and
transparently interoperate and share information.

ACCESS Co., Ltd., originally developed the Hiker
Project components for use in their “ACCESS Linux
Platform” product, but recently released them under an
open source license for the benefit and use of the open
source community. This paper will describe, in detail,
the components which make up the Hiker Project, dis-
cuss their use in a variety of real-world contexts, ex-
amine the proliferation of open source-based mobile de-
vices and the tremendous opportunity for applications
developers which this growth represents.

1 The Need for, and Benefits of, a Mobile
Framework

The typical cell phone of today is generally equivalent
in power, in various dimensions, to a desktop system of

four or five years ago. Cell phones increasingly have
CPUs running at close to half a gigahertz, dynamic
RAM of 64 megabytes and beyond, and storage, typi-
cally semiconductor-based, in capacities of several gi-
gabytes. Current MP3 players can have disk capaci-
ties well beyond what was typical on laptop systems
only two or three years ago. The usage models for cell
phones and other mobile devices, however, tend to be
very different than that of desktop systems.

The bulk of applications-related development effort on
open source-based systems has been primarily focused
on servers and desktop devices which have a distinct us-
age model which does not adapt well to smaller, more
constrained mobile devices. In order to effectively use
open source-based systems to create a mobile device,
and particularly to enable general applications develop-
ment for such a device, a number of additional services
are needed.

The term application framework means different things
to different people. To some, it is the GUI toolkit that
is used. To others, it is the window manager. Still oth-
ers see it as the conventions for starting and running a
process (e.g. Linux’s fork() and exec() calls; C
programs have an entry point called “main” that takes
a couple of parameters and returns an integer; etc.).

When we use the term “application framework,” we in-
tend it to mean the set of libraries and utilities that sup-
port and control applications running on the platform.
Why are additional libraries needed to control applica-
tions? Why not just use the same conventions as on a
PC: choose programs off a start menu and explicitly end
an application by choosing the “exit” menu item or clos-
ing its window?

The reason is the different “use model” on handheld
devices. PCs have large screens that can accommo-
date many windows, full keyboards, and general point-
ing devices. A cell phone typically has a screen fewer
than three inches diagonal (although pixel resolutions

• 187 •

188 • The Hiker Project: An Application Framework for Mobile Linux Devices

can be equivalent to QVGA and higher), a complement
of under twenty keys and a “five-way” pointing device
or a “jog wheel.” Based on experience refining Garnet
(formerly known as “Palm OS”), we believe that there
should be only one active window on a typical handheld
device. As another example, when the user starts a new
application, the previous application should automati-
cally save its work and state, and then exit.

Similarly, the optimal conceptual organization of data
is different on mobile devices. Rather than an “ap-
plication/document” paradigm, using an explicit, tree-
structured file system, a “task-oriented” approach,
where data is inherent to the task, is more natural on
these devices. Tasks, as opposed to applications, are
short-lived and focused: making a call, reading an SMS
message, creating a contact or appointment, etc. Occa-
sionally, tasks will be longer-lived: browsing the web,
or viewing media content. Another typical attribute of
such devices is regular, unscheduled interruptions: a
low-battery warning, an incoming email, a stock or news
alert.

As well as the task of managing the lifecycle of pro-
grams (launching, running, stopping), the application
framework must also help with distributing and in-
stalling applications. The conventions are simple: an
application and all supporting files (images, data, local-
izations, etc.) are rolled up into a single file known
as a “bundle.” Bundles are convenient for users and
third party developers, and allow software to be passed
around and downloaded as an atomic object.

A third task of the application framework is to sup-
port common utility operations for applications, such as
communication between applications, keeping track of
which applications handle which kind of content, and
dealing with unscheduled events like phone calls or in-
stant messages.

The final task of the application framework is to imple-
ment a secure environment for software. That means an
environment which resists attempts by one application
to interfere with another (this hardening is called “appli-
cation sandboxing”). The secure environment also sup-
ports security policies for permission-based access to re-
sources. For example, part of a policy might be “only
applications from the vendor are allowed network ac-
cess.” The security policy is implemented using a Linux
security module.

The Hiker components then, broadly speaking, focus on
several key areas:

• presenting a common view of applications to the
user (Application Manager and Bundle Manager),

• communicating time-based and asynchronous
events between applications or between an appli-
cation and the user (Notification Manager, Alarm
Manager, Attention Manager);

• interoperability of applications and sharing of
information between them (Exchange Manager,
Global Settings), and

• performing these functions in a secure context (Se-
curity Policy Framework/Hiker Security Module)

The Abstract IPC service is used by these components in
order to simplify their implementation and allow them to
generally take advantage of improved underlying mech-
anisms through a single gating set of APIs. Taken to-
gether, they provide mechanisms to allow seamless in-
teroperability and sharing of information between suites
of applications in a trusted environment.

These components are intended to offer several concrete
benefits to the development community:

• They provide real reference implementations that
can serve as the basis for application developers
who want to write interoperable applications for
mobile devices.

• They (hopefully) help to jump-start activities re-
lated to mobile devices in several key areas (e.g.
security) by filling a number of current gaps in the
services available to applications in that space.

• They can help to generally increase interest in ap-
plication development for open source-based mo-
bile devices

• They might encourage other companies to both
participate in these projects and to contribute new
projects as well.

2007 Linux Symposium, Volume Two • 189

1.1 Access to the Project, Licensing Terms, etc.

Full source code and other reference material for Hiker
can be found at the Hiker Project web site, http://
www.hikerproject.org.

Sources are currently available as tarballs, but we ex-
pect to be putting a source code repository up in the
near future. Several mailing lists are available, and a
TRAC-based bug reporting/wiki system will be in place
shortly. A large amount of detailed API documentation,
generated by Doxygen, is also available on the site.

Hiker is dual-licensed under the Mozilla Public License,
v. 1.1 and the Library General Public License, v. 2, with
the exception of the LSM-based portion of the Secu-
rity Framework, which, as an in-kernel component, is
licensed under GPL v. 2.

2 The Application Manager

The Application Manager controls application lifetime
and execution and is the component that is responsible
for maintaining the simple application task model that
users expect on a phone. The application manager starts
and stops applications as appropriate, ensures that the
current running application controls the main display,
maintains a list of running applications, places applica-
tions in the background, and prevents multiple launches
of a single application.

The Application Manager is initiated at system start-up
and provides the following services:

• Application launching mechanism and manage-
ment of application lifecycle.

• Routing of launch requests to the existing instance
(if the application is already running).

• Coordination of the “main UI app” – retires the cur-
rent application when a new one is launched, and
launches a default when needed.

• May also provide default behavior for certain im-
portant system events (i.e., hard key handling,
clamshell open/close).

The Application Manager runs in its own process. Ap-
plications typically run in their own processes and con-
trol their own UI. This simple mapping of applications

to processes provides a secure, stable model for appli-
cation execution. To maximize utility on small screen
form factors, the Application Manager will preserve the
standard “Garnet OS” behavior of having one main UI
application at a time, with that application having draw-
ing control of the main panel of the screen (exclusive
of status bars, etc.) When the user runs a new appli-
cation, the system will generally ask the current one to
exit (although there is a facility for applications which
need to continue execution in the background). Also, as
in legacy “Garnet OS” and desktop operating systems
like Mac OS X, only a single instantiation of any given
application at time will be running.

The Application Manager handles the high-level opera-
tions of launching applications, and provides a number
of APIs to applications and to the system for access to
these services. It maintains a list of currently running
applications, and keeps track of which one is the “pri-
mary” or “main UI” application. This special status is
used to coordinate the display and hiding of UI when
the user moves between applications. Note that an ap-
plication that is not the main UI application may still
put up UI under exceptional circumstances, it is simply
recommended that this be done only occasionally (for
example to ask the user for a password), and that it be
in the form of a modal dialog. The user’s attention is
generally focused on the main UI application, and so UI
from background applications is often an interruption. It
is expected that most applications will not run in back-
ground mode.

3 The Bundle Manager

The Bundle Manager combines a file format for dis-
tributing single files that contain applications and all
their dependencies (application name, icon, localized
resources, dependant libraries, etc.) along with func-
tions for installing, removing, and enumerating applica-
tion “bundles.” The Bundle Manager takes care of al-
location of per-application storage locations in writable
storage in the file system, and providing access to local-
ized resources contained within the bundle. Through the
Bundle Manager enumeration mechanism, multiple ap-
plication types are merged and can be launched through
a common mechanism.

The Bundle Manager is the system component respon-
sible for controlling how applications, and supplemen-
tal data for applications (libraries, resources, etc.), are

190 • The Hiker Project: An Application Framework for Mobile Linux Devices

Hiker Security Module

Service/

Process

Management

Power

Management

Bluetooth

Driver

CPU
GSM/GPRS/UMTS/EDGE,

WiFi, Bluetooth Technology, etc.

File

System

Input

Driver

Graphics &

Display

Drivers

Memory

Management

RAM LCD
Input

Device
NAND

Multimedia

Hardware

Open Source Software Hiker Framework ACCESS Proprietary

Networking

Stack

Networking

Drivers

K
e

rn
e

l
H

a
rd

w
a

re

Multimedia

Drivers

H/W Acceleration

X Windowing System

Global Settings

SQLite

OpenSSL

Security Policy
Framework

Gstreamer

Application Server Bundle Manager

GTK+ SyncML
Exchange

Manager

Launchpads (Native, Garnet, Java)

DRM

Multi-

media

Services

Java VM,

JSRs

Garnet VM

(Palm OS)

Emulator

Custom

Widgets

BlueZTelephony
Connection

Manager

ACCESS Linux Platform UI & Core Application Services Frameworks

U
se

r S
p

a
ce

Attention/Alarm/

Notification

Managers

Exchange

Manager

Plug-Ins

HotSync®
Messaging

Framework

Mobile

Services

Bluetooth

Services

A
p

p
lica

tio
n

s

ACCESS Linux Platform Launcher

Java

Apps

Garnet

Apps

GTK+

Apps

3rd-party

Native

Apps

Telephony

&

Messaging

Home

Screen

(NFDM)

SMS, MMS,

IM

NetFront

Browser

(SVG, SMIL)

PIM

Applications

Entertainment

Suite

(Audio, Video, Photo

Players)

Native ACCESS Linux Platform ApplicationsLegacy Applications

S
D

K
 To

o
ls

OTA

Data

Sync

OTA

Device

Mgmt

Figure 1: The Hiker Components in the ACCESS Linux Platform

loaded onto a system using the Application Manager
and other framework components, manipulated, trans-
mitted off of the system, and removed.

The Bundle Manager is a mid-level library and server
which provides easy access to application resources for
developers, as well as maintaining state about bundles
present in the system.

The Bundle Manager is designed around the notion of
“bundles” as concrete immutable lumps of information
which are managed on a device, where each bundle can
contain an arbitrary amount of data in a format appro-
priate to that bundle. Each bundle type is defined both
in terms of how it is stored on the device, and as a “flat-
tened” format suitable for transmission as a stream out
of the device. (These formats may be the same, differ-
ent, or overlap at various times).

The Bundle Manager is the channel through which all
third-party applications are distributed and loaded on to

a device. The server component of the Bundle Manager
is intended to be the only software on the device which
has permission to access the bundle folder on the in-
ternal filesystem, requiring interaction with the Bundle
Manager for installation or removal.

The Bundle Manager provides consistent mechanisms
for retrieving resources, both localized and unlocalized
(i.e., loading the files or other bundle contents, perhaps
in a localized folder-name) from bundles.

4 The Notification Manager

Notification Manager provides a mechanism for sending
programmatic notifications of unsolicited system events
to applications. Applications can register to receive par-
ticular types of notifications that they are interested in.
The Notification Manager can deliver notifications not
only to currently running applications, but also to ap-

2007 Linux Symposium, Volume Two • 191

plications that are registered to receive them but are not
currently running.

Notifications are general system level or user applica-
tion level events like application installed/uninstalled,
card inserted/removed, file system mounted/unmount,
incoming call, clamshell opened/closed, time changed,
locale changed, low power, or device going to
sleep/waking up. The Notification Manager has a
client/server architecture.

4.1 Notification Manager server

The Notification Manager server is a persistent thread
in a separate system process which keeps track of all
registered notifications and broadcasts notifications to
registered clients. The Notification Manager server also
communicates with the Package Manager and Applica-
tion Server.

4.2 Notification Manager client library

Client processes call APIs in the Notification Manager
client library to

1. register to receive notifications,

2. unregister previously registered notifications,

3. signal the completion of a notification, and

4. broadcast notifications.

The Notification Manager client library uses the Ab-
stract IPC framework to communicate with the Notifi-
cation Manager server.

4.3 What the Notification Manager is not

1. The Notification Manager should not be used for
application specific or directed notifications like
alarms or find.

2. The Notification Manager facilitates the sending
and receiving of notifications but it does not it-
self broadcast notifications (individual component
owners are responsible for broadcasting their own
notifications).

5 The Alarm Manager

The Alarm Manager provides a mechanism to notify ap-
plications of real time alarm (i.e. time-based) events.
Both currently running and non-running applications
can receive events from the Alarm Manager. The Alarm
Manager does not control presentation to the user—the
action taken by an application in response to an alarm is
defined by the application.

The Alarm Manager:

• Works with power management facilities to regis-
ter the first timer;

• Calls the Application Manager to launch the appli-
cations for which an alarm is due;

• Supports multiple alarms per application; and

• Stores its alarm database in SQLite for persistence.

The Alarm Manager has no UI of its own; applica-
tions that need to bring an alarm to the user’s attention
must do this through the Attention Manager. The Alarm
Manager doesn’t provide reminder dialog boxes, and it
doesn’t play the alarm sound. Applications should use
the Attention Manager to interact with the user.

6 The Attention Manager

The Attention Manager manages system events that
need to be presented to the user, such as a low battery
condition or an incoming call (rather than programmatic
events delivered to other applications like the service
provided by the Notification Manager). The Attention
Manager uses a priority scheme to manage presentation
of items needing attention to the user. The infrastructure
used by applications and system services to ask for at-
tentions and the storage of the currently pending list of
events requiring the user’s attention is separate from the
actual presentation of the events to the user.

The Attention Manager is a standard facility by which
applications can tell the user that something of signifi-
cance has occurred. The Attention Manager is respon-
sible only for being a nexus for such events and inter-
acting with the user in regards to these events; it is not
responsible for generating the events.

192 • The Hiker Project: An Application Framework for Mobile Linux Devices

The Attention Manager provides both a single alert di-
alog and maintains a list of all “alert-like” events. To-
gether these improve the user experience by first getting
the user’s attention when needed, then allowing the user
to deal with the attention or dismiss for review later.
By handling it this way, it is no longer necessary to
click through a series of old alert dialogs. Often the
user doesn’t care about most of the missed appointments
or phone calls—although he might care about a few of
them. Without the Attention Manager, the user cannot
selectively dismiss or follow up on the alert events but
would instead have to deal with each alert dialog in turn.

Applications have complete control over the types and
level of attention they can ask for.

Typical flow of an attention event:

• An application (e.g. the calendar of “Date Book”)
requests the Alarm Manager to awaken it at some
time in the future.

• The Alarm Manager simply sends an event to
an application when that future point in time is
reached. The application can then post an event
to the Attention Manager with the appropriate pri-
ority.

• The Attention Manager will present the appropriate
alert dialog based on the event type and priority.

• The Attention Manager is designed solely to inter-
act with the user when an event must be brought to
the user’s attention.

6.1 When the Attention Manager isn’t appropriate

The Attention Manager is specifically designed for at-
tempts to get attentions that can be effectively handled
or suspended. The Attention Manager also doesn’t at-
tempt to replace error messages. Applications should
use modal dialogs and other existing OS facilities to
handle these cases.

The Attention Manager is also not intended to act as a
“To Do” or “Tasks” application, nor act as a “universal
in-box.” Applications must make it clear that an item ap-
pearing in the Attention Manager is simply a reminder,
and that dismissing it neither deletes nor cancels the
item itself. That is, saying “OK” to an attention message

regarding an upcoming appointment does not delete the
appointment, and dismissing an SMS reminder does not
delete the SMS message from the SMS inbox.

The Attention Manager is not an event logger, nor an
event history mechanism. It contains only the state of
active attention events.

The Attention Manager is organized in order to meet
specific design goals, which are:

• To separate UI from attention event logging mech-
anisms;

• To provide sufficient configurability so that a li-
censee may alter both the appearance and behavior
of the posted events;

• To maintain persistent store of events that will sur-
vive a soft reset;

• To be responsive (need to be quick from alert to
UI—prime example is incoming call); and

• To minimize memory usage (i.e. try to get as small
of memory foot print as possible).

The server model currently utilized relies on an init
script to start a small daemon. The daemon accepts
IPC requests to post, update, query or delete events and
maintain such event state in a database to provide per-
sistent storage for the events. The daemon launches the
attention UI application which will display the appro-
priate alert dialog. If the snooze action is chosen for
an event (provided that a snooze action is associated
with the event), the Attention UI application will call
the Alarm manager to schedule a wakeup. The wakeup
will be in the form of a launch or relaunch via the Appli-
cation server. In this model, the attention status gadget
is assumed to be polling the Attention Manager daemon
for active event state and using that information in dis-
playing status. If the attention status gadget is “clicked”
on, it starts the Attention UI through the Application
Server.

6.2 Features

The Attention Manager implements the following major
components:

2007 Linux Symposium, Volume Two • 193

• attention events;

• an API library for posting, updating, deleting, and
querying events;

• a server through which events are posted, retrieved
and managed;

• a UI application that displays the alert dialogs;

• an event database and associated DML API; and

• a status gadget for the status bar.

7 Abstract IPC

The Abstract IPC service provides a lightweight, ro-
bust interface to a simple message-based IPC mecha-
nism. The actual implementation can be layered on top
of other IPC mechanisms. The current implementation
is based on Unix sockets, but this mechanism can be lay-
ered on other IPC mechanisms if required. The current
implementation has a peer-to-peer architecture that min-
imizes context switches, an important feature on some
popular embedded architectures.

The Abstract IPC Service comprises an API for a simple
interprocess communication (IPC) mechanism used by
the framework components described in this paper.

The goals of this design include:

• Independence from underlying implementation
mechanisms (e.g. pipes, sockets, D-BUS, etc.);

• A simple, easy to use send/receive message API;

• Support for marshalling/unmarshalling message
data; and

• Minimization of context switches by sending mes-
sages directly between processes without passing
through an intermediary process.

The IPC mechanism is based on a single server pro-
cess exchanging messages with one or more clients. The
server process creates a channel; clients connect to the
channel and receive a connection pointer they can use to
send/receive messages to the server. The format of the
messages is completely up to the server and clients of
the channel.

Communication can be synchronous or asynchronous.
When done asynchronously, processes receive messages
via a callback mechanism that works through the gLib
main loop.

8 Security Policy Framework and Hiker Secu-
rity Module

The Security Policy Framework (SPF) is the component
which controls the security policy for the device. The
actual policy used by the framework is created by a li-
censee and can be updated. Policy is flexible and sepa-
rate from the mechanisms used to enforce it. The pol-
icy can express a wide (and extensible) range of policy
attributes. Typical elements of a policy address use of
file system resources, network resources, password re-
striction policies, access to network services, etc. Each
policy is a combination of these attributes and is tied to
a particular digital signature.

Applications are checked for a digital signature (includ-
ing no signature or a self-signature) and an appropriate
security policy is applied to the application. One of the
policy decisions that can be made by the framework is
whether the user should be consulted—this allows for
end-users to control access to various types of data on
the device and ensure that malicious applications will
not access this data covertly. Other types of decisions
are allow/deny which may be more appropriate for a car-
rier to use to protect access to network resources, etc.

The Hiker Security Module is a kernel level enforce-
ment component that works in concert with the Secu-
rity Policy Framework. The Security Module controls
the actual access to files, devices and network resources.
Because it is an in-kernel component, the Security Mod-
ule is released under the GPL.

There must be some user control on who is allowed to
connect to the user’s device and request action from it.
Security is mostly based on the user control at the fol-
lowing levels:

• There will be default handlers (implemented, for
example, by in the box PIM applications) for a
bunch of published standard services. In the event
where a third party application would try to register
a duplicate handler, and the first handler declared
it wanted to be unique, the user would be alerted

194 • The Hiker Project: An Application Framework for Mobile Linux Devices

and asked to arbitrate which application should be
the installed handler. The user is the authority that
tells the system which handler wins in case of con-
flict. This security works whichever handler in-
stalls first. In a model where all installed applica-
tions are signed and therefore trusted, we can rely
on what the application do when they register.

• When there is a non-authenticated incoming con-
nection, the user is asked to authorize the connec-
tion. Local is obviously initiated by the user and
is always valid. IR is considered authenticated, as
the user must explicitly direct his device to the ini-
tiator. Paired Bluetooth is authenticated by defini-
tion. SMS is authenticated by the mobile network.
TCP may be considered authenticate if the source
IP address figures in the table of trusted sources (al-
though this may be discussed as it is easy to spoof
the source IP). TCP may also be configured to re-
quire a challenge password before it accepts to read
from the connection.

• Above the connection level authentication, han-
dlers may also require permission from the user
before they perform their action. This is handler
specific. “get vCard” is obviously a very good can-
didate to user authorization.

9 The Exchange Manager

The Exchange Manager is a central broker to manage
inter-application/inter-device communication. Requests
to the Exchange Manager contain verbs (“get”, “store”,
“play”), data (qualified by mime-type) as well as other
parameters used to identify the specific item to be af-
fected by the request. Use cases of the Exchange Man-
ager include beaming a contact to another device, taking
a picture using the camera from an MMS application,
looking up a vCard based on caller ID, viewing an email
attachment, etc.

The Exchange Manager is an extensible framework:
new handlers can be created for new data types and ac-
tions as well as for new transports (e.g. IR, Local, Blue-
tooth, SMS, TCP/IP, etc.).

There is a need for any application to be able to perform
different tasks (such as play, get, store, print, etc.) on
several types of data. This component offers a simple,
yet expandable, API that lets any application defer the

actual handling of the data to whoever declared he was
the handler for this action/type-of-data pair. In addition,
the destination of the request (where the action will actu-
ally be performed) can be specified as the local device or
a remote location. This opens up new universal possibil-
ities such as directly send a vCard to someone through
Internet while being on the phone with him.

This component also implements the legacy Palm OS
“Garnet” Exchange Manager functionality (send data to
a local or remote application). This simply corresponds
to the action store

The Java VM also implements a similar functionality
(JSR211—CHAPI). It is foreseen that the Java and na-
tive components will interoperate. In other words, a Java
application will be able to send a vCard to a remote de-
vice through IR, as well as receive data from a local na-
tive application, for some examples.

9.1 Features

The purpose of this component is to enable an applica-
tion or system component to request the system to per-
form some action on some data, without knowing who
will carry and fulfill the request. In addition, the client
can request that the action be performed either on the lo-
cal device or on some specific other destination (mobile
phone or desktop PC, etc.), using any available trans-
port. This opens up new interesting scenarios that were
not possible to do before.

An application that implements a service it wants to
make available to others registers a handler to tell the
system it can perform this specific action on this spe-
cific type of data. The handler may also specify that it
will accept only local request, or that it will accept all
requests. Each registered handler is valid for only one
combination of action/data type. The action/data type
is defined by a verb, and a MIME type (e.g. “store –
text/vCard”).

Transport modules are responsible to carry the request
from the source to the destination device. When the re-
quest arrives at the destination (which may be the lo-
cal machine), the transport will hand it to the Exchange
Manager who will then invoke the corresponding action
handler to do the actual work. A result may be sent
back to the initiator, which means it is also possible to
use this component to retrieve some data (not only send

2007 Linux Symposium, Volume Two • 195

it), or pass some data and get it back modified in some
way. An obvious use case would be to use your phone
to lookup a contact in your desktop PC address book,
or retrieve a contact’s photo and name given its phone
number.

Handlers can be registered or unregistered at any time.
A board game would register the “moveplayer” action
(a handler to receive other players moves) when it is
launched, and would send its own moves by requesting
this same action from the other user device. The game
would unregister the handler when it quits. Note that
this example does not mean Exchange Manager could
be used as a network media to handle more than peer to
peer exchanges.

An application cannot verify the availability and iden-
tity of a handler and this would not make sense in the
general usage (it is the goal of the Exchange Manager to
be able to have an unknown handler execute a request).
If an application needs to authenticate the handler, then
this means it looks for a very precise handler it knows
and in this case, it could use, for example, data encryp-
tion to ensure only the person with the right key can
understand the request.

Transports are independent modules that can also be
added or removed at any time. Typical transports would
include Local, IrDA, Bluetooth, SMS, and TCP. Non-
Hiker destination systems must run at least an Exchange
Manager daemon and transports as well. Except for the
handler invocation part, this should be the same code for
any Linux platform (the sharedlib, daemon and trans-
ports only use standard Linux and GTK services). It
would be easy, for example, to implement a new en-
crypted transport, should the need arise. The library
provides a standard UI dialog to let the user select a
transport and enter the relevant parameters. If the trans-
port information is missing in the request, the Exchange
Manager will itself pop this UI up at the time it needs
the information. If the transport determines that the des-
tination address is missing, it will also popup an address
selection UI.

Verbs can be accompanied by parameters. Only a few
parameters are common to all verbs (e.g. a human-
readable description of the data that may be used to ask
the user if he accepts what he is receiving). Parame-
ters are passed as a tag/value pair (the value being int
or string). Some are mandatory but most are optional
and depend on the specific handler definition. Using pa-

rameters, the result of an action handler can be precisely
customized to the client needs.

A non-exhaustive list of actions that will be defined in-
clude store, get, print, and play.

Parameters can be used by the action handler to find
out how exactly it should perform its action, or by the
transport module to get the destination address or other
transport-specific information.

An Exchange Manager daemon is started at boot time
(or at any other time). The daemon is used to listen
for incoming action request for all transports. When
a transport has an incoming request ready, the daemon
dispatches it to the right action handler. The action han-
dler then performs its duty, and returns the result back
to the transport. The answer is then sent back to the
originator.

When the originator is local, the user is never asked to
accept the incoming data. When the originator is re-
mote, whether a user confirmation is required will de-
pend on the transport being used. For IrDA, it is as-
sumed that the user implicitly accepts as he directs his
device toward the emitter (it is still to be decided if
we ignore the possibility that someone would be able
to beam something to you without your consent while
you have the device turned on). For Bluetooth, it de-
pends whether the connection is paired or not. For SMS,
the mobile network identifies the originator (in addition,
there is no “connection” with SMS). For TCP, the trans-
port configuration will tell whether the originator IP is
authorized, and it will ask if not.

For handlers that are essentially data consumers and
don’t return anything (like “store”), it may make sense
to let multiple handlers register for the same verb/data.
For this reason, it is left to the handler to specify if it
must be unique or not at registration time. In case it
must be unique and someone tries to register a second
handler for the same verb/data, the user would be no-
tified and he would have the responsibility to arbitrate
which of the two handlers should be the active one.

To maintain transfer compatibility with phones or legacy
Garnet OS devices, the initiator may set a parameter to
tell he wants to use Obex as the transport. In this case,
the only verb allowed is “store.” The transport plug-in
will recognize this parameter and send the data using
the OpenObex daemon. As well, a transport plug-in can
also receive data from the OpenObex daemon. It would

196 • The Hiker Project: An Application Framework for Mobile Linux Devices

treat that like an incoming connectionless “store” action
on the received data.

For all other combinations of action/data type, the trans-
port protocol is ours (or third party in case of third party
transport). Obex protocol is handled by the OpenObex
library. SMS NBS transport is handled in the SMS
component. Some specific Bluetooth profiles (e.g. basic
imaging profile) could also be handled by the Bluetooth
transport in order to maximize compatibility with other
kinds of devices.

An “Exchange request” is the only entity an application
works with. It is an opaque structure that contains all the
information characterizing a request: the verb, the pa-
rameters, the data reference and the destination. There
are APIs to set and get all of them. The data itself can be
specified in multiple ways: file descriptor (data will be
read from this fd by the transport) or URL (URL is sent,
and action handler will access data through the URL).

10 Global Settings

The Global Settings component provides a common API
and storage for all applications and services to access
user preferences (fonts, sizes, themes) and other appli-
cation settings and configuration data. Global Settings
are hierarchical and could be used, e.g., as the basis for
OMA Device Management settings storage. The com-
ponent is designed to support the security requirements
of OMA Device Management. The storage for Global
Settings uses the recently open-sourced libsqlfs project
layered on SQLite. Global Settings provides generic,
non-mobile specific, storage.

The Global Settings service provides functions for stor-
ing user preferences. It provides APIs for the setting
and getting of software configurations (typically key-
value pairs such as “font size: 12 points”). The settings
keys may form a hierarchy like a directory tree, with
each key comparable to a file or directory in a file sys-
tem, e.g. applications/datemanager/fontsize.
Indeed, Global Settings is actually implemented on top
of an abstract POSIX file system: each key has a value
and meta data such as a user id, a group id, and an access
permission.

To accomplish this, Global Settings utilizes libsqlfs, a
service component which creates the abstraction of a
POSIX file system within an SQLite database file. An

initial implementation was attempted using gconf. To
support OMA Device Management requirements, we
dropped the gconf design, which could not provide se-
curity over keys.

The Global Settings service has two parts: the daemon
(aka server) and the client library. You could store set-
tings by simply having a server process. However, to
make it trivial for the clients to talk to the server, we
also provide a client library which handles the IPC to
the server. The client library is linked in with the client
application.

The client library and the daemon communicate via Ab-
stract IPC. The daemon does the actual I/O for the data;
it links with the SQLite library and does the key con-
tent reads and writes on SQLite databases, with the tree
hierarchy actually implemented using relational tables
through SQL. SQLite provides no effective access con-
trol, so the daemon uses Unix file access control on the
database file to exclude everyone else. The daemon also
keeps track of the users and groups that are allowed to
access certain keys, and enforces access control. The
SQLite database files will be only readable and writable
by the daemon process.

10.1 Data Model

1. We expose key/value pairs where values amount to
the “contents” of the key and can be arbitrary data
of arbitrary size.

2. Key descriptions (in multiple languages) are sup-
ported only by convention (see below).

3. We support settings that are user, group, or other
readable/writable (or not); the user and group iden-
tities are based on these of the system and are
granted by the system. The Global Settings ser-
vice does not give special meanings to any specific
group or user id.

The possible key names or key strings form a key space,
which is similar to the space of file paths. The key
strings are also called key paths. Each key path can be
absolute or relative; absolute key or key paths must start
with /, and relative key paths are relative to a “current
directory” or a “cwd.” There are APIs to get and to set
the “cwd.”

2007 Linux Symposium, Volume Two • 197

A “directory” is a key which contains other keys. A di-
rectory is similar to the interior nodes in the OMA De-
vice Management Tree definition. To simplify our de-
sign, we disallow a directory key from having its own
content. So if you add a child key to an existing key
which has no value (or having the null value), that key
becomes a directory and attempts to set the content for
that key will fail in the future. Permissions for directo-
ries thus follow the semantics of POSIX file system.

A directory key can be created in two ways:

• A directory is created if a request is made to create
a key that would be a child or a further descent of
the directory

• Or a key can be created with an explicit API for
this purpose

Key names follow a standard convention to allow group-
ing of similar attributes under the same part of the key
hierarchy. We follow the GConf conventions as closely
as possible for application preferences and system set-
tings, with consideration for device-specific standards
like /dm for OMA Device Management.

Some typical keys are represented below:

• /dm for OMA Device Management

• /capabilities for “is java installed,” “is Gar-
net OS emulation installed,” etc.

• /packages/com.access.apps.app1 for pref-
erences of “app1”

The Global Settings service is not meant for storage
of security-sensitive data such as passwords or private
keys. The data in the Global Settings are only protected
by POSIX file permissions and are not encrypted or oth-
erwise protected!

Global Settings implements the POSIX file permission
(user, group and others, readable, writeable or exe-
cutable) model on the keys and the key hierarchy. So
a run time process has to acquire the appropriate user
or group IDs to access a key the same way it access a
file with the same POSIX permission bits in the host file
system.

Otherwise, Global Settings places no meanings on the
uids and gids, except the uid 0 which has permissions
for everything, as root. The SUID bit is not honored and
ignored for Global Settings.

The x bits in directories determine if the directories can
be entered; the x bits in non-directory keys are ignored
and have no meaning currently.

The uid and gids of keys are modifiable according to the
following rules:

• The owner id cannot be changed except by the root.

• The group id cannot be changed except by the root
or the owner.

Global Settings has reserved rooms for extra attributes
for keys, currently not implemented but these could be
used for access control lists or some other meta data but
I treat such usage as the best to be avoided; if POSIX
permissions provide all that’s needed it is the best as it
is simple and efficient.

With the above convention for keys, it becomes desir-
able for the applications or specific device (drivers) to
create its key hierarchy during the installation time (or
at the point of system image creation). Once created a
hierarchy may be protected from access by applications
other than the designated applications.

The initial key installation follow these steps:

• A group id is pre-assigned to a particular applica-
tion (group). This assignment is to be guaranteed
at run time by the Bundle Manager and system se-
curity.

• After an application is installed, it, or the Bundle
Manager, will use a Global Settings tool or equiv-
alent APIs to copy the key data from the default
settings XML file into the Global Settings database
and properly set the user and the group ids and the
permissions for these keys.

• Later the Global Settings service ensures that the
key hierarchy is accessible only to applications
with the right group membership or the user id.
The Unix file permission style permissions will
be the only security mechanism protecting the key
and key values; Global Settings does not provide
encryption-based protection mechanism.

198 • The Hiker Project: An Application Framework for Mobile Linux Devices

The Global Settings daemon is started at system boot
time. Packages need to include their associated default
preferences and these need to be installed in the correct
fashion for the underlying preferences system.

Clients that wish to be informed of changes in set-
tings can register a callback with the Notification Man-
ager. The Global Settings daemon will send Notifi-
cation Manager a string representing each key that it
changes. Notification Manager will notify each appli-
cation that has registered to be told about changes to
that key. (Notification Manager will notify each appli-
cation that registered for that key, or a prefix of that key.
For example, an application that registered for oma/
apps would be notified when any of the following keys
changed: oma/apps/calendar/fontsize, oma/

apps/date/background-image, or oma/apps.

Following the conventions of the Notification Man-
ager, each key change notification has the “no-
tification type” (or “notify type”) of a string of
the form /alp/globalsettings/keychange/
+ the key string. For example, a change of
the key oma/apps/calendar/fontsize will in-
voke a broadcast notification call with the noti-
fication type /alp/globalsettings/keychange/

oma/apps/calendar/fontsize.

The Notification Manager currently is responsible for
monitoring the key changes in a directory tree; it im-
plements this by checking if a changed key has, as a
prefix, a substring which matches the representative key
of a key subspace being monitored for changes by some
application. For example, the previous key change ex-
ample will invoke change notifications for applications
which want to know key changes in the /oma/apps/
calendar/ key directory. The Notification Manager
is the actual component which checks this and invoke
the notification callback in client applications.

11 Conclusion

Mobile devices, and the applications running on them,
represent a new frontier for open source developers.
Worldwide cell phone sales are approaching one billion
a year, with “smart phones” (that is, phones whose capa-
bilities can be enhanced “post-platform,” subsequent to
their purchase by the consumer) showing the largest rate
of growth. Open source-based operating systems have
been of increasing interest as a foundation for work in
the space.

By 2010, it’s estimated that the number of “smart
phones” sold per year will exceed the number of desktop
systems. As many as half of those phones will be run-
ning Linux-based system, according to some analysts.

Linux and other open source software has taken on in-
creased significance in this context. While a number
of Linux-based phones have been shipped (primarily in
China and other Pacific Rim geographies), few of them
have been truly “open” systems, that is, the ability to de-
velop software for and incorporate it onto such devices
has been terribly limited.

Further, because the usage model for these devices is
so different from the usual desktop-oriented paradigms,
there are significant gaps in service-level functionality,
particularly in areas such as abstraction of varying ex-
ecution environments for the user, packaging of appli-
cations and related resources and metadata, information
interchange between applications as well as between de-
vices, and general approaches to security.

The security component, in particular, is key to the effort
to foster a “third-party developer ecosystem” for mobile
devices. Because of their very nature, as well as the
regulatory structure within which they exist, certain op-
erational characteristics of devices such as cell phones
must be guaranteed. This is true even in the case of er-
rant or malicious additional software being installed on
the device.

A paper of this length can only provide a high-level
overview of the components involved and their poten-
tial characteristics, usage, and interrelationships. A
great deal more detailed information is available on the
project web site.

Hiker is an attempt to address the most significant of the
gaps discussed at the outset of this paper as a way of
reducing fragmentation and encouraging participation
in the mobile applications development context. The
Hiker Project is intended to be a open, community ef-
fort. While ACCESS engineers are responsible for the
initial implementation, the project is intended for the use
of all developers interested in mobile applications devel-
opment, and their participation in improving the frame-
work is invited.

c© 2007 The Hiker Project. Permission to redistribute in ac-
cordance with Linux Symposium submission guidelines is
granted; all other rights are reserved. ACCESS R© is a reg-
istered trademark of ACCESS Co., Ltd. Garnet

TM
is a trade-

2007 Linux Symposium, Volume Two • 199

mark of ACCESS Systems Americas, Inc. UNIX R© is a reg-
istered trademark of The Open Group. Palm OS R© is a regis-
tered trademark of Palm Trademark Holding Company, LLC.
The registered trademark Linux R© is owned by Linus Tor-
valds, owner of the mark in the U.S. and other countries, and
licensed exclusively to the Linux Mark Institute. Mac R© and
OS X R© are registered trademarks of Apple, Inc. All other
trademarks mentioned herein are the property of their respec-
tive owners.

200 • The Hiker Project: An Application Framework for Mobile Linux Devices

Getting maximum mileage out of tickless

Suresh Siddha Venkatesh Pallipadi Arjan Van De Ven
Intel Open Source Technology Center

{suresh.b.siddha|venkatesh.pallipadi|arjan.van.de.ven}@intel.com

Abstract

Now that the tickless(/dynticks) infrastructure is inte-
grated into the base kernel, this paper talks about var-
ious add on changes that makes tickless kernels more
effective.

Tickless kernel pose some hardware challenges that
were primarily exposed by the requirement of continu-
ously running per-CPU timer. We will discuss how this
issue was resolved by using HPET in a new mode. Elim-
inating idle periodic ticks causes kernel process sched-
uler not do idle balance as frequently as it would do oth-
erwise. We provide insight into how this tricky issue of
saving power with minimal impact on performance, is
resolved in tickless kernel.

We will also look at the kernel and user level daemons
and drivers, polling for things with their own timers and
its side effect on overall system idle time, with sug-
gestions on how to make these daemons and drivers
tickless-friendly.

1 Introduction

Traditionally, SMP Linux (just as most other operat-
ing systems) kernel uses a global timer (present in the
chipset of the platform) to generate a periodic event
for time keeping (for managing time of the day) and
periodic local CPU timer event for managing per-CPU
timers. Timers are basically events that the kernel wants
to happen at a specified time in the future (either for its
own use or on behalf of an application). An example of
such a timer is the blinking cursor; the GUI wants the
cursor to blink every 1.2 seconds so it wants to schedule
an operation every 600 milliseconds into the future. In
the pre tickless kernel, per-CPU “timers” were imple-
mented using the periodic timer interrupt on each CPU.
When the timer interrupt happens, the kernel checks if
any of the scheduled events on that CPU are due and if
so, it performs the operation associated with that event.

Old Linux kernels used a 100 Hz frequency (every
10 milliseconds) timer interrupt, newer Linux uses a
1000 Hz (1ms) or 250 Hz (4ms) timer interrupt. The
frequency of the timer interrupt determines how fine
grained you can schedule future events. Since the kernel
knows this frequency, it also knows how to keep time:
every 100 / 250 / 1000 timer interrupts another second
has passed.

This periodic timer event is often called “the timer tick.”
This timer tick is nice and simple but has two severe
downsides: First of all, this timer tick happens period-
ically irrespective of the processor state (idle Vs busy)
and if the processor is idle, it has to wake up from its
power saving sleep state every 1, 4, or 10 milliseconds,
which costs quite a bit of energy (and hence battery life
in laptops). Second of all, in a virtualization environ-
ment, if a system has 50 guests that each have a 1000
Hz timer tick, the total system will have a 50,000 ef-
fective ticks. This is not workable and highly limits the
number of possible guests.

Tickless(/Dynticks) kernel is designed to solve these
downsides. This paper will briefly look into the current
tickless kernel implementation and then look in detail
about the various add-ons the authors added to make the
tickless kernel more effective. Section 2 will look into
the current tickless kernel infrastructure. Section 3 will
look at the impact of different timers in the kernel and
its impact on tickless kernel. Section 4 will address the
hardware challenges that were exposed by the require-
ment of per-CPU timer.

Section 5 will talk about the impact on process load bal-
ancing in tickless idle kernels and the problem resolu-
tion. Section 6 will look at the impact of the different
timers (and polling) in user level daemons and drivers
on the power savings aspect of the tickless kernel.

• 201 •

202 • Getting maximum mileage out of tickless

2 Tickless Kernel

Tickless kernel, as the name suggests, is a kernel with-
out the regular timer tick. Tickless kernel depends on
architecture independent generic clocksource and clock-
event management framework, which got into the main-
line in the recent past [7]. Generic timeofday and clock-
source management framework moved lot of timekeep-
ing code into architecture independent portion of code,
with architecture portion reduced to defining and man-
aging low level hardware pieces of clocksources. While
clock sources provide read access to the monotonically
increasing time value, clock event devices are used to
schedule the next event interrupt(s). The setup and se-
lection of the event devices is hardwired into the archi-
tecture dependent code. The clock events provides a
generic framework to manage clock event devices and
their usage for the various clock event driven kernel
functionalities.

Linux kernel typically provided timers which are of tick
(HZ) based timer resolution. clockevents framework in
the newer kernels enabled the smooth implementation
of high resolution timers across architectures. Depend-
ing on the clock source and clock event devices that are
available in the system, kernel switches to the hrtimer
[8] mode and per CPU periodic timer tick functionality
is also provided by the per CPU hrtimers (managed by
per-CPU clockevent device).

Hrtimer based periodic tick enabled the functionality of
tickless idle kernel. When a CPU goes into idle state,
timer framework evaluates the next scheduled timer
event and in case that the next event is further away than
the next periodic tick, it reprograms the per-CPU clock-
event device to this future event. This will allow the idle
CPU to go into longer idle sleeps without the unneces-
sary interruption by the periodic tick.

The current solution in 2.6.21 [4] eliminates the tick dur-
ing idle and as such it is not a full tickless or dynamic
tick implementation. However, eliminating the tick dur-
ing idle is a great first step forward. Future trend how-
ever is to completely remove the tick, irrespective of the
busy or idle CPU state.

2.1 Dynticks effectiveness data

Effectiveness of dynticks can be measured using dif-
ferent system information like power consumption, idle

time etc. Following sections of this paper looks at the
dynticks effectiveness in terms of three measurements
done on a totally idle system.

• The number of interrupts per second.

• The number of timer events per second.

• Average amount of time CPU stays in idle state
upon each idle state entry.

These measurements, collectively, gives an easy approx-
imation to actual system power and battery consump-
tion.

These measurements reported were taken on a totally
idle system, few minutes after reboot. The number of in-
terrupts in the system, per second, is computed by taking
the average from output of vmstat. The value reported
is the number of interrupts per second on the whole
system (all CPUs). The number of events reported is
from /proc/timer_stats and the value reported is
events per second. Average CPU idle time per call is
the average amount of time spent in a CPU idle state
per entry into idle. The time reported is in uS and this
data is obtained by using /proc/acpi/processor/

CPU*/power. All these three measurements are at the
system level and includes the activity of all CPUs.

The system used for the measurement is a Mobile ref-
erence system with Intel R© CoreTM 2 Duo CPUs (2 CPU
cores), running i386 kernel with a HZ rate of 1000.

2.1.1 Baseline measurement

Table 1 show the data with and without dynticks en-
abled.

As the data indicates, dyntick eliminates the CPU timer
ticks when CPUs idle and hence reduces the number of
interrupts in the system drastically. This reduction in
number of interrupts also increases the amount of time
CPU spends in an idle state, once entering that idle state.

Is this the best that can be done or is there scope to do
more changes within the kernel to reduce the number of
interrupts and/or reduce the number of events? Follow-
ing sections addresses this specific question.

2007 Linux Symposium, Volume Two • 203

interrupts #events Avg CPU idle
residency (uS)

With ticks 2002 59.59 651
Tickless 118 60.60 10161

Table 1: System activity during idle with and without periodic ticks

3 Keeping Kernel Quiet

One of the noticeable issue with the use of timers, in-
side core kernel, in drivers and also in userspace, is that
of staggered timers. Each user of a timer does not know
about other timers that may be setup on the system at
the particular time and picks a particular time based on
its own usage restrictions. Most of the time, this spe-
cific usage restriction does not mandate a strict hard time
value. But, each timer user inadvertently end up setting
the timer on their own and hence resulting in a bunch of
staggered timers at the system level.

To prevent this in kernel space, a new API __round_
jiffies() is introduced [6] in the kernel. This API
rounds the jiffy timeout value to the nearest second. All
users of timeout, who are really not interested in precise
timeout should use this API while setting their timeout.
This will cause all such timers to coalesce and expire at
the same jiffy, preventing the staggered interrupts.

Another specific issue inside the kernel that needed spe-
cial attention are the timer interrupts from drivers which
are only important when CPU is busy and not really as
important to wake the CPU from idle and service the
timer. Such timer can tolerate the latency until some
other important timer or interrupt comes along, at which
time this timer can be serviced as well. Classic example
of this usage model is cpufreq ondemand governor.

ondemand governor monitors each processor utilization
at periodic intervals (many times per second) and tries to
manage the processor frequency, keeping it close to the
processor utilization. When a processor is totally idle,
there is no pressing need for ondemand to periodically
wakeup the processor just to look at its utilization. To
resolve this issue, a new API of deferrable timers
was introduced [1] in the recent kernel.

Deferrable timer is a timer that works as a normal timer
when processor is active, but will be deferred to a later
time when processor is idle. The timers thus deferred

will be handled when processor eventually comes out of
idle due to a non-deferrable timer or any other interrupts.

Deferrable timer is implemented using a special state bit
in the timer structure, overloaded over one of the fields
in the current structure, which maintains the nature of
the timer (deferrable or not). This state bit is preserved
as the timer moves around in various per-CPU queues
and __next_timer_interrupt() skips over all
the deferrable timers and picks the timer event for next
non-deferrable timer in the timer queue.

This API works very well with ondemand, reducing the
number of interrupts and number of events on an idle
system as shown in the Table 2. As shown, this feature
nearly doubles the average CPU idle residency time, on
a totally idle system. This API may also have limited
usages with other timers inside the kernel like machine
check or cache reap timers and has the potential to re-
duce the number of wakeups on an idle system further
down.

Note that this timer is only available for in kernel us-
age at this point and usage for user apps is not yet con-
ceptualized. It is not straight forward to extend this to
userspace as user timer are not directly associated with
per-CPU timer queues and also there can be various
dependencies across multiple timers, which can result
in timer reordering depending on what CPU they are
scheduled on and whether that CPU is idle or not.

4 Platform Timer Event Sources

Dynticks depends on having a per-CPU timer event
source. On x86, LAPIC timer can be used as a de-
pendable timer event source. But, when the platform
supports low power processor idle states (ACPI C2, C3
states), on most current platforms LAPIC timer stops
ticking while CPU is in one of the low power idle states.
Dynticks uses a nice workaround to address this issue,
with the concept of broadcast timer. Broadcast timer is
an always working timer, that will be shared across a

204 • Getting maximum mileage out of tickless

interrupts #events Avg CPU idle
residency (uS)

Ondemand 118 60.60 10161
Ondemand + 89 17.17 20312

deferrable timer

Table 2: System activity during idle with and without deferrable timer usage in ondemand

pool of processors and has the responsibility to send a
local APIC timer interrupt to wakeup any processor in
the pool. Such broadcast timers are platform timers like
PIT or HPET [3].

PIT/8254: is a platform timer that can run either in one-
shot or periodic mode. It has a frequency of 1193182
Hz and can have a maximum timeout of 27462 uS.

HPET: Is based on newer standard, has a set of memory
mapped timers. These timers are programmable to work
in different modes and frequency of this timer is based
on the particular hardware. On our system under test,
HPET runs at 14318179 Hz freq and can have a max
timeout of more than 3 seconds (with 32-bit timer).

HPET is superior than PIT, in terms of max timeout
value and thus can reduce the number of interrupts when
the system is idle. Most of the platforms today has built
in HPET timers in the chipset. Unfortunately, very few
of the platforms today enable HPET timer and/or adver-
tise the existence of HPET timer to OS using the ACPI
tables. As a result, Linux kernel ends up using PIT
for broadcast timer. This is not an issue on platforms
which do not support low power idle state (e.g., today’s
servers) as they have always working local APIC time.
But, this does cause issue on laptops that typically sup-
port low power idle states.

4.1 Force detection of HPET

To resolve this issue of BIOS not enabling/advertising
HPET, there is a kernel feature to forcefully detect and
enable HPET on various chipsets, using chipset specific
PCI quirks. Once that is done, HPET can be used in-
stead of PIT to reduce the number of interrupts on an
idle system further. On our test platform, data that we
got after forcefully detecting and enabling HPET timer
is in Table 3.

Note that this patch to force enable HPET was in
proposal-review state at the time of writing this paper
and was not available in any standard kernel yet.

4.2 HPET as a per-CPU timer

Linux kernel uses “legacy replacement” mode of HPET
timer today to generate timer events. In this mode,
HPET appears like legacy PIT and RTC to OS gener-
ating interrupts on IRQ0 and IRQ8 for HPET channel 0
and channel 1 timer respectively. There is a further op-
timization possible, where HPET can be programmed
in “standard” interrupt delivery mode and use different
channels of HPET to send “per-CPU” interrupt to differ-
ent processors. This will help laptops that have 2 logical
CPUs and at least 2 HPET timer channels available. Dif-
ferent channels of HPET can be used to program timer
for each CPU, thereby avoiding the need for broadcast
timer altogether and eliminating the LAPIC timers as
well. This feature, which is still under development at
the time of writing this paper, brings an incremental ben-
efit on systems with more than one logical CPUs and
that support deep idle states (most laptop systems with
dual core processors). Table 4 shows the data with and
without this feature on such a system.

In comparison to base tickless data (as shown in Ta-
ble 1), features we have talked so far (as shown in Ta-
bles 2, 3, and 4) have demonstrated the increase in idle
residency time by approximately 7 times.

5 Idle Process Load balancing

In the regular kernel, one of the usages of the periodic
timer tick on each processor is to perform periodic pro-
cess load balancing on that particular processor. If there
is a process load imbalance, load balancer will pull the
process load from a busiest CPU, ensuring that the load
is equally distributed among the available processors in
the system. Load balancing period and the subset of
processors which will participate in the load balancing
will depend on different factors, like the busy state of
the processor doing the load balance, the hierarchy of
scheduler domains that this processor is part of and the

2007 Linux Symposium, Volume Two • 205

interrupts #events Avg CPU idle
residency (uS)

PIT 89 17.17 20312
HPET 32 15.15 56451

Table 3: System activity during idle with PIT Vs HPET

interrupts #events Avg CPU idle
residency (uS)

global HPET 32 15.15 56451
percpu HPET 22 15.15 73514

Table 4: System activity during idle with global vs. per-CPU HPET channels

Garbage collector Perf Regression
parallel 6.3%
gencon 7.7%

Table 5: SPECjbb2000 performance regression with
Tickless kernel. Tickless Idle load balancing enhance-
ments recovered this performance regression.

process load in the system. Compared to busy CPUs,
idle CPUs perform load balancing more often (mainly
because it has nothing else to do and can immediately
start executing the pulled load, the load otherwise was
waiting for CPU cycles on another busy CPU). In ad-
dition to the fairness, this will help improve the system
throughput. As such, idle load balancing plays a very
important role.

Because of the absence of the periodic timer tick in tick-
less kernel, idle CPU will potentially sleep for longer
time. This extended sleep will delay the periodic load
balancing and as such the idle load balancing in the sys-
tem doesn’t happen as often as it does in the earlier ker-
nels. This will present a throughput and latency issue,
especially for server workloads.

To measure the performance impact, some experiments
were conducted on an 8 CPU core system (dual package
system with quad-core) using SPECjbb2000 benchmark
in a 512MB heap and 8 warehouses configuration. Per-
formance regression with tickless 2.6.21-rc6-rt0 kernel
[5] is shown in Table 5.

Recovering this performance regression in the tickless
kernel with no impact on power savings is tricky and

challenging. There were some discussions happened
in the Linux kernel community on this topic last year,
where two main approaches were discussed.

First approach is to increase the back off interval of pe-
riodic idle load balancing. Regular Linux kernel already
does some sort of backoff (increasing the load balance
period up to a maximum amount) when the CPU do-
ing the load balance at a particular sched domain finds
that the load at that level is already balanced. And if
there is an imbalance, the periodic interval gets reset
to the minimum level. Different sched domains in the
scheduler domain hierarchy uses different minimum and
maximum busy/idle intervals and this back off period
increases as one goes up in the scheduler domain hier-
archy. Current back off intervals are selected in such a
fashion that there are not too many or too less load bal-
ancing attempts, so that there is no overdoing the work
when the system is well balanced and also react in rea-
sonable amount of time, when the load changes in the
system.

To fix the performance regression, this approach sug-
gests to further increase the backoff interval for all the
levels in the scheduler domain hierarchy but still retain-
ing the periodic load balancing on each CPU (by regis-
tering a new periodic timer event which will trigger the
periodic load balancing). Defining the interval increase
will be tricky and if it is too much, then the response
time will also be high and won’t be able to respond for
sudden changes in the load. If it is small, then it won’t
be able to save power, as the periodic load balancing will
wake up the idle CPU often.

Second mechanism is some sort of a watchdog mech-

206 • Getting maximum mileage out of tickless

anism where the busy CPU will trigger the load bal-
ance on an idle CPU. This mechanism will be making
changes to the busy load balancing (which will be do-
ing more load balancing work, while the current busy
task on that CPU is eagerly waiting for the CPU cycles).
Busy load balancing is quite infrequent compared to idle
load balancing attempts. Similar to the first mechanism,
this mechanism also won’t be able to respond quickly
to changes in load. And also figuring out that a CPU is
heavily loaded and where that extra load need to moved,
is some what difficult job, especially so in the case of
hierarchical scheduler domains.

This paper proposes a third route which nominates an
owner among the idle CPUs, which does the idle load
balancing (ILB) on behalf of the other idle CPUs in the
system. This ILB owner will have the periodic tick ac-
tive in idle state and uses this tick to do load balancing
on behalf of all the idle CPUs that it tracks, while the
other idle CPUs will be in long tickless sleeps. If there
is an imbalance, ILB owner will wakeup the appropri-
ate CPU from its idle sleep. Once all the CPUs in the
system are in idle state, periodic tick on the ILB owner
will also stop (as there is no other CPU generating load
and hence no reason for checking the load imbalance).
New idle load balancing owner will be selected again,
as soon as there is a busy CPU in the system.

This solution is in 2.6.21 -mm kernels and the experi-
ments showed that this patch completely recovered the
performance regression seen earlier (Table 5) in the tick-
less kernels with SPECjbb workload. If this ILB owner
selection is done carefully (like an idle core in a busy
package), one can minimize the power wasted also.

6 Keeping Userspace Quiet

Tickless idle kernel alone is not sufficient to enable the
idle processor to go into long and deep sleeps. In addi-
tion to the kernel space, applications in the user space
also need to quite down during idle periods, which will
ensure that the whole system goes to long sleeps, ulti-
mately saving power (and thus enhancing battery life in
case of laptops).

Dave Jones’ OLS2006 talk [9] entitled “Why Userspace
Sucks” revealed to the Linux community that the
userspace really doesn’t quiet down as one would hope
for, on an otherwise idle system. Number of applica-
tions and daemons wakeup at frequent intervals (even on

a completely idle system) for performing a periodic ac-
tivity like polling a device, cursor blinking, querying for
a status change to modify the graphical icon accordingly
and so on (for more information about the mischeivous
application behaviors look into references [9, 10, 2]).

A Number of fixes went into applications and libraries
over the course of the last year to fix these prob-
lems [2]. Instead of polling periodically for checking
status changes, applications and deamons should use
some sort of event notification where ever possible and
perform the actions based on the triggered event. For ex-
ample, the hal daemon used to poll very frequently to
check for media changes and thus making the idle pro-
cessor wakeup often. Newer SATA hardware supports
a feature called Asynchronous Notification, which will
notify the host at a media change event. With the re-
cent changes in the community, hal daemon will avoid
the polling on platforms which has the support of this
asynchronous notification.

Even in the case where the application has to rely on pe-
riodic timers, application should use intelligent mecha-
nisms to avoid/minimize the periodic timers when pos-
sible. Instead of having scattered timers across the pe-
riod of time, it will be best to group them and expire
the bunch of timers at the same instance. This group-
ing will minimize the number of instances a processor
will be wokenup, while still servicing the same number
of timers. This will enable the processor to sleep longer
and go into the lowest power state that is possible.

For example all gnome applications use the glib timer
g_timeout_add() API for their timers, which expire
at scattered instances. A second API, g_timeout_
add_seconds() has now been added which causes all
recurring timers to happen at the start of the second, en-
abling the system wide grouping of timers. The start
of the second is offset by a value which is system wide
but system-specific to prevent all Linux machines on the
internet doing network traffic at the same time.

New tools are getting developed [10] for identify-
ing the applications (and even the kernel level com-
ponents) which behave badly by wakingup more of-
ten than required. These tools use the kernel in-
terfaces (like /proc/timer_stats, /proc/acpi/

processor/CPU*/power, /proc/interrupts) and
report the biggest offenders and also the average C-
state residency information of the processor. Developers
should use these tools to identify if their application is

2007 Linux Symposium, Volume Two • 207

on the hitlist and if so, fix them based on the above men-
tioned guidelines.

7 Conclusions

Tickless kernel infrastructure is the first and important
step forward in making the idle system go into long and
deep sleeps. Now that this is integrated into Linux ker-
nel, enhancements mentioned in this paper will increase
the mileage out of the tickless kernel, by minimizing
the unnecessary wakeups in an otherwise idle system.
Going forward, responsibility of saving power lies with
both system and user level software. As an evolutionary
step, in coming days we can expect the Linux kernel to
be fully (both during idle and busy) dynamic tick capa-
ble.

8 Acknowledgments

Thanks to all the Linux community members who con-
tributed, reviewed and provided feedback to various
tickless add on features mentioned in this paper.

References

[1] Deferrable timers.
http://lwn.net/Articles/228143/.

[2] Dependency tree for bug 204948: Userspace
sucks (wakeups). https:
//bugzilla.redhat.com/bugzilla/
showdependencytree.cgi?id=204948.

[3] High precision event timers specification.
http://www.intel.com/technology/
architecture/hpetspec.htm.

[4] Linux 2.6.21. http://www.kernel.org.

[5] Realtime preempt patches.
http://people.redhat.com/mingo/
realtime-preempt/.

[6] Round jiffies infrastructure. http:
//lkml.org/lkml/2006/10/10/189.

[7] Thomas Gleixner and Ingo Molnar. Dynamic
ticks.
http://lwn.net/Articles/202319/.

[8] Thomas Gleixner and Douglas Neihaus. High
resolution timers ols 2006.
https://ols2006.108.redhat.com/
reprints/gleixner-reprint.pdf.

[9] Dave Jones. Why userspace sucks ols 2006.
https://ols2006.108.redhat.com/
reprints/jones-reprint.pdf.

[10] Arjan Van De Ven. Programming for low power
usage.
http://conferences.oreillynet.
com/cs/os2007/view/e_sess/12958.

This paper is copyright c©2007 by Intel Corporation. Re-
distribution rights are granted per submission guidelines; all
other rights are reserved.

*Other names and brands may be claimed as the property of
others.

208 • Getting maximum mileage out of tickless

Containers: Challenges with the memory resource controller and its
performance

Balbir Singh
IBM

balbir@in.ibm.com

Vaidyanathan Srinivasan
IBM

svaidy@linux.vnet.ibm.com

Abstract

Containers in Linux are under active development and
have different uses like security, isolation and resource
guarantees. In order to provide a resource guarantee
for containers, resource controllers are used as basic
building blocks to monitor and control utilization of sys-
tem resources like CPU time, resident memory and I/O
bandwidth, among others. While CPU time and I/O
bandwidth are renewable resources, memory is a non-
renewable resource in the system. Infrastructure to mon-
itor and control resident memory used by a container
adds a new dimension to the existing page allocation and
reclaim logic.

In order to assess the impact of any change in memory
management implementation, we propose adding pa-
rameters to modify VM1 behavior and instrument code
paths and collect data against common workloads like
file-server, web-server, database-server and developer
desktop. Data of interest would be reclaim rate, page
scan density, LRU2 quantum, page container affinity and
page generation.

This paper discusses, in detail, the design and perfor-
mance issues of RSS controller and pagecache con-
troller within the container framework. Some of the
modifications to the current page reclaim logic that
could help containers are also evaluated.

1 Background

Server consolidation, virtualization and containers are
buzz words in the industry today. As enterprises are con-
solidating applications and platforms to a single server,
either through virtualization or containers, there is a

1Linux virtual memory manager.
2Least recently used page list.

need to differentiate between them. Consider a server
that hosts two platforms, one an employee e-mail server
and the other a customer call center application. The en-
terprise would definitely want the customer call center
application to have a priority over the employee e-mail
server. It would be unacceptable if the employee e-mail
server occupied and consumed most of the resources
available in the consolidated server thereby affecting
performance of critical applications (in this case, the call
center application).

Resource management can provide service guarantees
by limiting the resource consumption of the employee
e-mail server. Resource controllers are part of container
framework that would monitor and control certain re-
source. Controllers generally monitor and limit one re-
source like memory, CPU time, I/O bandwidth etc. In
order to provide isolation between containers from re-
source perspective, we would primarily need to control
memory and CPU time. In this paper we discuss the
challenges with the design and implementation of mem-
ory controller.

2 Memory controller

A memory controller [13] allows us to limit the memory
consumption of a group of applications. Several pro-
posals for memory control have been posted to LKML,3

they are resource groups [11], memory container [12],
beancounters [6], and the most recent, RSS controller
[2] [3]. The design and features supported by each of
the proposals is discussed below.

2.1 Resource groups

The resource groups memory controller was developed
by Chandra Seetharaman, Jiantao Kong, and Valerie
Clement [11].

3Linux kernel mailing list.

• 209 •

210 • Containers: Challenges with the memory resource controller and its performance

It was built on top of the resource groups, resource man-
agement infrastructure and supported both limits and
guarantees. Guarantees and limits were set using the
min_shares and max_shares parameters, respec-
tively. Resource groups control only user-space pages.
Various configuration parameters allowed the system
administrator to control:

• The percentage of the memory usage limit, at
which the controller should start reclaiming pages
to make room for new pages;

• The percentage to which the reclaimer should
shrink pages, when it starts reclaiming;

• Number of seconds in a shrink interval;

• Number of shrink attempts in a shrink interval.

A page LRU list, broken down from zone LRU, is main-
tained for every resource group, which helps minimize
the number of pages to be scanned during page reclaim.

Task migration is an expensive operation, as it requires
the class field in each page to be updated when a
task is migrated.

2.2 Memory container

The salient features of memory containers as posted by
Rohit Seth [12] are as follows:

• It accounts and limits pagecache and RSS usage of
the tasks in the container.

• It scans the mappings and deactivates the pages
when either the pagecache or RSS limit is reached.

• When container reclaim is in progress, no new
pages are added to it.

The drawbacks of this approach are:

• Task migration is an expensive operation, the con-
tainer pointer of each page requires updating.

• The container that first accesses a file, is charged
for all page cache usage of that file.

• There is no support for guarantees.

2.3 Beancounters

The memory controller for Beancounters was developed
by Pavel and Kirill [7]. The salient features of this im-
plementation are:

• Initial versions supported only resource limits,
whereas later versions supports reclaim of RSS
pages as well.

• The system call interface was the only means
for setting limits and obtaining resource usage,
whereas newer versions have added file system
based configuration and control.

• Kernel resources such as page tables, slab usage is
accounted for and limited.

The drawbacks of this approach are:

• There is no direct support for guarantees.

• Task migration is supported, however when a task
migrates, it does not carry forward the charges of
the resources used so far.

• Pagecache control is not present.

2.4 RSS controller

The RSS controller was developed by Balbir Singh [14].
The salient features of this implementation are:

• No change in the size of page structure.

• RSS accounting definition is the same as that is
presently used in the LinuxTM kernel.

• The per-zone LRU list is not altered.

• Shared pages are reclaimed by un-mapping the
page from the container when the container is over
its limit.

The drawback of this approach is the reclaim algorithm.
The reclaimer needs to walk through the per zone LRU
of each zone to first find and then reclaim pages belong-
ing to a given container.

2007 Linux Symposium, Volume Two • 211

page
descriptor

meta
page

page
descriptor

meta
page

page
descriptor

meta
page

...

page
descriptor

meta
page

LRU
List

Per Container
List

Figure 1: RSS controller with per container list

Pavel enhanced the RSS controller [2] and added sev-
eral good features to it. The most significant was a per
container list of pages.

Figure 1 shows the organization of the RSS controller.
Each page has a meta page associated with it. All the
meta pages of the pages belonging to a particular con-
tainer are linked together to form the per container list.
When the container is over its limit, the RSS controller
scans through the per container list and try to free pages
from that list.

The per container list is not the most efficient implemen-
tation for memory control, because the list is not in LRU
order. Balbir [3] enhanced the code to add per container
LRU lists (active and inactive) to the RSS controller.

3 Pagecache control

Linux VM will read pages from disk files into a main
memory region called pagecache.4 This acts as a buffer
between the user application’s pages and actual data on
disk. This approach has the following advantages:

• Disk I/O is very expensive compared to memory
access, hence the use of free memory to cache disk
data improves performance.

• Even though the application may read only a few
bytes from a file, the kernel will have to read mul-
tiple disk blocks. This extra data needs to be stored
somewhere so that future reads on the same file can
be served immediately without going to disk again.

• The application may update few bytes in a file re-
peatedly, it is prudent for the kernel to cache it in
memory and not flush it out to disk every time.

• Application may reopen the same file often, there
is a need to cache the file data in memory for future

4Also referred to as disk cache.

use even after the file descriptor is closed. More-
over the file may be opened by another application
for further processing.

The reader might begin to ponder why we need to con-
trol the pagecache? The problem mainly arises from
backup applications and other streaming data applica-
tions that bring in large amounts of disk data to memory
that is most likely not to be reused. As long as free
memory is available, it is best to use them for page-
cache pages since that would potentially improve perfor-
mance. However, if there is no free memory, then cold
pages belonging to other applications would be swapped
out to make room for new pagecache data. This behav-
ior would work fine in most circumstances, but not all.
Take the case of a database server that does not access
records through pagecache as it uses direct I/O. Applica-
tions, like the database server, manage their own mem-
ory usage and prefer to use their own disk caching algo-
rithms. The OS is unlikely to predict the disk cache be-
havior of the application as well as the application can.
The pagecache might hurt the performance of such ap-
plications. Further, if there is a backup program that
moves large files on the same machine, it would end up
swapping pages belonging to database to make room for
pagecache. This helps the backup program to get its
job done faster, but after the backup is done, the system
memory is filled with pagecache pages while database
application pages are swapped-out to disk. When the
database application needs them back, it will have to
wait for the pages to be swapped-in. Hence the database
application pays the price for backup application’s inap-
propriate use of pagecache.5

The problem becomes more visible with server consol-
idation and virtualization. Now there is a need to limit
the usage of pagecache for a certain group of applica-
tions in order to protect the working set of other criti-
cal applications. Limiting the pagecache usage for less
important tasks would impact its performance, which is
acceptable, because the system performance is judged
only based on the performance of the critical applica-
tion like database or web server.

The RSS controller does control pagecache to some ex-
tent. When an application maps files, the pages are ac-
counted in its resident set and would be reclaimed by

5The pagecache feature is less important in the example given,
since the throughput of the database is more important than the speed
of the backup.

212 • Containers: Challenges with the memory resource controller and its performance

RSS controller if they go over the limit. However, it
is possible for application to load data into pagecache
memory with read/write system calls and not map all
the pages in memory. Hence there is a need to con-
trol unmapped pagecache memory as well. The page-
cache controller is expected to count unmapped page-
cache pages and reclaim them if found over the limit. If
the pages are mapped by the application, then they are
counted as RSS page and the RSS controller will do the
needful. If unmapped pagecache pages are not tracked
and controlled, then the pages unmapped by the RSS
controller will be marked for swap-out operation. The
actual swap-out operation will not happen unless there
is a memory pressure. The pages reclaimed by the RSS
controller will actually go into swapcache which is part
of pagecache. The pagecache controller will count these
swap-cache pages as well and create a memory pressure
to force the reclaimer to actually swap-out the pages and
free system memory. In order to maintain memory lim-
its, for containers, pagecache memory should also be
controlled apart from RSS limit. Pagecache controller
and RSS memory controller are parts of memory con-
troller for containers. Initial prototype patches are in-
dependent, however both these controllers share code
paths and hopefully they will eventually be integrated
as part of container memory controller.

The Linux VM has various knobs like /proc/
sys/vm/{swappiness, dirty_ratio, dirty_

background_ratio} to control pagecache usage and
behavior. However they control system-wide be-
havior and may affect overall system performance.
swappiness is a percentage ratio that would control
choice of pages to reclaim. If the percentage is greater,
anonymous pages would be chosen and swapped out
instead of pagecache pages during page reclaim. Re-
ducing the swappiness ratio would reduce page-
cache usage. The other two knobs, dirty_ratio
and dirty_background_ratio, control write out
of pagecache pages. Dirty pagecache pages needs to be
written out to disk before the page can be reused. How-
ever a clean pagecache page is as good as free mem-
ory because it can be freed with almost zero overhead
and then reused for other purposes. The kernel period-
ically scans for dirty pagecache pages and writes them
out based on the desired dirty page ratio.

Container framework and memory controller provide in-
frastructure to account for and monitor system mem-
ory used by group of applications. Extending the avail-

able infrastructure to account for and control pagecache
pages would provide isolation, control and performance
enhancements for certain groups of applications. By de-
fault, the Linux kernel would try to use the memory
resources in the best suitable manner to provide good
overall system performance. However, if applications
running in the system are assigned different priorities
then kernel’s decisions needs to be made taking into ac-
count the container’s limits which indirectly implies pri-
ority.

Limiting the amount of pagecache used by a certain
group of applications is the main objective of the page-
cache controller under the container framework. Couple
of methods to control pagecache have been discussed
on LKML in the past. Some of these techniques are dis-
cussed below.

3.1 Container pagecache controller

Pagecache accounting and control subsystem under con-
tainer framework [15] works using the same principle
as memory controller. Pages brought into the pagecache
are accounted for against the application that brought
it in. Shared pagecache pages are counted against the
application that first brought it into memory. Once the
pagecache limit is reached, the reclaimer is invoked that
would pick unmapped pages in inactive list and free
them.

The code reclaim path for the RSS controller and page-
cache controller is common except for few additional
condition checks and different scan control fields. All
reclaim issues discussed in RSS controller section ap-
plies to the pagecache controller as well.

3.2 Allocation-based pagecache control

Roy Huang [4] posted a pagecache control technique
where the existing kswapd() would be able to reclaim
pages when the pagecache goes over limit. A new rou-
tine balance_pagecache() is called from various
file I/O paths that would wake up kswapd() in order
to reclaim pagecache pages if they are over the limit.
kswapd() checks to see if pagecache is over the limit
and then it uses shrink_all_memory() to reclaim
all pagecache pages. The pagecache limit is set through
a /proc interface.

2007 Linux Symposium, Volume Two • 213

The generic reclaimer routine is used here, which
prefers pagecache pages over mapped pages. However,
if the pagecache limit is set to a very small percentage,
then the reclaimer will be called too often and it will
end up unmapping other mapped pages as well. Another
drawback in this technique is not distinguishing mapped
pagecache pages that might be in use by the application.
If a mapped page is freed, then the application will most
probably page-fault for it soon.

Aubrey Li [9] took a different approach by adding a
new allocation flag, __GFP_PAGECACHE, to distin-
guish pagecache allocations. This new flag is passed
during allocation of pagecache pages. Pagecache limit
is set through /proc as in the previous case. If the uti-
lization is over the limit, then code is added to flag a low
zone watermark in the zone_watermark_ok() rou-
tine. The kernel will take the default action to reclaim
memory until sufficient free memory is available and
zone_watermark_ok() would return true. The re-
claim technique has the same drawbacks cited in Roy’s
implementation.

Christoph Lameter [8] refined Aubrey’s approach [9]
and enhanced the shrink_zone() routine to use dif-
ferent scan control fields so that only pagecache pages
are freed. He introduced per-zone pagecache limit and
turned off may_swap in scan control so that mapped
pages would not be touched. However, there is a prob-
lem with not unmapping mapped pages because page-
cache stats count both mapped and unmapped page-
cache pages. If the mapped part is above limit, like if
an application mmap() file causes pagecache to go over
the limit, then the reclaimer will be triggered repeatedly,
which does not unmap pages and reduce the pagecache
utilization. We should account for only unmapped page-
cache pages for the limit in order to workaround this is-
sue. Mapped pagecache pages will be accounted by the
RSS memory controller. The possibility of user space-
based control of pagecache was also discussed.

3.3 Usermode pagecache control

Andrew Morton [10] posted a user-mode pagecache
control technique using fadvise() calls to hint the
application’s pagecache usage to kernel. The POSIX
fadvise() system call can be used to indicate to
the kernel how the application intends to use the con-
tents of the open file. There are a couple of options
like NORMAL, RANDOM, SEQUENTIAL, WILLNEED,

NOREUSE, or DONTNEED that the application can use
to alter caching and read-ahead behavior for the file.

Andrew has basically overridden read/write system
calls in libc through LD_PRELOAD and inserted
fadvise() and sync_file_range() calls to
zero out the pagecache utilization of the application.
The application under control is run using a shell script
to override its file access calls, and the new user space
code will insert hidden fadvise calls to flush or discard
pagecache pages. This effectively make the applica-
tion not use any pagecache and thus does not alter other
memory pages used in the system.

This is a very interesting approach to show that page-
cache control can be done from user space. However
some of the disadvantages are:

• The application under control suffers heavy perfor-
mance degradation due to almost zero pagecache
usage, along with added system call overheads.
The intent was to limit pagecache usage and not
to avoid using it.

• Group of applications working on the same file
data will have to bring in data again from disk
which would slow it down further.

More work needs to be done to make fadvise()more
flexible to optimally limit pagecache usage while still
preserving reasonable performance. The containers ap-
proach is well suited to target a group of applications
and control their pagecache utilization rather than per
process control measures.

4 Challenges

Having looked at several memory controller implemen-
tations, we now look at the challenges that memory con-
trol poses. We classify these challenges into the follow-
ing categories:

1. Design challenges

2. Implementation challenges

3. Usability challenges

We will look at each challenge and our proposed solu-
tion for solving the problem.

214 • Containers: Challenges with the memory resource controller and its performance

4.1 Design challenges

The first major design challenge was to avoid extend-
ing the struct page data structure. The problem
with extending struct page is that the impact can
be large. Consider an 8 GB machine, which uses a 4 KB
page size. Such a system has 2,097,152 pages. Extend-
ing the page size by even 4 bytes creates an overhead of
8 MB.

Controlling the addition using a preprocessor macro def-
inition is not sufficient. Linux distributions typically
ship with one enterprise kernel and the decision regard-
ing enablement of a feature will have to be made at
compile time. If container feature is enabled and end
users do not use them, they incur an overhead of mem-
ory wastage.

Our Solution. At first, we implemented the RSS con-
troller without any changes to struct page. But
without a pointer from the page to the meta page, it be-
came impossible to quickly identify all pages belong-
ing to a container. Thus, when a container goes over
its limit and tries to reclaim pages, we are required to
walk through the per zone LRU list each time. This is a
time-consuming operation and the overhead, in terms of
CPU time, far outweighs the disadvantage of extending
struct page.

The second major challenge was to account shared
pages correctly. A shared page can be charged:

• To the first container that brings in the page. This
approach can lead to unfairness, because one con-
tainer could end up bearing the charge for all
shared pages. If the container being charged for
the shared page is not using the page actively, the
scenario might be treated as an unfair implementa-
tion of memory control.

• To all containers using the shared page. This sce-
nario would lead to duplicate accounting, where
the sum of all container usage would not match the
total number of pages in memory.

Our Solution. The first RSS container implementation
accounted for every shared page to each container. Each
container mm_struct was charged for every page it
touched. In the newer implementations, with their per-
container LRU list, each page can belong to only one

container at a time. The unfairness issue is dealt with
using the following approach: A page in the per con-
tainer LRU list is aged down to the inactive list if it is
not actively used by the container that brought it in. If
the page is in active use by other containers, over a pe-
riod of time this page is freed from the current container
and the other container that is actively using this page,
will map it in. The disadvantage of this approach is that
a page needs to be completely unmapped from all map-
pings, before it can move from one container to another.

The third major challenge was to decide on whether we
should account per thread memory usage or per process
memory usage. All the threads belonging to a process
share the same address space. It is quite possible that
two threads belonging to the same process might belong
to two different containers. This might be due to the
fact that they may belong to different container groups
for some other resource, like CPU. They might have dif-
ferent CPU usage limits. This leads to more accounting
problems as:

• By default all pages in a thread group are shared.
How do we account for pages in a thread group?

• We now need to account every page to the thread
that brought it in, thus requiring more hooks into
task_struct.

Our Solution. We decided to charge the thread group
leader for all memory usage by the thread group. We
group tasks virtually for memory control by thread
group. Threads can belong to different containers, but
their usage is charged to the container that contains the
thread group leader.

4.2 Implementation challenges

The first major implementation challenge was low cost
task migration. As discussed earlier, one of the disad-
vantages of the memory controller implementations was
the time required to migrate a task from one container to
another. It typically involved finding all pages in use by
the task and changing their container pointer to the new
container. This can be a very expensive operation as it
involves walking through the page tables of the page be-
ing migrated.

Our Solution. In the first implementation of the RSS
controller, struct page was not modified, hence

2007 Linux Symposium, Volume Two • 215

there were no references from the page descriptor to
the container. Task migration was handled by adding
a memory usage counter for each mm_struct. When
a process is moved from one container to another, the
accumulated memory usage was subtracted from the
source container and added to the destination container.
If the newly migrated task put the destination container
over its memory usage limit, page reclaim is initiated
on migration. With the new RSS controller implemen-
tation that has a per-container LRU list, a member of
struct page points to the meta page structure.
The meta page structure, in turn, points to the container.
On task migration, we do not carry forward any account-
ing/charges, we simply migrate the task and ensure that
all new memory used by the task is charged to the new
container. When the pages that were charged to the old
container are freed, we uncharge the old container.

The second major implementation challenge is the im-
plementation of the reclaim algorithm. The reclaim
algorithm in Linux has been enhanced, debugged and
maintained in the last few years. It works well with a va-
riety of workloads. Changing the reclaim algorithm for
containers is not a feasible solution. Any major changes
might end up impacting performance negatively or in-
troduce new regressions or corner cases.

Our Solution. We kept the reclaim algorithm for the
RSS controller very simple. Most of the existing code
for the reclaim algorithm has been reused. Other func-
tions that mimic global reclaim methodology for con-
tainers have been added. The core logic is implemented
in the following routines:
container_try_to_free_pages

container_shrink_active_list

container_shrink_inactive_list, and
container_isolate_lru_pages.

These are similar to their per-zone reclaim counterparts:
try_to_free_pages

shrink_active_list

shrink_inactive_list, and
isolate_lru_pages, respectively.

We’ve defined parameters for measuring reclaim perfor-
mance. These are described in Section 5.

4.3 Usability challenges

Some of the challenges faced by the end-users of con-
tainers and resource controllers are described below:

Container configuration:

Containers bring in more knobs for end-user and overall
system performance and ability of the system to meet its
expected behavior is entirely dependent on the correct
configuration of container. Misconfigured containers in
the system would degrade the system performance to an
unacceptable level. The primary challenge with mem-
ory controller is choice of memory size or limit for each
container. The amount of memory that is allocated for
each container should closely match the workload and
its resident memory requirements. This involves more
understanding of the workloads or user applications.

There are enough statistics like delay accounting and
container fail counts to measure the extent to which con-
tainer is unable to meet the workload’s memory require-
ment. Outside of containers, the kernel would try to do
the best possible job, given the fixed amount of system
RAM. If performance is unacceptable, the user would
have to cut down the applications (workload) or buy
more memory. However, with containers, we are dicing
the system into smaller pieces and it becomes the sys-
tem administrator’s job to match the right sized piece to
the right sized job. Any mismatch will produce less than
the desired result.

There is a need for good user space and system-
management tools to automatically analyze the system
behavior and suggest the right container configuration.

Impact on other resource dimensions:

There is an interesting side effect with container re-
source management. Resources like CPU time and
memory can be considered independent while config-
uring the containers. However, practical case studies in-
dicate that there is a relationship between different re-
sources, even though they are accounted for and con-
trolled independently. For example, reducing the work-
ing set of an application using a memory controller
would indirectly reduce its CPU utilization because the
application is now made to wait for page I/O to hap-
pen. Restricting working set or pagecache of a work-
load increases its I/O traffic and makes it progressively
I/O bound even though the application was originally
CPU bound when running unrestricted.

Similarly, reducing the CPU resource to a workload may
reduce its I/O requirement because the application is not
able to generate new data at the same rate. These kinds

216 • Containers: Challenges with the memory resource controller and its performance

of interactions suggest that configuring containers may
be more complex than we may have considered.

5 Reclaim parameters

The reclaim algorithm is a very critical implementation
challenge. To visualize and gain insight into the reclaim
algorithm of the container, a set of parameters have been
defined. These parameters are discussed in the follow-
ing sections.

5.1 Page reclaim rate

Page reclaim rate measures the rate at which pages are
being reclaimed from the container. The number of
pages reclaimed and the duration of the reclaim cycle
are taken into account.

Page reclaim rate =
nr_reclaimed
(tstart − tend)

Where tstart and tend are the time stamp at the beginning
and end of one reclaim cycle (container_shrink_
pages) and nr_reclaimed is the number of pages freed
during this time. From a memory controller point of
view, freeing a page is as good as unmapping them from
the process address space. The page can still be in mem-
ory and may additionally be dirty, pending a write-out or
swap operation.

A very low reclaim rate value indicates we are taking
more time to free pages:

• All pages are in active list and it takes more reclaim
cycles to move them to inactive list and then ulti-
mately reclaim them.

• We have been searching the wrong set of pages and
it took time to find the right page.

• Most candidate pages are dirty and we are blocked
on write-out or swap I/O operation.

5.2 Page container affinity

The page container affinity measures the affinity of
physical page to a particular container. When system is
running multiple containers, each of the containers is ex-
pected to free pages and consume it again. If containers

grab each others page, that means that too much concur-
rent reclaim and allocations are happening, whereby a
page just freed by container A is immediately allocated
by container B. This could also happen if Container B
was under the limit and A was over the limit and we
are purposely taking memory pages away from A and
giving it to B.

5.3 Page generation

Page generation is the number of times a page was freed
by a container. A very high value for page generation
indicates that:

• The container size is very low; this implies that we
are actively freeing our working set, which keeps
coming back in.

• The reclaim algorithm is freeing the wrong set of
pages from the container.

5.4 LRU quantum

The reclaimer mainly works on the active list and inac-
tive list of pages belonging to the container. New al-
locations or recently referenced allocations would go
to the head of the active list. The container_
shrink_active_list routine picks appropriate
pages from the active list and moves them to inactive
list. While container_shrink_inactive_list

calls shrink_page_list to free aged pages at the tail
of the inactive list.

Newest pages are supposed to be at the head of the ac-
tive list while the oldest page would be at the tail of the
inactive list. LRU quantum is the time difference be-
tween these two pages. This is an important parameter
because this gives an indication of how fast the active
and inactive lists are churned.

A greater value of LRU quantum indicates a stable con-
tainer, where the working set fits the available memory.
The reclaimer is run less often and pages take a while
before they falls off the end of inactive list.

A smaller value of LRU quantum indicates churning of
the list. Combined with page generation, this means
there is too little memory for the container. If page gen-
eration is low while LRU quantum is high then it could
indicate a problem in the LRU aging algorithm used.

2007 Linux Symposium, Volume Two • 217

5.5 Page scan density

Page scan density is the number of times a page was
scanned before it was actually freed. A lower the value
indicates that the reclaimer has been choosing the right
pages to free and it is quite smart. Higher values of
page scan density for a wider range of pages means the
reclaimer is going through pages and is unable to free
them, or perhaps the reclaimer is looking at the wrong
end of the LRU list.

6 Case studies

A few typical workload examples have been studied in
order to understand various parameters and its varia-
tions, depending upon workload and container config-
uration. The following section describes the parameters
traced during execution of simple workloads and test
programs.

6.1 Sequential memory access workload

Pagetest is a simple test program that allocates mem-
ory and touches each page sequentially for n number of
times. In the following experiment, the pagetest pro-
gram was run with an RSS limit of 400 MB, while the
program would sequentially touches 600 MB of mem-
ory five times.

Observations:

• Memory reclaim pattern shows that once the RSS
usage limit is hit, then all the pages are reclaimed
and the RSS usage drops to zero

• The usage immediately shoots to 400 MB because
the plots is approximately by time and we did not
have samples during the interval when the applica-
tion was under limit and slowly filled its RSS up to
the limit.

• Active list and inactive list size are mirror image of
each other since the sum of active and inactive size
is constant. The variations in list size corresponds
to the page reclaim process.

• Free memory size dropped initially and it remains
constant while cached memory size initially in-
creased and then remained constant. Free mem-
ory size is not affected by the reclaim process since
pages reclaimed by RSS controller was pushed to
swapcache and stays there until touched again or
there is enough memory pressure to swap-out to
disk. Since we had enough free memory in this ex-
periment, the swapcache grew and no swap to disk
happened.

• LRU quantum was less than one second in this
case. The time difference between pages at the
head of active list and tail of inactive list was high
just before the reclaim started and then quickly
dropped down as pages are reclaimed.

• Page scan density shows that we scanned pages
three to four times before reclaiming them. This
shows that the reclaim algorithm has maintained
the active and inactive list optimally and has been

218 • Containers: Challenges with the memory resource controller and its performance

choosing the right pages. We would not see a uni-
form distribution if the list aging algorithm was in-
correct.

• Page generation shows that most part of physical
RAM was reused 5 times during the test which cor-
responds to the loop iteration of 5.

6.2 kernbench test

Kernbench compiles a Linux kernel using multiple
threads that would consume both anonymous pages and
pagecache pages. In the following experiment, the kern-
bench test was run with 100 threads with RSS controller
and memory limit set to 300 MB. The pagecache con-
troller and pagecache limit was not enabled during this
experiment.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

m
ic

ro
 s

ec
s

kilo samples

Reclaim rate

Observations:

• kernbench has run for long time and the reclaim
pattern is compressed. There are many cycles of
reclaim. Hence it is difficult to deduce the slope
pattern in the memory size and LRU quantum plots

• Page reclaim rate plot has very wide distribution
of values and it has been difficult to make sense
of the plot. The time taken to reclaim a page in
each reclaim cycles is mostly under few milli sec-
onds. However, many times the number of pages
reclaimed during a reclaim cycles goes too low
making the time shoot up.

• Page scan density and page generation shows that
certain region of memory had more pages recycles
and their wide distribution corresponds to the com-
plexity of the workload and their memory access
pattern.

6.3 dbench test with pagecache limit

The dbench file system benchmark was used to stress
the pagecache controller. In the following experiment,
dbench was run for 60 seconds with 20 clients. When
dbench was run unrestricted, it used around 460 MB
pagecache. In this experiment pagecache controller
limit was set to 300 MB which would force reclaim of
pagecache pages during the run. RSS controller was not
enabled during this experiment.

2007 Linux Symposium, Volume Two • 219

Observations:

• Pagecache controller would not reclaim all page-
cache pages when the limit is hit. The reclaimer
would reclaim pages as much as possible to push
the container below limit. Hence the pagecache
usage and cached memory size is almost a straight
line.

• As expected the active and inactive list variations
are like mirror image of each other.

• Other parameter like LRU quantum, page genera-
tion and pagescan density was similar to pagetest
program and not as widely distributed as kern-
bench. Pagecache usage pattern of dbench is much
simpler compared to memory access pattern of
kernbench.

6.4 Web server workload

The daytrader benchmark application (with stock size
of 2000 and 800 concurrent users) was run with IBM R©

WebsphereTM community edition. Only the RSS con-
trol was enabled. The figures show reclaim parameter
variation for container sizes of 600 MB and 400 MB
respectively. The Web server workload involved an in-
built database server called derby, which stores all
daytrader data. The daytrader database results were ob-
tained using the following steps:

1. Reset the daytrader data.

2. The configuration parameters are selected (direct
transaction, no EJB, synchronous commit).

3. The database is populated with data.

4. We use a load balancer (web stress) tool to ac-
cess the /daytrader/scenario URL of the
Web server. We’ve used the Apache HTTP server
benchmarking tool ab [1] in our testing.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 20 40 60 80 100 120

m
eg

a
by

te
s

kilo samples

Free
Cached

Active
Inactive

RSS Usage

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700

m
eg

a
by

te
s

kilo samples

Free
Cached

Active
Inactive

RSS Usage

 0

 20000

 40000

 60000

 80000

 100000

 0 100 200 300 400 500 600 700

m
ic

ro
 s

ec
s

kilo samples

Reclaim rate

220 • Containers: Challenges with the memory resource controller and its performance

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 100 200 300 400 500 600 700

nr
re

cl
ai

m
ed

kilo samples

Pages reclaimed

Observations:

• Decreasing the size of the container reduced the
LRU quantum value.

• Reclaim performance was poor when the number
of pages reclaimed were low which resulted in high
reclaim time.

• Decreasing the size of the container increased the
page scan density. Each page was scanned more
often before it could be freed.

• The range of physical memory used was indepen-
dent of the size of the container used.

• The page generation went up as the size of the con-
tainer was decreased.

6.5 Database workload

The pgbench [5] benchmark was run with only RSS
control enabled. The figures show the reclaim parame-
ter variation for container sizes of 800 MB and 400 MB
respectively. The results were obtained using the fol-
lowing steps:

1. The database was initialized, with a scale factor of
100.

2. The benchmark pgbench was run with a scale
factor of 100, simulating ten clients, each doing
1000 transactions.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000 2500

m
eg

a
by

te
s

kilo samples

Free
Cached

Active
Inactive

RSS Usage

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 500 1000 1500 2000 2500 3000 3500

m
eg

a
by

te
s

kilo samples

Free
Cached

Active
Inactive

RSS Usage

2007 Linux Symposium, Volume Two • 221

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 500 1000 1500 2000 2500

nr
re

cl
ai

m
ed

kilo samples

Pages reclaimed

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 500 1000 1500 2000 2500 3000 3500

nr
re

cl
ai

m
ed

kilo samples

Pages reclaimed

Observations:

• Decreasing the size of the container increased the
rate of change of LRU quantum.

• High LRU quantum values resulted in more pages
being reclaimed.

• Decreasing the size of the container increased the
page scan density Each page was scanned more of-
ten before it could be freed.

• The range of physical memory used was indepen-
dent of the size of the container used.

• The range of physical memory used is bigger than
the maximum RSS of the database server.

• The page generation went up as the size of the con-
tainer was decreased.

• The range of physical memory used decreased as
the page generation increased.

7 Future work

We plan to extend the basic RSS controller and the page-
cache controller by adding an mlock(2) controller
and support for accounting kernel memory, such as slab
usage, page table usage, VMAs, and so on.

8 Conclusion

Memory control comes with the overhead of increased
CPU time and lower throughput. This overhead is ex-
pected as each time the container goes over its assigned
limit, page reclaim is initiated, which might further ini-
tiate I/O. A group of processes in the container are un-
likely to do useful work if they hit their limits frequently,
thus it is important for the page reclaim algorithm to en-
sure that when a container goes over its limit, it selects
the right set of pages to reclaim. In this paper, we’ve
looked at several parameters, that help us assess the per-
formance of the workload in the container. We’ve also
looked at the challenges in designing and implementing
a memory controller.

The performance of a workload under a container is de-
teriorated as expected. Performance data shows that the
impact of changing the container size might not be lin-
ear. This aspect requires further investigation along with
the study of performance of pages shared across con-
tainers.

9 Open issues

The memory controller currently supports only limits.
Guarantees support can be built on top of the current
framework using limits. One desirable feature for con-
trollers is excess resource distribution. Resource groups
use soft limits to redistribute unutilized resources. Each
container would get a percentage of unutilized resources
in proportion to its soft limit. We have to analyze the
impact of implementing such a feature.

222 • Containers: Challenges with the memory resource controller and its performance

10 Legal Statement

c©International Business Machines Corporation 2007. Per-
mission to redistribute in accordance with Linux Symposium
submission guidelines is granted; all other rights reserved.

This work represents the view of the authors and does not
necessarily represent the view of IBM.

IBM, IBM logo, ibm.com, and WebSphere, are trademarks of
International Business Machines Corporation in the United
States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in all
countries in which IBM operates.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES

THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MER-

CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied war-
ranties in certain transactions, therefore, this statement may
not apply to you. This information could include technical
inaccuracies or typographical errors. Changes are periodi-
cally made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or
the program(s) described in this publication at any time with-
out notice.

References

[1] Apache http benchmarking tool.
http://httpd.apache.org/docs/2.0/
programs/ab.html.

[2] Pavel Emelianov. Memory controller with
per-container page list.
http://lkml.org/lkml/2007/3/6/198.

[3] Pavel Emelianov and Balbir Singh. Memory
controller with per-container lru page list.
http://lkml.org/lkml/2007/3/9/361.

[4] Roy Huang. Pagecache control through page
allocation.
http://lkml.org/lkml/2007/1/15/26.

[5] Tatsuo Ishii. Pgbench postgresql benchmark.
http://archives.postgresql.org/
pgsql-hackers/1999-09/msg00910.
php.

[6] Kirill Korotaev. Beancounters v2. http:
//lkml.org/lkml/2006/8/23/117.

[7] Kirill Korotaev. Beancounters v6. http:
//lkml.org/lkml/2006/11/9/135.

[8] Christoph Lameter. Pagecache control through
page allocation. http:
//lkml.org/lkml/2007/1/23/263.

[9] Aubrey Li. Pagecache control through page
allocation. http:
//lkml.org/lkml/2007/1/17/202.

[10] Andrew Morton. Usermode pagecache control:
fadvise().
http://lkml.org/lkml/2007/3/3/110.

[11] Chandra Seetharaman. Resource groups. http:
//lkml.org/lkml/2006/4/27/378.

[12] Rohit Seth. Containers. http:
//lkml.org/lkml/2006/9/14/370.

[13] Balbir Singh. Memory controller rfc. http:
//lkml.org/lkml/2006/10/30/51.

[14] Balbir Singh. Memory controller v2.
http://lkml.org/lkml/2007/2/26/8.

[15] Vaidyanathan Srinivasan. Container pagecache
controller.
http://lkml.org/lkml/2007/3/06/51.

Kernel Support for Stackable File Systems

Josef Sipek, Yiannis Pericleous, and Erez Zadok
Stony Brook University

{jsipek,yiannos,ezk}@fsl.cs.sunysb.edu

Abstract

Although it is now possible to use stackable (layered)
file systems in Linux, there are several issues that should
be addressed to make stacking more reliable and effi-
cient. To support stacking properly, some changes to
the VFS and VM subsystems will be required. In this
paper, we discuss some of the issues and solutions pro-
posed at the Linux Storage and Filesystems workshop
in February 2007, our ongoing work on stacking sup-
port for Linux, and our progress on several particular
stackable file systems.

1 Introduction

A stackable (layered) file system is a file system that
does not store data itself. Instead, it uses another file
system for its storage. We call the stackable file system
the upper file system, and the file systems it stacks on
top of the lower file systems.

Although it is now possible to use stackable file sys-
tems, a number of issues should be addressed to improve
file system stacking reliability and efficiency. The Linux
kernel VFS was not designed with file system stacking
in mind, and therefore it comes as no surprise that sup-
porting stacking properly will require some changes to
the VFS and VM subsystems.

We use eCryptfs and Unionfs as the example stackable
file systems to cover both linear and fan-out stacking,
respectively.

eCryptfs is a cryptographic file system for Linux that
stacks on top of existing file systems. It provides func-
tionality similar to that of GnuPG, except that encrypt-
ing and decrypting the data is transparent to the applica-
tion [1, 3, 2].

Unionfs is a stackable file system that presents a series
of directories (branches) from different file systems as

one virtual directory, as specified by the user. This is
commonly referred to as namespace unification. Previ-
ous publications [4, 5, 6] provide detailed description
and some possible use cases.

Both eCryptfs and Unionfs are based on the FiST stack-
able file system templates, which provide support for
layering over a single directory [7]. As shown in Fig-
ures 1(a) and 1(b), the kernel’s VFS is responsible for
dispatching file-system–related system calls to the ap-
propriate file system. To the VFS, a stackable file sys-
tem appears as if it were a standard file system. How-
ever, instead of storing or retrieving data, a stackable file
system passes calls down to lower-level file systems. In
this scenario, NFS is used as a lower-level file system,
but any file system can be used to store the data as well
(e.g., Ext2, Ext3, Reiserfs, SQUASHFS, isofs, tmpfs,
etc.).

To the lower-level file systems, a stackable file system
appears as if it were the VFS. Stackable file system de-
velopment can be difficult because the file system must
adhere to the conventions of both the file systems for
processing VFS calls, and of the VFS for making VFS
calls.

Without kernel support, stackable file systems suffer
from inherent cache coherency problems. These issues
can be divided into two categories: (1) data coherency of
the page cache contents, and (2) meta-data coherency of
the dentry and inode caches. Changes to the VFS
and the stackable file systems are required to remedy
these problems.

Moreover, lockdep, the in-kernel lock validator, “ob-
serves” and maps all locking rules as they dynamically
occur, as triggered by the kernel’s natural use of locks
(spinlocks, rwlocks, mutexes, and rwsems). Whenever
the lock validator subsystem detects a new locking sce-
nario, it validates this new rule against the existing set of
rules. Unfortunately, stackable file systems need to lock

• 223 •

224 • Kernel Support for Stackable File Systems

NFS

eCryptfs
nfs_rename()

User Process
rename()

vfs_rename()

Virtual File System

K
er

ne
l

U
se

r

ecryptfs_rename()

(a) eCryptfs layers over a single directory.

Unionfs

... NFStmpfs

tmpfs_rename() nfs_rename()

RORW

User Process
rename()

vfs_rename()

unionfs_rename()

Virtual File System

K
er

ne
l

U
se

r

(b) Unionfs layers over multiple directories.

Figure 1: The user processes issue system calls, which the kernel’s virtual file system (VFS) directs to stackable file
systems. Stackable file systems in turn pass the calls down to lower-level file systems (e.g., tmpfs or NFS).

many of the VFS objects in a recursive manner, trigger-
ing lockdep warnings.

To maintain the upper to lower file system mapping of
kernel objects (such as dentrys, inodes, etc.), many
stackable file systems share much of the basic infras-
tructure. The 2.6.20 kernel introduced fs/stack.c,
a new file that contains several helper functions useful
to stackable file systems.

The rest of this paper is organized as follows. In Sec-
tion 2 we discuss the cache coherency issues. In Sec-
tion 3 we discuss the importance of locking order. In
Section 4 we discuss fsstack, the emerging Linux
kernel support for stacking. In Section 5, we discuss
a persistent store prototype we developed for Unionfs,
which can be of use to others. Finally, we conclude in
Section 6.

2 Cache Coherency

There are two different cache coherency issues that
stackable file systems must overcome: data and meta-
data.

2.1 Data Coherency

Typically, the upper file system maintains its own set of
pages used for the page cache. Under ideal conditions,

all the changes to the data go through the upper file sys-
tem. Therefore, either the upper file system’s write
inode operation or the writepage address space op-
eration will have a chance to transform the data as nec-
essary (e.g., eCryptfs needs to encrypt all writes) and
write it to the lower file system’s pages.

Data incoherency occurs when data is written to the
lower pages directly, without the stacked file system’s
knowledge. There are two possible solutions to this
problem:

Weak cache coherency – NFS also suffers from cache
coherency issues as the data on the server may be
changed by either another client or a local server
process. NFS uses a number of assertions that are
checked before cached data is used. If any of these
assertions fail, the cached data is invalidated. One
such assertion is a comparison of the ctime with
what is cached, and invalidating any potentially
out-of-date information.

Strong cache coherency – Another possible solution
to the cache coherency problem is to modify the
VFS and VM to effectively inform the stackable
file systems that the data has changed on the lower
file system. There are several different ways of ac-
complishing this, but all involve maintaining point-
ers from lower VFS objects to all upper ones. Re-
gardless of how this is implemented, the VFS/VM

2007 Linux Symposium, Volume Two • 225

must traverse a dependency graph of VFS objects,
invalidate all pages belonging to the corresponding
upper addresses spaces, and sync all of the pages
that are part of the lower address spaces.

Both approaches have benefits and drawbacks.

The major benefit of the weak consistency approach is
that the VFS does not have to be modified at all. The
major downside is that every stackable file system needs
to contain a number of these checks. Even if helper
functions are created, calls to these functions need to
be placed throughout the stackable file systems. This
leads to code duplication, which we try to address with
fsstack (see Section 4).

The most significant benefit of the stronger coherency
approach is the fact that it guarantees that the caches are
always coherent. At the same time, it requires that the
file system use the page cache properly, and that the file
system supplies a valid address space operations vector.
Some file systems do not meet these requirements. For
example, GPFS (created by IBM) only has readpage
and writepage, but does not have any other address
space operations. If the cache coherency is maintained
at the page-cache level, the semantics of using a lower
file system that does not define the needed operations
would be unclear.

2.2 Meta-Data Coherency

Similar to the page cache, many VFS objects, such as
the cached inode and dentry objects, may become
inconsistent. The meta-data contained in these caches
includes the {a,c,m}times, file size, etc.

Just as with data consistency, either a strong or a weak
cache coherency model may be used to prevent the up-
per and lower VFS objects from disagreeing on the file
system state. The benefits and drawbacks stated previ-
ously apply here as well (e.g., weak coherency requires
code duplication in most stackable file systems).

2.3 File Revalidation

The VFS currently allows for dentry revalidation.
NFS and other network file system are the few users of
this. A useful addition to this dentry revalidation op-
eration would be an equivalent file operation. Given

a struct file, this would allow the file system to
check for validity and repair any inconsistencies.

Unionfs works around the lack of file revalidation
by calling its own helper function in the appropriate
struct file operations. The reason Unionfs re-
quires this is due to the possibility of a branch man-
agement operation changing the number or order of
branches, and the lower struct file pointers need
to be updated.

3 Locking Order

Since stackable file systems must behave as both a file
system and the VFS, they need to lock many of the
VFS objects in a recursive manner, triggering warnings
about potential deadlocks. The in-kernel lock valida-
tor, lockdep, dynamically monitors the kernel’s usage
of locks (spinlocks, rwlocks, mutexes and rwsems) and
creates rules. Whenever the lock validator subsystem
detects a new locking scenario, it validates this new rule
against the existing set of rules.

The lockdep system is aware of locking dependency
chains, such as: parent→ child→ xattr→ quota. How-
ever, it does not understand that a stackable file system
may cause recursion in the VFS. For example, the VFS
may indirectly (but safely) call itself; vfs_readdir
can call a stackable file system on one directory, which
can in turn call vfs_readdir again on other lower
directories. Each time vfs_readdir is called, the
corresponding i_mutex is taken. This triggers a
lockdep warning, as it considers this situation a po-
tential place for a deadlock, and warns accordingly. In
other words, lockdep needs to be informed of the hi-
erarchies between stacked file systems. This, however,
would require adding a “stacked” argument to many
functions in the VFS, and passing that information to
lockdep.

4 fsstack

The code duplication found in many stackable file sys-
tems (such as eCryptfs, Unionfs, and our upcoming
cachefs) is another problem. The 2.6.20 kernel intro-
duced fs/stack.c, a new file, which contains sev-
eral useful helper functions. We are working on further
abstractions to the stacking API in Linux.

226 • Kernel Support for Stackable File Systems

Each stackable file system must maintain a set of point-
ers from the upper (stackable file system) objects to the
lower objects. For example, each Unionfs inodemain-
tains a series of lower inode pointers.

Currently, there are two ways to keep track of lower
objects. Linear (one lower pointer) and fan-out (sev-
eral lower pointers). Fan-out is the more interesting
case, as linear stacking is just a special case of fan-
out, with only one branch. Quite frequently, Unionfs
needs to traverse all the branches. This creates the
need for a for_each_branch macro (analogous to
for_each_node), which would decide when to ter-
minate.

A “reference” stackable file system, much like NullFS in
many BSDs, would allow stackable file system authors
to easily create new stackable file systems for Linux.
This reference file system should use as many of the
fsstack interfaces as possible. Currently, the clos-
est thing to this is Wrapfs [7], which can be generated
from FiST. Unfortunately, the generated code does not
follow proper coding style and general code cleanliness.

In Section 2.1, we considered a weaker form of the
cache coherency model. This model suffers from the
fact that a large number of the coherency checks (e.g.,
checking the {a,c,m}times) will need to be dupli-
cated in each stackable file system. Using fsstack
avoids this problem by making use of generic functions
to perform operations common to all stackable file sys-
tems. The code necessary to invalidate and revalidate
the upper file system objects could be shared by several
file systems. However, each file system must call these
helper functions. If a bug is discovered in one stackable
file system (e.g., a helper function should be called but is
not), the fix may have to be ported to other file systems.

Stackable file systems must behave as a file system from
the point of view of the VFS, yet they must behave as
the VFS from the point of view of the file systems it is
stacked on top of. Generally, the most complex code oc-
curs in the file system lookup code. One idea, proposed
at the 2007 Linux Storage and Filesystem workshop,
was to divide the current VFS lookup code into two por-
tions, and to allow the file system to override part of the
functionality via a new inode operation. The default
operation would have functionality identical to the cur-
rent lookup code. The flexibility allowed by this code
refactoring would simplify some of the code in more
complex file systems. For example, Ext2 could use the

generic lookup code provided by the VFS, while a file
system requiring more complex lookup code, such as
Unionfs, can provide its own lookup helper which per-
forms the necessary operations (e.g., to perform names-
pace unification).

5 On Disk Format (ODF)

We have developed an On Disk Format (ODF) to help
Unionfs 2.0 persistently store any meta-data it needs,
such as whiteouts. ODF is a small file system on a
partition or loop device. The ODF has helped us re-
solve most of the critical issues that Unionfs 1.x had
faced, such as namespace pollution, inode persistence,
readdir consistency and efficiency, and more. Since,
all the meta-data is kept in a separate file system instead
of in the branches themselves, Unionfs can be stacked
on top of itself and have overlapping branches.

Such a format can be used by any stackable file system
that needs to store meta-data persistently. For example,
a versioning file system may use it to store information
about the current version of a file, a caching file system
may use it to store information about the status of the
cached files. Unionfs benefits in many ways as well, for
example there is no namespace pollution, and Unionfs
can be stacked on itself.

By keeping all the meta-data together in a separate file
system, simply creating an in-kernel mount can be used
to easily hide it from the user, assuring that the user will
not temper with the meta-data. Also, it becomes easier
to backup the state of the file system by simply creat-
ing a backup of the ODF file system. If a file system
which statically allocates inode tables is used, the user
must estimate the number of inodes and data blocks
the ODF will need before hand. Using a file system
which allocates inode blocks dynamically (e.g., XFS)
fixes this problem. This is a shortcoming of the file sys-
tem, and not ODF itself.

The ODF can use another file system, such as Ext2 or
XFS, to store the meta-data. Another possibility we are
looking at for the future is to build an ODF file sys-
tem that will have complete control of how it stores this
meta-data, thus allowing us to make it more efficient,
flexible and reusable.

2007 Linux Symposium, Volume Two • 227

6 Conclusion

Stackable file systems can be used today on Linux.
There are some issues which should be addressed to in-
crease their reliability and efficiency. The major issues
include the data and meta-data cache coherency between
the upper and lower file systems, code duplication be-
tween stackable file systems, and the recursive nature of
stacking causing lockdep to warn about what it infers
are possible deadlocks. Addressing these issues will re-
quire changes to the VFS/VM.

7 Acknowledgements

The ideas presented in this paper were inspired and mo-
tivated by numerous discussions with the following peo-
ple: Russel Catalan, Dave Chinner, Bruce Fields, Steve
French, Christoph Hellwig, Eric Van Hensbergen, Val
Henson, Chuck Lever, Andrew Morton, Trond Mykle-
bust, Eric Sandeen, Theodore Ts’o, Al Viro, Peter Zijl-
stra, and many others.

This work was partially made possibly by NSF Trusted
Computing Award CCR-0310493.

References

[1] M. Halcrow. ecryptfs: a stacked cryptographic
filesystem. Linux Journal, (156), April 2007.

[2] M. A. Halcrow. Demands, Solutions, and
Improvements for Linux Filesystem Security. In
Proceedings of the 2004 Linux Symposium, pages
269–286, Ottawa, Canada, July 2004. Linux
Symposium.

[3] M. A. Halcrow. eCryptfs: An Enterprise-class
Encrypted Filesystem for Linux. In Proceedings of
the 2005 Linux Symposium, pages 201–218,
Ottawa, Canada, July 2005. Linux Symposium.

[4] D. Quigley, J. Sipek, C. P. Wright, and E. Zadok.
UnionFS: User- and Community-oriented
Development of a Unification Filesystem. In
Proceedings of the 2006 Linux Symposium,
volume 2, pages 349–362, Ottawa, Canada, July
2006.

[5] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P.
Quigley, E. Zadok, and M. N. Zubair. Versatility

and unix semantics in namespace unification. ACM
Transactions on Storage (TOS), 2(1):1–32,
February 2006.

[6] C. P. Wright and E. Zadok. Unionfs: Bringing File
Systems Together. Linux Journal, (128):24–29,
December 2004.

[7] E. Zadok and J. Nieh. FiST: A Language for
Stackable File Systems. In Proc. of the Annual
USENIX Technical Conference, pages 55–70, San
Diego, CA, June 2000. USENIX Association.

228 • Kernel Support for Stackable File Systems

Linux Rollout at Nortel

Ernest Szeideman
Nortel Networks Ltd.

eszeidem@nortel.com

Abstract

At Nortel, we have focused on delivering a “Stan-
dard Operating Environment” for our design systems
whereby we maintain a common set of tools and pro-
cesses in the rollout of Linux and other operating sys-
tem images. There are a number of opportunities, chal-
lenges, and pitfalls with bringing this about at an enter-
prise level.

1 Introduction

The Linux version of the Standard Operating Environ-
ment (SOE) was born a few years ago out of an initiative
to introduce a standard image configuration that would
address the needs of groups who were increasingly look-
ing to Linux for product development and testing. Since
that initial SOE release, Linux has become common for
desktop and server computing solutions across the cor-
poration. The goal of every Linux SOE release is to in-
troduce a certified and supported Enterprise Linux dis-
tribution into Nortel.

A survey of the literature reveals many articles detail-
ing the specific implementation details and related chal-
lenges faced in creating a standardized image. Fewer
articles speak of the high level design and engineer-
ing process driving the implementation, and fewer still
speak specifically about lessons learned which would
assist others in overcoming assumptions and processes
counterproductive to such an endeavor. Ubiquitous
throughout the IT industry is the concept of a Stan-
dard Operating Environment referring to a standard im-
age configuration. However, to be useful and accepted
in an enterprise, an SOE requires that the design must
solve real business problems for a company, problems
that vary over time, across different industries, business
environments, and even different business cultures. As
such, although the design and development of an SOE
may vary, the lessons learned by one company should
prove of benefit to others as well.

This paper will discuss what an SOE is, briefly describe
how we did the design and why, and most importantly
speak of the lessons we have learned and how they relate
to Linux and the open source model from an enterprise
perspective.

2 What is an SOE and Why

A Standard Operating Environment for Linux means
a standard image configuration for both desktops and
servers. The intention is that unless there is suffi-
cient justification, all supported Linux installs within the
company will use the SOE. This greatly simplifies man-
agement by ensuring consistency in the deployed image
regardless of location which provides high levels of re-
liability and supportability.

The SOE should support a limited set of hardware that
has been chosen for company-wide use for both servers
and workstations. Although Linux provides perhaps the
most hardware support of any operating system ever,
minimizing the set of hardware reduces the matrix of
testing required. This reduces hardware support costs,
and reduces hardware acquisition costs due to volume
purchasing.

The inclusion of a common set of Linux vendor pack-
ages on all machines, a common set of third-party pack-
ages, as well as a common set of company-developed
packages, ensures consistency in the deployed image re-
gardless of location. It also provides a vehicle whereby
software can be deployed company-wide to meet ever
changing business needs.

Security and network certification of the image implies
security and network configuration changes (such as en-
suring limited world access to init scripts or checks to
ensure that IP forwarding is turned off). This helps the
company in minimizing risk, taking advantage of secu-
rity and network expertise, providing confidence in the

• 229 •

230 • Linux Rollout at Nortel

SOE, as well as ensuring that the image plays nicely
within a company’s environment.

Providing a standardized installation process, including
appropriate storage locations for the image, reduces the
net cost per Linux install by reducing complexity, ensur-
ing standardization, and maximizing the ability to sup-
port the install via documentation and support help lines.

Lastly, having a formalized process to gather require-
ments, design, implement, test, and trial an SOE ensures
that tasks can be adequately resourced, timelines meet
business priorities, and consumers of the image can plan
for the deployment and use of the image to accomplish
business goals.

3 The Nortel SOE

At Nortel Networks Inc., there are over 291,000 nodes
on a network with over 350 locations throughout the
world containing 8,000 subnets housing a myriad of
servers and desktops running many different operating
systems and providing access to a number of different
network services (as of May, 2006). Any opportunities
at standardization will result in substantial savings to the
corporation.

Level Explanation
5 Patching Post-SOE maintenance
4 Group specific UML, Clearcase
3 Location specific Postinstall, cfengine
2 Global config Packages, security, network
1 Vendor OS Consistent set of packages
0 Hardware Hardware catalogue

The table above denotes the high-level design of the
Linux SOE.

Level 0, or the Hardware layer, represents all activities
in achieving a standard catalogue of hardware including
hardware comparisons, benchmarking, vendor negotia-
tion, and the like. Any SOE that is released will have,
as a minimum, the requirement to support the catalogue
hardware.

Level 1, or the Vendor operating system layer, is the in-
clusion of a consistent set of packages from the vendor
that is supposed to achieve three things:

1. It must include a reasonable set of packages re-
quired to support the environment.

2. It must include packages that are deemed as re-
quired by the internal customers.

3. It must attempt to be consistent with previous SOE
releases (i.e., it must attempt to match the function-
ality that was included in previous SOE releases at
this layer).

In this layer, one should capitalize on and make use
of the installation tools or mechanisms provided by the
vendor (e.g., Anaconda/kickstart used in RHEL (Red
Hat Enterprise Linux) or YaST (Yet Another Setup Tool)
used in SuSE (Software und System-Entwicklung)). As
Nortel is using RHEL in its SOE, this layer is accom-
plished with the use of kickstart where the required
package groupings and packages are specified in the
%packages section.

Level 2, or the Global configuration layer, is where other
packages not necessarily provided by the vendor are in-
stalled. This includes security, network, and company-
provided packages. A special design consideration for
this layer is to keep absolute separation between what-
ever installation mechanisms the vendor provides and
the one relied upon at this layer. At Nortel, the auto-
mated kickstart installation mechanism has a post install
section that is used to automatically kick off an install
script, which completes all aspects of this layer. The
benefits of this are threefold:

1. It allows easy determination of where problems
may exist in an install.

2. It insulates the SOE engineers from changes made
to the vendor’s installation tools or mechanisms.

3. It allows for changes to the underlying Linux dis-
tribution without major impact to this level or the
levels above it.

Level 3, or the location-specific layer, is designed to an-
swer the requirement of how to maintain standardization
across a multitude of locations where specific infras-
tructure services, service names, and configuration pro-
cesses differ. This is a key challenge for any large cor-
poration. The methodology employed requires that the
target node take advantage of locally dependent services

2007 Linux Symposium, Volume Two • 231

while maintaining the standardization of the SOE. For
Nortel, an init (initialization) script, which allows for
complete automation, handles this layer which includes
support for NIS, NTP, LDAP, and cfengine as well as
other services. Automation of all of these tasks is not
only desirable, but is also required if one wants to ensure
consistency in deployment. An additional requirement
of this layer is to be able to re-implement these services
in the event that a machine changes locations (for exam-
ple, if a node is redeployed to another site, the employee
changes locations, etc.). Making use of an init script
allows for this requirement. Configuration-specific pa-
rameters are sourced from location-named files contain-
ing all data relevant to this layer for each major location
at the company.

Level 4, or the group-specific layer, contains that which
does not need to be installed everywhere, yet which is
required by specific groups. Examples of this are the
use of virtualization such as UML (User-Mode Linux)
as well as Clearcase. Interestingly, group-specific soft-
ware, such as Clearcase, also has location-specific de-
pendencies (for example, which VOB (Versioned Object
Base) servers to connect to may be dependent on which
site you work at). The ownership of each of the capa-
bilities relied upon at this level is provided at Nortel by
specific individuals or groups who may have formal ven-
dor relationships as required. As these people or groups
have the requirement to have their code work with the
SOE, they form a special community who has access to
pre-releases of all SOEs. References are made to their
documentation from within that provided for each SOE.
In some cases, there is an automatic reinstallation of
these pieces in the event a reimage is performed.

Level 5, or the patching layer, concerns itself with post-
SOE maintenance. Once an image is deployed, it must
still be maintained and/or kept track of for licensing.
There must also be the facility to account for changing
business requirements, which may include the deploy-
ment of new or updated products (for example, DST
(Daylight Saving Time) fixes). At Nortel, we are cur-
rently using RHN (Red Hat Network) Satellite. We take
a snapshot of the base channel minus kernel (3rd party
applications are tied to kernel versions). The snapshot
of the channel is tested before the patch bundle is re-
leased to ensure that the patches don’t break anything
in the Nortel environment. This patch bundle is pro-
duced quarterly. This allows time to deploy the bundle
to all of the systems in an orderly and systematic way.

Within Nortel, rhnsd is not used. The patch window for
each system is scheduled ahead of time and controlled
by configuration files on the system. A generic schedul-
ing method is employed that can be used across all the
UNIX and UNIX-like operating systems. As everything
is packaged as a requirement of being included in the
SOE, this enables all aspects of the standardized image
across all levels to be patched.

4 Lessons Learned

A number of lessons have been learned since a fully sup-
ported Linux was introduced in Nortel a few years ago.
These are lessons taken from an enterprise perspective
and may not apply everywhere.

1. Remote cloning of machines in an enterprise is a
deployment concern that must be taken into ac-
count. Hewlett Packard’s iLO (Integrated Lights-
Out) or other similar remote console mechanisms
are highly desirable, particularly when the system
administrator or installer is located remotely from
the machine being imaged. One should not assume
that the installer is able to sit in front of the ma-
chine being deployed.

2. Windows interoperability solutions contained
within Linux have really enhanced its value in the
enterprise, particularly when compared with other
proprietary UNIX operating systems. However,
it has and continues to cause many challenges.
VMware with a Windows guest is currently
being used in Nortel with workstations to provide
standardized Windows images to those running
Linux. One may wish to refresh one’s Linux image
to the latest General Availability (GA) release,
but this does not assume that one wishes to have
their Windows environment upgraded as well.
To accommodate this requirement, a localdisk
partition is created on all default Linux installs
which holds, among other things, the VMware
image files. An upgrade clone is utilized which
wipes all partitions, except localdisk, and thereby
allows the user to get a new Linux build while
keeping any VMware images they may have had.

3. One cannot assume access to an enterprise’s DHCP
(Dynamic Host Configuration Protocol) infrastruc-
ture to make use of PXE (Preboot eXecution En-

232 • Linux Rollout at Nortel

vironment) installs or Red Hat Network provision-
ing. In a large corporation, different groups are re-
sponsible for different aspects of the infrastructure.
As such, it takes time to get consensus on how best
to implement change. One such example is the use
of PXE as it relates to the DHCP infrastructure. If
this is the case, as it is at Nortel, one may need
to find alternative means to accomplish remote up-
grades of machines. A script, which integrates with
cron (a time-based scheduling service in Linux) is
currently being used to provide this functionality.

4. For security reasons, patching of one’s infrastruc-
ture is necessary using internal repositories. As
well, no information about the nodes being patched
should leave the company network (cannot use
RHN or RHN proxy; must use RHN Satellite).

5. An additional comment with regards to patching
involves the potential for divergence when patch-
ing versus re-rolling an SOE using a newer update.
This is particularly true if one is limited in updat-
ing kernels due to third-party reliance on the kernel
(e.g. Clearcase or UML). For example, if one starts
with a RHEL 4.1 machine and patches it with a
patch bundle to 4.3, one may not end up with the
same system as if one started with RHEL 4.2 be-
cause not all patches are included in the patch bun-
dle. In Nortel’s case, the kernel is not included in
the patch bundle meaning that although both RHEL
4.1 and 4.2 machines were patched to a RHEL 4.3
level, they are not identical.

6. Users in a corporation typically do not have root
access. For example, a user without root access
cannot add a printer so printer configuration must
be managed on a global basis. When users do not
have root access, there are significant management
and support implications. On the other hand, if the
users do have root access, there are a whole differ-
ent set of support and management implications.

7. Being able to identify an SOE machine remotely is
not only desirable, but is also required from a sys-
tems management, licensing, lifecycle, and main-
tenance perspective.

8. Packaging all components of an SOE including in-
house and third-party software in the same format
as your Linux vendor’s packages is important. Be-
ing able to easily upgrade if required (such as in the

event of a security vulnerability), easily determin-
ing versions of software, being able to validate the
authenticity of software (via digital signing), and
being able to understand where files on a system
came from are some of the benefits of this.

9. Communication to your deployment people as well
as to those making use of the SOE is paramount to
achieving success. Whether by use of WebPages,
blogs, user groups, or other forms of documenta-
tion, communication gets more challenging as the
size of your company grows.

10. ISV (Independent software vendor) support will
probably be the single most important factor in de-
termining which distribution your SOE is based on.

11. No matter how much you simplify an install or in-
stall process, deployment using installers without
Linux experience will be a problem.

12. It is difficult to get patches from your Linux ven-
dor fast enough (e.g., when you find a problem
while producing the SOE or a patch bundle, both
of which have deadlines to meet).

13. If a vendor says hardware is certified, what does
that mean? Read the fine-print!

14. Despite every effort to the contrary, using third-
party proprietary applications/code is a require-
ment that should be assumed in an enterprise (e.g.
Clearcase).

15. A variety of products to choose from (KDE vs.
Gnome, for example) makes standardization diffi-
cult when one must appease many palates.

16. Keep Global configuration (Level 2) and higher
separate from the vendor install at all costs or you
will be sorry!

17. Digitally sign all of your in-house packages. Be-
ing able to ascertain the authenticity of the pack-
ages contained within the SOE is important from a
corporate and a security standpoint.

18. Have backup copies of all GA’d images. This will
save future time and aggravation. At some point
somebody will need to install an old image, either
for testing or other purposes.

19. Change control is a critical component of SOE de-
velopment (e.g. CVS, Clearcase, etc.).

2007 Linux Symposium, Volume Two • 233

20. Testing is important. Sadly, it will be the first thing
to go when schedules are tight; having a testing ma-
trix and test plan is paramount. A corollary to this:
If someone tells you they have tested their product,
but does not have a test plan, they are not telling
the truth.

21. Fixes upstream are useless unless they are back-
ported to the current SOE environment(s). (The Fix
is Upstream BOF with Matthew Tippett)

22. One cannot move from proprietary UNIX’s
(Solaris/HP-UX) to Linux in one step, although
new projects can start out quite well.

23. There have been and continue to be issues with
Linux interoperating in a heterogeneous enterprise
environment (e.g. assuming print servers are Linux
as opposed to the non-CUPS-aware HP-UX). Do
not assume your Linux vendor does any extensive
testing using other operating systems your com-
pany uses.

24. Each package which you include in an SOE that
does not come from the vendor needs to have some-
one who is responsible for it (a provider).

25. There is a large amount of proprietary thinking
on the part of management that needs to be mod-
ified when using Linux and/or other open source
software. An example is assuming that the Linux
vendor that you are paying for support can fork
some code to meet the corporation’s requirements
instead of the vendor waiting for the fix to be avail-
able from upstream. The Linux vendor’s preferred
method is to wait for the fixes to come from up-
stream (e.g. they would rather wait for the Evolu-
tion folks to fix the code than having to fix it them-
selves and then maintain the fix in subsequent up-
stream versions if the Evolution folks don’t take the
fix).

26. When creating an SOE, use of a vendor-supported
Linux offering is recommended over an unsup-
ported version. An example is the use of RHEL
vs. Fedora. A supported Linux offering will have
more and better ISV support. Updates tend to fo-
cus on customer problems and compatibility tends
to be of higher importance than new features. And
lastly, in an enterprise environment where down-
time may mean the loss of substantial amounts of

money, the ability to get support from a company
is important from a business perspective.

5 Conclusion

The engineering and design of an SOE for an enterprise
requires participation from throughout the corporation.
For any large corporation, developing an SOE is worth
the cost due to the many benefits it offers. The design is
critical to an SOE’s success and must reflect and solve
real world business problems.

It is hoped that the many lessons learned in our SOE
voyage at Nortel will help guide others pursuing the
many benefits a Linux SOE has to offer.

6 References

[1] Office of Government Commerce, Information
Technology Infrastructure Library. Retrieved April,
2007 from http://www.itil.co.uk/

[2] Aupek, Andrew, Architectural Design of Enterprise
Wide Standard Operating Environments. Retrieved
April, 2007 from
http://www.lib.mq.edu.au/about/

conferences/Architectural%20Design%20of%

20Enterprise%20wide%20Standard%

20Operating%20Environments.pdf

[3] Carnegie Mellon Software Engineering Institute,
Capability Maturity Model Integration (CMMI).
Retrieved April, 2007 from
http://www.sei.cmu.edu/cmm/

[4] Edith Cowan University, IT Services Standard
Operating Environment. Retrieved April, 2007 from
http://soe.ecu.edu.au/about/

[5] Griffith University, Standard Operating
Environment for Staff Desktop Computers. Retrieved
April, 2007 from
http://www62.gu.edu.au/policylibrary.

nsf/0/1e7a27d0e03ceed44a256ee00063ed6b?

opendocument

[6] Queensland University of Technology, Standard
Operating Environment. Retrieved April, 2007 from
http://www.its.qut.edu.au/soe/

234 • Linux Rollout at Nortel

Request-based Device-mapper multipath and Dynamic load balancing

Kiyoshi Ueda
NEC Corporation

k-ueda@ct.jp.nec.com

Jun’ichi Nomura
NEC Corporation

j-nomura@ce.jp.nec.com

Mike Christie
Red Hat, Inc.

mchristi@redhat.com

Abstract

Multipath I/O is the ability to provide increased perfor-
mance and fault tolerant access to a device by address-
ing it through more than one path. For storage devices,
Linux has seen several solutions that were of two types:
high-level approaches that live above the I/O scheduler
(BIO mappers), and low-level subsystem specific ap-
proaches. Each type of implementation has its advan-
tage because of the position in the storage stack in which
it has been implemented. The authors focus on a solu-
tion that attempts to reap the benefits of each type of
solution by moving the kernel’s current multipath layer,
dm-multipath, below the I/O scheduler and above the
hardware-specific subsystem. This paper describes the
block, Device-mapper, and SCSI layer changes for the
solution and its effect on performance.

1 Introduction

Multipath I/O provides the capability to utilize multiple
paths between the host and the storage device. Multiple
paths can result from host or storage controllers having
more than one port, redundancy in the fabric, or having
multiple controllers or buses.

As can be seen in Figure 1(a), multipath architectures
like MD Multipath or the Device-mapper (DM) layer’s
multipath target have taken advantage of multiple paths
at a high level by creating a virtual device that is com-
prised of block devices created by the hardware subsys-
tem.

In this approach, the hardware subsystem is unaware of
multipath, and the lower-level block devices represent
paths to the storage device which the higher-level soft-
ware routes I/Os in units of BIOs over [1]. This design
has the benefit that it can support any block device, and
is easy to implement because it uses the same infrastruc-
ture that software RAID uses. It has the drawback that it

does not have access to detailed error information, and it
resides above the I/O scheduler and I/O merging, which
makes it difficult to make load-balancing decisions.

Another approach to multipath design modifies the
hardware subsystem or low-level driver (LLD) to be
multipath-aware. For the Linux SCSI stack (Fig-
ure 1(b)), Host Bus Adapter (HBA) manufacturers, such
as Qlogic, have provided LLDs for their Fibre Channel
and iSCSI cards which hide the multipath details from
the OS [2]. These drivers coalesce paths into a single
device which is exposed to the kernel, and route SCSI
commands or driver-specific structures. There have also
been multipath implementations in the SCSI layer that
are able to route SCSI commands over different types
of HBAs. These can be implemented above the LLD
in the SCSI mid-layer or as a specialized SCSI upper-
layer driver [3]. These designs benefit from being at a
lower level, because they are able to quickly distinguish
transport problems from device errors, can support any
SCSI device including tape, and are able to make more
intelligent load-balancing decisions.

This paper describes a multipath technique, Request-
based DM, which can be seen in Figure 1(c), that is lo-
cated under the I/O scheduler and above the hardware
subsystem, and routes struct requests over the de-
vices created by the hardware specific subsystem. (To
distinguish from the general meaning of request, request
is used in this paper to mention the struct request.)
As a result of working with requests instead of BIOs or
SCSI commands, this new technique is able to bridge
the multipath layer with the lower levels because it has
access to the lower-level error information, and is able
to leverage the existing block-layer statistics and queue
management infrastructure to provide improved load
balancing.

In Section 2, we will give an overview of the Linux
block and DM layer. Then Section 3 describes in more
detail the differences between routing I/O at the BIO-
level versus the request-level, and what modifications to

• 235 •

236 • Request-based Device-mapper multipath and Dynamic load balancing

(c) Request-based DM multipath

Request-based DM

I/O scheduler

File system Direct I/O

Hardware subsystem (SCSI, IDE)

(b) SCSI multipath

SCSI upper level driver
disk (sd), tape (st), and CD (sr).

SCSI mid layer

Low level driver
(Qlogic qla2xxx, Emulex lpfc)

I/O scheduler

File system Direct I/O

(a) BIO mapper multipath

BIO mapper (dm-multipath)

I/O scheduler

File system Direct I/O

Hardware subsystem (SCSI, IDE)

Figure 1: Multipath implementations

the block, SCSI, and DM layers are necessary to support
Request-based multipath. Finally, we will detail perfor-
mance results and load-balancing changes in Section 4
and Section 5.

2 Overview of Linux Block I/O and DM

In this section, we look into the building blocks of mul-
tipath I/O, specifically, how the applications’ read/write
operations are translated into low-level I/O requests.

2.1 Block I/O

When a process, or kernel itself, reads or writes to a
block device, the I/O operation is initially packed into
a simple container called a BIO. (See Figure 2.) The
BIO uses a vector representation pointing to an array of
tuples of <page, offset, len> to describe the I/O
buffer, and has various other fields describing I/O pa-
rameters and state that needs to be maintained for per-
forming the I/O [4].

Upon receiving the BIO, the block layer attempts to
merge it with other BIOs already packed into requests
and inserted in the request queue. This allows the block
layer to create larger requests and to collect enough of
them in the queue to be able to take advantage of the
sorting/merging logic in the elevator [4].

page

BIO

block layer

file system, etc.

low-level device driver

read, write

submit_bio

unplug

Request

Figure 2: Relationship between page, BIO, and request

This approach to collecting multiple larger requests be-
fore dequeueing is called plugging. If the buffers of
two BIOs are contiguous on disk, and the size of the
BIO combined with the request it is to be merged with
is within the LLD and hardware’s I/O size limitations,
then the BIO is merged with an existing request; other-
wise the BIO is packed into a new request and inserted
into the block device’s request queue. Requests will
continue to be merged with incoming BIOs and adja-
cent requests until the queue is unplugged. An unplug
of the queue is triggered by various events such as the

2007 Linux Symposium, Volume Two • 237

plug timer firing, the number of requests exceeding a
given threshold, and I/O completion.

When the queue is unplugged the requests are passed
to the low-level driver’s request_fn() to be exe-
cuted. And when the I/O completes, subsystems like
the SCSI and IDE layer will call blk_complete_

request() to schedule further processing of the re-
quest from the block layer softirq handler. From
that context, the subsystem will complete process-
ing of the request by asking the block layer to re-
queue it, or by calling end_request(), or end_

that_request_first()/chunk() and end_that_

request_last() to pass ownership of the request
back to the block layer. To notify upper layers of the
completion of the I/O, the block layer will then call
each BIO’s bi_end_io() function and the request’s
end_io() function.

During this process of I/O being merged, queued and
executed, the block layer and hardware specific subsys-
tem collect a wide range of I/O statistics such as: the
number of sectors read/written, the number of merges
occurred and accumulated length of time requests took
to complete.

2.2 DM

DM is a virtual block device driver that provides a
highly modular kernel framework for stacking block de-
vice filter drivers [1]. The filter drivers are called target
drivers in DM terminology, and can map a BIO to mul-
tiple block devices, or can modify a BIO’s data or simu-
late various device conditions and setups. DM performs
this BIO manipulation by performing the following op-
erations:

• Cloning

– When a BIO is sent to the DM device, a
near identical copy of that BIO is created by
DM’s make_request() function. The ma-
jor difference between the two BIOs is that
the clone will have a completion handler that
points to DM’s clone_endio() function.

• Mapping

– The cloned BIO is passed to the target driver,
where the clone’s fields are modified. By tar-
gets that map or route I/O, the bi_bdev field

is set to the device it wants to send the BIO
to.

– The cloned BIO is submitted to the underly-
ing device.

• Completion

– DM’s completion handler calls the target-
specific completion handler where the BIO
can be remapped or completed.

– Original BIO is completed when all cloned
BIOs are completed.

2.3 dm-multipath

dm-multipath is the DM target driver that imple-
ments multipath I/O functionality for block devices. Its
map function determines which device to route the BIO
to using a path selection module and by ordering paths
in priority groups (Figure 3). Currently, there is only
the round-robin path selector, which sends N number of
BIOs to a path before selecting a new path.

Original BIOs

sector=100
length=100

dm-multipath

clone

map

DM device

sector=0
length=100

sector=0
length=100

sector=100
length=100 Cloned BIOs

Block device A

I/O scheduler

low-level driver

Block device B

I/O scheduler

low-level driver

Path selector

Figure 3: current (BIO-based) dm-multipath

238 • Request-based Device-mapper multipath and Dynamic load balancing

3 Request-based DM

3.1 Limitations of BIO-based dm-multipath

There are three primary problems which Request-based
multipath attempts to overcome:

1. Path selection does not consider I/O scheduler’s be-
havior.

2. Block layer statistics are difficult for DM to use.

3. Error severity information is not available to DM.

dm-multipath’s path selection modules must balance
trying to plug the underlying request queue and creat-
ing large requests against making sure each path is fully
utilized. Setting the number of BIOs that cause a path
switch to a high value will assure that most BIOs are
merged. However, it can cause other paths to be un-
derused because it concentrates I/O on a single path for
too long. Setting the BIO path-switching threshold too
low would cause small requests to be sent down each
path and would negate any benefits that plugging the
queue would bring. At its current location in the storage
stack, the path selector module must guess what will be
merged by duplicating the block layer tests or duplicate
the block layer statistics so it can attempt to make rea-
sonable decisions based on past I/O trends.

Along with enhancing performance, multipath’s other
duty is better handling of disruptions. The LLD and
the hardware subsystem have a detailed view of most
problems. They can decode SCSI sense keys that may
indicate a storage controller on the target is being main-
tained or is in trouble, and have access to lower level er-
ror information such as whether a connection has failed.
Unfortunately, the only error information DM receives
is the error code value -EIO.

Given that these issues are caused by the location of the
dm-multipath map and completion functions, Request-
based DM adds new DM target drivers call outs, and
modifies DM and the block layer to support mapping
at the request-level. Section 3.2 will explain the design
and implementation of Request-based DM. Section 3.3
discusses the issues that are still being worked on and
problems that were discovered with the Request-based
approach. Finally, Section 3.4 describes user interface
changes to DM.

3.2 Design and implementation

Request-based DM is based on ideas from the block
layer multipath [5] patches, which were an experiment
that moved the multipath layer down to the request-
level. The goal of Request-based DM is to integrate into
the DM framework so that it is able to utilize existing ap-
plications such as multipath-tools and dmsetup.

As explained in Section 2.2, DM’s key I/O operations
are cloning, mapping, and completion of BIOs. To al-
low these operations to be executed on requests, DM
was modified to take advantage of following block layer
interfaces:

BIO Submission make_request_fn
Completion bio->bi_end_io

Request Submission request_fn
Completion request->end_io

queue

queue

DM device

Underlying device

Hardware

BIO-based DM

queue

BIO

Request

Hardware specific (SCSI command, etc.)

Request-based DM

clone and map

generic_make_request() request_fn()

clone and map

make_request_fn()

make_request_fn()

request_fn() request_fn()

generic_make_request() generic_make_request()

make_request_fn()

I/O scheduler

I/O scheduler

Figure 4: Difference of I/O submission flow

As can be seen in Figure 4, with BIO-based DM, BIOs
submitted by upper layers through generic_make_

request() are sent to DM’s make_request_fn()

where they are cloned, mapped, and then sent to a de-
vice below DM. This device could be another virtual

2007 Linux Symposium, Volume Two • 239

device, or it could be the real device queue—in which
case the BIO would be merged with a request or packed
in a new one and queued, and later executed when the
queue is unplugged.

Conversely, with Request-based DM, DM no longer
uses a specialized make_request_fn() and instead
uses the default make_request_fn(), __make_

request(). To perform cloning and mapping, DM
now implements its request_fn() callback, which is
called when the queue is unplugged. From this call-
back, the original request is cloned. The target driver
is asked to map the clone. And then the clone is inserted
directly into the underlying device’s request queue us-
ing __elv_add_request().

To handle I/O completion, the Request-based DM
patches allow the request’s end_io() callback to be
used to notify upper layers when an I/O is finished.
More details on this implementation in Section 3.3. DM
only needs to hook into the cloned request’s completion
handler—similar to what is done for BIO completions.
(Figure 5).

default completion handler

DM completion handler

Original

Cloned

Hardware

Success Failure

Retry

Result visible to upper layer

= BIO or Request

Figure 5: Completion handling of cloned I/O

3.3 Request-based DM road bumps

A lot of the Request-based details have been glossed
over, so they could be discussed in this section. While
working with requests simplifies the mapping operation,
it complicates the cloning path, and requires a lot of new
infrastructure for the completion path.

3.3.1 Request cloning

A clone of the original request is needed, because a
layer below DM may modify request fields, and the use
of a clone simplifies the handling of partial completions.
To allocate the clone, it would be best to use the exist-
ing request mempools [6], so DM initially attempted to
use get_request(). Unfortunately, the block layer
and some I/O schedulers assume that get_request()
is called in the process context in which the BIO was
submitted, but a request queue’s request_fn() can be
called from the completion callback which can be run in
a softirq context.

Removing the need for cloning or modifying get_

request() to be usable from any context would be
the preferable solutions, but both required too many
changes to the block layer for the initial release. Instead,
DM currently uses a private mempool for the request
clones.

3.3.2 Completion handling

dm-multipath’s completion handler has to do the fol-
lowing:

• Check completion status.

• Setup a retry if an error has occurred.

• Release its private data if a retry is not needed.

• Return a result to the upper layer.

When segments of a BIO are completed, the upper lay-
ers do not begin processing the completion until the en-
tire operation has finished. This allows BIO mappers
to hook at a single point—the BIO’s bi_end_io()

callback. Before sending a BIO to generic_make_

request(), DM will copy the mutable fields like the
size, starting sector, and segment/vector index. If an er-
ror occurs, DM can wait until the entire I/O has com-
pleted, restore the fields it copied, and then retry the BIO
from the beginning.

Requests, on the other hand, are completed in two
parts: __end_that_request_first(), which com-
pletes BIOs in the request (sometimes partially), and
end_that_request_last(), which handles statis-
tics accounting, releases the request, and calls its end_

240 • Request-based Device-mapper multipath and Dynamic load balancing

4 8 16 32 64 128 256 512

0

25

50

75

100

125

150

175

200

0

5000

10000

15000

20000

25000

30000

35000

read

Throughput Number of
dispatched
requests

max_sectors[KB]

T
h
ro

u
g

h
p
u
t[

M
B

/s
]

4 8 16 32 64 128 256 512

0

25

50

75

100

125

150

175

200

0

5000

10000

15000

20000

25000

30000

35000

write

Throughput Number of
dispatched
requests

max_sectors[KB]

T
h
ro

u
g

h
p
u
t[

M
B

/s
]

Command: dd if=/dev/<dev|zero> of=/dev/<null|dev> bs=16777216 count=8

Figure 6: Performance effects of I/O merging

io() function. This separation creates a problem for er-
ror processing, because Request-based DM does not do
a deep copy of the request’s BIOs. As a result, if there
is an error, __end_that_request_first() will end
up calling the BIO’s bi_end_io() callback and return-
ing the BIO to the upper layer, before DM has a chance
to retry it.

A simple solution might be to add a new hook in __

end_that_request_first(), where the new hook
is called before a BIO is completed. DM would then be
responsible for completing the BIO when it was ready.
However, it just imposes additional complexity on DM
because DM needs to split its completion handler into
error checking and retrying as the latter still has to wait
for end_that_request_last(). It is nothing more
than a workaround for the lack of request stacking.

True request stacking

To solve the problem, a redesign of the block layer re-
quest completion interfaces, so that they function like
BIO stacking, is necessary. To accomplish this, Re-
quest-based DM implements the following:

• Provide a generic completion handler for requests
which are not using their end_io() in the cur-
rent code. __make_request() will set the de-
fault handler.

• Modify existing end_io() users to handle the new
behavior.

• Provide a new helper function for device drivers to
complete a request. The function eventually calls
the request’s end_io() function. Device drivers
have to be modified to call the new helper function
for request completion. (end_that_request_
*() are no longer called from device drivers.) If
the helper function returns 0, device drivers can as-
sume the request is completed. If the helper func-
tion returns 1, device drivers can assume the re-
quest is not completed and can take actions in re-
sponse.

3.4 User-space DM interface

dm-multipath has a wide range of tools like
multipath-tools and installers for major distribu-
tions. To minimize headaches caused by changing the
multipath infrastructure, not only did Request-based
multipath hook into DM, but it also reused the BIO-
based dm-multipath target. As a result, the only
change to the user-space DM interface is a new flag for
the DM device creation ioctl. The existence of the
flag is checked at the ioctl handler and, if it is turned on,
the device will be set up for Request-based DM.

2007 Linux Symposium, Volume Two • 241

1 2 5 10 50 100 1000

0

5000

10000

15000

20000

25000

30000

35000

read

BIO-based DM Request-based
DM

rr_min_io

T
o
ta

l
n
u
m

b
e
r

o
f

d
is

p
a
tc

h
e
d

 r
e
q

u
e
s
ts

(S
m

a
ll
e
r

is
 b

e
tt

e
r)

1 2 5 10 50 100 1000

0

5000

10000

15000

20000

25000

30000

35000

write

BIO-based DM Request-based
DM

rr_min_io

T
o
ta

l
n
u
m

b
e
r

o
f

d
is

p
a
tc

h
e
d

 r
e
q

u
e
s
ts

(S
m

a
ll
e
r

is
 b

e
tt

e
r)

Command: dd if=/dev/<dev|zero> of=/dev/<null|dev> bs=16777216 count=8

Figure 7: Effects of frequent path changes on I/O merging

4 Performance testing

One of the main purposes of Request-based
dm-multipath is to reduce the total number of
requests dispatched to underlying devices even when
path change occurs frequently.

In this section, performance effects of I/O merging
and how Request-based dm-multipath reduces the
number of requests under frequent path change are
shown. The test environment used for the measurement
is shown in Table 1.

Host CPU Intel Xeon 1.60[GHz]
Memory 2[GB]
FC HBA Emulex LPe1150-F4 * 2

Storage Port 4[Gbps] * 2
Cache 4[GB]

Switch Port 2[Gbps]

Table 1: Test environment

4.1 Effects of I/O merging

Sequential I/O results are shown in Figure 6. The
throughput for a fixed amount of reads and writes on a
local block device was measured using the dd command
while changing the queue’s max_sectors parameter.

In the test setup, the Emulex driver’s max segment size
and max segment count are set high enough, so that

max_sectors controls the request size. It is expected
that when the value of max_sectors becomes smaller,
the number of dispatched requests becomes larger. The
results in Figure 6 appear to confirm this, and indicate
that I/O merging, or at least larger I/Os, is important to
achieve higher throughput.

4.2 Effects of Request-based dm-multipath on
I/O merging

While the results shown in the previous section are ob-
tained by artificially reducing the max_sectors pa-
rameter, such situations can happen when frequent path
changes occur in BIO-based dm-multipath.

Testing results for the same sequential I/O pattern
on a dm-multipath device when changing round-
robin path selector’s rr_min_io parameter which cor-
responds to the frequency of path change is shown in
Figure 7.

This data shows that, when path change occurs fre-
quently, the total number of requests increases with
BIO-based dm-multipath. While under the same con-
dition, the number of requests is low and stable with
Request-based dm-multipath.

4.3 Throughput of Request-based dm-multipath

At this point in time, Request-based dm-multipath

still cannot supersede BIO-based dm-multipath in se-
quential read performance with a simple round-robin

242 • Request-based Device-mapper multipath and Dynamic load balancing

HBA0

sda sdb

HBA1

sddsdc

Port0

LUN0

Port1

LUN1

Path1Path0

multipath device0

Path2 Path3

multipath device1

Host0

Cable1Cable0

Figure 8: Examples of targets sharing cables

path selector. The performance problem is currently un-
der investigation.

5 Dynamic load balancing

The benefit of moving multipath layer below the I/O
scheduler is not only for the efficiency of I/O merging.

This section reviews the other important feature of Re-
quest-based dm-multipath, dynamic load balancing.

5.1 Needs of dynamic load balancing

There are two load balancing types in general, static and
dynamic. dm-multipath currently supports a static
balancer with weighted round-robin. It may be suffi-
cient in an ideal environment where all paths and storage
controllers are symmetric and private to the host system.
But in an environment where the load of each path is
not same or dynamically changes, round-robin does not
work well.

For example, suppose there is a multipath configura-
tion described in Figure 8 and Path0(sda) is be-
ing used heavily for multipath device0. It means
Cable0 is heavily loaded. In this situation, multipath
device1 should use Path3(sdd) to avoid heavily
loaded Cable0. However, the round-robin path selector

does not care about that, and will select Path2(sdb)
at next path selection for multipath device1. It will
cause congestion on Cable0.

To get better performance even in such environments, a
dynamic load balancer is needed.

5.2 Load parameters

It is important to define good metrics to model the load
of a path. Below is an example of parameters which
determine the load of a path.

• Number of in-flight I/Os;

• Block size of in-flight I/Os;

• Recent throughput;

• Recent latency; and

• Hardware specific parameters.

Using information such as the number of in-flight I/Os
on a path would be the simplest way to gauge traffic.
For BIO-based DM, it was described in Section 2.2 the
unit of I/O is the BIO, but BIO counters do not take into
account merges. Request-based DM, on the other hand,
is better suited for this type of measurement. Its use of
requests allows it to measure traffic in the same units of
I/O that are used by lower layers, so it is possible for
Request-based DM to take into account a lower layer’s
limitations like HBA, device, or transport queue depths.

Throughput or latency is another valuable metric. Many
lower layer limits are not dynamic, and even if they
were, could not completely account for every bottleneck
in the topology. If we used throughput as the load of a
path, path selection could be done with the following
steps.

1. Track block size of in-flight I/Os on each path
. . . in-flight size.

2. At path selection time, calculate recent throughput
of each path by using generic diskstats (sectors
and io_ticks) . . . recent throughput.

3. For each path, calculate the time which all in-
flight I/Os will finish by using (in-flight size)/
(recent throughput).

2007 Linux Symposium, Volume Two • 243

4. Select the path of which Step 3 is the shortest time.

We plan to implement such dynamic load balancers after
resolving the performance problems of Section 4.3.

6 Conclusion

Request-based multipath has some potential improve-
ments over current dm-multipath. The paper focused
on the I/O merging, which affects load balancing, and
confirmed the code works correctly.

There is a lot of work to be done to modify the block
layer so that it can efficiently and elegantly handle rout-
ing requests. And there are a lot of interesting directions
the path selection modules can take, because the multi-
path layer is now working in the same units of I/O that
the storage device and LLD are.

References

[1] Edward Goggin, Linux Multipathing Proceedings
of the Linux Symposium, 2005.

[2] Qlogic, Qlogic QL4xxx QL2xxx Driver
README, http://www.qlogic.com.

[3] Mike Anderson, SCSI Mid-Level Multipath,
Proceedings of the Linux Symposium, 2003.

[4] Jens Axboe, Notes on the Generic Block Layer
Rewrite in Linux 2.5, Documentation/block/
biodoc.txt, 2007.

[5] Mike Christie, [PATCH RFC] block layer (request
based) multipath,
http://lwn.net/Articles/156058/.

[6] Jonathan Corbet, Driver porting: low-level
memory allocation,
http://lwn.net/Articles/22909/.

244 • Request-based Device-mapper multipath and Dynamic load balancing

Short-term solution for 3G networks in Linux: umtsmon

Klaas van Gend
MontaVista Software, Inc.

klaas.van.gend@mvista.com

Abstract

When not at home and in need of Internet access, one
can search for an open Wifi access point. But if there
is none available, you’ll have to set up a connection
through a mobile network—GPRS, EDGE, UMTS, HS-
DPA, or WCDMA networks. For laptops, there are spe-
cial PCMCIA cards that can do that; most mid- or high-
end mobile phones can do this through USB or Blue-
tooth as well. To manage such a connection, one needs
special software—it works differently from a regular
phone dial-up, Wifi, or Ethernet connection.

umtsmon was created to address this need. The au-
thor wanted to have a simple tool that works for all cur-
rent Linux distributions. umtsmon is not the final mo-
bile network manager application—at some point, the
functionality of umtsmon will have to be integrated into
Network Manager and its GUI apps. But umtsmon will
definitely serve as a playground to find out what users
really want, so only the really used features will be im-
plemented the right way into Network Manager. Also:
umtsmon is available now as a simple download and
run—it is usable for existing Linux users. The inte-
grated Network Manager will only help future distribu-
tions.

In this talk, Klaas will discuss mobile networks in gen-
eral, how the various brands of pccards work, and what
umtsmon can and cannot do yet.

1 Short history of 3G networks

For Western European consumers, mobile communica-
tion networks started in the early 80s. Back then, most
countries had their own analog standards and equipment
was heavy—mainly due to the batteries and antennas. It
was also rather easy to listen into conversations and it
was expensive.

The organisation GSM, Groupe Spécial Mobile, was
started in 1982 by the joint European telecom operators

to address the issues. By the end of the eighties, the
GSM standard was close to finished and was tranferred
to a standardization body, ETSI. The new standard used
digital transmission, performed frequency hopping, and
prevented tapping of conversations.

The first network to go live was in Finland in 1991; by
the end of 1993, networks were operational in 48 coun-
tries with a total of one million subscribers.

The popularity of GSM surprised many—by now every
person in the Netherlands (including newlyborns and the
elderly) owns more than one mobile handset. This un-
expected surge in users caused telecom operators to start
hunting for expansion of their networks—they feared
overloading of their networks.

Also, GSM features a direct tunnel from handset to local
cell antenna, and users are charged for the duration of
the connection. This is less useful for data connections,
so an extension to the GSM standard was made: GPRS.
This allowed for a packet-switching-based connection,
therefore not requiring a tunnel. Charging per amount
of data was possible. However, GSM/GPRS only allows
for small bandwidths—typically comparable to old ana-
log modem speeds—max 28k8 kbits/s if you are lucky.

UMTS was created to address these two needs—
relieving the load of the GSM networks and addressing
higher bandwidth data communication. Different radio
technology required new antennas, thus requiring new

• 245 •

246 • Short-term solution for 3G networks in Linux: umtsmon

radio frequencies and equipment. Governments across
Europe saw their chance and auctioned the new radio
frequencies for astronomic sums of money. Several
telecom operators nearly went bankrupt because they
were forced to buy into expensive frequencies in several
countries.

A deafening silence followed.

UMTS requires a lot of antennas. To get a decent cov-
erage, there are far more antennas required for UMTS
than there are for a normal GSM network. The year
2004 through the first half 2006 saw a heated debate on
the dangers of radio transmitters in cell phones and an-
tennas to the public health. All kind of research either
suggested that one would get sick from living close to an
antenna, or would get a heated brain from using a cell
phone. Also some people advised against wearing a cell
in one’s trouser pockets as it might reduce virility (?!).
This made several local municipalities refuse UMTS an-
tennas within their territory. These “white spots” in
UMTS coverage might endanger the timely roll-out of
the UMTS networks. . .

So, telecom operators invested in frequencies, invested
in equipment. And just some Internet junkies bought
into it and bought PCCards for laptops or expensive
phones that used the new network. At the same time,
most operators added new GSM antennas to their new
UMTS stations. By creating more cells, the average
number of users in a cell decreased—the GSM technol-
ogy was saved from overload.

PCCards and especially Blackberries were the first killer
apps for UMTS—these devices use UMTS (if available)
to get their users access to their e-mail. The reduction
of the rates helped adoption of UMTS, but still many
consider it too expensive. Nowadays, most telecom op-
erators are on break-even for their 3G networks—when
not counting in payment of the original radio licenses.

By now, telecom operators see the danger of competing
technologies like WiMax and Wifi. So they are moving
their UMTS networks forward to HSPA (HSDPA and
HSUPA) which require yet new devices.

2 Analysis of a PCMCIA UMTS card

All telecom operators sell PCCards for laptops. How-
ever, all are OEM products, manufactured by small

specialised companies like Option (Belgium), Nova-
tel Wireless (USA), 3GSystems (Germany) and Sierra
Wireless (USA).

� �

������
��	
��

���
����

�������������

�����
������

�����

���	����

��� ��� ����� 	��
�

�������

������

��	
��

������
��	
��

Figure 1: a PCMCIA card and its contents

The first generation of UMTS cards as pioneered by Op-
tion, have an interesting hardware architecture as de-
picted in Figure 1. If one inserts the card into a laptop
running Linux, Linux will recognize a new USB inter-
face. Three (or four) usbserial devices are connected
(via a hub) to that USB interface. Standard Linux ker-
nels do not recognize the VendorID/Product ID for us-
bserial, but if forced to load by hand, three new serial
ports appear on /dev/ttyUSBx.

Most other vendors have cards with similar design—this
is mainly due to the fact that there are very limited man-
ufacturers of chipsets for UMTS data. In most cases,
this is QualComm.

QualComm decided to go a different route for the HS-
DPA cards. No longer serial2usb interfaces, but spe-
cialised connections that require a specialised driver.
With help from other people, Paul Hardwick from Op-
tion ported the existing Windows driver to Linux. This
driver is now known as the Nozomi driver. Its path to
inclusion in the Linux kernel is interesting—of course it
was rejected for inclusion because it was not written the
“Linux way.” With help from Greg Kroah-Hartman, the
driver is taking shape now.

3 Analysis of a “Zero CD” USB UMTS brick

To reduce packaging costs, some vendors now ship a
technology called “ZeroCD.” It was pioneered by Op-
tion in their ICON USB box (see Figure 2), but there
are also PCCards available. Essential is that the device

2007 Linux Symposium, Volume Two • 247

� �

�����������	
���

���
��
�� ����

�	���

�������	
����
���	��
�
���

���

���
��
�����
��
��

���
���

��������	��
���

Figure 2: a “ZeroCD” USB box and its contents

boots up as a USB Mass Storage Device. For Windows
users, an autorun.inf file will automatically take
care of installing the software. Afterwards, the driver
will send a magic string to the USB Hub. The USB Hub
then disconnects the Mass Storage and connects the mo-
dem ports, either through USBSerial or the above men-
tioned Nozomi. For this type of device, vendors do not
need to ship installation CDs. For users, the installation
is simplified: just plugging it in is enough.

The major disadvantage of the current ZeroCD chipset
is the power consumption—it requires two USB plugs
because one USB plug can only carry 5W. . . Be care-
ful and remove the device if your laptop runs on battery
power!

4 Back to the AT commands era

Whether the card supports serial or nozomi, after load-
ing the right driver, you will run into serial ports
on /dev/ttyUSBx, /dev/ttyACMx, or /dev/
nozomiX.

Adventurous Penguins immediately type minicom
/dev/ttyUSB0 to see what’s on the serial devices.
Hopefully, they are old enough to remember the good
old Hayes-compatible modem era, where one could play
with AT Commands and PPP settings for ages before the
first connection to the outside world was successful.

Actually, they need to—because that’s exactly what you
get: all three interfaces are connected to an UMTS mo-
dem with an AT Command set. However, standard-
ization committee 3GPP has standardized the AT com-
mands for 3G network modems, so there are standard-
ized commands to talk to the modem to enter PIN codes,

select the network of a mobile operator, send an SMS,
and such. There are multiple interfaces to the modem
to allow one interface to be used by PPP for the actual
network connection, whereas one can use another inter-
face to send AT commands to retrieve the status of the
modem, network, or SIM card.

A few examples of new AT commands:

• AT+COPS=? will (after 30 seconds) return a list of
all mobile networks that are available, with info on
which networks you are allowed to connect to.

• AT+CPIN="1234" to enter a PIN code for the
smart card.

• AT+CSQ returns the signal strength of the mobile
connection.

So we’re stuck with AT interfaces. Let’s re-install ppp
and go back to the old days. Or install umtsmon—which
will interact with the modem and do all the AT com-
mands for you.

5 Single Serial Port devices

The most popular cards in Europe all have multiple in-
terfaces. This means that we can, for example, use
/dev/ttyUSB0 to connect PPP to, whilst we can si-
multaneously send AT commands to /dev/ttyUSB2.
However, some cards (like the Sony Ericsson GC79,
most Sierra Wireless cards, and some of the Novatels)
only have a single serial port. This means that AT com-
mands and PPP data need to share the same port. Tech-
nically, this is not a problem—software like kppp im-
plements this functionality already. However, the Open-
Moko project also spawned a new project called the
GSM Daemon that also can do this. This might be an
interesting road for the future—at the cost of another
external dependency.

6 umtsmon system design—dependencies

As stated before, umtsmon was designed to work on as
wide a range of Linuxes as possible. This is why we
attempt to make as few assumptions about the operat-
ing system as possible. Yet we have to rely on a few
packages to be present:

248 • Short-term solution for 3G networks in Linux: umtsmon

• PPP
We need PPP to make the actual network connec-
tion and change routing and such.

• QT3
The QT library is needed for the UI. umtsmon
cannot run without it. QT in itself also has a few
dependencies, like X.

For versions of umtsmon beyond 0.6, we probably will
add a few more requirements:

• pcmcia-utils
This one obviously is not necessary for the ICON
and other USB-only devices. We want to use
pcmcia-utils to enable users to reset the card
(pccard eject and pccard insert) and/or
to simplify the autodetection code.

• libusb
At this moment, a lot of the autodetection is
done by browsing through the /sys filesystem.
This is rather complex to code consistently for
all Linux kernel revisions. Using libusb should
solve that problem for us and again simplify the
autodetection code. It might be wise to move the
libusb-dependent code into a shared library that is
dlopen()ed at runtime to prevent umtsmon from
trying to run if libusb isn’t present or if it is too old
to work.

• icon_switch
This is a small utility that switches the ICON box
from mass storage to modem operation. Unfortu-
nately, it is rather unreliable and it needs exten-
sions for the other ZeroCD devices that have dif-
ferent USB IDs and may require different code se-
quences. umtsmon at this moment requires PPP to
be SUID—umtsmon calls pppd directly with argu-
ments controlling the connection. umtsmon will
complain to the user if PPP is not set SUID and
ask the user if it is allowed to fix it. This is a se-
curity hole: in theory people could start writing
malicious dialers dialing expensive foreign num-
bers. This should be addressed in a future re-
vision by having umtsmon create profiles in the
/etc/ppp/peers/ directory.

7 umtsmon software design

Internally, umtsmon is written to follow the MVC de-
sign pattern. MVC means Model View Controller. Ba-
sically, this comes down to a separation of concerns—
a class should only contain code that represents data
(=model), changes data (=controller), or displays it
(=view).

Central in the umtsmon 0.6 design are the classes Query,
SerialPort, ConnectionInfo, and PPPConnection. Any
AT Command sequence that is to be sent to the card is
represented as a Query instance. The Query class also
contains rudimentary parsing and will strip off echos
and such. Query connects to a SerialPort instance for
the actual communication.

The following paragraphs discuss some details of the
design of umtsmon.

7.1 PPPConnection

PPPConnection is the beating heart of the application.
As can be seen in Figure 3, the main GUI class Main-
Window subscribes one of its attributes, the MainWin-
dowPPPObserver, to receive any state changes of the
PPP daemon. If someone outside umtsmon or umtsmon
itself then starts the ppp daemon to make a connection,
the PPPConnection class with call all its attached Ob-
servers to notify the state changes. MainWindow re-
sponds to that by enabling/disabling buttons and menu
items.

At this moment, only MainWindow is subscribed to re-
ceive the PPP state changes. This will change in the near
future when we start talking about the NetworkManager
integration—that will require another Observer to the
PPP state.

7.2 (Inhibiting) ConnectionInfo

ConnectionInfo regularly polls the card to ask for the
mobile operator, signal strength, and such. On some oc-
casions, ConnectionInfo must be prevented from send-
ing out Queries, like during the PPP connection setup or
whilst AT+COPS=? (see Section 4) is running. In such
cases, the PPPConnection or NetworkChanger class just
creates a ConnectionInfoInhibitor instance. Creation
of the Inhibitor instance will increase a counter inside

2007 Linux Symposium, Volume Two • 249

PPPObserverInterface

+ newPPPState()

+ ~ PPPObserverInterface()

MainWindowPPPObserver

PPPConnection

+ PPPConnection()
+ setSerialPortName()
+ ~ PPPConnection()
+ startPPP()
+ stopPPP()
+ getCounterBytesSent()
+ getCounterBytesReceived()
+ refreshPPPStats()
+ isPPPStarting()
+ hasErrors()

MainWindow

+ newPPPState()

QMainWindow

from the QT library

PPPObserverInterface
ObserverManager

- theObserverList : ObserverList
- theObserverListIterator : typename ObserverList::iterator
+ ObserverManager()
+ ~ ObserverManager()
+ attach()
+ detach()
firstObserver()
nextObserver()

attach/detach

newPPPState

startPPP/stopPPP

Figure 3: Class Diagram of PPPConnection and interacting classes

ConnectionInfo
- theRegistrationValue : Registration
- theSignalQuality : int
- theRadioType : int
- theOperatorName : QString
- theInhibitionCount : int

PPPConnection

+ PPPConnection()
+ setSerialPortName()
+ ~ PPPConnection()
+ startPPP()
+ stopPPP()
+ getCounterBytesSent()
+ getCounterBytesReceived()
+ refreshPPPStats()
+ isPPPStarting()
+ hasErrors()

Runner

+ Runner()
+ ~ Runner()
+ getPath()
+ isSUID()
+ amIRoot()
+ runCommand()

«friend to ConnectionInfo»
ConnectionInfoInhibitor

SIMHandler

+ SIMHandler()
+ ~ SIMHandler()
+ askForPIN()
+ isPinCodeRequired()
+ setPUK()
+ setPIN()
+ setDeviceInfo()
+ isPINProtectionEnabled()
+ setPINActive()
+ setNewPIN()

created on demand

created on demand

create on demand

modifies theInhibitionCount

Figure 4: Class Diagram of ConnectionInfo and interacting classes

250 • Short-term solution for 3G networks in Linux: umtsmon

«Singleton»
TheSettingsSingleton

+ getQSRef()
+ me()
+ removeSubTree()
+ makeChangesPersistant()

Profile

QSettings

ProfileDialog

from QT3 library

MainWindow

+ newPPPState()

QDialogQMainWindow

PPPConnection

+ PPPConnection()
+ setSerialPortName()
+ ~ PPPConnection()
+ startPPP()
+ stopPPP()
+ getCounterBytesSent()
+ getCounterBytesReceived()
+ refreshPPPStats()
+ isPPPStarting()
+ hasErrors()

use data

startPPP/stopPPP

creates

modifies

Figure 5: Class Diagram of Profile and interacting classes

ConnectionInfo; upon destruction, the counter will au-
tomatically be decreased. PPPConnection uses an in-
stance of the Runner class to manage the execution of
/usr/sbin/pppd. This is shown in Figure 4. In the
case of single serial port cards, the AT commands and
the PPP data stream need to be sent over the same serial
port. In that case, ConnectionInfo never can run when a
PPP connection exists.

7.3 Profile Management

Refer to Figure 5 for a class diagram. Once the user
clicks on the connect button in MainWindow, PPPCon-
nection gets called with a reference to a Profile. PP-
PConnection will use the info inside the Profile class
to setup the connection. To change a profile, the user
selects Profile Management in the menu in the GUI.
The ProfileDialog will be instantiated and filled with
the data from the active Profile. Users then can choose
to create another profile, change the current one, etc.
The data is stored to disk in a key=data formatted
~/.umtsmon/umtsmonrc file. The QSettings class
takes care of that. Because settings need to be accessed
throughout the program, possibly even before main()
is started, settings are always retrieved through a Single-
ton pattern class. This also solves the issue that a QSet-
tings class only saves its data upon destruction. Call-

ing makeChangesPersistent() will thus cause
the QSettings instance to be destroyed.

8 NetworkManager integration and/or
takeover

High on the wish list is to integrate at least a little with
NetworkManager. The big annoyance is that at the mo-
ment, even if a UMTS connection is made, software
like Gaim and Firefox will refuse to connect because
according to them there is no connection. Apparently
they use libnm to ask NetworkManager if the system
is on-line or not. As stated before, umtsmon should
run, regardless of NetworkManager’s presence. How-
ever, this is only loose coupling—we’re not discussing
adding UMTS support to Network Manager yet. In the
end, UMTS connections should be just another item that
is implemented in NetworkManager and its GUIs. We
currently view umtsmon as a playing ground for that.
What features are actually used? How to implement
stuff? Where to put security constraints? It all is eas-
ier to do in a small program than in the collection of
binaries that makes up NetworkManager. Yet Network-
Manager is the future—it is the most convenient way
for users to manage yet another networking connection.
It remains to be seen if the current umtsmon team will
actually do the NetworkManager implementation.

2007 Linux Symposium, Volume Two • 251

Brand model type remarks
Sony Ericsson GC79 single-port serial GPRS and EDGE only
Option GT GPRS EDGE
Option 3G Quad three of four port usb2serial need kernel module usbse-

rial.ko with parameters or
the specialised option ker-
nel module.

Huawei E612
Option nozomi need nozomi kernel module
Option ICON external usb box ZeroCD chipset, need

switching
3GSystems XSPlug3
Sierra Wireless 7xx series PCMCIA serial modem single serial port
Novatel U630/U530
Novatel XU870 dual serial port, only first usable first Expresscard to be sup-

ported
Kyocera KPC650 dual serial port serial ports don’t communi-

cate.
various mobile
phones

various connect through either serial,
USB or Bluetooth

handled as a single serial
port card

Table 1: Hardware support of umtsmon

9 Device, Commercial and Distribution sup-
port

At this moment, umtsmon supports a wide variety of
hardware. The 0.6 release will support devices from No-
vatel, 3G Systems, Sony Ericsson, Option, Sierra Wire-
less, and Huawei. Also mobile phones that have a lap-
top connection through USB, Bluetooth, or serial can
be supported, with a few limitations. See Table 1 for a
more complete list.

None of the device vendors is cooperating with the de-
velopment, however. The development team is currently
investigating creating a fund to buy all available hard-
ware and distribute it amongst the developers to ensure
that all hardware is supported and remains operational.

Network operator T-Mobile Germany sponsored the de-
velopment by providing a laptop and devices to one
of the developers, who happened to also have done an
internship on UMTS on Linux for T-Mobile. The in-
ternship resulted in a lot of improvements to umtsmon,
thanks Christofer!

At the moment of writing this paper, umtsmon is
available as a standard package in OpenSuse (starting
umtsmon 0.3 in OpenSuse 10.2) and Gentoo (starting
with umtsmon 0.5, currently in ~amd64 and ~x86 only).

10 Conclusions

• Support for UMTS cards is in the same position as
hardware enablement projects like ALSA were a
few years ago. Several devices work—mostly the
devices owned by the developers. Manufacturers
don’t see the need to cooperate yet, nor to fund de-
velopment.

• All known 3G mobile devices implement serial in-
terfaces, either directly or through drivers.

• UMTS is just another radio technology reusing ex-
isting communication standards: AT commands.

• umtsmon was created to handle the AT commands
exchange for the user and start the PPP daemon.

• umtsmon is not really integrated into Linux—it’s a
standalone application.

• NetworkManager integration should start from
scratch, possibly inheriting the GSM multiplexing
daemon from OpenMoko to solve the single serial
port problem correctly.

• Writing a paper for OLS is a good stimulus for
coders to finally write down some parts of their
software design.

252 • Short-term solution for 3G networks in Linux: umtsmon

11 Links

The umtsmon website:
http://umtsmon.sourceforge.net/

PharScape (HOWTOs and support forum for all Option
based cards and the Nozomi drivers):
http://www.pharscape.org/

The 3GPP approved AT command set:
http://www.3gpp.org/ftp/Specs/latest/

Rel-7/27_series/

The GFS2 Filesystem

Steven Whitehouse
Red Hat, Inc.

swhiteho@redhat.com

Abstract

The GFS2 filesystem is a symmetric cluster filesystem
designed to provide a high performance means of shar-
ing a filesystem between nodes. This paper will give
an overview of GFS2’s make subsystems, features and
differences from GFS1 before considering more recent
developments in GFS2 such as the new on-disk layout of
journaled files, the GFS2 metadata filesystem, and what
can be done with it, fast & fuzzy statfs, optimisations of
readdir/getdents64 and optimisations of glocks
(cluster locking). Finally, some possible future develop-
ments will be outlined.

To get the most from this talk you will need a good
background in the basics of Linux filesystem internals
and clustering concepts such as quorum and distributed
locking.

1 Introduction

The GFS2 filesystem is a 64bit, symmetric cluster
filesystem which is derived from the earlier GFS filesys-
tem. It is primarily designed for Storage Area Network
(SAN) applications in which each node in a GFS2 clus-
ter has equal access to the storage. In GFS and GFS2
there is no such concept as a metadata server, all nodes
run identical software and any node can potentially per-
form the same functions as any other node in the cluster.

In order to limit access to areas of the storage to main-
tain filesystem integrity, a lock manager is used. In
GFS2 this is a distributed lock manager (DLM) [1]
based upon the VAX DLM API. The Red Hat Cluster
Suite provides the underlying cluster services (quorum,
fencing) upon which the DLM and GFS2 depend.

It is also possible to use GFS2 as a local filesystem with
the lock_nolock lock manager instead of the DLM.
The locking subsystem is modular and is thus easily sub-
stituted in case of a future need of a more specialised
lock manager.

2 Historical Detail

The original GFS [6] filesystem was developed by Matt
O’Keefe’s research group in the University of Min-
nesota. It used SCSI reservations to control access to
the storage and ran on SGI’s IRIX.

Later versions of GFS [5] were ported to Linux, mainly
because the group found there was considerable advan-
tage during development due to the easy availability of
the source code. The locking subsystem was devel-
oped to give finer grained locking, initially by the use
of special firmware in the disk drives (and eventually,
also RAID controllers) which was intended to become a
SCSI standard called dmep. There was also a network
based version of dmep called memexp. Both of these
standards worked on the basis of atomically updated ar-
eas of memory based upon a “compare and exchange”
operation.

Later when it was found that most people preferred
the network based locking manager, the Grand Unified
Locking Manager, gulm, was created improving the per-
formance over the original memexp based locking. This
was the default locking manager for GFS until the DLM
(see [1]) was written by Patrick Caulfield and Dave Tei-
gland.

Sistina Software Inc, was set up by Matt O’Keefe and
began to exploit GFS commercially in late 1999/early
2000. Ken Preslan was the chief architect of that version
of GFS (see [5]) as well as the version which forms Red
Hat’s current product. Red Hat acquired Sistina Soft-
ware Inc in late 2003 and integrated the GFS filesystem
into its existing product lines.

During the development and subsequent deployment of
the GFS filesystem, a number of lessons were learned
about where the performance and administrative prob-
lems occur. As a result, in early 2005 the GFS2 filesys-
tem was designed and written, initially by Ken Preslan

254 • The GFS2 Filesystem

and more recently by the author, to improve upon the
original design of GFS.

The GFS2 filesystem was submitted for inclusion in Li-
nus’ kernel and after a lengthy period of code review
and modification, was accepted into 2.6.16.

3 The on-disk format

The on-disk format of GFS2 has, intentionally, stayed
very much the same as that of GFS. The filesystem is
big-endian on disk and most of the major structures have
stayed compatible in terms of offsets of the fields com-
mon to both versions, which is most of them, in fact.

It is thus possible to perform an in-place upgrade of GFS
to GFS2. When a few extra blocks are required for some
of the per node files (see the metafs filesystem, Subsec-
tion 3.5) these can be found by shrinking the areas of the
disk originally allocated to journals in GFS. As a result,
even a full GFS filesystem can be upgraded to GFS2
without needing the addition of further storage.

3.1 The superblock

GFS2’s superblock is offset from the start of the disk
by 64k of unused space. The reason for this is entirely
historical in that in the dim and distant past, Linux used
to read the first few sectors of the disk in the VFS mount
code before control had passed to a filesystem. As a
result, this data was being cached by the Linux buffer
cache without any cluster locking. More recent versions
of GFS were able to get around this by invalidating these
sectors at mount time, and more recently still, the need
for this gap has gone away entirely. It is retained only
for backward compatibility reasons.

3.2 Resource groups

Following the superblock are a number of resource
groups. These are similar to ext2/3 block groups in
that their intent is to divide the disk into areas which
helps to group together similar allocations. Addition-
ally in GFS2, the resource groups allow parallel alloca-
tion from different nodes simultaneously as the locking
granularity is one lock per resource group.

On-disk, each resource group consists of a header block
with some summary information followed by a number

Bit Pattern Block State
00 Free
01 Allocated non-inode block
10 Unlinked (still allocated) inode
11 Allocated inode

Table 1: GFS2 Resource Group bitmap states

of blocks containing the allocation bitmaps. There are
two bits in the bitmap for each block in the resource
group. This is followed by the blocks for which the re-
source group controls the allocation.

The two bits are nominally allocated/free and data (non-
inode)/inode with the exception that the free inode state
is used to indicate inodes which are unlinked, but still
open.

In GFS2 all metadata blocks start with a common header
which includes fields indicating the type of the metadata
block for ease of parsing and these are also used exten-
sively in checking for run-time errors.

Each resource group has a set of flags associated with
it which are intended to be used in the future as part of
a system to allow in-place upgrade of the filesystem. It
is possible to mark resource groups such that they will
no longer be used for allocations. This is the first part
of a plan that will allow migration of the content of a
resource group to eventually allow filesystem shrink and
similar features.

3.3 Inodes

GFS2’s inodes have retained a very similar form to those
of GFS in that each one spans an entire filesystem block
with the remainder of the block being filled either with
data (a “stuffed” inode) or with the first set of pointers
in the metadata tree.

GFS2 has also inherited GFS’s equal height metadata
tree. This was designed to provide constant time ac-
cess to the different areas of the file. Filesystems such
as ext3, for example, have different depths of indirect
pointers according to the file offset whereas in GFS2,
the tree is constant in depth no matter what the file off-
set is.

Initially the tree is formed by the pointers which can be
fitted into the spare space in the inode block, and is then

2007 Linux Symposium, Volume Two • 255

grown by adding another layer to the tree whenever the
current tree size proves to be insufficient.

Like all the other metadata blocks in GFS2, the indirect
pointer blocks also have the common metadata header.
This unfortunately also means that the number of point-
ers they contain is no longer an integer power of two.
This, again, was to keep compatibility with GFS and
in the future we eventually intend to move to an extent
based system rather than change the number of pointers
in the indirect blocks.

3.3.1 Attributes

GFS2 supports the standard get/change attributes
ioctl() used by ext2/3 and many other Linux filesys-
tems. This allows setting or querying the attributes listed
in Table 2.

As a result GFS2 is directly supported by the
lsattr(1) and chattr(1) commands. The hashed
directory flag, I, indicates whether a directory is hashed
or not. All directories which have grown beyond a cer-
tain size are hashed and section 3.4 gives further details.

3.3.2 Extended Attributes & ACLs

GFS2 supports extended attribute types user, system and
security. It is therefore possible to run selinux on a
GFS2 filesystem.

GFS2 also supports POSIX ACLs.

3.4 Directories

GFS2’s directories are based upon the paper “Extendible
Hashing” by Fagin [3]. Using this scheme GFS2 has
a fast directory lookup time for individual file names
which scales to very large directories. Before ext3
gained hashed directories, it was the single most com-
mon reason for using GFS as a single node filesystem.

When a new GFS2 directory is created, it is “stuffed,”
in other words the directory entries are pushed into the
same disk block as the inode. Each entry is similar to an
ext3 directory entry in that it consists of a fixed length
part followed by a variable length part containing the file
name. The fixed length part contains fields to indicate

the total length of the entry and the offset to the next
entry.

Once enough entries have been added that it’s no longer
possible to fit them all in the directory block itself, the
directory is turned into a hashed directory. In this case,
the hash table takes the place of the directory entries
in the directory block and the entries are moved into a
directory “leaf” block.

In the first instance, the hash table size is chosen to be
half the size of the inode disk block. This allows it to
coexist with the inode in that block. Each entry in the
hash table is a pointer to a leaf block which contains
a number of directory entries. Initially, all the pointers
in the hash table point to the same leaf block. When
that leaf block fills up, half the pointers are changed to
point to a new block and the existing directory entries
moved to the new leaf block, or left in the existing one
according to their respective hash values.

Eventually, all the pointers will point to different blocks,
assuming that the hash function (in this case a CRC-
32) has resulted in a reasonably even distribution of di-
rectory entries. At this point the directory hash table
is removed from the inode block and written into what
would be the data blocks of a regular file. This allows
the doubling in size of the hash table which then occurs
each time all the pointers are exhausted.

Eventually when the directory hash table hash reached
a maximum size, further entries are added by chaining
leaf blocks to the existing directory leaf blocks.

As a result, for all but the largest directories, a single
hash lookup results in reading the directory block which
contains the required entry.

Things are a bit more complicated when it comes to the
readdir function, as this requires that the entries in
each hash chain are sorted according to their hash value
(which is also used as the file position for lseek) in
order to avoid the problem of seeing entries twice, or
missing them entirely in case a directory is expanded
during a set of repeated calls to readdir. This is dis-
cussed further in the section on future developments.

3.5 The metadata filesystem

There are a number of special files created by
mkfs.gfs2 which are used to store additional meta-
data related to the filesystem. These are accessible by

256 • The GFS2 Filesystem

Attribute Symbol Get or Set
Append Only a Get and set on regular inodes
Immutable i Get and set on regular inodes
Journaling j Set on regular files, get on all inodes
No atime A Get and set on all inodes
Sync Updates S Get and set on regular files
Hashed dir I Get on directories only

Table 2: GFS2 Attributes

mounting the gfs2meta filesystem specifying a suit-
able gfs2 filesystem. Normally users would not do this
operation directly since it is done by the GFS2 tools as
and when required.

Under the root directory of the metadata filesystem
(called the master directory in order that it is not con-
fused with the real root directory) are a number of files
and directories. The most important of these is the re-
source index (rindex) whose fixed-size entries list the
disk locations of the resource groups.

3.5.1 Journals

Below the master directory there is a subdirectory which
contains all the journals belonging to the different nodes
of a GFS2 filesystem. The maximum number of nodes
which can mount the filesystem simultaneously is set
by the number of journals in this subdirectory. New
journals can be created simply by adding a suitably ini-
tialised file to this directory. This is done (along with the
other adjustments required) by the gfs2_jadd tool.

3.5.2 Quota file

The quota file contains the system wide summary of all
the quota information. This information is synced pe-
riodically and also based on how close each user is to
their actual quota allocation. This means that although it
is possible for a user to exceed their allocated quota (by
a maximum of two times) this is in practise extremely
unlikely to occur. The time period over which syncs of
quota take place are adjustable via sysfs.

3.5.3 statfs

The statfs files (there is a master one, and one in each
per_node subdirectory) contain the information re-
quired to give a fast (although not 100% accurate) re-
sult for the statfs system call. For large filesys-
tems mounted on a number of nodes, the conventional
approach to statfs (i.e., iterating through all the re-
source groups) requires a lot of CPU time and can trig-
ger a lot of I/O making it rather inefficient. To avoid
this, GFS2 by default uses these files to keep an approx-
imation of the true figure which is periodically synced
back up to the master file.

There is a sysfs interface to allow adjustment of the sync
period or alternatively turn off the fast & fuzzy statfs
and go back to the original 100% correct, but slower
implementation.

3.5.4 inum

These files are used to allocate the no_formal_ino

part of GFS2’s struct gfs2_inum structure. This is
effectively a version number which is mostly used by
NFS, although it is also present in the directory entry
structure as well. The aim is to give each inode an addi-
tional number to make it unique over time. The master
inum file is used to allocate ranges to each node, which
are then replenished when they’ve been used up.

4 Locking

Whereas most filesystems define an on-disk format
which has to be largely invariant and are then free to
change their internal implementation as needs arise,
GFS2 also has to specify its locking with the same de-
gree of care as for the on-disk format to ensure future
compatibility.

2007 Linux Symposium, Volume Two • 257

Lock type Use
Non-disk mount/umount/recovery
Meta The superblock
Inode Inode metadata & data
Iopen Inode last closer detection
Rgrp Resource group metadata
Trans Transaction lock
Flock flock(2) syscall
Quota Quota operations
Journal Journal mutex

Table 3: GFS2 lock types

GFS2 internally divides its cluster locks (known as
glocks) into several types, and within each type a 64 bit
lock number identifies individual locks. A lock name
is the concatenation of the glock type and glock num-
ber and this is converted into an ASCII string to be
passed to the DLM. The DLM refers to these locks as
resources. Each resource is associated with a lock value
block (LVB) which is a small area of memory which
may be used to hold a few bytes of data relevant to that
resource. Lock requests are sent to the DLM by GFS2
for each resource which GFS2 wants to acquire a lock
upon.

All holders of DLM locks may potentially receive call-
backs from other intending holders of locks should the
DLM receive a request for a lock on a particular re-
source with a conflicting mode. This is used to trigger
an action such as writing back dirty data and/or invali-
dating pages in the page cache when an inode’s lock is
being requested by another node.

GFS2 uses three lock modes internally, exclusive,
shared and deferred. The deferred lock mode is effec-
tively another shared lock mode which is incompatible
with the normal shared lock mode. It is used to ensure
that direct I/O is cluster coherent by forcing any cached
pages for an inode to be disposed of on all nodes in the
cluster before direct I/O commences. These are mapped
to the DLMs lock modes (only three of the six modes
are used) as shown in table 4.

The DLM’s DLM_LOCK_NL (Null) lock mode is used as
a reference count on the resource to maintain the value
of the LVB for that resource. Locks for which GFS2
doesn’t maintain a reference count in this way (or are
unlocked) may have the content of their LVBs set to zero
upon the next use of that particular lock.

5 NFS

The GFS2 interface to NFS has been carefully designed
to allow failover from one GFS2/NFS server to another,
even if those GFS2/NFS servers have CPUs of a differ-
ent endianness. In order to allow this, the filehandles
must be constructed using the fsid= method. GFS2
will automatically convert endianness during the decod-
ing of the filehandles.

6 Application writers’ notes

In order to ensure the best possible performance of an
application on GFS2, there are some basic principles
which need to be followed. The advice given in this
section can be considered a FAQ for application writers
and system administrators of GFS2 filesystems.

There are two simple rules to follow:

• Make maximum use of caching

• Watch out for lock contention

When GFS2 performs an operation on an inode, it first
has to gain the necessary locks, and since this potentially
requires a journal flush and/or page cache invalidate on
a remote node, this can be an expensive operation. As
a result for best performance in a cluster scenario it is
vitally important to ensure that applications do not con-
tend for locks for the same set of files wherever possible.

GFS2 uses one lock per inode, so that directories may
become points of contention in case of large numbers of
inserts and deletes occurring in the same directory from
multiple nodes. This can rapidly degrade performance.

The single most common question asked relating to
GFS2 performance is how to run an smtp/imap email
server in an efficient manner. Ideally the spool direc-
tory is broken up into a number of subdirectories each of
which can be cached separately resulting in fewer locks
being bounced from node to node and less data being
flushed when it does happen. It is also useful if the lo-
cality of the nodes to a particular set of directories can
be enhanced using other methods (e.g. DNS) in the case
of an email server which serves multiple virtual hosts.

258 • The GFS2 Filesystem

GFS2 Lock Mode DLM Lock Mode
LM_ST_EXCLUSIVE DLM_LOCK_EX (exclusive)
LM_ST_SHARED DLM_LOCK_PR (protected read)
LM_ST_DEFERRED DLM_LOCK_CW (concurrent write)

Table 4: GFS2/DLM Lock modes

6.1 fcntl(2) caveat

When using the fcntl(2) command F_GETLK note
that although the PID of the process will be returned in
the l_pid field of the struct flock, the process
blocking the lock may not be on the local node. There is
currently no way to find out which node the lock block-
ing process is actually running on, unless the application
defines its own method.

The various fcntl(2) operations are provided via the
userspace gfs2_controld which relies upon ope-
nais for its communications layer rather than using the
DLM. This system keeps on each node a complete copy
of the fcntl(2) lock state, with new lock requests
being passed around the cluster using a token passing
protocol which is part of openais. This protocol ensures
that each node will see the lock requests in the same or-
der as every other node.

It is faster (for whole file locking) for applications to use
flock(2) locks which do use the DLM. In addition it
is possible to disable the cluster fcntl(2) locks and
make them local to each node, even in a cluster con-
figuration for higher performance. This is useful if you
know that the application will only need to lock against
processes local to the node.

6.2 Using the DLM from an application

The DLM is available through a userland interface in
order that applications can take advantage of its clus-
ter locking facility. Applications can open and use
lockspaces which are independent of those used by
GFS2.

7 Future Development

7.1 readdir

Currently we have already completed some work relat-
ing to speeding up readdir and also considered the

way in which readdir is used in combination with
other syscalls, such as stat.

There has also been some discussion (and more recently
in a thread on lkml [2]) relating to the readdir in-
terface to userspace (currently via the getdents64
syscall) and the other two interfaces to NFS via the
struct export_operations. At the time of
writing, there are no firm proposals to change any of
these, but there are a number of issues with the current
interface which might be solved with a suitable new in-
terface. Such things include:

• Eliminating the sorting in GFS2’s readdir for
the NFS getname operation where ordering is ir-
relevant.

• Boosting performance by returning more entries at
once.

• Optionally returning stat information at the same
time as the directory entry (or at least indicating the
intent to call stat soon).

• Reducing the problem of lseek in directories
with insert and delete of entries (does it result in
seeing entries twice or not at all?).

7.2 inotify & dnotify

GFS2 does not support inotify nor do we have any plans
to support this feature. We would like to support dnotify
if we are able to design a scheme which is both scalable
and cluster coherent.

7.3 Performance

There are a number of ongoing investigations into vari-
ous aspects of GFS2’s performance with a view to gain-
ing greater insight into where there is scope for further
improvement. Currently we are focusing upon increas-
ing the speed of file creations via open(2).

2007 Linux Symposium, Volume Two • 259

8 Resources

GFS2 is included in the Fedora Core 6 kernel (and
above). To use GFS2 in Fedora Core 6, install the
gfs2-utils and cman packages. The cman pack-
age is not required to use GFS2 as a local filesystem.

There are two GFS2 git trees available at kernel.org.
Generally the one to look at is the -nmw (next merge
window) tree [4] as that contains all the latest develop-
ments. This tree is also included in Andrew Morton’s
-mm tree. The -fixes git tree is used to send occa-
sional fixes to Linus between merge windows and may
not always be up-to-date.

The user tools are available from Red Hat’s CVS
at: http://sources.redhat.com/cgi-bin/

cvsweb.cgi/cluster/?cvsroot=cluster

References

[1] “DLM—Kernel Distributed Lock Manager,”
Patrick Caulfield, Minneapolis Cluster Summit
2004, http://sources.redhat.com/
cluster/events/summit2004/
presentations.html#mozTocId443696

[2] Linux Kernel Mailing List. Thread “If not
readdir() then what?” started by Ulrich Drepper
on Sat, 7 Apr 2007.

[3] “Extendible Hashing,” Fagin, et al., ACM
Transactions on Database Systems, Sept., 1979.

[4] The GFS2 git tree:
git://git.kernel.org/pub/scm/
linux/git/steve/gfs2-2.6-nmw.git
(next merge window)

[5] “64-bit, Shared Disk Filesystem for Linux,”
Kenneth W. Preslan, et al., Proceedings of the
Seventh NASA Goddard Conference on Mass
Storage, San Diego, CA, March, 1999.

[6] “The Global File System,” S. Soltis, T. Ruwart,
and M. O’Keefe, Fifth NASA Goddard Conference
on Mass Storage Systems and Technologies,
College Park, MD, September, 1996.

260 • The GFS2 Filesystem

Driver Tracing Interface

David J. Wilder
IBM Linux Technology Center

dwilder@us.ibm.com

Michael Holzheu
IBM Linux on zSeries Development

holzheu@de.ibm.com

Thomas R. Zanussi
IBM Linux Technology Center

zanussi@us.ibm.com

Abstract

This paper proposes a driver-tracing interface (DTI) that
builds on the existing Relay tool and the proven Debug
Feature model used by IBMTM zSeries Linux. Users of
this infrastructure are provided with individual, manage-
able channels for capturing or passing debug data into
user space. Separate channels are created by each sub-
system or driver. Data is stored in kernel ring buffers
providing flight recorder type functionality. Unwanted
or unconsumed data is simply discarded where pertinent
data can be saved for future analysis. In the instance of
a system crash, all unconsumed tracing data is automat-
ically saved in crash dumps. With support from crash
analysis tools like crash or lcrash, trace data can be ex-
tracted directly from a crash dump, providing an exact
trace of the events leading up to the crash.

Developers of LinuxTM device drivers will be interested
in DTI as a tool to aid in the troubleshooting of their
drivers. Service engineers and support personnel who
are tasked with isolating driver bugs will learn how to
capture DTI data on a live system and extract DTI data
from a crash dump.

1 Introduction

Webster defines a trace as “the track left by the passage
of a person, animal, or object.” Applied to computer
systems, we can adapt this definition to mean the track
left by the execution of a program. A typical program
doesn’t normally leave tracks, other than the expected
side effect of the program. To cause a program to create
tracks so that its passage can meaningfully be tracked,
code that explicitly leaves those tracks must be added
into the execution path of the program. We call the in-
dividual tracks we’ve inserted tracepoints. Two types of
tracepoints can be used.

• Static: Tracks that are added to the source code
and compiled with it.

• Dynamic: Tracks that are added to the execution
stream at run time.

Tracing is the act of causing special-purpose code asso-
ciated with a program to report something specific about
what the program is doing at a given point. The informa-
tion can be simple or complex, high or low-frequency,
binary or text-based, time-based or unsequenced and so
on. The resulting data stream can be continuously per-
sisted to long-term storage, sent to a destination over a
network connection, or it can be endlessly cycled around
a constant-sized buffer. The buffer will only be read
when an event of interest occurs and a user needs details
about the sequence of events that led up to that event,
for example a system crash or afailed assertion in the
normal program flow.

1.1 Why is tracing needed

Tracing is needed because, in many situations, only a
detailed, sequenced, or timestamped history of program
execution can explain the behavior of a program or the
pathology of a problem. In many cases, coarse-grained
statistical or summary information can show the general
area of a problem, but only trace data can show the true
source of the problem.

The detailed data from a complete trace can be post-
processed and summary information or aggregated
statistics can be calculated based on it. The converse
however is not true. Detailed information cannot be ex-
tracted from statistics or summaries, because that infor-
mation is lost in the process. Keeping in mind practical
considerations such as storage costs, it is always better

• 261 •

262 • Driver Tracing Interface

to have the detailed trace information instead of only the
statistics, because the appropriate trace data allows for
more varied and flexible analysis.

2 Current solutions for static tracing

Currently, there are three kernel APIs available to do
static tracing using kernel memory buffers:

• printk

• relay

• s390 debug feature (s390dbf)

2.1 Printk

Printk often is misused for tracing purposes, since there
is no other standard way for device drivers to log debug
information.1 There are multiple printk levels defined,
which indicate the importance of a kernel message. The
kernel messages are written in one global printk buffer,
which can be accessed from the user space with the
syslog() system call or via the /proc/kmesg file. The
dmesg tool prints the content of the message buffer to
the screen, and then the kernel log daemon klogd reads
kernel messages and redirects them either to the syslogd
or into a file. The printk message buffer can also be ac-
cessed from system dumps through the lcrash or other
crash dump analysis tools.

2.2 Relay

Relay provides a basic low-level interface that has a va-
riety of uses, including tracing. In order to define a ker-
nel trace buffer, the relay_open() function is used.
This function creates a relay channel. Relay channels
are organized as wrap around buffers in memory. There
are two mechanisms to write trace data into a channel:

• relay_write(chan, data, length) is used
to place data in the global buffer.

• relay_reserve(chan, length) is used to re-
serve a slot in a channel buffer which can be written
to later.

1This paper is not purposing a replacement for printk. The DTI is
purposed as an additional tool that should be used in place of printk
only when true tracing is needed.

Relay buffers are represented as files in a host file sys-
tem such as debugfs; data previously written into a relay
channel can be retrieved by read(2)ing or mmap(2)ing
these files.

2.3 The s390 debug feature

The s390 debug feature (s390dbf) is a tracing API,
which is used by most of the s390 specific device
drivers. Each device driver creates its own debug feature
in order to log trace records into memory areas, which
are organized as wrap around ring buffers. The s390dbf
uses its own ring buffer implementation. The main pur-
pose of the debug feature is to inspect the trace logs after
a system crash. Dump analysis tools like crash or lcrash
can be used to find out the cause of the crash. If the sys-
tem still runs but only a subcomponent which uses dbf
fails, it is possible to look at the debug logs on a live
system via the Linux debugfs file system.

Device drivers can register themselves to the debug fea-
ture with the debug_register() function. This
function initializes an s390dbf for the caller. For each
s390dbf there are a number of debug areas where ex-
actly one is active at one time. Each debug area consists
of a set of several linked pages in memory. In the de-
bug areas, there are stored debug entries (trace records)
which are written by event and exception calls.

An event call writes the specified debug entry to the ac-
tive debug area and updates the log pointer for the active
area. If the end of the active debug area is reached, a
wrap around in the ring buffer is done and the next de-
bug entry will be written at the beginning of the active
debug area.

An exception call writes the specified debug entry to the
log and switches to the next debug area. This is done
in order to guarantee that the records that describe the
origin of the exception are not overwritten when a wrap
around for the current area occurs.

The debug areas themselves are also ordered in the form
of a ring buffer. When an exception is thrown in the last
debug area, the next debug entries are then written again
in the very first area.

Each debug entry contains the following data:

• Timestamp

2007 Linux Symposium, Volume Two • 263

• Cpu-Number of calling task

• Level of debug entry (0. . . 6)

• Return Address to caller

• Flag that indicate whether an entry is an exception
or not

The trace logs can be inspected in a live system through
entries in the debugfs file system. Files in the debugfs
that were created by s390dbf represent different views
to the debug log. The purpose of s390dbf views is to
format the trace records in a human-readable way. Pre-
defined views for hex/ascii, sprintf and raw binary data
are provided. It is also possible to define other compo-
nent specific views. The content of a view can be seen
by reading the corresponding debugfs file. The standard
views are also available in the dump analysis tools lcrash
and crash. Figure 1 shows an example of an s390dbf
sprintf view.

3 Driver Tracing Interface

This section describes the proposed Driver Tracing In-
terface (DTI) for the Linux kernel. It starts by examin-
ing the project goals and usage models that were consid-
ered in its design. Also provided is a brief description
of two existing subsystems that DTI depends on, the De-
bugFS and relay subsystems.

3.1 Design goals

DTI will add supportability to drivers and subsystems
that adopt it. However, from the support community
viewpoint the deployment of DTI must be propagated
into a significant number of subsystems, drivers, and
system architectures before it usefulness is proven. De-
veloping support tools and process around one off so-
lutions is costly and unproductive to support organiza-
tions, therefore a key aspect of our project goals is to
provide a feature that can easily be adopted by the Linux
development community, thus ensuring its wide use.

• The DTI’s API should be as simple and easy to im-
plement as possible.

• DTI should be architecture independent.

Adding code into a driver or subsystem that is not con-
tributing to the core functionality might be seen as un-
necessary. This concern must be addressed by DTI, en-
suring that the added benefit is balanced with low over-
head of the feature.

• DTI should have as little performance impact as
possible.

• DTI should reuse existing code in the Linux kernel.

• DTI must implement per-CPU buffering.

• DTI should minimize the in-kernel processing of
trace data.

The remaining goals specify functionality requirements.

• DTI’s API should be usable in both user context
and interrupt context.

• Trace data must be buffered so that it can be re-
trieved from a crash dump.

• Trace data must be viewable from a live system.

• DTI must allow for a rich set of tools to process
trace data.

3.2 Usage models

Two primary usage models were examined when de-
signing the DTI API.

Usage Model 1: Isolating a driver problem from a
post-mortem cash dump analysis. In this scenario,
the system has crashed and a crashed system image
(crash dump) has been obtained. By analyzing the
crash dump the user suspects there is a problem in the
XYZ driver. Using the DTI commands integrated into
the crash dump analysis tool, the user can extract the
DTI trace buffer from the crash dump and examine the
records. The entire trace buffer containing the last trace
records recorded by the XYZ driver is available. Us-
ing this data the user can obtain a trace showing what
the driver was doing when the crash dump was taken.
This allows the user to learn more about the cause of the
crash.

Usage Model 2: Troubleshooting a driver on a run-
ning system. In this scenario, the user has encountered

264 • Driver Tracing Interface

00 01173807785:527586 0 − 02 00000000001eed86 Subchannel 0.0.4e20 reports non−I/O sc type 0001

00 01173807786:095834 2 − 02 00000000001f0962 reprobe done (rc=0, need_reprobe=0)

00 01173884042:004944 2 − 03 00000000001f7344 SenseID : UC on dev 0.0.1700, lpum 80, cnt 00

Figure 1: Example of the s390dbf sprintf view

a problem that is suspected to be related to one or more
specific drivers. The user would like to examine the
trace data just after the problem has occurred. To do
so the following steps are taken:

1. Set the trace level to an appropriate level to produce
the interested trace records.

2. Wait for the problem to occur, or reproduce the
problem if possible.

3. Switch off tracing on the affected driver. Trace
records produced just before, during, and after the
problem occurred will remain in the DTI buffer.

4. Collect the trace data using a user level trace for-
matting tool.

5. Switch tracing back on.

By integrating DTI with systemtap additional usage
modules can be realized.2

3.3 Debugfs

Debugfs is a minimalistic pseudo-filesystem existing
mainly to provide a namespace that kernel facilities can
hang special-purpose files of off, which in turn provides
file-based access to kernel data. It provides a simple
API for creating files and directories, as well as a set of
ready made file operations which make it easy to cre-
ate and use files that read and write primitive data types
such as integers. For more complex data, it provides a
means for facilities to associate custom file operations
with debugfs files; in the case of relay, the exported
relay_file_operations are associated with the de-
bugfs files created to represent relay buffers. Despite
the name, debugfs is not meant to be used only for de-
bugging applications; it’s enabled by default in many
Linux distributions, and its use is encouraged especially
for things that don’t obviously belong in other pseudo-
filesystems such as procfs or sysfs.

2These advanced usage models will be explored in more detail
in Section 9, Integration With Other Tools.

3.4 Relay

Relay3 is a kernel facility designed for ‘relaying’ poten-
tially large quantities of data from the kernel to the user
space. Its overriding goal is to provide the shortest and
cheapest possible path for a byte of data from the point
it’s generated in the kernel to the point it’s usable by a
program in user space. To accomplish this goal, it allo-
cates a set of pages in the kernel, strings them together
into a contiguous kernel address range via vmap(), and
provides a set of functions designed to efficiently write
data into the resulting relay buffer.

Each relay buffer is represented to user space as a file.
This relay file is the abstraction used by the user space
programs to retrieve the data contained in the relay
buffer. The standard set of file operations allows for
both read(2) and mmap(2) access to the data. These
relay file operations are exported by the kernel, which
allows them to be created in a pseudo-filesystem such
as debugfs or procfs. In fact relay files must be created
in one of these pseudo-filesystems in order for them to
be accessible to user space programs (older versions of
relay did actually include a file system called relayfs but
the fs portion of the code was later subsumed by almost
identical code in debugfs, and thus removed).

Relay buffers are logically subdivided into a number of
equally sized sub-buffers. The purpose of sub-buffers
is to provide the same benefits as double-buffering, but
with more granularity. As data is written, it fills up sub-
buffers, which are then considered ready for consump-
tion by the user space. At the same time data is being
written by the kernel into these unfinished sub-buffers,
user space can be reading and releasing other finished
sub-buffers. Relay channels can be configured to do
double-buffereing or single-buffering if desired, or they
can be configured to use large numbers of sub-buffers.
A sub-buffer isn’t considered readable until it’s full and
the next sub-buffer is entered (a sub-buffer switch). The
latency between when a given event is written and the

3See Documentation/filesystems/relay.txt for complete details.

2007 Linux Symposium, Volume Two • 265

time it’s available to the user increases with the sub-
buffer size. If sub-buffers are small, the latency is small
and the amount of data that would be lost if the machine
were to loses power is small. However, using small
sub-buffers results in more time spent in the sub-buffer
switching code (the slow path) instead of the main log-
ging path (the fast path). Relay was designed with some
reasonable middle ground in mind, efficiently buffering
data implies some nontrivial amount of latency. If an ap-
plication requires more immediacy, another mechanism
should be considered. The assumption is that any mech-
anism that offers more immediacy by definition also cre-
ates more tracing overhead. The implied goal of relay is
to cause as little disruption to a running system as pos-
sible.

By default, a relay buffer is created for each CPU; the
combination of all per-CPU relay buffers along with
associated meta-information is called a relay channel.
Most of the relay API deals with the relay channels, and
almost every aspect of a relay channel are configurable
through the relay API.

4 Proposal for the Driver Tracing Interface

This section describes the purposed DTI architecture.
The kernel API is introduced, trace record formatting
and buffering are also discussed.

4.1 The DTI kernel API

The proposed DTI API can be broken in the following
four major operations:

• Creating a trace handle and binding it to a relay
channel.

• Writing trace records.

• Closing the channel.

• Setting the trace level.

The prototype of the API to the DTI is shown in Fig-
ure 2.

4.2 Creating the trace channel

The creation and binding of the trace handle are per-
formed by calling dti_register(). When called,
dti_register() creates a relay channel, associated
data files and two additional control files in the debug
file system. Upon successful completion, a struct
dti_info pointer is returned. The caller will pass this
pointer to all subsequent calls to the API. The format of
struct dti_info is:

struct dti_info {
struct dentry∗ root;

struct rchan∗ chan;

int level;

struct dentry ∗reset_consumed_ctrl;
struct dentry ∗level_ctrl;

};

4.3 Writing trace records

Trace records are passed to the user using a vari-
able length record as described in the struct dti_
event.

struct dti_event {
__u16 len;

__u64 time;

char data[0];

} __attribute__ ((packed));

Trace record suppliers only need to supply a pointer to
the data buffer containing the raw data and the length of
the data. DTI places no restriction on the format of the
data supplied.

4.4 Trace level

The trace level is used to control what trace records
should be placed in the buffer. Suppliers of trace data
provide a trace level value each time a trace record is
written. The trace level value is compared to the cur-
rent trace level found in dti_info->level. Trace
records are only placed in the buffer if the supplied trace
level is less than or equal to the current trace level.

The current trace level is set using dti_set_level()

or by the user writing a new trace level to the level con-
trol file. Trace levels are defined as an integer between
–1 and DTI_LEVEL_MAX. A value of –1 means no trac-
ing is to be done. When a trace channel is first registered
the current trace level is set to DTI_LEVEL_DEFAULT.

266 • Driver Tracing Interface

/∗∗
∗ dti_register: create new trace

∗ @name: name of trace

∗ @size_in_k: size of subbuffer in KB

∗
∗ returns trace handle or NULL, if register failed.

∗/
struct dti_info ∗dti_register(const char ∗name,

int size_in_k);

/∗∗
∗ dti_unregister: unregister trace

∗ @trace: trace handle

∗/
void dti_unregister(struct dti_info ∗trace);

/∗∗
∗ dti_printk_raw: Write formatted string to trace

∗ @trace: trace handle

∗ @fmt: format string

∗ @...: parameters

∗
∗ returns 0, if event is written. Otherwise -1.

∗/
int dti_printk_raw(struct dti_info ∗trace, int prio, const char∗ fmt, ...);

/∗∗
∗ dti_event_raw: Write buffer to trace

∗ @trace: trace handle

∗ @prio: priority of event (the lower, the higher the priority)

∗ @buf: buffer to write

∗ @len: length of buffer

∗
∗ returns 0, if event is written. Otherwise -1.

∗/
int dti_event_raw(struct dti_info ∗trace, int prio, char∗ buf, size_t len);

/∗∗
∗ dti_set_level: set trace level

∗ @trace: trace handle

∗/
void dti_set_level(struct dti_info ∗trace, int new_level);

Figure 2: Prototype of the DTI API

2007 Linux Symposium, Volume Two • 267

• Three sub-buffers are shown.

• The numbers represent the trace records.

• The 1st and the 2nd trace records have already been
overwritten.

Sub-buffer 1 13 14 03 04

Sub-buffer 2 05 06 07 08

Sub-buffer 3 09 10 11 12

When relay data is read, the following records are re-
turned:

05 06 07 08 09 10 11 12 13 14

Figure 3: An example of reading relay buffers

4.5 Data buffering

DTI depends on relay to handle the data buffering. Re-
lay arranges trace records into a fixed number of sub-
buffers arraigned in a ring. Each sub-buffer may contain
one or more trace records or may be unused. Records
are never split across sub-buffers. As sub-buffers are
filled, new records are placed in the next sub-buffer in
the ring. If no unconsumed sub-buffers are available,
the sub-buffer containing the oldest data is overwritten.

When trace records are read by the user using the relay
read interface, the oldest complete sub-buffer returned
first, then the second oldest and so on. Therefore, the
trace records are returned in the exact the same order
they were written. For the current (newest) sub-buffer,
the trace records up to the latest written trace record is
returned. We lose the rest of the trace records (the oldest
ones) of the current sub-buffer. This is acceptable, if
enough sub-buffers are used. This process is illustrated
in Figure 3.

4.6 Picking a buffer size

When the DTI trace is registered, you supply a size-in-
k value, which is the total size of each relay channel
buffer:

dti_register(name, size_in_k)

DTI automatically divides size-in-k by 8 and calls the
exported __dti_register() function:

__dti_register(name, subbuf_size,

n_subbufs)

Users normally use the dti_register() version
which does the calculation on behalf of the user. The
user is not required to understand buffer internals, how-
ever if the user wants more control over the internal
sub-buffer sizes, the __dti_register() version is
available.4

4.7 Record time stamps

The time field in the struct dti_event is gener-
ated by the DTI. Its purpose is to provide both a time
reference for when the trace record was written and a
tool to sequence the records chronologically. The order
of the trace records in a buffer of a single CPU is guaran-
teed to be in chronological order. DTI creates one relay
buffer for each CPU. Therefore, the user must fully read
each per-CPU buffer, then order the records correctly.
It is possible for records read from different per-CPU
buffers to contain the same time stamp. The choice of a
sufficiently high resolution timer reduces the possibility
of duplicate time-stamps; if the possibility is small, it
might be acceptable.

5 DTI handle API

This section describes an extension to the basic DTI
API called DTI handles. The DTI handle API simpli-
fies writing kernel code that utilizes DTI. The features
provided by the DTI handle API are:

• Auto-registration

• Support for early boot time tracing

Auto-registration eliminates the need to explicitly call
dti_register(). Both modules and built-in drivers
are supported. Registration of the DTI handle is auto-
matically performed the first time trace data is written.

Early boot time tracing allows built-in drivers to log
trace data before kmalloc memory is available. Static
buffers are used to hold DTI events until it is safe to
setup the relay channels. The DTI handle code creates

4See Section-3.4 Relay for a summary of sub-buffer size trade-
offs to consider when choosing buffer/sub-buffer sizes.

268 • Driver Tracing Interface

#include <linux/dti.h>

static struct dti_handle my_handle

#ifdef MODULE

/∗ On the first event, channel will be auto-registered. ∗/
DEFINE_DTI_HANDLE(my_handle, DRV_NAME, 4096 ∗ 32, DTI_LEVEL_DEBUG,NULL);

#endif

#ifdef KERNEL

/∗
∗ Built-in drivers can optionally provide a static buffer used for

∗ early tracing.

∗/
static char my_buf[4096 ∗ 4] __initdata;

DEFINE_DTI_HANDLE(my_handle, DRV_NAME, 4096 ∗ 32, DTI_LEVEL_DEBUG,my_buf);

#endif

static int __init init_mydriver(void)

{
....

INIT_DTI_HANDLE(my_handle);

....

}

my_driver_body(..)

{
....

/∗ trace some events ∗/
dti_printk(my_handle, DTI_LEVEL_DEFAULT, format, _fmt, ## _args);

....

}

void cleanup_mydriver(void)

{
....

CLEANUP_DTI_HANDLE(my_handle);

....

}

module_init(init_testdriver);

module_exit(cleanup_testdriver);

Figure 4: Example of using DTI handles

2007 Linux Symposium, Volume Two • 269

a postcore_initcall to switch tracing from static
buffers to relay channels. All trace records written into
static buffers are made available to the user interface af-
ter the postcore_initcall has run.

An example of using DTI handles is shown in Figure 4.

6 User interface

The section covers how trace data is read by the user on
a running system and how tracing is controlled by the
user.

6.1 File structure and control files

When a trace handle is bound, the following files are
created in the traces directory of the root of the mounted
debug file system.

dti/
driver−name/
data0 ... data[max−cpus]

level
reset_consumed

6.2 Retrieving trace data

One data file per CPU is created for each registered DTI
trace provider. Trace records (struct dti_event)
are read from the data files using a user supplied trace
formatting tool. A trace formatting tool should read
each per-CPU data file for a specified trace provider then
arrange records according to the time stamp field of the
struct dti_event.

The sequence of events normally followed when reading
trace data is:

1. Switch off tracing by writing a –1 into the level file.

2. Read each of the per-CPU data files.

3. Switch tracing back on.

6.3 Trace level

The level file is used to inform the DTI provider of the
level of trace records that should be placed in the data
buffer. Reading the level file will return an ASCII value
indicating the current level of tracing. The level can be
changed by writing the ASCII value of the desired trac-
ing level into the level file.

6.4 Reset consumed

When trace records are read, the records are marked
as consumed by the relay subsystem as they are read.
Therefore, subsequent reads will only return unread or
new records in the buffers. If the desired behavior of a
trace formatting tool is to return all records in the buffer
each time the tools executed, the tool must reset the con-
sumed value after reading all records currently in the
buffer. Resetting the consumed value is performed by
writing any value into the reset-consumed file.

7 Dump analysis tool support

Analysis of trace data from a crashed system is one of
the most important use-cases for DTI. As such, sup-
port will be added to the crash and lcrash dump analysis
tools enabling those tools to extract and make use of the
DTI trace buffers and related trace information from a
crashed system image.

7.1 Retrieving trace data from a crash dump

When a DTI trace is registered through dti_
register(), a text name is specified as one of the pa-
rameters. This string not only identifies the trace to the
user, but is also effectively concatenated with a prefix
string, unlikely to be used by a user, in order to make the
complete identifying string easily locatable in a mem-
ory dump for example if a trace name is given as “my-
driver” by the user, the string the dump tool would use
to find the corresponding dti_info struct would be
__DTI__mydriver. When this string is located, it’s
a straightforward exercise to locate the associated relay
channel and its buffers. For example, assuming a sim-
plified dti_info struct:

struct dti_info
{
struct rchan ∗chan;
char dti[7] = "__DTI__";
char name[DTI_TRACENAME_LEN];
.
.
.

}

The dump tool would locate the beginning of the dti[]
array, and subtracting the size of a pointer would find
the pointer to the struct rchan:

270 • Driver Tracing Interface

struct rchan
{
size_t subbuf_size;
size_t n_subbufs;
struct rchan_buf[NR_CPUS];
.
.
.

}

From the pointer to the rchan, you can locate each of the
buffers that make up the channel and its size.

struct rchan_buf
{
/∗ start of buffer ∗/
void ∗start;
/∗ start of current sub-buffer ∗/
void ∗data;
/∗ write offset into the current

sub-buffer ∗/
size_t offset;
/∗ number of sub-buffers

consumed ∗/
size_t consumed;
.
.
.

}

From this information, you can extract all the available
data from each buffer and send it to the post-processing
tool to be combined and sorted as usual.

8 Sample implementations

8.1 Port of the S390 dbf

Most of the s390 device drivers currently use the
s390dbf. Examples are:

• ZFCP: SCSI host adapter device driver

• QETH: Ethernet network device driver

• DASD: s390 harddisk driver

• TAPE: Driver for 3480/90 and 3590/92 channel at-
tached tape devices

s390dbf API DTI API
debug_register() dti_

register()
debug_unregister() dti_

unregister()
debug_event() dti_event_

raw()
debug_sprintf_
event()

dti_printk_
raw()

debug_set_level() dti_set_
level()

Table 1: Mapping of the s390dbf API to the DTI API

All the users of the s390dbf API can be quite easily con-
verted to use the new DTI API. Table 1 shows functions
that can be mapped directly.

There is no DTI equivalent for the s390dbf exception
calls. Those must be replaced by the appropriate DTI
event functions. The exception functionality used to
switch debug areas is not frequently used by the s390
device drivers. Therefore it is acceptable to remove this
functionality in order to keep the API small and simple.

The functions debug_register_view() and
debug_unregister_view() are not needed any
more, since formatting of DTI traces is done in the user
space.

Currently the s390 ZFCP device driver uses non-default
self-defined s390dbf views. For that driver, it is nec-
essary to implement a user space tool with the same
formatting functionality as the ZFCP specific s390dbf
view.

Some details of the port have not yet been resolved.

• How should the number of pages value used by
debug_register be mapped to the buffer size
used in dti_register()?

• Is an equivalent for debug_stop_all() needed?

8.2 Port of some other drivers

There are currently a large number of custom logging
APIs in the kernel, each mainly restricted to logging
formatted debugging string data related to a particu-
lar driver or subsystem. Most of them are a varia-
tion on #define DPRINTK(x...) printk(x...).

2007 Linux Symposium, Volume Two • 271

These can easy be ported to DTI using the DTI handle
API. However, DTI’s strength is focused on continuous
tracing to a buffer which can be retrieved when neces-
sary rather than the continuous logging implemented by
these special-purpose facilities.

There are, however, a handful of continuous tracing fa-
cilities similar to DTI in the kernel, varying from very
minimalistic to fairly full-featured. Included in this cat-
egory is the current s390dbf facility, which is presently
the most advanced. Briefly examined are some of the
others that tracing facilities that would be candidates for
porting to the proposed DTI API.

• drivers/scsi/mesh.c provides the dlog()
function for logging formatted records. It keeps
data in a ring of structs. The dump function printk’s
the whole buffer.

• drivers/net/wan/lmc/lmc_debug.h
provides LMC_EVENT_LOG() which logs two u32
args along with an event number and jiffies.

• drivers/char/ip2 provides ip2trace()
which is used to trace any number of longs into a
buffer containing 1000 longs. It provides a read(2)
interface to read the data.

• drivers/isdn/hardware/eicon/
debug.c provides an extensive API and set
of functions used to log and maintain a queue of
debug messages.

• fs/xfs/support/ktrace.c provides a sim-
ple yet extensive API for tracing the xfs file system.
The main logging function is ktrace_enter(),
which allows up to 16 values to be logged per en-
try into a buffer containing 64 ktrace entries.

9 Integration of other tools

DTI tracing is of course, useful in its own right. Com-
bined with a trace analysis tool such as SystemTap5 it
can become an even more powerful tool. A DTI trace
can be used to see with great detail exactly what happens
within a particular driver over a given time interval, but
it doesn’t have any other context associated with it, such
as system calls or interrupt activity that may have trig-
gered activity within the driver. In many cases, it would

5http://sourceware.org/systemtap

be extremely useful to have such associated data avail-
able for analysis. DTI’s strength is its data-gathering
functionality. Using Systemtap, DTI’s functionality can
be extended by adding context to the data, perform time
analysis of the data being gathered or maintain a sum-
mary information about the trace. For example, if a
certain pattern of interest only occurs intermittently, the
user could detect it and either halt the trace, preserving
the events that led up to it, or alert the user of the con-
dition. In addition, SystemTap can be used to gather
aggregated summaries of the data over long periods of
time (longer than the limited size of a relay buffer would
allow) to get an overall picture of activity with respect
to the driver and associated context.

The DTI tapset is being developed to allow SystemTap
to put kprobes on the high-level DTI tracing functions,
which makes all data passing through them accessible
to SystemTap. Note that doing this in no way affects the
normal flow of DTI events; the only additional effect is
the probe effect, which means that each event recorded
in this way incurs a penalty equal to the time required to
fire the probe and run the SystemTap handler.

Systemtap can also be used to dynamically place new
probe points into a driver. To do this Systemtap places
a kprobe in the driver where a trace point is to be added
and all data available at the probe point is fed back into
the DTI data stream. The DTI post-processing tools can
then be used to format and display this external data
along with the normal DTI trace output. To do this,
users make use of the ‘DTI-control’ tapset, which al-
lows SystemTap scripts to control and log data to DTI
via the standard DTI kernel interface.

10 Conclusion

Customers of s390 systems demand very high reliability
and quick turnaround time for bug fixes. Since its intro-
duction early in the history of Linux on the s390, the
s390 Debug Facility has proven itself as an invaluable
tool for meeting customers’ reliability expectations. The
ability to analyze trace data in a crash dump and perform
first fault analysis is key to the s390dfb’s success. The
question has been posed, “Why reinvent functionality
that already exists?” The answer is simple: DTI intends
to exploit the s390db model and bring this technology to
all Linux platforms. Service organizations gain not only
by the additions of DTI functionality but by the unifor-
mity of a tracing infrastructure between all platforms. In

272 • Driver Tracing Interface

addition, DTI utilizes the existing relay subsystem that
did not exist when s390dbf was written. Therefore, DTI
can be implemented with a much smaller footprint than
the s390dbf.

s390 drivers provide the perfect sandbox for porting
drivers to the DTI and testing its implementation. We
plan to pursue this effort as well as encouraging other
driver developers to adopt DTI.

Legal statement

This work represents the view of the author and does not nec-
essarily represent the view of IBM.

IBM, IBM (logo), e-business (logo), pSeries, e (logo) server,
and xSeries are trademarks or registered trademarks of Inter-
national Business Machines Corporation in the United States
and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be trade-
marks or service marks of others.

Linux readahead: less tricks for more

Fengguang Wu Hongsheng Xi Jun Li
University of Science and Technology of China

wfg@ustc.edu, {xihs,Ljun}@ustc.edu.cn

Nanhai Zou
Intel Corporation

nanhai.zou@intel.com

Abstract

The Linux 2.6 readahead has grown into an elaborate
work that is hard to understand and extend. It is con-
fronted with many subtle situations. This paper high-
lights these situations and proposes alternative solutions
to them. By adopting new calling conventions and data
structures, we demonstrate that readahead can be made
more clean, flexible and reliable, which opens the door
for more opportunities.

1 Introduction

1.1 Background

Readahead is a widely deployed technique to bridge the
huge gap between the characteristics of disk drives and
the inefficient usage by applications. At one end, disk
drives are good at large sequential accesses and bad at
seeks. At the other, applications tend to do a lot of tiny
reads. To make the two ends meet, modern kernels and
disk drives do readahead: to bring in the data before it
is needed and try to do so in big chunks.

Readahead brings three major benefits. Firstly, I/O de-
lays are effectively hidden from the applications. When
an application requests a page, it has been prefetched
and is ready to use. Secondly, disks are better utilized
by large readahead requests. Lastly, it helps amortize
request processing overheads.

Readahead typically involves actively detecting the ac-
cess pattern of all read streams and maintaining infor-
mation about them. Predictions based on on where and
how much data will be needed in the near future are

made. Finally, carefully selected data is read in before
being requested by the application.

There exist APIs (posix_fadvise(2),
madvise(2)) for the user-space to inform the
kernel about its access pattern or more precise actions
about data, but few applications bother to take advan-
tage of them. They are mostly doing sequential or
random reads, and expecting the kernel to serve these
common and simple cases right.

So the kernel has to guess. When done right, readahead
can greatly improve I/O throughput and reduce applica-
tion visible I/O delays. However, a readahead miss can
waste bandwidth and memory, and eventually hurt per-
formance.

1.2 A brief history

Linux 2.6 implements a generic readahead heuristic in
its VFS layer.

The unified readahead framework was first introduced
[1] in the early 2.5 time by Andrew Morton. It fea-
tures the current/ahead windows data structure; read-
ahead/read-around heuristics; protection against read-
ahead thrashing, aggressive cache hits [2] and congested
queues [3]. The mmap read-around logic was later taken
out by Linus Torvalds[4]. The separation of read-ahead
and read-around yields better solutions for both. The
rather chaotic mmap reads from executables can now
be prefetched aggressively, and the readahead logic can
concentrate on detecting sequential reads from random
ones.

Handling sequential and random reads right, however,
turned out to be a surprisingly hard mission. One big

274 • Linux readahead: less tricks for more

challenge comes from some mostly random database
workloads. In three years, various efforts were made
to better support random cases [5, 6, 7, 8, 9]. Finally,
Steven Pratt and Ram Pai settled it down by passing the
read request size into page_cache_readahead()
[10, 11]. The addition of read size also helped another
known issue: when two threads are doing simultaneous
pread()s, they will be overwriting each other’s read-
ahead states. The readahead logic may see lots of 1-page
reads, instead of the true pread() sizes. The old solu-
tion, in the day when page_cache_readahead()
was called once per page, was to take a local copy
of readahead state in do_generic_mapping_read
[12, 13].

1.3 Moving on

Linux 2.6 is now capable of serving common ran-
dom/sequential access patterns right. That may be suffi-
cient for the majority, but it sure can do better.

So comes the adaptive readahead patch [14], an effort
to bring new readahead capabilities to Linux. It aims to
detect semi-sequential access patterns by querying the
page-cache context. It also measures the read speed of
individual files relative to the page-cache aging speed.
That enables it to be free from readahead thrashing, and
to manage the readahead cache in an economical way.

The lack of functionality is not an issue with regard to
readahead, in fact the complexity of the code actually
prevents further innovation. It can be valuable to sum-
marize the experiences we learned in the past years, to
analyze and reduce the source of the complexity is what
motivated us to do the work of required for this paper.

We propose a readahead algorithm that aims to be clean.
It is called on demand, which helps free readahead
heuristics from most of the chores that the current al-
gorithm suffers from. The data structure is also revised
for ease of use, and to provide exact timing information.

1.4 Overview of the rest of the paper

In Section 2, we first discuss the readahead algorithm
as in Linux 2.6.20, then proceed to discuss and propose
new solutions to the three major aspects (data structure,
call scheme, and guideline) of readahead. In Section 3,
we analyze how the old/new readahead algorithms work
out in various situations. Finally, Section 4 gives bench-
mark numbers on their overheads and performance.

2 Readahead Algorithms

2.1 Principles of 2.6 readahead

Figure 1 is a brief presentation of the readahead algo-
rithm in Linux 2.6.20. The heuristics can be summa-
rized in four aspects:

sequential detection If the first read at the start of a
file, or a read that continues from where the previ-
ous one ends, assume a sequential access. Other-
wise it is taken as a random read.

The interface demands that it be informed of ev-
ery read requests. prev_page is maintained to
be the last page it saw and handled. An over-
size read (read_size > max_readahead)
will be broken into chunks of no more than max_
readahead and fed to the readahead algorithm
progressively.

readahead size There are three phases in a typical
readahead sequence:

initial When there exists no current_window
or ahead_window, the size of initial read-
ahead is mainly inferred from the size of cur-
rent read request. Normally readahead_
size will be 4 or 2 times read_size.

ramp-up When there is a previous readahead, the size
is doubled or x4.

full-up When reaching max_readahead.

It is possible to jump directly into full-up
phase, if the request size is large enough (e.g.
sendfile(10M)).

readahead pipelining To maximally overlap applica-
tion processing time and disk I/O time, it maintains
two readahead windows: current_window is
where the application expected to be working on;
ahead_window is where asynchronous I/O hap-
pens. ahead_window will be opened/renewed in
advance, whenever it sees a sequential request that

• is oversize

• has only current_window

• crossed into ahead_window

2007 Linux Symposium, Volume Two • 275

1 do_generic_mapping_read:
2 call page_cache_readahead
3 for each page
4 if is prev_page + 1
5 call page_cache_readahead
6 if page not cached
7 report cache miss
8 leave cache hit mode
9
10 page_cache_readahead:
11 handle unaligned read
12 set prev_page to current page index
13 if in cache hit mode
14 return
15 shift prev_page to the last requested page,
16 but no more than max_readahead pages
17 if is sequential read and no current_window
18 make current_window
19 call blockable_page_cache_readahead
20 if is oversize read
21 call make_ahead_window
22 elif is random read
23 clear readahead windows
24 limit size to max_readahead
25 call blockable_page_cache_readahead
26 elif no ahead_window
27 call make_ahead_window
28 elif read request crossed into ahead_window
29 advance current_window to ahead_window
30 call make_ahead_window
31 ensure prev_page do not overrun ahead_window
32
33 make_ahead_window:
34 if have seen cache miss
35 clear cache miss status
36 decrease readahead size by 2
37 else
38 x4 or x2 readahead size
39 limit size to max_readahead
40 call blockable_page_cache_readahead
41
42 blockable_page_cache_readahead:
43 if is blockable and queue congested
44 return
45 submit readahead io
46 if too many continuous cache hits
47 clear readahead windows
48 enter cache hit mode

Figure 1: readahead in 2.6.20

276 • Linux readahead: less tricks for more

cache hit/miss A generic cache hit/miss happens
when a page to be accessed is found to be
cached/missing. However, the terms have specific
meanings in 2.6 readahead.

A readahead cache hit happens when a page to
be readahead is found to be cached already. A
long run of readahead cache hits indicates an al-
ready cached file. When the threshold VM_MAX_
CACHE_HIT(=256) is reached, readahead will
be turned off to avoid unnecessary lookups of the
page-cache.

A readahead cache miss happens when a page that
was brought in by readahead is found to be lost on
time of read. The page may be relaimed prema-
turely, which indicates readahead thrashing. The
readahead size can be too large, so decrease it by 2
for the next readahead.

2.2 Readahead windows

The 2.6 readahead adopts dual windows to achieve read-
ahead pipelining: while the application is walking in the
current_window, I/O is underway in the ahead_
window. Although it looks straightforward, the imple-
mentation of this concept is not as simple as one would
think.

For the purpose of pipelining, we want to issue I/O for
the next readahead before the not-yet-consumed read-
ahead pages fall under a threshold, lookahead size. A
value of lookahead_size = 0 disables pipelining,
whereas lookahead_size = readahead_size
opens full pipelining.

The current/ahead windows scheme is one obvious way
to do readahead pipelining. It implies lookahead_
size to be readahead_size - read_size1 for
the initial readahead. It then ranges from readahead_

size to readahead_size + read_size for the fol-
lowing ones. It is a vague range due to the fact that
2.6.20 readahead pushes forward the windows as early
as it sees the read request (instead of one realtime page
read) crossing into the ahead_window.

However, the scheme leads to obscure information and
complicated code. The lookahead size is implicitly
coded and cannot be freely tuned. The timing informa-
tion for the previous readahead may be too vague to be

1assume read_size <= max_readahead

useful. The two windows bring three possible combina-
tions of on/off states. The code has to probe for the exis-
tence of current_window and/or ahead_window
before it can do any query or action on them. The heuris-
tics also have to explicitly open ahead_window to
start readahead pipelining.

Now let’s make a study of the information necessary for
a sequential readahead:

1. To work out the position of next read-
ahead, that of the previous one will be
sufficient: We normally apply a simple
size ramp up rule: (offset, size) =>
(offset+size, size*2).

2. Optionally, in case the previous readahead pages
are lost, the timing information of their first en-
queue to inactive_listwould be helpful. As-
sume the reader is now at offset, and was at
page la_index when the lost pages were first
brought in, then thrashing_threshold =
offset - la_index.

3. To achieve pipelining, indicating a lookahead page
would be sufficient: on reading of which it should
be invoked to do readahead in advance.

We revised the data structure (Figure 2) to focus on the
previous readahead, and to provide the exact timing in-
formation. The changes are illustrated in Figure 3 and
compared in Table 1.

2.3 Readahead on demand

The 2.6 readahead works by inspecting all read re-
quests and trying to discover sequential patterns from
them. In theory, it is a sound way. In practice, it
makes a lot of fuss. Why should we call excessively
into page_cache_readahead() only to do noth-
ing? Why handle cache hits/misses in convoluted feed-
back loops?

In fact, there are only two cases that qualify for a read-
ahead:

sync readahead on cache miss A cache miss oc-
curred, the application is going to do I/O anyway.
So try readahead and check if some more pages
should be piggybacked.

2007 Linux Symposium, Volume Two • 277

struct file_ra_state {
- unsigned long start; /* Current window */
- unsigned long size;
- unsigned long ahead_start; /* Ahead window */
- unsigned long ahead_size;
- unsigned long cache_hit; /* cache hit count */
- unsigned long flags; /* RA_FLAG_MISS | RA_FLAG_INCACHE */
+ pgoff_t la_index; /* enqueue time */
+ pgoff_t ra_index; /* begin offset */
+ pgoff_t lookahead_index; /* time to do next readahead */
+ pgoff_t readahead_index; /* end offset */

unsigned long prev_page; /* Cache last read() position */
unsigned long ra_pages; /* Maximum readahead window */

};

Figure 2: revising readahead data structure

(a) 2.6.20 readahead

|----- size ---->|------------ ahead_size ------------->|
===|================|======================================|=====

^start ^ahead_start

(b) on-demand readahead

|------------------- readahead size -->|
|---- reader on the way --->|-- lookahead size -->|

===|=====#==========|================#=====================|=====
^ ^ ^ ^

la_index ra_index lookahead_index readahead_index

Figure 3: tracking readahead windows

question on-demand readahead 2.6.20 readahead
when to do next read-
ahead

lookahead_index around ahead_start or start

where to do next read-
ahead

readahead_index start + size or
ahead_start +
ahead_size

the time of previous
readahead

la_index maybe/roughly start

the size of previous
readahead

readahead_index - ra_index size or ahead_size

Table 1: deciding the next readahead

278 • Linux readahead: less tricks for more

async readahead on lookahead page The application
is walking onto a readahead page with flag PG_
readahead, or a lookahead mark. It indicates
that the readahead pages in the front are dropping
to lookahead_size, the threshold for pipelin-
ing. So do readahead in advance to reduce applica-
tion stalls.

When called on demand, the readahead heuristics can
be liberated from a bunch of special cases. The details
about them will be covered in Section 3.

2.4 The new algorithm

Figure 4 shows the proposed on-demand readahead al-
gorithm. It is composed of a list of condition-action
blocks. Each condition tests for a specific case (Table
2), and most actions merely fill the readahead state with
proper values (Table 3).

random A small, stand-alone read. Take it as a random
read, and read as is.

lookahead It is lookahead time indicated by the read-
ahead state, so ramp up the size quickly and do the
next readahead.

readahead It is readahead time indicated by the read-
ahead state. We can reach here if the lookahead
mark was somehow ignored (queue congestion) or
skipped (sparse read). Do the same readahead as in
lookahead time.

initial First read on start of file. It may be accessing the
whole file, so start readahead.

oversize An oversize read. It cannot be submitted in
one huge I/O, so do it progressively as a readahead
sequence.

miss A sequential cache miss. Start readahead.

interleaved A lookahead hit without a supporting read-
ahead state. It can be some interleaved sequential
streams that keep invalidating each other’s read-
ahead state. The lookahead page indicates that the
new readahead will be at least the second one in the
readahead sequence. So get the initial readahead
size and ramp it up once.

The new algorithm inherits many important behaviors
from the current one, such as random reads, and the size
ramp up rule on sequential readahead. There are also
some notable changes:

1. A new parameter page is passed into
ondemand_readahead(). It tells whether
the current page is present. A value of NULL
indicates a synchronous readahead, otherwise an
asynchronous one.

2. A new parameter begin_offset is introduced
to indicate where the current read request begins.
prev_page now simply tracks the last accessed
page of previous request. Hence the new sequen-
tial access indicator becomes: sequential =
(begin_offset - prev_page <= 1).

3. I/O for overlapped random reads may not be sub-
mitted as early. Suppose a 8-page random read,
whose first 4 pages are overlapped with a previous
read. The 2.6 readahead will emit request for all of
the 8 pages before accessing the first page. While
the on-demand readahead will ask for the remain-
ing 4 pages on accessing the 5th page. Hence it
avoids some unnecessary page-cache lookups, at
the cost of not being able to overlap transfer of
the leading cached pages with I/O for the follow-
ing ones.

4. Linux 2.6.20 only does readahead for sequential
read requests. In the new design, we loosen the cri-
teria a bit: the lookahead hit alone can trigger the
next readahead. It enables detection of interleaved
reads.

It is not as safe to ignore sequentialness, but the risk
is pretty low. Although we can create a set of random
reads to trigger a long run of readahead sequences, it
is very unlikely in reality. One possible candidate may
be stride reads. But it cannot even cheat the algorithm
through the size ramp-up phase, where the lookahead
pages distribute in a non-uniform way.

The support of interleaved reads is minimal. It makes no
extra efforts to detect interleaved reads. So the chances
of discovering them is still low. Interleaved sequential
reads may or may not be readahead, or may be served
intermittently.

2007 Linux Symposium, Volume Two • 279

1 do_generic_mapping_read:
2 for each page
3 if page not cached
4 call ondemand_readahead
5 if page has lookahead mark
6 call ondemand_readahead
7 set prev_page to last accessed page
8
9 ondemand_readahead:
10 if is asynchronous readahead and queue congested
11 return
12 if at start of file
13 set initial sizes
14 elif is small random read in wild
15 read as is
16 return
17 elif at lookahead_index or readahead_index
18 ramp up sizes
19 else
20 set initial sizes
21 if has lookahead mark
22 ramp up size
23 fill readahead state
24 submit readahead io
25 set lookahead mark on the new page at new lookahead_index

Figure 4: on-demand readahead algorithm

case description condition
initial read on start of file !offset
oversize random oversize read !page && !sequential && size > max
random random read !page && !sequential
lookahead lookahead hit offset == ra->lookahead_index
readahead readahead hit offset == ra->readahead_index
miss sequential cache miss !page
interleaved lookahead hit with no context page

Table 2: detecting access patterns

case ra_index ra_size la_size
random offset size 0
lookahead,readahead ra->readahead_index get_next_ra_size(ra)
initial,oversize,miss offset get_init_ra_size(size,max) 1
interleaved offset + 1 get_init_ra_size(...) * 4 1

Table 3: deciding readahead parameters

280 • Linux readahead: less tricks for more

3 Case Studies

In this section, we investigate special situations the read-
ahead algorithm has to confront:

1. Sequential reads do not necessary translate into
incremental page indexes: multi-threaded reads,
retried reads, unaligned reads, and sub-page-size
reads.

2. Readahead should not always be performed on se-
quential reads: cache hits, queue congestion.

3. Readahead may not always succeed: out of mem-
ory, queue full.

4. Readahead pages may be reclaimed before being
read: readahead thrashing.

3.1 Cache hits

Ideally, no readahead should ever be performed on
cached files. If a readahead is done on a cached file,
then this can cost many pointless page cache lookups. In
a typical system, reads are mostly performed on cached
pages. Cache hits can far outweigh cache misses.

The 2.6 readahead detects excessive cache hits via
cache_hit. It counts the continuous run of readahead
pages that are found to be already cached. Whenever
it goes up to VM_MAX_CACHE_HIT(=256), the flag
RA_FLAG_INCACHE will be set. It disables further
readahead, until a cache miss happens, which indicates
that the application have walked out of the cached seg-
ment.

In summary,

1. Always call page_cache_readahead();

2. Disable readahead after 256 cache hits; and

3. Enable readahead on cache miss.

That scheme works, but is not satisfactory.

1. It only works for large files. If a file is fully
cached but smaller than 1MB, it won’t be able to
see the light of RA_FLAG_INCACHE, which can
be a common case. Imagine a web server that
caches a lot of small to medium html/png files
and desktop systems.

2. Pretend that it happily enters cache-hit-no-
readahead mode for a sendfile(100M) and
avoids page-cache lookups. Now another over-
head arises: page_cache_readahead() that
used to be called once every max_readahead
pages will be called on each page to ensure in time
restarting of readahead after the first cache miss.

The above issues are addressed in on-demand readahead
by the following rules:

1. Call ondemand_readahead() on cache miss;

2. Call ondemand_readahead() on lookahead
mark; and

3. Only set lookahead mark on a newly allocated
readahead page.

Table 4 compares the two algorithms’ behavior on var-
ious cache hit situations. It is still possible to apply the
threshold of VM_MAX_CACHE_HIT in the new algorithm,
but we’d prefer to keep it simple. If a random cached
page happens to disable one lookahead mark, let it be.
It would be too rare and non-destructive to ask for atten-
tion. As for real-time applications, they need a different
policy—to persist on cache hits.

3.2 Queue Congestion

When the I/O subsystem is loaded, it becomes question-
able to do readahead. In Linux 2.6, the load of each disk
drive is indicated by its request queue. A typical re-
quest queue can hold up to BLKDEV_MAX_RQ(=128)
requests. When a queue is 7/8 full, it is flagged as
congested; When it is completely full, arriving new re-
quests are simply dropped. So in the case of a congested
queue, doing readahead risks wasting the CPU/memory
resources: to scan through the page-cache, allocate a
bunch of readahead pages, get rejected by the request
system, and finally free up all the pages—a lot of fuss
about nothing.

Canceling readahead requests on high I/O pressure can
help a bit for the time being. However, if it’s only about
breaking large requests into smaller ones, the disks will
be serving the same amount of data with much more
seeks. In the long run, we hurt both I/O throughput and
latency.

2007 Linux Symposium, Volume Two • 281

ondemand_readahead() page_cache_readahead()
large cached chunk called on every page to recheck
full cached small files not called
prefetched chunks called to do readahead
small cached chunk may or may not be called
cache miss called and do readahead now restart readahead after first miss

Table 4: readahead on cache hits

So the preferred way is to defer readahead on a con-
gested queue. The on-demand readahead will do so for
asynchronous readaheads. One deferred asynchronous
readahead will return some time later as a synchronous
one, which will always be served. The process helps
smooth out the variation of load, and will not contribute
more seeks to the already loaded disk system.

The current readahead basically employs the same pol-
icy. Only that the decisions on whether to force a read-
ahead are littered throughout the code, which makes it
less obvious.

3.3 Readahead thrashing

In a loaded server, the page-cache can rotate pages
quickly. The readahead pages may be shifted out of the
LRU queue and reclaimed, before a slow reader is able
to access them in time.

Readahead thrashing can be easily detected. If a cache
miss occurs inside the readahead windows, readahead
thrashing happened. In this case, the current readahead
decreases the next readahead size by 2. By doing so it
hopes to adapt to the thrashing threshold. Unfortunately,
the algorithm does not remember it. Once it steps slowly
off to the thrashing threshold, the thrashings stop. It
then immediately reverts back to the normal behavior of
ramping up the window size by 2 or 4. Which starts a
new round of thrashings. On average, about half of the
readahead pages can be thrashed.

It would be even more destructive for disk throughput.
Suppose that current_window is thrashed when an
application is walking in the middle of it. The 2.6
readahead algorithm will be notified via handle_ra_
miss(). But it merely sets a flag RA_FLAG_MISS,
and takes no action to recover the current_window
pages to be accessed. do_generic_mapping_
read() then starts to fault in them one by one, gen-
erating a lot of disk seeks. Overall, up to half pages may
be faulted in this crude way.

The on-demand readahead takes no special action
against readahead thrashing. Once thrashed, an initial
readahead will be started from the current position. It
does not cut down the number of thrashed pages, but
does avoid the catastrophic seeks. Hence it performs
much better on thrashing.

3.4 Unaligned reads

File operations work on byte ranges, while the read-
ahead routine works on page offsets. When an appli-
cation issues 10000B sized reads, which do not align
perfectly to the 4K page boundary, the readahead code
will see an o f f set + size flow of 0 + 3,2 + 2,4 + 3,7 +
2,9+3,12+2,14+3,17+2,19+3, Note that some
requests overlap for one page. It’s no longer an obvious
sequential pattern.

Unaligned reads are taken care of by allowing
offset == prev_page [15] in 2.6 readahead and
on-demand readahead.

3.5 Retried reads

Sometimes the readahead code will receive an interest-
ing series of requests[16] that looks like: 0+1000,10+
990,20 + 980,30 + 970, They are one normal read
followed by some retried ones. They may be issued by
the retry-based AIO kernel infrastructure, or retries from
the user space for unfinished sendfile()s.

This pattern can confuse the 2.6.20 readahead. Explicit
coding is needed to ignore the return of reads that have
already been served.

The on-demand readahead is not bothered by this issue.
Because it is called on the page to be accessed now, in-
stead of the read request.

282 • Linux readahead: less tricks for more

case 2.6.20 on-demand overheads reasoning
sequential re-read in 4KB 20.30 20.05 −1.2% no readahead invocation
sequential re-read in 1MB 37.68 36.48 −3.2%
small files re-read (tar /lib) 49.13 48.47 −1.3% no page-cache lookup
random reading sparse file 81.17 80.44 +0.9% one extra page-cache lookup per cache miss
sequential reading sparse file 389.26 387.97 −0.3% less readahead invocations

Table 5: measuring readahead overheads

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500 600 700 800 900 1000

tim
e

(%
)

random reads (MB)

 8k
16k
32k
64k

128k
-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 500 1000 1500 2000 2500 3000 3500 4000

tim
e

(%
)

random reads (MB)

16k
32k
64k

128k

Figure 5: timing overlapped random reads

3.6 Interleaved reads

When multiple threads are reading on the same file de-
scriptor, the individual sequential reads get interleaved
and look like random ones to the readahead heuristics.
Multimedia files that contain separated audio/video sec-
tions may also lead to interleaved access patterns.

Interleaved reads will totally confuse the current read-
ahead, and are also beyond the mission of on-demand
readahead. However, it does offer minimal support
that may help some interleaved cases. Take, for ex-
ample, the 1-page requests consisting of two streams:
0,100,1,101,2,102, The stream starting from 0 will
get readahead service, while the stream from 100 will
still be regarded as random reads. The trick is that the
read on page 0 triggers a readahead (the initial case),
which will produce a lookahead mark. The following
reads will then hit the lookahead mark, make further
readahead calls and push forward the lookahead mark
(the lookahead case).

4 Performance

4.1 Benchmark environment

The benchmarks are performed on a Linux 2.6.20 that is
patched with the on-demand readahead. The basic setup
is

• 1MB max readahead size

• 2.9GHz Intel Core 2 CPU

• 2GB memory

• 160G/8M Hitachi SATA II 7200 RPM disk

4.2 Overheads

Table 5 shows the max possible overheads for both algo-
rithms. Each test is repeated sufficient times to get the
stable result. When finished, the seconds are summed
up and compared.

Cache hot sequential reads on a huge file are now faster
by 1.2% for 1-page reads and by 3.2% for 256-page

2007 Linux Symposium, Volume Two • 283

reads. Cache hot reads on small files (tar /lib) see
a 1.3% speed up.

We also measured the maximum possible overheads on
random/sequential reads. The scenario is to do 1-page
sized reads on a huge sparse file. It is 0.9% worse for
random reads, and 0.3% better for sequential ones. But
don’t take the two numbers seriously. They will be lost
in the background noise when doing large sized reads,
and doing it on snail-paced disks.

4.3 Overlapped random reads

We benchmarked 8/16/32/64/128KB random reads on
a 500/2000MB file. The requests are aligned to small
4KB boundaries and therefore can be overlapping with
each other. On every 50/200MB read, the total seconds
elapsed are recorded and compared. Figure 5 demon-
strates the difference of time in a progressive way. It
shows that the 128KB case is unstable, while others con-
verge to the range (−0.2%,0.1%), which are trivial vari-
ations.

4.4 iozone throughput

We ran the iozone benchmark with the command
iozone -c -t1 -s 4096m -r 64k. That’s doing
64KB non-overlapping reads on a 4GB file. The
throughput numbers in Table 6 show that on-demand
readahead keeps roughly the same performance.

access pattern 2.6.20 on-demand gain
Read 62085.61 62196.38 +0.2%

Re-read 62253.49 62224.99 −0.0%
Reverse Read 50001.21 50277.75 +0.6%

Stride read 8656.21 8645.63 −0.1%
Random read 13907.86 13924.07 +0.1%

Mixed workload 19055.29 19062.68 +0.0%
Pread 62217.53 62265.27 +0.1%

Table 6: iozone throughput benchmark (KB/s)

4.5 Readahead thrashing

We boot the kernel with mem=128m single, and
start a 100KB/s stream on every second. Various statis-
tics are collected and showed in Figure 6. The thrashing
begins at 20sec. The 2.6 readahead starts to overload
the disk at 40sec, and eventually achieved 5MB/s max-
imum network throughput. The on-demand readahead
throughput keeps growing, and the trend is going up to
15MB/s. That’s three times better.

 0

 5

 10

 15

 20

 25

 0 50 100 150 200

th
ro

ug
hp

ut
 (

M
B

/s
)

time (s)

2.6.20 disk
2.6.20 net

on-demand disk
on-demand net

(a) disk/net throughput on loaded disk

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160 180 200
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

re
qu

es
t s

iz
e

(K
B

)

di
sk

 u
til

iz
at

io
n

(%
)

time (s)

2.6.20 req-size
2.6.20 disk-util

on-demand req-size
on-demand disk-util

(b) average I/O size and disk utilization

Figure 6: performance on readahead thrashing

5 Conclusion

This work greatly simplified Linux 2.6 readahead al-
gorithm. We successfully eliminated the complexity
of dual windows, cache hit/miss, unaligned reads, and
retried reads. The resulting code is more clean and
should be easier to work with. It maintains roughly the
same behavior and performance for common sequen-
tial/random access patterns. Performance on readahead
thrashing and cache hits are improved noticeably.

6 Future Work

The algorithm is still young and imperfect. It needs
more benchmarks, real-world tests, and fine tuning.
Look-ahead size may be a bit smaller, especially for the
initial readahead. It does not impose strict sequential

284 • Linux readahead: less tricks for more

checks, which may or may not be good. The overlapped
random reads may also be improved.

Then we can embrace all the fancy features that were
missed for so long time. To name a few: in-
terleaved reads from multimedia/multi-threaded appli-
cations; clustered random reads and chaotic semi-
sequential reads from some databases; backward reads
and stride reads in scientific arenas; real thrashing pre-
vention and efficient use of readahead cache for file
servers. Sure there are more. They can be packed into an
optional kernel module for ease of use and maintenance.

References

[1] Andrew Morton, [PATCH] readahead, git commit
b546b96d0969de0ff55a3942c71413392cf86d2a 2

[2] Andrew Morton, [PATCH] readahead
optimisations, git commit
213f035476c932921d6281e4d5d39585f214a2eb

[3] Andrew Morton, [PATCH] rework readahead for
congested queues, git commit
10d05dd588a3879f9b40725a9073bc97fcd44776

[4] Linus Torvalds, [PATCH] Simplify and speed up
mmap read-around handling, git commit
d5cfe1b35c4e81f4c4dc5139bd446f04870ebf90

[5] Andrew Morton, [PATCH] Allow VFS readahead
to fall to zero, git commit
71ddf2489c68cf145fb3f11cba6152de49e02793

[6] Ram Pai, [PATCH] readahead: multiple
performance fixes, git commit
2bb300733b3647462bddb9b993a6f32d6cbcdbbc

[7] Ram Pai, [PATCH] speed up readahead for seeky
loads, git commit
ef12b3c1abce83e8e25d27bdaab6380238e792ff

[8] Suparna Bhattacharya, Ram Pai, [PATCH]
adaptive lazy readahead, git commit
87698a351b86822dabbd8c1a34c8a6d3e62e5a77

[9] Ram Pai, Badari Pulavarty, Mingming Cao, Linux
2.6 performance improvement through readahead
optimization, http://www.
linuxsymposium.org/proceedings/
reprints/Reprint-Pai-OLS2004.pdf

2all git commits are accessible from
http://git.kernel.org/?p=linux/kernel/git/
torvalds/old-2.6-bkcvs.git

[10] Simplified Readahead,
http://groups.google.com/group/
linux.kernel/browse_thread/
thread/e5f475d4a11759ba/
697d85a0d86458d3?&hl=en#
697d85a0d86458d3

[11] Steven Pratt, Ram Pai, [PATCH] Simplified
readahead, git commit
e8eb956c01529eccc6d7407ab9529ccc6522600f

[12] Linux: Random File I/O Regressions In 2.6,
http://kerneltrap.org/node/3039

[13] Andrew Morton, [PATCH] readahead: keep
file->f_ra sane, git commit
2ea7dd3fc9bc35ad0c3c17485949519cb691c097

[14] Linux: Adaptive Readahead,
http://kerneltrap.org/node/6642

[15] Oleg Nesterov, [PATCH] readahead: improve
sequential read detection, git commit
03a554d2325ef5f3160514359330965fd7640e81

[16] Suparna Bhattacharya, John Tran, Mike Sullivan,
Chris Mason, Linux AIO Performance and
Robustness for Enterprise Workloads,
http://www.linuxsymposium.org/
proceedings/reprints/
Reprint-Bhattacharya-OLS2004.pdf

Regression Test Framework and Kernel Execution Coverage

Hiro Yoshioka
Miracle Linux Corporation

hyoshiok@miraclelinux.com

Abstract

We have developed a Linux kernel regression test
framework (“crackerjack”) and a branch coverage test
tool (hereinafter “btrax”) to capture kernel regression.
Crackerjack is a harness program and a set of test pro-
grams. It runs test programs, records the results, and
then compares the expected results. Therefore, if a
particular system call failed in a release and was then
fixed in a later release, crackerjack records this as non-
favorable because of incompatibility. The btrax is an
integrated component of crackerjack and is a tool to as-
sess test programs’ effectiveness. It uses Intel proces-
sor’s branch trace capability and records how much code
was traced by a test program. Crackerjack is initially de-
signed for Linux kernel system call testing, but care has
been taken to allow future expansion to other types of
software.

1 Introduction

1.1 Test Early, Test Often

The Linux kernel development process does not explic-
itly define an automated mechanism for maintenance of
compatibility. Unintended introduction of incompatibil-
ities as the result of a bugfix and/or an upgrade do not get
detected in an automated way. The basis of testing in the
Linux kernel development community is predicated on
frequent releases, with feedback and review by a large
number of contributors. Therefore, end-users and mid-
dleware developers can find incompatibility problems
only after the release of a kernel.

Developers may introduce new functionality which, in-
tentionally or unintentionally, introduced incompatibil-
ity but there are few cases which describe the incom-
patibility explicitly. For example, you may write in the
change log, “Function XXX is added” but you may not

write “There is an incompatibility YYY because of in-
troducing function XXX.”

The cost of validating such incompatibility for middle-
ware developers is increasing, therefore we need some
mechanism to find such incompatibility.

If you find the incompatibility early, then analysing the
issue and fixing it is very easy.

However, if you find the issue very late, some applica-
tions may already make use of this incompatible behav-
ior and therefore you can not change or fix the behavior,
even the fix is trivial.

Therefore, finding incompatibility very early has practi-
cal benefit not only for Linux kernel developers but also
for middleware developers.

1.2 Regression Testing

1.2.1 Necessities of Regression Testing

The word regression has a negative connotation; de-
grade also has a bad image. Incompatibility is not al-
ways a bad thing. We have to have some incompatibility
to introduce new features, bug fixes, and performance
improvements.

Although the word regression has negative connotation,
we will use the word in this paper, because the term “re-
gression test” is commonly used in the testing commu-
nity.

Regression testing is a mechanism to find different (diff)
behavior of implementation. Maintaining compatibility
is very important. But it is not always possible, we have
to have some tradeoff.

• 285 •

286 • Regression Test Framework and Kernel Execution Coverage

1.2.2 Automatic Test

Testing is a boring process but we’d like to change so it
is a fun and easy process.

We need a systematic way to find a regression of the
Linux Kernel and OSS.

Regression testing is an automatic process which runs
a test and compares the expected results, then validates
the compatibility of the software. Regression testing is a
common practice in commercial software developments
but not well done in the open source software.

As such, we have developed a compatibility testing tool
for the Linux kernel interface, the goal of which is to
avoid unintended introduction of incompatibilities, and
to effectively reduce application development cost by
detecting such incompatibilities upfront. This tool is
different from standard certification tests such as Linux
Standard Base, in that the tool can detect incompatibil-
ities between a particular version of a kernel and its re-
vised versions.

The test tool includes following features.

• Automatically assess kernel behaviors and storing
the results.

• Detect differences between stored results and point
out incompatibilities.

• Manage (register, modify, remove) test results and
expected test results.

We will promote the development of this test tool by
communicating with the Linux kernel community, the
test community, the North-east Asia OSS Promotion
Forum, etc. from an early stage, through the so-called
bazaar model.

1.2.3 Expected Usage

Linux kernel developer

Bugfix of an existing kernel: Verify that the bugfix does
not destroy previous features in an incompatible way.
Add a test program for the bug in question and verify
that the existing kernel includes the bug and the bugfix
version does not.

Development of new features: Verify that the new fea-
ture in question does not destroy previous features in an
incompatible way. If the feature extension was an in-
compatible extension, verify the extent of such incom-
patibility. Add test program for the new feature to main-
tain compatibility in the future.

Middleware developer

These developers should execute a regression test
against a new version of kernel, and if incompatibili-
ties are found, specifically understand the extent of the
incompatiblity. It will be easy to find kernel regression,
if middleware tests are prepared and run.

1.2.4 Non Goals

The following are non goals.

• Certification Tests e.g. POSIX, LSB

• Performance Tests, e.g. Benchmarks

We don’t build certification tests nor performance tests.
They are non goals.

1.3 Summary of theme

Develop a regression test framework, the regression
tests, and the test coverage measurement tool, as shown
in figure 1. Regression test framework is a framework
that executes each of the test sets, and is a basis for
the framework of this Linux kernel compatibility test-
ing tool.

2 Regression Test Framework - crackerjack

Crackerjack is a regression test framework which pro-
vides 1) execution of test sets, 2) reporting based on re-
sults of test set execution, and 3) management of test
programs, expected results, test sets, and test results.

It is implemented using Ruby on Rails. Ruby makes it
easy to modify, ensuring a low maintenance cost.

Regression testing is defined as testing two builds of
software, with emphasis on detection of regression (in-
compatibility of functionality).

2007 Linux Symposium, Volume Two • 287

In Figure 1, the result (Rn) of a test executed on a cer-
tain version of software (Vn) is compared against an ex-
pected result (En). The initial expectation (E1) is typi-
cally identical to R1.

V1----- V2----- V3----- V4
R1----- R2----- R3----- R4
^ ----- ^ ----- ^ ----- ^

compare | ~~~~~ | ~~~~~ | ~~~~~ |
v ----- v ----- v ----- v
E1----> E2----> E3----> E4

Figure 1: Comparison between test results (Rn) and ex-
pected results (En)

To detect a regression, the results from two separate
builds have to be compared. If a result from a system
call can be statically determined to be correct, such a
comparison would return a valid result (OK) and or not
(NG). We can add a comparison routine to determine the
results.

pid = getpid ()
if (pid > 5000 && pid < 66536) {

printf ("OK\n");
} else {

printf ("NG\n");
}
return EXIT_SUCCESS

Figure 2: Example – Exact Match

pid = get_pid
printf ("%d\n", pid)
return EXIT_SUCCESS

Figure 3: Example - Range

In the first example above (see Figure 2), the test pro-
gram statically determines whether the function call re-
turned a valid result (’OK’) or not (’NG’). In the second
example (see Figure 3), the test program only outputs
the function call result, for later comparison.

The comparison method may vary between test pro-
grams. Therefore, it is the test program developer’s re-
sponsibility to define a comparison method for that test
program.

The objective of the crackerjack system is to perform
regression tests. crackerjack consists of (1) framework,
(2) a collection of test programs, and (3) branch tracer

(btrax). It is outside the scope of crackerjack project, to
measure performance or certify compatibility.

2.1 Software Functionality

The framework provides the following functions.

• Run both GUI (Graphical User Interface) mode and
CUI (Character User Interface) mode.

• Execute test programs.

• Compare test execution results and expected re-
sults.

• Report based on results of test set execution.

• Manage test programs, expected results, test sets,
test target, and test results.

• Define compare programs.

The expected end-users of crackerjack are kernel devel-
opers, middleware developers, and test program devel-
opers.

For more information, please refer to the Appendix.

3 Branch Tracer for Linux – btrax

3.1 btrax

We have integrated a branch tracer for Linux (known as
btrax hereinafter) in the crackerjack to find the execution
coverage of regression tests.

This program (btrax) traces the branch executions of the
target program, analyzes the trace log file, and displays
coverage information and execution path. It’s possible
to trace it for an application program, a library, a kernel
module, and the kernel.

The btrax consists of the following commands.

1. Collect the branch trace log via bt_collect_
log,

2. Report the coverage information via bt_
coverage,

288 • Regression Test Framework and Kernel Execution Coverage

3. Report the execution path via bt_execpath, and

4. Split the branch trace log by each process via bt_
split.

The btrax collects a branch trace information using In-
tel’s last branch record capability. bt_collect_log
stores the branch trace log, bt_coverage and bt_
execpath report the branch coverage and the execu-
tion path information respectively.

3.2 Coverage

The coverage information gathered includes function,
branch, and state coverage. Usually, it would be dis-
played in address value order.

The branch tracer (bt_collect_log) collects the
last branch information using Intel’s last branch record
capability.

bt_coverage analyzes the ELF files such as kernel,
module, etc. and gets the branch and function-call in-
formation. Then, it analyzes the traced log(s) with this
information, and displays the coverage information.

Function coverage displays how many functions were
executed among total functions. Displayed functions are
almost compatible with objdump’s output. Note that it
would not show the “function call coverage.” (See Fig-
ure 12.)

Branch coverage displays how many conditional
branches (i.e. both branch and fall-through) were exe-
cuted among total ones. (See Figure 13.)

State (basic block) coverage shows how many states
(basic block) were executed among total states. State
means straight-line piece of code without any jumps
or jump targets in the middle (a.k.a. basic block). In
the previous “switch case” example, if the codes of the
“case 0” and “case 2” were both executed three times,
then each state and coverage would be as follows. (See
Figure 15.)

A chain of function calls is displayed, for example, func-
tion FA calls function FB, and function FB calls function
FC, and so on. If you would like to limit the coverage
target to the functions which are included in function
call tree, -I option can be used. In this case, the function

call tree would be displayed with other coverage infor-
mation (such as function/branch/state coverage). Exam-
ple of the function call tree is shown below. (See Fig-
ure 16.)

4 Linux Kernel System Call Test Coverage

We made test programs which use Linux system calls
and used the crackerjack with the btrax. We measured
the function coverage, the branch coverage, and the state
coverage of the each test program execution (Table 1).

We selected 50 system call test programs of LTP and
measured the execution coverages of them as our bench-
mark. (Table 2)

We know the LTP is comprehensive test suite but the
execution coverage is not large enough.

The average function coverage, branch coverage, and
state coverage are 41.39%, 23.1%, and 30.94% respec-
tively. (Note: 38%, 10%, and 12% of the test programs
exceeded 50% of function, branch, and state coverage.)

It is very difficult to increase the execution coverage.
The following are the reasons.

• exception/error condition: Making an exception
program is not easy. Making an Error condition
is not easy. Sometimes it is not feasible.

• asynchronous processing: For example, making
spin/lock, spin/wait condition is not easy.

• excluding functions from coverage measures: For
example, a common routine like printk has a lot of
execution path. If a given system call uses printk,
it contains a lot of execution path which are not
covered the test programs.

We need to exclude some functions from the coverage
measurement but it is hard to find such functions. Prun-
ing unnecessary code path is difficult. If a given system
call has more than three digits of function calls, it im-
plies insufficient pruning.

It is almost impossible to run codepaths for low memory
situations. It is even questionable that such test could
even run.

2007 Linux Symposium, Volume Two • 289

System call
Func

coverage %
branch

coverage %
state

coverage %
13 time 100.0 70.0 88.24
20 getpid 0.00 100.00 0.00
20 getpid (wb) 100.00 100.00 100.00
25 stime 69.23 41.67 50.68
27 alarm 14.19 2.50 5.65
30 utim (wb) 30.77 10.79 16.73
30 utime 23.56 8.81 13.38
42 pipe 67.74 31.91 49.79
42 pipe (wb) 82.26 47.04 65.60
45 brk 23.88 8.96 12.74
45 brk (wb) 23.13 9.12 12.53
66 setsid 29.41 12.08 18.10
78 gettimeofday 87.50 52.00 70.31
79 settimeofday 77.78 45.19 57.04
82 old_select 3.96 1.78 2.67
87 swapon 19.12 9.05 12.21
90 old_mmap 7.14 2.91 3.54
91 munmap 13.74 5.78 7.66
92 truncate 4.48 1.06 1.77
93 ftruncate 0.88 0.11 0.20

101 ioperm 19.78 8.84 10.91
103 syslog 5.45 1.67 2.44
104 setitimer 3.79 1.44 2.02
105 getitimer 1.35 0.45 0.61
110 iopl 100.00 50.00 81.82
115 swapoff 12.28 4.12 6.18
116 sysinfo 15.11 3.31 5.79
120 clone 19.30 6.79 9.92
121 setdomainname 7.46 1.88 3.15
124 adjtimex 5.67 1.05 1.79
125 mprotect 7.82 3.90 5.28
142 select 3.96 1.78 2.67
144 msync 1.52 0.42 0.62
147 getsid 72.73 46.67 61.70
150 mlock 2.08 0.37 0.72
151 munlock 1.66 0.31 0.56
152 mlockall 24.12 9.29 12.62
153 munlockall 1.66 0.21 0.44
162 nanosleep 31.76 13.41 18.67
163 mremap 13.83 6.21 8.71
168 poll 2.30 0.95 1.47
187 sendfile 1.01 0.11 0.19
193 truncate64 4.48 1.06 1.77
194 ftruncate64 0.88 0.11 0.2
203 setreuid 1.27 0.23 0.38
204 setregid 100.00 20.00 46.43
205 getgroups 1.54 0.25 0.41
206 setgroups 1.26 0.10 0.23
208 setresuid 1.27 0.26 0.41
209 getresuid 66.67 33.33 60.00
210 setresgid 100.00 18.42 45.16
211 getresgid 66.67 33.33 60.00
218 mincore 0.62 0.06 0.10
219 madvise 1.60 0.50 0.73

Table 1: Summary of coverage of tests %

System call
Func

coverage %
branch

coverage %
state

coverage %
13 time 75.00 60.00 82.35
20 getpid 100.00 100.00 100.00
25 stime 61.54 35.42 47.95
27 alarm 53.45 15.58 25.03
30 utime 28.85 9.83 15.27
42 pipe 77.42 44.08 61.32
45 brk 13.43 6.76 8.88
66 setsid 23.53 7.92 12.76
78 gettimeofday 87.50 44.00 67.19
79 settimeofday 66.67 32.69 45.77
82 old_select No exist No exist No exist
87 swapon 29.08 11.40 16.80
90 old_mmap 17.41 11.25 13.11
91 munmap 21.15 9.45 13.24
92 truncate 19.77 6.21 9.73
93 ftruncate 15.48 4.38 7.22

101 ioperm 4.27 1.56 2.02
103 syslog 26.32 13.64 14.13
104 setitimer 48.44 11.01 21.05
105 getitimer 67.86 24.65 40.64
110 iopl 100.00 100.00 84.62
115 swapoff 20.61 5.90 9.75
116 sysinfo 86.96 40.35 59.06
120 clone 27.52 11.48 16.80
121 setdomainname 100.00 50.00 71.43
124 adjtimex 57.14 16.18 26.49
125 mprotect 11.53 5.70 7.57
142 select 10.88 4.72 6.61
144 msync 5.50 2.45 3.25
147 getsid 72.73 26.67 48.94
150 mlock 20.60 8.39 12.23
151 munlock 5.32 3.12 3.76
152 mlockall 17.82 7.08 9.88
153 munlockall 2.31 0.39 0.69
162 nanosleep 58.82 15.16 25.32
163 mremap 17.57 7.68 11.04
168 poll 6.12 1.86 3.13
187 sendfile 12.77 3.72 6.05
193 truncate64 No exist No exist No exist
194 ftruncate64 No exist No exist No exist
203 setreuid 11.76 4.08 5.69
204 setregid 100.00 96.43 96.43
205 getgroups 83.33 40.00 60.78
206 setgroups 9.43 2.95 4.55
208 setresuid 10.92 4.14 5.68
209 getresuid 66.67 50.00 80.00
210 setresgid 100.00 68.42 96.88
211 getresgid 66.67 50.00 80.00
218 mincore 13.57 4.85 7.04
219 madvise 11.43 4.03 6.15

Table 2: Summary of coverage of tests (LTP)%

290 • Regression Test Framework and Kernel Execution Coverage

In spin lock situations, program code normally runs
through locked side path. It is hard to prepare condi-
tions for competing locks.

Making race condition is also hard to test.

There is a common function called from gettimeofday
/ settimeofday. In this common function, paths are
uniquely determined by get / set. So other execution
paths have never been executed.

5 Discussion

5.1 Kernel Tests – Writing a Good Test is Very
Hard

5.1.1 Test Coverage

Writing good kernel tests is very difficult. Our data
shows that the execution coverage is low. As discussed
above, it is very hard to increase the execution coverage.

5.1.2 man Pages are Not Enough

Some man pages do not have enough detail information.
For example, utime does not have a description of error
return values.

If we don’t have clear definition, we can not determine
if the test result is OK or NG.

5.1.3 Behavior of 2.4 vs. 2.6

2.6 introduced more strict parameter checking. We dis-
covered a condition where 2.4 did not report errors but
2.6 did. (We discovered implementation-dependent in-
compatibility.)

For example, settimeofday second had loose error
checking, but 2.6 introduced more strict error checking.

We think fixing a bug is important but changing behav-
ior may introduce other incompatibility. So we need to
know as early as possible to assess it.

5.2 Finding Incompatibility

For portability, middleware developers should prefer-
ably not be using implementation-dependent and unde-
fined functions. However there are cases when such
functions are used without intention.

There is a large hidden cost to avoid unintended intro-
duction of incompatibility. It is said that the most costly
activity in development of commercial software is the
maintenance of backward compatibility.

Crackerjack detects not only unintended incompatibili-
ties, but also intended incompatibilities. Both are im-
portant for notification to middleware developers. It is
important to notify the changes in behavior, in a timely
manner. We can detect behavior diffs across versions.

For example, the memory range acquired from brk()
is static but the memory range is randomized by turning
on the exec shield. Crackerjack detects such a specifica-
tion change.

We can write user-defined compare program not only
simple OK/NG but allows some statistical allowance.

6 Related Work

6.1 LTP

LTP (Linux Test Project) is a set of Linux test programs
which includes the Linux kernel test, stress tests, bench-
mark tests, and so on. LTP is a comprehensive test suite
but it is not intended to be a regression test suite.

The Linux kernel test validates the POSIX definition of
the kernel therefore it does not cover features like im-
plementation defined, implementation dependent, and
or undefined functionality.

On the other hand, crackerjack is a test harness and tries
to capture all execution behavior and difference between
each version. Such behavior includes not only standard
features but also implementation defined, implementa-
tion dependent, and undefined by the standard.

Crackerjack finds the diff of implementation behavior.

We can integrate crackerjack with the LTP. For example,
adding some regression tests to LTP and invoke them
from crackerjack.

2007 Linux Symposium, Volume Two • 291

6.2 gcov/lcob

The gcov/lcob is a coverage tool. There is a kernel patch
to measure the test coverage of the Linux kernel. The
gcov uses gcc to get the coverage data but you need to
patch the kernel.

The btrax uses Intel’s last branch record capability and
you don’t need any patch nor rebuild kernel. So you can
measure your standard kernel without rebuilding kernel.

6.3 autotest

The autotest is a harness program of invoking several
tests program including LTP, benchmark programs and
so on.

We can plug crackerjack into autotest.

7 Future Work

7.1 Kernel Development Process

We believe finding incompatibility in an early stage is
very important and all of us can get much benefit from
it.

It is good thing to run regression tests on every kernel
release. Adding this practice into the kernel develop-
ment process is our big challenge. We need to show our
benefit to the kernel community and convince them to
use it.

7.2 Expanding the Area

The concept of regression testing is very simple, just
find the diff of the implementation between releases.
Crackerjack can be used on other types of software in-
terfaces, for example, the /proc file system, glibc, and
so on.

The system calls are very stable and we don’t see much
incompatibility in them. However, /proc file system is
much more flexible, so we may easily find some incom-
patibility.

7.3 Crackerjack

A richer set of default compare programs for crackerjack
is needed. Today we have to add compare programs if
the default does not match your needs.

We need methodology to relieve the test program devel-
opers. It might be a test pattern, convention or environ-
ment.

Crackerjack has to record system information, environ-
ment, and reproducible information.

Current development focuses on regression test frame-
work and test coverage tool. Extending the test to all of
Linux kernel functions, and sustained execution of re-
gression tests, would wait until the next project.

7.4 Community Activity

Our development is supported by a working group of
Japan OSS promotion forum which consists of private
sector and public sector. There is a collaboration with
China and Korea groups too.

We’d like to expand this activity with the Linux and test
community.

8 Acknowledgements

This project is supported by the Information Technology
Promotion Agency (IPA), Japan.

We would like to thank my colleagues and their con-
tributions. Satoshi Fujiwara (Hitachi) implements the
btrax. Takahiro Yasui (Hitachi) and Masato Taruishi
(Red Hat KK) wrote kernel tests and measured the
Linux kernel execution and the branch coverage. Kazuo
Yagi (Miracle Linux) implements the crackerjack.

The project team: Hitachi team; Satoshi Fujiwara
(btrax), Takahiro Yasui (kernel test programs), Hisashi
Hashimoto, Yumiko Sugita, and Tomomi Suzuki.

Miracle Linux team; Kazuo Yagi (crackerjack and ker-
nel test programs), Ryo Yanagiya, and Hiro Yoshioka.

Red Hat KK team; Masato Taruishi (kernel test pro-
grams) and Toshiyuki Takamiya.

292 • Regression Test Framework and Kernel Execution Coverage

References

[1] Linux Test Project
http://ltp.sourceforge.net/

[2] autotest
http://test.kernel.org/autotest/

[3] ABAT http://test.kernel.org

[4] Test Tools Wiki(OSS Testing Summit)
http://developer.osdl.org/dev/test_

tools/index.php/Main_Page

[Eric Raymond] The Cathedral and the Bazaar
http://www.catb.org/~esr/writings/

cathedral-bazaar/cathedral-bazaar

[5] Ruby on Rails
http://www.rubyonrails.org/

Appendix:

A crackerjack – Getting Started

A.1 Get the Code and make

The latest source code is always available at
https://crackerjack.svn.sourceforge.
net/svnroot/crackerjack/

You can get it by Subversion. For example, see the Fig-
ure 4 “Getting Source code and make.”

$ svn co \
https://crackerjack.svn.sourceforge.net/svnroot/crackerjack/

A crackerjack/trunk
A crackerjack/trunk/crackerjack
(...snip...)
Checked out revision 477.

$ make
(...snip...)

Figure 4: Getting Source Code and make

If a test program has compiler errors, then try make
-k. Some system calls are not available in old Linux
kernels, for example, 2.6.9 does not have mkdirat, mkn-
odat etc.

$ su -

Password:

cd /usr/src/crackerjack/trunk/crackerjack/

./crackerjack

crackerjack>h
number push test program to stack
d Delete(pop) stack
e register test program result

on stack as Expected result
h help
l List the test programs
p Print stack
x eXecute test program on stack

Figure 5: Invoke crackerjack

crackerjack>l
0000) access
0001) adjtimex
0002) adjtimex/whitebox
0003) alarm
...

Figure 6: List the Tests Command

A.2 Invoke crackerjack

Become the root user and run crackerjack.

Read help with ’h’ command. (See Figure 5)

List the test programs with ’l’ command. (See Figure 6)

Push the test programs to the stack with “number” which
corresponds to the test program you want. You can look
the contents of stack with p command, and pop the test
programs from stack with d command.

Execute the test program on stack with the ’x’ com-
mand. (See Figure 7.)

Quit the crackerjack with the ’q’ command. (See Figure
8.)

A.3 Run in Non-interactive way

You can execute test programs from a file which indi-
cates the order of tests (order file). (See Figure 9.)

You can create an order-file using the ’l’ command sim-
ilar to the following then execute the test. (See Figure
10.)

2007 Linux Symposium, Volume Two • 293

crackerjack>1

1

crackerjack>2

1 2

crackerjack>3

1 2 3

crackerjack>4

1 2 3 4

crackerjack>5

1 2 3 4 5

crackerjack>x
Action SystemCallName Id
X adjtimex 20070412133111
X adjtimex/whitebox 20070412133111
X alarm 20070412133111
X alarm/whitebox 20070412133111
X brk/basic 20070412133111

Figure 7: Execute Tests

crackerjack>q
#

Figure 8: Quit with the ’q’ Command

A.4 GUI mode

Invoke the GUI server similar to the following then use a
web browser to access localhost:3000. (See Figure 11.)

You may need to install the Ruby on Rails.

B btrax – Getting Started

B.1 Basic Concept

This program (btrax) traces the branch executions of the
target program, analyzes the trace log file, and displays
coverage information and execution path. It’s possible
to trace it for an application program, a library, a kernel
module, and the kernel.

The btrax consists of the following commands.

./crackerjack -h
USGE: crackerjack [option] [FILE]
-l list the test programs
-x FILE execute the test program on reading order from file
-e FILE register the current result as the expected result
-c result_kerv,result_id,expected_kerv,expected_id

compare the current result to the expected result
-b execute with btrax, avaiable with -e option
-h show this help
-v show version

Figure 9: crackerjack Non-interactive Mode

./crackerjack -l > m.order
./crackrjack -x m.order

Figure 10: crackerjack Non-interactive with ’l’ and ’x’
Commands

./crackerjack-gui-server

Figure 11: crackerjack GUI Mode

1. Collect the branch trace log via bt_collect_
log,

2. Report the coverage information via
bt_coverage,

3. Report the execution path via bt_execpath,

4. Split the branch trace log by each process via bt_
split.

The btrax collects a branch trace information using In-
tel’s last branch record capability. bt_collect_log
stores the branch trace log, bt_coverage and bt_
execpath report the branch coverage and the execu-
tion path information respectively.

B.2 Coverage

The coverage information includes function coverage,
branch coverage and state coverage. Usually, it would
be displayed in address value order.

B.2.1 bt_coverage

bt_coverage analyzes the ELF files such as kernel,
module, etc. and get the branch and function-call in-
formation. Then, it analyzes the traced log(s) with this
information, and displays the coverage information.

bt_coverage tries to show the source information
such as source file name and line number, but if there
is no debug information in the ELF file, it shows only
the address value.

You can check whether the source code was executed or
not by using html output (for this, it needs debug infor-
mation in the ELF file and the source code files). Note
that inline functions and macros would not be colorized

294 • Regression Test Framework and Kernel Execution Coverage

correctly in the html files. It is because they were ex-
panded to the other functions and could not be found in
the ELF file.

You can also compare the two log files’ kernel coverage
by generating html files. Even if the log files were gen-
erated on the different kernels, bt_coverage can still
compare them.

B.2.2 Function Coverage

It displays how many functions were executed among
total functions. Displayed functions are almost compat-
ible with objdump’s output. Note that it would not show
the “function call coverage.” For example, refer to the
below chart (‘//’ means comment). (See Figure 12.)

(example source code)
funcA(); // executed once
funcB(); // executed once
...
funcB();
...
funcB();
funcC();

(then, coverage output would be...)
---- function coverage (2/3=66.67%) ----
(OK) <funcA> (1) // funcA executed once
(OK) <funcB> (1) // funcB executed once
(NT) <funcC> (0) // funcC not executed

Figure 12: Function Coverage

B.2.3 Branch Coverage

It displays how many conditional branches (i.e. both
branch and fall-through) were executed among total
ones. For example, branch coverage counting for each
coverage case is as follows. (See Figure 13.)

There is a case that the branch address would be de-
termined by indirect addressing such as “switch case”
code. In this case, it is impossible to know the branch
addresses and number of these by analyzing the ELF
file. (See Figure 14.)

We call this kind of branch as “unknown branch.” Un-
known branches are counted whether the branch was
executed or not, and are counted separate from normal
branches. In this example, if all of the switch case codes
were not executed, branch coverage would be as fol-
lows.

(example source code)
Address C Assembler

1: if (xxx) jxx LABEL
2: aaa; aaa
3: bbb; LABEL: bbb

(coverage counting for each case)

branch
(1->3)

fall-
through
(1->2)

coverage
counting

symbols

not executed not executed 0/2=0.00% NT
not executed executed 1/2=50.00% HT
executed not executed 1/2=50.00% HT
executed executed 2/2=100.00% OK

(if branch was executed 3 times, and fall-through was executed 1 time, then coverage output would

be. . .)

---- branch coverage (OK:1,HT:0,NT:0/2=100.00% UK:0/0=100.00%)

(OK) 1 [3/1] 3:2 // 1->3 3 times, and 1->2 1 time executed

Figure 13: Branch Coverage

(example source code)
Address C Assembler
------- ------------------- -------------------

1: switch (xxx) { jmp *(%eax)
2: case 0: aaa; aaa
3: break; jmp LABEL
4: case 1: bbb; bbb
5: break; jmp LABEL
6: case 2: ccc; ccc
7: break; LABEL:
8: }

Figure 14: Branch Coverage

---- branch coverage (OK:0,HT:0,NT:0/0=100.00% UK:0/1=0.00%)
(UN) 1 [0/x] ----------:xxxxxxxxxxx // 1 jumps nowhere

Or, if the codes of the “case 0” and “case 2” were both
executed 3 times, then branch coverage would be as fol-
lows.

---- branch coverage (OK:0,HT:0,NT:0/0=100.00% UK:1/1=100.00%)
(UT) 1 [3/x] 2:xxxxxxxxxxx // 1->2 executed 3 times
(UT) 1 [3/x] 6:xxxxxxxxxxx // 1->6 executed 3 times

In the coverage output, you cannot check that how many
branches were executed for the unknown branches.
But each case block’s execution information would be
showed in state coverage. Although you can check that
in html output.

B.2.4 State (Basic Block) Coverage

It shows how many states (basic block) were executed
among total states. State means straight-line piece of
code without any jumps or jump targets in the middle
a.k.a. basicblock. In the previous ’switch case’ exam-
ple, if the codes of the “case 0” and “case 2” were
both executed three times, then each state and coverage
would be as follows. (See Figure 15.)

2007 Linux Symposium, Volume Two • 295

(example source code)
Address C Assembler
------- ----------------- -------------------

1: switch (xxx) { jmp *(%eax)
- - - - - - - - - - - - -// state border

2: case 0: aaa; aaa
3: break; jmp LABEL

- - - - - - - - - - - - - -
4: case 1: bbb; bbb
5: break; jmp LABEL

- - - - - - - - - - - - - -
6: case 2: ccc; ccc

- - - - - - - - - - - - - -
7: break; LABEL:
8: }

(coverage output would be...)
------ state coverage (4/5=80.00%) ------
(OK) 1 // state from address 1 was executed
(OK) 2
(NT) 4 // state from address 4 was not executed
(OK) 6
(OK) 7

Figure 15: State (basic block) Coverage

B.2.5 Function Call Tree

It means the chain of function call, for example, function
FA calls function FB, and function FB calls function FC,
and so on. If you would like to limit the coverage tar-
get to the functions which are included in function call
tree, -I option can be used. In this case, function call
tree would be displayed with other coverage informa-
tion (such as function/branch/state coverage). Example
of the function call tree is shown below. (See Figure 16.)

==== includes: sys_open ======
==== excludes: schedule,printk,dump_stack,panic,show_mem ====
==== function tree (59/498=11.85%) ======
(OK) <sys_open>:fs/open.c,1101 (3, F:498)
(OK) +-<do_sys_open>:fs/open.c,1079 (3, F:497)
(OK) +-+-<do_filp_open>:fs/open.c,874 (3, F:196)
(OK) +-+-+-<nameidata_to_filp>:fs/open.c,942 (3, F:4)
(OK) +-+-+-+-<__dentry_open>:fs/open.c,799 (3, F:3)
(NT) +-+-+-+-+-<wake_up_process>:kernel/sched.c,1521 (0, F:1)
//... snip ...
(UT) <generic_file_open>:fs/open.c,1216 (2)
(UT) <dummy_inode_follow_link>:security/dummy.c,324 (1)
//... snip ...

Figure 16: Function Call Tree

In this example, we can see that the sys_open was ex-
ecuted (it is seen as ‘OK’) 3 times and it contains 498
functions including itself (it is seen as (3, F:498)).
If the function was already displayed, then it is dis-
played with (--) symbol instead of (OK) or (NT).

A function call tree may contain unnecessary functions
for the user. In this case, it could be excluded by us-
ing -E option. You can also check that if it would be
excluded, then how many functions would be decreased
by using “F:N” information (we call it “function exclud-
ing guidance”) in the function call tree.

Function excluding guidance is also displayed in the

“function coverage,” and each function’s information is
sorted by this value.

There is the function call whose address would be de-
termined by indirect addressing such as “function call
by using function pointer.” In this case, it is impossible
to know the function address by analyzing the ELF file.
So, this kind of functions would not be displayed in the
function tree. Example of this kind of function call is
shown below.

(example source code)
Address C Assembler
------- ----------------------------------- ----------------

1: int call_function(void (*func),,,)
2: {
3: func(); call *0x84(%edx)
4: }

If you would like to include this kind of function to
the coverage target, you must check the source code
if there is no information. To improve this situation,
(bt_coverage) also analyzes the trace log(s) and
shows the functions which were executed by indirect ad-
dressing. This kind of function is displayed with (UT)
mark (we call it “function including guidance”). Read
the man page for more information.

B.3 Get the Code, Build and Install

The project home page is the following, Download the
tarball from the project page.

http://sourceforge.net/projects/
btrax/

Read the README and follow the instruction. (See
Figure 17.)

B.4 Checking System Call Coverage

In order to determine the correctness of our regression
test, we measure the execution branch coverage of tests.
The following subsections show the steps to take to mea-
sure the branch coverage using the btrax.

B.4.1 Create a program calling system call

Create a regression test which uses a system call(s).
(You can use LTP as an example.)

296 • Regression Test Framework and Kernel Execution Coverage

Build and Install.

$ cd $(WHERE_YOUR_WORK_DIRECTORY)
$ tar jxvf btrax-XXX.tar.bz2
$ cd btrax-XXX

Install the command.

$ make
$ su (input super-user password here)
make install

Create relayfs mount point.

mkdir /mnt/relay

Figure 17: Build and Install

B.4.2 Start Branch Trace

Start branch trace. (See Figure 18.) Note that
syscall_name must be defined in the kernel’s sys_
call_table.

bt_collect_log --syscall \
$(syscall_name) -d $(ODIR)\
-c $(program)

Figure 18: Start branch trace

B.4.3 Checking Coverage

To check the system call coverage summary, do the next
command. (See Figure 19.)

cd $(ODIR)
bt_coverage --ker -f \

‘echo $(ls cpu*)|sed ’s/\s\+/,/g’‘ \
-I $(syscall_name) -s

Figure 19: Checking coverage

To check the system call coverage detail, do the next
command. (See Figure 20.)

If you want to exclude the function(s) from coverage
result, use the -E option. (See Figure 21.) To check
whether the code in that system call was executed or
not, do the next. (See Figure 22.) Note that html files are
using the Javascript. If you have some trouble browsing,
check the Javascript setting.

bt_coverage --ker -f \
‘echo $(ls cpu*)|sed ’s/\s\+/,/g’‘ \
-I $(syscall_name)

Figure 20: Checking Call coverage

bt_coverage --ker -f \
‘echo $(ls cpu*)|sed ’s/\s\+/,/g’‘ \
-I $(syscall_name) \
-E schedule,dump_stack,printk

Figure 21: Excluding functions

bt_coverage --ker -f \
‘echo $(ls cpu*)|sed ’s/\s\+/,/g’‘ \
-I $(syscall_name) \
-E schedule,dump_stack,printk \
-o $(HTML_OUT_DIR) -S $(KERN_SRC_DIR)

(mozilla) file://$(HTML_OUT_DIR)/top.html

Figure 22: Excluding functions

B.4.4 Compare System Call Coverage

bt_coverage --ker \
-I $(syscall_name)\
-E schedule,dump_stack,printk \
-o $(HTML_OUT_DIR)\
-S $(KERN_SRC_DIR)\
-f ‘echo $(log1/cpu*)|sed ’s/\s\+/,/g’‘ \
--f2 ‘echo $(log2/cpu*)|sed ’s/\s\+/,/g’‘

(mozilla) file://$(HTML_OUT_DIR)/top.html

Figure 23: Comparing the system call coverage

To compare same kernel’s system call coverage, do the
next command line which uses the -S, -f and –f2 op-
tions. In this example, each log directory is log1 and
log2. (See Figure 23.)

bt_coverage --ker\
-I $(syscall_name)\
-E schedule,dump_stack,printk \
-o $(HTML_OUT_DIR)\
-u uname_r1 --u2 uname_r2\
-S src1 --S2 src2 \
-f ‘echo $(log1/cpu*)|sed ’s/\s\+/,/g’‘\
--f2 ‘echo $(log2/cpu*)|sed ’s/\s\+/,/g’‘
(mozilla) file://$(HTML_OUT_DIR)/top.html

Figure 24: Comparing the system call coverage

If you had traced different kernel’s system calls, you can
also compare these logs. To compare the different ker-
nel’s system call coverage, use the next command line
which also employs the -u option. In this example, each
log directory is log1 and log2, each kernel version is
uname_r1 and uname_r2, and each kernel source di-
rectory is src1 and src2. (See Figure 24.)

Enable PCI Express Advanced Error Reporting in the Kernel

Yanmin Zhang and T. Long Nguyen
Intel Corporation

yanmin.zhang@intel.com, tom.l.nguyen@intel.com

Abstract

PCI Express is a high-performance, general-purpose I/O
Interconnect. It introduces AER (Advanced Error Re-
porting) concepts, which provide significantly higher re-
liability at a lower cost than the previous PCI and PCI-X
standards. The AER driver of the Linux kernel provides
a clean, generic, and architecture-independent solution.
As long as a platform supports PCI Express, the AER
driver shall gather and manage all occurred PCI Express
errors and incorporate with PCI Express device drivers
to perform error-recovery actions.

This paper is targeted toward kernel developers inter-
ested in the details of enabling PCI Express device
drivers, and it provides insight into the scope of imple-
menting the PCI Express AER driver and the AER con-
formation usage model.

1 Introduction

Current machines need higher reliability than before and
need to recover from failure quickly. As one of failure
causes, peripheral devices might run into errors, or go
crazy completely. If one device is crazy, device driver
might get bad information and cause a kernel panic: the
system might crash unexpectedly.

As a matter of fact, IBM engineers (Linas Vepstas and
others) created a framework to support PCI error re-
covery procedures in-kernel because IBM Power4 and
Power5-based pSeries provide specific PCI device er-
ror recovery functions in platforms [4]. However, this
model lacks the ability to support platform indepen-
dence and is not easy for individual developers to get
a Power machine for testing these functions. The PCI
Express introduces the AER, which is a world standard.
The PCI Express AER driver is developed to support the
PCI Express AER. First, any platform which supports
the PCI Express could use the PCI Express AER driver
to process device errors and handle error recovery ac-
cordingly. Second, as lots of platforms support the PCI

Express, it is far easier for individual developers to get
such a machine and add error recovery code into specific
device drivers.

2 PCI Express Advanced Error Reporting
Driver

2.1 PCI Express Advanced Error Reporting Topol-
ogy

To understand the PCI Express Advanced Error Report-
ing Driver architecture, it helps to begin with the ba-
sics of PCI Express Port topology. Figure 1 illustrates
two types of PCI Express Port devices: the Root Port
and the Switch Port. The Root Port originates a PCI
Express Link from a PCI Express Root Complex. The
Switch Port, which has its secondary bus representing
switch internal routing logic, is called the Switch Up-
stream Port. The Switch Port which is bridging from
switch internal routing buses to the bus representing
the downstream PCI Express Link is called the Switch
Downstream Port. Each PCI Express Port device can
be implemented to support up to four distinct services:
native hot plug (HP), power management event (PME),
advanced error reporting (AER), virtual channels (VC).

The AER driver development is based on the service
driver framework of the PCI Express Port Bus Driver
design model [3]. As illustrated in Figure 2, the PCI
Express AER driver serves as a Root Port AER service
driver attached to the PCI Express Port Bus driver.

2.2 PCI Express Advanced Error Reporting Driver
Architecture

PCI Express error signaling can occur on the PCI Ex-
press link itself or on behalf of transactions initiated on
the link. PCI Express defines the AER capability, which
is implemented with the PCI Express AER Extended

• 297 •

298 • Enable PCI Express Advanced Error Reporting in the Kernel

Root Complex
Root Port

 Switch
Upstream
 Port

 Switch
Downstream
 Port

Root
Port

Root
Port

 Up
Port

Down
Port

Down
Port

PCI Express Switch

Figure 1: PCI Express Port Topology

Root Complex

Root
Port

Root
Port

 PBD

PMErs

PMErs

AERrs

AERrs

 HPrs

 HPrs

 VCrs

 VCrs

 AER Port Service Driver

Claim

Figure 2: AER Root Port Service Driver

Capability Structure, to allow a PCI Express compo-
nent (agent) to send an error reporting message to the
Root Port. The Root Port, a host receiver of all error
messages associated with its hierarchy, decodes an er-
ror message into an error type and an agent ID and then
logs these into its PCI Express AER Extended Capabil-
ity Structure. Depending on whether an error reporting
message is enabled in the Root Error Command Reg-
ister, the Root Port device generates an interrupt if an
error is detected. The PCI Express AER service driver
is implemented to service AER interrupts generated by
the Root Ports. Figure 3 illustrates the error report pro-
cedures.

Once the PCI Express AER service driver is loaded, it
claims all AERrs service devices in a system device hi-
erarchy, as shown in Figure 2. For each AERrs service
device, the advanced error reporting service driver con-
figures its service device to generate an interrupt when
an error is detected [3].

Root Complex

Interrupt

Root
Port

 Up
Port

Down
Port

Down
Port

CPU

End Point

Error Message

Switch

Figure 3: PCI Express Error Reporting procedures

When errors happen, the PCI Express AER driver could
provide such infrastructure with three basic functions:

• Gathers the comprehensive error information if er-
rors occurred.

• Performs error recovery actions.

• Reports error to the users.

2.2.1 PCI Express Error Introduction

Traditional PCI devices provide simple error reporting
approaches, PERR# and SERR#. PERR# is parity error,
while SERR# is system error. All non-PERR# errors are
SERR#. PCI uses two independent signal lines to rep-
resent PERR# and SERR#, which are platform chipset-
specific. As for how software is notified about the errors,
it totally depends on the specific platforms.

To support traditional error handling, PCI Express pro-
vides baseline error reporting, which defines the basic
error reporting mechanism. All PCI Express devices
have to implement this baseline capability and must map
required PCI Express error support to the PCI-related
error registers, which include enabling error reporting

2007 Linux Symposium, Volume Two • 299

and setting status bits that can be read by PCI-compliant
software. But the baseline error reporting doesn’t define
how platforms notify system software about the errors.

PCI Express errors consist of two types, correctable er-
rors and uncorrectable errors. Correctable errors include
those error conditions where the PCI Express protocol
can recover without any loss of information. A cor-
rectable error, if one occurs, can be corrected by the
hardware without requiring any software intervention.
Although the hardware has an ability to correct and re-
duce the correctable errors, correctable errors may have
impacts on system performance.

Uncorrectable errors are those error conditions that im-
pact functionality of the interface. To provide more
robust error handling to system software, PCI Express
further classifies uncorrectable errors as fatal and non-
fatal. Fatal errors might cause corresponding PCI Ex-
press links and hardware to become unreliable. System
software needs to reset the links and corresponding de-
vices in a hierarchy where a fatal error occurred. Non-
fatal errors wouldn’t cause PCI Express link to become
unreliable, but might cause transaction failure. System
software needs to coordinate with a device agent, which
generates a non-fatal error, to retry any failed transac-
tions.

PCI Express AER provides more reliable error report-
ing infrastructure. Besides the baseline error reporting,
PCI Express AER defines more fine-grained error types
and provides log capability. Devices have a header log
register to capture the header for the TLP corresponding
to a detected error.

Correctable errors consist of receiver errors, bad TLP,
bad DLLP, REPLAY_NUM rollover, and replay timer
time-out. When a correctable error occurs, the corre-
sponding bit within the advanced correctable error status
register is set. These bits are automatically set by hard-
ware and are cleared by software when writing a “1”
to the bit position. In addition, through the Advanced
Correctable Error Mask Register (which has the similar
bitmap like advanced correctable error status register),
a specific correctable error could be masked and not be
reported to root port. Although the errors are not re-
ported with the mask configuration, the corresponding
bit in advanced correctable error status register will still
be set.

Uncorrectable errors consist of Training Errors, Data
Link Protocol Errors, Poisoned TLP Errors, Flow Con-

trol Protocol Errors, Completion Time-out Errors, Com-
pleter Abort Errors, Unexpected Completion Errors, Re-
ceiver Overflow Errors, Malformed TLPs, ECRC Er-
rors, and Unsupported Request Errors. When an un-
correctable error occurs, the corresponding bit within
the Advanced Uncorrectable Error Status register is set
automatically by hardware and is cleared by software
when writing a “1” to the bit position. Advanced error
handling permits software to select the severity of each
error within the Advanced Uncorrectable Error Severity
register. This gives software the opportunity to treat er-
rors as fatal or non-fatal, according to the severity asso-
ciated with a given application. Software could use the
Advanced Uncorrectable Mask register to mask specific
errors.

2.2.2 PCI Express AER Driver Designed To Handle
PCI Express Errors

Before kernel 2.6.18, the Linux kernel had no root port
AER service driver. Usually, the BIOS provides basic
error mechanism, but it couldn’t coordinate correspond-
ing devices to get more detailed error information and
perform recovery actions. As a result, the AER driver
has been developed to support PCI Express AER en-
abling for the Linux kernel.

2.2.2.1 AER Initialization Procedures
When a machine is booting, the system allocates in-

terrupt vector(s) for every PCI Express root port. To
service the PCI Express AER interrupt at a PCI Express
root port, the PCI Express AER driver registers its in-
terrupt service handler with Linux kernel. Once a PCI
Express root port receives an error reported from the
downstream device, that PCI Express root port sends an
interrupt to the CPU, from which the Linux kernel will
call the PCI Express AER interrupt service handler.

Most of AER processing work should be done under
a process context. The PCI Express AER driver cre-
ates one worker per PCI Express AER root port virtual
device. Depending on where an AER interrupt occurs
in a system hierarchy, the corresponding worker will be
scheduled.

Most BIOS vendors provide a non-standard error pro-
cessing mechanism. To avoid conflict with BIOS while
handling PCI Express errors, the PCI Express AER

300 • Enable PCI Express Advanced Error Reporting in the Kernel

driver must request the BIOS for ownership of the PCI
Express AER via the ACPI _OSC method, as specified
in PCI Express Specification and ACPI Specification. If
the BIOS doesn’t support the ACPI _OSC method, or
the ACPI _OSC method returns errors, the PCI Express
AER driver’s probe function will fail (refer to Section 3
for a workaround if the BIOS vendor does not support
the ACPI _OSC method).

Once the PCI Express AER driver takes over, the BIOS
must stop its activities on PCI Express error processing.
The Express AER driver then configures PCI Express
AER capability registers of the PCI Express root port
and specific devices to support PCI Express native AER.

2.2.2.2 Handle PCI Express Correctable Errors

Because a correctable error can be corrected by the hard-
ware without requiring any software intervention, if one
occurs, the PCI Express AER driver first decodes an er-
ror message received at PCI Express root port into an er-
ror type and an agent ID. Second, the PCI Express AER
driver uses decoded error information to read the PCI
Express AER capability of the agent device to obtain
more details about an error. Third, the PCI Express AER
driver clears the corresponding bit in the correctable er-
ror status register of both PCI Express root port and the
agent device. Figure 4 illustrates the procedure to pro-
cess correctable errors. Last but not least, the details
about an error will be formatted and output to the sys-
tem console as shown below:

+—— PCI-Express Device Error —–+
Error Severity : Corrected
PCIE Bus Error type : Physical Layer
Receiver Error : Multiple
Receiver ID : 0020
VendorID=8086h, DeviceID=3597h, Bus=00h, Device=04h,
Function=00h

The Requester ID is the ID of the device which reports
the error. Based on such information, an administrator
could find the bad device easily.

2.2.2.3 Handle PCI Express Non-Fatal Errors
If an agent device reports non-fatal errors, the PCI
Express AER driver uses the same mechanism as de-
scribed in Section 2.2.2 to obtain more details about an
error from an agent device and output error information
to the system console. Figure 5 illustrates the procedure
to process non-fatal errors.

Root Complex

Root
Port

End Point: E1

AER Driver

1) Get Source ID/
Error Type,
Clear Root Status

2) Get Detailed Error Type,
Clear Correctable Error Status

Figure 4: Procedure to Process Correctable Errors

Root Complex

Root
Port

 End Point: E1

AER Driver

End Point
 Driver

1) Get Source ID/
Error Type
Clear root status

2) Get Detailed Error
Type and Log

3) Error Recovery

Figure 5: Procedures to Process Non-Fatal Errors

The first two steps are like the ones to process cor-
rectable errors. During Step 2, the AER driver need to
retrieve the packet header log from the agent if the error
is TLP-related.

Below is an example of non-fatal error output to the sys-
tem console.
+—— PCI-Express Device Error ——+
Error Severity : Uncorrected (Non-Fatal)
PCIE Bus Error type : Transaction Layer
Completion Timeout : Multiple
Requester ID : 0018
VendorID=8086h, DeviceID=3596h, Bus=00h, Device=03h,
Function=00h

Unlike correctable errors, non-fatal errors might cause

2007 Linux Symposium, Volume Two • 301

some transaction failures. To help an agent device driver
to retry any failed transactions, the PCI Express AER
driver must perform a non-fatal error recovery proce-
dure, which depends on where a non-fatal error occurs
in a system hierarchy. As illustrated in Figure 6, for
example, there are two PCI Express switches. If end-
point device E2 reports a non-fatal error, the PCI Ex-
press AER driver will try to perform an error recovery
procedure only on this device. Other devices won’t take
part in this error recovery procedure. If downstream port
P1 of switch 1 reports a non-fatal error, the PCI Express
AER driver will do error recovery procedure on all de-
vices under port P1, including all ports of switch 2, end
point E1, and E2.

Root Complex

Root
Port

 Up
Port

Switch 1

Down
Port: P1

 Up
Port

Down
Port

Down
Port

Switch 2

End Point: E1 End Point: E2

Figure 6: Non-Fatal Error Recovery Example

To take part in the error recovery procedure, specific de-
vice drivers need to implement error callbacks as de-
scribed in Section 4.1.

When an uncorrectable non-fatal error happens, the
AER error recovery procedure first calls the error_
detected routine of all relevant drivers to notify their
devices run into errors by the deep-first sequence. In
the callback error_detected, the driver shouldn’t
operate the devices, i.e., do not perform any I/O on the
devices. Mostly, error_detected might cancel all
pending requests or put the requests into a queue.

If the return values from all relevant error_
detected routines are PCI_ERS_RESULT_CAN_

RECOVER, the AER recovery procedure calls all resume

callbacks of the relevant drivers. In the resume func-
tions, drivers could resume operations to the devices.

If an error_detected callback returns PCI_ERS_
RESULT_NEED_RESET, the recovery procedure will call
all slot_reset callbacks of relevant drivers. If
all slot_reset functions return PCI_ERS_RESULT_
CAN_RECOVER, the resume callback will be called to
finish the recovery. Currently, some device drivers pro-
vide err_handler callbacks. For example, Intel’s
E100 and E1000 network card driver and IBM’s POWER
RAID driver.

The PCI Express AER driver outputs some information
about non-fatal error recovery steps and results. Below
is an example.

+—— PCI-Express Device Error —–+
Error Severity : Uncorrected (Non-Fatal)
PCIE Bus Error type : Transaction Layer
Unsupported Request : First
Requester ID : 0500
VendorID=14e4h, DeviceID=1659h, Bus=05h, Device=00h,
Function=00h
TLB Header:
04000001 0020060f 05010008 00000000
Broadcast error_detected message
Broadcast slot_reset message
Broadcast resume message
tg3: eth3: Link is down.
AER driver successfully recovered

2.2.2.4 Handle PCI Express Fatal Errors
When processing fatal errors, the PCI Express AER

driver also collects detailed error information from the
reporter in the same manner as described in Sections
2.2.2.2 and 2.2.2.3. Below is an example of non-fatal
error output to the system console:

+—— PCI-Express Device Error ——+
Error Severity : Uncorrected (Fatal)
PCIE Bus Error type : Transaction Layer
Unsupported Request : First
Requester ID : 0200
VendorID=8086h, DeviceID=0329h, Bus=02h, Device=00h,
Function=00h
TLB Header:
04000001 00180003 02040000 00020400

When performing the error recovery procedure, the ma-
jor difference between non-fatal and fatal is whether

302 • Enable PCI Express Advanced Error Reporting in the Kernel

the PCI Express link will be reset. If the return val-
ues from all relevant error_detected routines are
PCI_ERS_RESULT_CAN_RECOVER, the AER recovery
procedure resets the PCI Express link based on whether
the agent is a bridge. Figure 7 illustrates an example.

Root Complex

 Root
Port: P0

 Up
Port: P1

 Down
Port: P2

 Down
Port: P3

 End Point: E1

 Switch

Figure 7: Reset PCI Express Link Example

In Figure 7, if root port P0 (a kind of bridge) reports a
fatal error to itself, the PCI Express AER driver chooses
to reset the upstream link between root port P0 and up-
stream port P1. If end-point device E1 reports a fatal
error, the PCI Express AER driver chooses to reset the
upstream link of E1, i.e., the link between P2 and E1.

The reset is executed by the port. If the agent is a port,
the port will execute reset. If the agent is an end-point
device, for example, E1 in Figure 7, the port of the up-
stream link of E1, i.e., port P2 will execute reset.

The reset method depends on the port type. As for root
port and downstream port, the PCI Express Specifica-
tion defines an approach to reset their downstream link.
In Figure 7, if port P0, P2, P3, and end point E1 report
fatal errors, the method defined in PCI Express Specifi-
cation will be used. The PCI Express AER driver im-
plements the standard method as default reset function.

There is no standard way to reset the downstream
link under the upstream port because different switches
might implement different reset approaches. To facili-
tate the link reset approach, the PCI Express AER driver
adds reset_link, a new function pointer, in the data
structure pcie_port_service_driver.

struct pcie_port_service_driver {
...
/* Link Reset Capability - AER service

driver specific */
pci_ers_result_t (*reset_link) (struct

pci_dev *dev);
...

};

If a port uses a vendor-specific approach to reset link, its
AER port service driver has to provide a reset_link
function. If a root port driver or downstream port ser-
vice driver doesn’t provide a reset_link function,
the default reset_link function will be called. If
an upstream port service driver doesn’t implement a
reset_link function, the error recovery will fail.

Below is the system console output example printed by
the PCI Express AER driver when doing fatal error re-
covery.

+—— PCI-Express Device Error —–+
Error Severity : Uncorrected (Fatal)
PCIE Bus Error type : (Unaccessible)
Unaccessible Received : First
Unregistered Agent ID : 0500
Broadcast error_detected message
Complete link reset at Root[0000:00:04.0]
Broadcast slot_reset message
Broadcast resume message
tg3: eth3: Link is down.
AER driver successfully recovered

2.3 Including PCI Express Advanced Error Re-
porting Driver Into the Kernel

The PCI Express AER Root driver is a Root Port ser-
vice driver attached to the PCI Express Port Bus driver.
Its service must be registered with the PCI Express Port
Bus driver and users are required to include the PCI Ex-
press Port Bus driver in the kernel [5]. Once the ker-
nel configuration option CONFIG_PCIEPORTBUS is in-
cluded, the PCI Express AER Root driver is automati-
cally included as a kernel driver by default (CONFIG_
PCIEAER = Y).

3 Impact to PCI Express BIOS Vendor

Currently, most BIOSes don’t follow PCI FW 3.0 to
support the ACPI _OSC handler. As a result, the PCI
Express AER driver will fail when calling the ACPI

2007 Linux Symposium, Volume Two • 303

control method _OSC. The PCI Express AER driver
provides a current workaround for the lack of ACPI
BIOS _OSC support by implementing a boot param-
eter, forceload=y/n. When the kernel boots with
parameter aerdriver.forceload=y, the PCI Ex-
press AER driver still binds to all root ports, which im-
plements the AER capability.

4 Impact to PCI Express Device Driver

4.1 Device driver requirements

To conform to AER driver infrastructure, PCI Express
device drivers need support AER capability.

First, when a driver initiates a device, it needs to enable
the device’s error reporting capability. By default, de-
vice error reporting is turned off, so the device won’t
send error messages to root port when it captures an er-
ror.

Secondly, to take part in the error recovery procedure, a
device driver needs to implement error callbacks as de-
scribed in the pci_error_handlers data structure
as shown below.

struct pci_error_handlers {
/* PCI bus error detected on this device */
pci_ers_result_t (*error_detected)(struct

pci_dev *dev, enum pci_channel_state error);
/* MMIO has been re-enabled, but not DMA */
pci_ers_result_t (*mmio_enabled)(struct

pci_dev *dev);
/* PCI slot has been reset */
pci_ers_result_t (*slot_reset)(struct

pci_dev *dev);
/* Device driver may resume

normal operations */
void (*resume)(struct pci_dev *dev);

};

In data structure pci_driver, add err_handler
as a new pointer to point to the pci_error_
handlers. In kernel 2.6.14, the definition of pci_
error_handlers had already been added to support
PCI device error recovery [4]. To be compatible with
PCI device error recovery, PCI Express device error re-
covery also uses the same definition and follows a sim-
ilar rule. One of our starting points is that we try to
keep the recovery callback interfaces as simple as we
can. If the interfaces are complicated, there will be no
driver developers who will be happy to add error recov-
ery callbacks into device drivers.

4.2 Device driver helper functions

To communicate with device AER capabilities, drivers
need to access AER registers in configuration space. It’s
easy to write incorrect code because they must access/
change the bits of registers. To facilitate driver program-
ming and reduce coding errors, the AER driver provides
a couple of helper functions which could be used by de-
vice drivers.

4.2.1 int pci_find_aer_capability
(struct pci_dev *dev);

pci_find_aer_capability locates the PCI Ex-
press AER capability in the device configuration space.
Since offset 0x100 in configuration space, PCI Express
devices could provide a couple of optional capabilities
and they link each other in a chain. AER is one of them.
To locate AER registers, software needs to go through
the chain. This function returns the AER offset in the
device configuration space.

4.2.2 int pci_enable_pcie_error_reporting (struct
pci_dev *dev);

pci_enable_pcie_error_reporting enables
the device to send error messages to the root port when
an error is detected. If the device doesn’t support PCI-
Express capability, the function returns 0. When a de-
vice driver initiates a device (mostly, in its probe func-
tion), it should call pci_enable_pcie_error_
reporting.

4.2.3 int pci_disable_pcie_error_reporting (struct
pci_dev *dev);

pci_disable_pcie_error_reporting dis-
ables the device from sending error messages to the root
port. Sometimes, device drivers want to process errors
by themselves instead of using the AER driver. It’s not
encouraged, but we provide this capability.

4.2.4 int pci_cleanup_aer_uncorrect_
error_status (struct pci_dev *dev);

pci_cleanup_aer_uncorrect_error_
status cleans up the uncorrectable error status

304 • Enable PCI Express Advanced Error Reporting in the Kernel

register. The AER driver only clears correctable
error status register when processing errors. As for
uncorrectable errors, specific device drivers should
do so because they might do more specific process-
ing. Usually, a driver should call this function in its
slot_reset or resume callbacks.

4.3 Testing PCI Express AER On Device Driver

It’s hard to test device driver AER capabilities. By lots
of experiments, we have found that UR (Unsupported
Request) can be used to test device drivers. We trig-
gered UR error messages by probing a non-existent de-
vice function. For example, if a PCI Express device only
has one function, when kernel reads the ClassID from
the configuration space of the second function of the
device, the device might send an Unsupported Request
error message to the root port and set the bit in uncor-
rectable error status register. By setting different values
in the corresponding bit in uncorrectable error mask reg-
ister, we could test both non-fatal and fatal errors.

5 Conclusion

The PCI Express AER driver creates a generic infras-
tructure to support PCI Express AER. This infrastruc-
ture provides the Linux kernel with an ability to capture
PCI Express device errors and perform error recovery
where in a hierarchy an agent device reports. Last but
not least the system administrators could get formatted,
useful error information to debug device errors.

Linux kernel 2.6.19 has accepted the PCI Express AER
patches. Future work includes enabling PCI Express
AER for every PCI Express device by default, blocking
I/O when an error happens, and so on.

6 Acknowledgement

Special thanks to Steven Carbonari for his contributions
to the architecture design of PCI Express AER driver,
Rajesh Shah for his contributions to code review, and
the Linux community for providing great input.

Legal Statement

This paper is copyright c© 2007 by Intel Corporation. Per-
mission to redistribute in accordance with Linux Sympo-
sium submission guidelines is granted; all other rights are
reserved.

References

[1] PCI Express Base Specification Revision 1.1.
March 28, 2005. http://www.pcisig.com

[2] PCI Firmware Specification Revision 3.0,
http://www.pcisig.com

[3] Tom Long Nguyen, Dely L. Sy, & Steven
Carbonari. “PCI Express Port Bus Driver Support
for Linux.” Proceedings of the Linux Symposium,
Vol. 2, Ottawa, Ontario, 2005.
http://www.linuxsymposium.org/
2005/linuxsymposium_procv2.pdf

[4] pci-error-recovery.txt. Available from:
2.6.20/Documentation.

[5] PCIEBUS-HOWTO.txt. Available from:
2.6.20/Documentation.

[6] pcieaer-howto.txt. Available from:
2.6.20/Documentation.

Enabling Linux* Network Support of Hardware Multiqueue Devices

Zhu Yi
Intel Corp.

yi.zhu@intel.com

Peter P. Waskiewicz, Jr.
Intel Corp.

peter.p.waskiewicz.jr@intel.com

Abstract

In the Linux kernel network subsystem, the Tx/Rx
SoftIRQ and Qdisc are the connectors between the net-
work stack and the net devices. A design limitation is
that they assume there is only a single entry point for
each Tx and Rx in the underlying hardware. Although
they work well today, they won’t in the future. Modern
network devices (for example, E1000 [8] and IPW2200
[6]) equip two or more hardware Tx queues to enable
transmission parallelization or MAC-level QoS. These
hardware features cannot be supported easily with the
current network subsystem.

This paper describes the design and implementation
for the network multiqueue patches submitted to net-
dev [2] and LKML [1] mailing lists early this year,
which involved the changes for the network scheduler,
Qdisc, and generic network core APIs. It will also dis-
cuss breaking the netdev->queue_lock with fine-
grained per-queue locks in the future. At the end of the
paper, it takes the IPW2200 and E1000 drivers as an
example to illustrate how the new network multiqueue
features will be used by the network drivers.

1 A Brief Introduction for the Linux Network
Subsystem

When a packet is passed from the user space into the
kernel space through a socket, an skb (socket kernel
buffer) is created to represent that packet in the kernel.
The skb is passed through various layers of the network
stack before it is handed to the device driver for trans-
mission. Inside the Linux kernel, each network device
is represented by a struct net_device structure.
All the struct net_device instances are linked
into a doubly linked list with a single pointer list head
(called hlist); the list head is named dev_base.
The struct net_device contains all information
and function pointers for the device. Among them there

is a qdisc item. Qdisc stands for queuing discipline.
It defines how a packet is selected on the transmission
path. A Qdisc normally contains one or more queues
(struct sk_buff_head) and a set of operations
(struct Qdisc_ops). The standard .enqueue
and .dequeue operations are used to put and get pack-
ets from the queues by the core network layer. When a
packet first arrives to the network stack, an attempt to
enqueue occurs. The .enqueue routine can be a sim-
ple FIFO, or a complex traffic classification algorithm.
It all depends on the type of Qdisc the system adminis-
trator has chosen and configured for the system. Once
the enqueue is completed, the packet scheduler is in-
voked to pull an skb off a queue somewhere for trans-
mission. This is the .dequeue operation. The skb is
returned to the stack, and is then sent to the device driver
for transmission on the wire. The network packets trans-
mission can be started by either dev_queue_xmit()
or the TX SoftIRQ (net_tx_action()) depending
on whether the packet can be transmitted immediately
or not. But both routines finally call qdisc_run() to
dequeue an skb from the root Qdisc of the netdev and
send it out by calling the netdev->hard_start_
xmit() method.

When the hardware Tx queue of a network device is
full (this can be caused by various reasons—e.g., carrier
congestion, hardware errors, etc.), the driver should call
netif_stop_queue() to indicate to the network
scheduler that the device is currently unusable. So the
qdisk_restart() function of the network sched-
uler won’t try to transmit the packet (with the device’s
.hard_start_xmit() method) until the driver ex-
plicitly calls netif_start_queue() or netif_
wake_queue() to indicate the network scheduler its
hardware queue is available again. The netdev->
hard_start_xmit() method is responsible for
checking the hardware queue states. If the device
hardware queue is full, it should call netif_stop_
queue() and returns NETDEV_TX_BUSY. On the
other side, when the network scheduler receives the

• 305 •

306 • Enabling Linux Network Support of Hardware Multiqueue Devices

NETDEV_TX_BUSY as the return value for netdev->
hard_start_xmit(), it will reschedule. Note that
if a driver returns NETDEV_TX_BUSY without call-
ing netif_stop_queue() in the hard_start_
xmit() method when the hardware transmit queue is
full, it will chew tons of CPU.

For a normal network device driver, the general rules to
deal with the hardware Tx queue are:

• Driver detects queue is full and calls netif_
stop_queue();

• Network scheduler will not try to send more pack-
ets through the card any more;

• Even in some rare conditions (dev->hard_
start_xmit() is still called), calls into the
driver from top network layer always get back a
NETDEV_TX_BUSY;

• EOT interupt happens and driver cleans up the TX
hardware path to make more space so that the core
network layer can send more packets (driver calls
netif_start_queue())

• Subsequent packets get queued to the hardware.

In this way, the network drivers use netif_stop_

queue() and netif_start_queue() to provide
feedback to the network scheduler so that neither packet
starvation nor a CPU busy loop occurs.

2 What’s the Problem if the Device has Multi-
ple Hardware Queues?

The problem happens when the underlying hardware has
multiple hardware queues. Multiple hardware queues
provide QoS support from the hardware level. Wire-
less network adapters such as the Intel R© PRO/Wireless
3945ABG, Intel R© PRO/Wireless 2915ABG, and Intel R©

PRO/Wireless 2200BG Network Connections have al-
ready provided this feature in hardware. Other high
speed ethernet adapters (i.e., e1000) also provide mul-
tiple hardware queues for better packet throughput by
parallelizing the Tx and Rx paths. But the current Qdisc
interface isn’t multiple-hardware-queue aware. That is,
the .dequeue method is not able to dequeue the cor-
rect skb according to the device hardware queue states.
Take a device containing two hardware Tx queues for

an example: if the high-priority queue is full while the
low one is not, the Qdisc will still keep dequeueing
the high priority skb. But it will always fail to trans-
mit in the high-priority queue because the correspond-
ing hardware queue is full. To make the situation even
worse, netif_stop_queue() and friends are also
ignorant of multiple hardware queues. There is no way
to schedule Tx SoftIRQ based on hardware queues (vs.
based on the global netdev). For example, if the low-
priority hardware queue is full, should the driver call
netif_stop_queue() or not? If the driver does,
the high priority skbs will also be blocked (because the
netdev Tx queue is stopped). If the driver doesn’t, the
high CPU usage problem we mentioned in Section 1 will
happen when low priority skbs remain in the Qdisc.

3 How to Solve the Problem?

Since the root cause for this problem is that the network
scheduler and Qdisc do not expect the network devices
to have multiple hardware queues, the obvious fix is to
add the support for multi-queue features to them.

4 The Design Considerations

The main goal of implementing support for multiple
queues is to prevent one flow of traffic from interfer-
ing with another traffic flow. Therefore, if a hardware
queue is full, the driver will need to stop the queue.
With multiqueue, the driver should be able to stop an in-
dividual queue, and the network stack in the OS should
know how to check individual queue states. If a queue is
stopped, the network stack should be able to pull pack-
ets from another queue and send them to the driver for
transmission.

One main consideration with this approach is how the
stack will handle traffic from multiqueue devices and
non-multiqueue devices in the same system. This must
be transparent to devices, while maintaining little to no
additional overhead.

5 The Implementation Details

The following details of implementation are under dis-
cussion and consideration in the Linux community at the
writing of this paper. The concepts should remain the
same, even if certain implementation details are changed
to meet requests and suggestions from the community.

2007 Linux Symposium, Volume Two • 307

The first part of implementation is how to represent
queues on the device. Today, there is a single queue
state and lock in the struct net_device. Since
we need to manage the queue’s state, we will need a
state for each queue. The queues need to be accessible
from the struct net_device so they can be vis-
ible to both the stack and the driver. This is added to
include/linux/netdevice.h:

Inside struct net_device:

struct net_device
{

...

struct net_device_subqueue

*egress_subqueue;

unsigned long
egress_subqueue_count;

...

}

Here, the netdev has the knowledge of the queues, and
how many queues are supported by the device. For all
non-multiqueue devices, there will be one queue allo-
cated, with an egress_subqueue_count of 1. This is
to help the stack run both non-multiqueue devices and
multiqueue devices simultaneously. The details of this
will be discussed later.

When a network driver is loaded, it needs to allocate
a struct net_device and a structure represent-
ing itself. In the case of ethernet devices, the func-
tion alloc_etherdev() is called. A change to this
API provides alloc_etherdev_mq(), which allows
a driver to tell the kernel how many queues it wants to
allocate for the device. alloc_etherdev() is now a
macro that calls alloc_etherdev_mq() with a queue
count of 1. This allows non-multiqueue drivers to trans-
parently operate in the multiqueue stack without any
changes to the driver.

Ultimately, alloc_etherdev_mq() calls the new
alloc_netdev_mq(), which actually handles the
kzalloc(). In here, egress_subqueue is as-
signed to the newly allocated memory, and egress_

subqueue_count is assigned to the number of allo-
cated queues.

On the deallocation side of things, free_netdev()
now destroys the memory that was allocated for each
queue.

The final part of the multiqueue solution comes with the
driver being able to manipulate each queue’s state. If
one hardware queue runs out of descriptors for whatever
reason, the driver will shut down that queue. This oper-
ation should not prevent other queues from transmitting
traffic. To achieve this, the network stack should check
the state for the global queue state, as well as the indi-
vidual queue states, before deciding to transmit traffic
on that queue.

Queue mapping in this implementation happens in the
Qdisc, namely PRIO. The mapping is a combination of
which PRIO band an skb is assigned to (based on TC
filters and/or IP TOS to priority mapping), and which
hardware queue is assigned to which band. Once the skb
has been classified in prio_classify(), a lookup to
the band2queue mapping is done, and assigned to a
new field in the skb, namely skb->queue_mapping.
The calls to netif_subqueue_stopped() will pass
this queue mapping to know if the hardware queue to
verify is running or not. In order to help performance
and avoid unnecessary requeues, this check is done in
the prio_dequeue() routine, prior to pulling an skb
from the band. The check will be done again before the
call to hard_start_xmit(), just as it is done today on
the global queue. The skb is then passed to the device
driver, which will need to look at the value of skb->
queue_mapping to determine which Tx ring to place
the skb on in the hardware. At this point, multiqueue
flows have been established.

The network driver will need to manage the queues
using the new netif_{start|stop|wake}_

subqueue() APIs. This way full independance
between queues can be established.

6 Using the Multiqueue Features

6.1 Intel R© PRO/Wireless 2200BG Network Con-
nection Driver

This adapter supports the IEEE 802.11e standard [3] for
Quality of Service (QoS) on the Medium Access Con-
trol (MAC) layer. Figure 1 shows the hardware imple-
mentation. Before a MSDU (MAC Service Data Unit)
is passed to the hardware, the network stack maps the

308 • Enabling Linux Network Support of Hardware Multiqueue Devices

Mapping to AC

(MSDU, UP)

Transmit queues
for ACs

Per-queue EDCA
functions with
internal conclision
resolution

Figure 1: MAC level QoS implementation

frame type or User Priority (UP) to Access Category
(AC). The NIC driver then pushes the frame to the cor-
responding one of the four transmit queues according to
the AC. There are four independent EDCA (enhanced
distributed channel access) functions in the hardware,
one for each queue. The EDCA function resolves inter-
nal collisions and determines when a frame in the trans-
mit queue is permitted to be transmitted via the wireless
medium.

With the multiqueue devices supported by the network
subsystem, such hardware-level packet scheduling is
easy to enable. First, a specific PRIO Qdisc queue map-
ping for all the IEEE 802.11 wireless devices is created.
It maps the frame type or UP to AC according to the
mapping algorithm defined in [3]). With this specific
queue mapping, the IEEE 802.11 frames with higher
priority are always guaranteed to be scheduled before
the lower priority ones by the network scheduler when
both transmit queues are active at the time. In other
cases, for example, the higher priority transmit queue is
inactive while the lower priority transmit queue is active,
and the lower priority frame is scheduled (dequeued).
This is the intention because the hardware is not going
to transmit any higher priority frames at this time. When
the dev->hard_start_xmit() is invoked by the
network scheduler, the skb->queue_mapping is al-
ready set to the corresponding transmit queue index for
the skb (by the Qdisc .dequeue method). The driver
then just needs to read this value and move the skb to
the target transmit queue accordingly. In the normal

Core 1 Core 1Core 2 Core 2

E1000 network adapter

CPU 1 CPU 2

Tx queue 1 Tx queue 2

Figure 2: Mapping CPU cores to multiple Tx queues on
SMP system

cases, the queue will still remain active since the net-
work scheduler has just checked its state in the Qdisc
.dequeue method. But in some rare cases, a race
condition would still happen during this period to make
the queue state inconsistent. This is the case where the
Qdisc .requeue method is invoked by the network
scheduler.

6.2 Intel R© PRO/ 1000 Adapter Driver

This adapter with MAC types of 82571 and higher sup-
ports multiple Tx and Rx queues in hardware. A big
advantage with these multiple hardware queues is to
achieve packets transmission and reception paralleliza-
tion. This is especially useful on SMP and multi-core
systems with a lot of processes running network loads
on different CPUs or cores. Figure 2 shows an e1000
network adapter with two hardware Tx queues on a
multi-core SMP system.

With the multiqueue devices supported by the network
subsystem, the e1000 driver can export all its Tx queues
and bind them to different CPU cores. Figure 3 il-
lustrates how this is done in the e1000 multiqueue
patch [4]. The per-CPU variable adapter->cpu_
tx_ring points to the mapped Tx queue for the cur-
rent CPU. After the e1000 queue mapping has been
setup, the access for the Tx queues should always be
referenced by the adapter->cpu_tx_ring instead
of manipulating the adapter->tx_ring array di-
rectly. With spreading CPUs on multiple hardware Tx

2007 Linux Symposium, Volume Two • 309

netdev = alloc_etherdev_mq(sizeof(struct e1000_adapter), 2);
netdev->features |= NETIF_IF_MULTI_QUEUE;

...

adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);

lock_cpu_hotplug();
i = 0;
for_each_online_cpu(cpu) {

*per_cpu_ptr(adapter->cpu_tx_ring, cpu) =
&adapter->tx_ring[i % adapter->num_tx_queues];

i++;
}
unlock_cpu_hotplug();

Figure 3: E1000 driver binds CPUs to multiple hardware Tx queues

queues, transmission parallelization is achieved. Since
the CPUs mapped to different Tx queues don’t con-
tend for the same lock for packet transmission, LLTX
lock contention is also reduced. With breaking the
netdev->queue_lock into per-queue locks in the
future, this usage model will perform and scale even
better. The same parallelization is also true for packet
reception.

Comparing with the multiqueue usage model for the
hardware QoS scheduler by the wireless devices, the
e1000 usage model doesn’t require a special frame type
to queue mapping algorithm in the Qdisc. So any type
of multiqueue-aware Qdiscs can be configured on top of
e1000 hardware by the system administrator with com-
mand tc, which is part of the iproute2 [7] package.
For example, to add the PRIO Qdisc to your network
device, assuming the device is called eth0, run the fol-
lowing command:

tc qdisc add dev eth0 root \
handle 1: prio

As of the writing of this paper, there are already patches
in the linux-netdev mailing list [5] to enable the multi-
queue features for the pfifo_fast and PRIO Qdiscs.

7 Future Work

In order to extend flexibility of multiqueue network de-
vice support, work on the Qdisc APIs can be done. This
is needed to remove serialization of access to the Qdisc
itself. Today, the Qdisc may only have one transmitter
inside it, governed by the __LINK_STATE_QDISC_
RUNNING bit set on the global queue state. This bit will
need to be set per queue, not per device. Implications
with Qdisc statistics will need to be resolved, such as
the number of packets sent by the Qdisc, etc.

Per-queue locking may also need to be implemented in
the future. This is dependent on performance of higher
speed network adapters becoming throttled by the single
device queue lock. If this is determined to be a source of
contention, the stack will need to change to know how
to independently lock and unlock each queue during a
transmit.

8 Conclusion

The multiqueue devices support for network scheduler
and Qdisc enables modern network interface controllers
to provide advanced features like hardware-level packet
scheduling and Tx/Rx parallelization. As processor
packages ship with more and more cores nowadays,
there is also a trend that the network adapter hardware
may equip more and more Tx and Rx queues in the fu-
ture. The multiqueue patch provides the fundamental
features for the network core to enable these devices.

310 • Enabling Linux Network Support of Hardware Multiqueue Devices

Legal

This paper is Copyright c© 2007 by Intel Corporation. Re-
distribution rights are granted per submission guidelines; all
other rights are reserved.

*Other names and brands may be claimed as the property of
others.

References

[1] Linux kernel mailing list.
linux-kernel@vger.kernel.org.

[2] Linux network development mailing list.
linux-netdev@vger.kernel.org.

[3] IEEE Computer Society. LAN/MAN Committee.
IEEE Standard for Information technology –
Telecommunications and information exchange
between systems – Local and metropolitan area
networks – Specific requirements Part 11: Wireless
LAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications Amendment 8: Medium
Access Control (MAC) Quality of Service
Enhancements. 3 Park Avenue New York, NY
10016-5997, USA, November 2005.

[4] Peter P Waskiewicz Jr. E1000 example
implementation of multiqueue network device api.
http:
//marc.info/?l=linux-netdev&m=
117642254323203&w=2.

[5] Peter P Waskiewicz Jr. Multiqueue network device
support implementation. http:
//marc.info/?l=linux-netdev&m=
117642230823028&w=2.

[6] James Ketrenos and the ipw2200 developers.
Intel R© PRO/Wireless 2200BG Driver for Linux.
http://ipw2200.sf.net.

[7] Alexey Kuznetsov and Stephen Hemminger.
Iproute2: a collection of utilities for controlling
TCP / IP networking and Traffic Control in Linux.
http://linux-net.osdl.org/index.
php/Iproute2.

[8] John Ronciak, Auke Kok, and the e1000
developers. The Intel R© PRO/10/100/1000/10GbE
Drivers. http://e1000.sf.net.

Concurrent Pagecache

Peter Zijlstra
Red Hat

pzijlstr@redhat.com

Abstract

In this paper we present a concurrent pagecache for
Linux, which is a continuation of the existing lockless
pagecache work [5].

Currently the pagecache is protected by a reader/writer
lock. The lockless pagecache work focuses on removing
the reader lock, however, this paper presents a method to
break the write side of the lock. Firstly, since the page-
cache is centered around the radix tree, it is necessary to
alter the radix tree in order to support concurrent mod-
ifications of the data structure. Secondly, we adapt the
pagecache, by removing all non-radix tree consumers
of the lock’s protection, and extend the pageflag, intro-
duced by the lockless pagecache, into a second per page
lock. Then we can fully utilize the radix tree’s new func-
tionality to obtain a concurrent pagecache. Finally, we
analyze the improvements in performance and scalabil-
ity.

1 Introduction

In order to provide some background for this work, we
will give a quick sketch of the Linux memory manage-
ment. For a more in depth treatment see Mel Gorman’s
excellent book on the subject [2].

1.1 Pagecache

As we know, in Linux, the pagecache caches on-disk
data in memory per file. So the Linux pagecache
stores and retrieves disk pages based on the (inode,
offset)-tuple. This per inode page-index is imple-
mented with a radix tree [3].

The typical consumer of this functionality is the VFS,
Virtual File-System. Some system-interfaces, such as
read(2) and write(2), as well as mmap(2), op-
erate on the pagecache. These instantiate pages for the

pagecache when needed, after which, the newly allo-
cated pages are inserted into the pagecache, and possi-
bly filled with data read from disk.

1.1.1 Page Frames

Each physical page of memory is managed by a
struct page. This structure contains the minimum
required information to identify a piece of data, such as
a pointer to the inode, and the offset therein. It also con-
tains some management state, a reference counter for
instance, to control the page’s life-time, as well as vari-
ous bits to indicate status, such as PG_uptodate and
PG_dirty. It is these page structures which are in-
dexed in the radix tree.

1.1.2 Page Reclaim

In a situation when a free page of memory is requested,
and the free pages are exhausted, a used page needs to
be reclaimed. However the pagecache memory can only
be reclaimed when it is clean, that is, if the in-memory
content corresponds to the on-disk version.

When the page is not clean, it is called dirty, and requires
data to be written back to disk. The problem of finding
all the dirty pages in a file is solved by tags, which is a
unique addition to the Linux radix tree (see Section 2.1).

1.2 Motivation

The lockless pagecache work by Nick Piggin [5] shows
that the SMP scalability of the pagecache is greatly im-
proved by reducing the dependency on high-level locks.
However, his work focuses on lookups.

While lookups are the most frequent operation per-
formed, other operations on the pagecache can still form
a significant amount of the total operations performed.

• 311 •

312 • Concurrent Pagecache

Therefore, it is necessary to investigate the other opera-
tions as well. They are:

• insert an item into the tree;

• update an existing slot to point at a new item;

• remove an item from the tree;

• set a tag on an existing item;

• clear a tag on an existing item.

2 Radix Tree

The radix tree deserves a thorough discussion, as it is
the primary data structure of the pagecache.

The radix tree is a common dictionary-style data struc-
ture, also know as Patricia Trie or crit bit tree. The Linux
kernel uses a version which operates on fixed-length in-
put, namely an unsigned long. Each level repre-
sents a fixed number of bits of this input space (usually
6 bits per tree level - which gives a maximum tree height
of d64/6e = 11 on 64-bit machines). See Figure 1 for
a representation of a radix tree with nodes of order 2,
mapping an 8-bit value.

0

1

1

0

1

0

1

0

msb

lsb

Figure 1: 8-bit radix tree

2.1 Tags

A unique feature of the Linux radix tree is its tags-
extension. Each tag is basically a bitmap index on top
of the radix tree. Tags can be used in conjunction with
gang lookups to find all pages which have a given tag
set within a given range.

The tags are maintained in per-node bitmaps, so that on
each given level we can determine whether or not the
next level has at least a single tag set. Figure 2 shows
the same tree as before, but now with two tags (denoted
by an open and closed bullet respectively).

0

1

1

0

1

0

1

0

msb

lsb

Figure 2: 8-bit radix tree with 2 bitmap indices

2.2 Concurrency Control

Traditionally, the radix tree is locked as a whole, and
does not support concurrent operations. Lock con-
tention of this high-level lock is where the scalability
problems come from.

Linux currently uses a reader/writer lock, called tree_
lock, to protect the tree. However, on large SMP ma-
chines it still does not scale properly due to cache line
bouncing; the lock also fully serialises all modifications.

2.3 RCU Radix Tree

The RCU radix tree enables fully concurrent lookups
(cf. [4]), which is done by exploiting the Read-Copy-
Update technique [1].

RCU basically requires us to atomically flip pointers
from one version of a (partial) data structure to a new
version, while it will keep the old one around until the
system passes through a quiescent state. At this point
it is guaranteed that there are no more users of the old
structure, and therefore it can be freed safely.

However, the radix tree structure is sufficiently static, so
that often modifications are nothing but a single atomic
change to the node. In this case we can just keep using
the same node.

2007 Linux Symposium, Volume Two • 313

The radix-tree modifications still need to be serialised
with respect to each other. The lookups, however, are
no longer serialised with respect to modifications.

This allows us to replace the reader/writer lock with a
regular one, and thus reduce the cache-line bouncing by
not requiring an exclusive access to the cache line for
the lookups.

2.4 Concurrent Radix Tree

With lookups fully concurrent, modifying operations
become a limiting factor. The main idea is to ‘break’
the tree lock into many small locks.1

The obvious next candidate for locking would be the
nodes.

When we study the operations in detail, we see that they
fall into two categories:

• uni-directional;

• bi-directional.

The most simple of the two is the uni-directional oper-
ations; they perform only a single traversal of the tree:
from the root to a leaf node. These include: insert, up-
date and set tag.

The bi-directional operations are more complex, since
they tend to go back up the tree after reaching the leaf
node. These are the remaining operations: remove and
clear tag.

2.4.1 Ladder Locking aka Lock-Coupling

This technique, which is frequently used in the database
world, allows us to walk a node-locked tree in a sin-
gle direction (bi-directional traffic would generate dead-
locks).

If all modifiers alter the tree top-to-bottom, and hold a
lock on the node which is being modified, then walk-
ing down is as simple as taking a lock on a child, while

1Ideally we reduce the locks so far that we end up with single
atomic operations. However tags and deletion (the back tracking op-
erations) seem to make this impossible; this is still being researched.

holding the node locked. We release the node lock as
soon as the child is locked.

In this situation concurrency is possible, since another
operation can start its descent as soon as the root node
is unlocked. If their paths do not have another node in
common, it might even finish before the operation which
started earlier. The worst case, however, is pipelined
operation, which is still a lot better than a fully serialised
one.

2.4.2 Path Locking

Obviously, this model breaks down when we need to
walk back up the tree again, for it will introduce cyclic
lock dependencies. This implies that we cannot release
the locks as we go down, which will seriously hinder
concurrent modifications.

An inspection of the relevant operations shows that the
upwards traversal has distinct termination conditions. If
these conditions were reversed, so that we could posi-
tively identify the termination points during the down-
ward traversal, then we could release all locks upwards
of these points.

In the worst case, we will hold the root node lock, yet for
non-degenerate trees the average case allows for good
concurrency due to availability of termination points.

clear tag Clearing a tag in the radix tree involves
walking down the tree, locating the item and clearing
its tag. Then we go back up the tree clearing tags, as
long as the child node has no tagged items.

Thus, the termination condition states:

we terminate the upward traversal if we en-
counter a node, which still has one or more
entries with the tag set after clearing one.

Changing this condition, in order to identify the termi-
nation points during downwards traversal, gives:

the upwards traversal will terminate at nodes
which have more tagged items than the one
we are potentially clearing.

So, whenever we encounter such a node, it is clear that
we will never pass it on our way back up the tree, there-
fore we can drop all the locks above it.

314 • Concurrent Pagecache

remove Element removal is a little more involved: we
need to remove all the tags for a designated item, as well
as remove unused nodes. Its termination condition cap-
tures both of these aspects.

The following termination condition needs to be satis-
fied when walking back up the tree:

the upward traversal is terminated when we
encounter a node which is not empty, and
none of the tags are unused.

The condition, identifying such point during the down-
ward traversal, is given by:

we terminate upwards traversal when a node
that has more than two children is encoun-
tered, and for each tag it has more items than
the ones we are potentially clearing.

Again, this condition identifies points that will never be
crossed on the traversal back up the tree.

So, with these details worked out, we see that a node-
locked tree can achieve adequate concurrency for most
operations.

2.4.3 API

Concurrent modifications require multiple locking con-
texts and a way to track them.

The operation that has the richest semantics is radix_
tree_lookup_slot(). It is used for speculative
lookup, since that requires rcu_dereference() to
be applied to the obtained slot. The update operation
is performed using the same radix tree function, but by
applying rcu_assign_pointer() to the resulting
slot.

When used for update, the encompassing node should
still be locked after return of radix_tree_lookup_
slot(). Hence, clearly, we cannot hide the locking in
the radix_tree_*() function calls.

Thus we need an API which elegantly captures both
cases; lookup and modification.

We also prefer to retain as much of the old API as pos-
sible, in order to leave the other radix tree users undis-
turbed.

Finally, we would like a CONFIG option to disable the
per-node locking for those environments where the in-
creased memory footprint of the nodes is prohibitive.

We take the current pattern for lookups as an example:

struct page **slot, *page;

rcu_read_lock();
slot = radix_tree_lookup_slot(

&mapping->page_tree, index);
page = rcu_dereference(*slot);
rcu_read_unlock();

Contrary to lookups, which only have global state (the
RCU quiescent state), the modifications need to keep
track of which locks are held. As explained before, this
state must be external to the operations, thus we will
need to instantiate a local context to track these locks.

struct page **slot;
DEFINE_RADIX_TREE_CONTEXT(ctx,

&mapping->page_tree);

radix_tree_lock(&ctx);
slot = radix_tree_lookup_slot(

ctx.tree, index);
rcu_assign_pointer(*slot, new_page);
radix_tree_unlock(&ctx);

As can be seen above, radix_tree_lock() oper-
ation locks the root node. By giving ctx.tree as
the tree root instead of &mapping->page_tree, we
pass the local context on, in order to track the held locks.
This is done by using the lower bit of the pointer as a
type field.

Then we adapt the modifying operations, in order to
move the lock downwards:

void **radix_tree_lookup_slot(
struct radix_tree *root,
unsigned long index)

{
...
RADIX_TREE_CONTEXT(context, root);
...
do {

...
/* move the lock down the tree */
radix_ladder_lock(context, node);
...

} while (height > 0);
...

}

2007 Linux Symposium, Volume Two • 315

The RADIX_TREE_CONTEXT() macro extracts the con-
text and the actual root pointer.

Note that unmodified operations will be fully exclusive
because they do not move the lock downwards.

This scheme captures all the requirements mentioned at
the beginning of this section. The old API is retained
by making the new parts fully optional; and by mov-
ing most of the locking specific functionality into a few
macros and functions, it is possible to disable the fine
grained locking at compile time using a CONFIG op-
tion.

3 Pagecache Synchronisation

The lockless pagecache paper [5] discusses the page-
cache synchronisation in terms of guarantees provided
by the read and write side of the pagecache lock. The
read side provides the following guarantees (by exclud-
ing modifications):

• the existence guarantee;

• the accuracy guarantee.

The write side provides one additional guarantee (by be-
ing fully exclusive), namely:

• the no-new-reference guarantee.

The existence guarantee ensures that an object will ex-
ist during a given period. That is, the struct page
found must remain valid. The read lock trivially guar-
antees this by excluding all modifications.

The accuracy guarantee adds to this by ensuring that
not only will the object stay valid, but it will also stay
in the pagecache. The existence only avoids dealloca-
tion, while the accuracy ensures that it keeps referring
to the same (inode, offset)-tuple during the en-
tire time. Once again, this guarantee is provided by the
read lock by excluding all modifications.

The no-new-reference guarantee captures the fully ex-
clusive state of the write lock. It excludes lookups from
obtaining a reference. This is especially relevant for el-
ement removal.

3.1 Lockless Pagecache

The lockless pagecache focuses on providing the guar-
antees, introduced above, in view of the full concurrency
of RCU lookups. That is, RCU lookups are not excluded
by holding the tree lock.

3.1.1 Existence

The existence guarantee is trivially satisfied by observ-
ing that the page structures have a static relation with
the actual pages to which they refer. Therefore they are
never deallocated.

A free page still has an associated struct page,
which is used by the page allocator to manage the free
page. A free page’s reference count is 0 by definition.

3.1.2 Accuracy

The accuracy guarantee is satisfied by using a
speculative-get operation, which tries to get a reference
on the page returned by the RCU lookup. If we did ob-
tain a reference, we must verify that it is indeed the page
requested. If either the speculative get, or the verifica-
tion fails, e.g. the page was freed and possibly reused
already, then we retry the whole sequence.

The important detail here is the try-to-get-a-reference
operation, since we need to close a race with freeing
pages, i.e. we need to avoid free pages from temporarily
having a non-zero reference count. The reference count
is modified by using atomic operations, and to close the
race we need an atomic_inc_not_zero() opera-
tion, which will fail to increment when the counter is
zero.

3.1.3 No New Reference

The no-new-reference guarantee is met by introducing a
new page flag, PG_nonewrefs, which is used to syn-
chronise lookups with modifying operations. That is,
the speculative get should not return until this flag is
clear. This allows atomic removal of elements which
have a non-zero reference count (e.g. the pagecache it-
self might still have a reference).

316 • Concurrent Pagecache

3.1.4 Tree Lock

When we re-implement all lookup operations to take
advantage of the speculative get, and re-implement the
modifying operations to use PG_nonewrefs, then the
read-side of the tree_lock will have no users left.
Hence we can change it into a regular spinlock.

3.2 Concurrent Pagecache

The lockless pagecache leaves us with a single big lock
serialising all modifications to the radix tree. However,
with the adaptations to the radix tree, discussed in Sec-
tion 2.4, the serialisation, required to meet the synchro-
nisation guarantees of Section 3, is per page.

3.2.1 PG_nonewrefs vs. PG_locked

Since we need to set/clear PG_nonewrefs around
most modifying operations, we might as well do it
around all modifying operations, and change PG_
nonewrefs into an exclusion primitive, which seri-
alises each individual pagecache page modification.

We can’t reuse PG_locked for this because, they have
a different place in the locking hierarchy.

inode->i_mutex
inode->i_alloc_sem
mm->mmap_sem

PG_locked
mapping->i_mmap_lock

anon_vma->lock
mm->page_table_lock or pte_lock

zone->lru_lock
swap_lock

mmlist_lock
mapping->private_lock
inode_lock

sb_lock
mapping->tree_lock

Figure 3: mm locking hierarchy

Figure 3 represents the locking hierarchy. As we can
see, PG_locked is an upper level lock, whereas the
tree_lock (now to be replaced by PG_nonewrefs)
is at the bottom.

Also, PG_locked is a sleeping lock, whereas tree_
lock must be a spinning lock.

3.2.2 Tree-Lock Users

Before we can fully remove the tree_lock, we need
to make sure that there are no other users left.

A close scrutiny reveals that nr_pages is also seri-
alised by the tree_lock. This counter needs to pro-
vide its own serialisation, for we take no lock covering
the whole inode. Changing it to an atomic_long_t
is the easiest way to achieve this.

Another unrelated user of the tree lock is architecture
specific dcache flushing. However, since its use of the
tree lock is a pure lock overload, it does not depend on
any other uses of the lock. We preserve this usage and
rename the lock to priv_lock.

3.2.3 No New Reference

The lockless pagecache sets and clears
PG_nonewrefs around insertion operations, in
order to avoid half inserted pages to be exposed to
readers. However, the insertion could be done without
PG_nonewrefs by properly ordering the operations.

On the other hand, the deletion fully relies on PG_
nonewrefs. It is used to hold off the return of the
speculative get until the page is fully removed. Then
the accuracy check, after obtaining the speculative refer-
ence, will find that the page is not the one we requested,
and will release the reference and re-try the operation.
We cannot rely on atomic_inc_not_zero() fail-
ing in this case, because the pagecache itself still has a
reference on the page.

By changing PG_nonewrefs into a bit-spinlock and
using it around all modifying operations, thus serialising
the pagecache on page level, we satisfy the requirements
of both the lockless and the concurrent pagecache.

4 Performance

In order to benchmark the concurrent radix tree, a new
kernel module is made. This kernel module exercises
the modifying operations concurrently.

This module spawns a number of kernel threads, each
of which applies a radix tree operation on a number of
indices. Two range modes were tested: interleaved and

2007 Linux Symposium, Volume Two • 317

sequential. The interleaved mode makes each thread it-
erate over the whole range, and pick only those elements
which match i mod nr_threads = nr_thread. The se-
quential mode divides the full range into nr_thread sep-
arate sub ranges.

These two patterns should be able to highlight the im-
pact of cache-line bouncing. The interleaved pattern has
a maximal cache-line overlap, whereas the sequential
pattern has a minimal cache-line overlap.

4.1 Results

Here we present results obtained by running the new
kernel module, mentioned above, on a 2-way x86-64
machine, over a range of 16777216 items. The numbers
represent the runtime (in seconds).

The interleaved mode gives:

operation serial concurrent gain
insert 16.006 19.485 -22%
tag 14.989 15.538 -4%
untag 17.515 16.982 3%
remove 14.213 16.506 -16%

The sequential mode gives:

operation serial concurrent gain
insert 15.768 14.792 6%
tag 15.110 14.581 4%
untag 18.138 15.027 17%
remove 14.607 16.250 -11%

As we see from the results, the lock induced cache-line
bouncing is a real problem, even on small SMP systems.
The locking overhead is not prohibitive however.

5 Optimistic Locking

Now that the pagecache is page-locked, and the basic
concurrency control algorithms are in place, effort can
be put into investigating more optimistic locking rules
for the radix tree.

For example, for the insertion we can do an RCU lookup
of the lowest possible matching node, then take its lock

and verify that the node is still valid. After this, we
continue the operation in a regular locked fashion. By
doing this we would avoid locking the upper nodes in
many cases, and thereby significantly reduce cache-line
bouncing.

Something similar can be done for the item removal:
find the lowest termination point during an RCU traver-
sal, lock it and verify its validity. Then continue as a
regular path-locked operation.

In each case, when the validation fails, the operation
restarts as a fully locked operation.

Since these two examples cover both the ladder-locking
model in Section 2.4.1, and the path-locking model in
Section 2.4.2, they can be generalised to cover all other
modifying operations.

5.1 Results

Rerunning the kernel module, in order to test the con-
current radix tree performance with this new optimistic
locking model, yields much better results.

The interleaved mode gives:

operation serial optimistic gain
insert 16.006 12.034 25%
tag 14.989 7.417 51%
untag 17.515 4.135 76%
remove 14.213 6.529 54%

The sequential mode gives:

operation serial optimistic gain
insert 15.768 3.446 78%
tag 15.110 5.359 65%
untag 18.138 4.126 77%
remove 14.607 6.488 56%

These results are quite promising for larger SMP ma-
chines.

Now we see that, during the interleaved test, the threads
slowly drifted apart, thus naturally avoiding cache-line
bouncing.

318 • Concurrent Pagecache

6 Availability

This work resulted in a patch-set for the Linux kernel,
and is available at:

http://programming.kicks-ass.net/

kernel-patches/concurrent-pagecache/

References

[1] Wikipedia, Read-Copy-Update
http://en.wikipedia.org/wiki/RCU

[2] M. Gorman, Understanding the Linux Virtual
Memory Manager, 2004.

[3] Wikipedia, Radix Tree, http:
//en.wikipedia.org/wiki/Radix_tree

[4] N. Piggin, RCU Radix Tree,
http://www.kernel.org/pub/linux/

kernel/people/npiggin/patches/

lockless/2.6.16-rc5/radix-intro.pdf

[5] N. Piggin A Lockless Pagecache in Linux -
Introduction, Progress, Performance, Proceedings of
the Ottawa Linux Symposium 2006, pp. 241–254.

