
Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Contents
Evolution in Kernel Debugging using Hardware Virtualization With Xen 1

Nitin A. Kamble

Improving Linux Startup Time Using Software Resume (and other techniques) 17
Hiroki Kaminaga

Automated Regression Hunting 27
A. Bowen, P. Fox, J. Kenefick, A. Romney, J. Ruesch, J. Wilde, & J. Wilson

Hacking the Linux Automounter—Current Limitations and Future Directions 37
Ian Maxwell Kent & Jeff Moyer

Why NFS Sucks 51
Olaf Kirch

Efficient Use of the Page Cache with 64 KB Pages 65
Dave Kleikamp and Badari Pulavarty

Startup Time in the 21st Century: Filesystem Hacks and Assorted Tweaks 71
Benjamin C.R. LaHaise

Using Hugetlbfs for Mapping Application Text Regions 75
H.J. Lu, K. Doshi, R. Seth, & J. Tran

Towards a Better SCM: Revlog and Mercurial 83
Matt Mackall

Roadmap to a GL-based composited desktop for Linux 91
K.E. Martin and K. Packard

Probing the Guts of Kprobes 101
A. Mavinakayanahalli, P. Panchamukhi, J. Keniston, A. Keshavamurthy,
& M. Hiramatsu

Shared Page Tables Redux 117
Dave McCracken

Extending RCU for Realtime and Embedded Workloads 123
Paul E. McKenney

OSTRA: Experiments With on-the-fly Source Patching 139
Arnaldo Carvalho de Melo

Design and Implementation to Support Multiple Key Exchange Protocols for IPsec 143
K. Miyazawa, S. Sakane, K. Kamada, M. Kanda, & A. Fukumoto

The State of Linux Power Management 2006 151
Patrick Mochel

I/O Workload Fingerprinting in the Genetic-Library 165
Jake Moilanen

X86-64 XenLinux: Architecture, Implementation, and Optimizations 173
Jun Nakajima, Asit Mallick

GCC—An Architectural Overview, Current Status, and Future Directions 185
Diego Novillo

Shared-Subtree Concept, Implementation, and Applications in Linux 201
Al Viro & Ram Pai

The Ondemand Governor 215
Venkatesh Pallipadi & Alexey Starikovskiy

Linux Bootup Time Reduction for Digital Still Camera 231
Chan-Ju Park

A Lockless Pagecache in Linux—Introduction, Progress, Performance 241
Nick Piggin

The Ongoing Evolution of Xen 255
I. Pratt, D. Magenheimer, H. Blanchard, J. Xenidis, J. Nakajima, & A. Liguori

NFSv4 Test Project 267
Tony Reix

Measuring Resource Demand on Linux 287
Rik van Riel

Improving the Approach to Linux Performance Analysis 295
Jose Santos & Guanglei Li

Resizing Memory With Balloons and Hotplug 305
J.H. Schopp, K. Fraser, & M.J. Silbermann

Collaborative Memory Management in Hosted Linux Environments 313
M. Schwidefsky, H. Franke, R. Mansell, H. Raj, D. Osisek, & J.H. Choi

Chip Multi Processing aware Linux Kernel Scheduler 329
Siddha, Pallipadi and Mallick

Dynamic Device Handling on the Modern Desktop 341
K. Sievers & D. Zeuthen

Unionfs: User- and Community-Oriented Development of a Unification File System 349
D. Quigley, J. Sipek, C.P. Wright, & E. Zadok

VMI: An Interface for Paravirtualization 363
Z. Amsden, D. Arai, D. Hecht, A. Holler, & P. Subrahmanyam

HTTP-FUSE Xenoppix 379
K. Suzaki, T. Yagi, K. Iijima, K. Kitagawa, S. Tashiro

Virtual Scalability: Charting the Performance of Linux in a Virtual World 393
A. Theurer, K. Rister, O. Krieger, R. Harper, & S. Dobbelstein

Automatic System for Linux Kernel Performance Testing 403
A. Ufimtsev & L. Murphy

MD RAID Acceleration 409
Dan J. Williams

Catalyzing Hardware Driver Development 415
D.J. Wong, A. Bruemmer, D. Fry, & M. Salyzyn

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Evolution in Kernel Debugging using Hardware
Virtualization With Xen

Nitin A. Kamble
nitin.a.kamble@intel.com

Jun Nakajima
jun.nakajima@intel.com

Asit K. Mallick
asit.k.mallick@intel.com

Open Source Technology Center, Intel Corporation

Abstract

Xen’s ability to run unmodified guests with the
virtualization available in hardware opens new
doors of possibilities in the kernel debugging.
Now it’s possible to debug the Linux kernel or
any other PC operating system similar to de-
bugging a user process in Linux. Since hard-
ware virtualization in-processor enables Xen
to implement full virtualization of a guest OS,
there is no need to change the kernel in any way
to debug it.

This paper demonstrates the new evolutionary
debug techniques using examples. It also ex-
plains how the new technique actually works.

1 Introduction

The Xen[1] open source virtual machine moni-
tor initially started with software virtualization
by modifying the guest OS kernel. Since Xen
3.0, it also supports the Intel R© Virtualization
Technology R© [2] to create and run unmodified

guests. This Xen capability to run unmodified
Linux OS or any other unmodified OS also pro-
vides a new opportunity to debug an unmodi-
fied OS using the Xen VMM.

With this guest debug capability, it is possible
to trap into an unmodified guest such as any
Linux, Windows, DOS, or any other PC OS;
and check the register state, modify registers,
set debug breakpoints anywhere including in
the kernel, read and write memory, or inspect or
modify the code currently being executed. This
new method uses gdb[3] as the front end for
debugging. With gdb also comes the source-
level debugging of an unmodified Linux kernel.
There are some advantages of using this debug
approach compared to other kernel debug op-
tions, such as the Linux kernel stays unmodi-
fied, and ability of setting of breakpoints any-
where in the code. In fact it is also possible to
set breakpoints in the boot loader such as grub
[4] or inside the guest BIOS code.

2 • Evolution in Kernel Debugging using Hardware Virtualization With Xen

2 The Architecture and Design of
debugging of an unmodified guest

The virtualization technology in the processor,
and Xen’s ability to take advantage of it, let an
unmodified OS run inside a virtual machine.

The following sections first briefly describe the
virtualization technology in the Intel IA32 pro-
cessors, and how Xen[5] hypervisor utilizes
this hardware virtualization to create virtual
machines (domain) for unmodified guests.

2.1 Intel Virtualization Technology for
IA32 Architecture

Virtualiztion Techinology in the Intel proces-
sors augment the IA32 architecture by pro-
viding new processor operation modes called
VMX operations. And the Virtual-Machine
Control Structure controls the operation of the
virtual machine running in the VMX operation.

The following subsections introduce the VMX
Operation and the Virtual-Machine Control
Structure briefly.

2.1.1 Introduction to VMX operation

VT processor support for virtualization is pro-
vided by a new form of processor operation
called VMX operation. There are two kinds
of VMX operations: VMX root operation and
VMX nonroot operation. The Xen VMM runs
in VMX root operation and guest software runs
in VMX non-root operation. Transitions be-
tween VMX root operation and VMX non-root
operation are called VMX transitions. There
are two kinds of VMX transitions. Transitions
into VMX non-root operation are called VM en-
tries. Transitions from VMX non-root opera-
tion to VMX root operation are called VM ex-

Guest 0 Guest 1

VM Monitor VMXOFFVMXON

VM ExitVM Entry

VM Exit

VM Entry

Figure 1: Interaction of Virtual-Machine Mon-
itor and Guests

its. Figure 1 depicts the interactions between
the VMX root and VMX nonroot operations.

Processor behavior in VMX root operation is
very much as it is outside VMX operation or
without the VT feature in the processor. The
principal differences are that a set of new in-
structions (the VMX instructions) is available
and that the values that can be loaded into cer-
tain control registers are limited. Processor be-
havior in VMX non-root operation is restricted
and modified to facilitate virtualization. Instead
of their ordinary operation, certain instructions
(including the new VMCALL instruction) and
events cause VM exits to the VMM. Because
these VM exits replace ordinary behavior, the
functionality of software in VMX non-root op-
eration is limited. It is this limitation that al-
lows the VMM to retain control of processor
resources.

Because VMX operation places these restric-
tions even on software running with current
privilege level (CPL) 0, guest software can run
at the privilege level for which it was originally
designed.

2.1.2 Virtual-Machine Control Structure

VMX non-root operation and VMX transitions
are controlled by a data structure called a vir-
tual machine control structure (VMCS). Ac-

2006 Linux Symposium, Volume Two • 3

cess to the VMCS is managed through a com-
ponent of processor state called the VMCS
pointer (one per logical processor). The
value of the VMCS pointer is the 64-bit ad-
dress of the VMCS. The VMCS pointer can
be read and written using the instructions
VMPTRST and VMPTRLD. The VMM con-
figures a VMCS using other instructions: VM-
READ, VMWRITE, and VMCLEAR.

Please refer to the latest IA-32 SDM[6] for
more details on the Virtual Machine Extensions
(VMX) in the Intel Processor.

2.2 Xen support for unmodified Guest us-
ing the Hardware Virtualization

The processor state of the running vcpu is
stored in the VMCS area. Xen uses a differ-
ent VMCS for each unmodified guest vcpu. So
when it is scheduling from one VMX guest to
another VMX guest, it switches the VMCS to
save and load the processor context automati-
cally. To get into the hypervisor, paravirtual-
ized Guests use hyper calls, similar to a pro-
cess doing sys-call into OS for privileged op-
erations. On Xen, unmodified guests run in
restricted mode (VMX nonroot operation). In
that mode all the virtualization-related proces-
sor instructions and events cause a VM Exit,
switching to the hypervisor. With the VM Ex-
its there is no need to modify the guest OS to
add the hyper calls in the kernel.

The unmodified guest OS thinks that it is in
control of its physical memory management,
such as page tables, but the Xen hypervi-
sor is monitoring the guest page table usage.
Xen handles the page faults, TLB flush in-
structions for the Guest OS, and maintains
shadow-translated page tables for the unmod-
ified guests.

2.3 Internals of debugging an unmodified
guest on Xen

Figure 3 shows the interactions happening in
various Xen components when an unmodi-
fied guest is being debugged. Both gdb
and gdbserver-xen are processes running
in the Xen-paravirtualized service OS, also
known as domain-0. gdb is totally unmodi-
fied. gdbserver is a gdb tool used for re-
mote debug. gdbserver-xen is a modified
gdbserver for utilizing Xen hyper call based in-
terfaces available in domain-0.

The following sections describe interactions
and implementation details for the the Xen
components exercised while debugging a un-
modified guest OS.

2.3.1 gdb and gdbserver-xen interactions

The gdbserver [7] is a standard tool available to
use with gdb for remote gdb. It uses a ASCII
protocol over the serial line or over the network
to exchange debug information. See Figure 2
for a pictorial view of this interaction.

The gdbserver implements target_ops

for Linux remote debugging. And
gdbserver-xen basically extends the
standard Linux gdbserver by implementing the
target_ops specific to Xen. The interaction
between gdb and gdbserver-xen is no different
than gdb and the standard gdbserver.

2.3.2 Communication between gdbserver-
xen and libxenctrl library

The target_ops from the gdbserver-xen
such as linux_fetch_registers, linux_
store_registers, linux_read_memory,
and linux_write_memory use the xc_

4 • Evolution in Kernel Debugging using Hardware Virtualization With Xen

Linux Kernel

gdbserver

Serial or
network
device
driver

Serial or
network
device
driver

gdb

Linux Kernel

Platform Hardware

Serial or

network device

Serial or

network device

Physical Link

Host 1 Host 2

Platform Hardware

Target
Process

ptrace attach

user

kernel

Platform
devices

Figure 2: Typical use of gdbserver to remotely
debug a Linux process

ptrace interface from the libxenctrl li-
brary to exchange the processor state or mem-
ory contents for the VMX domain. The xc_

ptrace() function implements the ptrace-like
mechanism to control and access the guest.

2.3.3 libxenctrl and dom0 privcmd device
interactions

Gdb’s request to get and set processor registers
is implemented in the libxenctrl library by
xc_ptrace() calls like PTRACE_GETREGS,
PTRACE_SETREGS, PTRACE_GETFPREGS,
PTRACE_SETFPREGS, PTRACE_GETFPXREGS,
and PTRACE_SETFPXREGS. Inside the
xc_ptrace(), the registers are fetched by
the calling fetch_regs() and changed
by calling xc_vcpu_setcontext()

functions. fetch_regs() uses the
dom0_op(DOM0_GETVCPUCONTEXT) Xen
hyper call to get the context of the guest
vcpu. The hyper call is performed by making
IOCTL_PRIVCMD_HYPERCALL ioctl on the
/proc/xen/privcmd domain-0 xen device.

For gdb’s request to get or change code (text)

and data memory, the xc_ptrace requests like
PTRACE_POKETEXT, PTRACE_POKEDATA are
used. These ptrace requests use the map_

domain_va() function to map the guest mem-
ory in the gdbserver-xen process’s address
space, and do the read/write operations on that
mapped memory. The map_domain_va()

function is also part of the libxenctrl li-
brary. It finds out the mode the guest vcpu is
running in, like real mode or 32-bit protected
paging disabled, or paging enabled or paging
with PAE enabled, or 64-bit IA32e mode (long
mode). If the guest processor is in paging-
disabled mode such as real mode then it can get
the machine physical address for the address
gdb has requested directly using the page_

array[] for the domain.1

Xen Hypervisor

Dom0 Guest VMX guest

gdbservergdb

dom0_op

Guest vCPU state

VMCS data

VMexit/VMresume

User

Hypervisor

xc_ptrace

lib

Kernel

Platform hardware devices

local loop

network device

Figure 3: Unmodified guest debug interactions

Then the xc_map_foreign_range() func-
tion is used to map the machine page frame of

1The page_array[] is an array of the physical
page frames numbers allocated to the guest in the guest
physical address order. It is built at the time of creating a
new domain. page_array[guest_physical_
pfn] gives corresponding machine_physical_
pfn. The page_array[] for the guest domain
is obtained by making DOM0_GETMEMLIST dom0_
op() hyper call.

2006 Linux Symposium, Volume Two • 5

the guest page in the gdbserver-Xen’s address
space. It uses IOCTL_PRIVCMD_MMAP ioctl on
the privcmd domain-0 xen device to map the
machine page frames into the the gdbserver-
xen process’s address space. Once it is mapped
in the gdbserver-xen process’s address space, it
then performs simple memory reads or writes
to access the guest memory contents.

map_domain_va() determines if the guest
vcpu is running in paging-enabled mode or not,
by looking at control registers received from
the fetch_regs() call for the guest vcpu.
The control registers CR0 and CR4 tells which
mode the guest vcpu is running such as real,
protected paging disabled, protected paging en-
abled, PAE, or IA32e mode. The control reg-
ister CR3 points to the guest physical address
of the current page table the guest vcpu is
using. The IA32 architecture has different-
format page tables for different processor pag-
ing modes.

The libxenctrl library implements map_

domain_va_32, map_domain_va_pae, and
map_domain_va_64 functions to handle these
different page table formats. The map_

domain_va_64() handles page tables for
both 4k and 2M pages in the IA32e mode.

After getting the guest physical address for the
gdb requested virtual address by traversing the
guest page tables, then the rest of the func-
tionality to map the guest page frame and per-
form read/write is implemented similar to the
paging-disabled situation described above.

2.3.4 privcmd domain-0 device and the
Xen hyper visor Interactions

The /proc/xen/privcmd device is imple-
mented as a device driver in the dom0’s par-
avirtualized kernel. For the device, the IOCTL_

PRIVCMD_MMAP ioctl is implemented by mak-
ing a HYPERVISOR_mmu_update hyper-call in
Xen. And like all the other hyper calls, the
IOCTL_PRIVCMD_HYPERCALL ioctl is imple-
mented by making a call at right the offset in
the hypercall_page.

The hypervisor_page has the handlers for
the hyper calls with various parameters. And it
is initialized by the Xen hypervisor at the do-
main creation time. The initialization of the
hypercall_page involves writing the appro-
priate code in the page for hyper call handlers.
For x86_64 domain-0 the hypercall_page is
initialized with syscall handlers; for i386 it
is it is initialized with int 0x82 calls. For
supervisor_mode_kernel i386 domain-0
kernel it is initialized with the long call in-
struction. All these methods get the proces-
sor execution control into the Xen hypervi-
sor, and call the appropriate function from the
hypercall_table. After the execution of the
hyper call function, the hypervisor returns con-
trol to the next instruction after the hyper call in
the dom0, by making an iret or long call,
or sysret instruction.

2.3.5 The Xen hyper visor infrastructure
for debugging

The get and set of vcpu context dom0_ops

described in Section 2.3.3 provide gdb with
read/write access to the guest vcpu registers.
All the dom0_op hyper calls are handled by
the do_dom0_op() function in the Xen hyper-
visor. The DOM0_GETVCPUCONTEXT dom0_op
gets the vcpu register context of the guest vcpu
by reading the per-vcpu context information for
the guest domain stored in the hypervisor. Not
all information is available there, because some
of the guest register state is stored in VMCS for
faster access. It needs to get the register state
information from the VMCS to get the com-
plete register state of the guest vcpu.

6 • Evolution in Kernel Debugging using Hardware Virtualization With Xen

In a multi-processor system, the domain-0 vcpu
running the dom0_op can be different than the
guest domain vcpu being debugged. And the
VMCS structures are per logical processor; one
processor can not operate on other processor’s
VMCS. So if the processors backing these two
vcpus are different, then the vcpu running the
dom0_op() sends an IPI (InterProcessor Inter-
rupt) to ask the other vcpu to provide its VMCS
guest registers’ context state. The VMCS reg-
isters’ context state is obtained by temporarily
loading the VMCS for the guest vcpu and per-
forming VMREAD instructions for the guest
registers.

The DOM0_GETVCPUCONTEXT dom0_op is im-
plemented similarly using the VMWRITE in-
struction.

The guest memory access is enabled by map-
ping the guest memory in the gdbserver-xen’s
address space using the mmu_update hyper
call; this is described in Section 2.3.4. The
mmu_update hyper call is implemented in the
hypervisor by modifying the page table entries
of the gdbserver-xen process running in par-
avirtualized domain-0, such that the requested
virtual address maps to the machine frame
number of the requested guest memory loca-
tion.

The PIT (Programable Interrupt Timer) vir-
tulization for the the unmodified guests is also
altered in the Xen hypervisor for so that it does
not try to inject the timer ticks guest has missed
due to debugger stopping the guest.

2.3.6 Setting breakpoint in the gdb

Gdb sets breakpoints in the guest by placing
an int3 instruction at the breakpoint location.
Whenever the processor encounters the int3
instruction while executing, a #BP exception is

raised, resulting in a VMexit into the hypervi-
sor. The hypervisor handles VMExits based on
the exit reason, and for the breakpoint excep-
tion VMexit, it simply pauses the guest domain.

Meanwhile the gdbserver is waiting for the
guest domain to pause. Once it discovers that
it has paused, it uses the xc_ptrace interfaces
to get the processor register state of the guest
domain’s vcpu, and passes it on to gdb. gdb
was waiting for a response from the gdbserver.
Once it gets the response, it shows where the
guest is paused, by looking at the eip/rip

from the guest vcpu register state. At this point,
the gdb user can issue various gdb commands
to access and manipulate the guest processor
and memory state.

When the user asks gdb to continue the de-
bugged guest, gdbserver unpauses the guest do-
main, and waits for it to get into paused state
again. The gdbserver also handles the CTRL-C
press from its terminal, pausing the domain and
returning control to gdb.

3 Current Limitations

There are two types of limitations. One is limi-
tation in the use of gdb, because not all the gdb
commands are implemented in the gdbserver-
xen. And then there are limitations due to the
Xen environment of the unmodified guests.

3.1 Limitations on gdb use

Currently breakpoints are implemented only
using the int3 instruction and traps. The pro-
cessor debug registers are not touched. This
puts some limitations on the guest debugging.

Currently these gdb capabilities are missing
from the gdbserver-xen for debugging an un-
modified guest:

2006 Linux Symposium, Volume Two • 7

• hardware breakpoints

• watchpoints

• single stepping

3.2 Limitations on the guest driver debug-
ging

The unmodified guests running on the Xen sees
only those hardware devices emulated by Xen.
And as of now, unmodified guests running on
Xen can not access the platform devices di-
rectly. Hence this debug capability can not
be used to debug any arbitrary device driver.
Only the device driver for the virtualized de-
vices Xen shows to the unmodified guests can
be debugged.

In the future with the Intel Virtualization Tech-
nology for Directed I/O [8] and Xen’s capabil-
ity to assign machine devices directly to the
unmodified guests, it will be possible to use
this debug capability to also debug the device
drivers for the platform’s devices.

4 Comparison with other Linux
Kernel debuggers

There are other debugging [9] options available
for debugging the Linux Kernel, such as soft-
ware debuggers: KDB [10], KGDB [11], and
hardware JTAG based debuggers: Arium In-
target probe [12].

4.1 KDB

The Linux Kernel Debugger (KDB) is a patch
for the Linux kernel and provides a means of
examining kernel memory and data structures
while the system is operational.

4.1.1 Advantages compared to KDB

• No modification to the Linux kernel is
needed. KDB needs a KDB enabled/
patched Linux kernel. If the KDB patch
for the desired kernel is not available, then
there will be more effort to port the KDB
patch to the desired Linux kernel.

• Not only Linux, any PC operating system
can debugged.

• Can set breakpoint anywhere in the kernel,
even in the interrupt handlers. With KDB,
the kernel code used by KDB can not be
debugged.

• Source-level debugging. KDB does not
support source-level debugging.

• Can also debug boot loader or the guest
BIOS code.

4.1.2 Disadvantages compared to KDB

• Requires a system with a VT-capable pro-
cessor.

• With today’s Xen, arbitrary device drivers
can not be debugged.

• Single-step is currently not supported. In-
stead, breakpoints can be used.

• Does not support extra kernel-aware com-
mands. For example, KDB supports ps,
btp, and bta commands to show the run-
ning processes and their back traces.

4.2 KGDB

KGDB is a remote host Linux kernel debugger
through gdb and provides a mechanism to de-
bug the Linux kernel using gdb.

8 • Evolution in Kernel Debugging using Hardware Virtualization With Xen

4.2.1 Advantages compared to KGDB

• The Linux kernel can be debugged with
just one system. KGDB needs two sys-
tems, one running the Linux kernel, and
another controlling it.

• Not only Linux, any PC operating system
can debugged.

• No modification to the Linux kernel is
needed. KGDB also needs a KGDB en-
abled/patched Linux kernel. If the KGDB
patch for the desired kernel is not avail-
able, then there will be more effort to port
the KGDB patch to the desired Linux ker-
nel.

• Can also debug boot loader or the guest
BIOS code.

4.2.2 Disadvantages compared to KGDB

• Requires a system with a VT-capable pro-
cessor.

• With today’s Xen, arbitrary device drivers
can not be debugged.

• Single-step is currently not supported. In-
stead, breakpoints can be used.

5 Debug environment setup

The following sections provide information on
what you need and how to set up your own en-
vironment for debugging the linux kernel using
Xen and hardware virtualization and use it ef-
fectively.

5.1 Requirements

1. Hardware: In order to run modified guest
domains on Xen, first you need a system
with processor capable of Intel Virtualiza-
tion Technology. There is a page [13] set
up on the xen wiki here for currently re-
leased VT-enabled processors; it can help
you in finding the right processor. Going
forward, all future Intel processors will in-
corporate Virtualization Technology.

2. Xen VMM: then you need to get a
Xen with the gdbserver changes. Any
version of Xen after revision 9496:

e08dcff87bb2 dated 31 March 2006
should work. Instructions on how to build
and install on your Linux box can be found
in the Xen user manual [14]. Instead of
building, you can take the ready-built 3.0.2
(or newer) rpm from the download section
[15] of the Xensource website.

3. gdbserver-xen: this is the remote agent
used to attach gdb to a running, unmodi-
fied guest. The sources for gdbserver-xen
are part of the Xen source code. The
tools/debugger/gdb/README file
from the Xen source code provides infor-
mation on how to build gdbserver-xen.

4. gdb: If you are running x86_64 Xen, then
you need 64-bit gdb. If you are running
x86_32 or i386 Xen, then you need 32-
bit gdb. gdb should be provided by your
distribution. Xen allows running a 32-bit
OS on the 64-bit Xen using VT—in that
case, you will need to use the 64-bit ver-
sions of gdb and gdbserver.

5.2 Setting up the debug environment

Once you have all the required components,
then you can go ahead with the setup as fol-
lows.

2006 Linux Symposium, Volume Two • 9

1. Start the unmodified guest normally on top
of xen. If you are not familiar with Xen,
you can refer to the Xen user manual [14].

2. get the domain_id for the running guest
from the xm list command in the ser-
vice domain (domain 0).

3. attach gdbserver-xen to the run-
ning guest with this command:
gdbserver-xen localhost:9999

--attach <domain_id>

4. Then start gdb in domain 0 or on a remote
host. If you have the binary file with sym-
bols for the guest kernel, you can pass it to
gdb.
gdb -s vmlinux

You can get this symbol file for various re-
leased distributions. Appendix A has more
information about it.

If you do not have such a symbol file for
the running guest kernel, you still can de-
bug it by running gdb with no arguments,
but you will not be able operate with sym-
bols from gdb.

5. Enter the gdb command as shown in Ta-
ble 1 at the gdb prompt to set up the
right environment for gdb. With this, gdb
uses the appropriate protocol to commu-
nicate with the gdbserver-xen to exchange
the architecture state. These initialization
gdb commands can also be placed in the
.gdbinit configuration file.

6. Enter this at the gdb prompt to attach to
the remote gdbserver:
target remote <host_running_

gdbserver>:9999

Now you should see the eip/rip where the
guest is stopped for debugging. Figure 4 shows
the screen shot from starting the gdbserver and
gdb connection. It would be more convenient

to use separate terminals for the gdbserver-xen
and gdb, because you can stop execution of the
running guest any time by pressing CTRL-C in
the gdbserver-xen terminal.

Now from gdb you can try these commands:

• get registers

info all-registers
info registers
info registers eax

• set registers

set $rip=$rip+2
set $edi=$esi

• look at memory contents

p /4d 0xc00abd23
p page_array

• change memory contents

set *(long *)0xc01231bf=-1
set my_struct[5].my_member=5
set *(long)($rbp +8) = 0

• look at the disassembly code

x /10i $rip
x /10i $eip
x /10i my_function

• look at the back trace

bt
where

• set breakpoints

break *$rip+0x10
break my_function

10 • Evolution in Kernel Debugging using Hardware Virtualization With Xen

• If you are running on a x86_64 Xen, set the 64-bit architecture in gdb:
set architecture i386:x86-64:intel

• If you are running on a 32-bit Xen, set the 32-bit architecture in gdb:
set architecture i386:intel

Table 1: gdb environment setup for gdbserver-xen

• In one terminal start the gdbserver-xen

[root@localhost ~]# xm list
Name ID Mem(MiB) VCPUs State Time(s)
Domain-0 0 1024 4 r----- 132.7
ExampleHVMDomain 2 512 1 -b---- 11.7

[root@localhost ~]./gdbserver-xen localhost:9999 --attach 2
Attached; pid = 2
Listening on port 9999

• In another terminal start the gdb

[root@localhost ~]# gdb
GNU gdb Red Hat Linux (6.3.0.0-1.21rh)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".

(gdb) set architecture i386:x86-64:intel
The target architecture is assumed to be i386:x86-64:intel

(gdb) target remote localhost:9999
Remote debugging using localhost:9999
[New Thread 0]
[Switching to Thread 0]
0x00000000c0109093 in ?? ()
(gdb)

Figure 4: starting the gdsberver-xen and gdb connection

2006 Linux Symposium, Volume Two • 11

• continue to get the breakpoints hit

cont

• delete breakpoints

delete 1

• advance to some location

advance my_function

• jump execution to some other location

jump *0xffffffff8010940f
jump crash.c:90
jump my_function

6 Examples

• Figure 5 shows how to get the debuginfo
for the stock Red Hat Enterprise Linux 3
Update 5 kernel, and use it with gdb to de-
bug the kernel at source level.

• Figure 6 shows a custom-compiled
x86_64 2.6.16 Linux kernel debugged at
source level on 64-bit Xen.

• Figure 7 shows a freedos beta9rc5 debug-
ging without the symbols information.

7 Summary and Conclusion

The paper describes unmodified Linux kernel
debugging at source level using Xen on plat-
forms with hardware virtualization processors.
It describes how the gdb commands gets im-
plemented in the various components of Xen.
It shows how to set up this debug environment
and provides a high-level comparison between
other Linux kernel debuggers.

Appendix A

Debug info for stock distribution kernels. Fig-
ure 5 show how to use this kernel-debuginfo
rpm to debug the Linux kernel at source level.

• Red Hat Fedora Core Distributions:
http://download.fedora.
redhat.com/pub/fedora/linux/
core/{1,2,3,4,5}/{i386,x86_
64}/debug/

• Red Hat Enterprise Linux Distribu-
tions: http://updates.redhat.
com/enterprise/{3AS,3ES,
3WS,3desktop,4AS,4ES,4WS,
4Desktop}/en/os/Debuginfo/
{i386,x86_64}/RPMS/

• SuSE Linux 10.1 ftp://ftp.suse.
com/pub/projects/kernel/
kotd/{i386,x86_64}/SL101_
BRANCH/

• Other Linux Distributions: I could not find
the debuginfo rpms for other distributions.

Acknowledgments

Thanks to my colleagues at Intel Open Source
Technology Center and friends in the open
source community for their continuous support.

Thanks to Keir Fraser and Ian Pratt for
providing me comments and suggestions for
my gdbserver-related patches for unmodfied
(VMX or HVM) guests to Xen.

Thanks to John W. Lockhart for helping me for-
mat this paper in LATEX.

12 • Evolution in Kernel Debugging using Hardware Virtualization With Xen

[root@localhost ~]# wget http://updates.redhat.com/enterprise/3AS/en/os/Debuginfo\
/i386/RPMS/kernel-debuginfo-2.4.21-32.EL.i686.rpm
[root@localhost ~]$ wget http://updates.redhat.com/enterprise/3AS/en/os/\
> Debuginfo/i386/RPMS/kernel-debuginfo-2.4.21-32.EL.i686.rpm
--11:22:49-- http://updates.redhat.com/.../kernel-debuginfo-2.4.21-32.EL.i686.rpm

=> ‘kernel-debuginfo-2.4.21-32.EL.i686.rpm’
Length: 48,079,241 [application/x-rpm]
100%[====================================>] 48,079,241 304.66K/s ETA 00:00
11:25:27 (297.27 KB/s) - ‘kernel-debuginfo-2.4.21-32.EL.i686.rpm’ saved [48,079,241/48,079,241]

[root@localhost ~]# rpm -ivh kernel-debuginfo-2.4.21-32.EL.i686.rpm
warning: kernel-debuginfo-2.4.21-32.EL.i686.rpm: Header V3 DSA signature: NOKEY, key ID db42a60e
Preparing... ### [100%]

1:kernel-debuginfo ### [100%]
[root@localhost ~]# gdb -s /usr/lib/debug/boot/vmlinux-2.4.21-32.EL.debug
GNU gdb Red Hat Linux (6.3.0.0-1.21rh)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu"...
Using host libthread_db library "/lib64/libthread_db.so.1".

(gdb) set architecture i386:x86-64:intel
The target architecture is assumed to be i386:x86-64:intel
(gdb) target remote localhost:9999
Remote debugging using localhost:9999
[New Thread 0]
[Switching to Thread 0]
default_idle () at process.c:96
96 }
(gdb) list
91 if (!need_resched())
92 safe_halt();
93 else
94 __sti();
95 }
96 }
97
98 /*
99 * On SMP it’s slightly faster (but much more power-consuming!)
100 * to poll the ->need_resched flag instead of waiting for the
(gdb) p /x swapper_pg_dir
$2 = {{pgd = 0x0} <repeats 768 times>, {pgd = 0x102063}, {pgd = 0x103063}, {

pgd = 0x104063}, {pgd = 0x105063}, {pgd = 0x1063}, {pgd = 0x2063}, {
pgd = 0x3063}, {pgd = 0x4063}, {pgd = 0x5063}, {pgd = 0x6063}, {
pgd = 0x7063}, {pgd = 0x8063}, {pgd = 0x9063}, {pgd = 0xa063}, {
pgd = 0xb063}, {pgd = 0xc063}, {pgd = 0xd063}, {pgd = 0xe063}, {
pgd = 0xf063}, {pgd = 0x10063}, {pgd = 0x11063}, {pgd = 0x12063}, {
pgd = 0x13063}, {pgd = 0x14063}, {pgd = 0x15063}, {pgd = 0x16063}, {
pgd = 0x17063}, {pgd = 0x18063}, {pgd = 0x19063}, {pgd = 0x1a063}, {
pgd = 0x1b063}, {pgd = 0x1c063}, {pgd = 0x1d063}, {pgd = 0x1e063}, {
pgd = 0x1f063}, {pgd = 0x20063}, {pgd = 0x21063}, {pgd = 0x22063}, {
pgd = 0x23063}, {pgd = 0x24063}, {pgd = 0x25063}, {pgd = 0x26063}, {
pgd = 0x27063}, {pgd = 0x28063}, {pgd = 0x29063}, {pgd = 0x2a063}, {
pgd = 0x2b063}, {pgd = 0x2c063}, {pgd = 0x2d063}, {pgd = 0x2e063}, {
pgd = 0x2f063}, {pgd = 0x30063}, {pgd = 0x31063}, {pgd = 0x32063}, {
pgd = 0x33063}, {pgd = 0x34063}, {pgd = 0x35063}, {pgd = 0x36063}, {
pgd = 0x37063}, {pgd = 0x38063}, {pgd = 0x39063}, {pgd = 0x3a063}, {
pgd = 0x3b063}, {pgd = 0x3c063}, {pgd = 0x0}, {pgd = 0x0}, {
pgd = 0x1bb0067}, {pgd = 0x0} <repeats 185 times>, {pgd = 0x3e067}, {
pgd = 0x0}, {pgd = 0x0}, {pgd = 0x3d067}}

(gdb)

Figure 5: An Example of source-level debugging of a 32-bit Red Hat RHEL3 Update 5 stock Linux
kernel on 64-bit Xen.

2006 Linux Symposium, Volume Two • 13

[root@localhost linux-2.6.16]$ gdb -s vmlinux
GNU gdb Red Hat Linux (6.3.0.0-1.21rh)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu"...
(no debugging symbols found)
Using host libthread_db library "/lib64/libthread_db.so.1".

The target architecture is assumed to be i386:x86-64:intel
[New Thread 0]
[Switching to Thread 0]
0x000000000040046f in ?? ()
(gdb) break schedule
Breakpoint 6 at 0xffffffff803c3044
(gdb) cont
Continuing.

Breakpoint 6, 0xffffffff803c3044 in schedule ()
(gdb) x /5i $rip
0xffffffff803c3044 <schedule+4>: push %r15
0xffffffff803c3046 <schedule+6>: push %r14
0xffffffff803c3048 <schedule+8>: push %r13
0xffffffff803c304a <schedule+10>: push %r12
0xffffffff803c304c <schedule+12>: push %rbx
(gdb) delete 6
(gdb) break pcnet32_start_xmit
Breakpoint 7 at 0xffffffff80288590
(gdb) cont
Continuing.

Breakpoint 7, 0xffffffff80288590 in pcnet32_start_xmit ()
(gdb) x /5i $rip
0xffffffff80288590 <pcnet32_start_xmit>: sub $0x48,%rsp
0xffffffff80288594 <pcnet32_start_xmit+4>: mov %r15,0x40(%rsp)
0xffffffff80288599 <pcnet32_start_xmit+9>: mov %rbx,0x18(%rsp)
0xffffffff8028859e <pcnet32_start_xmit+14>: mov %rsi,%r15
0xffffffff802885a1 <pcnet32_start_xmit+17>: mov %rbp,0x20(%rsp)
(gdb) delete 7
(gdb) break ret_from_intr
Breakpoint 8 at 0xffffffff8010af64
(gdb) cont
Continuing.

Breakpoint 8, 0xffffffff8010af64 in ret_from_intr ()
(gdb) delete 8
(gdb) cont
Continuing.

Figure 6: Example of source-level debugging of a 64-bit custom-compiled 2.6.16 Linux kernel on
64-bit Xen.

14 • Evolution in Kernel Debugging using Hardware Virtualization With Xen

[root@localhost linux-2.6.16]$ gdb -s vmlinux
[root@ljrl4 ~]# gdb
GNU gdb Red Hat Linux (6.3.0.0-1.21rh)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux-gnu".
(gdb) set architecture i386:intel
The target architecture is assumed to be i386:intel
(gdb) target remote localhost:9999
Remote debugging using localhost:9999
[New Thread 0]
[Switching to Thread 0]
0x000001eb in ?? ()

(gdb) x/10i $eip
0x1eb: lock push %ebx
0x1ed: incl (%eax)
0x1ef: lock push %ebx
0x1f1: incl (%eax)
0x1f3: lock push %ebx
0x1f5: incl (%eax)
0x1f7: lock push %ebx
0x1f9: incl (%eax)
0x1fb: lock push %ebx
0x1fd: incl (%eax)
(gdb) info registers
eax 0x301e1 197089
ecx 0x40006 262150
edx 0x6 6
ebx 0x35a 858
esp 0xa2c 0xa2c
ebp 0xd0a38 0xd0a38
esi 0x4b0 1200
edi 0xd04b0 853168
eip 0x1eb 0x1eb
eflags 0x23246 143942
cs 0x70 112
ss 0xcf 207
ds 0x70 112
es 0xcf 207
fs 0xf000 61440
gs 0xf000 61440
(gdb) x /16x 0x10*$ds + $esi
0x175a: 0x007004b0 0x147c0a94 0x0aa0fd8e 0x0a7e21b5
0x176a: 0x73eb000e 0x14220700 0x007e145c 0x147c0000
0x177a: 0x218f218f 0x90909090 0xfd8e0000 0x218f147c
0x178a: 0xfd8e0203 0x0000218f 0x00000000 0x00000000
(gdb) cont
Continuing.

Figure 7: Example of debugging freedos beta9rc5 on 32-bit Xen.

2006 Linux Symposium, Volume Two • 15

References

[1] The xen virtual machine monitor.
http://www.cl.cam.ac.uk/
Research/SRG/netos/xen/.

[2] Intel virtulization technology.
http://www.intel.com/
technology/computing/vptech/.

[3] Gdb: The gnu project debugger. http:
//www.gnu.org/software/gdb.

[4] Grub: Gnu grand unified bootloader. http:
//www.gnu.org/software/grub/.

[5] Xen architecture and design documents.
http://www.cl.cam.ac.uk/
Research/SRG/netos/xen/
architecture.html.

[6] Ia-32 intel R©architecture software developer’s
manual, volume 3b, chapters 19-23.
http://developer.intel.com/
design/mobile/core/
duodocumentation.htm.

[7] Remote debugging with gdb. http://www.
kegel.com/linux/gdbserver.html.

[8] Intel virtualization technology for directed i/o
architecture. ftp://download.intel.
com/technology/computing/
vptech/Intel(r)_VT_for_Direct_
IO.pdf.

[9] Steve Best. Linux debugging techniques
article. Technical report, IBM Linux
Technology Center. http://www-128.
ibm.com/developerworks/linux/
library/l-debug/.

[10] Kdb: Built-in kernel debugger. http:
//oss.sgi.com/projects/kdb/.

[11] Kgdb: Linux kernel source level debugger
using gdb conenction over serial line.
http://sourceforge.net/
projects/kgdb.

[12] Arium in-taget probe.
http://www.arium.com/products/
ecmxdpice.html.

[13] Intel processors with vt feature.
http://wiki.xensource.com/
xenwiki/IntelVT.

[14] Xen user manual. http://www.cl.cam.
ac.uk/Research/SRG/netos/xen/
readmes/user/user.html.

[15] Xen readymade rpms.
http://xensource.com/xen/
downloads/index.html.

Disclaimer

The opinions expressed in this paper are those of the
author and do not necessarily represent the position
of the Intel Corporation.

Linux is a registered trademark of Linus Torvalds.

Intel is a registered trademark of Intel Corporation.

All other trademarks mentioned herein are the prop-
erty of their respective owners.

16 • Evolution in Kernel Debugging using Hardware Virtualization With Xen

Improving Linux Startup Time Using Software Resume
(and other techniques)

Hiroki Kaminaga
Sony Corporation

kaminaga@sm.sony.co.jp

Abstract

This paper presents a new resume operation as
well as other startup time improvement tech-
niques which are aimed at achieving fast startup
time for embedded Linux systems. A new
fast boot method called snapshot boot is intro-
duced. Snapshot boot is essentially a resume-
from-disk operation, which is a system resume
from a semi-permanent snapshot image stored
on disk or flash memory, that restores the ma-
chine to a known running state. As opposed
to a standard resume operation, a snapshot im-
age is made only once, stored on disk or flash
memory, and same image is used repeatedly,
every time the system is powered on. Other
fast boot techniques that are discussed are: use
of prelinking, a scheme to reduce the startup
cost of symbol relocation overhead for links to
dynamic libraries, execute in place (XIP) to re-
duce or avoid OS and application loading de-
lays, toolchain modifications to collect global
constructors in one place to accomplish a lo-
cality benefit, and making the program .data
section demand-paged from flash to avoid fully
loading its pages on startup.

Unless otherwise stated, the startup time re-
ferred to in this paper is the time from the sys-
tem power on to the time user can manipulate
the device. This includes userland application
startup as well as kernel startup time.

1 Software suspend

Snapshot boot is based on the current software
suspend technology in the Linux kernel. Soft-
ware suspend is independent of APM or ACPI,
which makes it more applicable to embedded
systems, where APM or ACPI is not present in
many cases. Before describing snapshot boot,
the standard procedure of software suspend is
described to assist in understanding the proce-
dure of snapshot boot.

1.1 Suspend states in Linux kernel

There are three suspend states in the Linux ker-
nel [1]. They are:

• Standby state

• Suspend-to-RAM state

• Suspend-to-disk state

Unless otherwise stated, the term suspend is
referred to as Suspend-to-disk. This is also
known as hibernation.

18 • Improving Linux Startup Time Using Software Resume (and other techniques)

1.2 Suspend procedure

The suspend procedure is shown below:

1. Trigger
Suspend procedure is triggered from writ-
ing disk to /sys/power/state opera-
tion. The call stack to the entrance of the
suspend procedure is shown in Figure 1.

sys_write()
+-vfs_write()

+-sysfs_write_file()
+-flush_write_buffer()

+-subsys_attr_store()
+-state_store()

+-enter_state()
+-pm_suspend_disk()

Figure 1: Call graph to entrance of software
suspend

2. Freeze processes
This is done by calling the freeze_

processes() procedure. It freezes user
processes, and then freezes kernel tasks.

3. Free unnecessary memory
This is done by calling the free_some_

memory() procedure. It calls shrink_

all_memory() inside.

4. Suspend devices
This is done by calling the device_

suspend() procedure. It calls suspend_
device() and then the suspend()

method for all listed active devices.

5. Power down devices
This is done by calling the device_

power_down() procedure. It calls
suspend_device() to for all listed
power off devices.

6. Save processor state
This is done by calling the save_

processor_state() procedure. It will
save registers other than generic ones,
such as segment registers, co-processor
registers, and so on.

7. Save processor registers
This is done by calling the swsusp_

arch_suspend() procedure. It will save
general registers. This is written in assem-
bly language, since the stack may not be
used.

8. Allocate memory for snapshot image
This is done by calling the swsusp_

alloc() procedure. Page directories
get allocated by calling __get_free_

pages(), and pages for the image itself
gets allocated by get_zeroes_page()

for each page directory entry.

9. Copy memory contents to allocated area
This is done by calling the copy_data_

pages() procedure. It calls memcpy()

for each page to copy.

10. Restore processor state
This is done by calling the
restore_processor_state() pro-
cedure in swsusp_suspend(). This
is where the software suspend resume
procedure comes back. It restores the
previously saved processor state.

11. Power up devices
This is done by calling the device_

power_up() procedure. It resumes sys-
tem devices and all listed power off de-
vice.

12. Resume devices
This is done by calling the device_

resume() procedure. It resumes devices
in power off device list.

2006 Linux Symposium, Volume Two • 19

13. Write page, pagedir, header image to swap
Now that the devices are active, write
to swap could be performed. This is
done by calling the write_suspend_

image() procedure. It writes image data,
page directories, and then image header
into swap.

14. Power down devices
This is done by calling the device_

shutdown() procedure. It calls the shut-
down() method for each device. Then, the
system device is shutdown.

15. Halt machine
This is done by calling the machine_

power_off() procedure. It calls pm_

power_off() and the machine halts.

1.3 Resume procedure

The resume procedure is shown below:

1. Start resume
Resume starts by calling the
software_resume() procedure in
do_initcalls(), at late_initcall

timing.

2. Check kernel parameter
In software_resume(), it checks for
the kernel command line for the resume
swap device.

3. Check signature and header of snapshot
image
This is done by calling the check_sig()
and check_header() procedures. It
checks swap image signature for snapshot
image, and that the header for the kernel
used for suspend and resume is the same.

4. Allocate memory space for snapshot im-
age

5. Read page directory into allocated mem-
ory
This is done by calling the read_

pagedir() procedure. It allocates page
directory memory space by using __get_

free_pages() and reads page directory
information with bio_read_page().

6. Relocate page directory (if necessary)

7. Read swap image into allocated memory
This is done by calling the data_read()
procedure. The page directory area gets
relocated if it collides with the snapshot
image. Then the snapshot image is read
from swap with bio_read_page().

8. Prepare resume

9. Freeze process

10. Free unnecessary memory

11. Suspend devices
These steps are taken to accomplish con-
sistency between suspend and resume, and
in case resume fails. These steps are same
as Steps 2 to 4 of the suspend procedure.

12. Power down devices
This step is taken to accomplish consis-
tency between suspend and resume. This
step is same as Step 5 of the suspend pro-
cedure.

13. Save processor state
These steps are taken in case resume fails.
These steps are same as Step 6 of the sus-
pend procedure.

14. Copy snapshot image in allocated memory
to its original address

15. Restore processor registers
This is done by calling the swsusp_

arch_resume() procedure. It copies all
image pages from the allocated memory
address to its original memory address.

20 • Improving Linux Startup Time Using Software Resume (and other techniques)

It also restores general purpose registers.
Since registers are restored, the return ad-
dress used by this function would be the
same as the one in effect for the swsusp_
arch_suspend() procedure call at sus-
pend time.

16. Restore processor state

17. Power up devices
This is exactly the same as Steps 10 to 11
of the suspend procedure.

18. Free memory allocated for image
This is done by calling the free_image_
pages() procedure. It does free_

page() for all pages in image. Page di-
rectories are also freed.

19. Resume devices
This is done by calling the device_

resume() procedure. The process is the
same as Step 12 of the suspend procedure.

20. Thaw processes
This is done by calling the thaw_

processes() procedure. This wakes
up every thread by calling the wake_up_

process() procedure.

1.4 Software suspend support for ARM ar-
chitecture

Software suspend does not support the ARM
architecture in a vanilla kernel. To port soft-
ware suspend for other architectures, a porting
note [2] was followed which shows how to port
for the ARM architecture. The patch for soft-
ware suspend ARM support is posted to a pub-
lic mailing list [3].

1.5 Execution of software suspend

To evaluate software suspend for an embedded
system, an ARM-based OMAP 5912 Starter

Kit (OSK5912) reference board was used [4].
Since this board does not have a disk, NOR
flash is used to store the snapshot image.

To enable software suspend, the CONFIG_PM

and CONFIG_SOFTWARE_SUSPEND configura-
tion options must be set when building the linux
kernel. After the target is booted with the new
kernel, the following commands were issued to
enter suspend.

mkswap /dev/mtdblock3
swapon /dev/mtdblock3
mount -t sysfs none /sys
echo disk >/sys/power/state

A kernel message is printed to console, and the
system would halt. At the next system power
on, passing the argument: resume=/dev/

mtdblock3 (in the above case) will trigger
software resume.

2 Snapshot boot

2.1 Preserving snapshot image

For normal use of software suspend and re-
sume, a snapshot image is created and de-
stroyed on every suspend/resume cycle. Since
the aim of using software suspend in an embed-
ded product in this paper is to improve startup
time, a snapshot image is created only once,
stored on disk or flash memory, and the same
image is used repeatedly, every time the system
is powered on. This is accomplished by not in-
validating the snapshot image at resume time.

2.2 Principle of software resume for im-
proving startup time

The time to a certain point in running system
state could be roughly expressed as follows:

2006 Linux Symposium, Volume Two • 21

startup time = ∑Storage to RAM +
∑setup I/O state+∑setup RAM state

where ∑Storage to RAM is the time taken to
load files in secondary storage to RAM, in-
cluding kernel, application, and library files,
∑setup I/O state is the time taken to setup I/O
state, ∑setup RAM state is the time taken to
calculate or process data until a certain point
in time, including dynamic symbol resolution,
global constructor execution, and application-
specific initialization and setups.

Software Resume could be thought of replacing
the last ∑setup RAM state calculation and pro-
cessing by just copying snapshot image back
to RAM. On a complex system, it is estimated
that this setup RAM state would be the domi-
nant startup time, and startup time could be re-
duced if this setup RAM state is replaced by
just copying the snapshot image to RAM.

There are drawbacks in the usage of software
resume, and one of them is remount of file sys-
tem, to keep consistency between the actual fs
tree and kernel fs tree data. The example of
this drawback is USB mass storage, to handle
startup state for both plugged and unplugged
cases.

2.3 Software resume and startup time

Since the focus of this paper is to improve
startup time, the time taken in the software sus-
pend phase, when the snapshot image is cre-
ated, is not significant. The significant part
is the time taken during the software resume
phase. There are a couple of redundancies in
software resume, which can be worked on to
improve startup time. They are:

• The trigger of software resume is in a late
phase of kernel startup.

• The snapshot image is copied twice.

• There is redundancy in device state transi-
tions during booting.

2.3.1 Software resume starting time

As mentioned in Step 1 of the resume proce-
dure in Section 1.3, the software_resume()
procedure is called from do_initcalls().
At this point, the kernel is almost ready to start,
the architecture setup is done, scheduling is ini-
tialized, trap, rcu, irqs, timer, and memory are
initialized, the init thread is forked, and ba-
sic setup, such as populating rootfs, driver ini-
tialization, and network initialization, are done.
However, if the system is going to resume from
software suspend, some of these steps could be
skipped, or handled during software resume.

2.3.2 Copying redundancy of snapshot im-
age

As mentioned in Steps 7 and 14 of the resume
procedure in Section 1.3, a snapshot image is
copied from swap to allocated memory, and
then from allocated memory area to its original
memory position. Copying the snapshot image
twice is needed to keep consistency before sus-
pend and after resume. Consistency is kept by
assuring that each device is in the same state
before suspend and after resume, and that the
PM state is the suspended state. Since the de-
vice is suspended, a snapshot image can only
be placed in memory. After the device gets re-
sumed, that snapshot image can then be copied
to swap.

2.3.3 Device state transition redundancy

As mentioned in the resume procedure steps,
each device in the system gets activated, ini-

22 • Improving Linux Startup Time Using Software Resume (and other techniques)

tialized, and ready to be used, then transitioned
to the suspend state. Device initialization and
setup is needed for getting the snapshot image
from swap, while transitioning to the suspend
state is needed for consistency between the sys-
tem suspend state and the system resume state.

2.4 Improving software resume startup

The most time-consuming part of software re-
sume is copying of the snapshot image, since
the image size in 10MB even with almost no
processes running, and more than double that
size when an application such as mplayer is
running.

In order to copy the snapshot image directly
from swap to its original memory address, the
procedure below was followed, with the in-
volvement of the boot loader.

1. Copy the snapshot image to its original
memory address, by boot loader.

2. Setup devices not handled by kernel re-
sume, by boot loader.

3. Devices set to suspend state, by boot
loader.

4. Jump to kernel-resume-point, not normal
kernel entry point.

5. Devices gets powered on and resumed by
kernel.

6. Processes gets thawed by kernel.

The kernel resume point is at Step 15 of the
resume procedure in Section 1.3, just after the
snapshot image is copied to its original address
and the kernel is about to restore registers. This
method is named snapshot boot.

2.4.1 Tasks done by the boot loader

Additional tasks done by the boot loader for
snapshot boot are to copy the snapshot im-
age from swap to its original memory ad-
dress, set up devices not handled by the ker-
nel resume procedure, and jump to the kernel-
resume-point. For the referenced target, copy-
ing the snapshot image to memory was done
by simple word-to-word copying. However, if
the target supports burst transfer, that should be
used to shrink the time taken for copying the
image. Kernel areas that needed to be modified
for the referenced target were: enhancing the
clock speed, timer setup, and enabling MMU.
The kernel-resume-point address was obtained
from System.map.

2.5 Implementation of snapshot boot

A new command for snapshot boot was imple-
mented in u-boot [5]. The syntax of the com-
mand is shown in Figure 2.

The procedure done by this new command is
described in Section 2.4.1.

A new resume entry point function is added on
top of the software suspend ARM support. It
sets a flag to indicate snapshot boot has been
done, and then jumps to Step 15 of the resume
procedure in Section 1.3, which is in the middle
of the swsusp_arch_resume() procedure.

2.6 Evaluation of snapshot boot

Startup time is measured using printk time
functionality, by setting CONFIG_PRINTK_

TIME. This configuration emits time at every
printk output. Two system situations are
evaluated, one is until execution of init shell
script, with almost no work load, and other

2006 Linux Symposium, Volume Two • 23

PROMPT> bootss <snapshot image address> <kernel resume point>

Figure 2: Command for Snapshot Boot in Boot Loader

is while playing an MPEG video file with the
mplayer application. Reading time data would
cause additional startup time, but is neglected
for this evaluation. No optimization regarding
application startup is applied to mplayer.

Normal startup is cold startup of system, and
time is measured from when the timer is ini-
tialized at beginning of kernel startup, to just
before the init shell script gets executed. For
mplayer, time is measured until the Tux pic-
ture, set by kernel, is replaced in LCD panel
by MPEG data. Software resume is measured
from when the time is initialized at beginning
of kernel startup, to the time all processes are
thawed. Snapshot boot is measured from timer
initialization before copying snapshot image to
memory at boot loader, to the time all processes
are thawed. For software resume and snapshot
boot, image is created after system enters shell
and flash as swap is setup and enabled to store
image for comparison against normal startup of
init. So there is a difference for init shell startup
measurement, normal startup is timed till be-
fore it gets executed, while software resume
and snapshot boot image is created at shell run-
ning state. The size of created snapshot image
for software resume and snapshot boot were
1424 and 2410 pages for shell and mplayer re-
spectively. Result of the average startup time
of 10 trials for each system status is shown in
Table 1, and result of each trials are shown in
Table 2 and Table 3 respectively.

In both software resume and snapshot boot
method, most of the time is taken in copying
of snapshot image. For snapshot boot, 80 to 90
percent of the time is occupied by image copy-
ing. As mentioned in Section 2.4.1, image is
copied on a word basis; however, if the hard-
ware supports burst transfer mode, the snapshot

Application Normal Software Snapshot
startup resume boot

shell 2.872 6.370 3.580
mplayer 11.1 10.427 5.357

Table 1: Average Time of Each Method [sec]

Trial Software Snapshot
count resume boot

1 6.831 2.478
2 6.166 4.028
3 6.166 3.132
4 7.538 4.674
5 6.166 3.132
6 6.166 3.133
7 6.166 4.766
8 6.166 4.029
9 6.166 3.949
10 6.166 2.478

Table 2: Shell Resume [sec]

boot startup time would shrink dramatically.

3 Issues met in snapshot boot

3.1 Assumption in snapshot boot

To minimize the effort of the boot loader and
to reuse kernel procedures for device manipu-
lation, it is assumed that the device power up
and resume procedures in the kernel will handle
the devices. However, some devices are initial-
ized and setup at kernel startup only. Some do
not have device manipulation at resume. Those
devices work with in software resume, since

24 • Improving Linux Startup Time Using Software Resume (and other techniques)

Trial Software Snapshot
count resume boot

1 9.793 5.305
2 10.593 5.305
3 9.731 5.305
4 10.593 5.305
5 10.593 6.080
6 10.593 4.460
7 10.593 5.251
8 10.592 5.305
9 10.593 5.953
10 10.593 5.305

Table 3: Mplayer Resume [sec]

kernel startup sequence initializes such devices,
before triggering software resume. However,
these devices have to be set up somewhere in
snapshot boot. Currently, they are handled in
the boot loader during the snapshot boot se-
quence, however, this apparently doubles the
effort, and some infrastructure is needed.

The same issues were faced with MMIO. The
MMIO registers were initialized and set up dur-
ing kernel startup, and it worked on software re-
sume, but since snapshot boot doesn’t perform
the kernel startup sequence, it must be handled
somewhere else. The appropriate place to han-
dle these in snapshot boot would be at kernel
resume time, where MMIO register related de-
vices do their resume operations.

3.2 Current workaround

Calling the initialization and setup procedures
of such devices after snapshot boot has jumped
into kernel was considered, but it did not work
out, since information in the data related to
those devices report that initialization and se-
tups are done, and simply return back. Cur-
rently, those initialization and setups are han-
dled on the boot loader side, just before jump-

ing into the kernel resume point. These are im-
plemented one by one, during the implementa-
tion and testing cycle of snapshot boot on the
target, and appended in the snapshot boot oper-
ation of the boot loader. The UART, IRQ con-
figuration, GPIO, DMA, DSP, I2C, TPS65010
chip, UWIRE CS0, UWIRE CS1, OCPI, NOR
flash and key pad are handled in this way. Some
multiplex setup and pulldown control is also
set. Devices processed at kernel resume were
the SMC91 network chip, Compact Flash, se-
rial 8250, I2C, TPS65010 chip, and LCD con-
trol, in which the resume method existed and
taken care of, are serial 8250 and LCD control.

Some interrupt registers and mask registers also
had similar problems at snapshot boot, and a
similar workaround was used.

3.3 Proper model and infrastructure

To keep the snapshot boot generalized and not
system-specific, the boot loader should do min-
imal work for snapshot boot, and most snap-
shot boot process should be handled by the ker-
nel. To accomplish this, more devices should
be extended to implement the resume method,
not handling only resume from RAM, but also
resume from disk, taking into account that the
device was powered off. Other than that, if the
kernel has separate calls for hardware initializa-
tion and setup from its related data initialization
and setup, that could be used for snapshot boot
support. Ideally, the boot loader operation for
snapshot boot would be just copying the snap-
shot image and jumping to the kernel-resume-
point.

Regarding the infrastructure issue, the data
structure of snapshot image varies at differ-
ent kernel version. For example, page directo-
ries are implemented as array in version 2.6.11,
whereas in a recent kernel, it is implemented
as a list structure. At implementing snapshot

2006 Linux Symposium, Volume Two • 25

boot in boot loader side, this would have great
impact. Some kind of applicable interface is
needed for consistency.

4 Other techniques for startup im-
provement

There are various other existing techniques for
improving startup time. Although some of
these focus on kernel startup, most are focused
on application startup. This is because appli-
cation startup takes longer than kernel startup
in many cases. One example of an improve-
ment focusing on kernel startup time is ker-
nel execute-in-place (XIP). Some examples of
improvement focusing application startup time
are prelinking, allocate-on-write of .data sec-
tion, and gathering global constructors in one
place for locality benefit.

Some of these existing techniques may have a
benefit when used along with snapshot boot,
whereas others may not. Of the listed existing
techniques, ones that may have benefit when
used along with snapshot boot are XIP and
allocate-on-write of .data section. Ones that
probably do not have a benefit when used along
with snapshot boot are prelinking and gather-
ing global constructors in one place for locality
benefit.

4.1 XIP and snapshot boot

A description of XIP is documented at [6] and
kernel XIP at [7]. The basic idea is to exe-
cute programs directly from Flash or ROM, and
save RAM usage (the data section still needed
to be placed into RAM) as well as short-cut pro-
gram loading time and improve startup time.
Currently, no tests have been done using both
XIP and snapshot boot. The assumption is that

XIP could reduce the snapshot image size, and
might contribute to faster startup for a snapshot
boot.

4.2 Prelinking and snapshot boot

A description of prelinking is documented at
[8]. The basic idea is to perform the task of dy-
namic linking, such as symbol resolution, in ad-
vance, and save the information, so that some of
the tasks of dynamic linking could be skipped.
When used along with snapshot boot, prelink-
ing may or may not have benefit in startup, de-
pending on the timing when the snapshot im-
age is created. In case the program is already
loaded before creating the snapshot image, pre-
linking for that application would not gain any
benefit. However, for programs that are not yet
loaded, it would gain a benefit, since dynamic
linking has not yet been performed.

4.3 Allocate-on-write of .data section
and snapshot boot

A description of allocate-on-write of the
.data section is documented at [9]. The ba-
sic idea is to modify the dynamic linker, and
change the .data section mapping attribute
by dropping the PROT_WRITE bit in mmap()
and call mprotect() immediately after, and
then set the PROT_WRITE bit. Currently, no
tests have been done using both allocate-on-
write of the .data section and snapshot boot.
The assumption is that, like the XIP technique,
it could reduce snapshot image size, and thus
might contribute to faster startup of snapshot
boot.

4.4 Gathering of global constructors and
snapshot boot

The basic idea here is to allocate global con-
structors and destructors in one place, so that

26 • Improving Linux Startup Time Using Software Resume (and other techniques)

a data locality benefit can shorten startup time.
It is done by first collecting global constructors
and destructors in one original section, and later
merging them to the .data section of the pro-
gram. Currently, no tests have been done using
both the gathering of the global constructors
technique and snapshot boot. The assumption
is that, there would be less, or no benefit toward
improving the snapshot boot startup time.

4.5 Deduction

Whether using another startup improvement
technique with snapshot boot would gain a
benefit or not would depend on the feature.
When the technique has only an instant effect at
startup, such as prelink, it would be likely that
little or no startup improvement would be ob-
tained when used together with snapshot boot.
On the other hand, if the technique has a side
effect, such as reduced load on RAM, it is likely
that the system would gain a startup improve-
ment by using both techniques.

5 Future work

As mentioned in Section 3, an urgent issue
regarding snapshot boot is generalization and
need of infrastructure for device manipulation.
This must be discussed at the community level
to draw agreement and diffusion. Further test-
ing and evaluation of snapshot boot is needed,
such as effect when used with other existing
techniques for improving startup.

6 Conclusion

Snapshot boot is a technique for improving
startup time, based on software suspend. The

existing techniques for improving startup time,
such as XIP, prelink, and others show effect at
real startup time, by short-cutting some pro-
cess, such as load instruction code to RAM,
symbol resolution, etc., at various points, from
the kernel startup to the application startup.
Snapshot boot could be viewed as “short-
cutting all startup,” by using run-time system
snapshot image.

References

[1] System Power Management States
Documentation/power/states.txt

[2] SwSuspendPortingNotes http://tree.
celinuxforum.org/CelfPubWiki/

SwSuspendPortingNotes

[3] swsusp for OSK http:

//lists.osdl.org/pipermail/

linux-pm/2005-July/001077.html

[4] OMAP 5912 Starter Kit
http://tree.celinuxforum.org/

CelfPubWiki/OSK

[5] Das U-Boot - Universal Bootloader
http://sourceforge.net/

projects/u-boot/

[6] Execute in Place(XIP)
http://www.montavista.co.jp/

products/tech/saving_ram.html

[7] Kernel XIP
http://tree.celinuxforum.org/

CelfPubWiki/KernelXIP

[8] Prelink http://people.redhat.
com/jakub/prelink.pdf

[9] Making Mobile Phone with CE Linux
http://tree.celinuxforum.org/

CelfPubWiki/ITJ2005Detail1_2d2

Automated Regression Hunting
PyReT and the Linux kernel

Aaron Bowen
Neumont University

abowen@student.neumont.edu

Paul Fox
Neumont University
paul.mf@gmail.com

James M. Kenefick, Jr.
IBM

jkenefic@us.ibm.com

Ashton Romney
Neumont University

Ashton.Romney@hotmail.com

Jason Ruesch
Neumont University

jason@jasonruesch.com

Jeremy Wilde
Neumont University

jwilde@student.neumont.edu

Justin Wilson
Neumont University

jwilson@student.neumont.edu

Abstract

Code regressions happen, it is almost a truism,
and the more complex the system, the more
often they will occur. Detecting which code
addition or patch created the regression, while
sometimes time-consuming, is at heart an iter-
ative process which lends itself to automation.
The core of this process is the same regardless
of the kind of software being written, whether
it is application programming or operating sys-
tem programming.

The PyRet project (http://pyret.sf.net)
has automated this process in an object-
oriented fashion using Python. It includes an
implementation to test the Linux Kernel us-
ing the Linux Test Project (http://ltp.sf.
net).

This paper will describe the process of regres-
sion hunting which lies at the heart of the PyRet
project. It will provide: a basic overview
of the PyReT architecture, the search mod-
els that PyReT currently utilizes, and methods
for extending the PyReT tool to other software
projects.

1 Introduction

The purpose of this paper is to describe the
process of automated regression identification.
It will focus primarily on automation of iden-
tification of patches which cause regressions
within the Linux kernel. It will describe the
implementation of automated regression detec-
tion by the PyReT project (http://pyret.

28 • Automated Regression Hunting

sf.net). It will cover searching of the regres-
sion space, hunting the regression with multi-
ple systems, and the communication solution
selected for managing multiple systems. It will
detail the specifics of hunt configuration within
PyReT; i.e., the mechanisms for managing the
kernel build and test phases of the regression
hunt. Finally, it will cover extension of the tool
to other non-kernel based testing and what still
needs to be done going forward with PyReT.

2 Regression Hunting

2.1 Overview

Software regressions are bugs existing in a spe-
cific version of software that are not present
in previous versions. Knowing which specific
update introduced a given bug can drastically
affect the amount of time needed to address
the issue. The regression hunting process can
be extremely time-consuming and error-prone.
This process is fairly standard regardless of the
development environment and lends itself very
well to automation. By automating the regres-
sion hunting process, developers are able to
spend their time fixing bugs rather than track-
ing down where they were introduced.

2.2 The Process

The first step in any regression hunt is to de-
termine the range of change-sets or dates that
will be searched. This step is crucial to the
process because the size of the initial range af-
fects the number of tests which must be per-
formed to determine which update introduced a
given regression. This range should start with
the first change-set where the bug is not present
and end with the first change-set where the bug

is known to exist. The smaller the range, the
faster the search will be.

The second step in the regression hunting pro-
cess is to specify the test case to be performed
which will determine if the regression is present
in the current build. This should be fairly
straightforward—as the regression manifested
somehow, the test case should just re-create the
activity that manifested the regression. Next,
the development environment is loaded with a
given change-set, the test case is checked and
passes, fails, or returns an error code based on
whether the regression was detected within the
current build.

The last step in the regression hunting process
is to analyze the results of the first two steps and
decide what needs to happen next in the hunt.
The system needs to determine if the hunt needs
to continue or if it has completed and a single
change-set or small selection of change-sets has
been identified as having introduced the regres-
sion.

2.3 Challenges

Automated regression detection, while fairly
straightforward, can present several challenges
such as intermittent regressions, branched de-
velopment environments, efficient hardware
utilization, and of course the inevitable un-
automatable test case.

Intermittent Regressions are bugs that inconsis-
tently return pass or fail values when checked
against your test case. In situations where in-
termittent regressions are encountered, it may
not be possible to find the exact change-set that
introduced a given regression. Hunting for in-
termittent regressions can still give developers
valuable information that can be used to narrow
the range of change-sets that they need to man-
ually check.

2006 Linux Symposium, Volume Two • 29

When searching for regressions in development
environments that use branching, determining
the starting range of change-sets to check be-
comes a bit more difficult. A given regres-
sion can exist on one branch and not on an-
other. A regression could have been corrected
on the main branch and then re-introduced from
a merged development branch. Regression-
hunting algorithms must be able to correctly
handle these situations.

One of the greatest benefits of automating re-
gression detection is the ability to take advan-
tage of multiple machines to test more than one
change-set at once. This has the potential to
drastically decrease the time needed to search
a large range of change-sets when a single test
takes a great deal of time to complete. This fea-
ture introduces challenges of its own. It is now
necessary to develop regression-hunting algo-
rithms that can take advantage of the multiple
hunter machines instead of using a simple bi-
nary search.

And finally there will always be test cases that
cannot be automated—kicking out a power ca-
ble, pulling a raid disk—and sometimes the ef-
fort and resources required to automate the test
case just aren’t worth it.

3 The PyReT Solution

3.1 Overview

As regression hunting is at its heart an iterative
process, PyReT was designed to implement this
process, rather than to solve a specific regres-
sion problem.

The solution was designed as two major pieces.
A Hunter, which executes a given test in the

search space, and a Master, which has respon-
sibility for managing search spaces. The ap-
plication flows of the Hunter and Master were
mapped out based on those areas of responsibil-
ity. Next the individual tasks of the application
flows were categorized and encapsulated into
objects in the form of Python classes. This will
allow specific implementations to customize
the process as needed, but allows the common
portions to be reused without change.

The modules used for a specific hunt are con-
figured in a search definition. The Master and
Hunter applications use the definition to estab-
lish the boundaries of their regression and de-
termine the appropriate application code and
test cases for the current regression under in-
vestigation. It is the responsibility for the end
user to provide the search definition for a hunt.

The Master module uses the search definition
to create the search space and from that test
jobs are created which are then executed by
Hunters, and the results reported back to the
Master module which uses this information to
further orchestrate the hunt.

All of this application interaction is managed
by the communication subsystem, which not
only owns the responsibility for facilitating ap-
plication communication but also owns the log-
ging mission. The communication subsystem is
also implemented as a set of modules to facili-
tate customization to specific environments.

3.2 Application Flow

There are three primary application work flows
used by PyRet:

• The Master control process, which is re-
sponsible for the overall management of
all the search spaces currently under anal-
isys.

30 • Automated Regression Hunting

• The Master search process, which owns a
single search space and is responsible for
identifying the patch which caused the re-
gression.

• And the Hunter work flow, which owns the
execution of a single instance of the re-
gression test against the patched applica-
tion under test.

The Master control process workflow starts by
loading the Master config and confirms the
availability of the communication subsystems.
Next the process kicks off an infinite loop re-
ferred to as the job thread. This loop basically
spins looking for new search definitions. When
a new definition is identified a Master search
process is initiated.

The Master search process begins by process-
ing the search space, identifying all patches
and patch set boundaries. Next it loads the
regression search module, which handles how
the search space is to be traversed. Jobs are
then created, executed (by the Hunter), evalu-
ated, and new jobs created until the regression
is identified or the search space exhausted.

The Hunter process spins on the communica-
tion subsystem until it finds a job it is desig-
nated to execute. Once a job has been identi-
fied, the Hunter will obtain and patch the ap-
plication. Next the application will be installed
and initiated on the Hunter system and the re-
gression test will then be executed against the
target application. Finally the results of the job
will be passed back to the Master search pro-
cess via the communication subsystem.

3.3 Current Searches

Once a set of change-sets has been decided
upon for testing, an efficient way to quickly test
the range of change-sets must be implemented

to ensure the efficiency of PyReT. The binary
search was originally chosen for its simplicity,
ease of initial design, and efficiency. Currently
there are two search modules included within
the PyReT framework, a single-hunter binary
search and a multi-hunter search.

After a change-set range has been determined
the patch that lies in the middle of the range
will be sent off as the first job for a hunter
to build and test. The direction to travel af-
ter the first job is based upon its results: pass,
fail, or error. If the patch has passed then it
is known that the regression, if any, lies some-
where between this patch and the ending patch
within the change-set range. If the patch has
failed then it is known that the regression lies
somewhere before this patch if the regression
is within the range of the change-sets being
tested. This process continues until we are left
with a pass patch jointly next to a fail patch,
and this fail patch is recorded as introducing the
regression.

In a perfect world a passed patch and a failed
patch would be exactly what one would want
in the entirety of their results. Unfortunately
we are not in a perfect world and must consider
the possibilities of unforeseen events, which is
the reason for the error result. If for some rea-
son a hunter is taken offline, crashes, exceeds
the time-limit set forth for the patch, etc., then
the job is neither pass or fail but is of type er-
ror. In this case the current patch is set as a
temporary boundary and the next patch tested
is taken as if the current one had passed. This
process continues on until a result is found, a
pass patch immediately next to a fail patch. If
a result is not found then sub-searches are cre-
ated, testing in-between each error until a result
is discovered or the entire patch has been tested
without a conclusive result.

The single hunter binary search relies on a
single hunter to perform all of the work re-
quired by a given range of change-sets. Since

2006 Linux Symposium, Volume Two • 31

there is only a single hunter being utilized then
only one patch can be tested at any given time
throughout the range of the change-set. Once a
result has been obtained the next patch is sent
out to the hunter and a result is waited upon,
and so on until the test has completed.

The multiple hunter search can be far more ef-
ficient than that of the single binary search,
where there is an extensive range of change-
sets. First, before sending out patches to be
tested, the number of available hunters is used
to determine how many patches will be tested
initially. Once this number is acquired patches
are sent out to available hunters to be tested;
these patches are evenly spaced throughout the
entire range of the change-set. This can po-
tentially find the regression within the change-
set exponentially faster than that of the single-
hunter binary search. Once this chunk of
patches has been tested the new boundaries
are set, the number of available hunters is ac-
quired, and the new patches are sent to available
hunters, spread evenly across the new range of
change-sets to be tested. This continues, like
above, until a regression has been discovered,
or an inconclusive result is determined.

3.4 Communication

PyReT relies on a shared files system (SFS) for
all communication between systems involved
in the hunting process. This allows the code
within the applications to be kept very simple
as compared to using a direct network connec-
tion. The directories that exist here fall into one
of three categories: search setup, communica-
tion, and logging.

The search setup directories are where search
space definitions are looked for and stored on
completion. This location is routinely scanned
by the Master to detect when a new one has
been created and it will then kick off the search

process previously described. This is also
where the source code and patch staging oc-
curs.

The communication directories are quite active.
Any time a Hunter is started it will create a
file in this area to notify the Master that it is
available. This file is also used to indicate a
Hunter’s current state by altering its extension.
The Hunter is also regularly touching these files
to let the Master know that they are still pro-
cessing. This area is also where a Hunter looks
to see if it has been assigned any jobs. This is
accomplished by the Master by creating a job
file and setting the extension to the name of the
Hunter that it is being assigned to. On comple-
tion of a job the hunter will change the exten-
sion to indicate the result. There is also a lo-
cation where all the completed jobs are moved
once all processing is completed.

The third category of usage for the SFS is
where results are also stored. Each system re-
ports on what it is doing. These directories are
most useful while debugging a new implemen-
tation or gathering information about hunts that
were inconclusive.

3.5 Module Base Classes

In order for PyReT to effectively orchestrate the
activities of the disjointed module implemen-
tations it has certain expectations of how they
will behave and the kinds of tasks they are ex-
pected to carry out. The messages they must
respond to are defined in the project, the expec-
tations for behavior are outlined below.

The Transport module deals with acquiring
source trees and is Master specific as are the
next three modules. It is called only once when
a search is first started. During this invoca-
tion it should make sure that the copy of the
source tree that the master will be working with

32 • Automated Regression Hunting

is at least current enough to cover the range of
change-sets specified in the configuration.

Once the source code has been updated, the De-
compress module is called. If the source tree is
not in a compressed form this module can be
omitted or the DecompreNone version can be
used. If the source was transported in a tar ball
or some other compressed format, it would be
the responsibility of this module to extract the
individual files.

In order to make sense of the source tree the
Master relies on the MasterPatchSource mod-
ule. It will call this module’s SplitChange-
SetIDs which is expected to return a list of iden-
tifiers that can later be used to patch the source
to that revision or copy the correct version. It
is also expected that at the end of this process
the hunter will only need the change-set id to
patch the source it is working with. As an ex-
ample the Linux Kernel implementation creates
a patch file using this id as its name in this
method.

The RegressionSearch module is what deter-
mines which change-sets will be tested and in
which order. When it is created it is passed the
change-set list and is expected to retain which
tests were run and the results of each test. The
module is asked for a batch of indexes to be
tested, the Master will then issue a job for each
set. As each test is completed it will notify this
module, once they are all complete, if the mod-
ule has reported that the search is not complete
it will request the next set to test. Once the hunt
is finished it will request the results list from the
module.

The first of the Hunter-specific modules, Copy,
deals with copying the source from the shared
file system to the Hunter’s local file system. It
is a basic module expecting only to know where
it should copy the source from and where to
place it.

The implementation of the HunterPatchSource
module is very dependent on the behavior of
the MasterPatchSource module. This one is ex-
pected to apply the patch to the copied source to
bring it up to the revision that it is to test. This
module could be empty if the source files were
split up by revisions so that the Hunter could
just copy the correct version.

The Build module is one of the straightforward
pieces. Assuming all the previous steps have
worked, it is tasked with compiling the source
code in preparation for the test.

In order to set up the compiled source, the
Hunter will call the Install module. Here
any configuration of the system should occur.
This module is also tasked with undoing any
changes made to the system and will be noti-
fied to do this once the test is completed.

The Test module is called to exercise the code
under review. It is expected to return the result
of the test to the Hunter so that it can be com-
municated back to the Master.

3.6 Module Configuration

The PyReT application uses the concept of en-
capsulation, implemented as Python modules,
as a way of making it versatile. Each piece of
functionality that does something towards find-
ing the regression is placed into a module. The
modules are then loaded and used by both the
Master and Hunter applications.

This first section discusses how a module is de-
fined. There is a configuration file, referred to
as the search space file, which contains the def-
initions for the modules. Each module can con-
tain parameters. The developers of the module
decide what parameters the module accepts or
requires. They can then document how their
module is to be defined in the search space

2006 Linux Symposium, Volume Two • 33

file or, if they want, they can define a special
method in their module file that gives the caller
the parameters needed by their module.

The search-space file currently being used
by PyReT’s implementation of finding regres-
sions in the Linux kernel contains the follow-
ing modules: BinaryRS, MultiHunterRS, and
CompleteRS regression search modules; Trans-
portCogito transport module; Decompress-
None decompress module; LinuxKernelMas-
terPatchSource and LinuxKernelHunterPatch-
Source patchsource modules; LinuxKernel-
Copy copy module; LinuxKernelBuild build
module; LinuxKernelInstall install module;
and LinuxKernelTest test module. A module
is either required or optional. For instance, a
search module is required, or the application
would be useless. In contrast, the decompress
module is optional because the program being
tested may not need to be decompressed in any
way, as is the case with the Linux kernel im-
plementation. It does, however, make use of
the DecompressNone module in order to show-
case that there can be a decompress module, if
needed.

The modules to be used and the parameters they
will receive are specified in the search-space
file. Creating this file is a time-consuming pro-
cess when done from scratch. To write one, the
name of every module being used and what pa-
rameters each takes needs to be known. A sam-
ple file is provided, but it also requires consid-
erable knowledge of what modules exist in or-
der to adapt it. The search-space creation pro-
gram will dynamically read what modules are
available and prompt the user to choose which
ones to use. For each module being defined,
it will gather what parameters the module is
expecting from a global getParameters method
defined in the module file by the developer.
This makes it much easier to accurately spec-
ify a new search space.

4 The PyReT Exemplar

4.1 The Linux Kernel

PyReT could have been used to test other
projects; however, there are a number of char-
acteristics that make some projects easier to
work with. These key aspects would be an open
repository that can be manipulated via automa-
tion, and the availability of tests to run against
that source. We found these properties read-
ily available for the Linux kernel in the form
of GIT and the Linux Test Project. In this im-
plementation, Cogito is utilized to facilitate all
interactions with GIT.

The interaction with the source tree is driven by
the Master. It will use the search definition to
update or create a local copy of the source tree
each time a new search is started. It then pulls
the log for the specified date range and parses
to determine which change-sets were commit-
ted during that time. This list is used by the
regression searches to identify change-sets to
test. Within the patch source module, which
is also specific to Cogito, it uses the change-
set list to revert the working tree of the cloned
repository to the oldest revision in the list. It
then iterates through the list, creating a patch
file for each revision that might be tested and
saving it to the shared file system. At this
point in the process the Master has everything it
needs to run the complete search. It then issues
a job to a Hunter with the information of which
change-set it is to test. With the initial setup
it becomes a straightforward task of copying
the working tree and applying the appropriate
patch file from the shared file system and then
executing the tests.

4.2 Handling System Restarts

The Hunter software runs as a daemon to allow
it to execute at system startup and attempts to

34 • Automated Regression Hunting

register itself to do just that each time it starts.
To deal with the problem of losing state be-
tween restarts, it saves its working directory in
a fixed location to allow this to be reloaded. It
also stores information about which step in the
hunting process it was at so that it can pick up
where it left off. The hunter also manipulates
the boot configuration to make the newly built
kernel the one that will be loaded by default.
Upon completion of the tests it will revert this
configuration to its previous state.

4.3 Testing with the LTP

The idea of a regression is that something that
used to work, now for one reason or another, no
longer does. Most regressions normally seem
to be found by end users when the application,
OS, etc. explodes, taking some bit of important
work with it, but on occasion and depending on
the application a regression bucket may exist,
and in fact for the Linux kernel this is the case,
The Linux Test Project (LTP). The LTP consists
of over 2900 tests for exercising the Linux ker-
nel, and executes (depending on who you ask,
what you compile in the kernel, the phase of the
moon) about thirty to forty percent of the ker-
nel. This combined with the ability to execute a
single test case at a time made it a good exem-
plar to use for this project. It is, however, pretty
important to note that any test case which can
be automated can be used in place of the LTP.

Basically, once a test has been identified, create
a test module from the PyReT class Test, which
wraps the test. This module should do any prep
for the test (pull the test code if needed, path
setup, envrionment variables, whatever), exe-
cute the test, and return whether the test passed
or failed. This module will then need to be reg-
istered with the system, after which it will be
called as part of the regression search.

5 Extending PyReT

The modular design of PyReT makes it highly
customizable. This is accomplished by imple-
menting the base classes that are defined to
cover each of the identified steps in the process.
Included in PyReT’s documentation is a set of
HTML PyDocs describing these classes. With
some effort, a developer can adapt PyReT to
fulfill the needs of most projects.

It appears the most difficult part of this process
is the creation of the modules dealing with the
source code repository. The modules impacted
by this are Transport and MasterPatchSource.
The Transport module is a straightforward im-
plementation, but it is very specific to which
source control system in use. These modules
will be highly reusable, as simple parameters
of where to acquire updates to the source is all
that will differentiate them between different
applications. The MasterPatchSource module
is more involved. It is tasked with identifying
which change-sets exist in the date range to be
tested. It is also responsible for making avail-
able the oldest revision and patches from that
revision to each later revision to be tested.

It is expected that most of the other module im-
plementations will be comparatively easy. In
the case of the RegressionSearch module there
is no need to define a new one in order to
make use of PyReT, as the current implemen-
tations have no reliance on how the other mod-
ules function. The others will usually involve
interacting with stdin and stdout to start
and monitor each step of the process.

Any new modules are expected to be in the
same directory as the base they are inheriting
from. This will allow the Master to locate them
when they are referenced in a search space file.
Optionally a module can also define a global
method that defines the parameters it is looking
for. This will allow the search space definition

2006 Linux Symposium, Volume Two • 35

tool to prompt users for these parameters when
they select a module with those definitions.

6 What’s Next?

PyReT is still a young project and has a lot of
room for growth and improvement. Key fea-
tures for future development include a web in-
terface and advance search modules.

Web interface—Currently it is difficult to setup
a search-space with all of the necessary param-
eters to perform a regression hunt with the cor-
rect modules. A web interface for setting up
regression hunts and reviewing the results of
searches would allow users to easily select the
type of regression hunt to perform as well as
guiding them through parameter selection, en-
suring a properly configured hunt.

Advance search modules—Search modules
need to be developed which allow searching
for multiple regressions simultaneously. Future
search development should focus on new re-
gression search algorithms that will make much
better use of the distributed computing aspects
of the PyReT project.

36 • Automated Regression Hunting

Hacking the Linux Automounter—Current Limitations
and Future Directions

Ian Maxwell Kent
Red Hat, Inc.

ikent@redhat.com

Jeff Moyer
Red Hat, Inc.

jmoyer@redhat.com

Abstract

The IT industry is experiencing a consider-
able shift from proprietary operating systems
to Linux. As a result, the features and func-
tionality that people have come to expect of
these systems now must be provided for on
Linux. An automounter provides a mechanism
for automatically mounting file systems upon
access, and umounting them when they are no
longer referenced. The Linux automounter is
not feature-complete and there are cases where
Linux autofs is just plain incompatible with im-
plementations from other proprietary vendors.
In order to solve the current automounter lim-
itations, we start by developing an understand-
ing of how things work today. We explain
the basic configuration of autofs for a client
machine using simple examples. Then walk
through the the internals for basic operations,
such as the mounting, or lookup, of a direc-
tory and the umounting, or expiry, of a direc-
tory. This includes a description of where aut-
ofs fits into the VFS layer. Next we discuss
the two main deployment difficulties. The first
is that the Linux automounter implements di-
rect mount maps in a way that is incompat-
ible with that of every other implementation.
We discuss the desired behavior and compare
it with that of the Linux automounter. We will
then discuss the current development effort to
overcome this by extending autofs and its ker-

nel interface. The second major problem sur-
rounds the use of multi-mount entries for the
/net, or -hosts mount maps. Because of
the nature of multi-mount maps, the Linux im-
plementation mounts and umounts these direc-
tory hierarchies as a single unit. This means
that clients mounting exported filesystems from
large servers can experience resource starva-
tion, causing failed mounts. The root problem
is described and we show how the kernel and
Linux automounter can be modified to address
this issue also. We conclude with a review of
the progress of the work outlined above and
give a summary of future directions.

1 Introduction

With even a modest amount of information,
network clients often need many mount entries
in their tables to make the organization’s infor-
mation available. To make matters worse, the
mount tables often change. The administrative
overhead is not workable. This leads to heavy
use of an automounter in many enterprises.

An automounter provides the ability to manage
mount tables centrally, automatically mounting
entries on demand and umounting them after
a predefined period of inactivity. In addition to
the reduction in administrative overhead, an au-
tomounter provides a dramatic reduction in the

38 • Hacking the Linux Automounter—Current Limitations and Future Directions

resources needed to have a significant number
of file systems available on demand from an ar-
bitrary number of network servers.

Many enterprises are adopting Linux as client
workstations and server platforms, which has
considerably increased the use of the Linux au-
tomounter in the past two years. As a result,
bugs are identified and deficiencies are pointed
out. Most importantly, places where the Linux
implementation differs from that of industry
standard implementations have become a sig-
nificant issue. The most commonly raised dis-
crepancies are:

• The Linux automounter implements direct
maps quite differently from the industry
standard.

• Multi-mount maps are mounted and
umounted as a single unit.

• Browsable maps are not the default.

• The Linux automounter does not support
included maps

• The Linux automounter does not support
the -null map.

• The Linux automounter does not consult
/etc/nsswitch.conf as it should for
determining the source of an automount
map.

Each of these issues causes problems in mixed
environments, where Linux automount clients
share the same maps with other vendor imple-
mentations, typically provided by a NIS server.
They also cause problems in migrations to
Linux from proprietary Unix platforms, where
maps must be changed to either do things the
Linux way, or work around the limitations of
the Linux automounter. We will discuss these
issues and others in Section 4.

2 Unix automounter

Every commercial Unix platform has an auto-
mounter implementation with a standard set of
features. The most well known implementa-
tion is the one found in Sun

TM
Solaris

TM
. It has

set the standard for what to expect in an auto-
mounter.

2.1 The master map

An automount configuration consists of a mas-
ter map describing the mount tables it man-
ages. It is generally located in the /etc di-
rectory and is called either auto.master or
auto_master. It consists of a line for each
automount managed mount point, formatted as
follows:

mount-point map-name [mount-options]

mount-point
mount-point is the full path of the direc-
tory of the mount point. If the directory
does not exist, it is created. The excep-
tion to this convention is that the entry may
begin with a plus (+) followed by a map-
name, which causes the specified map to
be included from its source as if it were
itself present in the master map.

map-name
map-name is the name of the map con-
taining the mount table. If it begins with
a slash (/), it is interpreted as a local file
name. Otherwise, the name service switch
configuration is used to locate the source
of the map. This can also be one of the
special maps: -hosts used to mount ex-
ports from hosts on the network, or -null
used to mark a mount-point to be ex-
cluded when parsing subsequent master
map entries.

2006 Linux Symposium, Volume Two • 39

mount-options
mount-options is an optional comma sepa-
rated list of mount options to be applied to
the entries in the map unless entries in the
map specify their own options.

Lines beginning with a # are comments and are
ignored. Long lines may be broken by quoting
the new line character with a backslash, as is
common practice in configuration files.

The special mount point /- is reserved to indi-
cate that the map is a direct mount map and is
not associated with any specific top-level direc-
tory.

2.2 Mount maps

Mount maps consist of two types—indirect and
direct—and have the following basic format:

key [mount-options] location

key
key is the name used to look up mount ta-
ble entries in the map. For indirect mount
entries, this is the name of the directory
upon which the mount will be made. For
direct mount entries, this is the full path
leading to the directory upon which the
mount will be made.

mount-options
mount-options is an optional comma-
separated list of mount options to be ap-
plied to the map entry.

location
location specifies the file system that is to
be mounted on key. It can be a single file
system or a number of file systems to se-
lect from using availability and proxim-
ity metrics. It may also consist of multi-
ple key [mount-options] location

offsets that each must start with a slash (/).
If the first offset is /, then it is optional.
These offset mount entries are referred to
as multi-mount entries in Linux autofs.

There are a number of standard macro substi-
tutions available for use in location specifica-
tions. They are commonly used in multiple ar-
chitecture environments. A description of those
normally available can be found in [2] on page
190. For those understood by Linux autofs, see
autofs(5).

As in the master map, lines beginning with a #
are comments and are ignored, and long lines
may be broken by quoting the new line charac-
ter with a backslash.

A map key of * denotes a wild-card entry. This
entry is consulted if the specified key does not
exist in the map. A typical wild-card entry
looks like this:

* server:/export/home/&

The special character & will be replaced by the
provided key. So, in the example above, a
lookup for the key foo would yield a mount of
server:/export/home/foo.

The timeout on mounts points defaults to ten
minutes and can be changed using a command
line option when the service is started.

3 Linux automounter—autofs

The Linux automounter differs in relatively few
ways from traditional Unix automounter imple-
mentations. In fact, all of the information pro-
vided in the last sections regarding configura-
tion data apply to the Linux automounter as

40 • Hacking the Linux Automounter—Current Limitations and Future Directions

well. This section begins with a description of
the Linux-specific details of the master map,
and then moves on to the architecture of the
Linux automounter.

3.1 Linux autofs master map

The Linux autofs master map syntax is a super
set of the standard automount master map syn-
tax. This is partly because Linux autofs does
not utilize the name service switch to locate the
source of maps and so must allow it to be spec-
ified.

The syntax is:

mount-point \
[maptype:]map-name \
[mount-options]

The fields above are the same as those de-
scribed in Section 2.1 (“The master map”), ex-
cept for the maptype, which can be one of
file, program, yp, nisplus, hesiod or
ldap. The daemon supports the specification
of a map format within the maptype param-
eter. It can be sun or hesiod, but the init
script doesn’t cater for it. The default format
is sun, and it is a subset of the standard sun
automount map format. Linux autofs under-
stands much of this map format, and when a full
implementation of direct mounts is added, the
only things missing will be special maps such
as the -hosts and -null.

3.2 Architecture

The automounter is implemented in two main
parts: a user-space daemon, which is responsi-
ble for parsing map options and issuing mount
and umount commands, and a filesystem, im-
plemented in the kernel. The daemon is further

broken up into the daemon proper and a set of
loadable modules. To understand how the dae-
mon operates, we will walk through the dae-
mon startup for a minimal setup.

Consider the following auto.master map:

/net /etc/auto.net

We will not show the contents of the program
map, auto.net, as it is shipped with aut-
ofs. Autofs startup begins with the init script.
This script parses the auto.master map and
spawns one automount daemon for each mount
point listed. The example given above will re-
sult in an automount command with the follow-
ing parameters:

/usr/sbin/automount \

/net program /etc/auto.net

As shown above, the daemon takes as its op-
tions a mount point, the type of the map to be
loaded, and the name of the map to be loaded.

Now we will look at the loadable modules.
There are three types of modules: lookup,
parse, and mount. Lookup modules are used
to look up a given key in a map. The lookup
module has code that understands how to get
information from a map source. For exam-
ple, lookup_file.so is able to read in en-
tries from a file map. Map entries are stored
as a key value pair. The key, as noted above,
corresponds to a directory. The parse module
is then responsible for parsing the value part of
the key value pair. Finally, the mount module
takes care of doing the actual mounting. This
module has to know how to pass arguments on
to the mount command. In the case of NFS, this
module is also responsible for parsing repli-
cated server entries.

Returning to the example above, the daemon
knows that it needs to load the lookup_

2006 Linux Symposium, Volume Two • 41

program module, since the program map type
was specified in the command line. It calls
the module’s lookup_init routine, passing a
map format (or none, in this case), and all ar-
guments that the daemon itself did not process.
These leftover arguments are considered to be
map arguments.

The lookup module will perform its initializa-
tion and hand a context pointer back to the
caller. Before returning, though, it loads the
parse module, calling its parse_init func-
tion. It then passes the map format down, as
well as any options it did not handle. The parse
module will load the mount_nfs module, if it
hasn’t already been loaded. This module is al-
ways loaded, since the primary file system type
mounted via autofs has historically been NFS.

3.3 Multi-mounts

Multi-mount entries allow the user to specify a
directory hierarchy that will be mounted. For
example:

mydir -rw \
/ server:/export/mydir \
/src server2:/export/home/src \
/tmp :/usr/tmp

This example demonstrates how to cobble to-
gether a single directory structure from mul-
tiple servers. One point to note here is that
the mydir directory contains both an NFS-
mounted file system, and mount points beneath
it.

Currently, when any directory in this hierarchy
is accessed, the automount daemon mounts ev-
ery entry in the directory hierarchy. The expiry
of a multi-mount entry also happens atomically.

This is the mechanism used to imple-
ment -hosts. The program map auto.

net generates multi-mount entries on the
fly, and the daemon mounts them when
/net/<servername> is accessed. The
<servername> is used as the key.

3.4 VFS interface

To understand the kernel interface used by aut-
ofs, it is necessary to know a little about the
Virtual Filesystem Switch (VFS). The VFS is a
software layer that handles all system calls re-
lated to standard Unix file systems. It does this
by defining several data structures that contain
information about the file system and objects
that provide callback functions. The VFS uses
the callback functions to carry out standard file
system operations. The primary objects are the
superblock, the inode, the dentry, and the file
object. For the interested reader, a description
of the VFS, its data structures, and the opera-
tions they define can be found in Chapter 12 of
[7].

The dentry object represents a single compo-
nent of a directory path. One of the main func-
tions of the VFS is to resolve a given file system
path to its dentry by walking each of its path
components.

The VFS kernel interface of autofs is conceptu-
ally straightforward. The automount function-
ality is provided largely in the inode operation
lookup to lookup a new dentry, the dentry op-
eration revalidate to revalidate an existing den-
try, the file operation readdir to read a dentry
directory, and with a file system specific ioctl
to check for dentrys that have not been used for
a given timeout.

The bulk of the work done in autofs is the
mounting and expiring of file systems.

42 • Hacking the Linux Automounter—Current Limitations and Future Directions

3.4.1 Mount lookup

Mount requests are triggered when commands
or functions such as a cd, ls, or open cause the
VFS to walk a directory path within the aut-
ofs file system. This in turn calls the autofs4
function lookup if the directory doesn’t exist,
or revalidate if it does. Within these functions
there are two ways autofs can decide whether
a mount needs to be triggered. First, if the
directory doesn’t exist, then lookup creates a
negative dentry and passes it to the revalidate
function. Revalidate knows that a mount needs
to be requested when it sees a negative den-
try, so it sends a mount request packet to the
automount daemon. The daemon then issues
a mount command and returns a status when
done. For the second case, when the directory
exists, the revalidate function is called and de-
cides whether a mount request needs to be sent
by checking whether the dentry is an empty di-
rectory and not already a mount point. If this is
the case, then a mount request packet is sent to
the daemon. This process is shown in Figure 1.

automount

VFS

process
User

cd /home/raven

link_path_walk

autofs4
module

lookup,
revalidate or
readdir

request
mount

packet

Kernel space
User space

mount

Figure 1: autofs mount lookup

3.4.2 Mount expiry

Expiration of mounts is achieved by calling the
autofs expire ioctl. The autofs daemon does
this when it receives an alarm signal, which has
a frequency of one quarter of the mount time-
out. The daemon looks for mounted file sys-
tems under the path on which it is mounted and
asks the autofs kernel module whether it can
expire them. If the kernel module decides that
the daemon can expire a mounted dentry, then
it sends an expire request packet to the daemon,
which in turn issues an umount command and
returns a status when done, as shown in Fig-
ure 2.

expire
request
packet

automount

autofs4
module

automount

VFS ioctl
pass

expiry
check dentry

Kernel space
User space

umount expire ioctl

Figure 2: autofs mount expiry

4 Limitations

4.1 Master map semantics

Linux autofs starts instances of automount from
its init script by reading a master map and pars-
ing its contents. This is not really the right
place to perform this task, so it’s not surpris-
ing that there are a couple of things that the init
script doesn’t do.

2006 Linux Symposium, Volume Two • 43

First, if there are multiple instances of a key, it
is expected that the corresponding maps will be
merged. This feature is often used to add local
maps to a given key on a per client basis.

The other thing that the init script, and hence
the master map processing doesn’t not handle
is the use of the -null map. The -null map
is used to mark a master map mount-point

as excluded from subsequent parsing. It also
umounts these entries during a reload of the
master map.

4.2 Included Maps

Another feature expected of an automounter is
the ability to include a map in-line from within
another map using the syntax +mapname. This
feature is supported in both master maps and
mount maps and is only allowed in file based
maps.

Linux autofs does not yet know how to do this.
We will briefly discuss this issue in Section 6
when we talk about the new version of autofs.

4.3 Large Number of Mounts

There are 2 issues using a large number of NFS
(and autofs) mounts. The first is the number
of devices available for mounts. The second is
reserved port allocation in the RPC layer.

4.3.1 Anonymous devices

NFS and autofs use the anonymous block de-
vice major number. In a vanilla 2.4 kernel, this
provides a maximum of 255 devices and hence
a maximum of 255 mounts [1]. A commonly
used patch provides an additional 4 unused ma-
jor device numbers, which increase the num-
ber of devices available for mounts to 1280.

The kernel-assigned device numbers provide an
additional three major block device numbers
for anonymous mounts, but they are not yet
used. So the number of possible mounts could
be 2048. However, the limit on the number
of anonymous devices is typically not reached,
due to the port allocation limitation in the RPC
layer (discussion below).

The maximum number of anonymous devices
was substantially increased in the 2.6 kernel[1],
and it is questionable whether effort should be
spent resolving this same problem in the 2.4
kernel given the port allocation limitation in the
RPC layer.

4.3.2 RPC Port Allocation

Many of the RPC based services (mountd,
portmap, NFS, etc.) use a reserved port in the
range 1–1024 for their operation. This is done
to prevent non-privileged users from subverting
the services.

When a service requests an RPC connection,
binding to a reserved port is the default. The
RPC layer scans ports starting from 800 down
until it finds one that is unallocated. This
method would be fine if RPC were able to
multiplex traffic for multiple connections to a
server over one or a few sockets. However, it
cannot yet do so.

When a source port is not provided during RPC
connection establishment, the RPC layer will
attempt to allocate a reserved port for both UDP
and TCP connections [1]. While this attempt is
not so bad for UDP, it’s terrible for TCP mount
requests because of the lengthy time lag during
which the socket is not available for re-use af-
ter being closed. Using ports outside the privi-
leged port range is possible only if the exported
file system is configured with the “nosecure”

44 • Hacking the Linux Automounter—Current Limitations and Future Directions

option [4]. A code review is needed to estab-
lish whether other services, such as mountd and
portmap, can be configured to allow insecure
ports for their connections. But of course, us-
ing insecure ports is generally not a good idea.

Autofs and mount also perform RPC probing to
discover whether the target server is available
before performing a mount. This process leads
to as many as nine ports per mount being used
during a mount, which causes rapid exhaustion
of reserved port space. The RPC port alloca-
tion algorithm allows for a maximum of 800
concurrently mounted file systems when using
UDP.

The situation is somewhat different with TCP.
For each TCP mount attempt, a client uses
multiple reserved ports, and each TCP socket
must transition through the TIME_WAIT state
to ensure the completion of the TCP three-way
handshake. This process ensures that lost dupli-
cates don’t cause errors on subsequent connec-
tions. The TIME_WAIT state is 2*MSL (max-
imum segment lifetime) [3, Ch. 2, Sec. 7],
which is 60 seconds for the Linux TCP stack.
After this timeout, these reserved ports are free
for use again.

This leads to a practical limit of around 100
TCP protocol mounts performed in rapid suc-
cession. If the mounts are performed much
more slowly, as is expected in normal opera-
tion, this number is somewhat larger. Never-
theless, it generally falls somewhat short of the
theoretical limit of 800 before port allocation
problems appear.

4.4 Handling multi-mounts

Multi-mounts were discussed in Section 3.3.
These map entries must be handled atomically,
mounted and umounted as a single unit. Prob-
lems arise when using the auto.net program

map if the servers have a large number of ex-
ports, or if there are a large number of mount
point offsets in a multi-mount entry. They must
be handled as a single unit due to possible nest-
ing dependencies within the mount hierarchy.

The anonymous device and reserved port ex-
haustion described in previous sections are the
source of the problem. We will present a par-
tial solution to this problem in Section 6, where
lazy mount/umount of multi-mount map entries
is described. Even with the improvements there
is still a limit on the total number of mounts that
can be active at any one time due to resource
exhaustion. The only real solution to this prob-
lem is multiplexing of RPC connections.

4.5 Parsing nsswitch.conf

Currently, the Linux automounter does only
limited parsing of the nsswitch.conf file. It
is only referenced when trying to locate the
master map during startup. The script just
checks what sources are present in the auto-
mount entry in nsswitch.conf, and looks for
the auto.master map in each location.

There are a couple of reasons for this. First, all
other consumers of the nsswitch.conf file
use the standard glibc interfaces for accessing
the nsswitch.conf file. This interface is not
conducive to the use that automount makes of
it.

The format is described in the nsswitch.

conf(5) man page. It includes basic usage,
such as:

subsystem: lookup_list

It also contains some more complex usages,
such as:

2006 Linux Symposium, Volume Two • 45

subsystem: lookup_type \

[reaction] lookup_type

The general form of reaction is:

’[’ (’!’? STATUS ’=’ ACTION)+ ’]’

STATUS can be success, notfound, unavail, or
tryagain. ACTION is either return or continue.
Thus, the following entry will look up a key in
NIS, and it will fail the lookup if it is not found.
However, if the lookup failed because the NIS
service was not available, it will try LDAP:

automount: nis [NOTFOUND=return] ldap

It would be nice to leverage the existing code in
glibc for parsing this file. However, if we em-
bed the automounter lookup modules in libc,
then it becomes difficult to update the lookup
modules in the future. This would also intro-
duce a dependency between the version of the
installed automounter and the version of the in-
stalled libc package. Such dependencies are
not desirable, and could lead to an increased
overhead and maintenance burden. The right
way to address this problem is to parse the
nsswitch.conf file from the autofs code it-
self.

5 Direct mount support

Limited direct mount map support was intro-
duced in autofs version 4.1.

This support is implemented by creating sub-
mounts internally for intermediate path compo-
nents and reduces to indirect automount points
for the leaves of the map. If the direct mount
map refers to a mount within an existing file
system, then the upper levels of that file system

will be hidden, because an autofs file system
will be mounted over them.

For example, the direct map

/nfs/apps/geoframe \
perseus:/local/apps/geoframe

/nfs/apps/tomcat \
perseus:/local/apps/tomcat

works fine if the directory tree /nfs is devoted
to the direct mount map alone.

But the example

/usr/share/man \
atlas:/local/${OSNAME}/man

will not work, because /usr will be broken out
and over mounted.

Another limitation of this implementation is
that it can’t deal with single directory direct
mounts as there is no way to turn them into
an equivalent indirect mount. For example, the
following will not work:

/data filer:/local/data

This is clearly not a good implementation, but
because of the severe limitation on the number
of anonymous devices in the 2.4 kernel, it was
decided to make this compromise to get a lim-
ited amount of functionality. Another consid-
eration is that this scheme works with a wide
range of older kernel modules and provides ad-
equate functionality for a considerable range of
maps found in everyday operation.

The limitations outlined here have all been re-
solved with the rework of direct mounts de-
scribed in Section 6.

46 • Hacking the Linux Automounter—Current Limitations and Future Directions

6 Autofs Version 5

Work is well underway to resolve most of the
limitations described above. In order to imple-
ment the new functionality in a clean and sen-
sible way, it has been necessary to increment
the kernel protocol version to 5.00. It seemed
sensible then, to avoid confusion, to increment
the version of the user space daemon to 5.0.0 as
well. Given the decision to increment the ma-
jor version, it follows that the development pri-
ority should be to implement missing function-
ality rather than attempt to retain compatibility
with older versions of autofs. Hence, the new
functionality will work only with version 5.00
of the kernel module. Existing indirect mount
maps will continue to work as in previous ver-
sions.

6.1 Direct mount implementation

The first and most important task has been to
implement fully functional direct mounts. This
is particularly important because it paves the
way for lazy mount/umount of multi-mounts
and host map implementations.

Two methods are available to do this. The
first is to use file system stacking similar to
that found in Wrapfs from the FiST [5] sys-
tem. Although using Wrapfs from FiST was
very compelling, in the end it was decided it
would increase the complexity too much when
compared to the chosen method.

The method that has been used is to treat each
direct mount entry as a distinct mount and take
advantage of the VFS inode method follow_
link to trigger mounts. This method is safe to
use for this purpose because a directory cannot
be a symbolic link; therefore the method cannot
otherwise be in use. Since mount point directo-
ries are created in the host file system, the VFS

doesn’t call the autofs lookup, revalidate,
or readdir methods when the directory is ac-
cessed, but calls the follow_link method
(which follows the lookup during a path walk)
to trigger the mount before walking into the
next directory. This implementation is surpris-
ingly simple but effective.

The changes needed in the daemon are rela-
tively straightforward as well. A mount op-
tion direct has been added so the kernel module
knows it is a direct mount and can send mount
requests to the daemon at the right time. In
the daemon an additional entry point has been
added to each of the lookup modules to enu-
merate a map so that the mount triggers can be
set up.

The changes in the communication protocol be-
tween the kernel and the daemon also allow a
single process or thread to handle an entire di-
rect mount map.

One difference comes in the expiry of direct
mounts. Each direct mount that has had a
mount triggered over mounts the direct mount
point. Because of this it is passed over when
the kernel walks the path. Therefore the busy-
ness timeout can only be updated during an ex-
pire run. As a result, only truly busy mount
points (ie. with open files or a processes work-
ing directory) will prevent expiry. Changing
this expire semantic does not seem to be a prob-
lem and will hopefully help with graphical en-
vironments preventing mounts from expiring
due to the way they often scan file systems for
changes.

Another issue is that because direct mounts are
made on directories within the underlying file
system, changes to direct maps cannot be seen
until the map is re-read (by sending the daemon
a HUP signal).

It is interesting to note that existing industry
implementations implement direct mounts in a

2006 Linux Symposium, Volume Two • 47

similar way.

6.2 Lazy mount/umount

Lazy mount/umount of multi-mount map en-
tries has been a difficult problem to solve for
some time now. But with the direct mount
changes above, we can see how it can be done.

The basic problem to be solved is that of nested
mounts. Let’s revisit the example of Section 3.3
on multi-mounts with a couple of small modifi-
cations to demonstrate the problem:

mydir -rw \
/ server:/export/mydir \
/src server2:/export/src \
/src/f77 server2:/export/src/f77 \
/src/c server2:/export/src/c \
/tmp :/usr/tmp

When mydir is accessed, the file system cor-
responding to the offset / is mounted. But now
the file system is not necessarily an autofs file
system, so we can never get a callback from the
kernel. So autofs never knows another mount is
needed. Therefore, we must treat the entry as a
single unit and mount everything. Clearly this
necessity applies equally when there is nesting
at lower levels in the offsets, such as the offsets
in the src directory.

We can deal with this issue by partitioning
the offsets and installing direct mount triggers
within each of the file systems. In our exam-
ple, when mydir is accessed we mount the en-
try corresponding to / and install direct mount
triggers for each offset within the list bounded
by nesting points. In this case, we install direct
mounts for /src and /tmp. Similarly, when
one of these mounts is triggered we mount it
and install the corresponding triggers. In the
example we mount the entry for /src and then

install triggers for /scr/f77 and /src/c and
so on.

Expiring these is a little trickier, because for
multi-mounts like these we need to expire the
direct mounts themselves as well as the file sys-
tems that may be mounted on them. To solve
this problem, we need a way for the kernel to
distinguish multi-mounts from standard direct
mounts. The obvious way to do this is to add
an additional mount option, “offset” to distin-
guish them from other direct mounts.

The interesting thing about this scenario is that
when a file system is mounted on a trigger that
is perhaps itself nested, it will always be seen
as busy by the expire system because there is
a file handle open for communication with the
mount. On the other hand, a direct mount trig-
ger without such a mount doesn’t hold open a
pipe but creates it at mount time. So multi-
mounts can expire independently in a natural
way without further complication.

6.3 Host maps

Since the lazy mount/umount has been imple-
mented many of the the resource issues with
host maps should be resolved. A separate mod-
ule is devoted to handling host maps. The im-
plementation amounts to little more than enu-
merating the local hosts table, then enumer-
ating their exports and using this information
for lookups when they are accessed. The cur-
rent simple implementation will no doubt need
much refinement, such as filtering out non-NFS
servers from the local hosts list to reduce clut-
ter.

6.4 Nsswitch integration

A parser for handling /etc/nsswitch.conf

map source lookups has been added. Integrat-
ing the parser amounted to adding a layer to

48 • Hacking the Linux Automounter—Current Limitations and Future Directions

perform lookups between the daemon and the
lookup modules. The daemon now calls the
common lookup module instead of calling the
lookup modules directly and iterates through
the list of sources found during the parse
of /etc/nsswitch.conf. There where, of
course, a number of side affects that had to be
overcome but generally it appears to work quite
well.

6.5 Master map parsing

Another important issue is the parsing of mas-
ter maps in the init script. The init script is
clearly not the right place for parsing the master
map. As is the case in other industry automount
implementations, parsing should be done in a
utility designed specifically for that purpose or
in the automounter proper.

Another requirement is to use the name ser-
vice switch to read maps and lookup entries in
map sources. The code developed above also
works well for this which resolves another of
our long-standing limitations.

The other feature that is expected of an auto-
mounter is that when there are multiple entries
for a key in the master map, these entries should
be merged as described in Section 2.1. This
has been achieved by leveraging the functional-
ity implemented for handling nsswitch seman-
tics. It follows fairly naturally from the need to
handle multiple map sources required by nsss-
witch. Implementing this feature has also pro-
vided a way to implement -null map support
in a fairly straightforward way. However, there
are difficulties identifying a map that needs to
be refreshed when there has been a change.
But otherwise this should end up working fairly
well.

6.6 Included map support

Included map support has also been imple-
mented. The design fits into the map reading
and lookup modules by just watching for a “+”
as the first character of a map key and calling
the higher common lookup function to do the
work, then continuing after it returns. This has
been done for both the master map and mount
maps but plus map inclusion is allowed only in
file maps as is the case with other industry stan-
dard automounters.

6.6.1 LDAP support

The LDAP lookup module has been a concern
for a long time and it has finally got some of
the attention it so badly needed. The areas
that have been improved are the ability to spec-
ify the schema used for storage of automount
maps, integration of master map parsing into
the daemon, encrypted TLS connections and
the ability authenticate to the LDAP server.

One long standing problem is the need to sup-
port two distinct LDAP schema used to store
automount maps as well as some variations
within these schema. The schema to be used
can now be set in the autofs configuration for
the five class and attribute names used to query
an LDAP server. This will reduce the over head
of using an LDAP server for autofs quite a bit
and allow the use of other schema if it is re-
quired, as long as it is consistent with the way
the base schema are used.

There have been a number of requests to add
the ability to use encrypted connections and to
be able to use authentication when connecting
to an LDAP server. First, encrypted and op-
tionally certified connections can now be made
using the START_TLS mechanism. The config-
uration for the location of certificates must be

2006 Linux Symposium, Volume Two • 49

done using the method required by the client
LDAP library and settings in an autofs authen-
tication configuration must be used to enable
it. Authentication uses the SASL library and
the authentication method to use along with
the login name and secret are also held in the
same file as the TLS options above. So far
the only method tested has been DIGEST-MD5
but other common methods available in SASL
should work or be relatively straightforward to
add.

7 Concluding remarks

The astute reader will have noticed that the
above implementation of direct mounts and
lazy mount/umount of multi-mount maps will
use a lot of anonymous devices. This use has
become possible since the limit on the number
of these devices was greatly increased in the
early stable release cycle of the 2.6 kernel. It
could be possible for this to function with a 2.4
kernel, but no work has been done to estimate
the effort to back port the anonymous device
changes. So initially at least, direct mounts will
only be available for 2.6 kernels.

This paper has described a good number of
achievements and identified the challenges in
rounding out the Linux automount implemen-
tation. We don’t mean to say that these chal-
lenges are the only ones we face—just the most
difficult to address, as well as those that are fun-
damental to having a functional automounter
on Linux.

The current status of the changes outlined
above for autofs version 5 is that the di-
rect mounts, nsswitch handling, lazy mount/
umount, integration of master parsing, nsswitch
integration and the LDAP improvements have
all been done but have seen limited testing. The
plus map inclusion has also been done but has

some challenging problems with respect to map
refresh.

References

[1] Linux Kernel source, Versions 2.4 and
2.6, http://www.kernel.org/.

[2] Hal Stern, Mike Eisler and Richardo
Labiaga, Managing NFS and NIS, 2nd
Edition, O’Reilly, June 2001.

[3] W. Richard Stevens, Bill Fenner, and
Andrew M. Rudoff, UNIX Network
Programming, The Sockets Networking
API, Volume 1, Third Edition,
Addison-Wesley Professional Computing
Press, 2004.

[4] Travis Bar, Nicolai Langfeldt, Seth Vidal
and Tom McNeal, Linux NFS-HOWTO,
http://nfs.sourceforge.net/
nfs-howto/, 2002-08-25.

[5] FiST: Stackable File System Language
and Templates, Eraz Zadok et al.,
http://www.filesystems.org/.

[6] Sun
TM

Microsystems NFS
Administration Guide, Chapter 5,
http://docs.sun.com/, 1995.

[7] Robert Love, Linux Kernel Development,
Second Edition, Novell Press, 2005.

50 • Hacking the Linux Automounter—Current Limitations and Future Directions

Why NFS Sucks

Olaf Kirch
SUSE/Novell, Inc.
okir@suse.de

Abstract

NFS is really the distributed file system in the
Unix world—and at the same time it is prob-
ably also one of its most reviled components.
For just about every Suse release, there’s a bug
in our bugzilla with a summary line of “NFS
sucks.” NFS even has a whole chapter of its
own in the Unix Haters’ Handbook. And hav-
ing hacked quite a bit of NFS code over the
course of 8 years, the author cannot help agree-
ing that NFS as a whole does have a number of
warts.

This presentation is an attempt at answering
why this is so. It will take a long look at some
of the stranger features of NFS, why they came
into existence, and how they affect stability,
performance and POSIX conformance of the
file system. The talk will also present some his-
torical background, and compare NFS to other
distributed file systems.

The author feels compelled to mention that this
is not a complaint about the quality of the Linux
NFS implementation, which is in fact pretty
good.

1 History

One of the earliest networked file systems
was RFS, the Remote File System included in

SVR3. It was based on a concept called “Re-
mote System Calls,” where each system call
was mapped directly to a call to the server sys-
tem. This worked reasonably well, but was
largely limited to SVR3 because of the SVR3
system call semantics.

Another problem with RFS was that it did not
tolerate server crashes or reboots very well.
Due to the design, the server had to keep a lot
of state for every client, and, in fact, for every
file opened by a client. This state could not be
recovered after a server reboot, so when an RFS
server went down, it usually took all its clients
with it.

This early experience helps to understand some
of the design decisions made in first NFS ver-
sion developed by Sun in 1985. This was NFS
version 2, and was first included in SunOS 2.0.
Rumors have it that there was also a version 1,
but it never got released to the world outside
Sun.

NFSv2 attempted to address the shortcomings
of RFS by making the server entirely stateless,
and by defining a minimal set of remote pro-
cedures that provided a basic set of file system
operations in a way that was a lot less operating
system dependent than RFS. It also tried to be
agnostic of the underlying file system, to a de-
gree that it could be adapted to different Unix
file systems with relative ease (doing the same
for non-Unix file systems proved harder).

52 • Why NFS Sucks

One of the shortcomings of NFSv2 was its lack
of cache consistency. NFS makes no guaran-
tees that all clients looking at a file or directory
see exactly the same content at any given mo-
ment. Instead, each client sees a snapshot of a
file’s state from a hopefully not too distant past.
NFS attempts to keep this snapshot in sync with
the server, but if two clients operate on a single
file simultaneously, changes made by one client
usually do not become visible immediately on
the other client.

In 1988, Spritely NFS was released, which
extended the protocol to add a cache consis-
tency mechanism to NFSv2. To achieve this,
it sacrificed the server’s statelessness, so that it
was generally impossible for a client to recover
from a server crash. Crash recovery for Spritely
NFS was not added until 6 years later, in 1994.

At about the same time, NQNFS (the “Not-
Quite NFS”) was introduced in 4.4 BSD.
NQNFS is a backward compatible protocol ex-
tension that adds the concept of leases to NFS,
which is another mechanism to provide cache
consistency. Unfortunately, it never gained
wide acceptance outside the BSD camp.

In 1995, the specification of NFSv3 was pub-
lished (written mostly by Rick Macklem, who
also wrote NQNFS). NFSv3 includes several
improvements over NFSv2, most of which can
be categorized as performance enhancements.
However, NFSv3 did not include any cache
consistency mechanisms.

The year 1997 saw the publication of a standard
called WebNFS, which was supposed to posi-
tion NFS as an alternative to HTTP. It never
gained any real following outside of Sun, and
made a quiet exit after the Internet bubble burst.

The latest development in the NFS area is
NFSv4, the first version of this standard was
published in 2002. One of the major goals in

the design of NFSv4 was to facilitate deploy-
ment over wide area networks (making it an
“Internet Filesystem”), and to make the under-
lying file system model less Unix centric and
provide better interoperability with Microsoft
Windows. It is not an accident that the NFSv4
working group formed at about the same time
as Microsoft started rebranding their SMB file
sharing protocol as the “Common Internet File
System.”

2 NFS File Handles

One of the nice things about NFS is that it al-
lows you to export very different types of file
systems to the world. You’re not stuck with a
single file system implementation the way AFS
does, for instance. NFS does not care if it is
reiser, ext3 or XFS you export, a CD or a DVD.

A direct consequence of this is that NFS needs
a fairly generic mechanism to identify the ob-
jects residing on a file system. This is what file
handles are for. From the client’s perspective,
these are just opaque blobs of data, like a magic
cookie. Only the server needs to understand the
internal format of a file handle. In NFSv2, these
handles were a fixed 32 bytes; NFSv3 makes
them variable sized up to 64 bytes, and NFSv4
doubles that once more.

Another constraint is related to the statelessness
paradigm: file handles must be persistent, i.e.
when the server crashes and reboots, the file
handles held by its clients must still be valid, so
that the clients can continue whatever they were
doing at that moment (e.g. writing to a file).

In the Unix world of the mid-80s and early 90s,
a file handle merely represented an inode—and
in fact in most implementations—the file han-
dle just contained the device and inode num-
ber of the file it represented (plus some ad-
ditional export identification we will ignore

2006 Linux Symposium, Volume Two • 53

here). These handles went very well with the
statelessness paradigm, as they remained valid
across server reboots.

Unfortunately, this sort of mechanism does not
work very well for all file systems; in fact, it is a
fairly Unix centric thing to assume that files can
be accessed by some static identifier, and with-
out going through their file system path name.
Not all file systems have a notion of a file inde-
pendent from its path (the DOS and early Win-
dows file systems kept the “inode” information
inside the directory entry), and not all operating
systems will operate on a disconnected inode.
Also, the assumption that an inode number is
sufficient to locate a file on disk was true with
these older file systems, but that is no longer
valid with more recent designs.

These assumptions can be worked around to
some degree, but these workarounds do not
come for free, and carry their own set of prob-
lems with them.

The easiest to fix is the inode number
assumption—current Linux kernels allow file
systems to specify a pair of functions that return
a file handle for a given inode, and vice versa.
This allows XFS, reiser and ext3 to have their
own file handle representation without adding
loads of ugly special case code to nfsd.

There is a second problem though, which
proved much harder to solve. Some time in the
1.2 kernel or so, Linux introduced the concept
of the directory cache, aka the dcache. An entry
in the dcache is called a dentry, and represents
the relation between a directory and one of its
entries. The semantics of the dcache do not
allow disconnected inode data floating around
in the kernel; it requires that there is always a
valid chain of dentries going from the root of
the file system to the inode; and virtually all
functions in the VFS layer expect a dentry as
an argument instead of (or in addition to) the
inode object they used to take.

This made things interesting for the NFS server,
because the inode information is no longer suf-
ficient to create something that the VFS layer is
willing to operate on—now we also need a little
bit of path information to reconstruct the dentry
chain. For directories this is not hard, because
each directory of a Unixish file system has a
file named “..” that takes you to the parent
directory. The NFS server simply has to walk
up that chain until it hits the file system root.
But for any other file system object, including
regular files, there is no such thing, and thus the
file handle needs to include an identifier for the
parent directory as well.

This creates another interesting dilemma,
which is that a file hard linked into several di-
rectories may be represented by different file
handles, depending on the path it is accessed
by. This is called aliasing and, depending on
how well a client implementation handles this,
may lead to inconsistencies in a client’s at-
tribute or data cache. Even worse, a rename
operation moving a file from one directory to
another will invalidate the old file handle.

As an interesting twist, NFSv4 introduces the
concept of volatile file handles. For these file
handles, the server makes no promises about
how long it will be good. At any time, the
server may return an error code indicating to
the client that it has to re-lookup the handle. It
is not clear yet how well various NFSv4 are ac-
tually able to cope with this.

3 Write operations: As Slow as it
Gets

Another problem with statelessness is how to
prevent data loss or inconsistencies when the
server crashes hard. For instance, a server may
have acknowledged a client operation such as

54 • Why NFS Sucks

the creation of a file. If the server crashes be-
fore that change has been committed to disk,
the client will never know, and it is in no posi-
tion to replay the operation.

The way NFS solved this problem was to man-
date that the server commits every change to
disk before replying to the client. This is not
that much of a problem for operations that usu-
ally happen infrequently, such as file creation
or deletion. However, this requirement quickly
becomes a major nuisance when writing large
files, because each block sent to the server is
written to disk separately, with the server wait-
ing for the disk to do its job before it responds
to the client.

Over the years, different ways to take the edge
off this problem were devised. Several compa-
nies sold so-called “NFS accelerators,” which
was basically a card with a lot of RAM and
a battery on it, acting as an additional, persis-
tent cache between the VFS layer and the disk.
Other approaches involved trying to flush sev-
eral parallel writes in one go (also called write
gathering). None of these solutions was en-
tirely satisfactory, and therefore, virtually all
NFS implementations provide an option for the
administrator to turn off stable writes, trading
performance for a (small) risk of data corrup-
tion or loss.

NFSv3 tries to improve this by introducing a
new writing strategy, where clients send a large
number of write operations that are not writ-
ten to disk directly, followed by a “commit”
call that flushes all pending writes to disk. This
does afford a noticeable performance improve-
ment, but unfortunately, it does not solve all
problems.

On one hand, NFS clients are required to keep
all dirty pages around until the server acknowl-
edged the commit operation, beecause in case
the server was rebooted, they need to replay
all these write operations. This means, commit

calls need to happen relatively frequently (once
every few Megabytes). Second, a commit oper-
ation can become fairly costly—RAIDs usually
like writes that cover one or more stripes, and
it helps if the client is smart enough to align
its writes in clusters of 128K or more. Second,
some journaling file systems can have fairly big
delays in sync operations. If there is a lot of
write traffic, it is not uncommon for the NFS
server to stall completely for several seconds
because all of its threads service commit re-
quests.

What’s more, some of the performance gain
in using write/commit is owed to the fact that
modern disk drives have internal write buffers,
so that flushing data to the disk device really
just sends data to the disk’s internal buffers,
which is not sufficient for the type of guarantee
NFS is trying to give. Forcing the block device
to actually flush its internal write cache to disk
incurs an additional delay.

4 NFS over UDP—Fragmentation

Another “interesting” feature of NFSv2 was
that the original implementations supported
only UDP as the transport protocol. NFS over
TCP did not come into widespread use until the
late 1990s.

There have been various issues with the use
of UDP for NFS over the years. At one
point, some operating system shipped with
UDP checksums turned off by default, presum-
ably for performance reasons. Which is a rather
bad thing to do if you’re doing NFS over UDP,
because you can easily end up with silent data
corruption that you will not notice until it is
way too late, and the last backup tape having
a correct version of your precious file has been
overwritten.

2006 Linux Symposium, Volume Two • 55

A more recent problem with UDP has to do
with fragmentation. The lower bound for the
NFS packet size that makes sense for reads and
writes is given by the client’s page size, which
is 4096 for most architectures Linux runs on,
and 8192 is a rather common choice these days.
Unless you’re using jumbograms (i.e. Ethernet
frames of up to 9000 bytes), these packets get
fragmented.

For those not familiar with IP fragmentation,
here it is in a nutshell: if the sending system
(or, in IPv4, any intermediate router) notices
that an IP packet is too large for the network in-
terface it needs to send this out to, it will break
up the packet into several smaller pieces, each
with a copy of the original IP header. In order
so that the receiving system can tell which frag-
ments go together, the sending system assigns
each packet a 16bit identifier, the IPID. The
receiver will lump all packets with matching
source address, destination address and IPID
into one fragment chain, and when it finds it
has received all the pieces, it will stitch them
together and hand them to the network stack for
further processing. In case a fragment gets lost,
there is a so-called reassembly timeout, default-
ing to 30 seconds. If the fragment chain is not
completed during that interval, it will simply be
discarded.

The bad thing is, on today’s network hardware,
it is no big deal to send more than 65535 pack-
ets in under 30 seconds; in fact it is not un-
common for the IPID counter to wrap around
in 5 seconds or less. Assume a packet A, con-
taining an NFS READ reply is fragmented as
say A1,A2,A3, and fragment A2 is lost. Then
a few seconds later another NFS READ reply
is transmitted, which receives the same IPID,
and is being fragmented as B1,B2,B3. The re-
ceiver will discard fragment B1, because it al-
ready has a fragment chain for that IPID, and
the part of the packet represented by B1 is al-
ready there. Then it will receive B2, which is

exactly the piece of the puzzle that is missing,
so it considers the fragment chain complete and
reassembles a packet out of A1,B2,A3.

Fortunately, the UDP checksum check will usu-
ally catch these botched reassemblies. But not
all of them—it is just another 16bit quantity, so
if the above happens a few thousand times, the
probability of a matching checksum is decid-
edly non-zero. Depending on your hardware
and test case, it is possible to reproduce silent
data corruption within a few days or even a few
hours.

Starting with kernel version 2.6.16, Linux has
some code to protect from the ill side effects of
IPID wraparound, by introducing some sort of
sliding window of valid IPIDs. But that is really
more of a band-aid than a real solution. The
better approach is to use TCP instead, which
avoids the problem entirely by not fragmenting
at all.

5 Retransmitted Requests

As UDP is an unreliable protocol by design,
NFS (or, more specifically, the RPC layer)
needs to deal with packet loss. This creates all
sorts of interesting problems, because we basi-
cally need to do all the things a reliable trans-
port protocol does: retransmitting lost packets,
flow control (if the NFS implementation sup-
ports sending several requests in parallel), and
congestion avoidance. If you look at the RPC
implementation in the Linux kernel, you will
find a lot of things you may be familiar with
from a TCP context, such as slow start, or es-
timators for round-trip times for more accurate
timeouts.

One of the less widely known problems with
NFS over UDP however affected the file sys-
tem semantics. Consider a request to remove

56 • Why NFS Sucks

a directory, which the server dutifully per-
formed and acknowledged. If the server’s reply
gets lost, the client will retransmit the request,
which will fail unexpectedly because the direc-
tory it is supposed to remove no longer exists!

Requests that will fail if retransmitted are called
non-idempotent. To prevent these from fail-
ing, a request replay cache was introduced in
the NFS server, where replies to the most re-
cent non-idempotent requests are cached. The
NFS server identifies a retransmitted request by
checking the reply cache for an entry with the
same source address and port, and the same
RPC transaction ID (also known as the XID, a
32bit counter).

This provides reasonable protection for NFS
over UDP as long as the cache is big enough
to hold replies for the client’s maximum re-
transmit timeout. As of the 2.6.16 kernel, the
Linux server’s reply cache is rather too small,
but there is work underway to rewrite it.

Interestingly, the reply cache is also useful
when using TCP. TCP is not impacted the same
way UDP is, since retransmissions are handled
by the network transport layer. Still, TCP con-
nections may break for various reasons, and the
server may find the client retransmit a request
after reconnecting.

There is a little twist to this story. The TCP pro-
tocol specification requires that the host break-
ing the connection does not reuse the same
port number for a certain time (twice the max-
imum segment lifetime); this is also referred
to as TIME_WAIT state. But usually you do
not want to wait that long before reconnecting.
That means the new TCP connection will orig-
inate from a different port, and the server will
fail to find the retransmitted request in its cache.

To avoid that problem, the sunrpc code in re-
cent Linux kernels works around this by using
a little known method for disconnecting a TCP

socket without going into TIME_WAIT, which
allows it to reuse the same port immediately.

Strictly speaking, this is in violation of the TCP
specification. While this avoids the problem
with the reply cache, it remains to be seen
whether this entails any negative side effects—
for instance, how gracefully intermediate fire-
walls may deal with seeing SYN packets for
a connection that they think ought to be in
TIME_WAIT.

6 Cache Consistency

As mentioned in the first section, NFS makes
no guarantees that all clients see exactly the
same data at all times.

Of course, during normal operation, accessing
a file will show you the content that is actually
there, not some random gibberish. However, if
two or more clients read and write the same file
simultaneously, NFS makes no effort to propa-
gate all changes to all clients immediately.

An NFS client is permitted to cache changes
locally and send them to the server whenever
it sees fit. This sort of lazy write-back greatly
helps write performance, but the flip side is
that everyone else will be blissfully unaware
of these change before they hit the server. To
make things just a little harder, there is also no
requirement for a client to transmit its cached
write in any particular fashion, so dirty pages
can (and often will be) written out in random
order.

And even once the modified data arrives at the
NFS server, not all clients will see this change
immediately. This is because the NFS server
does not keep track of who has a file open for
reading and who does not (remember, we’re
stateless), so even if it wanted it cannot notify

2006 Linux Symposium, Volume Two • 57

clients of such a change. Therefore, it is the
client’s job to do regular checks if its cached
data is still valid.

So a client that has read the file once may con-
tinue to use its cached copy of the file until
the next time it decides to check for a change.
If that check reveals the file has changed, the
client is required to discard any cached data and
retrieve the current copy from the server.

The way an NFS client detects changes to a file
is peculiar as well. Again, as NFS is state-
less, there is no easy way to attach a mono-
tonic counter or any other kind of versioning
information to a file or directory. Instead, NFS
clients usually store the file’s modification time
and size along with the other cache details. At
regular intervals (usually somewhere between
3 to 60 seconds), it performs a so-called cache
revalidation: The client retrieves the current set
of file attributes from the server and compares
the stored values to the current ones. If they
match, it assumes the file has not changed and
the cached data is still valid. If there is a mis-
match, all cached data is discarded, and dirty
pages are flushed to the server.

Unfortunately, most file systems store time
stamps with second granularity, so clients will
fail to detect subsequent changes to a file if they
happen within the same wall-clock second as
their last revalidation. To compound the prob-
lem, NFS clients usually hold on to the data
they have cached as long as they see fit. So
once the cache is out of sync with the server,
it will continue to show this invalid informa-
tion until the data is evicted from the cache to
make room, or until the file’s modification time
changes again and forces the client to invalidate
its cache.

The only consistency guarantee made by NFS
is called close-to-open consistency, which
means that any changes made by you are

flushed to the server on closing the file, and a
cache revalidation occurs when you re-open it.

One can hardly fail to notice that there is a lot of
handwaving in this sort of cache management.
This model is adequate for environments where
there is no concurrent read/write access by dif-
ferent clients on the same file, such as when ex-
porting users’ home directory, or a set of read-
only data.

However, this fails badly when applications
try to use NFS files concurrently, as some
databases are known to do. This is simply
not within the scope of the NFS standards,
and while NFSv3 and NFSv4 do improve some
aspects of cache consistency, these changes
merely allow the client to cache more aggres-
sively, but not necessarily more correctly. For
instance, NFSv4 introduces the concept of del-
egations, which is basically a promise that the
server will notify the client if some other host
opens the file for writing. Provided the server
is willing and able to issue a delegation to the
client, this allows the client to cache all writes
for as long as it holds that delegation. But after
the server revokes it, everyone just falls back to
the old NFSv3 behavior of mtime based cache
revalidation.

There is no really good solution to this prob-
lem; all solutions so far either involve turning
off caching to a fairly large degree, or extend-
ing the NFS protocol significantly.

Some documents recommend turning off
caching entirely, by mounting the file system
with the noac option, but this is really a
desparate measure, because it kills performance
completely.

Starting with the 2.6 kernel, the Linux NFS
client supports O_DIRECT mode for file I/O,
which turns off all read and write caching on a
file descriptor. This is slightly better than us-
ing noac, as it still allows the caching of file

58 • Why NFS Sucks

attributes, but it means applications need to be
modified and recompiled to use it. Its primary
use is in the area of databases.

Another approach to force a file to show a con-
sistent view across different clients is to use
NFS file locking, because taking and releasing
a lock acts as a cache synchronization point. In
fact, in the Linux NFS client, the file unlock op-
eration actually implies a cache invalidation—
so this kind of synchronizyation is not exactly
free of cost either.

Solutions involving changes to the NFS proto-
col include Spritely NFS and NQNFS; but these
should probably considered as mostly research.
It is questionable whether this gap in the NFS
design will ever be addressed, or whether this
is left for others to solve, such as OCFS2, GFS
or Lustre.

7 POSIX Conformance

People writing applications usually expect the
file system to “just work,” and will get slightly
upset if their application behaves differently on
NFS than it does on a local file system. Of
course, everyone will have a slightly different
idea of what “just works” really is, but the
POSIX standard is a reasonable approximation.

NFS never claimed to be fully POSIX compli-
ant, and given its rather liberal cache consis-
tency guarantees, it never will. But still, it at-
tempts to conform to the standard as much as
possible.

Some of the gymnastics NFS needs to go
through in order to do so are just funny when
you look at them. For instance, consider the
utimes call, which can be used by an appli-
cation to set a file’s modification time stamp.
On some kernels, the command cp -p would

not preserve the time stamp when copying files
to NFS. The reason is the NFS write cache,
which usually does not get flushed until the
file is closed. The way cp -p does its job is
by creating the output file and writing all data
first; then it calls utimes to set the modifica-
tion time stamp, and then closes the file. Now
close would see that there were still pend-
ing writes, and flush them out to the server,
clobbering the file’s mtime as a result. The
only viable fix for this is to make sure the NFS
client flushes all dirty pages before performing
the utimes update—in other words, utimes
acts like fsync.

Some other cases are a bit stranger. One such
case is the ability to write to an open unlinked
file. POSIX says an application can open a file
for reading and writing, unlink it, and continue
to do I/O on it. The file is not supposed to go
away until the last application closes it.

This is difficult to do over NFS, since tradition-
ally, the NFS server has no concept of “open”
files (this was added in NFSv4, however). So
when a client removes a file, it will be gone for
good, and the file handle is no longer valid—
and and attempt to read from or write to that
file will result in a “Stale file handle” error.

The way NFS traditionally kludges around this
is by doing what has been dubbed a “silly re-
name.” When the NFS client notices during an
unlink call that one or more applications still
hold an open file descriptor to this file, it will
not send a REMOVE call to the server. Instead,
it will rename the file to some temporary file
name, usually .nfsXXX where XXX is some
hex number. This file will stay around until the
last application closes its open file descriptor,
and only then will the NFS client send the final
REMOVE call to the server that gets rid of this
renamed file.

This sounds like a rather smart sleight of hand,
and it is—up to a point. First off, this does not

2006 Linux Symposium, Volume Two • 59

work across different clients. But that should
not come as a surprise given the lack of cache
consistency.

Things get outright weird though if you con-
sider what happens when someone tries to un-
link such a .nfsXXX file. The Linux client
does not allow this, in order to maintain POSIX
semantics as much as possible. The undesirable
side effect of this is that a rm -rf call will fail
to remove a directory if it contains a file that is
currently open to some application.

But the weirdest part of POSIX conformance
is probably the handling of access control lists,
and as such it deserves a section of its own.

8 Access Control Lists

The POSIX.1e working group proposed a set of
operating system primitives that were supposed
to enhance the Unix security model. Their
work was never finished, but they did create a
legacy that kind of stuck—capabilities and ac-
cess control lists (ACLs) being the promiment
examples of their work.

Neither NFSv2 nor NFSv3 included support
for ACLs in their design. When NFSv2 was
designed, ACLs and mandatory access control
were more or less an academic issue in the Unix
world, so they were simply not part of the spec-
ification’s scope.

When NFSv3 was designed, ACLs were al-
ready being used more or less widely, and ac-
knowledging that fact, a new protocol operation
named ACCESS was introduced, which lets the
client query a user’s permissions to perform a
certain operation. This at least allows a client
to perform the correct access decisions in the
presence of access control lists on the server.

However, people who use ACLs usually want
to be able to view and modify them, too, with-
out having to log on to the server machine. NFS
protocol versions 2 and 3 do not provide any
mechanisms for queries or updates of ACLs
at all, so different vendors devised their own
side-band protocols that added this function-
ality. These are usually implemented as ad-
ditional RPC programs available on the same
port as the NFS server itself. According to var-
ious sources, there were at least four different
ACL protocols, all of them mutually incompat-
ible. So an SGI NFS client could do ACLs
when talking to an SGI NFS server, or a So-
laris client could do the same when talking to a
Solaris server.

Over the course of a few years, it seems the So-
laris ACL protocol has become the prevalent
standard, if just by virtue of eliminating most
of the competition. The Linux ACL implemen-
tation adopted this protocol as well.

NFSv4 adds support for access control lists.
But in its attempt to be a cross-platform dis-
tributed file system, it adopted not the POSIX
ACL model, but invented its own ACLs which
are much closer to the Windows ACL model
(which has richer semantics) than to the POSIX
model. It is not entirely compatible with Win-
dows ACLs either, though.

The result of this is that it is not really easy to
do POSIX ACLs over NFSv4 either: there is
a mapping of POSIX to NFSv4 ACLs, but it
is not really one-to-one, and somewhat awk-
ward. The other half of the problem is that
the server cannot map NFSv4 ACLs back to
POSIX ACLs, since they have much richer se-
mantics. So it stores them in a different ex-
tended attribute, which is not evaluated by the
VFS (which currently does POSIX ACLs only).
As a consequence, NFSv4 ACLs will only be
enforced when the file system is accessed via
NFSv4 at the moment. When accessing it via

60 • Why NFS Sucks

NFSv3 or locally on the server machines, these
ACLs are ignored.

The ironic part of the story is that Sun, which
was one of the driving forces behind the NFSv4
standard, added an NFSv4 version to their ACL
side band protocol which allows querying and
updating of POSIX ACLs, without having to
translate them to NFSv4 ACLs and back.

9 NFS Security

One of the commonly voiced complaints over
NFS is the weak security model of the under-
lying RPC transport. And indeed, security has
never been one of its strong points.

The default authentication mechanism in RPC
is AUTH_SYS, also known as AUTH_UNIX be-
cause it basically conveys Unix style creden-
tials, including user and group ID, and a list of
supplementary groups the user is in. However,
the server has no way to verify these creden-
tials, it can either trust the client, or map all
user and group IDs to some untrusted account
(such as nobody).

Stronger security flavors for RPC have been
around for a while, such as Sun’s “Secure
RPC,” which was based on a Diffie-Hellman
key management scheme and DES cryptogra-
phy to validate a user’s identity. Another se-
curity flavor that was used in some places re-
lied on Kerberos 4 credentials. Both of them
provided only a modicum of security however,
as the credentials were not tied in any way to
the packet payload, so that attackers could in-
tercept a packet with valid credentials and mas-
sage the NFS request to do their own nefarious
biddings. Moreover, the lack of high-resolution
timers on average 1980s hardware meant that
most clients would often generate several pack-
ets with identical time stamps; so the server had

to accept these as legitimate—opening the door
to replay attacks.

A few years ago, a new RPC authentication fla-
vor based on GSSAPI was defined and stan-
dardized; it provides different levels of secu-
rity, ranging from the old-style sort of authenti-
cation restricted to the RPC header, to integrity
and/or privacy. And since GSSAPI is agnostic
of the underlying security system, this authenti-
cation mechanism can be used to integrate NFS
security with any security system that provides
a GSSAPI binding.

The Linux implementation of RPCSEC_GSS

was developed as part of the NFSv4 project. It
currently supports Kerberos 5, but work is un-
derway to extend it to SPKM-3 and LIPKEY.

It is worth noting that GSS authentication is
not an exclusive feature of NFSv4, it can be
enabled separately of NFSv4, and can be used
with older versions of the protocol as well. On
the other hand, there remains some doubt as to
whether there is really such a huge demand for
stronger NFS security, despite the vocal criti-
cism. Secure RPC was not perfect, but it has
been available for ages on many platforms, and
unlike Kerberos it was rather straightforward to
deploy. Still there were not that many site that
seriously made use of it.

10 NFS File Locking

Another operation that was not in the scope of
the original NFS specification is file locking.
Nobody has put forth an explanation why that
was so.

At some point, NFS engineers at Sun recog-
nized that it would be very useful to be able to
do distributed file locking, especially given the
cache consistency semantics of the NFS proto-
col.

2006 Linux Symposium, Volume Two • 61

Subsequently, another side-band protocol
called the Network Lock Manager (NLM for
short) protocol was devised, which implements
lock and unlock operations, as well as the
ability to notify a client when a previously
blocked lock could be granted. NLM requests
are handled by the lockd service.

NLM has a number of shortcomings. Probably
the most glaring one is that it was designed for
POSIX locks only; BSD flock locks are not
supported, since they have somewhat different
semantics. It is possible to emulate these with
NLM, but it is non-trivial, and so far only Linux
seems to do this.

Another shortcoming is that most implemen-
tations do not bother with using any kind of
RPC security with NLM requests, so that a
lockd implementation has no choice but to ac-
cept unauthenticated requests, at least as long
as it wants to interoperate with other operating
systems.

Third, lockd does not only have to run on the
server, it must be active on the client as well.
That is because when a client blocked on a lock
request, and the lock can later be granted, the
server is supposed to send a callback to the
client, so lockd must be active there as well.
This creates all kinds of headaches when doing
NFS through firewalls.

File locking is inherently a stateful operation,
which does not go well with the statelessness
paradigm of the NFS protocol. In order to ad-
dress this, mechanisms for lock reclaim were
added to NLM—if a NFS server reboots, there
is a so-called grace period during which clients
can re-register all the locks they were holding
with the server.

Obviously, in order to make this work, clients
need to be notified when a server reboots. For
this, yet another side-band protocol was de-
signed, called Network Status Monitor or NSM.

Calling it a status monitor is a bit of a mis-
nomer, as this is purely a reboot notification
service. NSM does not use any authentication
either, and it its specification is a bit vague on
how to identify hosts—either by address, which
creates issues with multi-homed hosts, or by
name, which requires that all machines have
proper host names configured, and proper en-
tries in the DNS (which surprisingly often is not
the case).

NFSv4 does a lot better in this area, by finally
integrating file locking into the protocol, and
not relying on RPC callbacks to handle blocked
locks anymore. NFSv4 introduces a different
kind of callback as part of the delegation pro-
cess however, but at least those are optional and
NFSv4 still works in the presence of firewalls.

11 AFS

AFS, the Andrew File System, was originally
developed jointly by Carnegie Mellon Univer-
sity and IBM. It was probably never a huge
success outside academia and research instal-
lations, despite the fact that the Open Group
made it the basis of the distributed file system
for DCE (and charged an arm and a leg for it).
Late in its life cycle, it was released by IBM
under an open source license, which managed
to breathe a little life back into it.

AFS is a very featureful distributed file system.
Among other things, it provides good security
through the use of Kerberos 4, location inde-
pendent naming, and supports migration and
replication.

On the down side, it comes with its own server
side storage file system, so that you cannot sim-
ply export your favorite journaling file system
over AFS. Code portability, especially to 64bit
platforms, and the sort of #ifdef accretion

62 • Why NFS Sucks

that can occur over the course of 20 years is
also an issue.

12 CIFS

CIFS, the Common Internet File System, is
what was colloquially referred to as SMBfs
some time ago. Microsoft’s distributed file sys-
tem is session-based, and sticks closely to the
file system semantics of windows file systems.
Samba, and the Linux smbfs and cifs clients
have demonstrated that it is possible for Unix
platforms to interoperate with Windows ma-
chines using CIFS, but some things from the
POSIX world remain hard to map to their Win-
dows equivalents and vice versa, with Access
Control Lists (ACLs) being the most notorious
example.

CIFS provides some cache consistency through
the use of op-locks. It is a stateful protocol,
and crash recovery is usually the job of the
application (we’re probably all familiar with
Abort/Retry/Ignore dialog boxes).

While CIFS was originally designed purely
with Windows file system semantics in mind,
it provides a protocol extension mechanisms
which can be used to implement support for
some POSIX concepts that cannot be mapped
onto the CIFS model. This mechanism has
been used successfully by the Samba team to
provide better Linux to Linux operation over
CIFS.

The Linux 2.6 kernel comes with a new CIFS
implementation that is well along the way of re-
placing the old smbfs code. As of this writing,
the cifs client seems to have overcome most of
its initial stability issues, and while it is still
missing a few features, it looks very promising.

Without question, CIFS is the de-facto stan-
dard when it comes to interoperating with Win-

dows machines. However, CIFS could be se-
rious competition to NFS in the Linux world,
too—the biggest obstacle in this arena is not
a technical one, however, but the fact that it
is is controlled entirely by Microsoft, who like
to spring the occasional surprise or two on the
open source world.

13 Cluster Filesystems

Another important area of development in the
world of distributed file systems are clustered
file systems such as Lustre, GFS and OCFS2.
Especially the latter looks very interesting, as
its kernel component is relatively small and
seems to be well-designed.

Cluster file systems are currently no replace-
ment for file systems such as NFS or CIFS, be-
cause they usually require a lot more in terms of
infrastructure. Most of them do not scale very
well beyond a few hundred nodes either.

14 Future NFS trends

The previous sections have probably made it
abundantly clear that NFS is far from being
the perfect distributed file system. Still, in
the Linux-to-Linux networking world, it is cur-
rently the best we have, despite all its shortcom-
ings.

It will be interesting to see if it will continue to
play an important role in this area, or if it will
be pushed aside by other distributed file sys-
tems.

Without doubt, NFSv4 will see wide-spread
use in maybe a year from now. However, one
should remain sceptical on whether it will actu-
ally meet its original goal of providing interop-
erability with the Windows world. Not because

2006 Linux Symposium, Volume Two • 63

of any design shortcomings, but simply because
CIFS is doing this already, and seems to be do-
ing its job quite well. In the long term, it may
be interesting to see if CIFS can take some bites
out of the NFS pie. The samba developers cer-
tainly think so.

There is also the question whether there is
much incentive for end users to switch to
NFSv4. In the operational area, semantics have
not changed much; they mostly got more com-
plex. If users get any benefits from NFSv4,
it may not be from things like Windows in-
teroperability (which may turn out to be more
of a liability than a benefit). Instead, users
would probably benefit a lot more from other
new features of the protocol, such as support
for replication and migration. It is worth not-
ing, however, that while the NFSv4 RFC pro-
vides the hooks for informing clients about mi-
gration of a file system, it does not define the
migration mechanisms themselves. Unfortu-
nately, the RFC 3010 does not talk about prox-
ying, which would have been a real benefit.

The adoption of RPCSEC_GSS will definitely
be a major benefit in terms of security. While
GSS with Kerberos may not see wide deploy-
ment, simply because of the administrative
overhead of running a Kerberos service, other
GSS mechanisms such as LIPKEY may pro-
vide just the right trade-off between security
and ease of use that make them worthwhile to
small to medium sized networks.

Other interesting areas of NFS development in
Linux include the RPC transport switch, which
allows the RPC layer to use transports other
than UDP and TCP over IPv4. The primary
goals in this area are NFS over IPv6, and us-
ing Infiniband/RDMA as a transport.

15 So how bad is it really?

This article claims to answer the question why
NFS sucks. Hopefully, it has achieved this at
least partly; but the question that remains is,
how bad is it really, and how does NFSv4 help?

So indeed, a lot of the issues raised above are
problems in NFSv2 and NFSv3, and have been
addressed in NFSv4.

Still, several issues remain. The most promi-
nent is the absence of real cache consistency.
NFSv4 supports delegations, but these do not
solve the problem; instead they allow the client
to do more efficient caching if there are no con-
flicting accesses.

Another issue is NFSv4 ACLs, which are nei-
ther POSIX nor CIFS compatible, and there-
fore require either an elaborate and fragile map-
ping for Linux to take advantage of them, or a
continued use of the nfsacl side band protocol.
There is also no mechanism to enforce NFSv4
ACLs locally, or via NFSv3.

The third problem is the continued use of RPC.
In theory, it should be possible to perform call-
backs over an established TCP connection—
callbacks are just another type of message.
However, this is not the way RPC is modeled,
and thus the server needs to establish a connec-
tion to a service port on the client. This cre-
ates problems with firewalls, and makes for un-
happy security officers who would like to see as
few open ports on client machines as possible.

Without RPC, NFS could possibly also handle
the reply cache more efficiently and robustly. A
better session protocol would be able to detect
reliably whether a request is a retransmission;
whether a client has rebooted and it is hence
a good idea to discard all cached replies; and
to identify clients by means other than their IP
address and port number.

64 • Why NFS Sucks

Efficient Use of the Page Cache with 64 KB Pages

Dave Kleikamp
IBM Linux Technology Center
shaggy@austin.ibm.com

Badari Pulavarty
IBM Linux Technology Center

pbadari@us.ibm.com

Abstract

In order for 64-bit processors to efficiently use
large address spaces while maintaining lower
TLB miss rates, the Linux R© kernel can be
configured with base page sizes up to 64 KB.
While this benefits access to large memory seg-
ments and files, it greatly reduces the number of
smaller files that can be resident in memory at
one time. This paper proposes a change to the
Linux kernel to allow file data to be more effi-
ciently stored in memory when the size of the
file, or the data at the end of a file, is signifi-
cantly smaller than the page size.

1 Introduction

While 64 KB page support is not the primary
topic of discussion in this paper, it does intro-
duce the problem we are trying to address. We
will take a quick look at rationale for using a
larger page size.

1.1 Why use 64 KB pages?

Many processors use a fixed-size Translation
Lookaside Buffer (TLB) to translate from vir-
tual to physical addresses. This is a cache con-
taining information from the kernel’s page ta-
bles. When the needed TLB entry is not present

for a memory translation, a TLB Miss occurs
and the processor must go through an expensive
operation of traversing the page tables and load
the entry into the TLB [2]. While the amount
of physical memory supported in recent sys-
tems has increased significantly, the TLB sizes
remain relatively small. TLB coverage, the
amount of memory accessible through cached
mappings without incurring TLB misses, is
becoming an important factor for applications
with large working sets [1].

The use of larger page sizes is a well-known
technique to reduce TLB misses. Linux’s huge
page support (hugetlbfs) is explicitly de-
veloped for this purpose. Unfortunately, huge
pages require special handling and are too big
for many uses.

Besides translation, the efficiency of page fault
handling can be improved with larger page
sizes. Due to a larger page size, applications
end up requiring fewer page faults. A larger
page size could also benefit hardware prefetch-
ing.

Performance analysis of various industry stan-
dard benchmarks showed significant gains (8-
20%) with 64 KB page support.

1.2 Page Cache Fragmentation

An unfortunate side effect of a larger page size
is internal fragmentation in the page cache. The

66 • Efficient Use of the Page Cache with 64 KB Pages

page cache will allocate a minimum of one
page to cache the contents of a small file. The
memory between the logical end of file and the
end of the last page needed to cache the file
is lost to fragmentation. When the page size
is 4 KB, the fragmentation cost cannot exceed
4K−1 bytes for any given file. With a page size
of 64 KB, the fragmentation cost of a single file
may be as great as 64K−1 bytes.

This paper discusses changes to the page cache
to allocate storage for file tails from a memory
pool, allowing more efficient use of memory.

As of this writing, this project is at an early
stage of development. There is no working pro-
totype yet, but we expect to have a reasonable
implementation and results in time for the pre-
sentation.

2 Alternate Approaches

Our initial goal was to separate the page cache
from the page size. We considered making the
page cache aware of multiple page sizes, the
base page size and some smaller fragment size.
One problem with this approach is how to rep-
resent the fragment. The simplest solution is to
use the page structure. For a normal page, the
kernel typically uses the page struct’s position
in the page table in order to determine the phys-
ical address of the page data. If we were to use
the page struct to represent the fragment, we
would have to add at least one more field into
the structure to point to the backing storage.
Every effort is made to keep the page struct as
small as possible. Using a new structure to rep-
resent the fragment is also problematic. A lot
of code within the Virtual File System (VFS)
layer and the file systems themselves operate
on the page struct. Any change to use another
structure would prove to be very intrusive.

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

Inode
i_size = 9000

Mapping

0 4K 8K

File’s Address Space

Page Cache

Figure 1: File Read into Page Cache

3 File Tails

Any file that has data resident in memory is
represented by an inode, which in turn con-
tains a data structure called a mapping. The
mapping describes the address space of the
file. Conceptually, the address space is a linear
representation of a file bounded by the limits of
the file; between offset zero and the size of the
file (found in i_size in the inode).

For the majority of file systems in the Linux
kernel, the data for the file is buffered in the
page cache. The pages within the page cache
are aligned to the address space of the file, and
I/O is typically performed at the page level.
When some data is read from disk, the ker-
nel reads all the data in the pages that contain
the data. There may be holes within the page,
where no data is allocated on disk. In this case,
the part of the page corresponding to the holes
is zeroed. Likewise, when writing to disk, all
dirty data within the pages containing the writ-
ten data are written at one time.

Depending on the size of the file, the last page

2006 Linux Symposium, Volume Two • 67

within the address space of the file is usually
only partially filled. (The remainder of the page
is zero-filled, in case the file is extended.) This
part of the file is what we call the File Tail. In
the case of a file smaller than the base page size,
the entire contents of the file will be in the tail.

When the page size is 4 KB, there is relatively
little wasted memory in the page cache. For
each cached file, less than 4 KB will be wasted
between the end of the file and the end of the
page containing the tail. When we switch to
a 64 KB page size, each non-empty file will
still require a minimum of one page to store the
file data, but the space wasted in the page cache
for each file may approach 64 KB. This will re-
sult in fewer files being able to be cached in the
same amount of memory.

���
���
���

���
���
���

Memory unused due to fragmentation

File 1 File 2 File 3

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Figure 2: Page Cache Fragmentation with 4 KB
pages

3.1 Alternate Storage for File Tails

We propose to provide an alternate method for
caching the file tails. When the tail is suffi-
ciently small, a buffer will be allocated from
one or more memory pools, and a pointer to the
buffer stored in the file’s mapping.

In the case of a read, file system code (primarily
in mm/filemap.c) will determine if the tail
is resident in memory. If it is not, it will allocate
the tail and read the data from disk. Then it will

���
���
���

���
���
���

Memory unused due to fragmentation

File 1

File 2

File 3

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

Figure 3: Page Cache Fragmentation with 64
KB pages

copy the data from the tail buffer to the user
buffer.

In the event that a full page is needed, the tail
would be unpacked into a full page. Memory-
mapping a region of a file containing the tail,
writing to the tail, or an operation that increases
the size of the file constitute actions that would
require the tail be backed by a full page. Un-
packing the tail consists of allocating a page,
adding it to the page cache, copying the data
from the tail buffer, zeroing the remainder of
the page, and freeing the tail buffer.

3.2 Tail Allocation

Since the file tails will differ in size, and we
want to store the tails as efficiently as possi-
ble, a single sized tail buffer will not satisfy our
requirements. Two approaches we considered
for addressing the issue are: piecing together a
number of fixed sized buffers sufficient to store

68 • Efficient Use of the Page Cache with 64 KB Pages

Inode
i_size = 70000

Mapping

0

File’s Address Space

Page Cache

64K

Tail

Figure 4: Tail Storage

the tail; or allocating the tail buffers from pools
of different sized buffers.

The first approach requires storing pointers to
multiple data buffers to store the tail. This
could be done with either an array of point-
ers, or a linked list. The size of an array
would depend on the fixed size of the indi-
vidual buffers and the maximum length of a
tail that we choose to store. For instance if
we store the tails in 4 KB buffers, and choose
tails that are 32 KB or smaller, we would need
8 members in the array. This array would
either need to be stored within the mapping
(struct address_space) or in a separately
allocated buffer.

A linked list could handle any sized tail, but
the list heads would need to be allocated some-
where. The obvious solution would be to al-
locate the list head and data buffer in a single
allocation.

Mapping

Inode

Mapping

Inode

Mapping

Inode

Figure 5: Tail in fixed-sized buffers

Mapping

Inode

Mapping

Inode

Mapping

Inode

Mapping

Inode

Slab Cache

Figure 6: Tail in variable-sized buffers

The second approach allows each tail to be
stored in one contiguous buffer. It requires a
more complex allocator to allow different sized
buffers to be allocated efficiently. Fortunately,
such an allocator exists in kmalloc. For the
initial implementation, we chose to simply use
kmalloc and kfree.

Note that storing the tail data in the slab cache
will always put it in low memory. This is not a
real concern, since hardware supporting larger
page sizes is 64-bit, so all physical memory is
considered low memory. As is explained in the

2006 Linux Symposium, Volume Two • 69

next section, other design decisions are likely
to make this feature incompatible with high-
memory kernels in any case.

3.3 Tail I/O

Ideally, we want to avoid changing the file sys-
tem interface. Reading file data is typically
done through the readpage() address space
operation which takes a page struct as an ar-
gument.

A simple, but inefficient, solution would be to
read the data normally through the page cache,
and pack the tail afterward. The disadvantage
is the extra overhead involved in allocating the
page, and copying the data. The ability to hold
more small files in cache would probably jus-
tify this overhead if a better solution did not
exist.

One solution is to allocate a dummy page
struct that could be passed to readpage().
A new bitflag in page->flags would mark
the page as a special container for the tail.
kmap() and kmap_atomic() would have
to be modified to recognize the flag, and return
page->mapping->tail for the tail page.
The use of the dummy page struct would have
other benefits as well. The tail could then truly
be represented in the page cache by having the
page struct inserted into the radix tree. Note
that the buffer allocated for the tail will need to
be rounded up to the file system’s block size, as
I/O is performed in full disk blocks.

If such an approach were taken, the kernel con-
figuration would have to ensure that the file
tail support not be enabled on a high-memory-
capable kernel. Although kmap() and kmap_
atomic() may be easy to implement for tail
pages, kunmap() and kunmap_atomic()
do not take the page as an argument, and it
would be difficult to guarantee their proper be-
havior.

A third possible approach to performing I/O
on the tail data would be to introduce a new
method to the address space operations that
takes a pointer to a data buffer as an argument,
rather than a page. This would require changes
to any file system that wanted to take advan-
tage of this feature, and will only be considered
if other options turn out to be unworkable.

4 Limitations

As stated in the previous section, the imple-
mentation may depend on the kernel being built
without high-memory support. Since this fea-
ture is primarily designed to address issues re-
lated to a large base page size, which are only
implemented on 64-bit architectures, it is un-
likely that this restriction will be problematic.

It is not a primary goal to support writing to
packed tails. Any writes near the end of a file
are likely to be followed by further writes that
will extend past the end of the file forcing the
tail to be unpacked anyway. However, we won’t
rule out the possibility of supporting this if it
can be implemented with no additional over-
head or complexity.

Memory-mapping a section of a file contain-
ing the tail will also result in the tail being
unpacked. Protection is enforced per-page, so
mapping a tail into an address space requires
the tail be unpacked.

5 Future Work

As of this writing, the project is in a very early
state, so much of what is described above can
be considered future work. By the time this pa-
per is presented, we expect to have a working
code and performance results that we hope will
justify our effort.

70 • Efficient Use of the Page Cache with 64 KB Pages

5.1 Page Allocation Revisited

We may want to re-evaluate the mechanism for
allocating the tail buffers. Since the kmalloc
slab is used as a general purpose memory al-
locator, data for the tails may be interspersed
with other data within a physical page. File
tails are easily reclaimable, so using a sepa-
rate allocator is more likely to allow reclaim to
free complete pages. It may prove to be bene-
ficial to define several independent slab caches
of different sizes that would be used only for
tail buffers.

5.2 Memory Map Support

We may want to investigate whether it would
be possible to allow some degree of memory
mapping support against a tail. At the very least
we should be able to delay unpacking the tail
until the corresponding page is first referenced.

5.3 Tail Repacking

Data at the end of a file may occupy a full
page if it had been recently written or memory-
mapped. If the data has been written, leaving
the page no longer dirty, or the page is no longer
memory-mapped, it may be useful to pack the
data into a tail buffer.

This would reduce the memory usage for these
cached files, and increase the chance that the
data will still be in memory if it is accessed
again. A good heuristic is needed to ensure that
tails are not packed and unpacked too often.

6 Conclusion

This paper proposes a solution to the problem
of internal fragmentation in the page cache on

kernels with a large page size. We intend to im-
plement the proposal and present performance
results on a number of industry standard bench-
marks. We believe that this work will make it
possible for more workloads to benefit from a
large page size.

Legal Statement

This work represents the view of the author and
does not necessarily represent the view of IBM.

IBM is a registered trademark of International
Business Machines Corporation in the United
States.

Linux is a registered trademark of Linus Tor-
valds in the United States, other countries, or
both.

References

[1] Juan Navarro, Sitaram Iyer, Peter
Druschel, and Alan Cox. Practical,
transparent operating system support for
superpages. Proceedings of the 5th
Symposium on Operating Systems Design
and Implementation, December 2002.
http://www.usenix.org.

[2] Simon Winwood, Yefim Shuf, and
Hubertus Franke. Multiple page size
support in the linux kernel. Proceedings of
the Ottawa Linux Symposium, June 2002.

Startup Time in the 21st Century: Filesystem Hacks and
Assorted Tweaks

Benjamin C.R. LaHaise
Intel Corporation

bcrl@linux.intel.com

Abstract

While processors have relentlessly increased
in performance over the past few years, the
amount of time it takes a modern Linux dis-
tribution to go from the bootloader to a work-
ing shell remains relatively large and painful.
Several key points in the boot process offer the
chance to make more efficient use of otherwise
idle time in the system to perform tasks that are
required by later stages of initialization. The
missed opportunities range from the precious
seconds lost while Grub idly awaits user input
to the seek-bound thrashing of init scripts and
filesystem checks.

To improve this situation, a block device cache
called BootCache is filled via sequential reads
earlier in the boot process. This helps remove
the IO bottleneck from the boot process, en-
abling further performance tuning through tra-
ditional profiling techniques. This paper exam-
ines the impact of BootCache on startup time
and regular workloads, as well as the new bot-
tlenecks that are revealed by the modified sys-
tem.

1 Background

The inspiration for this work was a talk pre-
sented at OLS in 2005 during which Bert Hu-

bert presented actual measurements of the la-
tencies associated with disk IO during appli-
cation startup. These measurements showed a
substantial amount of time being wasted while
the system waited on IOs that caused the disk
to seek. These delays are of particular interest
to many of us who spend time waiting for lap-
tops to boot. Laptops tend to have horrendously
slow drives, often spinning at 4200 rpm com-
pared to the more typical 7200 rpm of current
desktop drives. This raises the question: how
much benefit does removing the seek bottle-
neck provide when IO is started early enough?
What are the issues of concern in implement-
ing a cache to make sequential streaming reads
possible? Can such a cache be useful for work-
loads outside of booting?

2 Is it worthwhile?

The first step in looking at any potential op-
timization to solve a problem is to see if the
effort spent will actually accomplish anything.
Thankfully, the Linux kernel has a standard
measurement of system idle time which is use-
ful in estimating how much time is spent wait-
ing on IO. Barring a few moments when the
startup scripts wait several seconds for user in-
put, the startup scripts should not be spending
much time sitting idle.

72 • Startup Time in the 21st Century: Filesystem Hacks and Assorted Tweaks

Uptime Idle time
System 1

to init 13.2s 6.4s
to rc.local 38.0s 24.9s

System 2
to init 8.3s 4.0s

to rc.local 46.3s 36.3s

Table 1: Idle time during boot

Simply getting to the login prompt involves the
system sitting idle for approximately 25s on
each boot for a fairly minimal set of daemons
being started on a pruned FC4 install. A more
complex system (FC5 default install) spends
over 36s in idle time. This is ripe for improve-
ment.

3 A first cut

There has been some experimentation with us-
ing the readahead() syscall to prefetch data
into the cache, but this suffers from a number of
problems. The most notable drawback is that
it does not eliminate the time wasted by disk
seeks.

This leads into the main requirement of Boot-
Cache, which is that all IO should be sequen-
tial. Sequential streaming is a task that disks
are much better tuned for, with many disks able
to read at rates of more than 60 MB/s. With
that in mind, a rough prototype of BootCache
was written.

For the purposes of the prototype, the Boot-
Cache modules take the approach of dumping
the contents of the kernel’s page cache and
buffer cache into a simple log file which can
be replayed on boot. The order in which data is
recorded is determined via a log of cache refer-
ences collected by the system during boot. The

prototype is rather grotesque in that it hooks di-
rectly into the page cache and buffer cache di-
rectly. All of this functionality is included in
the mkbootcache module, which performs
these tasks as part of its initialization function.

The mkbootcache module operates by per-
forming multiple passes over the access log.
Each pass attempts to write out the data of ei-
ther a buffer cache page or a page cache page.
If the page is dropped from the cache or not
valid, the entry is dropped. This is necessary
because the log of what pages are contained in
the BootCache must be present at the beginning
of the cache.

One important element of mkbootcache is
that it must ensure that the cached copy of any
blocks stored on disk remains up to date with
the original. This is accomplished by snoop-
ing all writes to the root filesystem’s block de-
vice. When a write overlaps a block in the
cache, mkbootcache steps in and writes out
a copy to the cache before allowing the request
to proceed. This step is extremely tricky to
get right, as the order of block writes is espe-
cially important to journaling filesystems. With
mkbootcache in place and keeping the data
coherent, the cache’s log file is now ready to be
used on boot.

On boot, a module called trystuffcache
is loaded immediately after the root filesystem
is mounted. This module attempts to replay
the log file and stuff data back into the page
cache and buffer cache. For the paranoid during
testing, it would only compare the log against
the actual data on disk, which made debugging
substantially easier.

2006 Linux Symposium, Volume Two • 73

Without With
BootCache BootCache

to BootCache n/a 8.0s
to rc.sysinit 12.3s 15.7s

to login 44.9s 30.8s

Table 2: Fedora Core 5 boot times

4 How does BootCache improve
things?

For a laptop installed with Fedora Core 5, boot
time to the login prompt takes 44.9s with an un-
modified kernel. With a BootCache in place,
boot time is reduced to 30.8s. This 14s im-
provement (a 32% reduction in boot time) in-
cludes the time it takes to load the BootCache
log from disk. Even though the log comes in
at a whopping 205MB (mostly due to FC5’s
readahead-preloading many desktop applica-
tions).

There is an even more impressive improve-
ment in the case of preloading the cache for
a git diff operation. Without the cache
being stuffed, git diff takes 1m 06s after
a fresh boot, yet with BootCache stuffing the
cache, it only takes 0.2s. Even including the run
time of trystuffcache, BootCache comes
out ahead.

5 Improvements

In writing the prototype BootCache and mak-
ing it work using the cache-stuffing technique,
there were quite a number of small hurdles to
overcome. Cache coherency was most tricky
and results in increased overhead for requests
passing through to the underlying block de-
vice. Those requests affecting the BootCache
area (especially inodes and superblocks) must

be written out twice. Depending on the jour-
naling mode of the filesystem, the cache and
the original blocks can end up out of sync.

To simplify and make the system more robust,
it is probably better to eliminate the duplica-
tion of blocks and instead focus on block-based
readahead. This would have to go hand-in-
hand with reordering the layout of files on disk
to place those accessed during boot in a com-
pact sequential area on the disk. Then, by per-
forming readahead on this area of the disk, the
benefits from cache-stuffing can be achieved
while the complexity and coherency issues of
the cache-stuffing process are eliminated.

6 Further Information

Before starting this work, it was unclear how
much of an improvement to boot time the Boot-
Cache functionality would actually provide.
Thankfully, a 32% reduction in boot time is
of definite utility. As BootCache is a work
in progress, there will be updates. These up-
dates will be made available at http://www.
kvack.org/~bcrl/bootcache/.

74 • Startup Time in the 21st Century: Filesystem Hacks and Assorted Tweaks

Using Hugetlbfs for Mapping Application Text Regions

H.J. Lu
Intel Corporation

hongjiu.lu@intel.com

Kshitij Doshi
Intel Corporation

kshitij.a.doshi@intel.com

Rohit Seth∗

Google Inc.
rohitseth@google.com

Jantz Tran
Intel Corporation

jantz.c.tran@intel.com

Abstract

Many enterprise applications such as Database
and File- and Application-Servers have large
text and data footprints. For efficient execution,
these applications need the processor to effi-
ciently cache address translations for many text
and data pages. Translation Lookaside Buffers
(TLBs) are a very critical resource on any pro-
cessor and all effort should be made to use
them as optimally as possible. Linux kernel
uses huge TLBs (x86, IA-64, etc.) for map-
ping its own text and data. HUGETLBFS support
in Linux allows the use of huge TLBs (for ex-
ample 2M/4M on x86, 256MB on IA-64) for
mapping an application’s dynamic data. In this
paper we will describe an approach that lever-
ages HUGETLBFS support in kernel for map-
ping a program’s text region. We will detail
the modifications applied to different compo-
nents (Linux kernel, glibc and binutils) for this
solution, and discuss the performance improve-
ments it delivers on an industry standard trans-
action processing workload.

*Work was done while working at Intel.

1 Introduction

Data footprints for many enterprise workloads
range from several tens of megabytes to a few
terabytes. For supporting these workloads effi-
ciently, it is critical to deploy large amounts of
primary memory to effectively cache their data
working sets. Accesses distributed over wide
ranges of primary memory need to be translated
efficiently as well, and to do so with the lim-
ited translation resources on a processor, many
systems use large granular page mappings so
that a single translation resource can map a
wide range of contiguous data. Significantly,
over successive releases many enterprise appli-
cations have grown steadily in code size and
thus the use of large grained instruction address
translation for their efficient execution has also
become attractive to explore. This paper de-
scribes how to extend the use of HUGETLBFS
mappings in Linux, so that in addition to map-
ping large ranges of data, it is possible also to
cover large spans of program text with few ad-
dress translation resources.

The paper is organized as follows. As back-
ground, Section 2 briefly goes over the ratio-
nale for employing HUGETLBFS to map data,
and offers reasons for using it to map text as

76 • Using Hugetlbfs for Mapping Application Text Regions

well. Section 3 describes the changes to pro-
gram linking and loading mechanisms in order
to accomplish code placement in large pages.
Section 4 illustrates the use of the mechanisms
with an example. Section 5 discusses the per-
formance impact, using an industry standard
workload for measurement and analysis. Sec-
tions 6 relates current status and planned work,
and Section 7 concludes the paper.

2 Use of Large Grained Transla-
tions

Enterprise software systems manage vast
amounts of data, maintained usually in com-
plex and highly interconnected information
sets. They also implement many layers of so-
phisticated and concurrent processing of the in-
formation they manage, and are designed for
large scale and mission critical use. Such
systems, which include for example, database
management systems, groupware backends,
web servers, and, supply chain and workflow
systems, commonly need to touch data spread
across large amounts of secondary or tertiary
storage. Generally these systems are config-
ured with large amounts of physical memory,
in order to achieve efficient buffering of I/O.
Accesses to the primary memory, for fetching
either instructions or data, are themselves ac-
celerated by high speed caches that retain re-
cently used information close to the processors.
It is common for present day machines used for
data warehousing to be configured with several
hundred gigabytes of physical memory.

Resource and time efficient addressing of these
large physical memories is also critical to
achieiving good performance. Modern pro-
cessors implement small, high speed transla-
tion caches, also called Translation Lookaside
Buffers (TLBs), to reduce the time it takes to
translate the virtual page addresses for data and

instructions to corresponding physical page ad-
dresses. Programs with good locality of access
benefit from TLB use considerably, while pro-
grams with sparse memory reference character-
istics suffer high TLB miss rates and run less
efficiently as a result. Increasing the number of
the TLBs in order to improve their hit rates is
not a satisfactory solution, as it drives up their
complexity and the number of clocks it takes
to produce translations, and also contributes to
power consumption [7].

The number of TLBs available on most proces-
sors is generally much smaller than the num-
ber of normal sized pages needed to cover
the large data working sets of most enter-
prise applications [2], [3], [7]. To rem-
edy this situation, superpages or huge-pages—
which map physical memory in much larger
grained units than ordinary pages—are now
supported by most processors. Beginning with
the 2.6 kernel, the Linux operating system
introduced HUGETLBFS, a pseudo-file system
through which appropriately privileged entities
can map their data in hugepages [3], [4].

In addition to having large data footprints, these
software systems also have large text working
sets, characteristic of their inherent complex-
ity. It is common, for example, for a database
management system to have a text footprint of
a few hundred megabytes, and a text working
set ranging from several hundred kilobytes to a
few megabytes. In covering these code ranges
with ordinary pages, such software stresses the
translation caches of a modern microproces-
sor. In out-of-order processor pipelines, the
resulting stalls pose a serial bottleneck due to
the in-order instruction issuing front ends [1].
On simultaneously multi-threaded engines such
as Intel’s hyperthreaded processors [5], the di-
vision of TLBs among the logical processors
sharing a core further reduces the number of
TLBs available to each logical processor.

The demand for TLBs is further amplified

2006 Linux Symposium, Volume Two • 77

by the frequent need to support text working
set mappings among several concurrent pro-
cesses that do not share a common address
space even as they share the physical pages
that hold the text. For superior performance
and resource sharing, applications that share
the same text image might ideally be recast as
threads; but frequently other considerations—
fault isolation, recoverability, and deployment
flexibility—make the concurrent process model
a preferred approach. In the applications that
use multiple process instances that share text,
the use of large-grained text mappings also
reduces the amount of page table memory
consumed—multiple times, once for each pro-
cess instance. These factors make it very de-
sirable to extend the benefits of large grained
translations to text regions.

In addition to kernel static data, the Linux ker-
nel arranges to have its own text also placed
into large pages. In order to allocate and use
large pages from HUGETLBFS for the purpose
of mapping the text of an enterprise application,
we need to similarly shape the text layout in
the application’s address space. Currently the
HUGETLBFS support in Linux does not provide
a transparent way to let user applications use
huge pages for mapping program text. The so-
lution to this problem is described in the next
section.

3 Large Text Page Implementation

In current Linux, the kernel lays out program
text according to directions encoded into the
executable by the link editor. Once the ker-
nel completes the mapping of a program’s seg-
ments, it passes control to the runtime linker
to complete dynamic resolutions and initial-
izations. Because of this split responsibility
between the kernel and the dynamic linker,
changes are required to each in order to use

HUGETLBFS for text mappings in a natural way.
We considered the alternative of working with
an unmodified kernel and repealing its actions
later in order to relocate the desired segments to
large text mappings, but refrained from pursu-
ing it as we found it cumbersome, error-prone
and maintainence risk.

To create a different layout, our approach is
to capture the placement directive at program
linkage time. The placement directive indicates
whether the application developer prefers that
the program text be laid out in large pages. Sec-
tion 3.1 describes the changes to the applica-
tion binary interface (ABI) and to the linker, to
accomplish this objective. We then act upon
this direction at program load time. The kernel
is extended very modestly. The kernel change,
described in Section 3.2, allows it to defer code
placement for the indicated segments.

The bulk of the modifications are limited to
the dynamic linker, and are described in Sec-
tion 3.3. In Section 3.4, we describe compatible
execution of binaries compiled for large page
placement of code, under the conditions that
large pages are either unavailable or the target
system does not contain the changes described
here.

3.1 ABI and Linker Additions

We added a new segment type, PT_GNU_HUGE_
PAGE, to the program header, in order to spec-
ify the location of a huge page text segment.
An executable cannot have more than one
PT_GNU_HUGE_PAGE segment. A PT_GNU_

HUGE_PAGE segment, if present, must precede
any PT_LOAD segments in the program header.
The PT_GNU_HUGE_PAGE segment, which is
aligned at the huge page size boundary, has
a corresponding PT_LOAD segment, which is
aligned normally.

78 • Using Hugetlbfs for Mapping Application Text Regions

A new linker option, -z huge, is added, which
will create a PT_GNU_HUGE_PAGE segment in
executable.

3.2 Kernel

We added three entries to the auxiliary vec-
tor: AT_EXECFILENAME, AT_HUGEPAGESZ,
and AT_HUGEPAGEPHDR. AT_EXECFILENAME
specifies the absolute pathname of the program.
AT_HUGEPAGESZ specifies huge page size and
AT_HUGEPAGEPHDR provides the address of
the PT_GNU_HUGE_PAGE segment entry.

When it sees a PT_GNU_HUGE_PAGE segment,
the kernel does not map in the corresponding
PT_LOAD segment. Instead, it writes the ad-
dress of the PT_GNU_HUGE_PAGE segment en-
try into AT_HUGEPAGEPHDR and the huge page
size into AT_HUGEPAGESZ. The kernel also
places into AT_EXECFILENAME the absolute
pathname of the program, before transferring
control to user.

3.3 Dynamic Linker

We modified the run-time start up code to rec-
ognize the new segment types and take corre-
sponding actions. In the following we describe
the sequence of actions from the dynamic linker
under these modifications:

• Locate the PT_GNU_HUGE_PAGE segment
by checking AT_HUGEPAGEPHDR. If it is
not available, continue with normal pro-
cessing instead of going through the steps
listed below.

• Check the environment variable, LD_GNU_
HUGE_PAGE_FS, for the mounting point
of huge page file system. That directory,
if specified, is used instead of the default
directory of huge page file system.

• Get the absolute pathname of the ex-
ecutable from AT_EXECFILENAME, and
open it for processing.

• If the huge page file system is not config-
ured, or cannot furnish pages, then map
the segment identified by PT_GNU_HUGE_
PAGE as a normal segment, and revert to
normal processing.

• Lock the original executable exclusively to
prevent other processes from mapping its
PT_GNU_HUGE_PAGE segment.

• If a shadow text file does not exist for
the PT_GNU_HUGE_PAGE segment, create
a shadow text file on the huge page file
system with the same permissions as those
of the original executable. We use the
<device_id, inode_num> identity as
the part of the pathname for the shadow
text file.

• Map and copy the PT_GNU_HUGE_PAGE

segment to the shadow text file, if either
there is not a pre-existing shadow text file,
or the original executable has changed. If
this map-and-copy attempt fails for any
reason, then unlock the executable and
map the segment as a normal segment, and
revert again to non-special handling in-
stead of continuing as listed below.

• Map the shadow text file in accordance
with the flags that are associated with the
PT_GNU_HUGE_PAGE segment. Again, if
there is an error from the mapping attempt,
then unlock the executable, and map the
PT_GNU_HUGE_PAGE segment as a nor-
mal segment to continue with normal pro-
cessing.

• Close the shadow text file, set its time
stamps to match those of the executable,
and unlock the executable.

2006 Linux Symposium, Volume Two • 79

After the PT_GNU_HUGE_PAGE segment has
been processed, the dynamic linker closes the
executable.

3.4 Compatibility

The above changes are relatively minor, for-
ward compatible, and mostly backward com-
patible as clarified next. An application for
whose text large pages are not desired can be
compiled with either the original or the mod-
ified link editor in the ordinary way. Such an
application is processed uniformly as before,
by either the original or the new kernels and
dynamic linkers. An application that is com-
piled with the new link editor and which is
linked to request large text pages is handled
correctly by an unmodified kernel on the target
system with one exception. The exception is in
case of Intel R© Itanium R©: here, the constraints
of Intel R© Itanium R©’s HUGETLBFS implemen-
tation compel us to use a modified kernel and a
modified linker in order to process a binary that
uses the extended ABI.

Another unavoidable departure from compat-
ible execution is the following. An appli-
cation that has a PT_GNU_HUGE_PAGE seg-
ment cannot run correctly if the kernel supports
PT_GNU_HUGE_PAGE segment but the dynamic
linker doesn’t. We consider it a modest require-
ment that the dynamic linker must be in step
with the changes in the kernel.

4 Usage Example

In this section, we show a simple example to il-
lustrate the use of HUGETLBFS code placement
and execution on x86-64. We describe this ex-
ample in two parts. In the first part, we show the
construction of the executable using the huge

directive. In the second part, we demonstrate
the effect of executing the program, first with,
and then without, the privilege for allocating
HUGETLBFS memory.

The program is shown below as example.c.
It is coded merely to list the mapping under
/proc for its own text segment, and is in-
tended to illustrate the behavior both when the
text segment is mapped as desired (in mem-
ory furnished from HUGETLBFS) and when it
is mapped in ordinary pages.

$ cat example.c
#include <stdio.h>
#include <stdlib.h>

int main () {
char buf [120];
printf ("Huge page text segment"

"map:\n");
sprintf (buf, "grep 00600000- "

"/proc/%d/maps | "
"sed -e \"s/ \\{26\\}//\"",
getpid ());

system (buf);
return 0;

}

We next compile the program as shown below.
Note the use of huge directive during linking.

$ gcc -O -c -o example.o example.c
$ gcc -Wl,-z,huge,-s -o hugex example.o

Next we examine the program headers and the
section to segment mapping, using readelf,

$ readelf -l --wide hugex

For better readability, we select a subset of the
information emitted by readelf, below:

Program Headers:

Type VirtAddr MemSiz Flg Align
PHDR 0x400040 0x0230 R E 0x8
INTERP 0x400270 0x001c R 0x1
GNU_HUGE_PAGE 0x600000 0x031c R E 0x200000
LOAD 0x400000 0x0500 R E 0x100000
LOAD 0x600000 0x031c R E 0x100000
LOAD 0x800000 0x0220 RW 0x100000
DYNAMIC 0x800028 0x0190 RW 0x8
NOTE 0x40028c 0x0020 R 0x4
GNU_EH_FRAME 0x600258 0x0024 R 0x4
GNU_STACK 0x000000 0x0000 RW 0x8

80 • Using Hugetlbfs for Mapping Application Text Regions

Section to Segment mapping:
Segment Sections...
00
01 .interp
02 .text .init .fini .rodata .eh_frame_hdr

.eh_frame
03 .interp .note.ABI-tag .hash .dynsym .dynstr

.gnu.version .gnu.version_r .rela.dyn

.rela.plt .plt
04 .text .init .fini .rodata .eh_frame_hdr

.eh_frame
05 .ctors .dtors .jcr .dynamic .got .got.plt

.data .bss
06 .dynamic
07 .note.ABI-tag
08 .eh_frame_hdr
09

One can see from the program header and
section-to-segment mapping details that seg-
ments 2 and 4 map to the same set of sections.
The GNU_HUGE_PAGE type for segment 2 iden-
tifies it as the huge page segment that was re-
quested at link time, while the ordinary LOAD
type for segment 4 identifies it as the normal
segment that is provided for backward compat-
ibility.

The HUGETLBFS file system is mounted at
/mnt/hugepagebydefault; but if not, in
this example we proceed to mount it:

mount none -t hugetlbfs
/mnt/hugepage

mount | grep -i hugetlb
none on /mnt/hugepage type hugetlbfs (rw)

When the program hugex is run as root (i.e.,
with the privilege for HUGETLBFS use), we
see its text map under /mnt/hugepage,
as expected. The components 5180. . . and
2ce2110. . . in the pathname are derived from
the device identifier and the inode identifier of
the file /tmp/hugex, which is the executable.

./hugex
Huge page text segment map:
00600000-00800000 r-xp 00000000 00:15
9166 /mnt/hugepage/5180000000000000/
2ce2110000000000/text

Next we show what happens when the large
grained translations are made unavailable. The
following invocation of the program is as a nor-
mal (unprivileged) user. In this case, large text

mapping will not be available, and the normal
segment (#4) will be used instead for compati-
bility.

$./hugex
Huge page text segment map:
00600000-00601000 r-xp 00100000 08:15 1126082
/tmp/hugex

5 Performance

We measured the impact of changes described
in Section 3, on two 64-bit systems. The first
was a 4-processor Intel R© Itanium R© 2, and the
second was a 4-processor Intel R© Pentium R© 4
with Hyperthreading. We employed an in-
dustry standard and fully scaled online trans-
action processing workload and used a work-
load driver that shared the processors with
the database management software, in a sin-
gle tier configuration for convenience of bench-
marking. The buffer pool for the database
was placed in HUGETLBFS-based shared mem-
ory, and was of the same size independent of
whether text pages were mapped with normal-
or large-grained translations.

Both Intel R© Pentium R© and Intel R© Itanium R©

systems showed performance gains with the
use of large text pages for the database soft-
ware. Both systems yielded throughput im-
provements averaging 4.65% as measured by
transactions performed per unit of time. The
table below captures the percent difference in
selected processor event metrics on an Intel R©

Pentium R© machine, between using and not us-
ing large pages for mapping text [6]. In this
table and in the description that follows, ITLB
and DTLB are respectively acronyms for In-
struction and Data TLBs.

While the number of ITLB misses reduced by
5%, they produced a much higher drop in the
number of page table traversals for servicing

2006 Linux Symposium, Volume Two • 81

Gain in throughput (transactions per minute) 4.6
Improvement in first level data cache miss ratio 3.0
Improvement in second level data cache miss ratio 5.0
Reduction in ITLB miss handling overhead 50.0
Reduction in number of bus accesses 3.0
Reduction in ITLB misses 5.0
Reduction in second level cache misses 8.0
Reduction in DTLB miss handling overhead 5.0
Reduction in DTLB misses 5.0

Table 1: Percent Improvement from HUGETLBFS Mapped Text

the ITLB misses, since the use of large page
translation removes the need to perform an ad-
ditional traversal level and cuts the overhead of
handling ITLB misses in half.

The large drop in the second level cache misses
comes from a sharp reduction in the number
of page table entries occupying the processor’s
cache. A high value gain reflected in these
event metrics is the reduction in bus accesses,
due to improved cache hit ratios. The number
of hardware threads per die is poised to increase
significantly in coming years. Software driven
improvements in cache efficiencies in present
generation systems can be expected to yield
critical reductions in traffic along shared paths
between the cores on each die, and other caches
or memory modules.

One side benefit of the reduced page table
traversals for servicing the ITLB misses is a
reduction in the number of DTLB misses aris-
ing from the traversals. This yields the 5% re-
duction in DTLB misses and in the DTLB miss
handling overheads.

6 Current Status and Future Work

Our current implementation supports IA-32,
x86-64, and Intel R© Itanium R© processor ar-
chitectures. The kernel, glibc, and binutils

changes described in Section 3 are all avail-
able at: http://www.kernel.org/pub/
linux/devel/hugepage.

We believe that our changes can be easily
extended to other architectures. The kernel
and glibc changes are architecture independent.
Only our linker changes need to be ported.

The current implementation only supports huge
page text in executable. We are looking into
feasibility of supporting huge page text in
shared library. We are also planning a feasibil-
ity study for placing writable data sections into
huge pages and assessing the resulting perfor-
mance impact.

7 Conclusion

In summary, capitalizing upon HUGETLBFS by
mapping code in large pages and thereby im-
proving translation efficiencies of processors
in executable regions helps enterprise applica-
tions with large text footprints. This capability
is achieved with small changes to the linking
and loading framework, and removes a signifi-
cant performance hurdle for such applications.
The resulting page table efficiency improves
ITLB hit ratios, and produces downstream ben-
efits for first and second level caches. By reduc-
ing the stresses on these caches and on other

82 • Using Hugetlbfs for Mapping Application Text Regions

hardware resources shared on the same chip,
the use of large grained text pages facilitates
performance scaling with increasing on-chip
concurrencies.

References

[1] Anastassia Ailamaki, David J. DeWitt,
Mark D. Hill, David A. Wood. DBMSs
On A Modern Processor: Where Does
Time Go?, Proc. VLDB, 1999.

[2] Martin J. Bligh and David Hansen. Linux
Memory Management on Larger
Machines, Proc. Linux Symposium, July
2003.

[3] Kenneth Chen, Rohit Seth, Hubert
Nueckel, Improving Enterprise Database
Performance on Intel R© Itanium R©

Architecture, Proc. Linux Symposium,
July 2003.

[4] Wim A. Coekarts, Big Servers—2.6
compared to 2.4, Proc. Linux
Symposium, July 2004.

[5] Hyper-threading technology,
http://www.intel.com/

technology/hyperthread

[6] IA-32 Intel R© Architecture Optimization
Reference Manaual: Appendix B: Intel
Pentium 4 Processor Performance
Metrics, ftp:
//download.intel.com/design/

Pentium4/manuals/24896612.pdf

[7] Simon Winwood, Yefim Shuf, Hubertus
Franke, Multiple Page Size Support in the
Linux Kernel, Proc. Linux Symposium,
June 2002.

Towards a Better SCM: Revlog and Mercurial

Matt Mackall
Selenic Consulting
mpm@selenic.com

Abstract

Large projects need scalable, performant, and
robust software configuration management sys-
tems. If common revision control operations
are not cheap, they present a large barrier to
proper software engineering practice. This pa-
per will investigate the theoretical limits on
SCM performance, and examines how existing
systems fall short of those ideals.

I then describe the Revlog data storage scheme
created for the Mercurial SCM. The Revlog
scheme allows all common SCM operations to
be performed in near-optimal time, while pro-
viding excellent compression and robustness.

Finally, I look at how a full distributed SCM
(Mercurial) is built on top of the Revlog
scheme, some of the pitfalls we’ve surmounted
in on-disk layout and I/O performance and the
protocols used to efficiently communicate be-
tween repositories.

1 Introduction: the need for SCM
scalability

As software projects grow larger and open
development practices become more widely
adopted, the demands on source control man-
agement systems are greatly increased. Large

projects demand scalability in multiple dimen-
sions, including efficient handling of large
numbers of files, large numbers of revisions,
and large numbers of developers.

As an example of a moderately large project,
we can look at the Linux kernel, a project
now in its second decade. The Linux kernel
source tree has tens of thousands of files and
has collected on the order of a hundred thou-
sand changesets since adopting version control
only a few years ago. It also has on the order
of a thousand contributors scattered around the
globe. It also continues to grow rapidly. So it’s
not hard to imagine projects growing to manage
millions of files, millions of changesets, and
many thousands of people developing in par-
allel over a timescale of decades.

At the same time, certain SCM features become
increasingly important. Decentralization is cru-
cial: thousands of users with varying levels of
network access can’t hope to efficiently cooper-
ate if they’re all struggling to commit change-
sets to a central repository due to locking and
bandwidth concerns. So it becomes critical that
a system be able to painlessly handle per-user
development branches and repeated merging
with the branches of other developers. Group-
ing of interdependent changes in multiple files
into a single “atomic” changeset becomes a ne-
cessity for understanding and working with the
huge number of changes that are introduced.
And robust, compact storage of the revision

84 • Towards a Better SCM: Revlog and Mercurial

history is essential for large number of develop-
ers to work with their own decentralized repos-
itories.

2 Overview of Scalability Limits
and Existing Systems

To intelligently evaluate scalability issues over
a timescale of a decade or more, we need to
look at the likely trends in both project growth
and computer performance. Many facets of
computer performance have historically fol-
lowed an exponential curve, but at different
rates. If we order the more important of these
facets by rate, we might have a list like the fol-
lowing:

• CPU speed

• disk capacity

• memory capacity

• memory bandwidth

• LAN bandwidth

• disk bandwidth

• WAN bandwidth

• disk seek rate

So while CPU speed has changed by many
orders of magnitude, disk seek rate has only
changed slightly. In fact, seek rate is now dom-
inated by disk rotational latency and thus its
rate of improvement has already run up against
a wall imposed by physics. Similarly, WAN
bandwidth runs up against limits of existing
communications infrastructure.

So as technology progresses, it makes more and
more sense to trade off CPU power to save disk

seeks and network bandwidth. We have in fact
already long since reached a point where disk
seeks heavily dominate many workloads, in-
cluding ours. So we’ll examine the important
aspects of source control from the perspective
of the facet it’s most likely to eventually be con-
strained by.

For simplicity, we’ll make a couple simplify-
ing assumptions. First, we’ll assume files of a
constant size, or rather that performance should
generally be linearly related to file size. Sec-
ond, we’ll assume for now that a filesystem’s
block allocation scheme is reasonably good and
that fragmentation of single files is fairly small.
Third, we’ll assume that file lookup is roughly
constant time for moderately-sized directories.

With that in mind, let’s look at some of the the-
oretical limits for the most important SCM op-
erations as well as scalability of existing sys-
tems, starting with operations on individual
files:

Storage compression: For compressing sin-
gle file revisions, the best schemes known in-
clude SCCS-style “weaves” [8] or RCS-style
deltas [5], together with a more generic com-
pression algorithm like gzip. For files in a typi-
cal project, this results in average compression
on the order of 10:1 to 20:1 with relatively con-
stant CPU overhead (see more about calculat-
ing deltas below).

Retrieving arbitrary file revisions: It’s easy
to see that we can easily achieve constant time
(O(1) seeks) retrieval of individual file revi-
sions, simply by storing each revision in a sep-
arate file in the history repository. In terms of
big-O notation, we can do no better. This ig-
nores some details of filesystem scalability, but
it’s a good approximation. This is perhaps the
most fundamental operation in an SCM, so the
scalability of this operation is crucial.

2006 Linux Symposium, Volume Two • 85

Most SCMs, including CVS, and Bitkeeper use
delta or weave-based schemes that store all the
revisions for a given file in a single back-end
file. Reconstructing arbitrary versions requires
reading some or all of the history file, thus
making performance O(revisions) in disk band-
width and computation. As a special case, CVS
stores the most recent revision of a given file
uncompressed, but still must read and parse the
entire history file to retrieve it.

SVN uses a skip-delta [7] scheme that requires
reading O(log revisions) deltas (and seeks) to
reconstruct a revision.

Unpacked git stores a back-end file for each file
revision, giving O(1) performance, but packed
git requires searching a collection of indices
that grow as the project history grows. Also
worth noting is that git does not store an index
information at the file level. Thus operations
like finding the previous version of a file to cal-
culate a delta or the finding the common ances-
tor of two file revisions can require searching
the entirety of the project’s history.

Adding file revisions: Similarly, we can see
that adding file revisions by the same scheme
is also O(1) seeks. Most systems use schemes
that require rewriting the entire history file, thus
making their performance decrease linearly as
the number of revisions increase.

Annotate file history: We could, in princi-
ple, incrementally calculate and store an anno-
tated version of each version of a file we store
and thus achieve file history annotation in O(1)
seeks by adding more up-front CPU and stor-
age overhead. Almost all systems instead take
O(revision) disk bandwidth to construct anno-
tations, if not significantly more. While anno-
tation is traditionally not performance critical,
some newer merge algorithms rely on it [8].

Next, we can look at the performance limits of
working with revisions at the project level:

Checking out a project revision: Assuming
O(1) seeks to check out file revisions, we might
expect O(files) seeks to check out all the files
in the project. But if we arrange so that file
revisions are nearly consecutive, we can avoid
most of those seeks, and instead our limit be-
comes O(files) as measured by disk bandwidth.
A comparable operation is untarring an archive
of that revision’s files.

As most systems must read the entirety of a
file’s history to reconstruct a revision, they’ll
require O(total file revisions) disk bandwidth
and CPU to check out an entire project tree.
SCMs that don’t visit the repository history in
the filesystem’s natural layout can easily see
this performance degrade into O(total files) ran-
dom disk seeks, which can happen with SCMs
backed by database engines or with systems
like git which store objects by hash (unpacked)
or creation time (packed).

Committing changes: For a change to a small
set of the files in a project, we can expect to
be bound by O(changed files) seeks, or, as the
number of changes approaches the number of
files, O(files) disk bandwidth.

Systems like git can meet this target for com-
mit, as they simply create a new back-end file
for each file committed. Systems like CVS re-
quire rewriting file histories and thus take in-
creasingly more time as histories grow deeper.
Non-distributed systems also need to deal with
lock contention which grows quite rapidly with
the number of concurrent users, lock hold time,
and network bandwidth and latency.

Finding differences in the working direc-
tory: There are two different approaches to this
problem. One is to have the user explicitly ac-
quire write permissions on a set of files, which
nicely limits the set of files that need to be ex-
amined so that we only need O(writable files)
comparisons. Another is to allow all files to

86 • Towards a Better SCM: Revlog and Mercurial

be edited and to detect changes to all managed
files.

As most systems require O(file revisions) to re-
trieve a file version for comparison, this opera-
tion can be expensive. It can be greatly acceler-
ated by keeping a cache of file timestamps and
sizes as checkout time.

3 Revlog: A Solid Foundation

The core of the Mercurial system [4] is a stor-
age scheme known as a “revlog,” which seeks
to address the basic scalability problems of
other systems. First and foremost, it aims to
provide O(1) seek performances for both read-
ing and writing revisions, but still retain effec-
tive compression and integrity.

The fundamental scheme is to store a separate
index and data file for each file managed. The
index contains a fixed-sized record for each re-
vision managed while the data file contains a
linear series of compressed hunks, one per re-
vision.

Each hunk is either a full revision or a delta
against the immediately preceding hunk or
hunks. This somewhat resembles the format of
an MPEG video stream, which contains a series
of delta frames with occassional full frames for
synchronization.

Looking up a given revision is easy—simply
calculate the position of the relevant record in
the index and read it. It will contain a pointer to
the first full revision of the delta chain and the
entire chain can then be read in a single con-
tiguous chunk. Thus we need only O(1) seeks
to locate and retrieve a revision.

By limiting the total length of the hunks needed
to reconstruct a given version to a small mul-
tiple of that version’s uncompressed size, we

Figure 1: Revlog Layout

guarantee that we’ll never need to read more
than O(1) file equivalents from the data file and
our CPU time for reconstruction is similarly
bounded.

To add a new version, we simply append a new
index record and data hunk to our revlog, again
an O(1) operation. This append-only approach
provides several advantages. In addition to be-
ing fast, we also avoid the risk of corrupting
earlier data because we don’t rewrite it. If we
are careful to only write index entries after data
hunks, we also need no special provisions for
locking out readers while writes are in progress.
And finally, it makes possible a trivial jour-
nalling scheme, described later.

Because our system needs to allow more
than simple linear development with repeated
branching and merging, our revision identifiers
cannot be just simple integers. And because our
scheme is intended to be decentralized, we’d
like to have identifiers that are global. Thus,
Mercurial generates identifiers from a strong
hash of its contents (currently using SHA1).
This hash also provides a robust integrity check
when revisions are reconstructed.

As our project can contain arbitrary branch-

2006 Linux Symposium, Volume Two • 87

ing and merging through time, each revlog can
have an arbitrary directed acyclic graph (DAG)
describing its history. But if we revert a change,
we will have the same hash value appearing in
two places on the graph, which results in a cy-
cle!

Revlogs address this by incorporating the hash
of the parent revisions into a given revision’s
hash identifier, thus making the hash dependent
on both the revision’s contents and its position
in the tree. Not only does this avoid our cycle
problem, it makes merging DAGs from multi-
ple revlogs trivial: simply throw out any revi-
sions with duplicate hashes and append the re-
mainder.

Each 64 byte revlog index record contains the
following information:

2 bytes: flags
6 bytes: hunk offset
4 bytes: hunk length
4 bytes: uncompressed length
4 bytes: base revision
4 bytes: link revision
4 bytes: parent 1 revision
4 bytes: parent 2 revision
32 bytes: hash

Data hunks are composed of a flag byte indi-
cating compression type followed by a full re-
vision or a delta.

4 Delta Encoding Considerations

Revlog deltas themselves are quite simple.
They’re simply a collection of chunks specify-
ing a start point, an end point, and a string of
replacement bytes. But calculating deltas and
applying deltas both turn out to have some in-
teresting issues.

First, let’s consider delta calculation. We care-
fully tested three algorithms before selecting
the one used by revlogs.

The classic algorithm used by GNU diff and
most other textual tools is the Myers algorithm,
which generates optimal output for the so-
called longest common substring (LCS) prob-
lem. This algorithm is fairly complex, and the
variant used by GNU diff has heuristics to avoid
a couple forms of quadratic run-time behavior.

While the algorithm is optimal for LCS, it does
not in fact generate the shortest deltas for our
purposes. This is because it weighs insertions,
changes, and deletions equally (with a weight
of one). For us, deleting long strings of charac-
ters is cheaper than inserting or changing them.

Another algorithm we tried was xdelta [3],
which is aimed at calculating diffs for large bi-
nary files efficiently. While much simpler and
somewhat faster than the Myers algorithm, it
also generated slightly larger deltas on average.

Finally, we tried a C reimplementation (“bd-
iff”) of the algorithm found in Python’s dif-
flib [1]. In short, this algorithm finds the
longest contiguous match in a file, then recur-
sively matches on either side. While also hav-
ing worst-case quadratic performance like the
Myer’s algorithm, it more often approximates
linear performance.

The bdiff algorithm has several advantages. On
average, it produced slightly smaller output
than either the Myers or xdelta algorithms, and
was as fast or faster. It also had the shortest and
simplest code of the three. And lastly, when
used for textual diffs, it often generates more
“intuitive” output than GNU diff.

We may eventually include the xdelta algorithm
as a fallback for exceptionally large files, but
the bdiff algorithm has proven satisfactory so
far.

88 • Towards a Better SCM: Revlog and Mercurial

rev offset length base linkrev nodeid p1 p2
0 0 453 0 0 ee9b82ca6948 000000000000 000000000000
1 453 107 0 1 98f3df0f2f4f ee9b82ca6948 000000000000
2 560 73 0 2 8553cbcb6563 98f3df0f2f4f 000000000000
3 633 63 0 3 09f628a628a8 8553cbcb6563 000000000000
4 696 69 0 4 3413f6c67a5a 09f628a628a8 000000000000

...
15 1435 69 0 15 69d47ab5fc42 9e64605e7ab0 000000000000
16 1504 111 0 16 81322d98ee1f 69d47ab5fc42 000000000000
17 1615 525 17 17 20f563caf71e 81322d98ee1f 000000000000
18 2140 56 17 18 1d47c3ef857a 20f563caf71e 000000000000

...

Table 1: Part of a typical revlog index

Next is the issue of applying deltas. In the worst
case, we may need to apply many thousands of
small deltas to large files. To sequentially ap-
ply 1K deltas to a 1M, we’ll effectively have
to do 1G of memory copies—not terribly effi-
cient. Mercurial addresses this problem by re-
cursively merging neighboring patches into a
single delta. Not only does this reduce us to
only applying a single delta, it eliminates or
joins the hunks that overlap, further reducing
the work. Thus, patch application is reduced
in CPU time from O(file size * deltas) to ap-
proximately O(file size + delta size). As we’ve
already constrained the total data to be propor-
tional to our original file size, this is again O(1)
in terms of file units.

5 Mercurial: A Simple Hierarchy

With revlogs providing a solid basis for stor-
ing file revisions, we can now describe Mer-
curial. Naturally, Mercurial stores a revlog for
each managed file. Above that, it stores a “man-
ifest” which contains a list of all file:revision
hash pairs in a project level revision. And fi-
nally, it stores a “changeset” that describes the
change that corresponds to each manifest. And
conveniently, changesets and manifests are also
stored in revlogs!

changeset
data

changeset
index

manifest
data

manifest
index

file
data

file
index

linkrev

Figure 2: The Mercurial Hierarchy

This schema of file/manifest/changeset hashing
was directly inspired by Monotone [2] (which
also inspired the scheme used by git [6]). Mer-
curial adds a couple important schema im-
provements beyond using revlogs for efficient
storage. As already described, revlog hashes
avoid issues with graph cycles and make merg-
ing graphs extremely easy. Also, revlogs at
each level contain a “linkrev” for each revision
that points to the associated changeset, allow-
ing one to quickly walk both up and down the
hierarchy. It also has file-level DAGs which
allow for more efficient log and annotate, and
more accurate merge in some situations.

Checking out Project Revisions: Checkout is
a simple process. Retrieve a changeset, retrieve
the associated manifest, and retrieve all file re-
visions associated with that manifest.

Mercurial takes the approach of keeping a
cache of managed file sizes and timestamps for

2006 Linux Symposium, Volume Two • 89

rapid detection of file changes for future com-
mits. This also lets us know which files need
updating when we checkout a changeset. Nat-
urally, Mercurial also tracks which changeset
the current working directory is based on, and
in the case of merge operations, we’ll have two
such parents.

The manifest is carefully maintained in sorted
order and all operations on files are done in
sorted order as well. An early version stored
revlogs by hash (as git still does) and that
scheme was found to rapidly degrade over time.
Simply copying a repo would often reorder
it on disk by hash, giving worst-case perfor-
mance.

With revlogs instead stored in a directory tree
mirroring the project and all reads done in
sorted order, filesystems and utilities like cp
and rsync are given every opportunity to opti-
mize on-disk layout so that we minimize seeks
between revlogs in normal usage. This gets us
very close to O(files) disk bandwidth with typ-
ical filesystems.

Performance for full tree checkouts for a large
project tend to be very comparable to time
needed to uncompress and untar an equivalent
set of files.

Committing Changes: Commits are atomic
and are carefully ordered so as to not need
any locking for readers. First all relevant file
revlogs are extended, followed by the manifest
and finally the changelog. Adding an entry to
the changelog index makes it visible to readers.

Commit operations are also journalled. For
each revlog file appended to during a commit,
we simply record the original length of the file.
If a commit is interrupted, we simply truncate
all the files back to the earlier lengths, in reverse
order.

Note that because locking is only needed on
writes and each user commits to primarily to

their own private repository, lock contention is
effectively nil.

Commit performance is high enough that Mer-
curial can apply and import a large series of
patches into its repository faster than tools like
quilt can simply apply them to the working di-
rectory.

Cloning: While Mercurial repositories can
contain numerous development branches,
branching is typically done by “cloning” a
repository wholesale. By using hardlinks and
copy-on-write techniques, Mercurial can create
independent lightweight copies of entire repos-
itories in seconds. This is an important part of
Mercurial’s distributed model—branches are
cheap and discardable.

Pushing and Pulling: A fundamental oper-
ation of a distributed SCM is synchroniza-
tion between the private repositories of dif-
ferent users. In Mercurial, this operation is
called “pulling” (importing changes from a re-
mote repository) or “pushing” (sending local
changes to a remote repository).

Pulling typically involves finding all changesets
present in the remote tree but not in the local
tree and asking them to be sent. Because this
may involve many thousands of changesets, we
can’t simply ask for a list of all changesets and
compare. Instead, Mercurial asks the remote
end for a list of heads and walks backwards un-
til it finds the root nodes of all remote change-
sets. It then requests all changesets starting at
these root nodes.

To minimize the number of round trips required
for this search, we make three optimizations.
First, we allow many requests in a single query
so that we can search different branches of the
graph in parallel. Second, we combine chains
of linear changes into single “twigs” so that
we can quickly step across large regions of

90 • Towards a Better SCM: Revlog and Mercurial

the graph. And finally, we use a special bi-
nary search approach to quickly find narrow
our search if new changes appear in the mid-
dle of a twig. This approach lets us find our
new changesets in approximately O(log(new
changesets)) bandwidth and round-trips.

Once the outstanding changes are found, the re-
mote end begins to stream the changes across in
Mercurial’s “bundle” format. Rather than be-
ing ordered changeset by changeset, a bundle
is instead ordered revlog by revlog. First, all
new changelog entries are sent as deltas. As
changesets are visited, a list of changed files is
constructed.

Armed with a list of new changesets, Mercurial
can quickly scan the manifest for changesets
with a matching linkrev and send all new man-
ifest deltas. We can also quickly visit our list
of changed files and find their relevant deltas
(again in sorted order). This minimizes seek-
ing on both ends and avoids visiting unchanged
parts of the repository.

Note that because this scheme makes deltas for
the same revlog adjacent, the stream can also be
more effectively compressed, preserving valu-
able WAN bandwidth.

6 Conclusions

By careful attention to scalability and perfor-
mance issues for all common operations from
the ground up, Mercurial performs well even as
projects become very large in terms of history,
files, or users.

As most of the performance improvements
made by Mercurial are in the back-end data rep-
resentation, they should be applicable to many
other systems.

Mercurial is still a young and rapidly improving
system. Contributions are encouraged!

References

[1] difflib. http://docs.python.org/
lib/module-difflib.html.

[2] Graydon Hoare.
http://www.venge.net/monotone/. http:
//www.venge.net/monotone/.

[3] Davide Libenzi. Libxdiff.
http://www.xmailserver.org/
xdiff-lib.html.

[4] Matt Mackall. The mercurial scm.
http://selenic.com/mercurial.

[5] Walter F. Tichy. Rcs–a system for version
control.
http://docs.freebsd.org/
44doc/psd/13.rcs/paper.html.

[6] Linus Torvalds. Git - tree history storage
tool. http://git.or.cz/.

[7] Unknown. Skip-deltas in subversion.
http://svn.collab.net/repos/
svn/trunk/notes/skip-deltas.

[8] Various. Weave - revctrl wiki.
http://revctrl.org/Weave.

Roadmap to a GL-based composited desktop for Linux

Kevin E. Martin
Red Hat, Inc.

kem@redhat.com

Keith Packard
Intel, Inc.

keith.packard@intel.com

Abstract

Over the past several years, the foundation that
will lead to a GL-based composited desktop has
been laid, but there is still much work ahead
for Linux. Other OSes already have or are well
on their way toward having a solution in this
space. We need a concerted effort across every
level of the OS—from the applications through
the toolkits and libraries into the X server and
the kernel—if we are to be successful.

In this paper, we examine the key technologies
required, solve the limitations of the current X
server design, and bring a GL-based compos-
ited desktop to fruition. For each of these tech-
nologies we will present current development
status, explain how they fit together to create
the GL-based composited desktop, and outline
a roadmap for how to complete the remaining
tasks.

1 Desktop design limitations

The current X server design is starting to show
its age. Recent developments have shown that
it’s possible to create a GL-based composited
desktop, but in order to effectively take advan-
tage of the new technologies we describe in this
paper, we must first understand the key limita-
tions of the current design.

First, the current desktop has been designed
around a 2D display device, while the silicon
on graphics chips has shifted dramatically to
3D support. Integrating 3D into the desktop has
long been the goal, but until recently it has not
been possible. Other operating systems have
also recognized this paradigm shift—Apple is
using OpenGL through its Quartz [1] compos-
itor architecture and Sun has a research project
called Looking Glass [7] to experiment with us-
ing Java3D on their desktop.

A second limitation is that all drawing opera-
tions are being rendered directly into the front
buffer. What this means is that users can see
rendering artifacts while the desktop scene is
being constructed—i.e., the intermediate states
are visible. Most drawing operations are very
fast, so it usually appears as a visually dis-
pleasing blur before the final image is visible,
but sometimes is it much worse and you can
see individual elements being drawn. Tradi-
tionally, toolkits have had to work around this
problem by drawing directly to host-memory
pixmaps and then copying the finished image
to the screen.

A third limitation has been the static nature of
the desktop states and the transitions between
those states are either instantaneous or have
very primitive transition animations. For exam-
ple, when minimizing or un-minimizing win-
dows, they simply pop into or out of existence
or very simple window outlines are drawn in

92 • Roadmap to a GL-based composited desktop for Linux

sequence from the window to the icon in the
panel that show the transition.

Below, we describe an incremental approach
to making the new technology that addresses
these limitations available in the open source
community. The process we describe is to
evolving the existing Xorg X server and its ex-
tensions to provide the new technology. In this
way, we can minimize regressions for the ex-
isting installed base while still making a huge
impact on what is possible.

2 Building on the past

The GL-based composited desktop is built on
top of several key technologies that have been
developed over the past several years. In this
section, we describe three projects—the DRI,
Composite, and Luminocity—which are neces-
sary to understand the new technologies.

2.1 Direct rendering infrastructure

Throughout most of the 1990s, the only open
source implementation of OpenGL was Mesa
[9], which was a software-only client-side li-
brary that implemented the OpenGL interface.
Then, in late 1998, Precision Insight began de-
veloping the Direct Rendering Infrastructure
(DRI) [5], which brought open source hardware
accelerated 3D graphics to the Linux platform.
With this development, we took a huge step for-
ward on the path to addressing the first limita-
tion.

The way the DRI worked was that when an ap-
plication requested a direct-rendering context,
libGL would query the X server to see if a
hardware-specific driver was available and if
one was available, it would dynamically load
that driver and initialize the internal dispatch

table to use the driver for hardware accelerated
rendering. In this way, applications could be
written to the OpenGL library interface (or one
of its toolkits) and not have to have hardware-
specific knowledge.

But, as the name implies, the DRI was imple-
mented to handle direct rendering. The goal
was to eventually use the exact same hardware-
specific driver code to handle accelerated in-
direct rendering as well, but in the initial im-
plementation, indirect rendering was used—the
software Mesa code.

2.2 Composite

With the relatively recent development of the
Composite extension [8], developers now have
the ability to redirect window contents to off-
screen storage—i.e., pixel data that would nor-
mally have been drawn directly to an on-screen
window can instead be drawn to a host-memory
or off-screen pixmap. The pixel data can then
be copied to the display buffer as needed to
update what the user sees on his screen as his
desktop. So, Composite effectively gives us the
ability to double-buffer window data, an ability
that has long been used by OpenGL applica-
tions to eliminate visual artifacts, and addresses
the second limitation of the current desktop de-
sign in such a way that toolkits and individual
apps do not have to implement their own solu-
tions.

The ability to double-buffer window contents
is not new to the X world—the double-buffer
extension (DBE) allowed individual apps to
double-buffer their output. What makes Com-
posite unique is that it allows an external ap-
plication, the Composite Manager, to control
when windows are redirected and how their
pixel data are copied to the display buffer in-
stead of requiring each application to have di-
rect knowledge of DBE.

2006 Linux Symposium, Volume Two • 93

In addition, there are many other benefits from
using the Composite extension because it does
not dictate how the window contents will be
drawn to the display buffer. Various special
effects can be used to render the window con-
tents. For example, the window contents can
be stretched to fit the screen or shrunk to fit
into a window’s icon if stretch operators are
available. Other effects such as tranlucent win-
dows or drop shadows can be implemented if
alpha-blending is available. Many such effects
were demonstrated with the simple composit-
ing manager, xcompmgr. More complex ef-
fects could be implemented if the composite
manager was implemented with OpenGL.

2.3 Luminocity

In late 2004, some of the developers at Red Hat
began the Luminocity project [2] to experiment
with using OpenGL in a composite manager.
The basic idea behind Luminocity was to create
OpenGL textures from each redirected window
and then render rectangles to the framebuffer
using those textures. This is similar to what Ap-
ple was doing with Quartz and Sun was doing
in the Looking Glass project.

A significant difference between Luminoc-
ity and previous composite managers (e.g.,
xcompmgr) was that it handled both window-
ing and compositing operations in the same
process. By combining the two, Luminocity
could not only copy window data to the screen
and render static effects like drop shadows, but
it could also animate various state transitions.
For example, Red Hat created the wobbly win-
dow effect, where windows were modeled with
by simple spring system so that dragging a win-
dow around would distort it as if you were
pulling on one of the springs.

Since the only open source hardware-
accelerated OpenGL available at that time

was through the DRI, Luminocity was devel-
oped to use direct rendering. However, this
quickly led them to discover one of the primary
performance problems: the number of data
copies required to get the redirected window
pixel data into a texture that could be used
by the hardware were killing performance.
Luminocity first had to copy the redirected
window data from a host-memory pixmap in
the X server to the client application, which
required a slow XGetImage call, or a copy
of the redirected pixmap data to a shared
memory pixmap. The image data could then
be reformatted to send to the OpenGL driver,
which might also have to reformat the pixel
data (depending on which driver and what
data format was supported by the driver), and
then the driver would upload the texture to the
video card. Ultimately, we want to get to the
point where no data copying is necessary—i.e.,
a redirected window could be drawn to a
pixmap resident in the framebuffer and have
the pixmap format be the same as what the
driver requires so that it can be used directly
by the hardware’s 3D engine.

3 Roadmap to the new desktop

With the DRI, the Composite extension, and
Luminocity, the three main limitations of the
current desktop design were addressed, but in
order to turn these solutions into something that
performs well, supports the myriad of X exten-
sions, and is robust enough to use in an enter-
prise environment, much more work is needed.
Many new technologies are currently under de-
velopment in the X, DRI, Mesa, kernel, toolkit,
and desktop communities. Below we survey
the technologies that will allow us to achieve
our GL-based composited desktop goal.

94 • Roadmap to a GL-based composited desktop for Linux

3.1 Accelerated indirect rendering

As noted earlier, indirect rendering was left
completely unaccelerated in the initial DRI
project. The plan had always been to imple-
ment accelerated indirect rendering using the
same card-specific driver code that is loaded on
the client-side by libGL; however, it was not a
simple task, and the driving issue to make this
happen did not occur until the GL-based com-
posited desktop became feasible.

The software Mesa driver used in the initial
DRI work was based on the libX11 version of
Mesa, which translated OpenGL requests into
X11 drawing commands. This code, which
previously called Xlib functions directly, was
modified to instead call the equivalent internal
X server function. This version of the client-
side GL code was called GLcore.

The interface used to initialize and call
into GLcore were the __GLinterface and
__GLdrawablePrivate structs, which are
part of the OpenGL sample implementation
(SI) [12]. However, the interface to the DRI
card-specific driver code was based on Mesa in-
ternals, which is quite different than the GLcore
interface based on the SI. In order to use
the same driver code on both with the client-
side DRI and the server side GLX code, this
impedance mismatch had to be solved and was
one of the reasons that it took so long to imple-
ment accelerated indirect rendering.

The AIGLX project is currently under devel-
opment in the Xorg community, and its goals
are to solve the impedance mismatch between
the client and server-side driver code while still
allowing unaccelerated indirect rendering code
with the software Mesa driver when no card-
specific driver is available or when the user re-
quests it. This work is both part of and built on
top of the GLX client-side code rewrite [11].

The initial development stage of AIGLX is part
of the X11R7.1 release.

In this project, a new abstraction layer [3]
based on the DRI interface was developed
to provide the glue logic between the server-
side GLX extension code and the card-specific
driver. The new interface provides three ob-
jects: __GLXscreen, __GLXcontext, and
__GLXdrawable. Methods for allocating the
DRI-specific objects and calling into the card-
specific driver are contained entirely within the
abstraction layer, which are called the DRI
provider.

Since not all graphics cards have card-specific
3D drivers and since several other servers (e.g.,
Xnest) that provide GLX support cannot use
hardware drivers, the GLcore module must re-
main available and the top level of the GLcore
module had to be rewritten to use the new in-
terface. This allows it to be used in place of the
card-specific drivers when needed or desired,
and is called the GLcore provider.

To initialize the GL module for each screen,
a stack of GL providers are called and the
first provider that returns a non-NULL __

GLXscreen claims that screen. This mecha-
nism allows for future GL modules to imple-
ment their own __GLXprovider and hook into
the provider stack.

Future development will be needed to add sup-
port for GLX 1.3 (see below) and to continue
reworking GLX visual initialization [11].

3.2 GLX 1.3 support

Much of the support for GLX 1.3 has already
been added to the client and sever-side code,
but several key pieces are currently missing. In
particular, support for pbuffers will need to be
implemented, which requires more advanced
memory management than we currently have.

2006 Linux Symposium, Volume Two • 95

3.2.1 Memory management

OpenGL applications can require lots of off-
screen video-card or agp memory for their
buffers (e.g., front, back, depth, vertex, etc.)
as well as for their textures. The initial DRI
implementation used a shared buffer allocation
scheme which pre-allocated the front, back,
and depth buffers. This allocation scheme was
possible since windows were clipped by the
X server, and it was the X server’s respon-
sibility to determine what memory resources
were given to the shared buffers, textures, and
off-screen pixmaps at server initialization time.
However, this scheme is no longer adequate and
needs to be reevaluated for several reasons ex-
plained below.

First, with GLX 1.3, a new shared resource—
the pbuffer—was added, which allows off-
screen rendering for both direct and indirect
rendered contexts. To claim support for GLX
1.3, pbuffer support is required, which means
that dynamic allocation of off-screen memory
resources is required and the simple allocation
scheme from the initial DRI implementation is
inadequate.

Second, GLXPixmaps were unaccelerated in
the initial DRI implementation, and in or-
der to implement hardware acceleration, the
buffers associated with them need to be dynam-
ically allocated/freed in off-screen memory as
pixmaps are created/destroyed. Note that direct
rendering to GLXPixmaps is not required, but
it is greatly desired for use with the Composite
and texture-from-pixmap extensions.

Finally, with the Composite extension, it is now
possible to redirect GLX windows. Those redi-
rected windows are no longer clipped by the
normal X window stacking order, so it not pos-
sible to share the pre-allocated buffers. In addi-
tion, redirecting windows greatly increases the
off-screen memory requirements if hardware-

accelerated rendering is desired (which is es-
pecially true for OpenGL applications). For
example, if a user is running his desktop at
1600∗1200 at 32BPP and he open his web
browser in a full-screen window, the addi-
tional memory required for that one window is
7.3MB. If that same user opens a full-screen
OpenGL application that also has a back and
32-bit depth buffer, then the memory require-
ment jumps to nearly 22MB! And this does not
account for any textures that the app might use.

Each of these issues can be solved with a
more advanced memory management frame-
work that can be shared by all processes that
need to access video and agp memory—e.g.,
the X server, direct rendered clients, and the
kernel’s direct rendering manager (DRM). The
new framework generalizes all allocations to
private buffers so that textures, color and an-
cillary buffers, pbuffers, pixmaps, and other
buffers (e.g., FBOs and VBOs) are treated the
same and can be allocated from the same mem-
ory pools. Additional basic requirements in-
clude being able to dynamically allocate the
buffers as required by the client and being able
to evict other clients’ buffers while still guar-
anteeing that their contents are preserved. This
work is currently under development by Tung-
sten Graphics [13].

With this new memory management frame-
work, it will become possible to imple-
ment several other GLX extensions including
texture-from-pixmap and framebuffer objects,
both of which are very useful to a GL-based
composited desktop.

3.2.2 Texture from pixmap extension

With AIGLX we now have the ability to render
directly from within the X server process; how-
ever, we still need to be able to use the window
pixel data that was redirected to a pixmap with

96 • Roadmap to a GL-based composited desktop for Linux

the Composite extension as a texture. This is
what the texture from pixmap GLX extension
provides (TFP).

The simple approach, as used by Luminoc-
ity, is to copy the data either through the
protocol via XGetImage or through a shared-
memory pixmap into the client’s address space
and then the direct-rendered composite man-
ager could use that data as the source for a
glTexImage2D or glDrawPixels call. How-
ever, this does not work in practice due to
the high overhead of copying pixel data to
and from video memory. A better approach
is to keep the pixmap data in the X server
address space where it was rendered and use
it directly as the source for a texture opera-
tion. GLX_EXT_texture_from_pixmap pro-
vides the interface to make that happen.

As noted above, the ideal solution is to have
the graphics card render the window contents
into an off-screen buffer, which would then be
used directly (i.e., with no copying or con-
version) as the input to the hardware texture
engine. To implement this solution, we will
need additional infrastructure work (e.g., mem-
ory management) as well as additional card-
specific driver work. Intermediate solutions are
also possible.

One intermediate TFP solution is to redirect
window data into host-memory pixmaps and
call the texture operations directly through the
new AIGLX abstraction layer interface to the
Mesa/DRI card-specific driver. By rendering
directly to host-memory pixmaps, we bypass
the “read from framebuffer” operation, which
is very slow—especially on agp hardware. This
intermediate TFP solution is what is currently
implemented and provides reasonable perfor-
mance for the initial window/composite man-
ager and toolkit work.

3.2.3 Framebuffer objects

The GL_EXT_framebuffer_object (FBO)
extension [6], which was recently approved by
the OpenGL Architectural Review Board ‘su-
perbuffers’ working group, defines a way to
render to destination buffers that are not the
traditional front display buffer (e.g., depth or
stencil buffers) and, further, it allows the desti-
nation to be other off-screen areas that can be
used as a texture source. By allowing FBOs to
be used both as an OpenGL render target and
at a later time as a texture source, this exten-
sion provides the basic framework required to
implement redirected OpenGL windows.

The proposed memory management work de-
scribed above lays the groundwork for FBOs
and makes the FBO implementation signifi-
cantly easier because it generalizes the notion
of buffers—i.e., it treats window-system frame-
buffers, textures, and FBOs the same. However,
there is still significant infrastructure and card-
specific driver work needed to generalize how
the various buffers are used.

Once the memory management and FBO work
is complete, redirected GLXWindows can be
internally emulated by framebuffer complete
FBOs within the X server for indirect render-
ing similar to how the Composite and TFP ex-
tension emulates X windows with X pixmaps.
Additional work will be required for direct ren-
dering to ensure that the DRI can handle emu-
lated GLXWindows.

An additional issue is that since the Composite
extension allows for redirection to be dynamic,
AIGLX and the DRI will need to provide a
mechanism for migrating from GLXWindows
to FBOs that masquerade as GLXWindows and
vice versa. However, the first implementation
might require OpenGL apps to be restarted if
an existing GLXWindow is redirected.

2006 Linux Symposium, Volume Two • 97

3.3 Composite overlay windows

There are a few cases where window output
should not be redirected off screen; the most
obvious being the output of the compositing
manager itself. Early compositing managers
painted their output directly to the root window,
bypassing any compositing computations.

However, a GL-based compositing environ-
ment makes using the root window problem-
atic. The existing GLX implementation assigns
specific rendering abilities to each Visual: dou-
ble buffering, alpha channel, etc. Usually, the
root window is assigned a visual with mini-
mal capabilities to avoid excess resource con-
sumption. Without a way to assign appropri-
ate resources, a GL-based compositing man-
ager would have to accept whatever capabilities
were assigned by the X server vendor.

In addition, these early 2D compositing man-
agers painted their output to the root window
in ‘IncludeInferiors’ mode; this mode bypasses
the normal clipping which would otherwise ob-
scure the rendering from areas of the screen
covered by application windows. While core
X and the Render extension both provide this
IncludeInferiors mode, GLX does not, making
it impossible to avoid the normal clipping.

Both of these problems can be solved. The FB-
configs mechanism from GLX 1.3 allows ap-
plications to assign alternate capabilities to GL
contexts created for existing windows. And
GLX could easily be extended to support In-
cludeInferiors drawing modes.

However, it’s also quite easy to work around
these limitations and leave most of the system
unchanged. Create a special ‘overlay’ window
that lies above all regular application windows
and then create the compositing manager win-
dow as a child of the overlay window. This per-
mits arbitrary selection of a Visual and elimi-
nates all of the clipping issues.

The one remaining issue is dealing with mouse
input, which now wants to bypass the overlay
window and act on the real application win-
dows. This is done by using the Shape exten-
sion to set the Input shape on the overlay win-
dow to an empty region, effectively eliminat-
ing the overlay window from participating in
mouse events.

It is quite possible that this overlay window
mechanism will eventually be superseded by
the other mechanisms described above, in the
meantime, this modest addition to the compos-
ite extension will serve for now.

3.4 Input transformation

While the Composite extension provides full
control over the presentation of window con-
tent to the user, it completely ignores mouse in-
put. If the composite manager doesn’t precisely
align window contents with their ‘native’ posi-
tions on the screen, chaos will ensue as the user
can no longer use the position of the cursor to
guide his or her mouse interactions.

To provide this complementary capability, the
system must provide some mechanism for
client control over the mapping from cursor co-
ordinates to locations within the window hierar-
chy. The Compositing Manager must be given
full control over the translation of root-relative
coordinates to the position of the cursor within
the appropriate window.

While the Composite extension’s output redi-
rection mechanism is reasonably simple to un-
derstand, the same is not true for input trans-
formation. It may be that this author hasn’t
yet found straightforward semantics that would
make this all “just work,” or it may be that this
is harder to implement than the output side.

98 • Roadmap to a GL-based composited desktop for Linux

3.5 Window/composite manager

Luminocity was a toy window/composite man-
ager which allowed developers to rapidly proto-
type various effects and experiment with using
OpenGL in a composited desktop. Luminocity
could have been developed into a fully func-
tional window manager, but this would have in-
volved re-creating the years of work that went
into developing Metacity. Instead, what was
learned during the Luminocity project was ap-
plied to and re-implemented in Metacity.

The approach taken was to create a new
OpenGL scene-graph based compositing li-
brary, called libcm, that encapsulated the
methods used by the rest of the window man-
ager to draw the desktop. Metacity could then
hook various state transition animations into
the scene-graph as needed.

By making the full OpenGL interface available,
arbitrarily complex animations can be created
that are only limited by what we can dream
and what the hardware is capable of. Some
common effects that have already been devel-
oped include various minimization, maximiza-
tion, menu fade in/out, drop shadows, window
transparency, and workspace switching. Many
others can be developed as the need arises.

It should be noted that while most of the tech-
nologies described above are critical to the GL-
based composited desktop, they have been de-
veloped to be completely general-purpose and
can be used independently by all developers.
For example, compiz [10] is another win-
dow/composite manager which takes a differ-
ent approach, but works using the standard
Xorg X server with the open source technolo-
gies currently under development [4].

4 Building X on OpenGL

Another X.org project, Xgl, is focused on re-
placing the rendering infrastructure within the
X server with calls to OpenGL. By eliminating
custom 2D rendering code, the goal is to gain
access to the often highly optimized OpenGL
implementation for the video card, reducing the
amount of code necessary to support each card
while improving performance at the same time.

While a GL-based X server doesn’t seem very
closely related to the work presented here, Xgl
uses its access to the OpenGL API to provide
accelerated indirect GLX functionality, includ-
ing an implementation of the TFP extension.
The result is an X server which also supports
OpenGL-based compositing managers.

The key difference is that while the work pre-
sented here is an incremental addition to the
existing X server architecture, Xgl represents
a complete re-implementation of the X server
input and drawing infrastructure. As all cur-
rent OpenGL implementations run within the
confines of a 2D window system, for Xgl to
run, another window system must be running
‘underneath’ it. The eventual goal of the Xgl
project is to replace the underlying window
system with lightweight hardware management
mechanisms.

5 Conclusion

We have surveyed many new technologies that
will allow the Linux and other communities to
implement a GL-based composited desktop. As
of this writing, the initial implementations of
AIGLX and TFP are scheduled to be included
with X11R7.1 and a technology preview, which
redirects windows to host-memory pixmaps is
available at:

2006 Linux Symposium, Volume Two • 99

http://fedoraproject.org/wiki/

RenderingProject/aiglx

Work on input transformation, advanced mem-
ory management, redirecting extensions (e.g.,
Xv, GL, DRI), frame buffer objects, FBcon-
figs, and full GLX 1.3 support are all cur-
rently in progress with the expectation that
they will start appearing in the upstream de-
velopment source code over the next several
months. As each new technology appears, the
window/composite manager, toolkits, and other
desktop features will be updated to take advan-
tages of the new features. The future of a GL-
based composited desktop for Linux is looking
very bright.

References

[1] Apple Computer. Quartz extreme.
http:
//www.apple.com/macosx/
features/quartzextreme/.

[2] Red Hat. Luminocity. http:
//live.gnome.org/Luminocity.

[3] Kristian Høgsberg. Aiglx update.
http://lists.freedesktop.
org/archives/xorg/
2006-February/013326.html.

[4] Kristian Høgsberg. Compiz on aiglx.
http://lists.freedesktop.
org/archives/xorg/
2006-March/013577.html.

[5] Precision Insight. Direct rendering
infrastructure. http:
//dri.freedesktop.org/wiki/.

[6] Jeff Juliano and Jeremy Sandmel.
Framebuffer object extension to opengl.
http:
//oss.sgi.com/projects/

ogl-sample/registry/EXT/
framebuffer_object.%txt.

[7] Sun Microsystems. Project looking glass.
http://www.sun.com/
software/looking_glass/.

[8] Keith Packard. Composite extension.
http://cvs.freedesktop.org/
xlibs/CompositeExt/
protocol?view=markup.

[9] Brian Paul. Mesa 3d graphics library.
http://www.mesa3d.org/.

[10] David Reveman. Compiz. http:
//en.opensuse.org/Compiz.

[11] Ian D. Romanick. Bringing x.org’s glx
support into the modern age.
http://www.cs.pdx.edu/~idr/
publications/ddc-2005.pdf.

[12] SGI. Opengl sample implementation.
http://oss.sgi.com/
projects/ogl-sample/.

[13] Keith Whitwell and Thomas Hellstrom.
New dri memory manager and i915
driver update. http:
//www.tungstengraphics.com/
xdevconf2006.pdf.

100 • Roadmap to a GL-based composited desktop for Linux

Probing the Guts of Kprobes

Ananth Mavinakayanahalli, Prasanna Panchamukhi, Jim Keniston
IBM Linux Technology Center

ananth@in.ibm.com, prasanna@in.ibm.com, jkenisto@us.ibm.com

Anil Keshavamurthy
Intel Open Source Technology Center
anil.s.keshavamurthy@intel.com

Masami Hiramatsu
Hitachi Systems Development Laboratory

hiramatu@sdl.hitachi.co.jp

Abstract

Kernel Probes (kprobes) can insert probes into
a running kernel for purposes of debugging,
tracing, performance evaluation, fault injec-
tion, etc. A user-defined handler is run when
a probepoint is hit. From the barebones im-
plementation in Linux 2.6.9, kprobes has un-
dergone a number of improvements—support
for colocated probes, function-return probes,
reentrant probes, and the like. Handlers are
now executed without any locks held, lead-
ing to lower overhead compared to the earlier
“single spinlock serialization” method. Other
enhancements are on the anvil—the kprobe
“booster” series, userspace probes and watch-
point probes, to name a few. This paper will
trace the developments in kprobes and also
touch upon the current state of the aforemen-
tioned enhancements.

1 Introduction

Kernel probes (kprobes) is a simple,
lightweight kernel instrumentation mecha-
nism, which provides a facility to execute a
user-defined handler when a probepoint1 is
hit. Since making its first appearance in the
Linux

TM
kernel in linux-2.6.9-rc2, kprobes

has proved to be an invaluable tool for kernel
hackers, providing a facility to dynamically
insert printk()s or counters into a running
kernel, thus reducing the burden of having to
statically compile a new kernel, just for instru-
mentation purposes. Additionally, kprobes has
been extensively used for kernel tracing [9],
performance evaluation, fault-injection, etc.
Several tools (e.g., SystemTap [4]) now use the
kprobes infrastructure as a base.

Kprobes has evolved from its first appearance.
A number of new features have been added:
support for colocated probes, function-return
probes, lockless handler execution, and lately,
the kprobe-boosters.

1The probepoint is the point of instrumentation—the
text address where the kprobe is registered.

102 • Probing the Guts of Kprobes

This paper gives a brief history of kprobes, then
delves into the basics. It then goes on to cover
functional and performance enhancements that
have been done, concluding with a brief report
on the works in progress.

2 A brief history

Kprobes finds its beginnings in IBM R©’s
DProbes [1, 5, 8]. DProbes included, in addi-
tion to the basic probing mechansim, a Reverse
Polish Notation (RPN) interpreter, a probe
manager, a Dynamic Probe Event Handler
(DPEH), and a DProbes C Compiler (DPCC).
On Rusty Russell’s suggestion, the essential
portions of the kernel probing mechanism and
interfaces were abstracted out from DProbes,
so probe handlers could be implemented as
simple C functions that would run in the con-
text of the kernel, when compiled in as a ker-
nel module (or even compiled into the kernel).
This minimal infrastructure could then live in
the mainline kernel and other facilities could be
built around it.

Thus, kprobes was born.

3 Kprobes basics

Kprobes works by modifying the program text
by replacing the instruction at the probepoint
with a breakpoint instruction. The instruction
originally at the probepoint is copied to a sep-
arate scratch area, where it is suitable to be
single-stepped out-of-line.2 While the instruc-
tion size is known on RISC architectures, on
CISC, the size of program text copied out to the

2Single-stepping out-of-line allows us to leave the
breakpoint instruction in place, so that the probepoint is
never missed, even on an SMP system.

scratch area is heuristically set to the maximum
instruction size for that architecture.

The kprobes infrastructure in kernel is divided
into architecture-agnostic and architecture-
specific files. This design lends itself to easy
porting to other architectures.

Kprobes makes use of the notifier mechanism
in the kernel to hook the kernel exception han-
dlers. For example, on the i386 architecture,
kprobes is notified of int3 (breakpoint) traps,
debug (single-step) traps and page faults. Since
these are typically the exceptions that are of in-
terest to a kernel debugger, the notifier chain
put in place by kprobes can be used by the
debuggers, too. However, the kprobes noti-
fier is registered with the highest possible pri-
ority so as to ensure that it is the first to be
invoked upon an exception hit. This is neces-
sary since kprobes run transparent to the user,
in contrast to a kernel debugger, which typi-
cally needs user intervention.

From a user’s point of view, the important fields
in struct kprobe are:

• addr: Text address where the kprobe is
to be registered. The user must supply this
field.

• pre_handler: User-defined routine
that runs just before the instruction at the
probepoint executes.

• post_handler: User-defined routine
that runs just after the instruction at the
probepoint executes.

• fault_handler: User-defined routine
that runs in case of a fault during:

– Execution of the instruction at the
probepoint.

– Execution of the user-defined han-
dlers at the time of a kprobe hit.

2006 Linux Symposium, Volume Two • 103

It is important that the handlers that are not be-
ing used in the context of a particular probe, be
set to NULL.

3.1 Kprobe registration

A call to register_kprobe() triggers the
kprobe registration process. The caller typi-
cally supplies the probepoint and the handlers
to be run on the probepoint hit. Insertion of
a kprobe is not allowed on sections of kernel
code that are part of the kprobe infrastructure,
nor on other kernel code used by kprobes (the
exception handlers, for instance). A request to
register a kprobe in these text areas fails with
-EINVAL.

Control is then passed to the architecture spe-
cific helpers. These helpers run the required
sanity checks to ensure that architectural re-
strictions are adhered to. (For example, cer-
tain instructions are unsafe to probe.) In ad-
dition, the original instruction at the probepoint
is copied to a known scratch area, which is suit-
able to be single-stepped out of line.

The text at the probepoint is then replaced with
the breakpoint opcode for that architecture. The
icaches are then flushed so the change in pro-
gram text is seen consistently on the other pro-
cessors.

Some points of note:

• Except for PowerPC R© and for IA64,
kprobes makes no attempt to verify that
the probepoint is at an instruction bound-
ary.

• Certain architectures (such as x86_64,
i386, and PowerPC) have incorporated
NO_EXECUTE support in the kernel.
The kprobe object, where the instruction
would normally be stored, is typically not

on an executable page. So for these ar-
chitectures, the kprobes infrastructure al-
locates (using module_alloc()) and
tracks scratch pages that have execute sup-
port, which are used to store a copy of the
instruction at each probepoint.

3.2 Handler execution

Kprobes is notified first upon a breakpoint hit.
Looking up the hash list of registered kprobes
confirms whether the breakpoint hit was a re-
sult of a registered kprobe. It is possible that
the exception was not a result of a kprobe hit
(some other debugger could have inserted the
breakpoint), in which case kprobes returns con-
trol to the notifier infrastructure, so other regis-
tered notifiers can be invoked. In the absence of
any subsequent notifiers or if the other notifiers
don’t recognize the breakpoint as one of theirs,
the default kernel exception handler takes over.

The kprobes status flags are set appropriately
and the user-defined pre_handler is called. The
pre_handler is where the kprobe user can gather
the desired information, before the probed in-
struction is executed. Depending on the re-
turn value from the pre_handler, the instruction
pointer (in struct pt_regs) is set to the
copy of the original instruction at the probe-
point location, and appropriate flags are set to
single-step out-of-line.

Control returns to kprobes after the instruction
copy is single-stepped. The post_handler is
called if the kprobe has one associated with it.
Here the kprobe user can gather information
just after the probed instruction is executed.

Certain instructions change the execution flow
(e.g., relative calls, returns, and branches).
Since the instruction at the probepoint is exe-
cuted out-of-line, instructions that depend on
the instruction pointer at the time of execution,

104 • Probing the Guts of Kprobes

need fixing up. (For x86_64 instructions that
use rip-relative addressing, the instruction copy
itself must be modified.) Such fixups are done
transparent to the user, the flags are restored to
their original states and the instruction pointer
is set to the instruction immediately following
the probepoint.

It is essential that the user-defined pre_ (and
post_) handlers are error-free: that the handlers
don’t cause another exception (page_fault or
otherwise). In case a fault does happen dur-
ing the kprobe handler execution, the kprobe_
fault_handler() is invoked. If the kprobe
user has a fault_handler defined, it is given a
chance to rectify the fault—especially if it is a
fault deliberately induced by the user, for pur-
poses of fault injection and the like. In case
the user fault_handler isn’t able to handle the
fault, kprobes tries to fix it up on a best-effort
basis.3 If the referenced page is not memory
resident, the function will return -EFAULT. In
cases where the fixup isn’t sufficient, the sys-
tem fault handler kicks in, resulting, possibly,
in a system crash.

Work is currently in progress to make the
kprobe fault handling more robust—in partic-
ular, to protect the system from faults caused
by erroneous handlers.

Preemption is disabled for the whole duration
of kprobe processing, from the time kprobes
is notified of the probepoint hit until the
post_handler executes and any fault handling is
complete.

3.3 Kprobe unregistration

Kprobe unregistration (triggered by calling
unregister_kprobe()) entails putting

3As of writing this paper, kprobe excetption recovery
is limited to a call to fixup_exception(). This enables a
handler to safely call a fixup-enabled function, such as
__copy_from_user_inatomic().

the original instruction back at the probepoint
location, flushing all icaches and removing the
kprobe entry in the hash list. In case a sepa-
rate scratch area is used for out-of-line single-
stepping, it is returned to the free pool, so it can
be reused.

In order to facilitate portability of kprobe mod-
ules, certain opaque datatypes are defined.
These are aliased to appropriate architecture
specific datatypes. Here is an example:

i386:
typedef u8 kprobe_opcode_t;

PowerPC:
typedef unsigned int kprobe_opcode_t;

ia64:
typedef struct kprobe_opcode {

bundle_t bundle;
} kprobe_opcode_t;

4 Functional enhancements

The initial prototype had a few restrictions:

• At most one kprobe at an address

• Global spinlock to serialize execution of
all kprobe handlers

• No handling of reentrant probes

• No support for function-return probes

These restrictions have now been remedied as
is described in the following sections.

4.1 Jumper probes

In many a debug activity, there is a need to
record or inspect arguments passed to a func-
tion. Jumper probes (jprobes, in short) satisfy

2006 Linux Symposium, Volume Two • 105

Program text Program text

addr

register_kprobe()

pre_handler()

post_handler()

insninsn
break
point

Figure 1: Kprobe flow of control

this need. To access the arguments of function
foo(), jprobes requires the user to implement
foo’(), a mirror function4 of foo(). Using
the underlying kprobes infrastructure, jprobes
ensures that foo’() is given control before
foo(), so the user can inspect or gather func-
tion arguments in runtime. Control is then re-
turned to foo(), where normal execution con-
tinues.

4.1.1 The guts of jprobes

Jprobes is built on the kprobe infrastructure
(In fact, struct jprobe has a struct
kprobe embedded in it.) register_
jprobe() triggers registration of a jprobe.
The user supplies the entry point of the function
to be probed as well as the mirror prototype that
will be run before the function executes.

The in-kernel jprobes infrastructure pro-
vides two architecture-specific helpers

4Both foo() and foo’() have the same function
prototype.

that are aliased as the kprobe’s pre and
break_handlers. Upon the breakpoint hit, the
setjmp_pre_handler() first saves the
function argument space before transferring
control to the mirrored function. This is neces-
sary, since, by ABI definition, the callee owns
the function argument space and could over-
write it as a result of tail-call optimization. The
pt_regs are also saved and the instruction
pointer is modified to point to the user-supplied
mirror function. By returning a non-zero value,
the setjmp_pre_handler() tells kprobes
to just return from the exception without any
further processing (setting up single-step, for
instance). Thus, the mirror function executes
upon return from the breakpoint exception.

The mirror function must call jprobe_
return() once the user is done record-
ing or inspecting the function arguments.
jprobe_return() is a placeholder for
the architecture-specific breakpoint instruc-
tion on most architectures—ia64 is a notable
exception—which again drives us into the
kprobes exception handler.

106 • Probing the Guts of Kprobes

Though this exception entry isn’t due to a
kprobe hit, the kprobe state variables indicate
that a kprobe is in process, indicating the possi-
bility of this being a return from a jprobe. The
clincher is the presence of a break_handler as-
sociated with the kprobe in process. So, the
break_handler() is called.

The longjmp_break_handler() now
gets control and does basic sanity checks and
then restores the saved argument space and the
saved pt_regs. Upon successful return from
the longjmp_break_handler(), execu-
tion continues as it would following a normal
kprobe hit.

unregister_jprobe() does nothing
more than unregistering the associated kprobe.

4.1.2 Overhead as compared to kprobes

Jprobes cause two breakpoint exceptions and
a single-step exception, in addition to copying
the pt_regs and the argument space. The
overhead of a jprobe is therefore about 1.5
times that of a normal kprobe. Additionally,
any kprobe optimization will benefit jprobes
too.

4.2 Colocated probes

A fundamental restriction with the legacy
kprobes code was that one could have at most
one kprobe or one jprobe at any given probe-
point. Features such as function-return probes
require a probe at the entry to a function. This
would mean that no other probe could be in-
serted at that function entry and this restriction
had to be remedied. Another requirement was
that the overloading of kprobes at the same lo-
cation had to happen transparently to the user.
This implied that no new interfaces could be in-
troduced.

The concept of an “aggregate kprobe” (ap) was
invented. An ap is a kprobe with special pre-
defined handlers. When a second kprobe is
registered at a particular probepoint (so that
we have p1 and p2 probing the same address),
kprobes creates an ap and puts p1 and p2 on the
ap’s list. The ap then replaces p1 in the hash
list.

When a breakpoint associated with multi-
ple kprobes is hit, the aggregate_pre_
handler() is invoked. This walks the list
of registered kprobes at the location, invoking
the individual pre_handlers in turn. Similarly,
the aggregate_post_handler() takes
care of invoking the individual post_handlers.
Kprobes keeps track of which kprobe’s han-
dler is currently being run, so that only
its fault_handler is invoked if its associated
pre_/post_handler generates a fault.

It is thus possible to have any number of
kprobes at a given probepoint, along with at
most one jprobe (due to the way jprobes work).

4.3 Function-return probes

A function-return probe (hereafter referred to
simply as a “return probe”) fires when a speci-
fied function returns. Such probes can be useful
for function-boundary tracing, function timing,
or tracking a function’s return values. Return
probes are currently implemented for the i386,
x86_64, ia64, and PowerPC architectures.

The register_kretprobe() func-
tion takes as its sole argument a pointer to
struct kretprobe. This object specifies
the entry address of the function to be probed,
the handler to be executed, and a value called
maxactive, which is discussed later in this
section.

A return probe is implemented as follows:

2006 Linux Symposium, Volume Two • 107

• When register_kretprobe() is
called, kprobes establishes a probepoint at
the entry point of the probed function.

• When the probed function is called, this
entry probepoint is hit, and a special han-
dler, pre_handler_kretprobe(),
is run. Each architecture’s ABI defines
where the return address can be found
upon entry to a function. For example, for
i386 and x86_64, it’s atop the stack; for
ia64 and PowerPC, it’s in a particular reg-
ister. pre_handler_kretprobe()
saves a copy of the return address and
replaces it with the address of a special
piece of code called the kretprobe_
trampoline().

• When the probed function executes a re-
turn instruction, control passes to kprobes
via the kretprobe_trampoline().
Kprobes runs the user-specified handler
associated with the return probe, then con-
tinues execution at the “real” (saved) re-
turn address.5

4.3.1 Return-probe instances

There may be multiple instances of the same
function running (“active”) at the same time:

• On an SMP system, several CPUs may
be executing the same function simultane-
ously.

• A function may be recursive.

• A function may yield the CPU via pre-
emption, by taking a mutex or semaphore,
or by calling schedule() explicitly.

5When the handler runs, the return value of the func-
tion is available to the user-specified handler in one of
the CPU registers—for example, regs->eax for i386
or regs->gpr[3] for PowerPC.

Another task may subsequently enter the
same function.

Kprobes needs to keep track of the “real” return
address of every active instance of every return-
probed function. The object used to track
this information is struct kretprobe_
instance (rpi for short). pre_handler_
kretprobe(), which saves the return ad-
dress, runs in an environment where it can-
not sleep, so it cannot allocate rpis as
they are needed. Therefore, register_
kretprobe() pre-allocates all the rpis that
are to be used for that particular return probe.
Since kprobes cannot determine how many in-
stances of a function might become active, we
rely on the user’s knowledge of the function.

Before calling register_kretprobe(),
the caller sets the maxactive member of
struct kretprobe accordingly. Kprobes
documentation [2] in the Linux source tree pro-
vides guidelines for setting maxactive. It’s not
a disaster if maxactive is set too low; some
probes will simply be missed. The nmissed
field in struct kretprobe accumulates a
count of such misses.

Support for a pool of “spare” rpis, which may
be shared by all return probes in an instru-
mentation module, is being contemplated—
the aim being to keep nmissed low with-
out over-allocating rpis, even in cases where
maxactive cannot be accurately estimated.

4.3.2 Implications of return-address re-
placement

The above-described implementation has sev-
eral implications:

• An rpi must hang around until its function
returns, even if the corresponding return
probe has been unregistered.

108 • Probing the Guts of Kprobes

foo() bar()

bar()

kretprobe_trampoline()

just a "nop" with a
kprobe on it

normal return

return with
a kretprobe
on bar()

Figure 2: Return-probe flow of control

• Probing functions such as schedule()
or do_exit() that return in strange
ways (or not at all) will yield results that
are valid, but perhaps unexpected to users
unfamilar with how return probes work.

• When a task exits, kprobes must recycle
any rpi objects associated with functions
in that task that won’t return. To stream-
line this operation, rpis are hashed by task
pointer.

• Since data structures associated with re-
turn probes are constantly changing (as
functions are called and return), locking
cannot be solely by task, or solely by
probe. Currently, all operations on return-
probe data structures are guarded by a sin-
gle global lock.

• When a task has one or more
return-probed functions active,
stack traces will typically report
kretprobe_trampoline() rather
than the actual return address for the
probed functions.

4.3.3 Overhead of return probes

The overhead of a return probe is approxi-
mately the same as that of a jprobe. Register-
ing an entry kprobe and matching return probe
yields about the same overhead as the return
probe alone.

4.4 Robust handling of reentrant probes

A general usage scenario for kprobes is one
where a user writes a simple handler to gather
the required data. This could sometimes in-
volve a call to another kernel function.

Imagine a use-case where we have a kprobe on
foo(). In the handler of this kprobe, if the
user calls bar() and if bar() has a kprobe
on it, we have a case of reentry. Another poten-
tial cause is a kprobe on an asynchronous rou-
tine (such as an IRQ handler), which can po-
tentially be triggered during the processing on

2006 Linux Symposium, Volume Two • 109

a kprobe.6

Ideally, no other kprobe must be hit during a
kprobe processing. Since this cannot realis-
tically be enforced, there should be a grace-
ful recovery mechanism. This required a few
changes:

• Adding a kprobe state to indicate reentry

• Adding a counter to struct kprobe to track
the number of reentries

• Adding an auxiliary structure to store state
variables and flags of the kprobe that was
being processed at the time of reentry.

The variable current_kprobe tells if we
are in the midst of processing a kprobe. If
it is not NULL, we have reentered due to an-
other kprobe hit. In that case, the kprobe_
status is set to indicate reentry and a
counter nmissed in structkprobe is in-
cremented to indicate it to the user. The
state variables of the kprobe previously un-
der process is saved in the auxiliary struc-
ture (called struct prev_kprobe) and
the pre_handler is bypassed so that recursive
reentries are avoided. Similar checks in the
kprobe_post_handler() ensure that the
post_handler for the reentered probe is by-
passed. After the reentered kprobe’s instruc-
tion is single-stepped, kprobes uses data in the
auxiliary structure to continue processing of the
original kprobe.

5 Performance enhancements

Though DProbes used per-CPU tracking and
pre-probe locking, to keep matters simple, the

6Most architectures run kprobes with interrupts en-
abled. An exception is i386.

legacy kprobes code used a single spinlock to
serialize kprobe execution. Also, a single set of
variables were used to track the kprobe being
processed, its state, the processor flags at the
time of exception, etc. This obviously did not
scale well.

Among the alternatives that were considered
were read-write locks and (better still) RCU [3,
7]. All the alternatives required independent
tracking of the kprobe and its state on a per-
CPU basis. This resulted in the creation of
a kprobe control block (struct kprobe_
ctlblk).

5.1 Tracking kprobes on a per-CPU basis

A kprobe_ctlblk is a per-CPU structure,
which is used to track the status of the kprobe
in process, the processor flags at the time of
exception, a copy of the pt_regs at the
time of jprobe invocation and, for the reen-
try case, some housekeeping information about
the probe that was being processed at the time
of reentry. Depending on the architecture,
struct kprobe_ctlblk can contain ad-
ditional elements. The i386 variant is shown
below:

/* per-CPU kprobe control block */
struct kprobe_ctlblk {
unsigned long kprobe_status;
unsigned long kprobe_old_eflags;
unsigned long kprobe_saved_eflags;
long *jprobe_saved_esp;
struct pt_regs jprobe_saved_regs;
kprobe_opcode_t jprobes_stack[MAX_STACK_SIZE];
struct prev_kprobe prev_kprobe;

};

struct prev_kprobe {
struct kprobe *kp;
unsigned long status;
unsigned long old_eflags;
unsigned long saved_eflags;

};

Additionally, current_kprobe was made
per-CPU and tells what kprobe is currently be-
ing processed on the CPU. It is is explicitly

110 • Probing the Guts of Kprobes

HIT_ACTIVE REENTER

HIT_SS

HIT_SSDONE

kprobe hit

single_step out-of-line

pre_handler()/asynchronous event

post_handler()/
asynchronous event

pre_handler()

post_handler()
single_step out-of-line

kprobe done

start

end

Asynchronous event
could be a kprobe on
an irq handler

Figure 3: Kprobes state machine

set to NULL if no kprobe is currently active
on the given CPU. current_kprobe is es-
pecially useful as it provides a quick and easy
way to test if an exception induced entry into
kprobe infrastructure is indeed due to a legiti-
mate kprobe activity. It also provides an easy
way to handle reentrancy.

5.2 Locking changes to use RCU

With per-CPU tracking out of the way, a lock-
ing scheme had to be worked out that would
take advantage of it. A straightforward change
would be to modify the serializing spinlock to
a rwlock. The write lock could then be held
during kprobe registration and unregistration
while handlers could run with the read lock
held. This approach was prototyped [6] and
later discarded as there was a better approach—
use RCU.

RCU requires that the write side be atomic
while the read side can execute in a lock-free
manner. Depending on the usage model, the
RCU consumer has to use appropriate locking
to ensure write-side atomicity.

Kprobes imposes the following restrictions:

• Handlers cannot block.

• Handlers run with preemption disabled.

synchronize_sched() is therefore a
tailor-made solution for the update side, as
it guarantees that all non-preemptive sections
have completed. In addition, a mutex ensures
serialization during hash-list updates.

With RCU, the hash lookup, which is a read-
only operation, can be lock-free. This, how-
ever, brings a restriction that handlers have to
be reentrant.

2006 Linux Symposium, Volume Two • 111

With these changes, multiple kprobes (same or
different) can run in parallel, leading to a great
improvement in scalability when compared to
the earlier method.

6 The kprobe booster series

Kprobe and kretprobe (return-probe) boost-
ers improve the performance of kprobes by
eliminating exceptions, where possible. They
can significantly reduce probepoint overhead,
which can be important when probing time-
sensitive or frequently executed code paths.

6.1 Kprobe-booster

As described in Section 3, in classic kprobes,
a probepoint hit involves two exceptions, a
breakpoint and a single-step. The former is es-
sential, in order to break into kernel execution,
but the latter may not be. Recall the steps that
occur when an instruction is single-stepped out-
of-line:

1. Kprobes single-steps a copy of the instruc-
tion, and the resulting trap returns control
to kprobes.

2. The kprobe’s post_handler, if any, is run.

3. After Step 1, the instruction pointer, return
address, or other value may be wrong be-
cause of the difference in address between
the instruction copy and the original in-
struction. Kprobes fixes things up as nec-
essary.

4. Kprobes returns from the trap, and execu-
tion continues at the instruction following
the probed instruction.

Step 2 can be eliminated if the kprobe doesn’t
have a post_handler. For many instruction
types, no fixup is necessary and Step 3 can
be eliminated. Steps 1 and 4 can then be re-
placed by a single jump. This jump instruction
is simply appended to the buffer that contains
the copy of the probed instruction.

6.2 Kretprobe-booster

The classic kretprobe uses two kprobes for each
probe: one entry kprobe that saves the origi-
nal return address, and the other on the tram-
poline. The latter can be replaced with assem-
bly code which stores all registers, calls kret-
probe’s trampoline_handler(), restores
registers, and finally returns to the original re-
turn address saved by the entry kprobe.

The boosters don’t change existing kprobes
API. These features are currently prototyped
for i386 and merged into 2.6.16-rc1-mm5.

6.3 Implementation of the boosters

Kprobe booster involved the following steps:

• Addition of a tristate boostable flag:

– −1 means that the probe can’t be
boosted.

– 0 means that the probe can be
boosted, but isn’t ready to be
boosted.

– 1 means that the probe is ready to be
boosted (i.e., the appropriate branch
instruction has been appended).

• Identifying boostable instructions:

– Any instruction that refer to the ex-
ecution address (relative jump, call,
software interrupt, etc.), cannot be
boosted.

112 • Probing the Guts of Kprobes

– A machine-dependant corrolory:
Any instruction that has a hardware
side-effect (such as cpuid, wrmsr,
etc.), cannot be boosted, since they
may depend on the instruction
pointer.

The kprobe-booster classifies instructions
accordingly, setting boostable to 0 if the
instruction is boostable and to −1 if the
instruction isn’t boostable.

• Preparing to boost: If the probed instruc-
tion is boostable, the kprobe-booster must
adjust the execution address register trans-
parently as if the instruction has executed
in-line. For this adjustment, a “jump” in-
struction is inserted after the copied in-
struction.

The kprobe-booster uses information on
the first kprobe hit to determine the exact
location to insert the jump instruction. Af-
ter the first single-step is performed, the
execution address points the head of the
next instruction on the instruction buffer.
In the other words, this is the jump inser-
tion point. Thus the kprobe-booster in-
serts a jump which jumps to the original
address, and sets the boostable flag of the
kprobe to 1.

• Boosting the kprobe: On subsequent hits,
the kprobe is boosted if:

– Its boostable flag is 1.

– It does not have a post_handler.

– The kernel preemption is disabled.

The kretprobe-booster works by emulat-
ing the breakpoint on the kretprobe_
trampoline(). This is accomplished by
saving the registers on the stack and calling
the trampoline_handler(), which takes
care of calling the user-defined handler and
returning the rpi to the free list. Upon return

from the trampoline_handler() the
kretprobe-booster restores the saved registers,
puts the original return address back on stack,7

and returns to the normal execution flow.

7 Performance gains

7.1 Gains from kprobe locking changes

Locking changes—allowing handlers to run
lockless and in parallel—significantly im-
proved kprobes performance on SMP systems.
Figure 4 illustrates performance gains of us-
ing RCU and per-CPU tracking for kprobes
as compared to the legacy single-spinlock syn-
chronization method. (The test basically is the
result of a microbenchmark that drives CPUs
to a rendezvous point through an IPI and the
CPUs are made to spin in a loop calling a rou-
tine with a kprobe registered on it).

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14

T
im

e
in

 m
ill

is
ec

on
ds

Number of CPUs
Total probes hit = (65535 * no of CPUs)

No kprobe
Kprobes with a single spinlock

Kprobes with RCU

Figure 4: Kprobes performance comparison

7Some trickery involved here—at this point, the loca-
tion where the return address has to be stored is occupied
by EFLAGS. So EFLAGS is copied into the CS slot to
make room for the return address. CS doesn’t need to be
recovered since we are always in the kernel context.

2006 Linux Symposium, Volume Two • 113

Kernel kp jp rp kp + rp jp +rp
2.6.16 (no booster) 0.57 1.00 0.92 0.99 1.40

2.6.16-mm2 (with booster) 0.26 1.05 0.45 0.86 1.30

Table 1: Booster gains on an Intel R© Pentium
TM

M, 1495MHz system

7.2 Gains from the kprobe-booster patch-
set

Table 1 illustrates the gains from the kprobe-
booster patchset. All times in microseconds.

8 Work in progress

8.1 Userspace probes

Userspace probes (uprobes) provide a facility
to dynamically instrument userspace applica-
tions. Key design issues include the following:

• Should the uprobe infrastructure be in ker-
nel or userspace? What are the advan-
tages/disadvantages of both?

• Should the probes be visible system-wide?

• Should the probes be inserted on a per-
process or per-executable basis?

• If per-process, should it be inherited
across a fork()?

An approach that uses some mm/vfs tricks to
insert probes on a system-wide basis was pro-
totyped [13]. This prototype provides a facility
to insert probes even on applications that are yet
to begin execution. Handlers run in the kernel
context. There has been some pushback from
the community to reconsider the approach.

At the time of this writing, a discussion was en-
suing on LKML [12] with regard to what the

most appropriate approach would be. A few
options have been thrown up, one of which is
to provide a system call interface (similar to
ptrace) for this purpose.

8.2 Watchpoint probes

Watchpoint probes provide a simple interface
for setting kernel-space watchpoints. Watch-
point probe mechanism uses the CPU’s hard-
ware debug registers to monitor data. At the
time of this writing, an early prototype for the
kernel watchpoint probe interface was avaliable
for i386 [10, 11].

Many user-space debuggers, such as gdb, use
the ptrace interface to set the watchpoint probes
for local use. Typically, a user-space watch-
point is per-process, and so is set on a single
CPU at a time. A kernel watchpoint, on the
other hand, is set on all CPUs. Thus, there
is a need to provide a nonintrusive, flexible,
low-level facility for allocating debug registers.
This facility would provide a way to relinquish
global allocations when a more demanding user
comes along and needs more debug registers
for local use (or for a different kind of global
use). To be nonintrusive, a global user of de-
bug registers has to give them up when they are
used by ptrace, for example.

Work is in progress to provide a common low-
level mechanism that can be useful for ptrace
and other users of debug registers.

114 • Probing the Guts of Kprobes

9 Conclusions

Kprobes provides a simple, flexible,
lightweight, easy-to-use8 mechanism for
creating ad hoc kernel instrumentation. As
the kprobes user community has grown,
there has been a demand for more ways
to probe (jprobes, return probes, userspace
probes, watchpoint probes), more flexibility
for kprobes-based instrumentation (colocated
probes, reentrant probes), and less overhead
in very probe-intensive situations (locking
changes, kprobe and kretprobe boosters). Most
of these features are now in the Linux kernel;
others are in the prototype stage.

10 Acknowledgements

The authors would like to acknowledge the
work of the DProbes team, including Richard
J. Moore, Suparna Bhattacharya, Vamsikrishna
S, Bharata Rao, Michael Grundy, Thomas
Zanussi, and others.

Special thanks to Maneesh Soni for his unre-
lenting support.

The authors wish to thank Roland McGrath,
Rusty Lynch, Hien Nguyen, Will Cohen,
and Andi Kleen for helping out at various
stages during the kprobes development; and
to acknowledge David Miller for his sparc64
kprobes port.

Thanks are due to all others in the Linux
Kernel community who have helped improve
the kprobes infrastructure through reviews,
patches, bug reports, and suggestions.

8Refer to [2] for usage examples.

11 Legal statements

Copyright c© IBM Corporation, 2006.

Copyright c© 2006, Intel Corporation.

Copyright c© Hitachi, Ltd. 2006

This work represents the view of the authors and
does not necessarily represent the view of IBM, In-
tel, or Hitachi.

IBM and PowerPC are trademarks or registered
trademarks of International Business Machines Cor-
poration in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Intel and Pentium are trademarks or registered
trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Other company, product, and service names may be
trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make
them available in all countries in which IBM oper-
ates.

This document is provided “AS IS,” with no express
or implied warranties. Use the information in this
document at your own risk.

References

[1] DProbes. http:
//sourceware.org/systemtap/
kprobes/index.html.

[2] Documentation/kprobes.txt. In
the Linux Kernel sources.

[3] Documentation/RCU/*. In the
Linux Kernel sources.

2006 Linux Symposium, Volume Two • 115

[4] SystemTap. http:
//sourceware.org/systemtap/.

[5] Suparna Bhattacharya. Dynamic
Probes—Debugging by Stealth. In
Proceedings of Linux.Conf.Au, 2003.

[6] Ananth N. Mavinakayanahalli. Kprobes:
Remove global kprobe_lock, July 2005.
http://sources.redhat.com/
ml/systemtap/2005-q3/
msg00182.html.

[7] Paul McKenney and Dipankar Sarma et
al. Read Copy Update. In Proceedings of
the Ottawa Linux Symposium, 2002.

[8] Richard J. Moore. A universal dynamic
trace for Linux and other operating
systems. In FREENIX, 2001.

[9] Prasanna S. Panchamukhi. Kernel
debugging with Kprobes: Insert printk’s
into Linux kernel on the fly, August
2004. http://www-106.ibm.com/
developerworks/library/
l-kprobes.html?ca=dgr-lnx%
w07Kprobe.

[10] Prasanna S. Panchamukhi. Hardware
debug register allocation mechanism,
August 2005.
http://marc.theaimsgroup.
com/?l=linux-kernel&m=
112539056208001&w=2.

[11] Prasanna S. Panchamukhi. Lightweight
interface for kernel-space watchpoint
probes, August 2005.
http://marc.theaimsgroup.
com/?l=linux-kernel&m=
112539056207779&w=2.

[12] Prasanna S. Panchamukhi. [RFC]
Approaches to user-space probes, March
2006.
http://marc.theaimsgroup.

com/?l=linux-kernel&m=
114344261621050&w=2.

[13] Prasanna S. Panchamukhi. User space
probes support, March 2006.
http://marc.theaimsgroup.
com/?l=linux-kernel&m=
114283503327535&w=2.

116 • Probing the Guts of Kprobes

Shared Page Tables Redux

Dave McCracken
IBM Linux Technology Center

dmccr@us.ibm.com

Abstract

When a large memory region is shared each
process currently maps it using its own page
tables. When several processes map the same
region the overhead for these page tables is sig-
nificant. Shared page tables allows the pro-
cesses to all use the same set of page tables
for the shared region. This results in significant
memory savings and performance gains.

In this paper I will discuss how page tables are
shared, how the decision to share is made, the
issues it introduces in the memory management
subsystem, and what applications can benefit
from it.

1 Introduction

The Linux memory subsystem goes to great
lengths to share (minimize the duplication of)
data pages in the system. There is almost al-
ways at most one copy of a given data page in
memory at any time unless a process has made
private modifications to it.

Linux does not, however, currently make any
attempt to share the infrastructure needed to
map those pages, even though for large map-
pings large parts of that infrastructure may be
identical. The shared page table project is an

attempt to add that sharing, with its concurrent
reduction in memory overhead, with an associ-
ated improvement in performance. It also en-
ables optimizations on some architectures that
result in additional performance improvements.

2 A Brief History of Shared Page
Tables

Sharing page tables is far from a new idea. In
2002 during 2.5 development the addition of
pte chains for reverse mapping made fork, exec,
and exit very slow. Sharing page tables and, in
particular, doing a copy-on-write of even nor-
mally unshareable page tables looked like it
might dramatically improve that performance.
Daniel Phillips coded up a sample implementa-
tion that showed some promise.

In Fall of 2002 I started from Daniel’s premise
and wrote a complete implementation of page
table sharing, including the copy-on-write be-
havior. What I discovered, however, was that
the vast majority of programs only had three
page table pages, all of which faulted and had
to be copied immediately after fork. This re-
sulted in a measureable performance penalty
for all but large applications. This implemen-
tation was ultimately rejected for inclusion.

In 2003 and early 2004 the reverse mapping
problem was revisited for 2.6, resulting in elim-
ination of pte chains and the slow fork/exec/exit

118 • Shared Page Tables Redux

problem. There was still an issue with the bal-
looning overhead of page tables with large ap-
plications that ran multiple processes all ac-
cessing large shared memory regions (primarily
a characteristic of database applications).

In 2005 I once again addressed the issue of
shared page tables. I dropped the concept of
copy-on-write and concentrated on only shar-
ing page tables for memory areas that are truly
shareable. This eliminated a major source of
complexity in the implementation.

3 Relevant VM Data Structures

There are several data structures that define the
virtual memory subsystem. It is important to
understand these structures and how they inter-
act to also understand how page table sharing
works.

3.1 The mm_struct Structure

The primary structure in the memory subsys-
tem is the mm_struct, commonly called mm.
There is one of these structures per virtual ad-
dress space, i.e. one per process or collection of
threads. The mm is the anchor for describing all
memory connected to a process.

3.2 The vm_area_struct Structure

The next level of data structure is the
vm_area_struct, commonly referenced to as the
vma. The there is one vma for each mapped
data area in the virtual memory. The collection
of vmas is anchored to the mm.

Each vma includes the virtual starting and end-
ing virtual address, a set of flags that describe
the characteristics of the mapping, and a pointer
to the backing file if there is one.

3.3 The Page Table

In parallel to the set of vmas is the page table,
also anchored in the mm. The page table is a
tree of arrays, each one physical page in size.
Each element of the array points to the page
containing an array for the level below, with the
bottom level entries pointing to the data pages
for the process.

There are four levels to the page table array,
though some levels are dummied out on some
architectures. The four levels are pgd, pud,
pmd, and pte. On a three level architecture the
pud is not present. On a two level architecture
the pmd is also not present.

3.4 The address_space Structure

Another critical part of the memory subsystem
is the address_space structure, commonly re-
ferred to as the mapping. This is not to be con-
fused with the process’s address space. There
is one mapping for each open file. It contains a
chain of all vmas that map the file plus a cache
of all data pages in memory that come from the
file. The vmas also contain a pointer back to the
mapping.

3.5 The page Structure

The last important relevant data structure is the
page. There is one page for each physical page
in the system. It contains the major information
on how the phsical page is being used as well
as a pointer to the mapping it is a part of.

4 Types of Mapped Memory

When memory is mapped into a process it falls
into one of several types. The key parameters

2006 Linux Symposium, Volume Two • 119

are read-only or read-write, shared or private,
and file-backed or anonymous. Only some of
these types are eligible to be shared. Anony-
mous mappings can never be shared. For file-
backed memory all read-only mappings can
be shared. for read-write memory only that
marked shared can be shared.

4.1 File-backed vs Anonymous

The restriction against sharing anonymous
memory is less restrictive than it sounds. When
memory is mapped by an explicit mapping call
from the process it is always file-backed, even
that which the process marks anonymous. The
memory subsystem uses a special file system to
create a dummy file for such mappings. The
only truly anonymous memory areas are the
bss and the stack, created when the process is
started. Both of these are inherently writeable
and private, and thus are not shareable.

5 What is Shared

The specific parts of the infrastructure that can
be shared are the lower levels of the page table.
The granularity of sharing is the array in each
physical page. When the mapped areas in two
or more processes span an entire physical page
in the page table, this page is identical in each
process. Page table sharing uses just one copy
of that page, and sets the higher level pointer in
each process to point to it.

On 32 bit architectures it only makes sense to
share the lowest level table (the pte level). For
most 64 bit architectures it can be useful to
share the next level as well (the pmd level).
These levels generally map 2MiB and 1GiB re-
spectively.

6 The powerpc architecture

The powerpc architecture is different in that
it does not use hardware page tables. It in-
stead uses hash tables to store its page table en-
tries in hardware. Additionally, the virtual ad-
dress space is divided into segments of 256MiB
in size. Each segment has an identifier that
need not be unique to the process, but could be
shared between all processes which map that
segment if all data in that segment is to be
shared between those processes.

Currently the memory management implemen-
tation for powerpc does not take advantage of
this sharing capability. It assigns a segment
identifier that is based on the process which is
mapping it. Segments that are otherwise iden-
tical in different processes are given separate
identifiers.

One of the goals of implementing shared page
tables was to enable use of shared segment
identifiers on powerpc. In the shared page ta-
ble implementation the page table levels are di-
vided so that a single pmd page maps 256MiB.
This page is then used to generate a segment
identifier that can be shared among all pro-
cesses mapping that segment. Due to the way
the hardware hash table interacts with the soft-
ware page table, no sharing can be done at the
pte level. This means that page table sharing
can only be done for areas 256MiB or larger.

7 How Sharing is Done

When memory is mapped into a process a vma
is created and linked into the appropriate mm
and address_space, but no page table is allo-
cated. All page table pages are allocated as nec-
essary during page fault handling to correctly
map the faulting address.

120 • Shared Page Tables Redux

When a page table page is allocated at a level
where sharing is enabled, the vma is checked
whether it can be shared. If it can, it follows
the mapping pointer to find the address_space.
All the vmas connected to the address_space
are checked. If the vma maps the same offset in
the file to the same virtual address as the fault-
ing vma, it looks for a corresponding page ta-
ble page. If one is found, its share count is in-
cremented and it is returned as the page table
page to be installed. The vma linkage in ad-
dress_space is a prio tree based on the starting
and ending virtual addresses so lookup is fast.

8 Unmapping and Unsharing

There are several places where a shared page
table needs to be unshared. The first and most
common place is when the memory region is
unmapped. Unshared page tables are deleted
when they are unused. Shared page tables need
to be disconnected from the tree and the share
count decremented, but can not be deleted since
they are still in use by other processes.

Additionally, there are several memory opera-
tions that change the shareability of a memory
area. In particular these are mprotect, mremap,
and fremap. When any of these are called on a
memory range, that range is scanned for shared
page table pages. If any are found, they are un-
shared.

Unsharing is actually very simple. Since
all memory mapped by shared page tables is
backed by files it is sufficient to simply unlink
the shared page table page and clear the refer-
ence to it. When the process attempts to access
memory in that area it simply faults the pages
back in. If the page table is still shareable it will
re-share. If not, it will allocate a new unshared
page table page.

9 Locking

The memory subsystem has several locks that
control concurrent access to its data structures.
The mm contains the mmap_sem semaphore
which protects the vmas associated with that
process. The mmap_sem is a read/write
semaphore. It is taken for write for calls that
map, unmap, or change memory mappings, and
is taken for read during page faults.

The mm also contains the page_table_lock
spinlock, which protects the page table. A re-
cent optimization is a new lock, the pt_lock,
which is in the struct page associated with the
pte page table page. This lock is held once the
pte is found and allows greater concurrency be-
tween faulting threads in a process.

Another critical lock is the i_mmap_lock in the
address_space. This protects the vma linkage
in the address_space.

9.1 Locking Modifications for Shared Page
Tables

To properly implement shared page tables the
pt_lock concept was extended to apply to all
levels of page table that could be shared. The
page_table_lock was no longer adequate since
a page table page could now be part of more
than one page table. Under the shared page ta-
ble model, the pt_lock is taken when entries for
that page need to be modified. This allows mul-
tiple processes to safely take faults in the same
region and on the same page.

Another extended use of a lock is the
i_mmap_lock. This lock is held while search-
ing the vmas in the address_space for a page
table page to share.

2006 Linux Symposium, Volume Two • 121

9.2 The Unshare Race

There is a race condition when unsharing
page table pages due to mremap, mprotect, or
fremap. The call to unshare the page tables
needs to be made while the original vma is still
present and linked to the address_space. This
means there is a window of time after the page
table has been unshared when another process
could come in and begin a new share.

The solution is to define a flag in the vma called
VM_TRANSITION. This flag is set on entry
to the functions that will change the vma. It
remains set until all changes have been made,
then is unset before the call completes. The
page table sharing code will then refuse to look
at any vma marked as VM_TRANSITION.
While this may result in an occasional missed
opportunity to share page tables, it eliminates
any chance that page tables will be erroneously
shared.

10 Hugetlb Interaction

The hugetlb code creates a pool of large pages
that can be requested by an application when it
maps memory. This is particularly useful be-
cause many architectures allow data pages to
be directly mapped using the pmd level of the
page table. The hugetlb pages are sized to be
mapped in this fashion.

While hugetlb in many ways provides a similar
tool to sharing page tables, it is much more lim-
ited in its function. It requires a system-wide
dedicated pool of larger pages and requires that
applications be recoded to use it. Page table
sharing is entirely transparent to applications
and will happen whenever the shareable mem-
ory region is large enough.

An additional feature of shared page tables is
that for architectures that support sharing at the
pmd level and that also support hugetlb, even
memory areas that are using hugetlb will bene-
fit from shared page tables.

11 Performance

The first step in testing performance was to
measure applications that do not share large
mapped areas and thus do not benefit from
sharing page tables. Tests run with these ap-
plications (the primary test being kernbench)
showed no performance difference at all. This
indicates that the overhead of looking for page
table sharing has no measurable cost.

The next step was to test using large appli-
cations that do massive sharing. An obvious
candidate here was large database applications.
Performance improvement for applications that
do not use hugetlb for their shared areas was
in the range of 35% to 40%. Applications that
do use hugetlb still showed a benefit in the 3%
to 5% range, which is considered significant by
those who do database benchmarking.

12 Future Enhancements

In the current implementation only those mem-
ory areas which are mapped at the same address
and span a shareable page table page can be
shared. No attempt is made to idenfity page ta-
ble pages that, while they are not fully filled
by a shareable region, are otherwise empty. It
should be possible to identify those areas and
share them, with a concurrent call to unshare
them if the empty space is subsequently filled
with a different memory area.

122 • Shared Page Tables Redux

In conjunction with checking for empty space,
it should also be possible to modify the allo-
cation strategy used when mapping memory to
assign shareable memory areas a section of vir-
tual memory that has no other memory mapped
in it, therefore making it more likely that the
page table could also be shared.

Another current limitation of the code is that
the areas must be mapped at the same vir-
tual address in each process. This means that
the memory must either be allocated in a par-
ent, then the children forked, or the application
must use a known address to map the memory
to. In practice this is common enough in large
applications that memory can often be shared.
It should be possible, however, to allow sharing
as long as the mapped memory areas share a
common alignment with respect to the page ta-
ble pages, even though they are mapped at dif-
ferent addresses. This alignment could be en-
sured at mapping time.

13 Legalese

c© 2006 IBM. Permission to redistribute in accor-
dance with Linux Symposium submission guide-
lines is granted; all other rights reserved. Linux
is a registered trademark of Linus Torvalds. All
other trademarks mentioned herein are the property
of their respective owners.

Extending RCU for Realtime and Embedded Workloads

Paul E. McKenney
IBM Linux Technology Center

paulmck@us.ibm.com

Dipankar Sarma
IBM India Software Labs
dipankar@in.ibm.com

Ingo Molnar
Red Hat

mingo@elte.hu

Suparna Bhattacharya
IBM India Software Labs
bsuparna@in.ibm.com

Abstract

This past year has seen significant increases
in RCU’s realtime capabilities, particularly the
ability to preempt RCU read-side critical sec-
tions. There have even been some cases where
use of RCU improved realtime latency (and per-
formance and scalability as well), in contrast
to earlier implementations, which seemed only
to get in the way of realtime response. That
said, there is still considerable room for im-
provement, including

1. lower-overhead rcu_read_lock() and
rcu_read_unlock() primitives,

2. more scalable grace-period detection,

3. better balance of throughput and latency
for RCU callback invocation,

4. lower per-structure memory overhead and

5. priority boosting of RCU read-side critical
sections.

This last item is needed to prevent low-priority
tasks from blocking grace periods, resulting in
out-of-memory events, due to being preempted

for too long while in an RCU read-side critical
section.

This paper describes ongoing work to address
these five issues, including some interesting
failures in addition to a number of unexpected
successes. The ultimate goal of providing
a single RCU implementation that covers all
workloads is tantalizingly close, but is not yet
within our grasp. It is safe to say that the
very wide variety of workloads supported by
Linux

TM
provides substantial challenges to the

design and implementation of synchronization
primitives like RCU!

1 Introduction

RCU is a synchronization mechanism that pro-
vides extremely low-overhead read-side access
to shared data structures: in the theoretical best
case (which is actually realized in non-realtime
server workloads), the read-side RCU primi-
tives generate no code whatsoever. Writers split
their updates into “removal” and “reclamation”
phases, where the “removal” phase typically re-
moves an element from a globally accessible
list, and the “reclamation” phase typically frees
the element once it is known that all readers

124 • Extending RCU for Realtime and Embedded Workloads

have dropped any references to the previously
removed element. Readers do not block and
are not blocked by writers, but writers must use
some mutual exclusion mechanism to coordi-
nate concurrent updates. RCU does not care
what mechanism the writers use.

Readers use the rcu_read_lock() and rcu_
read_unlock() primitives to mark RCU
read-side critical sections, and writers use
synchronize_rcu() (or its continuation
form, call_rcu()) to wait for a “grace pe-
riod” to elapse, where all RCU read-side ref-
erences obtained before the beginning of a
given grace period are guaranteed to have been
dropped by the end of that grace period. There
are a number of other RCU API members,
which are discussed at length elsewhere [4, 7],
but which are not critical to this paper.

A realtime RCU implementation in an OS ker-
nel must provide the following properties [10]:

1. Deferred destruction. No data element
may be destroyed (for example, freed)
while an RCU read-side critical section is
referencing it.

2. Reliable. The implementation must not be
prone to gratuitous failure.

3. Callable from IRQ (interrupt-handler)
context.

4. Preemptible RCU read-side critical sec-
tions.

5. Small memory footprint. Many real-
time systems are configured with modest
amounts of memory, so it is highly desir-
able to limit memory overhead, including
the number of outstanding RCU callbacks.

6. Independent of memory blocks. The im-
plementation should not make assump-
tions about the size and extent of the

data elements being protected by RCU,
since such assumptions constrain memory
allocation design, possibly imposing in-
creased complexity.

7. Synchronization-free read side. RCU
read-side critical sections should avoid
cache misses and expensive operations,
such as atomic instructions, memory bar-
riers, and interrupt disabling.

8. Freely nestable read-side critical sections.

9. Unconditional read-to-write upgrade.
RCU permits a read-side critical sec-
tion to freely acquire the corresponding
write-side lock—if two CPUs are both
in an RCU read-side critical section, and
if they both attempt to acquire the same
lock, they must acquire the lock in turn,
with no possibility of failure or deadlock,
and without needing to exit their RCU
read-side critical sections.

10. Compatible API. A realtime RCU imple-
mentation should have an API compatible
with that of “classic RCU.”

Table 1 summarizes the state of the art upon
which this paper builds, showing how well each
implementation meets the realtime-RCU crit-
era. In the table, “n” indicates a minor prob-
lem, “N” indicates a major problem, “X” in-
dicates an absolute show-stopper problem, and
“?” indicates a possible problem depending on
details of the implementation [10]. As can be
seen from the table, none of these pre-existing
RCU implementations meets all of the criteria.
The “Counters w/ Flipping” approach comes
closest, having only minor problems with prop-
erty 7. This paper looks at ways of improving
this approach in order to alleviate these prob-
lems, with the long-term goal of enabling a sin-
gle RCU implementation to serve the full range
of Linux workloads. This paper also focusses

2006 Linux Symposium, Volume Two • 125

C
al

la
bl

e
Fr

om
IR

Q
?

Pr
ee

m
pt

ib
le

R
ea

d
Si

de
?

Sm
al

lM
em

or
y

Fo
ot

pr
in

t?
Sy

nc
hr

on
iz

at
io

n-
Fr

ee
R

ea
d

Si
de

?
In

de
pe

nd
en

to
fM

em
or

y
B

lo
ck

s?
Fr

ee
ly

N
es

ta
bl

e
R

ea
d

Si
de

?
U

nc
on

di
tio

na
lR

ea
d-

to
-W

ri
te

U
pg

ra
de

?
C

om
pa

tib
le

A
PI

?

Classic RCU [17] N N
Preemptible RCU [11, 16] X
Jim Houston Patch [3] N N
Reader-Writer Locking N N N n
Hazard Pointers [12] ? ? n N ?
Lock-Based Deferred Free [8, 9] ? N
Read-Side GP Suppression [15] N n
Counters w/ Flipping [1, 10] n

Table 1: Realtime RCU State of the Art

on property 5 for small-memory embedded ma-
chines.

The remainder of this paper is organized by
the topics listed in the abstract, with Sec-
tion 2 focusing on reducing RCU read-side
overhead, Section 3 covering improvements to
grace-period detection scalability and perfor-
mance, Section 4 reviewing recent work on bal-
ancing callback throughput and latency, Sec-
tion 5 discussing support of systems with ex-
tremely small memories (by 2006 standards,
anyway), and Section 6 previewing work to
prevent indefinite preemption from resulting in
indefinite-duration grace periods. Finally, Sec-
tion 7 presents summary and conclusions.

2 Reduced-Overhead Read Side

The first attempts to produce a realtime-
friendly implementation of RCU had serious
drawbacks. Sarma and McKenney addressed
excessive realtime latencies imposed by long

sequences of RCU callbacks [16], but this im-
plementation did nothing to alleviate laten-
cies that could be induced by long RCU read-
side critical sections, which ran with preemp-
tion disabled. At the time, all known pre-
emptible RCU-like implementations were sub-
ject to indefinite-duration grace periods, which
could in turn result in system hangs due to
memory exhaustion.

In early 2005, McKenney described a lock-
based approach [9] that allowed RCU read-
side critical sections to run with preemption en-
abled, thus permitting good process-scheduling
latencies in face of long RCU read-side criti-
cal sections. However, this implementation al-
lowed realtime latencies to “bleed” from one
RCU read-side critical to another, due to its
lock-based grace-period-detection mechanism.
Subsequent discussions on the Linux-kernel
mailing list suggested that a counter-based ap-
proach might avoid this problem [10].

The following sections review this counter-
based implementation and subsequent im-
provements.

2.1 Simple Counter-Based Implementation

Figure 1 gives a schematic depicting the opera-
tion of the simple counter-based algorithm. The
basic idea is to maintain per-CPU arrays, with
each array containing a pair of counters [2].
At any given time, one of the pair will be
the “current” counter, and the other the “last”
counter. Oversimplifying somewhat for clarity,
each invocation of rcu_read_lock() on a
given CPU atomically1 increments that CPU’s
“current” counter, and each invocation of rcu_
read_unlock() atomically decrements what-
ever counter the corresponding rcu_read_

lock() incremented. Whenever the end of a
1Sections 2.2, 2.3, and 2.4 describe various schemes

to eliminate atomic instructions and memory barriers.

126 • Extending RCU for Realtime and Embedded Workloads

Figure 1: Simple Data Flow

grace period is detected, the roles of the “cur-
rent” and “last” counters are swapped. This
means that the “last” counters will now be
atomically decremented, but (almost) never in-
cremented, so that they will eventually all reach
zero. Once they have all reached zero, we have
detected the end of another grace period, and
can then swap the roles of the counters once
more in order to detect the end of the next grace
period.

The actual sequence of events is a bit more in-
volved. The code for the rcu_read_lock()

primitive is shown in Figure 2.1. Lines 7
and 22 suppress and restore interrupts, prevent-
ing destructive races between an interrupted
rcu_read_lock() and a second rcu_read_

lock() invoked by the interrupt handler. For
example, if an interrupt were allowed to occur
just after line 8 of the first rcu_read_lock(),
the interrupt handler’s invocation would incor-
rectly believe that it was completely nested in
the interrupted RCU read-side critical section,
and thus that it was already protected. This sit-
uation could result in premature grace-period

1 void rcu_read_lock(void)
2 {
3 int f;
4 unsigned long oldirq;
5 struct task_struct *t = current;
6
7 raw_local_irq_save(oldirq);
8 if (t->rcu_read_lock_nesting++ == 0) {
9 f = rcu_ctrlblk.completed & 0x1;

10 smp_read_barrier_depends();
11 t->rcu_flipctr1 =
12 &(__get_cpu_var(rcu_flipctr)[f]);
13 atomic_inc(t->rcu_flipctr1);
14 smp_mb__after_atomic_inc();
15 if (f != (rcu_ctrlblk.completed & 1)) {
16 t->rcu_flipctr2 =
17 &(__get_cpu_var(rcu_flipctr)[!f]);
18 atomic_inc(t->rcu_flipctr2);
19 smp_mb__after_atomic_inc();
20 }
21 }
22 raw_local_irq_restore(oldirq);
23 }

Figure 2: Memory-Barrier rcu_read_
lock()

completion, and memory corruption. This
problem is avoided by suppressing interrupts.

Line 8 increments a per-task-struct RCU read-
side nesting-level counter. If the prior value of
this counter was non-zero, this is a nested RCU
read-side critical section, which is already pro-
tected by the outermost critical section. Oth-
erwise, execution proceeds through lines 9–20,
which prevent any future grace periods from
completing. Line 9 snapshots the bottom bit
of a grace-period counter, and this bit is used
to index into one of two elements of a per-
CPU counter array, as depicted in Figure 1.
Line 10 forces the subsequent array access to
be ordered after the computation of its index on
Alpha CPUs. Lines 11–12 compute a pointer
to the “current” element of the current CPU’s
counter array, recording this pointer in the task
structure. Line 13 then atomically increments
this counter, and line 14 adds a memory bar-
rier on architectures for which atomic_inc()
is not an implicit memory barrier. The mem-
ory barrier is required to prevent the contents of

2006 Linux Symposium, Volume Two • 127

the critical section from bleeding out into ear-
lier code.

Since rcu_read_lock() does not acquire
any explicit locks, it is possible for its execu-
tion to race with the detection of the end of
an ongoing grace period. This means that the
completed counter could change at any time
during rcu_read_lock() execution, which
in turn could lead to premature ending of the
next grace period, since rcu_read_lock()

would then erroneously be preventing the end
of the second grace period rather than the next
grace period. Line 15 detects this race, and, if
detected, lines 16–19 atomically increment the
CPU’s other counter, thus preventing the end
of both the next grace period and the one af-
ter that. The additional overhead of the sec-
ond atomic operation and memory barrier is in-
curred only in the unlikely event of a race be-
tween grace-period detection and rcu_read_

lock() execution.

1 void rcu_read_unlock(void)
2 {
3 unsigned long oldirq;
4 struct task_struct *t = current;
5
6 raw_local_irq_save(oldirq);
7 if (--t->rcu_read_lock_nesting == 0) {
8 smp_mb__before_atomic_dec();
9 atomic_dec(t->rcu_flipctr1);

10 t->rcu_flipctr1 = NULL;
11 if (t->rcu_flipctr2 != NULL) {
12 atomic_dec(t->rcu_flipctr2);
13 t->rcu_flipctr2 = NULL;
14 }
15 }
16 raw_local_irq_restore(oldirq);
17 }

Figure 3: Memory-Barrier rcu_read_unlock()

The code for rcu_read_unlock() is shown
in Figure 3. Lines 6 and 16 suppress and restore
hardware interrupts to prevent race conditions
analogous to those for rcu_read_lock().
Line 7 checks to see if we are exiting the out-
ermost RCU read-side critical section; if not,

we retain the outer critical section’s protec-
tion. Otherwise, lines 8–14 update state to al-
low grace periods to complete.

Lines 8 and 9 execute an atomic decrement,
along with a memory barrier, the latter re-
quired to prevent the RCU read-side critical
section from bleeding out into subsequent code.
Line 10 NULLs the pointer in the task struc-
ture, primarily for debug purposes. Note that
this counter might well belong to some other
CPU, for example, if this task was preempted
during its RCU read-side critical section. This
possibility is one reason that the increments and
decrements must be atomic. Line 11 detects the
case where rcu_read_lock() had to incre-
ment both of the CPU’s counters, and, if so,
lines 12 and 13 atomically decrement it and
NULL out the corresponding pointer in the task
structure.

1 static void rcu_try_flip(void)
2 {
3 int c;
4 long f;
5 unsigned long m;
6
7 f = rcu_ctrlblk.completed;
8 if (!spin_trylock_irqsave
9 (&rcu_ctrlblk.fliplock, m)) {

10 return;
11 }
12 if (f != rcu_ctrlblk.completed) {
13 spin_unlock_irqrestore
14 (&rcu_ctrlblk.fliplock, m);
15 return;
16 }
17 f &= 0x1;
18 for_each_cpu(c) {
19 if (atomic_read(&per_cpu
20 (rcu_flipctr, c)[!f]) != 0) {
21 spin_unlock_irqrestore
22 (&rcu_ctrlblk.fliplock, m);
23 return;
24 }
25 }
26 smp_mb();
27 rcu_ctrlblk.completed++;
28 spin_unlock_irqrestore
29 (&rcu_ctrlblk.fliplock, m);
30 }

Figure 4: Memory-Barrier GP Detection

128 • Extending RCU for Realtime and Embedded Workloads

The code that detects the end of a grace period
is shown in Figure 4, and is invoked from the
scheduling-clock interrupt. Line 7 records the
current value of the completed field, which is
a count of the number of grace periods detected
since boot. Lines 8–9 attempt to acquire the
spinlock guarding grace-period detection, and,
if unsuccessful, line 10 returns, relying on the
task holding the lock to continue doing so.

On the other hand, if we successfully acquire
the lock, we proceed to line 12, which checks
whether a grace period was detected while we
were acquiring the lock. If so, someone else de-
tected the grace period for us, and we need not
repeat the work. Lines 13–15 therefore release
the lock and return.

Otherwise, line 17 isolates the low-order bit
of the grace-period counter, which is used to
identify the “last” counter in each per-CPU ar-
ray. Lines 18–25 loop through each CPU, with
lines 19–20 checking the value of the “last”
counter. If any are non-zero, the grace period
has not yet ended, in which case lines 21–23
release the lock and return.

If all the “last” counters are zero, the current
grace period has ended. Line 26 then executes
a memory barrier to ensure that line 27’s count-
ing of the newly ended grace period does not
bleed back into the earlier counter checks, then
lines 28–29 release the lock.

The first patch for a robust implementation of
this simple counter-based realtime RCU im-
plementation was posted to LKML in August
2005 [6]. This patch has the shortcomings de-
scribed in the LKML posting:

1. The rcu_read_lock() and
rcu_read_unlock() primitives con-
tain heavyweight operations, including
atomic operations, memory barriers, and
disabling of hardware interrupts. These

heavyweight operations are undesireable
in a primitive whose sole purpose is
to provide high-performance read-side
operation.

2. The grace-period detection code uses a
single global queue, which can result in
an SMP locking bottleneck on larger ma-
chines.

3. The grace-period detection code is proba-
bly too aggressive, particularly on server-
class machines with ample memory. A
more sophisticated grace-period-detection
mechanism would: (1) allow for long
grace periods when memory was plenti-
ful, thus permitting the overhead of grace-
period detection to be amortized over a
larger number of RCU accesses and up-
dates, but (2) seek to minimize grace-
period duration when memory was scarce,
thus minimizing the amount of memory
consumed by outstanding RCU callbacks.

The remainder of this section focusses on the
first issue. The second issue is taken up in Sec-
tion 3. The third issue is beyond the scope of
this paper—in the near term, we need to retain
“classic RCU” for use in server workloads, but
longer term, there is some hope that a single
converged RCU mechanism might serve both
server and realtime environments. Section 2.5
describes some criteria that need to be met in
order to produce such a converged mechanism.

2.2 Remove Common-Case Atomic Opera-
tions

Although atomic increments and decrements
are necessary in the general case in Figures 2.1
and 3, there are some special cases where there
can be at most one CPU manipulating a given
counter. The first such case is at line 13 of Fig-
ure 2.1 when the counter is zero. In this case,

2006 Linux Symposium, Volume Two • 129

there cannot possibly be some other CPU at-
tempting to decrement the counter, as it would
need to be non-zero for this to happen. In addi-
tion, there cannot be some other CPU attempt-
ing to increment the counter, since interrupts
are disabled, preventing preemption. There-
fore, lines 13–14 can be replaced by the fol-
lowing:

if (atomic_read(current->rcu_flipctr1) == 0) {
atomic_set(current->rcu_flipctr1,

atomic_read(current->rcu_flipctr1) + 1);
smp_mb();

} else {
atomic_inc(current->rcu_flipctr1);
smp_mb__after_atomic_inc();

}

Note that both atomic_read() and atomic_
set() are simple structure-access wrappers;
despite the “atomic” in their names, neither
of these primitives use atomic instructions
or memory barriers. If preemption is rare,
the then-clause of the above if statement
should be taken most frequently, avoiding the
atomic_inc(). A similar change can be
made to lines 8–9 of Figure 3, but with an ad-
ditional check to ensure that the task is running
on the same CPU that executed the correspond-
ing rcu_read_lock().

However, this change does not help on x86
machines, since the non-atomic operations
must still be accompanied by memory barriers,
which, on x86, are implemented using atomic
instructions. This situation motivates elimina-
tion of these memory barriers, covered in the
next section.

2.3 Remove Memory Barriers

The memory barriers in rcu_read_lock()

and rcu_read_unlock() are needed only to

Figure 5: Wasted Memory Barriers

guard against races with grace-period detec-
tion, which is normally quite rare compared to
RCU read-side critical sections. In Figure 5
each shaded box represents an RCU read-side
critical section with associated memory barri-
ers. Only the emboldened MBs represent re-
quired memory barriers; the rest consume over-
head but provide no added protection. This sit-
uation indicates that memory barriers should be
associated with grace-period detection rather
than RCU read-side critical sections. One sim-
ple way to accomplish this is to maintain a
per-CPU flag indicating that grace-period de-
tection is in progress. Neither the rcu_read_
lock() nor the rcu_read_unlock() prim-
itive needs memory barriers, although rcu_

read_unlock() could continue to use them
when it is necessary to expedite grace-period
detection. Instead, the per-CPU scheduling-
clock interrupt handler would execute a mem-
ory barrier only (1) when the corresponding
per-CPU flag is set and (2) after the correspond-
ing CPU’s “last” counter had reached zero.
This single memory barrier would protect both
the preceding and the following RCU read-side
critical sections, as shown in Figure 6.

130 • Extending RCU for Realtime and Embedded Workloads

Figure 6: Grace-Period Memory Barriers

Figure 7: No-Memory-Barrier Data Flow

The general approach is shown in Figure 7.
This approach offers performance benefits,
even on x86, but atomic instructions are still
required in case of preempted RCU read-side
critical sections. It is possible to do better.

2.4 Remove All Atomic Instructions and
Memory Barriers

Note that CONFIG_PREEMPT kernels limit
rcu_read_lock() nesting depth, since in-
finite nesting would overflow the preempt_

disable() counter. This limited nesting
depth permits each CPU to increment and
decrement its own counters, regardless of what
CPU the corresponding rcu_read_lock()

might have run on. Simply summing the per-
CPU “last” counters would give the number
of outstanding RCU read-side critical sections
holding up the current grace period.

1 void rcu_read_lock(void)
2 {
3 unsigned long oldirq;
4 struct task_struct *t = current;
5
6 raw_local_irq_save(oldirq);
7 if (t->rcu_read_lock_nesting++ == 0) {
8 t->rcu_i = rcu_ctrlblk.completed & 1;
9 smp_read_barrier_depends();

10 __get_cpu_var(rcu_flipctr)[t->rcu_i]++;
11 }
12 raw_local_irq_restore(oldirq);
13 }

Figure 8: Non-MB rcu_read_lock()

The implementation of rcu_read_lock()

becomes quite simple, as shown in Figure 8.
Lines 6 and 12 suppress interrupts, as before.
Line 7 increments this task’s RCU read-side
critical-section nesting level, and, if this is
the outermost such critical section, executes
lines 8–10 to prevent subsequent grace peri-
ods from completing. Line 8 records the in-
dex of the “current” counter for use by the cor-
responding rcu_read_unlock(), line 9 pro-

2006 Linux Symposium, Volume Two • 131

vides memory barriers for systems that fail to
force ordering of data-dependant loads (for ex-
ample, DEC Alpha [5]), and line 10 increments
this CPU’s “current” counter, preventing subse-
quent grace periods from proceeding.

1 void rcu_read_unlock(void)
2 {
3 unsigned long oldirq;
4 struct task_struct *t = current;
5
6 raw_local_irq_save(oldirq);
7 if (--t->rcu_read_lock_nesting == 0) {
8 __get_cpu_var(rcu_flipctr)[t->rcu_i]--;
9 }

10 raw_local_irq_restore(oldirq);
11 }

Figure 9: Non-MB rcu_read_unlock()

The rcu_read_unlock() is also quite sim-
ple, as shown in Figure 9. Lines 6 and 10
once again suppress hardware interrupts, line 7
decrements the RCU read-side critical-section
nesting level, and, if outermost, line 8 decre-
ments this CPU’s counter, but with the same
index as that incremented by the corresponding
rcu_read_lock().

Unfortunately, this approach invalidates the
earlier trick used to get rid of common-case
memory barriers, because a given CPU can
no longer determine when its “last” counter is
zero. We instead use a state machine to detect
the end of grace periods, with states executed
cyclicly as follows:

1. Idle: not attempting to detect the end of a
grace period.

2. Grace period: marks the end of a grace pe-
riod via a counter flip, and sets per-CPU
flip-seen flags, which each CPU will clear
after it has seen the flip.

3. Wait-ack: waits for each CPU to clear its
flip-seen flag. Once each CPU has cleared

its flip-seen flag, there can be no further
increments to any of the “last” counters.

4. Wait-zero: waits for the sum of the
“last” counters to reach zero. Once zero
is reached, each CPU must execute a
memory-barrier instruction to force order-
ing of prior RCU read-side critical sec-
tions. Therefore, we then set a per-
CPU memory-barrier-done flag, which
each CPU will clear after executing its
memory barrier.

5. Wait-memory-barrier: waits for all CPUs
to execute a memory barrier and clear
its memory-barrier-done flag. As before,
these memory barriers protect both the
earlier and the subsequent RCU read-side
critical sections.

Note that this state machine results in a “fuzzy”
grace-period boundary extending from state 2
to state 5. This requires an extra staging queue
for RCU callbacks, or that the callbacks are ad-
vanced only once per two grace periods.

With this state machine, it is not necessary for
individual CPUs to determine when their par-
ticular counter has reached zero. Instead, once
the sum of the counters has reached zero, each
CPU is explicitly asked to execute a memory
barrier. The data flow is shown in Figure 10.

Although this approach results in lightweight
read-side primitives, it also increase grace-
period detection time by a few scheduling-
clock periods compared to the implementations
described in the previous sections. It should
be possible to overcome this effect, for exam-
ple, by causing call_rcu() to invoke grace-
period detection if callbacks are arriving too
quickly.

In addition, the read-side primitives still dis-
able interrupts in order to provide the guaran-
tee that all future invocations will be using the

132 • Extending RCU for Realtime and Embedded Workloads

Figure 10: No-Atomic Data Flow

correct element of the counter array just after a
counter flip. Removing this interrupt disabling
is a topic for future investigation.

2.5 Converging Classic and Realtime RCU

Can classic RCU be totally supplanted by real-
time RCU? The jury is still out on this question,
but here are some criteria that realtime RCU
must first meet:

1. It must be rock solid across the full gamut
of workloads.

2. Any required tuning for SMP servers must
be automated, e.g., computed at boot time
based on the amount of physical memory,
the number of CPUs, etc.

3. It must be impose negligible additional
overhead compared to classic RCU on
SMP machines.

The last criterion might be weakened, as it
may be acceptable to revert to classic RCU for
SMP/NUMA machines with more than (say) 16
CPUs. However, it may be possible to cast real-
time RCU into hierarchical form, which could
reduce overhead [18]. In any case, the fewer the
implementations of RCU, the smaller the test-
ing and maintenance burden imposed by RCU.
This situation motivates us to continue working
towards the goal of single universal RCU im-
plementation.

3 Scalable Grace-Period Detection

The current RCU implementation in the -rt
tree [13] uses a single global callback queue. In
the past, this has simplified the implementation,
for example, by removing any CPU-hotplug
considerations. However, RCU implementa-
tions that avoid memory barriers and atomic in-
structions do need to worry about CPU hotplug,
due to their use of per-CPU memory-barrier
and flip-seen flags. It therefore makes sense to
move to per-CPU queuing for these implemen-
tations, since the CPU-hotplug complexity can
no longer be avoided.

Other non-trivial changes will be required
as well, for example, the heuristic used
to determine when to invoke rcu_check_

callbacks() will likely need to be revisited,
most likely by appropriately updating rcu_

pending(). Larger SMP machines may also
need hierarchical bitmaps similar to Manfred
Spraul’s [18], as well as hierarchical summing
of the “last” counters.

4 Callback Latency vs. Through-
put

Applying RCU to the file structure had the un-
intended consequence of allowing a simple file

2006 Linux Symposium, Volume Two • 133

open-close loop to generate RCU callbacks at
a sufficient rate to exhaust memory. This was
fixed by varying the permitted number of RCU
callback invocations per softirq instance. Real-
time implementations of RCU must gracefully
handle this same situation.

One approach is for call_rcu() to invoke the
grace-period detection code directly when there
are large numbers of callbacks. However, the
actual invocation of callbacks cannot be done
from call_rcu(), as this can result in dead-
lock. The callbacks must still be invoked from
softirq context.

In the -rt tree [13], realtime tasks can preempt
softirq handlers. Therefore, a system with run-
away realtime processes that consume all avail-
able CPU would not execute callbacks at all.
In addition, many other critical system services
would fail to execute. Lack of critical system
services, including RCU callback invocation,
would result in system hangs or failures.

What should be done when the system is over-
loaded with realtime tasks? Realtime tasks
must take precedence, but system services can-
not be indefinitely delayed. This is a policy de-
cision, with the following possible choices:

1. Degrade realtime response time, thereby
keeping the system alive (for example, de-
crease priority of “hoggy” realtime tasks
in order to permit debugging using non-
realtime tools).

2. Panic the system and reboot, as might
be required in some production realtime
workloads.

3. Kill less-critical realtime tasks, thereby
keeping system alive. Of course, this op-
tion requires some way of determining
which tasks to kill.

4. “Fence” the realtime tasks, so that they
are not permitted to consume excessive
amounts of any given CPU’s time [14].
This can be considered to be a variation
on the first option.

It is likely that more than one of these will be
required, but much experimentation with nu-
merous realtime applications will be required
to determine the right options and implementa-
tions.

5 Reduced Per-Struct Memory
Overhead

Any structure passed to call_rcu() must
contain a two-pointer struct rcu_head to
track the structure and its callback function.
This additional memory overhead is negligible
in many environments, but on 32-bit embedded
systems with small memory (e.g., 2MB), the
additional eight bytes can be problematic. This
section looks at the following three options for
dealing with this problem:

1. Use synchronize_rcu() instead of
call_rcu(), thus eliminating the need
for the struct rcu_head.

2. Use the C union feature to multiplex the
struct rcu_head with other fields that
are not used by RCU-protected code paths.

3. Shrink the struct rcu_head so that it
fits into 32 bits, reducing the memory it
consumes.

The use of synchronize_rcu() has the ad-
vantages of reducing the RCU-protected struc-
ture by eight bytes rather than by only four,
(usually) simplifying the code somewhat, and

134 • Extending RCU for Realtime and Embedded Workloads

being already heavily used in the Linux ker-
nel. However, because synchronize_rcu()
blocks for a full grace period, its use is not ap-
propriate in all situations.

The second option, use of C union, also re-
duces the RCU-protected structure by up to
eight bytes rather than by only four, does not
affect code complexity, and has seen some
use, for example, the struct dentry unions
the d_child list header with the d_rcu field.
However, not all structures contain data that is
unreferenced by all RCU code paths. Such data
structures cannot make use of C union to re-
duce the memory overhead of struct rcu_

head. Furthermore, use of union can make
some data structures more difficult to under-
stand. Nevertheless, where it applies, use of C
union is very simple and effective.

Figure 11: Shrink rcu_head Structure

People using systems with very small memo-
ries may wish to experiment with a mapping
table to compress the function pointer into a
few bits. Linux currently has roughly 40 func-
tions passed to call_rcu(), requiring six bits
of index, leaving 26 bits for the pointer to the
next struct rcu_head, which could address
64MB of memory, as depicted in Figure 11.
Systems with kernel memory mapped at an off-
set add that offset in order to reduce the number
of bits required for the pointer.

If an embedded system were to load and un-
load modules in order to further reduce mem-
ory requirements, and if these modules used
call_rcu(), then the index field in Figure 11
would only need to be large enough to han-
dle the number of RCU callback functions that
were actually loaded into the kernel at a given
time. However, to realize this savings, it would
be necessary to reclaim entries in the func-
tion pointer table corresponding to callbacks in
modules that had been unloaded. One way to
do this would be to use reference counts, as il-
lustrated by the column labelled “RC” in Fig-
ure 11. Only file_free_rcu() has a non-
zero reference count, permitting the slots occu-
pied by the other function pointers to be reused
as needed by call_rcu(). If the desired
RCU callback already had a slot, call_rcu()
would simply increment its reference count.
In either case, the reference count would be
decremented after invoking the callback func-
tion. In UP kernels, the table may be protected
by simple disabling of interrupts. At present,
it seems unlikely that this function-table ap-
proach would be used on SMP systems.

It is possible that the stripped-down Linux ker-
nels used in embedded systems might have
fewer uses of call_rcu(), and thus might be
able decrease the number of bits of the struct
rcu_head and increase the size of the pointer.

Of course, both synchronize_rcu() and
C union are more generally useful and also
provide greater per-structure memory savings.
However, if these approaches are insufficient,
it might be worthwhile considering a small-
memory configuration parameter that shrinks
the size of struct rcu_head for small-
memory systems.

2006 Linux Symposium, Volume Two • 135

6 Priority Boosting

Many realtime workloads maintain low CPU
utilization in order to avoid excessive latencies
due to task queueing in the scheduler. How-
ever, any number of software bugs can cause
“runaway” tasks to saturate the CPUs. If the
CPUs are saturated with realtime tasks, the re-
altime RCU implementations described in Sec-
tion 2 are vulnerable to indefinite grace-period
durations caused by a low-priority non-realtime
task being preempted while executing in an
RCU read-side critical section. This can re-
sult in OOM conditions, especially on small-
memory machines. Of course, as mentioned
earlier, starving other system services can also
result in system failures.

One way to avoid this problem is to boost the
priority of tasks executing in RCU read-side
critical sections, in a manner similar to mutex-
based priority boosting. However, unlike with
locking, it does not make sense to boost and
decrease priority in the rcu_read_lock()

and rcu_read_unlock() primitives, because
this would require the introduction of locking
into these primitives, in turn unacceptably in-
creasing their overhead and destroying their
deadlock-immunity properties. In fact, the per-
formance degradation is worse than for lock-
ing, since lock-based priority boosting need
do nothing except in the (presumably less-
common) case where a high-priority task at-
tempts to acquire a lock held by a lower-priority
task.

A better approach is to recognize that it does
not help to boost the priority of a task that is
already running. Boosting its priority will not
make it run faster, in fact, the resulting cache-
thrashing will likely slow it down. No ac-
tion need be taken until the task either is pre-
empted or attempts to acquire an already-held
lock while still in its RCU read-side critical sec-
tion, at which point that task’s priority can be

boosted to the highest non-realtime priority. It
may also be necessary to further boost the pri-
ority of RCU read-side critical sections when
the system exhausts memory.

We have been experimenting with this ap-
proach, but additional work is needed to arrive
at a simple and stable patch. It is possible that
restricting the CPU time that may be consumed
by realtime tasks [14] will prove a more fruitful
approach, at least in the near term.

7 Conclusions

Although there is more work to be done, it
appears that a robust and efficient realtime-
friendly implementation of RCU is quite feasi-
ble. We have shown how atomic instructions
and memory barriers can be eliminated from
RCU read-side primitives, and how standard
techiques, with some innovation, can yield a
scalable grace-period detection algorithm.

There has been good progress towards the
right balance of RCU callback throughput and
scheduling latency on realtime systems, but
more work is needed to ensure that this balance
is maintained for all workloads.

We described three ways of reducing per-
structure struct rcu_head overhead, two of
which eliminate this overhead completely and
are available within the current kernel.org tree,
and a third that requires some additional work
and saves only 50% of the struct rcu_head

overhead.

We described a mechanism for boosting the pri-
ority of preempted RCU readers in order to ex-
pedite grace-period end, however, we do not
yet have a stable implementation of this mech-
anism. In the meantime, limiting the CPU con-
sumption of realtime tasks should help, since

136 • Extending RCU for Realtime and Embedded Workloads

this should allow the priority of any preempted
RCU reader to age upwards. However, more
work is needed to determine whether this ap-
proach will suffice in all cases.

The jury is still out as to whether a single RCU
implementation can meet the needs of both re-
altime and SMP-server workloads, but the tech-
niques described in this paper are approaching
that goal. That said, whether or not this goal
is eventually reached, the implementations de-
scribed in this paper should improve Linux’s
ability to provide realtime response on SMP
systems.

Acknowledgements

We owe thanks to Esben Neilsen and Bill Huey
for championing counter-based RCU, and to
the many developers and users of the -rt tree
for their hard work creating and testing this
patchset. We are grateful to Daniel Frye, Vi-
jay Sukthankar, and Reena Malangone for their
support of this effort.

Legal Statement

This work represents the views of the authors and
does not necessarily represent the view of Red Hat
or of IBM.

Linux is a trademark of Linus Torvalds in the United
States, other countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.

References

[1] Paul E.McKenney. [RFC,PATCH] RCU
and CONFIG_PREEMPT_RT sane

patch. Available: http://lkml.
org/lkml/2005/8/1/155 [Viewed
March 14, 2006], August 2005.

[2] Ben Gamsa, Orran Krieger, Jonathan
Appavoo, and Michael Stumm. Tornado:
Maximizing locality and concurrency in a
shared memory multiprocessor operating
system. In Proceedings of the 3rd

Symposium on Operating System Design
and Implementation, pages 87–100, New
Orleans, LA, February 1999.

[3] Jim Houston. [RFC&PATCH]
Alternative RCU implementation.
Available:
http://marc.theaimsgroup.
com/?l=linux-kernel&m=
109387402400673&w=2 [Viewed
February 17, 2005], August 2004.

[4] Paul E. McKenney. Exploiting Deferred
Destruction: An Analysis of
Read-Copy-Update Techniques in
Operating System Kernels. PhD thesis,
OGI School of Science and Engineering
at Oregon Health and Sciences
University, 2004. Available:
http://www.rdrop.com/users/
paulmck/RCU/
RCUdissertation.2004.07.
14e1.pdf [Viewed October 15, 2004].

[5] Paul E. McKenney. Memory ordering in
modern microprocessors, part I. Linux
Journal, 1(136):52–57, August 2005.

[6] Paul E. McKenney. Re: [fwd: Re:
[patch] real-time preemption,
-rt-2.6.13-rc4-v0.7.52-01]. Available:
http://lkml.org/lkml/2005/
8/8/108 [Viewed March 14, 2006],
August 2005.

[7] Paul E. McKenney. Read-copy update
(RCU). Available: http://www.

2006 Linux Symposium, Volume Two • 137

rdrop.com/users/paulmck/RCU
[Viewed May 25, 2005], May 2005.

[8] Paul E. McKenney. Real-time
preemption and RCU. Available:
http://lkml.org/lkml/2005/
3/17/199 [Viewed September 5,
2005], March 2005.

[9] Paul E. McKenney. [RFC] RCU and
CONFIG_PREEMPT_RT progress.
Available: http://lkml.org/
lkml/2005/5/9/185 [Viewed May
13, 2005], May 2005.

[10] Paul E. McKenney and Dipankar Sarma.
Towards hard realtime response from the
linux kernel on SMP hardware. In
linux.conf.au 2005, Canberra, Australia,
April 2005. Available:
http://www.rdrop.com/users/
paulmck/RCU/realtimeRCU.
2005.04.23a.pdf [Viewed May 13,
2005].

[11] Paul E. McKenney, Dipankar Sarma,
Andrea Arcangeli, Andi Kleen, Orran
Krieger, and Rusty Russell. Read-copy
update. In Ottawa Linux Symposium,
pages 338–367, June 2002. Available:
http:
//www.linux.org.uk/~ajh/
ols2002_proceedings.pdf.gz
[Viewed June 23, 2004].

[12] Maged M. Michael. Hazard pointers:
Safe memory reclamation for lock-free
objects. IEEE Transactions on Parallel
and Distributed Systems, 15(6):491–504,
June 2004.

[13] Ingo Molnar. Index of
/mingo/realtime-preempt. Available:
http://people.redhat.com/
mingo/realtime-preempt/
[Viewed February 15, 2005], February
2005.

[14] Ingo Molnar. Index of
/mingo/rt-limit-patches. Available:
http://people.redhat.com/
mingo/rt-limit-patches/
[Viewed March 31, 2006], January 2006.

[15] Esben Neilsen. Re: Real-time
preemption and RCU. Available:
http://lkml.org/lkml/2005/
3/18/122 [Viewed March 30, 2006],
March 2005.

[16] Dipankar Sarma and Paul E. McKenney.
Making RCU safe for deep
sub-millisecond response realtime
applications. In Proceedings of the 2004
USENIX Annual Technical Conference
(FREENIX Track), pages 182–191.
USENIX Association, June 2004.

[17] John D. Slingwine and Paul E.
McKenney. Apparatus and method for
achieving reduced overhead mutual
exclusion and maintaining coherency in a
multiprocessor system utilizing execution
history and thread monitoring. Technical
Report US Patent 5,442,758, US Patent
and Trademark Office, Washington, DC,
August 1995.

[18] Manfred Spraul. [rfc] 0/5 rcu lock
update. Available:
http://marc.theaimsgroup.
com/?l=linux-kernel&m=
108546407726602&w=2 [Viewed
June 23, 2004], May 2004.

138 • Extending RCU for Realtime and Embedded Workloads

OSTRA: Experiments With on-the-fly Source Patching

Arnaldo Carvalho de Melo
Mandriva Conectiva S.A.
acme@mandriva.com

acme@ghostprotocols.net

Abstract

OSTRA is an experiment on on-the-fly source
patching, where codebases like the Linux ker-
nel are “compiled” with occ, the OSTRA com-
piler, that inserts code to collect trace infor-
mation to be post processed using tools avail-
able to generate fancy HTML and CSS2 call-
graphs that show some profiling information,
tables showing where specific data structure
fields changed, graphs of all the observed in-
ternal state, etc.

1 Introduction

This paper talks about experiments in source
patching, where tools are used to “compile”
programs written in the C language, modify-
ing the source code according to some criteria
specified by the programmer.

Two experiments will be discussed, with tools
developed by the author presented, shedding
some light on the possibilities of source patch-
ing.

Ideas discussed with some fellow developers
but not yet tried will also be presented, with
the intent of—hopefully—having them finally
tested in practice by interested readers.

2 Sparse

Sparse was (ab)used in the experiments de-
scribed in this paper, both as a simple tokenizer
in some tools and using some of its more ad-
vanced “semantic parsing” capabilities in other
tools.

More information on sparse[1] can be obtained
in its on-line source repository.

3 Experiment 1: initstr

I first got interested in source patching when
trying to shrink the Linux kernel binary image
by marking strings in initialization functions as
__initdata, so that they would be put into
the .init.data ELF section.

This involved the repetitive process of trans-
forming code like:

int __init feature_init(void)

{
if (alloc fails)

panic("feature: not enough

memory!\n");

}

Into:

140 • OSTRA: Experiments With on-the-fly Source Patching

static char panic_msg[] __initdata

=
"feature: not enough

memory!\n";

int __init feature_init(void)
{

if (alloc fails)
panic(panic_msg);

}

So I thought about doing this automatically, us-
ing some “pre-compiler,” a tool to be used be-
fore the real compiler, that would modify the
code for functions marked __init, inserting
code that would mark the strings in arguments
to functions as __initdata.

The initstr[2] tool was the result of this experi-
ment, that to be really usable would require fur-
ther work as there are cases where strings can
not be blindly marked __initdata as they
are referenced in kernel data structures, such as
in the kmem_cache_create function, that
would have to be modified to make a string du-
plicate of the received slab cache name, and
also because Linus at the time thought sparse
was not robust enough to be used in the process
of building a production kernel image, perhaps
this has changed and I encourage interested per-
sons to try again as the tool was left available in
my kernel.org site.

4 Experiment 2: Tracing

The initstr tool idea was later useful when the
author was working on the his DCCP paper for
OLS 2005[3], where, to illustrate refactorings
done on the networking core to share TCP code
with DCCP callgraphs were in demand.

To collect the information needed for such call-
graphs the idea was to write tools that would

find the functions of interest and insert code at
the start and at the end of these functions, that
would record in a ring buffer these events.

The criteria devised to identify the functions of
interest were: functions that are “methods” of
some “class”, i.e. functions that receive as one
of their parameters a pointer to some specified
structure, for instance struct sock.

As the tool would have to look at each of the
parameters of each of the parsed functions to
see if they were a pointer of the specified class,
another desired feature was added: to specify
members of this class to be collected at entry
and/or exit of the methods, so as to look at the
internal state of the objects being traced at each
trace point.

The following sections will talk about the tools
written to achieve such goals.

4.1 ostra-grep

The first tool written was called ostra-grep,
that, as suggested by its name, “greps” the code
being compiled for functions that are methods
of the specified class.

It was used as a replacement to sparse’s
“checker” tool, using the Linux kernel Make-
file CHECKER parameter.

It just creates files with the name as the source
file parsed plus a “.ostra” suffix, where each of
the methods found would be recorded together
with the names of the parameters that are of the
class specified.

This mode of operation is interesting as it
makes ostra-grep useful for other purposes,
such as using another tool, ostra-kprobes, that
uses a different approach for collecting the call-
graph trace points, namely creating a kprobes
module that hooks all the methods found.

2006 Linux Symposium, Volume Two • 141

4.2 ostra-patch

After the ostra-grep discovery pass another
tool, ostra-patch, is used as a replacement for
gcc, that looks if the file being compiled has
methods to hook, short circuiting to gcc if not.

If the file has methods to hook ostra-patch will
use sparse in its most basic tokenizer form, just
to get to the methods found by ostra-grep and
insert code at the start of the function, call-
ing a trace entry collector function, ostra_
entry_hook(), passing the pointer to the
class in its parameter list and a identifiers for
the source file and function.

It then looks for all the “exit points”, i.e. all
the return statements and the implicit one in
void functions and inserts calls to ostra_
exit_hook(), passing the same information
passed to ostra_entry_hook() plus the
“exit point” identifier, i.e. a sequential number
telling which of the return statements was used
in this specific function call, providing further
useful information for the callgraph generator
tool, ostra-cg.

Other criteria for specifying where to install
trace points that can be implemented in the fu-
ture is for operator overloading, that is to in-
sert trace points when members of the class are
being changed or plain referenced, when calls
to something like ostra_operator_foo_
hook() would be inserted.

The hook functions are defined in a separate file
that has to be linked in.

5 Future Directions

Write it!

References

[1] http://www.kernel.org/git/

?p=devel/sparse/sparse.git

[2] http://www.kernel.org/

pub/linux/kernel/people/acme/

sparse/initstr.c

[3] Arnaldo Carvalho de Melo, 2005.
“DCCP on Linux”, Ottawa Linux
Symposium

142 • OSTRA: Experiments With on-the-fly Source Patching

Design and Implementation to Support Multiple Key
Exchange Protocols for IPsec

Kazunori Miyazawa
Yokogawa Electric Corporation

kazunori.miyazawa@jp.yokogawa.com

Shoichi Sakane
Yokogawa Electric Corporation

sakane@tanu.org

Ken-ichi Kamada
Yokogawa Electric Corporation

ken-ichi.kamada@jp.yokogawa.com

Mitsuru Kanda
Toshiba Corporation

mitsuru.kanda@toshiba.co.jp

Atsushi Fukumoto
Toshiba Corporation

atsushi.fukumoto@toshiba.co.jp

Abstract

The racoon2 project has been developing an ap-
plication, the racoon2, which simultaneously
supports multiple key exchange protocols for
IPsec [6]. The racoon2 supports IKEv2 [1] and
KINK [11], and works on Linux, NetBSD, and
FreeBSD. This paper describes issues to sup-
port the multiple key exchange protocols on
those operating systems, and describes our ap-
proach. This paper also describes design and
implementation of the racoon2.

1 Background

IPsec provides security services in IP layer. To
use the services, we need to share IPsec SAs
between two entities. IPsec SA consists of a set
of security parameters such as IPsec protocol,
cipher algorithm, key and so on. There are two

methods to share IPsec SAs between two enti-
ties. One is manual configuration and the other
is automatic key exchange. Manual configura-
tion is basically used for a small static system or
debugging because of its scalability. Automatic
key exchange is used in a practical system.

We have used the Internet Key Ex-
change(IKEv1) [2] protocol to support
automatic key exchange. But it does not
clearly specify the ways to re-key and delete
SAs and dead peer detection. The vendors
have been extending it to support them and it
caused interoperability issues. Additionally, it
needs at least 6 messages to exchange IPsec
SAs. According to the background IETF IPsec
working group had discussed a successor of
IKEv1. The working group defines the Internet
Key Exchange version 2 (IKEv2) and IETF
published it in 2005 as a conclusion of the
discussion. IKEv2 reduces the messages to
exchange keys from 6 messages to 4 messages.
It also specifies to re-key and delete SAs and
to detect the dead peer and introduces more

144 • Design and Implementation to Support Multiple Key Exchange Protocols for IPsec

functionality.

KINK, Kerberised Internet Negotiation of
Keys, is another key exchange protocol. It is
defined at KINK working group in IETF. It uses
Kerberos to authenticate peers and establishes
IPsec SAs only using symmetric key cipher al-
gorithm. Therefore it is available for low-end
devices which can not calculate public key al-
gorithm in a practical period. KINK reuses the
encoding format of IKEv1 to represent infor-
mation of IPsec SA so that its payloads are sim-
ilar to IKEv1.

racoon is widely used as an implementation of
IKEv1 on Linux, NetBSD, FreeBSD and oth-
ers. racoon was developed originally by the
KAME project [5] as the implementation on
the BSDs. The IPsec-Tools project [4] did
porting it on Linux when Linux introduced
KAME compatible IPsec stack. The IPsec-
Tools project currently maintains and extends
it to support various functions.

The racoon2, a successor of racoon, however
introduced different architecture and configura-
tion model. The configuration includes IPsec
policy to supports the multiple key exchange
protocols. Because it tightly links the policy,
IPsec SAs, and the key exchange protocol, a
user can specify and easily prospect the re-
sults of the configuration. It accordingly breaks
backward compatibility of the configuration.

In this paper, we discuss issue to support the
multiple key exchange protocols in section 2.
We describe data structure and architecture of
the racoon2 in section 3. We show current sta-
tus and future works in section 4. We summa-
rize this paper in section 5.

2 Supporting the multiple key ex-
change protocols

We considered two kinds of architecture to im-
plement the multiple key exchange protocols
on Linux, NetBSD and FreeBSD operating sys-
tems. One is implementing all protocols into
single daemon. The other is implementing dae-
mons for each protocol.

We adopted the latter approach. Because sin-
gle daemon architecture consumes useless re-
sources when user want to use only one proto-
col. Additionally, it tends to reduce the modu-
larity so that it is possibly difficult to extend to
implement new protocols.

The current Linux kernel does not assume to
support multiple daemons which process each
key exchange protocol. It accordingly can not
keep the relationship between an IPsec policy
and a key exchange protocol. NetBSD and
FreeBSD can not keep the information either.
We had had a choice to change the kernels. We
however decided to solve the issue within the
user-land instead of changing the kernels be-
cause of the advantage of deployment of the
racoon2.

It is necessary to strictly manage the relation-
ship to get a daemon to process a key exchange
request based on a user configuration. Sepa-
ration of a IPsec policy and the key exchange
protocol configuration like racoon does causes
possibility of the application to use a different
protocol against a key exchange request.

Instead of separated the configuration of
racoon, the racoon2 configuration unifies and
includes IPsec policies, IPsec SAs and the key
exchange protocols. Using this configuration
model, user can clearly configure what proto-
col must be used against the IPsec policy. On
the other hand, user can not configure them sep-
arately like the usage of racoon.

2006 Linux Symposium, Volume Two • 145

As mentioned above, the kernel can not keep
the relationship because it does not have a field
of the key exchange protocol in IPsec policy
data structure, which is struct xfrm_policy on
the Linux. The daemon accordingly needs
to search the IPsec policy which triggers the
SADB_ACQUIRE message, when receiving it.

The PF_KEY [8] API of Linux, NetBSD and
FreeBSD contains extension derived from the
KAME implementation. The stack has IPsec
policy ID. In the Linux kernel the index of the
struct xfrm_policy corresponds it. The index is
assigned by the kernel and identifies the policy
uniquely. The kernel also returns the ID against
a request of installing an IPsec policy.

When there is no IPsec SA corresponding the
IPsec policy in the kernel, it acquires the IPsec
SA by sending a SADB_ACQUIRE message to
the daemons which listens to PF_KEY socket.
KAME extends SADB_ACQUIRE message to
contain the ID so that the daemon which re-
ceives the message can search the IPsec pol-
icy which triggers it. As mentioned above, the
racoon2 adopts unified configuration model.
The daemons can exactly search the original
configuration.

3 The racoon2

3.1 The racoon2 data structure

The data structure basically consists of selec-
tor, policy, ipsec, sa and remote. They are
linked by their identifiers. The current racoon2
directly uses this model as its configuration.

• selector contains parameters to select traf-
fic through the IPsec stack such as IP ad-
dresses, an upper layer protocol, port num-
bers and so on. selector points a policy as

its action. selector is pointed from remote
when it supports road-warriors. selector
represents simplex traffic so that there are
two selectors for an normal bidirectional
traffic. The IKE daemon uses the values in
selector as an IKEv2 Traffic selector pay-
load or an IKEv1 ISAKMP ID payload in
phase 2. In KINK protocol, it will be used
as a KINK_ISAKMP ID payload.

• sa contains information of an IPsec SA.
They are an IPsec protocol and candidates
of cipher algorithm.

• ipsec contains parameter to create IPsec
SA bundle. The information consists of
common values of bundled IPsec SAs
such as lifetime. The racoon2 restricts the
type of IPsec SA bundle like the table 3.1.
ipsec points more than one IPsec SA to
create bundle.

type of bundle the results packet
AH_ESP [IP][AH][ESP][Payload]
AH_IPCOMP [IP][AH][IPCOMP][Payload]
ESP_IPCOMP [IP][ESP][IPCOMP][Payload]
AH_ESP_IPCOMP [IP][AH][ESP][IPCOMP][Payload]

Table 1: The types of IPsec SA bundle

• policy contains parameter of action against
the traffic which matches the selector.
The action can be “discard”, “bypass” or
“auto_ipsec” to apply IPsec. policy also
contains mode of IPsec and end point’s
addresses if the mode is “tunnel”. a pol-
icy connects components of the racoon2
data structure. a policy points some ipsec
to make a proposal when the action is
“auto_ipsec”.

• remote contains parameter for the key ex-
change protocol. They are identifier of a
peer, the IP addresses, the authentication
information, algorithm and so on.

146 • Design and Implementation to Support Multiple Key Exchange Protocols for IPsec

A user can flexibly build configuration by link-
ing those components corresponding what user
want. For example, in case of that two types
of traffic shares a pair of IPsec SA whose pro-
posal is AH and ESP bundle or single ESP,
the configuration consists of the components
linked like figure 1

Figure 1: racoon2 data structure

An initiator can retrieve whole configuration
from selector. When it is a responder, it can
search a remote from peer’s identifier. If it
finds remote, it validates the peer and searches
the selector from IKEv2 Traffic Selector Pay-
load, ISAKMP ID Payload in IKEv1 phase 2
or KINK_ISAKMP ID Payload. In the case of
supporting road-warrior a responder uses link
to a selector from the remote because its ad-
dress can not be decided in advance.

An responder generates an IPsec policy for the
kernel with extracting a chain of selector, pol-
icy and ipsec. It generates an IPsec SA as a
result of the negotiation with proposals derived
from a chain of policy, ipsec and sa.

3.2 The racoon2 architecture

The racoon2 consists of 3 daemons. One is
spmd, which manages IPsec policy database.
Another is iked, which processes IKEv1 and
IKEv2 protocol. The other is kinkd, which
processes KINK protocol. iked and kinkd are
independent from each other. They commu-
nicate with spmd via PF_UNIX socket. The

kernel broadcasts a SADB_ACQUIRE mes-
sage to all daemons which listens to PF_KEY.
iked and kinkd accordingly receive the same
SADB_ACQUIRE message. The racoon2
adopts the unified configuration model and all
daemons read an identical configuration file to
share the parameter. The configuration file cur-
rently reflects the racoon2 data structure.

Figure 2: the racoon2 architecture

spmd reads selector, policy and ipsec from the
configuration files and installs IPsec policies
into the kernel via PF_KEY socket. The ker-
nel returns the message including IPsec policy
ID and spmd creates a mapping table of IPsec
policy ID and selector identifier. Because the
daemons on the architecture require the table,
spmd must run first.

iked processes IKEv1 and IKEv2 protocol. It
should be split to each protocol but iked pro-
cesses them because those protocols requires
same port numbers of UDP.

This is a process sequence when iked is an ini-
tiator of IKEv2.

1. The kernel hooks transmission of the traffic
which matches the IPsec policy.

2. The kernel sends a SADB_ACQUIRE message
including IPsec policy ID to the key exchange
daemons via PF_KEY socket.

3. iked receives the message and get IPsec policy
ID in the sadb_x_policy_id field.

4. iked requests the identifier of selector corre-
sponding the IPsec policy ID to spmd.

2006 Linux Symposium, Volume Two • 147

5. iked receives the selector identifier from spmd.
6. iked searches selector by the identifier and re-

trieves policy, remote, ipsec, sa.
7. iked validates the key exchange protocol in the

remote.
8. iked processes the acquire according to the

protocol in the remote such as IKEv2.

The responder processes are listed below when
iked is a responder of IKEv2. It depends on
whether remote includes peers IP address or
not.

When remote includes peers IP address, the
process like:

1. iked receives a IKE_SA_INIT message.
2. It searches remote by peer’s IP address.
3. It replies IKE_SA_INIT using algorithm in the

remote.
4. It receives IKE_AUTH from the peer.
5. It validates the peer by information in the re-

mote
6. It searches the selector by the Traffic Selector

payload in the message.
7. It finds the selector and retrieves policy, ipsec

and sa.
8. It processes the request and replies

IKE_AUTH

When the remote does not contain the peer’s IP
address, e.g. road-warrior scenario.

1. iked receives a IKE_SA_INIT message.
2. It searches remote by peer’s IP address
3. It replies the IKE_SA_INIT message using de-

fault algorithm since it can not find specific
configuration of the remote.

4. It receives the IKE_AUTH message from the
peer.

5. It searches remote by the ID payload in the
message and authenticates the peer.

6. It also searches selector or retrieves the link to
selector in the remote

7. It retrieves linked components, which are pol-
icy, ipsec and sa.

8. It processes the request and replies a
IKE_AUTH message.

kinkd is a daemon processing KINK proto-
col. The initiator process of kinkd is simi-
lar to iked. kinkd gets an identifier of the
selector from spmd by indicating a policy_id
in the sadb_x_policy_id field, and pro-
cesses the request acquired from the kernel. In
the responder process, kinkd always searches
the list of remote with the identifier of the
peer (principal name) because KINK protocol
uses Kerberos and kinkd can know the iden-
tifier of the peer. When it is a responder, to
get the selector, kinkd always uses an identi-
fier of selector in the remote of the configura-
tion. Therefore it currently does not search by
KINK_ISAKMP ID payload. After getting the
selector, it processes the request from the ini-
tiator with linked components.

4 Implementation and future
works

The racoon2 uses OpenSSL [10] library for its
cryptographic operation. It also uses MIT [9]
or Heimdal [3] kerberos library to implement
kinkd. Current implementation supports IKEv2
and KINK, and does not support IKEv1.

The racoon2 provides a library to support im-
plementing the daemons. The library provides

• configuration file interface
• PF_INET socket utility
• PF_KEYv2 socket utility
• loggin interface
• align differences of OS
• buffer and string utility

So far, the racoon2 provides enough functions
to support basic operation on IKEv2, such as

148 • Design and Implementation to Support Multiple Key Exchange Protocols for IPsec

Figure 3: libracoon

• IPsec SA negotiation with IPv4/IPv6 address
• exchange transport mode IPsec SAs with the

notification
• dead peer detection
• rekeying
• authentication with either pre-shared-key or

certificates
• COOKIE support

Although the racoon2 supports basic function-
ality on IKEv2, as of this writing, IKEv1 sup-
port is still under development. It is important
for backward compatibility and it is one of fu-
ture works. These items are future works of
IKEv2:

• improving NAT Traversal
• road-warrior support
• Traffic Selector negotiation
• internal address configuration

Both improving NAT Traversal and supporting
road-warrior are especially required for more
flexible operation. Both Mobile IPv6 support
and MOBIKE are big challenges although they
are not listed above. The racoon2 can not
work with MIPL-2.0 because MIPL-2.0 main-
tains IPsec policy by itself. We have a couple
of approaches to solve the issue. We, however,
need more consideration to decide what is the
best strategy.

Concerning KINK protocol, the racoon2 also
support enough functions for basic operation:

• IPsec SA negotiation with IPv4/IPv6 ad-
dress

• optimistic key negotiation
• 3-way key negotiation
• dead peer detection by epoch

There aren’t many features left regarding KINK
protocol. Kerberos User-to-User authentication
mode and KE payload support are a few of
them.

Additionally IETF has published new specifica-
tion of IPsec [7]. The current kernel conforms
to the previous specification of IPsec [6] and it
will be changed to conform to the new RFC.
We probably make the racoon2 coordinate with
IPsec stack conforming to the new RFC.

5 Summary

We described design and implementation of the
racoon2 to support multiple key exchange pro-
tocols. And we describe the racoon2 architec-
ture, its data structure and how it works briefly.
We also describe the features which have al-
ready supported and describe the future works.
The racoon2 already have enough functionality
on basic key exchange scenario, using IKEv2
and KINK protocols, and we have plan to im-
plement optional functions, including IKEv1
for backward compatibility.

References

[1] C. Kaufman, Ed. Internet key exchange
(ikev2) protocol. RFC4306, December
2005.

[2] D. Harkins and D. Carrel. Internet key
exchange (ike) protocol. RFC2409,
November 1998.

[3] Heimdal. Heimdal web page. http:
//www.pdc.kth.se/heimdal/.

2006 Linux Symposium, Volume Two • 149

[4] IPsec Tools. Ipsec tools web page.
http://www.ipsec-tools.
sourceforge.net/.

[5] KAME Project. Kame project web page.
http://www.kame.net.

[6] S. Kent and R. Atkinson. Security
architecture for the internet protocol.
RFC2401, November 1998.

[7] S. Kent and K. Seo. Security architecture
for the internet protocol. RFC4301,
December 2005.

[8] D. McDonald, C. Metz, and B. Phan.
Pf_key key management api, version 2.
RFC2367, July 1998.

[9] MIT Kerberos. Mit kerberos web page.
http:
//web.mit.edu/kerberos/www/.

[10] OpenSSL. Openssl web page.
http://www.openssl.org/.

[11] S. Sakane, K. Kamada, M. Thomas, and
J. Vilhuber. Kerberised internet
negotiation of keys (kink). RFC4430,
March 2006.

150 • Design and Implementation to Support Multiple Key Exchange Protocols for IPsec

The State of Linux Power Management 2006

Patrick Mochel
Intel Corporation

mochel@linux.intel.com

Abstract

Power Management, as it relates to Operat-
ing Systems, is the process of regulating the
amount of power consumed by a computer. It is
a feature that is available in every type of com-
puter that Linux runs, though the expectations
and the implementations of power management
vary greatly depending the makeup of the plat-
form and the type of software running on it.

This paper provides an analysis of power man-
agement and how it relates to the Linux kernel.
It provides a complete (though not comprehen-
sive) survey of power management features, the
policy to control those features, and user con-
straints of the policy.

1 Power Management Introduction

Power management is the effort to minimize
the amount of power used over time, as mea-
sured in watts (or fraction thereof).

Technically, a watt is defined as one joule of
energy per second, but it is often used in refer-
ence to the amount of power consumed in one
hour of time. For example, the statement “This
computer has a 300W power supply” refers to
the maximum amount of power consumed over
the course of an hour. [watt]

The total power consumption of a computer
that we work with in this paper is measured
simply by the power consumption of each of
its components. (The amount of additional
power needed to compensate for inefficiencies
of power supplies and dissipation is not cov-
ered.) In a computer in which the power con-
sumption of each device remains constant over
time, then total power consumption can be
measured like this:

Cp = D1p + D2p + D3p + ...

However, hardware features cause the amount
of power consumed by a device to fluctuate
over time. So, the amount of power consumed
by a device over a set amount of time (e.g. one
hour) can be measured as the sum of power
consumed by the device at each interval (e.g.
one millisecond) during that time. So, the equa-
tion becomes a bit more involved for each de-
vice:

D1p = (D1p0 + D1p1 + D1p2 ... D1pn) / n

The rates of power consumption for a device
are expressed in watts/hour, so the amount of
power consumed per interval must be divided
by the number of intervals sampled.

152 • The State of Linux Power Management 2006

2 Device Power Management

Each device in a computer has the potential to
perform a certain of work over time:

Work = w0 + w1 + w2 + ... + wn

If the power consumption of a device is con-
stant, then it consumes the same amount of
power at each interval, regardless of whether
or not it is actually performing its potential
maximum amount of work possible. Hardware
power management features provide the abil-
ity to adjust the amount of power that a de-
vice consumes based on the amount of work
that the device needs to perform. The concept
is based the basic observation that devices are
often underutilized—the amount of work de-
manded from them may be less than the sup-
ply that their potential offers. That general ob-
servation provides two more specific theories
about work load and power consumption.

• A device may operate at a slower rate or
experience longer periods of idleness in
order to perform the work demanded of it.
Please see Section 2.1.

• Part or all of a device may be disabled if
there is no work for it to do. Please see
section 2.5.

2.1 Operable States

Approaches to reduce power consumption of
a device, yet all the device to continuously
perform work are commonly implemented by
CPUs, which have a near-constant demand for
their resources. They accomplish this by doing
one or both of the following:

• Frequency modulation.

• Low-power idle states.

2.2 Frequency modulation

The frequency is a function of the voltage com-
ing into the device and a set of multipliers
(among other things). In some cases, the mul-
tipliers can be adjusted to simply affect the
speed of the device, though that doesn’t offer
great savings in power because the device is
still drawing the same amount of current from
the power source. But, by adjusting the volt-
age, the actual power draw changes, allowing
for better power savings.

Technically speaking, the device will have a
range of frequencies that it can operate at
for each voltage supplied. By adjusting the
voltage, what is really being adjusted is the
min/max range of frequencies, given the multi-
pliers available. Within each voltage level, the
multipliers can then be adjusted to achieve the
desired frequency [Pentium M].

The caveat of changing voltage levels as op-
posed simply changing frequency levels is that
the voltage may also effect the multipliers that
are used to determine the bus speed between
that device and another device (e.g. between the
CPU and RAM). There is a higher latency in-
volved in changing voltages because those val-
ues must be changed and synchronized in lock-
step.

By being able to operate at different frequen-
cies at the same voltage level, and often the
same frequency at different voltage levels, the
power consumed can be minimized, but still
allow for low-latency transitions between fre-
quencies.

2.3 Linux support for frequency modula-
tion

Many modern CPUs support frequency modu-
lation, and the Linux cpufreq subsystem has de-
veloped intelligent support for predicting and

2006 Linux Symposium, Volume Two • 153

Architecture CPUs
x86/x86-64 Generic ACPI

AMD PowerNow
Intel SpeedStep
Transmeta Crusoe
NatSemi Geode / Cyrix MediaGX
VIA Longhaul

ARM Integrator
SA1100
SA1110

PowerPC Various G3s & G3s
Sparc64 UltraSPARC IIe & III
SuperH SH-3, SH-4

Table 1: Architectures Supported by cpufreq

adjusting CPU load. cpufreq has support for
many CPUs across several architectures, as
seen in Table 1. Support for a specific CPU
requires a driver that understands the model-
specific interface for determining and entering
the supported states [cpufreq].

Other devices that experience continuous de-
mand for resources could benefit from being
able to modulate their frequency depending on
the amount of demand. In particular, mem-
ory and I/O buses are both large consumers
of power that could frequently experience un-
der utilization of their resources. However, no
known hardware features (let along Linux sup-
port) exist for these items. This is not surpris-
ing, as their software control would most likely
involve platform-specific commands and coor-
dination that is currently performed only by the
firmware (and beyond the knowledge and inter-
est of the kernel).

2.4 Low-power idle states

A period of idleness is a small, sometimes
fixed, amount of time that a device is not be-
ing used. Some devices may be able to trans-
parently enter a special low-power state during
this period. This state effectively disables the

device, but ensures that it will automatically
transition out of the low-power state when it re-
ceives a request for work. This feature is most
famously implemented by x86 CPUs and speci-
fied by ACPI as the Processor C states: C0, C1,
C2 . . . Cn [ACPI].

Low-power CPU idle states are designed for
use during the idle thread. How they imple-
mented, and how they are used, is dependent
on the platform. C1 on x86 CPUs may entered
by simply executing the ’hlt’ instruction. Us-
ing any low-power states beyond that requires
very specific manipulation of the hardware.
ACPI provides an abstract interface for doing
this on supported platforms, which is imple-
mented in the ACPI idle thread [ACPI Docs],
though other platforms must do it manually
[DPM WP].

Each C state has a tradeoff between the power
it consumes and the latency for returning to C0.
Depending on the demand for the CPU (as mea-
sured by the amount of time spent idle), a lower
or higher C state may entered, since a lightly-
loaded system can safely endure slightly higher
latencies.

Low-power idle states are starting to be im-
plemented by other devices that are under fre-
quent demand, but also experiences frequent
periods of idleness. In particular, some PCI
Express chipsets have implemented low-power
idle states for its device links (connections be-
tween the PCIe controller and downstream de-
vices). These states are called L States, and
may be used in two cases: when the down-
stream device is active but idle (called Active
State Power Management); or when the down-
stream device is in a low-power state (called
Link Power States). This feature is not yet
supported by Linux. More information can be
found in the References [PCIe PM].

154 • The State of Linux Power Management 2006

2.5 Inoperable States

Devices that are not needed for long periods of
time may be put into an inoperable power state
in which power to some or all of the device is
removed. These states are typically used for pe-
ripheral devices that experience long periods of
idleness or are known to be unneeded for a sig-
nificant period of time (in a magnitude of sec-
onds and higher). There are two basic classes of
inoperable power states: where part of the de-
vice is inoperable, and where the entire device
is inoperable.

Many devices have more than one usable com-
ponent on them that is not strictly necessary for
basic operation of the device. For instance:

• CPU with more than one core

• A graphics device with a 2d acceleration
engine and a 3d acceleration engine.

• A NIC with a TCP Offload Engine

In theory, these extra components could be
turned off independent of other hardware com-
ponents. In some cases, like the 3d acceleration
engine, this could result in significant power
savings. However, the description of these fea-
tures and how they controlled is device specific,
and usually kept proprietary. And, with basic
device power management support still incom-
plete, these features are not supported under
Linux.

When an entire device is not being used, it can
be put into a low-power and inoperable power
state. The PCI Power Management Specifica-
tion defines a set of 4 states that PCI devices
may support: D0 (Fully On), D1, D2, and D3
(Off).

A range was specified to allow hardware de-
signers the ability to choose alternative imple-
mentations in which more components of the
device lost power as a deeper power state was
entered. This would allow a lower transition la-
tency from the low-power state to the D0 state
because an entire device reset would not be nec-
essary. However, few hardware designers have
found that tradeoff worthwhile as very devices
support D1 and D2.

An exception are graphics controllers, which
are the biggest users of the intermediate power
states. Unfortunately, the software steps nec-
essary to reprogram a graphics controller after
it has returned to D0 from any low-power state
are complicated and kept very secret.

Linux provides an interface for using low-
power device states via sysfs. Each device’s
sysfs directory has a sub-directory named
power, which in it has an attribute file named
state. Reading this file returns the current
low-power state of the device (0 for on, non-
zero otherwise). Writing to this file places the
devices into a different power state.

This sysfs interface is provided regardless of
the bus that the device resides on, but is a bit
unintuitive for some power management imple-
mentions: it only supports turning the device on
and off, and the mechanism for doing so is by
writing the ASCII characters “0” and “2” re-
spectively, which do not map to any known bus
states.

3 System Power Management

Under normal, unoptimized circumstances a
computer will consume as much power as it
possibly can as it performs work. However,
power management can be implemented for an
entire system in a manner analogous to power

2006 Linux Symposium, Volume Two • 155

management of a single device: it may enter
a different operable state that conserves power
but preserves the ability to perform work; or it
may enter an inoperable low-power state that
performs no work, but offers a relatively low-
latency to return to an operable state. The
unique attribute of system power management
is that it requires little or no hardware support
beyond what is already implemented in device
power management.

3.1 Operable States

An arbitrary operable system state can be de-
fined as a set of minimum and maximum states
(operable or inoperable) for each device in
that particular system. By default, the system
is in an operable state in which every device
has their default minimum and maximum state
ranges (usually Fully On and Fully Off). How-
ever, new low-power states can be defined for
the system that allow work to be performed but
minimize the power usage of one or more de-
vices.

To illustrate this, consider a user who has
boarded plane with his laptop. By default, the
system is Fully Operable—every device is ex-
ecuting at its maximum speed, though some
devices may be automatically transitioned to a
low-power state because they are idle. Without
an explicit state to enter, the user will have to
manually adjust the power state of the devices
affected by the change to the plane locale: turn
the wireless off, turn the sound on, and keep the
CPU at a speed adequate for listening to mu-
sic and editing a document. However, by defin-
ing a new operable low-power state, these items
can be performed automatically by simply en-
tering the “airplane” state. Any other system
optimizations that have been defined by the dis-
tributor or the OEM may also be performed by
that state transparently to the user, saving them

from the burden of remembering far more de-
tails about their system than they need to.

There is little support for operable system states
in Linux today. The closest thing is the Dy-
namic Power Management (DPM) project that
defines “operating points” for a system. How-
ever, the operating points so far are more con-
cerned with the low-level power parameters of
core system components like CPUs and RAM.
The origins of DPM are in the manipulation of
CPU power states without a firmware abstrac-
tion layer like ACPI to mask the implemen-
tation details, so its primary goal is well un-
derstood. And, without alternatives, it is the
best candidate for extension to a broader system
state definition mechanism. [DPM Project]

3.2 Inoperable States

Inoperable low-power system states are also
known as “suspend states,” the most well-
known form of power management. The con-
cept is simple: when the system is not being
used, everything is stopped and the system it-
self is put into a low-power state. The sys-
tem will automatically return to a working state
when it receives some sort of request, and will
do so in a very short amount of time compared
to what it would take to boot the system.

In each of the suspend states, the system stops
performing all work and is either placed into
either a special low-power state supported by
the platform, or it is completely shut off. These
special low-power platform states keep power
supplied to some components, allowing certain
events (a key press or lid open) to generate
a hardware interrupt and cause the system to
power on. Most of the inoperable system states
require hardware support, because they also de-
pend on power being supplied to memory, but
there is at least one that doesn’t require hard-
ware support.

156 • The State of Linux Power Management 2006

Common Name ACPI Name
Fully On S0
Standby S1
Unused S2
Suspend-to-RAM S3
Suspend-to-Disk S4

Table 2: ACPI System Power States

Regardless, the exact state of the CPU and ev-
ery device in the system is saved when the sys-
tem is suspended and later restored when it re-
gains power. This allows the system to continue
on from exactly the point at which it left off.

ACPI enumerates the different system sus-
pend states for supported platforms, though the
names are not meaningful for any other plat-
form. It also provides an abstract interface for
entering and leaving the suspend states, which
provides a similar level of ease as its interface
for entering CPU idle states. As is the case with
those, platforms that do not implement ACPI
require that that coordination be done manu-
ally. A list of ACPI system states are defined
in Table 2.

The most common suspend state is suspend-to-
disk. With this state, the contents of memory
will be written to unused disk space before the
system is powered down. When the system re-
gains power, the contents of memory are read
from the disk and restored. This is the one sus-
pend state that does not require hardware sup-
port, though it can leverage it for generating
wakeup events.

When the system is powered on, the kernel be-
gins a normal boot sequence before it detects
whether or not there is a saved memory image
on the disk. If it discovers an image, it reads
and reloads it into memory. This happens re-
gardless of whether the physical state the hard-
ware was in was a special low-power state.

Linux supports suspend-to-disk with the

swsusp (swap suspend) implementation. With
this code, the saved memory image is written
to unused swap space. It has matured rapidly
in the recent past and is currently supported on
x86, x86-64, and PowerPC platforms [swsusp].

There are two alternative efforts that im-
prove upon swsusp. Suspend2 includes sev-
eral rewritten components of swsusp, several
fixes to improve stability, and a few user-
friendly features, like a graphical progress
screen. This implementation exists as an ex-
ternal patch, though it is still actively main-
tained [Suspend 2]. swsusp3 is an implemen-
tation that moves the components to save and
restore memory on disk to userspace. This re-
duces the amount of kernel code significantly
and allows for easy integration of manipulative
tasks to the saved memory image (e.g. com-
pression and encryption). swsusp3 is currently
in an alpha state, though it is likely to evolve
quickly [swsusp3].

Beyond suspend-to-disk, there is one other
state that is commonly found on many plat-
forms: suspend-to-RAM. This is a special hard-
ware state in which most or all of the compo-
nents in a computer are powered off, except for
RAM, which is put into a self-refresh state to
preserve its contents. Before entering this state,
the kernel saves the state of every device in the
system, including the CPU, by copying it into
memory. When the system regains power, each
device is reinitialized and the state is restored.

Suspend-to-RAM provides an additional chal-
lenge in its handling of devices. On suspend-
to-disk, the system goes through a boot se-
quence that will initialize devices to a usable
state. On x86 platforms, this means that the
BIOS will setup any devices that it is respon-
sible for (video). This is not the case dur-
ing suspend-to-RAM. Control is transferred to
the kernel before any reinitialization is done,
leaving the burden solely on the shoulders of

2006 Linux Symposium, Volume Two • 157

the kernel. In order to provide correct opera-
tion, every device driver that can be used on a
system that supports suspend-to-RAM must be
modified (which turns out to be an overwhelm-
ing majority of drivers). On top of that, some
drivers do not have the ability to reprogram
the devices that they normally support because
the initialization sequences are kept proprietary
(e.g. video devices again).

There is one more relatively well-known sus-
pend state called “standby” in some literature
that deserves an honorable mention. It has
the ability to put the system into an inopera-
ble low-power state, but retain the context of
all devices if necessary. (Other states often re-
move power from the buses, implicitly remov-
ing power from downstream devices and caus-
ing their state to be lost.) However, standby
is seldom used in that form, and though it is
technically supported by Linux, its implemen-
tation offers no latency benefits over suspend-
to-RAM.

All power states can be entered by using the
sysfs PM interface. The state file returns
the system states that are supported by the plat-
form. Writing one of those state names to the
file will cause the system to transition to that
state.

4 Platform Power Management

The maturity and flexibility of Linux make it
possible to port the kernel to nearly any imagin-
able computer. (Sometimes it seems like it has
already been done [linuxdevices.com].) Each
of those computers has the potential to conserve
power in some way using the hardware fea-
tures described above, though the combination
of features used and the policy to guide them
depends on several platform-specific character-
istics, such as:

• What the device is used for, e.g. commu-
nications, engineering, gaming, etc.

• What the end goal of increased efficiency
is, e.g. longer battery life, quieter opera-
tion, etc.

• How much tolerance there is for perfor-
mance and latency, and how it is mea-
sured.

• What the physical constraints of the
comptuer are, and what the risks are of
having a thermal failure are, besides sim-
ply damaging the components.

In reality, there can be could any arbitrary num-
ber of conflicting design goals and require-
ments, spanning a nearly infinite range of com-
puters running Linux. However, for the sake
of discussion, the design goals have been nar-
rowed to those above, and the range of com-
puters has been narrowed to 4 broad classes of
devices and 8 categories within each. Table 3
describes these categories, along with exam-
ples from each. The following sections provide
an analysis of each category with the criteria
above to illustrate the power management po-
tential in Linux.

4.1 Embedded Devices

The term “embedded” has become a catch-all
phrase meaning roughly any computer that is
built with the intent of running a single work-
load and usually not very configurable or ex-
tensible. Definitions may vary, and exceptions
are rampant, but here it has been narrowed to
three categories of systems: handhelds, con-
sumer electronics, and embedded controllers.

In a basic sense, each is considered an appli-
ance by most of its consumers. They may not
know or care that it is running Linux, and have

158 • The State of Linux Power Management 2006

Comptuer Class Common CPUs Category Products Example
Embedded arm Handheld Mobile Phone Motorola

omap PDA Nokia 770
xscale Media Player iRiver h320

mips Consumer Electronics LCD Television Dell LCD
x86 Game console Sony PlayStation 3
ppc PVR Tivo
arm Wireless router LinkSys WRT54GL

Commodity x86 Laptop Ultra Mobile
General Purpose ppc Mobile

Portable Desktop
Desktop Gaming

Surfing
Publishing

Professional x86 Workstation Engineering
General Purpose ppc Graphics

Small Server File server
Web server
Mail Server

Enterprise x86 High Availability Infrastructure
ia64 Telecom
ppc

sparc Collaborative Distributed Application
mips Database

Table 3: Classes and Categories of systems supported by Linux

no intent to make a general-purpose computer
or run their own custom kernel on it. As such,
these platforms must behave like other appli-
ances in that category by being as easy-to-use
and causing as few problems as is commonly
expected by comparable alternatives.

4.2 Handhelds

Handheld devices are portable devices that can
easily fit into a person’s hand or pocket, such as
mobile phones, PDAs, and media players. The
primary power management goal is to maxi-
mize the amount of battery life of these devices,
though a number of constraints prevent that.

These devices are evolving rapidly as the CPUs
that are being used (arm, omap, xscale) are ex-
periencing rapid advances in performance ca-
pabilities. To gain competitive advantage over

their competitors, OEMs are adding more fea-
tures, which imposes greater constraints on the
battery life and the ability to manage it. Mobile
phones are getting media players and higher
quality cameras. PDAs are getting more appli-
cations and more wireless technologies. Media
players are getting higher in quality and also
obtaining new wireless technologies.

In order to maximize battery life, an aggressive
power management scheme must be employed.
Devices that are not being used must be transi-
tioned to a low-power state as soon as possible
(e.g., when a device stops playing video/audio).
The increase in latency to get the device back to
a usable state is tolerable, as it is common for
extended features of these platforms.

These devices may always be “on” or in a state
ready to respond to user input or an incoming
call, so they can not use any type of inoperable

2006 Linux Symposium, Volume Two • 159

system state. However, they are ideal candi-
dates for operable system states, and the con-
cept of operating points (as defined by DPM)
is typically used. A CPU in one of these sys-
tems can be scaled to a fraction of its peak volt-
age while leaving other devices active and wait-
ing for input. On receiving input, the system is
transitioned to a higher power state, allowing it
to perform the necessary work reasonably fast.

4.3 Consumer Electronics

Though handhelds could easily fit into this cat-
egory, this division is made to isolate devices
that are used within the home, perform a spe-
cific appliance-like function, and can assume
a steady current from a wall outlet. These
devices include things LCD televisions, other
media consoles (video games, personal video
recorders), and wireless routers. Competition is
fierce for these devices, and is typically waged
around aesthetics and value (number of features
for the price), so power consumption is not a
primary concern in implementing them.

However, that does not obviate the need for
it. The impetus for power management in con-
sumer electronics is to reduce the power bill
of the consumer, since a savvy consumer may
easily have a half-dozen such devices; and to
reduce thermal output, since a thermal over-
load could result in serious damage to the con-
sumer’s residence or self.

These devices are expected to perform consis-
tently fast whenever they are on. A slow re-
sponse time or a fluctuation in response time
will annoy the consumer and discourage them
from purchasing that brand in the future. When
these devices are not being used, they can be
completely turned off.

By using sufficiently low-power devices, little
power management is necessary. But the mar-
ket demands that more features be added, so the

components are getting richer and faster, mean-
ing that the power consumption will continue to
increase.

Operable low-power system states can be used
in the future to manage power, but with the
caveat that the system can never run in a state
lower than one which reasonably guarantees a
satisfactory response time. This should not be
a challenge, since current systems perform the
basic functions at a reasonable rate with little or
no power management. As features are added
and device speeds increase (as well as their
efficiency), the devices required to use those
features should remain at their lowest possi-
ble state until the feature is used by the con-
sumer. The features should require a known
amount of performance, so the device perfor-
mance needed for them should be adjusted up
to perform the work reasonably well.

4.4 Commodity General Purpose Comput-
ers

Commodity general-purpose computers pro-
vide the pathology to power management. Con-
sumers of these systems want the best of both
worlds—the most performance and the least
power consumption. This would not be an out-
rageous goal if the working set of platforms and
devices needing support was a reasonable size
(or at least bounded). There is no such luck in
the universe and therefore we have a very large
set of variables in the power management for-
mulas for commodity systems.

Fortunately, by being the mainstream, these
systems and their power management features
have enjoyed the most collective exposure by
developers, so the problems are at least under-
stood, even if the solutions are not. Most of the
Linux power management code is designed for
systems of this nature, so progress is well under
way in this area.

160 • The State of Linux Power Management 2006

Even though laptops and desktops can be used
for nearly any task, they are typically used
for doing only one subset of things at a time.
Even if every possible application is executing
at once, the user only has the ability to do a few
things simultaneously (e.g. write a document,
listen to music, and chat over an instant mes-
saging client).

Based on what is being done, intelligent deci-
sions can be made about how to regulate the
power consumed. First and foremost, opera-
ble system states can be implemented to define
boundaries on the power states of device com-
ponents. By specifying which state, or “pro-
file” to be used, the user can dictate how ag-
gressively the power should be managed. Ob-
served behavior has shown that the difference
between each operable state is likely to be that
some devices will be on, others will be off, and
the performance of the CPU will vary based on
an algorithm specific for that state. Depending
on what the primary objective of a state is, the
frequency modulation should exhibit different
behavior when scaling the frequency down (ag-
gressively or conservatively) and when scaling
the frequency (aggressively or conservatively).
An aggressive downward algorithm combined
with a conservative upward algorithm will pro-
vide a system that stays at a low-power state
unless absolutely necessary. This would bene-
fit a lightly loaded system, as in one that was
only editing documents and listening to music.

The inverse (conservatively downward and ag-
gressively upward) will produce a system that
is operating at or near its peak at all times. This
will benefit systems running resource-intensive
applications, like games.

Regardless of the operable state specified by the
user, the system must always be able to apply
the proper power management policy. The av-
erage person will not remember to always set
the ideal operable state for the program they

are running, so the system must either compen-
sate with flexibility in policy or enter the proper
state for the application running.

System suspend states can be used aggressively
when these devices are not being used. If the
system falls idle, then the user is typically not
in front of it, and if they are not in front of it,
they typically don’t expect to use it until they
sit back down, in which case they can expect
a reasonable latency to return the system to a
working state.

4.5 Professional General Purpose Systems

Professional general purpose systems are not a
far derivation from commodity general purpose
systems, but they are distinguished here to il-
lustrate the difference in workloads and expec-
tations. They are divided into two categories:
workstations, on which people typically per-
form some type of engineering work; and small
servers, on which departments and small com-
panies run their infrastructure.

Workstations are high performance machines
that are expected to operate at their maximum
potential when they are being used, which is
usually only when a user is at the keyboard in
front of it. Even if there is not an application
currently executing, it can be assumed that their
will be one soon. And, when they do execute,
they must complete the task as soon as pos-
sible. It is possible to leverage some amount
of operable state system power management,
though probably only with very conservative
downward algorithms and very aggressive up-
ward algorithms.

When a workstation is not directly being used,
it may still be expected to be usable (i.e. by re-
mote login), so even though it may experience
long periods of idleness, it may never be able
to enter an inoperable suspend state. Instead,

2006 Linux Symposium, Volume Two • 161

the operable performance can be scaled down
very aggressively so that it consumes a min-
imum amount of power while it is ready and
waiting.

Small servers typically start out as general pur-
pose computers, but then become dedicated to
running one task all the time, like a database
server, a web server, or a file server. In many
cases, there is no type of power management
that is feasible for a single server—they must
always be responsive to external requests, and
they must provide a low-latency response to
those requests.

Depending on the usage and the actual demand
for the system’s resources, some power can be
managed with operable system power states. A
system must be able to execute and respond at
a rate that is acceptable to its users. If the com-
ponents are much faster than is needed or ex-
pected, the speed of some of the components
may be scaled down without sacrificing the user
expectations. Additionally, depending on the
usage, a server may experience very different
usage models during different parts of the day.
By analyzing the usage over time, different op-
erable states can be used during different hours
to conserve power but still provide the neces-
sary availability.

4.6 Enterprise Computing

The ‘enterprise’ is a place where big comput-
ers live on a pathological scale. Its relation-
ship to power management is no different. Be-
sides the workstations, departmental servers,
laptops, and handheld communication equip-
ment, it also contains a set of servers in a class
of their own. These systems, multi-machine
versions of each “small server,” as well as
network infrastructure servers (dhcp, dns, au-
thentication), communication servers, and dis-
tributed applications.

The performance of these systems is expected
to be consistently good. They can not endure
any amount of inoperability, and any increase
in latency is usually unacceptable, even the rel-
atively small latency of transitioning a CPU
from a low-power C state to the C0 state (~1
ms).

However, these systems provide great opportu-
nities for power management. These systems
are large and there may be dozens or hundreds
of nodes on the same problem. They require
a lot of power to operate, which means they
need a lot of space and a lot of cooling. If a
computer runs at its maximum speed for an ex-
pected lifespan of three years, the cost to supply
power to the computer will equal the initial cost
of the computer. By conserving a fraction of
the power consumed, an organization may save
a significant amount of money in doing so.

Implementing power management on a cluster
of systems is largely outside the scope of this
paper. However, there is a simple analogue be-
tween operable system power states and “op-
erable cluster power states” where the cluster
performs at a rate less than its peak, but still
does an acceptable amount of work in a rea-
sonable amount of time. Under periods of de-
creased load, individual computers can be pow-
ered down, or they can be put into a lower-
power operable state. The states to use, when
to use them, and how to measure their success
is a function of the application and the usage of
it and is left as an exercise to the reader.

Conclusion

The concept of regulating power consumption
has existed for decades in popular rhetoric
about conserving natural resources. Given their
finite nature, the current usage models, and
shortage of mitigation techniques, most studies

162 • The State of Linux Power Management 2006

suggest that current resources will inevitably
depleted. Many people agree that it’s important
to be conscious of this.

Power management has proliferated in the
computer industries over the last decade be-
cause of the economic potentials that it offers.
By making devices more efficient, a company
can gain a market advantage over its competi-
tors. By using more efficient computers, a
company can reduce its operational overhead.
And, by applying more efficient manufacturing
processes over time, higher-performance com-
ponents can be used under tighter power con-
straints, opening up new usages and new mar-
kets for the company. Consumers realize many
benefits from power management. They get
longer battery life, lower power bills, and con-
tinuously increasing performance of their com-
puters.

In fact, the only downside to power manage-
ment is that the rapid parallel evolution of hard-
ware intelligence, power management features,
and user expectations imposes a stiff require-
ment on the software management of each.
This is especially true in Linux—the kernel
supports many different architectures, several
of those architectures can be used in many
types of computers, and many devices can be
used on any platform.

This paper has provided a survey of power
management concepts, how those concepts are
supported by Linux, and how they are—or
could be—applied to all of the different cate-
gories of machines that Linux supports. The
goal of this paper was to provide insight about
power management and its manifestations in
the hope that it will help someone implement-
ing some type power management support in
the future understand it better.

References

[watt] W. Thomas Griffith The Physics of
Everyday Phenomena, Second Edition,
1998

[Pentium M] Intel Corporation Intel Pentium
M Processor on 90 nm Process with
2-MB L2 Cache Datasheet, January 2006
http://download.intel.com/
design/mobile/datashts/
30218908.pdf

[cpufreq] The Linux cpufreq subsystem and
documentation http://www.
kernel.org/pub/linux/utils/
kernel/cpufreq/cpufreq.html

[ACPI] HP, Intel, Microsoft, Phoenix,
Toshiba, Advanced Configuration and
Power Interface Specification, Revision
3.0a, December 30, 2005
http://acpi.info/DOWNLOADS/
ACPIspec30.pdf

[DPM WP] IBM and MontaVista Software
Dynamic Power for Embedded Systems,
Version 1.1, November 19, 2002
http://www.research.ibm.
com/arl/projects/papers/
DPM_V1.1.pdf

[DPM Project] Dynamic Power Management
Project http://dynamicpower.
sourceforge.net/

[PCIe PM] Intel Corporation The Emergence
of PCI Express in the Next Generation of
Mobile Platforms, Second-Generation
Intel Centrino Mobile Technology,
Volume 09, Issue 01, February 17, 2005
http:
//www.intel.com/technology/
itj/2005/volume09issue01/
art02_pcix_mobile/p04_
power_management.htm

2006 Linux Symposium, Volume Two • 163

[linuxdevices.com] The Linux Devices
Showcase,
http://linuxdevices.com/
articles/AT4936596231.html

[ACPI Docs] Len Brown, et al. ACPI4Linux
Documentation Overview, http:
//acpi.sourceforge.net/
documentation/index.html

[swsusp] Pavel Machek, et al. Linux Swap
Suspend Implementation, Linux kernel
v2.6.16, kernel/power/swsusp.c

[Suspend 2] Nigel Cunningham, et al.
Suspend 2 for Linux
http://www.suspend2.net

[swsusp3] Rafael J. Wysocki, et al. Linux
Swap Suspend Implementation, Linux
kernel v2.6.16,
http://lists.osdl.org/
pipermail/linux-pm/
2006-January/001770.html

164 • The State of Linux Power Management 2006

I/O Workload Fingerprinting in the Genetic-Library

Jake Moilanen
IBM

moilanen@austin.ibm.com

Abstract

One great difficulty in writing an I/O sched-
uler is having one set of tunables which works
well for every workload. If the I/O scheduler
knew what kind of workload was occurring,
it could modify its tunables for better perfor-
mance. However, due to the I/O scheduler’s
depth in the kernel, it is very difficult to see this
information. One method which can be used to
obtain this information is to look at many small
pieces of information, and then aggregate them
to create a usable fingerprint.

This paper describes how to create an I/O work-
load fingerprint and its uses in both I/O sched-
ulers, and in the genetic-library. The paper’s
main focus is on the application of the fin-
gerprinting in the genetic library. By having
a workload fingerprint, the genetic library can
save genes which worked well for a particular
workload, and reintroduce them back into the
gene pool when that workload is seen again.
This leads to faster convergence on an optimal
tunable in an rapidly changing environment.

1 What is I/O Workload Finger-
printing?

Input/Output Workload Fingerprinting, or I/O
Workload Fingerprinting, is a method of taking

a number of small snapshots of individual per-
formance metrics, classifying them, and aggre-
gating all of them to create a fingerprint
of the current workload. This information is
used to assist I/O schedulers in making perfor-
mance tuning decisions.

2 Motivation

The genetic-library [1] had a need to increase
the speed which it converged on optimal tun-
ables. When a workload changed, it took a
great deal of time for the genetic-library to re-
converge on the new optimal settings. To do
this, the genetic-library must mutate and find
good genes for the new workload. These muta-
tions are really guesses, and guesses take time
to get correct.

Thus emerged the idea of classifying work-
loads, and using the workload information to
reintroduce known good genes to speed up con-
vergence towards optimal genes. Reintroduc-
tion takes the guesswork out of the equation.

While the genetic-library is one user of the I/O
workload fingerprinting, non-genetic-library
I/O schedulers could make use of the classifi-
cation. I/O schedulers can use this workload
information to change their tunables, or even
their scheduling algorithm.

166 • I/O Workload Fingerprinting in the Genetic-Library

3 How workloads are classified

These workloads are classified by how the I/O
is occurring to the block device. The I/O opera-
tions have certain characteristics, such as being
a read or a write, a sequential or random opera-
tion, and a size classification. Thus each I/O is
broken down in three different dimensions:

Type: Read/Write
Pattern: Sequential/Random
Size: Small/Large

Data for each of these dimensions is mea-
sured over a finite period, and used to de-
termine which characteristics each dimension
possesses.

To determine the type dimension, the num-
ber of read operations versus the number of
write operations is calculated. If there are more
than two times the number of read operations
as write operations, then the dimension is clas-
sified as a read. Otherwise, it is classified as a
write.

The pattern is either sequential or random.
For each I/O operation, a measurement is made
of the distance from the previous operation.
These measurements are averaged over the fi-
nite period. If the average distance is large,
then it is inferred that the disk head position is
far away, and a random workload is occurring.
Otherwise, if the distance is small, then the I/Os
are close to each other and it is inferred that the
disk operations are sequential.

The size dimension simply looks at the aver-
age size of each I/O operation and if the average
is a page or less, then the workload is inferred
to be small; otherwise it is large.

After the finite time period, these three di-
mensions are compiled together to form a

fingerprint of the workload. This in-
formation is used by I/O schedulers and the
genetic-library to help tune for the current
workload.

read

write

sequential

random

small

large

type

pattern

size

Fingerprint

Characteristic Dimension

Figure 1: Fingerprint

3.1 I/O Workload Fingerprinting Terms

The term workload is defined as the character-
ization of what the system is doing during a fi-
nite period.

A quantifiable form of the workload is called a
fingerprint.

For the purposes of this paper the term dimen-
sion is used in reference one aspect of the fin-
gerprint.

The term characteristic is in reference to the
possible outcomes a particular dimension can
take.

4 How is it Implemented?

The I/O workload fingerprinting code is broken
up into two pieces. The first is the helper func-
tions which do the statistic and fingerprinting

2006 Linux Symposium, Volume Two • 167

calculations. The second piece is the user, who
makes use of the fingerprint information.

The general code flow of the helper functions
looks like Figure 2.

reset disk stats snapshot
reset_fp_snapshot()

each I/O iterative update of snapshot
update_fp_snapshot()

finite time period up

start finite time period

calculate fingerprint
calc_fp()

Figure 2: Codeflow

4.1 Reset snapshot

The workload is measured during a finite pe-
riod, and the delta between two measurements
is needed to determine the workload. Thus,
at the beginning of the workload determina-
tion period the performance counters used for
the workload determination are zeroed. From
this point forward, any I/O operation is mea-
sured and counted towards this period’s work-
load. The function that does this is reset_fp_
snapshot().

4.2 Start finite counters

The next step is to start the counters for the time
period where the I/O workload is being deter-
mined. These counters are kept by the users
of the fingerprinting helper functions, as there
is no specific helper routines. Typically I/O is
sporadic, and thus, to determine the workload
a longer time period must pass to get accurate
numbers. This time period needs to be at least
in the order of tens of seconds.

4.3 Measure I/O metrics

Every I/O request makes a call to update_fp_
snapshot(), which updates the snapshot of
metrics with this I/O’s information. The per-
tinent information is discovered by looking at
the passed in bio struct. If the bio is a read,
then the read count is incremented. Conversely,
if the bio is a write, then the write count is in-
cremented.

To determine the distance, the bio->bi_
sector is used. It is inferred that this is
the head position of the disk, and by taking
the delta from the previous I/O’s bio->bi_
sector. This number is averaged in to the
running average which has accumulated since
the reset of the snapshot.

The size uses the bio_sectors(bio) value
passed in. This value is averaged with the run-
ning average as well.

4.4 End finite period

After a predetermined amount of time, the
timer pops, and the I/O workload period comes
to a close. This timer handler calls into the
calc_fp() routine to determine the finger-
print given the workload period snapshot.

168 • I/O Workload Fingerprinting in the Genetic-Library

4.5 Calculate the fingerprint

The calc_fp() call sets a fingerprint by
looking at the snapshot results. The first thing
determined is if the type is a read or a write. If
there are more than two times as many reads as
writes, then the workload type is considered to
be read. The reason that this is not one-to-one
is in most normal workloads there are far more
reads than writes. Hence, the two times factor
being used.

To determine the pattern, the average dis-
tance is used. If the average distance is
more than FP_CLASS_PATTERN_RAND num-
ber of sectors, then the pattern is random. If
it is under, then it is sequential. FP_CLASS_

PATTERN_RAND is defined to be 25. This num-
ber was determined through experimentation in
contrived workloads.

For the size, the average size is used. All
buffered I/O has a minimum size of one page.
Thus, if the size is greater than a page, then it is
considered a large size. If it’s a page, then the
size is small.

Once the fingerprint is determined, this pass
is complete. The next workload period is
started, and the loops starts again at reset_
fp_snapshot().

5 Application in Genetic-Library

Figure 3 shows the code flow.

5.1 Initialization

During the genetic-library initialization, two
three-dimensional arrays are created. The first
dimension of the array is for the type, the sec-
ond is for the pattern, and the last is for the size.

initialization
genetic_register_phenotype()

run child
run_child()

update top performers

run generation

reintroduce genes
reintroduce_genes()

Figure 3: Genetic-Library codeflow

Of the two arrays created, the first is for the top
genes of each workload. The second is for the
top-fitness of each workload.

There is a callback, create_top_genes(),
which does the initialization of the genes for
the particular workload. If good genes for a
particular workload are known, then those are
set.

5.2 Run generation

The kickoff of a new generation also kicks
off the finite timers for the generation. The
genetic-library uses the generation timers as the
finite timers for the I/O workload determina-
tion. By using these timers, the I/O workload
fingerprinting is in line with the genetic-library
generations, and can tailor a new generation to
the current workload.

2006 Linux Symposium, Volume Two • 169

5.3 Run child

Each child in the generation takes their finger-
print snapshot, and consolidates it with the gen-
eration’s snapshot. This is done through a fin-
gerprint helper function, consolidate_fp_
snapshot(). This function takes one master
snapshot, and updates the other child snapshots
to it. This includes adding the reads and writes,
incorporating the average distance, and the av-
erage size.

Once the child has updated the generation mas-
ter snapshot, it resets its snapshot for the next
time it is called.

5.4 Update top performers

At the end of a generation, the fingerprint is
calculated, and used to determine if this gen-
eration was the best for this workload. This is
done by comparing the previous top fitness for
this workload. If this workload had a better fit-
ness, then the average of this generation’s genes
are saved off, and its fitness is used as the top
fitness for this generation.

There is also a decay factor on the top fitness
for the current workload. Just in case there
was a spike with less-than-optimal genes, the
current workload’s top fitness is reduced every
pass through. This allows for self-correcting in
an environment which spikes.

5.5 Reintroduce generation

When the current fingerprint changes from the
last fingerprint, it indicates that the workload
changed. This is the opportune time to rein-
troduce the genes which worked well on this
workload. This is done via reintroduce_
genes(). The first child is arbitrarily picked

to get the reintroduction of genes. This is done
since no matter what the child count is, there is
always at least one, so the first is a safe one to
put them in. This reintroduction of the genes is
only done on the switch of workloads and not
every generation in order to not continuously
get bad genes which got set in the top gene’s
array because of a spike. Otherwise it could
take a while for the decay to kick in and correct
the genes.

6 Performance

For the genetic-library, the main purpose of I/O
Workload Fingerprinting is to converge on op-
timal tunables quicker during a changing work-
load. To test how well it performed, the flex-
ible file system benchmark [3], or FFSB, was
used. The FFSB is a versatile benchmark which
is able to simulate most any I/O workload.

In the performance evaluation, an OpenPower
710 system, with 2 CPUs, and 1.848 giga-
bytes of ram was used. The benchmarks were
conducted on a SLES 9 SP3 base install with
a 2.6.16 kernel. More system details can be
found in Appendix A.

To determine the convergence time, four differ-
ent workloads were simulated. These included
a random read, a random write, a sequential
read, and a sequential write. The workloads
were cycled to be as malevolent as possible for
the genetic-library. For instance, the bench-
mark started as a sequential write, and then
went to the polar opposite, random read. This
typically requires the genetic-library to search
for all new genes.

Two runs were conducted. The first was a stan-
dard genetic-library without I/O workload fin-
gerprinting turned on. The second run had the
genetic-library plus I/O workload fingerprint-
ing. In the second run, two passes were done.

170 • I/O Workload Fingerprinting in the Genetic-Library

The first pass warmed up good genes for the
workload fingerprinting, the second pass was
with a warm set of optimal genes.

The convergence was detected by pulling every
child’s genes during the run, and then plotting
them. Visual inspection clearly showed the one
or two dominant genes in a particular workload
converging to a single value. Once those genes
finally reached that value, convergence has oc-
curred.

6.1 Results

As show in Figure 4, faster convergence did
occur. As the second pass of the fingerprint-
ing run had a drastic reduction in convergence
time. Both sequential read and sequential write
converged with an 89% and a 97% reduction in
time, respectively. Random read and random
write converged with an 61% and 19% reduc-
tion in time, respectively. Sheet1

Page 1

sequential
write

random read sequential
read

random write

0

50

100

150

200

250

300

350

400

450

500

Convergence time

base genetic fingerprint pass 1 fingerprint pass 2

se
co

nd

Figure 4: Convergence time

In addition to the improvement of the second
pass, the first pass of the fingerprinting run did
see some improvements as well. There are two
factors which contributed. While the bench-
marks were immediately run once login prompt

was reached, there is an amount of warming of
the optimal genes which occurs from bootup.
This would mostly be seen in random read. The
other factor is because all workload gene pools
are initialized to the Anticipatory I/O scheduler
defaults. On a malevolent workload change,
the defaults are generally closer to the optimal
genes than the current tuning.

7 Future Work

At the time of this paper, use of the I/O
workload fingerprinting was reserved only for
the genetic-library. Expanding it to interact
directly with the Anticipatory I/O scheduler
would be ideal. Currently the Anticipatory I/O
Schedule is tuned to optimize sequential read
operations [2]. If the workload deviates, then
performance suffers. The I/O workload finger-
printing could set optimal tunables as workload
changes and would greatly improve the overall
performance of the Anticipatory I/O scheduler.
The optimal tunables for each workload could
be pulled from where the tunables converge in
the genetic-library during contrived workloads.

Other future work includes setting tunables in
a per-disk basis, as some systems have a RAID
setup in addition to an IDE disk. The workloads
between those two devices can vary greatly.
However, if it was known what type of work-
load each was performing, then each disk could
have its own set of tunables and could increase
the overall performance.

Expanding this idea of workload fingerprinting
to CPU workload fingerprint is an interesting
idea. By taking small pieces of information and
aggregating that information to an overall CPU
workload, fingerprinting could be useful for the
CPU scheduler. At the current time, no propos-
als have been made as to how to do this; it is
an interesting problem that would be useful to
solve.

2006 Linux Symposium, Volume Two • 171

8 Conclusion

The performance numbers clearly show a dras-
tic improvement on the convergence time. By
increasing the convergence rate, the I/O work-
load fingerprinting pushes the usability of the
genetic-library on a desktop environment. It
also greatly improves the aggregate perfor-
mance of the genetic-library, as it does not
waste time with less-than-optimal genes on a
changing workload.

Legal Statement

Copyright 2006 IBM.

This work represents the view of the author and does
not necessarily represent the view of IBM.

IBM, the IBM logo, and POWER are trademarks or
registered trademarks of International Business Ma-
chines Corporation in the United States, other coun-
tries, or both.

Linux is a trademark of Linus Torvalds in the United
States, other countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.

All the benchmarking was conducted for research
purposes only, under laboratory conditions. Results
will not be realized in all computing environments.

References in this publication to IBM products or
services do not imply that IBM intends to make
them available in all countries in which IBM op-
erates. This document is provided “AS IS,” with no
express or implied warranties. Use the information
in this document at your own risk.

References

[1] Moilanen, J., Williams, P., Using genetic
algorithms to autonomically tune the
kernel, 2005 Linux Symposium

[2] Pratt, S., Heger, D., Workload Dependent
Performance Evaluation of the Linux 2.6
I/O Schedulers, 2004 Linux Symposium

[3] http://sourceforge.net/projects/ffsb/

Appendix A. Performance System

IBM OpenPower 710 System
2-way 1.66 Ghz Power5 Processors
1.848 GB of memory
15,000 RPM SCSI drives
SLES 9 SP3
2.6.16 Kernel

172 • I/O Workload Fingerprinting in the Genetic-Library

X86-64 XenLinux: Architecture, Implementation, and
Optimizations

Jun Nakajima, Asit Mallick
Intel Open Source Technology Center

jun.nakajima@intel.com, asit.k.mallick@intel.com

Ian Pratt, Keir Fraser
University of Cambridge

{first.last}@cl.cam.ac.uk

Abstract

Xen 3.0 has been officially released with x86-
64 support added. In this paper, we discuss
the architecture, design decisions, and various
challenging issues we needed to solve when we
para-virtualized x86-64 Linux.

Although we reused the para-virtualization
techniques and code employed by x86(-32)
XenLinux as much as possible, there are no-
table differences between x86 XenLinux and
x86-64 XenLinux. Because of the limited seg-
mentation with x86-64, for example, we needed
to run both the guest kernel and applications in
ring 3, raising the problem of protecting one
from the other. This also complicated system
calls handling, event handling, including ex-
ceptions such as page faults and interrupts. For
example the native device drivers run in Ring 3
in x86-64 XenLinux today.

Xen itself was required to extend to support
x86-64 XenLinux. To handle transitions be-
tween kernel and user mode securely, for ex-
ample, Xen is aware of the mode of the guests
controlling the page tables used for each mode.
We also discuss other extensions to x86 Xen-

Linux, in support of x86-64, including page ta-
ble management, 4-level writable page tables,
shadow page tables for live migration, new hy-
percalls, and DMA.

We also discuss the performance optimizations
techniques used today, and also discuss how to
overcome the overheads caused by the transi-
tions between user and kernel mode.

1 Introduction

1.1 Full virtualization and para virtualiza-
tion

x84-64 XenLinux is a para-virtualized version
of x86-64 Linux ported to the x86-64 Xen. Al-
though the Linux kernel is modified, no modi-
fications are required to user space, i.e. exist-
ing binaries and operating system distributions
work without modification.

Xen 3.0 supports both para-virtualization and
hardware-based full virtualization. Para-
virtualization on Xen was designed to achieve
high performance, and it requires modifications

174 • X86-64 XenLinux: Architecture, Implementation, and Optimizations

to the guest operating system to work with the
platform interface provided by Xen. In other
words, Xen requires the porting of guest oper-
ating systems to the Xen Interface, to exploit
para-virtualization.

The alternative, full-virtualization, on contrary
to para-virtualization, no modifications to the
guest operating systems are required, but in-
stead it requires to provide the guest operating
systems with an illusion of a complete virtual
platform seen within a virtual machine behav-
ior same as a standard PC/server platform.

1.2 Para-virtualization of Linux

Para-virtualization of Linux means a task of
modifying the Linux kernel code to run it on
the virtual platform provided by Xen. The vir-
tual platform is defined by the Xen Interface
(See [3] for the detail).

Para-virtualized Linux, i.e. XenLinux does not
need to run on a standard PC/server platform,
but on a virtual platform with virtual CPU pro-
vided by Xen. The areas of such modifications
are mostly low-level CPU-dependent code, ini-
tialization code, and platform specific code.

1.3 Para-virtualization using VMI

Compared to Xen Interface, VMware’s
VMI [1] is closer to the instruction level. The
idea is “the closer the API resembles a native
platform which the OS supports, the lower the
cost of porting.” However, this layer can be
legacy when hardware-based virtualization is
broadly available in the near future.

In addition, the current VMI does not
have high-level interface API for the other
virtualization-related resources, such as inter-
rupt controllers (which Xen obviates), time,
virtual block, network devices, and virtual
TPM.

2 Xen Interface for x86-64

Xen Interface for x86-64 is mostly common
with x86-32. In this section, we briefly ex-
plain the abstraction provided by Xen 3.0 to de-
scribe the scope of the modifications required
for Linux.

Part of Xen Interface is provided by hypercalls.
The hypercall interface allows domains to per-
form executive procedures in Xen running at
privilege level 0. The other part is provided via
the data structures available to domains.

2.1 Virtual CPU Architecture

• CPU state – The critical difference at ini-
tialization time between the native x86-64
Linux and x86-64 XenLinux is that the lat-
ter is set to run in the 64-bit mode (with
paging enabled) at initialization when the
virtual machine, i.e. domain in Xen is
built. The CPU in guests run at priv-
ilege level 3. The virtual address pre-
established for the guest kernel at initial-
ization time is minimum, and guests need
to extend or create new translation as nec-
essary.

• Floating point registers – Xen al-
lows guests to use the lazy save and
restore techinique. The operation
clear, set CR0.TS are simply re-
placed with fpu_taskswitch(0),
fpu_taskswitch(1), respectively.

• Exceptions – The IDT is virtualized as a
simple trap table, and the hypercall set_
trap_table is used to register the set
of the handlers with Xen upon exceptions,
such as #PF (page fault).

• Interrupts and events – External inter-
rupts are virtualized by mapping them

2006 Linux Symposium, Volume Two • 175

to event channels, which are delivered
asynchronously to the target domain us-
ing a callback supplied via the set_
callbacks hypercall.

2.1.1 Tickless in idle

Xen allows guests to implement ’tickless mode’
on idle CPU. The hypercall set_timer_op
is used to request that they receive a timer event
sent at a specified system time.

2.2 Memory

Xen is responsible for managing the allocation
of physical memory to domains, and the guest
physical memory is virtualized as “pseudo-
physical memory”.

On a real system, E820 BIOS call typically
reports the memory map, but the equivalent
information is provided simply by “start info
page” (start_info.nr_pages) on guests
on Xen. The pointer to start info page is set by
Xen (for domain 0) or the domain builder (oth-
erwise) to the register %rsi. See Figure 1 for
the fields in details.

The memory given to a domain is a sin-
gle contiguous region of pseudo-physical
memory. Each domain is supplied
with a physical-to-machine table, and
start_info.mfn_list points to the
physical page number.

2.3 Writable Page Tables

In the default mode of operation, Xen provides
“writable page tables”, in which guests have
the illusion that their page tables are directly
writable.

At this point, the lowest level, i.e. page tables
(L1) are handled this way. The higher levels,
including PML4, page directory pointers, page
directories are updated by the hyercall mmu_
update. Updates to those entries are much
less frequent compared to page tables.

3 The x86-64 XenLinux Architec-
ture

The architecture of the x86-64 XenLinux
should be same as the x86-32 XenLinux in gen-
eral. See [2] for an overview of the Xen 3.0 ar-
chitecture. In this section, we discuss x86-64
specific requirements and extensions.

3.1 x86-64 specific requirements

As described in Section 2.1, on x86-64 systems
it is not architecturally possible to protect Xen
from untrusted guest code running in privilege
levels 1 and 2. Guests are therefore restricted
to run in privilege level 3 only. The guest ker-
nel is protected from its applications by context
switching between the kernel and currently run-
ning application.

The other issue is the SWAPGS instruction.
SWAPGS is intended for use with fast system
calls when in 64-bit mode to allow immediate
access to kernel structures on transition to ker-
nel mode. The native x86-64 Linux uses PDA
(Per processor data structure) to maintain criti-
cal data such as the pointer to the current pro-
cess, the top of kernel stack for the current pro-
cess, and user %rsp for system call, TLB state,
and etc. The register %gs points to the area in
the kernel mode, and the instruction SWAPGS
is executed when the processor enters or exits
from the kernel mode.

176 • X86-64 XenLinux: Architecture, Implementation, and Optimizations

typedef struct start_info {
char magic[32]; /* "xen-<version>-<platform>". */
unsigned long nr_pages; /* Total pages allocated to this domain */
...
unsigned long pt_base; /* VIRTUAL address of page directory. */
unsigned long nr_pt_frames;/* Number of bootstrap p.t. frames. */
unsigned long mfn_list; /* VIRTUAL address of page-frame list. */
unsigned long mod_start; /* VIRTUAL address of pre-loaded module */
unsigned long mod_len; /* Size (bytes) of pre-loaded module. */
int8_t cmd_line[MAX_GUEST_CMDLINE];

} start_info_t;

Figure 1: start info page

The SWAPGS is only accessible at privilege
level 0. Therefore it cannot be executed even in
privilege level 1 or 2. Although we need to re-
move the instruction when para-vitalizing, we
want to avoid to change the way the kernel uses
PDA for no good reasons. This also justified
the design to have the guest kernel run at privi-
lege level 3.

We have two options for to protect the guest
kernel from its applications:

1. Have two separate PML4 pages for the
kernel and a user process. The one for the
kernel has translation for the kernel and
user, and the user one has just for the user.

2. Have a single PML4 page for both the ker-
nel and a user process. When we switch to
the user mode, we remove the translations
for the kernel. When we switch back to
the kernel mode, restore the kernel trans-
lations.

Since Xen must be OS agnostic and the kernel
translations can be required for user processes
(such as vsyscall), the first option is a cleaner
option.

The current implementation uses the first one.

3.1.1 x86-64 Xen Address Space

Figure 2 shows the address map of the x86-64
Xen. As it shows, the kernel and user address
spaced is separated by Xen. This is similar to
the native x86-64 Linux, but the page offset
of the native is 0xffff810000000000, and it is
below the first address available for the guest,
which is 0xffff880000000000. Thus, the page
offset of x86-64 is set to 0xffff880000000000.

3.1.2 Unified system call and hypercall
handling

Xen needs to intercept system calls and bounce
them back to the guest kernel. The SYSCALL
and SYSRET instructions are designed for op-
erating systems that use a flat memory model
(segmentation is not used), and x86-64 Linux
uses these. SYSCALL is, however, intended
for use by user code running at privilege level
3 to access operating system or executive pro-
cedures running at privilege level 0. This im-
plies that x86-64 XenLinux cannot directly re-
ceive system calls from user processes. Despite
such extra overheads, however, this framework
allows to handle Xen hypercalls in the same
fashion, and the hypercalls from the kernel are
handled in the optimal fashion.

2006 Linux Symposium, Volume Two • 177

Xen (Ring0)

Kernel (Ring3)

264

264 – 247

Reserved

247

0

User (Ring3)

0xffff880000000000

Guest-defined Use
128TB, PLM4:0-255

Guest-defined Use
120TB, PML4:272-511

Figure 2: x86-64 Xen Address Space

• Xen must be aware in which mode the
guest is running, kernel or user,

• SWAPGS is done by Xen so that the guest
kernel can access PDA correctly without
major modifications,

• the guest requsts Xen to switch to the user
mode via a hypercall,

• The guests can modify the GS.base via a
hypercall. The generic MSR handling is
covered in Section 4.3.4 below.

4 Implementation

4.1 Memory Management

4.1.1 Memory Map

The memory given to a domain is a single con-
tiguous region of pseudo-physical memory, and

the total pages allocated is reported by “start
info page” as described by Xen Interface above.
This is handled as a very simple case of the
E820 memory map, which is used by the native
Linux.

4.1.2 2MB page and 1:1 Direct mapping

The native x86-64 Linux uses 2MB pages for
the kernel and direct mapping for the physical
memory, both of which are required for x86-64
XenLinux as well. At this point, Xen 3.0 does
not support such super pages, and we needed to
modify the initialization code to add one more
paging level. Since this requires changes to
the logic (e.g. extra page allocation for pte
pages), a future version of Xen should support
2MB pages to minimize the changes to x86-64
Linux. In addition, the TLB efficiency can go
down as we need to access more physical mem-
ory from the kernel.

178 • X86-64 XenLinux: Architecture, Implementation, and Optimizations

4.2 Page Table Management

One of the notable changes required for Xen is
to change the way the kernel allocate/deallocate
the page table pages, including pgd, pmd, pud,
and pte because those pages need to read-only.

The changes required are based on the well-
established routines or the architecture-specific
hooks, and thus they are cleanly replaced for
x86-64 XenLinux.

4.2.1 pgd_alloc and pgd_populate

The pgd_alloc routine allocates to two
back-to-back pgd pages for the kernel and user
translations, and pgd_populate duplicates
the modification to the kernel pgd into the user
pgd.

Note that the pgd_alloc, for example, in the
native x86-64 simply allocates a single page.

4.2.2 pmd_alloc, pud_alloc, pte_
alloc

Since we pin the whole page tables at once
when the pgd is pinned, we don’t need to write-
protect those pages at allocation time. How-
ever, we need to change the free routines. See
Section 5.1.1 for “pinning”.

4.2.3 pmd_free, pud_free, pte_free

When the page table pages we need to make
sure that we remove write-protection from
those pages. To that end, we use update_va_
mapping to revert the page attribute (back to
PAGE_KERNEL).

4.3 Process Management

4.3.1 Kernel and User Mode Transition in
Xen

For each virtual CPU, Xen maintains a flag that
indicates the guest kernel or user mode, and
the x86-64 specific routine toggle_guest_
mode(structvcpu*v) in Xen that toggles
the kernel or user mode for the guest, switching
the page tables accordingly.

4.3.2 Transition from the kernel to user
mode by guest

When it needs to return to the user mode (af-
ter performing service for a system call, for
example), x86-64 XenLinux needs to explic-
itly perform a hypercall iret, resulting in
toggle_guest_mode from the kernel to the
user mode in Xen.

The routine toggle_guest_mode is also
called when switching from the user mode to
the kernel, for example, upon exception or ex-
ternal interrupt in the user mode so that the ker-
nel can handle the event notified by Xen.

4.3.3 Context Switching

The context code, especially, switch_mm
(used for switching the address space) is sim-
ple and efficiently done by a multicall as shown
in Figure 4.

The Figure 4 shows:

• Call mm_pin() if the next mm is not
pinned. See Section 5.1.1 for this.

• Switch the kernel PML4 page,

2006 Linux Symposium, Volume Two • 179

static inline void pud_free(pud_t *pud)
{
pte_t *ptep = virt_to_ptep(pud);

if (!pte_write(*ptep)) {
BUG_ON(HYPERVISOR_update_va_mapping(

(unsigned long)pud,
pfn_pte(virt_to_phys(pud) >> PAGE_SHIFT, PAGE_KERNEL),
0));

}
free_page((unsigned long)pud);

}

Figure 3: pud_free

• Switch the user PML4 page,

• Switch LDT if needed, and

• Perform the three operations aboved by a
single multicall hypercall.

4.3.4 MSR Handling

x86-64 Linux needs to access several MSRs at
initialization and runtime as well.

• STAR, LSTAR, CSTAR, and SF-
MASK – These must be set to handle
SYSCALL/SYSRET. As described in
Section 3.1.2, they are initialized by Xen,
not by guests on x86-64 XenLinux.

• EFER – This is read by Linux to check if
NX is available at initialization time.

• GS.base, KernelGSbase, and FS.base –
Access to GS.base is not frequent, but ac-
cess to KernelGSbase and FS.base can be
frequent.

To minimize changes to the original Linux, we
emulate MSR access if rare. For example, ac-
cess to EFER is emulated upon #GP in Xen,

and the code in Figure 5 does not need any
modification in x86-64 XenLinux.

However, FS.base is for the base address of
TLS (Thread Local Storage), and thus can
be modified frequently at context witch time.
We use the set_segment_base hypercall if
frequent.

4.4 DMA

Since the memory allocated to guests is
“pseudo-physical” and can be anywhere in the
system, e.g. >4GB or not physically con-
tiguous, we need to convert guest physical to
machine physical when specifying address for
DMA. We reuse the swiotlb code in Linux,
which was originally developed for IA-64. The
code is shared by x86-32 and x86-64 Xen-
Linux.

4.5 ACPI

The ACPI (Advanced Configuration and Power
Interface) driver is a critical and complex com-
ponent when configuring the I/O devices as
well, and it is configured for x86-64 Linux dis-
tributions by default. The domain 0 has the

180 • X86-64 XenLinux: Architecture, Implementation, and Optimizations

static inline void switch_mm(struct mm_struct *prev,
struct mm_struct *next,
struct task_struct *tsk)

{
unsigned cpu = smp_processor_id();
struct mmuext_op _op[3], *op = _op;

if (likely(prev != next)) {
if (!next->context.pinned)
mm_pin(next);

/* stop flush ipis for the previous mm */
clear_bit(cpu, &prev->cpu_vm_mask);

set_bit(cpu, &next->cpu_vm_mask);

/* load_cr3(next->pgd) */
op->cmd = MMUEXT_NEW_BASEPTR;
op->arg1.mfn = pfn_to_mfn(__pa(next->pgd) >> PAGE_SHIFT);
op++;

/* xen_new_user_pt(__pa(__user_pgd(next->pgd))) */
op->cmd = MMUEXT_NEW_USER_BASEPTR;
op->arg1.mfn =

pfn_to_mfn(__pa(__user_pgd(next->pgd)) >> PAGE_SHIFT);
op++;

if (unlikely(next->context.ldt != prev->context.ldt)) {
/* load_LDT_nolock(&next->context, cpu) */
op->cmd = MMUEXT_SET_LDT;
op->arg1.linear_addr = (unsigned long)next->context.ldt;
op->arg2.nr_ents = next->context.size;
op++;

}

BUG_ON(HYPERVISOR_mmuext_op(_op, op-_op, NULL, DOMID_SELF));
}

Figure 4: switch_mm

2006 Linux Symposium, Volume Two • 181

arch/x86_64/kernel/setup64.c:

void __cpuinit check_efer(void)
{

unsigned long efer;

rdmsrl(MSR_EFER, efer);
if (!(efer & EFER_NX) || do_not_nx) {

__supported_pte_mask &= ~_PAGE_NX;
}

}

Figure 5: check_efer in x86-64 XenLinux – unmodified

identical ACPI driver except a one-line change
required to point to the RSDP because the phys-
ical address in the ACPI table needs to be com-
prehended as “machine physical” as opposed to
“guest physical”.

4.6 Local/IO APIC

The virtual CPU abstracted by Xen does not
need to access the local APIC. IPI (Inter-
Processor Interrupt), for example, is handled by
local APIC on the native, but it is done simply
by event_channel_op with EVTCHNOP_
send on XenLinux.

The ACPI tables, such as MADT, is parsed
by Xen, and the interrupt controllers, such as
I/O APIC(s) is owned by Xen. However, the
PCI interrupt routing information is provided
by ACPI, and thus, the domain 0 needs to com-
municate the information to Xen. The fol-
lowing operations were added for the para-
virtualization purpose, and they are handled by
the hypercall physdev_op.

1. PHYSDEVOP_APIC_READ – Used to
read an APIC register

2. PHYSDEVOP_APIC_WRITE – Used to
write an APIC register

3. PHYSDEVOP_ASSIGN_VECTOR –
This is used to for the domain 0 to com-
municate the interrupt routing information
to Xen as mentioned above.

4.7 PCI

The PCI driver is also identical to the native
except two lines, both of which are related to
converting physical address to virtual address
as the case with the ACPI driver.

4.8 Shadow Page Table for Live Migration

We extended the shadow code to support x86-
64 XenLinux. A shadow page table is the effec-
tive page table fully controlled by Xen, whereas
the guest page table is not active in terms of ad-
dress translations but is managed and updated
by the guest as the page table were effective.
The page frame numbers in the guest page ta-
bles specify in “guest physical”, thus they can
continue to be same even if the underlying map-
ping from “guest physical” to “machine phys-
ical” is changed. This attribute is required
for live migration, thus the shadow page sup-
port is required for XenLinux as well as HVM
(Hardware-based Virtual Machine) guests.

182 • X86-64 XenLinux: Architecture, Implementation, and Optimizations

The challenge with supporting XenLinux was
to switch from the writable page table to
shadow log-dirty mode at runtime. Since there
are still some PTEs with write-protected, the
shadow page needs to comprehend such special
conditions. The “Log-dirty mode” is used to
identify the pages modified in the guest mem-
ory to minimize the amount of the pages to
transfer for live migration.

5 Optimizations

Performance of x86-64 XenLinux has been im-
proved by various optimizations so far, leverag-
ing the same techniques used for x86-32 Xen-
Linux. In this section, we describe the most
effective ones for x86-64 XenLinux.

5.1 Optimizations Techniques Used Today

In this section we discuss the performance op-
timizations techniques used today.

5.1.1 Pinning and Unpinning Page Tables

The most effective ones was “late pin, early un-
pin” because of the deeper levels of page ta-
bles for x86-64. Xen needs to check the page
tables provided by guests to insure secure iso-
lation, and Xen performs such checking once
upon a request “pinning” from the guest. The
page tables populated later are not pinned, and
are modified by update_va_mapping.

mm_pin

At context switch time, especially in switch_
mm, the new routine mm_pin(structmm_

struct*next) is called if the page table for
next is not pinned. A new field pinned was
added to indicate the status.

The mm_pin(next) performs the following:

1. Change the page attribute to read-only by
walking through the page table for next.

2. Change the page attribute of the kernel pgd

3. Change the page attribute of the user pgd

4. Set next->context.pinned

arch_exit_mmap and mm_unpin

XenLinux uses the standard hook arch_
exit_mmap in exit_map() to unpin the
defunct page table aggressively. The mm_
unpin(mm) basically performs the reverse
operation of mm_pin() above.

5.1.2 Writable Page Table

We extended the writable page table support
for x86-64 in Xen. The writable page ta-
ble requires fewer changes to guests and it is
no slower for the batched interface that was
used by the old version of Xen. In addition,
the batched interface has problems with SMP
guests, as the updates may be expected to be
individually atomic.

5.2 Experiment

We made some experiment to overcome the
overheads caused by the transitions between
user and kernel mode.

2006 Linux Symposium, Volume Two • 183

Minimizing TLB Flush using a single PML4
page

As we discussed, today we flush TLB every
time the guest switches between the kernel and
user mode. The following steps basically re-
duces TLB flush at toggle_guest_mode.

1. When switching from the user to the ken-
nel, just add the kernel translations, and
don’t flush TLBs. Since the number of
PML4 entries used for the kernel is typ-
ically very small (typically only 3 on
Linux), the cost is low.

2. When switching from the kernel to the
user, remove the kernel translations from
the PML4 page, and flush TLB.

Our experiment showed overall improvements
with lmbench relative to the current Xen 3.0
(x86-64 XenLinux is based on 2.6.16). How-
ever, that did not improve other benchmarks,
such as kernel build. Since this method still
flushes the TLBs for the user process and more
TLBs are used for the user mode in general, it
may not make visible performance differences.
We continue to investigate how we can improve
performance in this area.

6 Conclusion

In this paper, we have presented a brief
overview of Xen interface, the issues/areas re-
quired to be resolved when para-virtualizing
x86-64 Linux, and the areas modified in that
process, and the techniques used for perfor-
mance optimizations.

Acknowledgment

A lot of developers in the Xen community
contributed to x86-64 XenLinux in various
areas, including stability, performance, bug
fixes, SMP support, cleanups, and upgrades.
We would like to thank especially the follow-
ing people for their contributions: Christian
Limpach, Chris Wright, Jan Beulich, and Li
Xin.

References

[1] Virtual machine interface (vmi)
specifications.
http://www.vmware.com/
interfaces/vmi_specs.html.

[2] Ian Pratt, Keir Fraser, Steven Hand,
Christian Limpach, Andrew Warfield, Dan
Magenheirmer, Jun Nakajima, and Asit
Mallick. Xen 3.0 and the art of
virtualization. In Preedings of the Linux
Symposium, July 2005.

[3] University of Cambridge. Interface
Manual Xen v3.0 x86. http:
//www.cl.cam.ac.uk/Research/
SRG/netos/xen/readmes/
interface/interface.html.

184 • X86-64 XenLinux: Architecture, Implementation, and Optimizations

GCC—An Architectural Overview, Current Status, and
Future Directions

Diego Novillo
Red Hat Canada

dnovillo@redhat.com

Abstract

The GNU Compiler Collection (GCC) is one
of the most popular compilers available and it
is the de facto system compiler for Linux sys-
tems. Despite its popularity, the internal work-
ings of GCC are relatively unknown outside of
the immediate developer community.

This paper provides a high-level architectural
overview of GCC, its internal modules, and
how it manages to support a wide variety of
hardware architectures and languages. Special
emphasis is placed on high-level descriptions
of the different modules to provide a roadmap
to GCC.

Finally, the paper also describes recent techno-
logical improvements that have been added to
GCC and discusses some of the major features
that the developer community is thinking for
future versions of the compiler.

1 Introduction

The GNU Compiler Collection (GCC) has
evolved from a relatively modest C compiler
to a multi-language compiler that can generate
code for more than 30 architectures. This di-
versity of languages and architectures has made

GCC one of the most popular compilers in use
today. It serves as the system compiler for
every Linux distribution and it is also fairly
popular in academic circles, where it is used
for compiler research. Despite this popular-
ity, GCC has traditionally proven difficult to
maintain and enhance, to the extreme that some
features were almost impossible to implement.
And as a result GCC was starting to lag behind
the competition.

Part of the problem is the size of its code base.
While GCC is not huge by industry standards,
it still is a fairly large project, with a core
of about 1.3 MLOC. Including the runtime li-
braries needed for all the language support,
GCC comes to about 2.2 MLOC.1

Size is not the only hurdle presented by GCC.
Compilers are inherently complex and very de-
manding in terms of the theoretical knowl-
edge required, particularly in the area of opti-
mization and analysis. Additionally, compilers
are dull, dreary and rarely provide immediate
gratification, as interesting features often take
weeks or months to implement.

Over the last few releases, GCC’s internal in-
frastructure has been overhauled to address
these problems. This has facilitated the im-

1Data generated using David A. Wheeler’s ’SLOC-
Count’.

186 • GCC—An Architectural Overview, Current Status, and Future Directions

plementation of a new SSA based global opti-
mizer, sophisticated data dependency analyses,
a multi-platform vectoriser, a memory bounds
checker (mudflap) and several other new fea-
tures.

This paper describes the major components in
GCC and their internal organization. Note that
this is not intended to be a replacement for
GCC’s internal documentation. Many modules
are overlooked or described only briefly. The
intent of this document is to serve as introduc-
tory material for anyone interested in extending
or maintaining GCC.

2 Overview of GCC

GCC is essentially a big pipeline that converts
one program representation into another. There
are three main components: front end (FE),
middle end (ME)2 and back end (BE). Source
code enters the front end and flows through the
pipeline, being converted at each stage into suc-
cessively lower-level representation forms until
final code generation in the form of assembly
code that is then fed into the assembler.

Figure 1 shows a bird’s eye view of the com-
piler. Notice that the different phases are se-
quenced by the Call Graph and Pass managers.
The call graph manager builds a call graph for
the compilation unit and decides in which or-
der to process each function. It also drives
the inter-procedural optimizations (IPO) such
as inlining. The pass manager is responsible
for sequencing the individual transformations
and handling pre and post cleanup actions as
needed by each pass.

The source code is organized in three major
groups: core, runtime and support. In what fol-

2Consistency in naming conventions led to this unfor-
tunate term.

lows all directory names are assumed to be rel-
ative to the root directory where GCC sources
live.

2.1 Core

The gcc directory contains the C front end,
middle end, target-independent back end com-
ponents, and a host of other modules needed
by various parts of the compiler. This includes
diagnostic and error machinery, the driver pro-
gram, option handling, and data structures such
as bitmaps, sets, etc.

The other front ends are contained in their own
subdirectories: gcc/ada, gcc/cp (C++),
gcc/fortran (Fortran 95), gcc/java,
gcc/objc (Objective-C), gcc/objcp (Ob-
jective C++), and gcc/treelang, which is a
small toy language used as an example of how
to implement front ends.

Directories inside gcc/config contain all
the target-dependent back end components.
This includes the machine description (MD)
files that describe code generation patterns
and support functions used by the target-
independent back end functions.

2.2 Runtime

Most languages and some GCC features require
a runtime component, which can be found at
the top of the directory tree:

The Java runtime is in boehm-gc (garbage
collection), libffi (foreign function in-
terface), libjava and zlib.

The Ada, C++, Fortran 95 and
Objective-C runtime are in libada,
libstdc++-v3, libgfortran and
libobjc respectively.

2006 Linux Symposium, Volume Two • 187

C
parser

C++
parser

Java
parser

Fortran
parser

GENERIC

GIMPLE

SSA
Optimizer

Flow sensitive and flow insensitive alias analysis
Constant Propagation (CCP)
Full Redundancy Elimination (FRE)
Dead Code Elimination (DCE)
Forward Propagation
Jump Threading
Copy Propagation (COPY-PROP)
Value Range Propagation (VRP)
Scalar Replacement of Aggregates (SRA)
Dead Store Elimination (DSE)
Tail Call discovery
Partial Redundancy Elimination (PRE)
Loop Optimizations
 Loop Invariant Motion (LIM)
 Loop Unswitching
 Loop Interchange
 Induction Variable Optimizations
 If conversion
 Vectorization
 Loop Prefetching
 Loop Unrolling
 Empty Loop Elimination

RTL

RTL
Optimizer

Sibling/tail call optimization
Life and Data Flow Analysis
Common Subexpression Elimination (CSE)
Branch prediction
Instruction Combination
Mode Switching
Instruction Scheduling
Register Allocation
Register Renaming
Peephole Optimizations
Branch Shortening
Machine Specific Reorganizations

Pass
Manager

Assembly

Front End (FE)

Middle End (ME)

Back End (BE)

Interprocedural
Optimizer

Inlining
Constant Propagation (IPCP)
Static variable analysis
Points-to alias analysis

Call Graph
Manager

Figure 1: An Overview of GCC

188 • GCC—An Architectural Overview, Current Status, and Future Directions

The preprocessor is implemented as a separate
library in libcpp.

A decimal arithmetic library is included in
libdecnumber.

The OpenMP [14] runtime is in libgomp.

Mudflap [6], the pointer and memory check
facility, has its runtime component in
libmudflap.

The library functions for SSP (Stack Smash
Protection) are in libssp.

2.3 Support

Various utility functions and generic data struc-
tures, such as bitmaps, sets, queues, etc. are im-
plemented in libiberty. The configuration
and build machinery live in build and vari-
ous scripts useful for developers are stored in
contrib.

2.4 Development Model

All the major decisions in GCC are taken by
the GCC Steering Committee. This usually
includes determining maintainership rights for
contributors, interfacing with the FSF, approv-
ing the inclusion of major features and other
administrative and political decisions regard-
ing the project. All these decisions are guided
by GCC’s mission statement (http://gcc.
gnu.org/gccmission.html).

GCC goes through three distinct development
stages, which are coordinated by GCC’s re-
lease manager and its maintainers. Each stage
usually lasts between 3 and 5 months. Dur-
ing Stage 1, big and disruptive changes are
allowed. This is where all the major fea-
tures are incorporated into the compiler. Stage

2 is the stabilization phase, only minor fea-
tures are allowed and bug fixes that maintain-
ers consider safe to include. Stage 3 marks
the preparation for release. During this phase
only bug and documentation fixes are allowed.
In particular, these bug fixes are usually re-
quired to have a corresponding entry in GCC’s
bug tracking database (http://gcc.gnu.
org/bugzilla).

At the end of stage 3, the release manager will
cut a release branch. Stabilization work con-
tinues on the release branch and a release crite-
ria is agreed by consensus between the release
manager and the maintainers. Release block-
ing bugs are identified in the bugzilla database
and the release is done once all the critical bugs
have been fixed.3 Once the release branch is
created, Stage 1 for the next release begins.

Using this system, GCC is averaging about a
couple of releases a year. Once version X.Y is
released, subsequent releases in the X.Y series
continues. In this case, another release manager
takes over the X.Y series, which accepts no new
features, just bug fixes.

Major development that spans multiple releases
is done in branches. Anyone with write access
to the GCC repository may create a develop-
ment branch and develop the new feature on
the branch. When that feature is ready, they
can propose including it at the next Stage 1.
Vendors usually create their own branches from
FSF release branches.

All contributors must sign an FSF copyright re-
lease to be able to contribute to GCC. If the
work is done as part of their employment, their
employer must also sign a copyright release
form to the FSF.

3It may also happen that some of these bugs are sim-
ply moved over to the next release, if they are not deemed
to be as critical as initially thought.

2006 Linux Symposium, Volume Two • 189

3 GENERIC Representation

Every language front end is responsible for all
the syntactic and semantic processing for the
corresponding input language. The main inter-
face between an FE and the rest of the compiler
is via the GENERIC representation [12]. Ev-
ery front end is free to use its own internal data
structures for parsing and validation. Once the
compilation unit is parsed and validated, the FE
converts its parse trees into GENERIC, a high-
level tree representation where all the language-
specific features are explicitly represented (e.g.,
exception handling, vtable lookups).

Due to historic reasons, most FEs use the tree
data structure for representing their parse trees.
However, the Fortran 95 FE uses its own data
structures. This is a desirable property because
it shields the FE from the rest of the compiler,
providing a clean hand-off interface to the mid-
dle end via GENERIC.

While GENERIC provides a mechanism for
a language front end to represent entire func-
tions in a language-independent way, there are
some features that are not representable in
GENERIC. For instance, during alias analy-
sis it is often necessary to determine whether
two symbols of different types may occupy the
same memory location. Each language has its
own rules regarding type conflicts, so the com-
piler provides a call-back mechanism to query
the front end. This mechanism is known as lan-
guage hook or langhook and it is used when-
ever the compiler needs to involve the front end
in some transformation or analysis.

All the language semantics must be explic-
itly represented in GENERIC, but there are no
restrictions in how expressions are combined
and/or nested. If necessary, a front end can
use language-dependent trees in its GENERIC
representation, so long as it provides a hook

f(int a, int b, int c)
{

if (g (a + b, c))
c = b++ / a

return c
}

Figure 2: A program in GENERIC form.

for converting them to GIMPLE. In particu-
lar, a front end need not emit GENERIC at
all. For instance, in the current implementa-
tion, the C and C++ parsers do not actually emit
GENERIC during parsing.

In practical terms GENERIC is a C-like lan-
guage. A front end that wants to integrate with
GCC can emit any of the tree codes defined in
tree.def and implement the language hooks
in langhooks.h. Figure 2 shows a code
fragment in GENERIC.

4 GIMPLE Representation

GIMPLE is a subset of GENERIC used for op-
timization. Both its name and the basic gram-
mar are based on the SIMPLE IR used by the
McCAT compiler at McGill University [8]. Es-
sentially, GIMPLE is a 3 address language with
no high-level control flow structures:

1. Each GIMPLE statement contains no
more than 3 operands (except function
calls) and has no implicit side effects.
Temporaries are used to hold intermediate
values as necessary.

2. There are no lexical scopes.

3. Control structures are lowered to condi-
tional gotos.

190 • GCC—An Architectural Overview, Current Status, and Future Directions

f (int a, int b, int c)
{

t1 = a + b
t2 = g (t1, c)
if (t2 != 0)

{
c = b / a
b = b + 1

}
else

{

}
t3 = c
return t3

}

(a) High GIMPLE.

f (int a, int b, int c)
{

t1 = a + b
t2 = g (t1, c)
if (t2 != 0) <D1530> else <D1531>

<D1530>:
c = b / a
b = b + 1

<D1531>:
t3 = c
return t3

}

(b) Low GIMPLE.

Figure 3: High and Low GIMPLE versions for the code in 2.

4. Variables that need to live in memory are
never used in expressions. They are first
loaded into a temporary and the temporary
is used in the expression.

There are two slightly different versions of
GIMPLE used in GCC, namely High GIMPLE
and Low GIMPLE. The main difference is that
in High GIMPLE binding scopes like the body
of an if-then-else construct are nested
with the parent construct, while in Low GIM-
PLE binding scopes are completely linearized
using labels and jumps. Figure 3(a) shows the
High GIMPLE form for the code in Figure 2.
The Low GIMPLE version is shown in Fig-
ure 3(b). The differences between Low and
High GIMPLE are more noticeable when low-
ering other constructs like exception handling
and OpenMP directives.

The process of lowering GENERIC into
GIMPLE is known as gimplification. It
recursively replaces complex statements
with sequences of statements in GIMPLE
form. The gimplifier lives in gimplify.c
and tree-gimple.c. The lowering

between High and Low GIMPLE is in
gimple-low.c.

5 Call Graph

In order to perform interprocedural analyses
and optimizations, GCC builds a call graph for
the whole compilation unit.4 This static call
graph is used in two ways: to drive the se-
quence in which functions are optimized and
to perform interprocedural optimizations. Each
node in the call graph represents a function or
procedure in the compilation unit and edges
represent call operations. Data and attributes
are stored both on nodes and edges.

After the front end is done parsing a func-
tion and producing the GENERIC form for it,
the middle end is invoked to create the High
GIMPLE form with a call to gimplify_
function_tree. The gimplified function
is then added to the call graph. Once all the
functions have been parsed and added to the

4Only at -O2 and higher.

2006 Linux Symposium, Volume Two • 191

call graph, the middle end invokes cgraph_
optimize, which will:

1. Perform interprocedural optimizations
with a call to ipa_passes.

2. Optimize every reachable function in the
call graph with a call to cgraph_
expand_function which in turn calls
tree_rest_of_compilation to ex-
ecute all the intraprocedural transfor-
mations by calling the pass manager
(execute_pass_list).

The implementation of the call graph lives in
cgraph.c and cgraphunit.c. All passes
executed by the pass manager are defined
and registered by init_optimization_
passes in passes.c.

6 SSA Form

After a function is in Low GIMPLE form,
the pass manager will build the Control Flow
Graph (CFG) and rewrite the function in Static
Single Assignment (SSA) form [3], which is
the main data structure used for analysis and
optimization in the middle end.

The SSA form is a representation that exposes
data flow by linking read and write operations
using a static versioning scheme. When a vari-
able V is the target of a write operation, a new
version number is created for V and labeled Vi.
Subsequent read operations, without an inter-
vening assignment to V , are modified to use Vi.
For example,

foo (int a, int b, int c)
{

a1 = 3;
b2 = 5;
c3 = a1 + b2;
a4 = c3;
return a4;

}

When analyzing the statement c3 = a1 +b2, the
optimizer can easily determine that a1 can be
replaced with 3 and b2 with 5 because both SSA
names are guaranteed to be assigned exactly
once. But, in many cases, conditional control
flow makes it impossible to statically determine
the most recent version of a variable. For in-
stance,

foo (int a, int b, int c)
{

if (c3 > 10)
c4 = a1 + b2;

else
c5 = a1 − b2;

c6 = PHI <c4, c5>

return c6;
}

Since it is not possible to statically determine
which branch will be taken at runtime, we don’t
know which of c4 or c5 to use at the return state-
ment. So, the SSA renamer creates a new ver-
sion, c6, which is assigned the result of “merg-
ing” c4 and c5. This PHI function tells the com-
piler that at runtime c6 will be either c4 or c5.

GCC uses two different SSA variants, a rewrit-
ing and a non-rewriting form. In the rewrit-
ing form, symbols are replaced with their corre-
sponding SSA names. Each SSA name is con-
sidered a distinct object and, as such, code mo-
tion transformations are allowed to cause two
or more SSA versions for the same symbol to

192 • GCC—An Architectural Overview, Current Status, and Future Directions

be simultaneously live. When the function is
taken out of SSA form, the SSA names are con-
verted into regular symbols and new artificial
symbols are created as needed to satisfy live
range requirements [13]. In the non-rewriting
form, SSA names are only used to connect vari-
able uses to their definition sites, distinct SSA
names for the same symbol are not allowed
to have overlapping live ranges, and so, when
taking the function out of SSA form the SSA
names are simply discarded.

The rewriting form is applied to local scalar
variables that may not be modified in ways un-
known to the compiler. That is, they may not
be modified as a side-effect to a function call,
their address has not been taken by any pointer
and every read/write operation references the
whole object. GCC labels these variables as
GIMPLE registers.5 Operand statements that
use GIMPLE registers are referred to as real
operands, and so the rewriting SSA form in
GCC is also known as real SSA form. The
previous two code fragments are examples of
GCC’s real SSA form.

In contrast, the non-rewriting SSA form is used
on memory symbols. These are variables that
may be modified in ways unknown to the com-
piler. That is, they may be clobbered by a
function call or their address has been taken
or they may be partial references to the object
(e.g. symbols of aggregate types like struc-
tures and arrays). Since statements may have
implicit references to memory symbols, GCC
represents them with special virtual operators
attached to the statement. There are two such
operators: V_MAY_DEF to indicate a partial
and/or potential store to the object, and VUSE

to indicate partial and/or potential load from
the object. This non-rewriting form is known
in GCC as virtual SSA form.

5This does not imply that the object will actually be
allocated a physical register.

For example, in the following code fragment
variable A is a global variable that may be clob-
bered by function foo, so when calling foo,
GCC indicates that A may be modified by it
with a V_MAY_DEF operator, resulting in the
following virtual SSA form for A:

int A;

bar ()
{
A2 = V MAY DEF <A1>
A = 9

A3 = V MAY DEF <A2>

foo ()

VUSE <A3>

x4 = A
return x4

}

Notice that the virtual SSA form not only links
uses to definitions (use-def chains). It also links
definitions to other definitions (def-def chains).
This is necessary because V_MAY_DEF oper-
ators represent partial/potential stores. In the
previous code fragment, the store A = 9 may
or may not reach the x4 = A statement, so it is
necessary to link A3 and A2, or transformations
like dead-code elimination would eliminate the
statement A = 9.

The CFG, SSA form and related facilities (such
as incremental SSA updates) are implemented
in tree-cfg.c, tree-into-ssa.c,
tree-ssa.c, and tree-outof-ssa.c.

6.1 Aliasing

GCC uses two mechanisms for representing
aliasing: query or oracle based, used during
RTL optimization and an explicit representa-
tion used during GIMPLE optimization.

2006 Linux Symposium, Volume Two • 193

The query based mechanism provides functions
that, given two memory references will deter-
mine whether they may overlap or not. Cur-
rently, the analysis done by this mechanism is
mostly type and structural based. If the two
memory references are to objects whose types
may not alias according to the rules of the lan-
guage, then they may not overlap. The basic
mechanism uses the notion of alias set num-
bers, which are associated to the type of the
memory location and organized in a hierarchi-
cal structure according to the rules of the input
language. Given two memory references, the
function alias_sets_conflict_p deter-
mines whether they may occupy the same
memory slot based on their alias set numbers.
The file alias.c contains the implementation
of this mechanism.

The explicit representation is used during GIM-
PLE optimization and it takes advantage of
the virtual SSA representation. After the
code is put into SSA form, an alias analysis
pass (pass_may_alias) computes points-
to information for all referenced pointers.
This is used to build flow-sensitive and flow-
insensitive alias sets that are then associated
with special symbols called memory tags that
represent pointer dereferences. When a pointer
is dereferenced, the compiler will look-up its
associated memory tag, determine what sym-
bols belong to the alias set and insert virtual
operators for every symbol in the alias set.

Each mechanism has its strengths and weak-
nesses. The advantage of an explicit rep-
resentation is that optimizers need not con-
cern themselves with possible aliasing prob-
lems when doing a transformation. On the
other hand, an explicit representation takes up
memory and compile time (unbearably so in
some extreme cases), so it may become an
unnecessary burden. For example, consider
the function in Figure 4.6 To illustrate the

6SSA form redacted for simplicity.

difference between the explicit representation
and the query based mechanism, consider the
problem of re-ordering the store operations at
lines 6 and 7. With a query based mechanism,
the transformation pass should call alias_
sets_conflict_p on the memory refer-
ences given by ∗p2 and ∗q3.

1 foo (int i, float *q)
2 {
3 int a, b, *p;
4
5 p2 = (i1 > 10) ? &a : &b
6 *p2 = 42
7 *q3 = 0.42
8 return *p2
9 }

Figure 4: Query-based alias analysis requires
no additional operators in the IL.

1 foo (int i, float *q)
2 {
3 int a, b, *p;
4
5 p2 = (i1 > 10) ? &a : &b

a5 = V MAY DEF <a4>

b7 = V MAY DEF <b6>

6 *p2 = 42

MT9 = V MAY DEF <MT8>

7 *q3 = 0.42

VUSE <a5>

VUSE <b7>

8 return *p2
9 }

Figure 5: Explicit representation of aliasing us-
ing virtual SSA form.

But that relation is made explicit when the pro-
gram is in virtual SSA form (Figure 5). Since
p2 points to one of a or b, line 6 contains one
virtual operator for each variable. On the other
hand, pointer q3 does not really point to any

194 • GCC—An Architectural Overview, Current Status, and Future Directions

variable in function foo, so dereferencing q3 is
represented with a virtual operator to its mem-
ory tag (MT). Given this, the stores at line 6 and
7 do not conflict and so the transformation can
proceed safely.

While the explicit representation has several
advantages over the query mechanism, all the
virtual operators required and their PHI nodes
will add more bulk to the IR, resulting in in-
creased compile time and memory consump-
tion (we are currently working on a new rep-
resentation to alleviate this problem).

6.2 SSA Optimizers

In general, transformations at the GIMPLE
level are target-independent because the IL
does not expose attributes such as word size,
address arithmetic, registers, calling conven-
tions, etc. However, there are transformations
that need to span multiple IL abstractions to
work properly. One of the prime examples is
vectorization. The analysis required to deter-
mine whether some code may be vectorized
requires high-level dataflow information that
is available in GIMPLE. However, the actual
transformation depends on hardware capabili-
ties, such as size of vector registers and avail-
able vector operations. This communication is
done via special IL codes and call backs be-
tween the middle end and back end.

A variety of SSA-based analyses and optimiza-
tions have been implemented on the GIMPLE
representation (Figure 1). Together with other
cleanup passes and the fact that some of them
are executed more than once, the middle end
pipeline runs to about 100 stages. Some of the
more notable transformations include

Vectorization [15] supporting multiple archi-
tectures.

Loop optimizations based on chains of recur-
rences to recognize scalar evolutions and
track induction variables [2].

Traditional scalar optimizations, including
constant/copy propagation, dead code
elimination, full and partial redundancy
elimination, value range propagation,
scalar replacement of aggregates, jump
threading, forward propagation and dead
store elimination.

Flow sensitive and flow insensitive alias anal-
ysis, including field-sensitive points-to
analysis for aggregates [1].

Automatic instrumentation for pointer check-
ing for C and C++ [6].

7 RTL

Register Transfer Language (RTL) is the orig-
inal intermediate representation used by GCC.
It was developed at the University of Arizona
as part of their research in re-targetable com-
pilers in the early 80s [4, 5]. It is also used by
VPCC (Very Portable C Compiler). Basically,
RTL is an assembler language for an abstract
machine with an infinite number of registers.
As opposed to the C-like representation used by
GENERIC and GIMPLE, RTL resembles Lisp
(although it is possible to obtain an assembly-
like rendering for debugging purposes). The
code fragment in Figure 6(a) shows a GIMPLE
code fragment and its conversion to RTL (Fig-
ure 6(b)). The exact RTL will contain more de-
tailed information and may vary from one pro-
cessor to another.

RTL is designed to abstract hardware features
such as register classes, memory addressing
modes, word sizes and types (machine modes),
compare-and-branch instructions, calling con-
ventions, bitfield operations, type and sign

2006 Linux Symposium, Volume Two • 195

if (a > 10) <L1> else <L2>;

<L1>:

b = a − 1;

<L2>:

(a) GIMPLE version.

(insn 20 18 21 3 (set (reg:CCGC 17 flags)
(compare:CCGC (reg/v:SI 60 [a])

(const int 10 [0xa]))))

(jump insn 21 20 22 3 (set (pc)
(if then else (le (reg:CCGC 17 flags)

(const int 0 [0x0]))
(label ref 26)
(pc))))

(code label 22 21 23 4 3 "" [0 uses])

(insn 25 23 26 4 (parallel [
(set (reg/v:SI 59 [b])

(plus:SI (reg/v:SI 60 [a])
(const int −1 [0xffffffff])))

(clobber (reg:CC 17 flags))
]))

(code label 26 25 27 5 2 "" [1 uses])

(b) RTL version.

Figure 6: GIMPLE and RTL variants of a conditional branch.

conversions, and generic instruction patterns.
These abstractions are defined and controlled
by an elaborate pattern matching mechanism
defined in a machine description (MD) file,
which defines all the necessary code generation
mappings between the back end and the target
processor.

Machine description files together with other
files needed to generate target code are com-
monly referred-to as ports. They are stored
in sub-directories under gcc/config/. Cur-
rently, GCC contains more than 30 such ports,
and while the implementation of a new port
is not a trivial task, it is perhaps one of
the aspects of GCC with the most exten-
sive available documentation (http://gcc.
gnu.org/onlinedocs/). There are two
main components that make up a port:

Instruction templates define the mappings
between generic RTL and the target ma-
chine. For instance, the define_insn

pattern in Figure 7 describes a typical 32-
bit addition operation for a RISC proces-
sor. The top portion defines the pattern
to be matched. In this case, it’s looking
for x = y + z where all the operands are
word-sized (SI), general purpose registers
("register_operand" "r"). It also
indicates that the x operand is modified
by the instruction ("=r"). The bottom
portion indicates the final assembly code
that should be emitted when this pattern is
matched (add x, y, z).

Target description macros describe hard-
ware capabilities such as register classes,
calling conventions, data types and sizes,
predicates that validate moves between
memory and registers, etc.

7.1 RTL passes

Historically, all the optimization work was
done in RTL, but the current trend is to

196 • GCC—An Architectural Overview, Current Status, and Future Directions

(define insn "addsi3"
[(set (match operand:SI 0 "register_operand" "=r")

(plus:SI (match operand:SI "register_operand" "r")
(match operand:SI "register_operand" "r")))]

""
"add %0, %1, %2")

Figure 7: An RTL code generation pattern for 32-bit addition.

move most of the heavy lifting from RTL into
the GIMPLE optimizers (currently there are
around 60 RTL passes and more than 100 GIM-
PLE passes). The final goal is to implement
analyses and transformations at the right level
of abstraction. RTL is ideally suited for low-
level transformations such as register allocation
and scheduling, but most of the generic trans-
formations are more efficient to implement in
GIMPLE.

RTL and GIMPLE also share common infras-
tructure code such as the pass and call graph
managers, the flowgraph, dominance informa-
tion and type-based aliasing. Some of the main
transformations done in RTL include:

Register allocation. Arguably, one of the
more complex passes in GCC. It is orga-
nized as a multi-pass allocator: a local
pass (local-alloc.c) allocates regis-
ters within a basic block, and a global pass
(global.c) which works across basic
block boundaries. The actual code mod-
ification is done by a third pass known
as reload (reload.c and reload1.c).
Most of the complexity in register alloca-
tion lies in the multitude of targets sup-
ported by GCC. Every target will have
its own set of register classes and rules
for moving values between registers and
memory. Several efforts exist to re-
implement this pass, but is generally con-
sidered to be a fairly difficult problem
[9, 10, 11, 16].

Scheduling. This pass tries to take advan-
tage of the implicit parallelism provided
by the multiple functional units in mod-
ern processors that allow the simultaneous
execution of multiple instructions. The
scheduler rearranges the instructions ac-
cording to data dependency restrictions
in an effort to increase instruction paral-
lelism. The scheduler is implemented in
haifa-sched.c and sched-rgn.c.

Software pipelining is implemented us-
ing Swing Modulo Scheduling (SMS)
[7]. This pass complements instruction
scheduling by improving parallelism in-
side loops by overlapping the execution of
instructions from different loop iterations.

Other optimizations include common subex-
pression elimination, instruction re-
combination, mode switching reduction,
peephole optimizations and machine
specific reorganizations.

8 Current Status and Future Work

The open development model used by GCC has
all the usual advantages of other FOSS projects.
It attracts a wide variety of developers and since
it is the system compiler of every Linux dis-
tribution, it is a fairly stable and robust com-
piler. Furthermore, the wide variety of sup-
ported languages, platforms and flexible archi-
tecture makes it a compelling option for both
industry and academic compiler projects.

2006 Linux Symposium, Volume Two • 197

GCC has changed quite significantly in the
last 3–4 years. The addition of GENERIC,
GIMPLE and the SSA framework allowed the
development of features that had traditionally
been considered difficult or impossible to im-
plement, including vectorization, OpenMP and
advanced loop transformations.

8.1 New languages

The introduction of the GENERIC representa-
tion has further simplified the task of introduc-
ing a new language front end to GCC. The in-
creased separation between the front end and
the rest of the compiler provides a lot of in-
dependence to language designers. While we
do not claim GENERIC to be the perfect tar-
get for all languages, it has proven to be suf-
ficiently flexible for the variety of languages
currently supported by GCC, including C, C++,
Java, Ada, Objective-C/C++ and Fortran 95.

The addition of new languages may require ex-
tending and/or adapting GENERIC. In terms
of language-specific analyses and transforma-
tions, GCC’s strategy is to, as much as possible,
implement in GIMPLE where all the data and
control-flow information is gathered and use
langhooks to communicate with the front end
when necessary. Most transformations in this
area are expected to be in the area of abstrac-
tion removal such as method devirtualization in
OO languages. There is also interest in more
sophisticated escape analysis for languages like
Java.

8.2 Internal modularity

The basic compiler infrastructure is encapsu-
lated as much as C allows. While this re-
mains one of the weakest points in the imple-
mentation, we try to draw strict API bound-
aries to abstract the major conceptual modules,

such as call graph, control flow graph, inter-
mediate representation, fundamental data types
(bitmaps, hash tables), SSA form, etc.

GCC would probably benefit from switching to
an implementation language with more capa-
bilities, such as C++. In fact, the topic comes
up every now and again on the development
lists. The consensus seems to be in favor of
switching, but 1+ million lines of code repre-
sent a lot of inertia to overcome, and imple-
mentation discipline can go a long way. Not
every module of the compiler is implemented
in C, however. Front ends, for instance, are
free-to-use different implementation languages
(Ada being the prime example).

8.3 High performance computing

With the advent of multi-core processors, opti-
mizations and languages that take advantage of
task/data parallelism will become increasingly
important. GCC includes a multi-platform vec-
toriser that is unique in its class and start-
ing with version 4.2, it will include support
for OpenMP (http://www.openmp.org),
which provides compiler directives for specify-
ing parallelism in C, C++ and Fortran.

Other important features for future releases in-
clude an automatic parallelization option built
on top of the OpenMP framework, memory lo-
cality optimizations, more advanced loop op-
timizations and additional vectorization im-
provements.

8.4 Static analysis tools

This is another area that is starting to gain
widespread interest. Compilers are in a unique
position to provide this facility because they
already have a synthetic representation of the

198 • GCC—An Architectural Overview, Current Status, and Future Directions

input program. However, the set of interest-
ing analyses to perform may vary widely, some
people will want to check for security prob-
lems, others may want to enforce coding guide-
lines, others may want to check for buffer over-
flows, etc.

GCC already includes some of the more
commonly requested features such as pointer
checking and buffer overflow prevention. But
there are other types of checks specific enough
that it usually does not make sense to include
in the compiler. At the same time, people inter-
ested in them may not have the interest nor the
time to invest in delving inside the compiler to
implement their analysis.

There are plans to provide some form of exten-
sibility mechanism so that external developers
would be able to connect ad-hoc analysis code
by interfacing with GCC.

8.5 Dynamic Compilation

Static compilation techniques are generally be-
lieved to have reached a saturation point. Com-
pilers do not have a sufficiently global view of
the program to perform more aggressive opti-
mizations. Modern software is usually spread
over many files and it likely uses many services
from shared libraries, all of which is hidden
from the compiler at compile time. And since
most libraries use dynamic linking. the code
may even be hidden from the compiler at link
time.

To compound this problem, languages like Java
and C# have fairly powerful dynamic proper-
ties, such as class loading. Therefore, static
compilers may only see a small portion of the
whole program. All this provides a big incen-
tive to move parts of the compilation process
into the runtime system.

This is generally known as Just-In-Time com-
pilation (JIT). These systems work on top of a
bytecode language and virtual machine which
converts the bytecodes into native form at run-
time. While this provides a lot of flexibility in
terms of portability and dynamic features, the
runtime overhead can be pretty significant, so
hiding compile time latencies becomes funda-
mentally important in these environments.

We are currently planning to extend GCC to
support such dynamic compilation schemes. At
the time of this writing, we still do not have
any concrete plans, but it is certainly an area in
which we plan to take GCC in the medium to
long term.

References

[1] D. Berlin. Structure Aliasing in GCC. In
Proceedings of the 2005 GCC Summit,
Ottawa, Canada, June 2005.

[2] D. Berlin, D. Edelsohn, and S. Pop.
High-Level Loop Optimizations for
GCC. In Proceedings of the 2004 GCC
Summit, Ottawa, Canada, June 2004.

[3] R. Cytron, J. Ferrante, B. Rosen,
M. Wegman, and K. Zadeck. Efficiently
computing static single assignment form
and the control dependence graph. ACM
Transactions on Programming
Languages and Systems, 13(4):451–490,
October 1991.

[4] J. W. Davidson and C. W.Fraser. The
Design and Application of a Retargetable
Peephole Optimizer. ACM Transactions
on Programming Languages and
Systems, 2(2):191–202, April 1980.

[5] J. W. Davidson and D. B. Whalley.
Quick Compilers Using Peephole

2006 Linux Symposium, Volume Two • 199

Optimization. Software - Practice and
Experience, 19(1):79–97, 1989.

[6] F. Ch. Eigler. Mudflap: Pointer Use
Checking for C/C++. In Proceedings of
the 2003 GCC Summit, Ottawa, Canada,
May 2003.

[7] M. Hagog and A. Zaks. Swing Modulo
Scheduling for GCC. In Proceedings of
the 2004 GCC Summit, Ottawa, Canada,
June 2004.

[8] L. Hendren, C. Donawa, M. Emami,
G. Gao, Justiani, and B. Sridharan.
Designing the McCAT Compiler Based
on a Family of Structured Intermediate
Representations. In Proceedings of the
5th International Workshop on
Languages and Compilers for Parallel
Computing, pages 406–420. Lecture
Notes in Computer Science, no. 457,
Springer-Verlag, August 1992.

[9] V. Makarov. Fighting Register Pressure
in GCC. In Proceedings of the 2004 GCC
Summit, Ottawa, Canada, June 2004.

[10] V. Makarov. Yet Another GCC Register
Allocator. In Proceedings of the 2005
GCC Summit, Ottawa, Canada, June
2005.

[11] M. Matz. Design and Implementation of
the Graph Coloring Register Allocator
for GCC. In Proceedings of the 2003
GCC Summit, Ottawa, Canada, June
2003.

[12] J. Merrill. GENERIC and GIMPLE: A
New Tree Representation for Entire
Functions. In Proceedings of the 2003
GCC Summit, Ottawa, Canada, May
2003.

[13] D. Novillo. Design and Implementation
of Tree SSA. In Proceedings of the 2004

GCC Summit, Ottawa, Canada, June
2004.

[14] D. Novillo. OpenMP and automatic
parallelization in GCC. In Proceedings
of the 2006 GCC Summit, Ottawa,
Canada, June 2006.

[15] D. Nuzman and R. Henderson.
Multi-platform auto-vectorization. In The
4th Annual International Symposium on
Code Generation and Optimization
(CGO), March 2006.

[16] M. Punjani. Register Rematerialization
in GCC. In Proceedings of the 2004 GCC
Summit, Ottawa, Canada, June 2004.

200 • GCC—An Architectural Overview, Current Status, and Future Directions

Shared-Subtree Concept, Implementation, and
Applications in Linux

Al Viro
Red Hat, Inc.

viro@ftp.linux.org.uk

Ram Pai
IBM Corporation

linuxram@us.ibm.com

Abstract

Concepts like per-process namespaces and bind
mounts have enriched the Linux R© VFS for a
couple of years now. Various solutions have
attempted to use these features for customized
mount setups in a virtualized environment and
for setting up mirrored mount trees to support
versioned filesystems.

But more than often, the isolated nature of per-
process namespaces and the static nature of
bind mount have restricted their use. Conse-
quently a new VFS enhancement called shared
subtree was introduced in the Linux 2.6.15
kernel. This enhancement makes per-process
namespaces and bind mounts dynamic in na-
ture and provides a crucial building block for
various solutions.

In this paper we describe shared subtree seman-
tics and their application in real life. We also
discuss the design and implementation details
of the feature.

1 Introduction

The Linux VFS provides a rich set of features
to tailor access to files and filesystems.

The mount feature provides a convenient way
to access the contents of a filesystem. Us-
ing the mount abstraction, you can also mount
other filesystems over a directory of an exist-
ing filesystem, thus creating a filesystem mount
tree.

Linux further allows the same filesystem to
be mounted at different locations within the
filesystem mount tree, thus providing multiple
paths to access the same filesystem.

Adding to this set of features, you can pick a
directory tree in the filesystem mount tree and
mount it at some other location using the re-
cursive bind feature. The filesystem mount tree
can further be moved across locations through
the move mount feature.

And finally, Linux allows a new process to fork
an entirely new filesystem mount tree to which
the process is associated using the filesystem
namespace feature. This feature is referred to
as per-process namespace.

However, features like bind and filesystem
namespace have not seen many applications
in real life. For example, the filesystem-
namespace feature isolates a process; i.e. a
process that associates with a namespace does
not see new mounts in another namespace, nor
does it propagate its own mounts to a different
namespace.

202 • Shared-Subtree Concept, Implementation, and Applications in Linux

Different projects like FUSE, SELinux’s La-
belled System Security Profile (LSPP) sys-
tem, and Multiple Versioned File System
MVFS

TM
have considered using the filesystem-

namespace and recursive-bind features. But
the static nature of these features has often re-
stricted their use. The following four scenarios
illustrate the problem.

FUSE (Filesystem in User SpacE) provides the
ability for a user to prototype an experimen-
tal filesystem in user space, while allowing just
that user to mount and access the filesystem.
One way to solve this problem is to fork off a
new namespace and allow the user to mount the
experimental filesystem in it. This solves the
problem; however, it also excludes the names-
pace from seeing any new mounts in the par-
ent namespace. Ideally the user would want
her own mounts to remain private to her names-
pace but be able to see the mounts in the parent
namespace.

On LSPP systems, users need to be able to log
in at various levels, and be able to use differ-
ent contents in various directories depending on
which level the user is logged in to the system.
The solution to this is typically to use polyin-
stantiation. For example, each directory is ac-
tually several directories, and which one the
user sees is determined by the privilege level of
the user. For Linux this is implemented using
filesystem-namespaces, the unshare() sys-
tem call and Pluggable Authentication Mod-
ule (PAM). But using filesystem-namespace re-
stricts the user using a different namespace
from seeing a newly inserted CD in the CD
drive.

MVFS by IBM R© provides multiple views of
the same filesystem mount-tree. Depending on
which view is used to access the files in the
MVFS filesystem a different version of the file
is visible. One way to implement this feature
is to use filesystem-namespace. But this re-
stricts a process from accessing two different

filesystem-namespaces. Also the namespaces
cannot be kept in sync across mount and un-
mount events. The other option is to mirror
the filesystem mount-tree to different locations
within the same filesystem mount-tree using the
rbind feature. But this solution suffers from the
problem that different versions of the mount-
tree cannot be synchronized atomically when a
new filesystem is mounted on one of the mir-
rors.

Virtualization products support multiple con-
tainers each with their own set of resources,
and provide a individual view of the system.
Processes are associated with a given container,
and hence have to be visible only to processes
within that container through the procfs in-
terface. This demands maintaining multiple
versions of procfs, each one correspond-
ing to a container. One solution to this is to
maintain multiple mirrors of the filesystem tree
within the same filesystem, jailing processes in
a given container under its corresponding mir-
ror. The procfs filesystem associated with
each mirror displays its virtualized world to that
container. Again we face the same problem:
how does a process in a container access the
CD mounted outside its jail?

Shared subtree provides the mechanism that
solves the above mentioned limitation. In Sec-
tion 2, we describe the basic building blocks
of shared-subtree. In Section 3, we explain the
shared-subtree operational semantics. In Sec-
tion 4, we discuss the implementation details in
Linux. In Section 5 we review the applications.

2 Shared subtree semantics

As mentioned above, namespace provides
isolation—processes in a namespace are pro-
tected from namespace-modifying operations
done by processes outside. In other words, the

2006 Linux Symposium, Volume Two • 203

namespace boundary is a trust boundary. That
is very useful in many situations—for instance,
for bindings there is no analog of symlink vul-
nerabilities, simply because nobody outside our
namespace is able to modify the bindings we
see.

However, the same property sometimes be-
comes a hindrance because there is no way to
arrange for modifications of parts of namespace
short of sharing the namespace completely.

This situation is not entirely new; indeed, we
have a similar though more simple problem
with other kinds of possibly shared resource:
the memory space. Processes are protected
from each other and that is certainly a desirable
thing. They also can share their entire memory
space. However, it is often useful to have a part
of memory space shared. That would appear to
be a convenient model for our problem; how-
ever, it is not an exact fit.

It turns out to be more useful to speak not of
sharing parts of the namespaces, but of propa-
gating modifications among such parts. One of
the chief reasons for that approach is that trust
is not necessarily symmetric—allowing modi-
fications done by process A to affect parts of
the namespace of process B should not imply
allowing the opposite.

In other words, the relationship “modifications
to tree X cause corresponding modifications to
tree Y” can not be reduced to “X and Y refer
to the same shared entity” and we are better off
treating that relationship as the first-class ob-
ject.

The challenge, of course, is to provide coherent
semantics for such propagation and implement
it efficiently.

2.1 Definitions

Throughout the rest of the paper we will refer to
operations modifying the mount trees as mount
events or propagation events, whether they are
made by mount(2) or by umount(2).

To describe mount event propagation we need
to introduce several new notions:

1. mounts are divided into shared and soli-
tary.

2. shared mounts are partitioned into peer
groups.1 That controls the symmetric part
of propagation.

3. The propagation graph controls the asym-
metric part of propagation. It is a tree with
peer groups and solitary mounts as nodes.
All internal nodes are peer groups; only
leaves may be solitary mounts.

4. In addition to that, some of the solitary
mounts may be marked as unbindable.

We will refer to connected components of the
propagation graph as propagation trees.

With respect to event propagation, there are
four types of mounts:

1. shared mount

2. slave mount

3. private mount

4. unbindable mount
1Single-element peer groups are possible and do, in

fact, play an important role. Their elements should not
be confused with solitary mounts.

204 • Shared-Subtree Concept, Implementation, and Applications in Linux

Figure 1: shared-mount

2.2 Shared-mount

As noted earlier, the current mount infras-
tructure lacks the ability to propagate mount
events. Shared mounts provide the ability to
keep several subtrees in sync; all events on a
shared mount propagate to all its peers and new
mounts created by such events will, in turn, be-
come peers among themselves.

The new mount created from the shared-mount
becomes a shared-mount too. And they to-
gether form members of the same peer group.
A shared mount by itself is a sole member of its
peer group. New clones of the shared-mount,
inherit membership to the same peer group.

Figure 1 illustrates an example of shared
mounts belonging to the same peer group. The
mounts at mnt and tmp are shared, and belong
to the same peer group peer group1. When a
new filesystem a is mounted under mnt, the
same filesystem automatically is mounted un-
der tmp and these two mounts become mem-
bers of a new peer group peer group 2.

The idea behind shared-mounts is being able to
mount or unmount on any one of these mounts,
and to have the action atomically propagated to
all peers. The nice property of shared-mounts is
that they allow mount-trees to remain identical
across future mount and unmount.

Figure 2: slave-mount

2.3 Slave-mount

A slave-mount receives mount events from its
master, but does not forward it back to its
master. The master in this case is a peer
group. Mounts of this type are preferred in
cases where one would like to receive mounts
in other namespaces, but would not like to share
any mounts within its own namespace.

Figure 2 illustrates an example of a slave-
mount. Note that tmp1 and tmp2 are slave
mounts. When a new filesystem a is mounted
under mnt, the same filesystem automatically
is mounted under tmp, and also propagates to
the slave mounts tmp1 and tmp2. Whereas a
mount of filesystem b on mount tmp2 does not
propagate anywhere.

2.4 Shared-and-slave-mount

A mount can be shared and slave at the same
time. It would receive mount events from its
master, share them with its peers, and possibly
forward them to its slaves.

Note that all intermediate nodes in propaga-
tion trees would be peer groups consisting of
mounts that are both shared and slaves; it is not
something unusual.

2006 Linux Symposium, Volume Two • 205

2.5 Private-mount

A private-mount, as the name implies, does
not carry any propagation semantics. It neither
receives nor forwards any propagation events.
Had there been no shared-subtree semantics,
we would have only seen private-mounts.

2.6 Unbindable-mount

An unbindable-mount carries the same seman-
tics as that of a private-mount. In addition,
it disallows any of its contents including sub-
mounts from being mounted anywhere else.

3 Operational semantics of shared-
subtree

In this section we define the interactions of var-
ious mount-related operations on the different
flavors of mounts.

3.1 Mount operation

When a filesystem is mounted at a mountpoint,
the behavior depends on the type of mount the
mountpoint resides in.

If that mount is solitary, the filesystem is
mounted at the mountpoint and created mount
becomes private.

If the mount is a shared-mount, the filesystem
is mounted at the mountpoint within the shared-
mount, as well as at the corresponding locations
in the peer-mounts and slave-mounts down the
propagation-tree. Event propagation among the
created mounts duplicates that among their par-
ents.

3.2 Bind operation

The bind operation mounts a subtree of a
filesystem directory tree on a mountpoint. The
new mount inherits the properties of its source
mount and as well as the properties of the des-
tination mount on which it is mounted. The
source mount is the mount containing the di-
rectory tree of the filesystem.

Table 1 indicates the semantics of the bind op-
eration from a source mount, mounted on a des-
tination mount.

The bind operation is invalid if the source
mount is an unbindable mount.

The mount type is inherited from the source. If
the source is shared, the new mount becomes
its peer. If the source is a slave, the new mount
becomes a slave of the same master.

If the mountpoint lies within a shared mount—
i.e., the destination is a shared mount—the new
mount becomes shared. Additional mounts are
created at the corresponding locations in the
peer mounts and slave mounts down the propa-
gation tree. As in previous section, event prop-
agation among the created mounts duplicates
that among their parents.

3.3 Rbind operation

The rbind operation mounts a directory tree
to a mountpoint. Unlike the bind operation,
in the case of rbind, the source directory tree
spans across mountpoints. The rbind opera-
tion behaves similar to bind operation, but if
the source consists of more than one mount, the
same actions apply to all of them.

If the source mount-tree contains any unbind-
able mounts, the rbind operation prunes off
copies of the mount trees below such mounts
before mounting them at new mountpoints.

206 • Shared-Subtree Concept, Implementation, and Applications in Linux

source(A) ⇒ shared private slave unbindable
destination(B)

⇓
shared shared shared shared and slave invalid

non-shared shared private slave invalid

Table 1: The type of the new mount created when a source-mount A is bind mounted to a mountpoint
residing in the destination mount B.

3.4 Move operation

The move operation allows a mount tree to
be moved to new mountpoint. Unlike bind or
rbind operations, the source of the move oper-
ation must be a mountpoint. The operation is
similar to the rbind operation.

If the destination mount containing the mount-
point is shared, the source mount becomes
shared, too. Again, if the source mount was
a slave, it becomes both shared and a slave.
However, if the destination mount is solitary,
the source-mount destination-mount is a non-
shared mount; the source mount remains un-
changed.

Note that a mount residing in a shared mount is
not allowed to be moved.2 Also, a mount tree
containing an unbindable mount is disallowed
from moving to a shared mount.3

Table 2 indicates the move semantics on a
source mount to a mountpoint residing in a des-
tination mount.

2If allowed, the move operation generates an un-
mount event. This unmounts all the mounts residing in
other peer and slave mounts.

3If allowed, this operation will involve cloning un-
bindable mounts, which is disallowed. The author re-
alizes that the mount tree could have been pruned be-
low the unbindable mounts, while creating copies of the
moved tree. This would provide semantics consistent
with semantics of rbind.

3.5 Clone namespace operation

The clone namespace operation clones the en-
tire mount tree of a namespace. All the mounts
in the source namespace are cloned, and the re-
sulting mount tree is associated with the new
namespace. A copy of a shared mount becomes
its peer, a copy of a slave becomes a slave of
the same master. Note that this operation does
clone the unbindable mounts.

3.6 Unmount operation

The unmount operation has subtle issues. Un-
mounting something mounted on a solitary
mount is just a matter of removing the mount,
provided that it is not being actively used and
nothing is mounted on it.

Unmounting a mount X residing on a shared-
mount P generates a propagation event. The
mounts corresponding to X on all the mounts
down the propagation tree of P are unmounted,
unless there is something mounted on them. If
some of these mounts are actively in use, the
unmount fails.

Consider the mount tree shown in Figure 3:
the mounts A, B, and C are all peers of each
other. At the same time A, B, and C share a
grandparent-parent-child relation. If unmount
of C is attempted, since B is the parent of
C, B generates an unmount propagation event

2006 Linux Symposium, Volume Two • 207

source(A) ⇒ shared private slave unbindable
destination(B)

⇓
shared shared shared shared and slave invalid

non-shared shared private slave unbindable

Table 2: The type of source-mount A when it is moved to a mountpoint residing in the destination
mount B.

Figure 3: A mount tree where the mounts in
the same peer group also share a grandparent-
parent-child relationship.

that propagates to A and C. Since B is the
child of A mounted at the same mountpoint as
C, it has to be unmounted, too. But B can-
not be unmounted because it has a sub-mount
C. Hence the entire operation fails. This ef-
fectively makes the entire subtree under A un-
mountable.

To mitigate this problem we relaxed the un-
mount rule, by allowing unmount to succeed
even if some of the mounts other than the one
in question have sub-mounts.

3.7 Mount type transitions

A mount can transition through different types
during its lifetime. During creation it acquires a
state, depending on where it is created and from
where it is cloned.

A user can explicitly transition the mount from
any one type to any other according the shared-
subtree semantics. Also the mount can change
types implicitly when the mount is moved from
one location to another as indicated in Table 2.
Table 3 describes the type transition rules for a
mount.

Note that an attempt to turn a shared mount that
has no peers into a slave will make it private
since there is no master to which it could be
slaved to.

A solitary mount cannot be slaved.

3.8 Use of Unbindable-mount

The unbindable mounts are particularly useful
to set up multiple identical mount trees within
the same mount tree.

Figure 4 illustrates how the mount tree expands
at each step as we create new copies of the
mount tree. The unbindable mount contains the
expansion by pruning off the subtree, thus cre-
ating exact copies of the mount tree at those lo-
cations.

208 • Shared-Subtree Concept, Implementation, and Applications in Linux

make-shared make-slave make-private make-unbindable
shared shared shared/private private unbindable
slave shared and slave slave private unbindable

shared and slave shared and slave slave private unbindable
private shared private private unbindable

unbindable shared unbindable private unbindable

Table 3: mount state transition

3.9 Side-mounts

Shared subtree semantics can lead to peculiar
situations. Suppose a mount A is the master
of mount B. Mount B has a mount C on di-
rectory b. Suppose we mount D on directory
b of mount A. The propagation event propa-
gates to mount B. Should the new mount—
let’s say E, on mount B at directory b—be vis-
ible, or should it be obscured by the mount C?
What happens when mount D is unmounted?
Should mount C be unmounted or mount E be
unmounted?

We define side-mounts as the sub-mounts on a
given mount that are mounted on the same di-
rectory.

New mounts on the same directory of a mount
are placed in a stack order, with the oldest
mount always visible. An unmount request
for a particular mount always unmounts the re-
quested mount. However, unmounts triggered
due to propagation always pop the most recent
mount on the directory.

So in the example above, if an unmount of C is
attempted, mount C is unmounted. However,
if an unmount of D is attempted, D will be
unmounted anyway, but the propagation event
will unmount E, too (and not C).

4 Implementation Details

This section describes the changes made to data
structures and the logic used to implement the
shared-subtree feature in the Linux

TM
kernel.

4.1 Data Structure

The following four new fields were added to the
struct vfsmount data structure to support
the shared-subtree semantics.

1. mnt_share

2. mnt_slave_list

3. mnt_slave

4. mnt_master

mnt_share is a circular list of all the shared
mounts that are peers of the given mount.
mnt_slave_list is a circular list of all the
slave mounts of the given mount. Mounts in
all slave peer groups and slave mounts of a
given mount are linked together in the mount’s
mnt_share circular list. mnt_slave runs
through the circular list of all the slaves of the
mount’s master. mnt_master points to the
master of the mount.

Figure 5 illustrates a data-structural representa-
tion of the shared-subtree.

2006 Linux Symposium, Volume Two • 209

Figure 4:
Application of unbindable-mount

In the example we have the peer group P1, con-
sisting of shared-mounts G1, G2, and G3. Peer-
group P1 has three slave peer-groups: P2, P3,
and P4. P2 consists of shared-mounts R1, R2,
R3, and R4. Peer group P3 has M1 and M2.
And peer-group P4 has Y1, Y2, Y3, and Y4 as
its members. Peer group P1 has B2 as it slave-
mount. And finally, peer-group P2 has O1 as its
slave.

In our implementation we do not have an ex-
plicit data structure to represent a peer group.
The peer group is implicitly managed by the
circular list mnt_share. By walking the
mnt_share circular list of a given mount, we
find all the members of the peer group.

To find all the slaves of a peer group, we walk
the circular lists represented by mnt_slave_

list of all the mounts in the peer group. Note
this circular list run through the mnt_slave
field of the slave mounts.

The mnt_master field of a given mount
points to the master mount of the slave-mount.

We introduced two new flags in the mnt_
flags field of struct vfsmount to track
the type of a given mount, namely MNT_
SHARE and MNT_UNBINDABLE. These flags
tell us if the mount is of type shared or unbind-
able. A non-NULL mnt_master indicates
that the mount is of type slave. If the mount
is not shared or slave or unbindable, then it is a
private mount.

210 • Shared-Subtree Concept, Implementation, and Applications in Linux

Figure 5: Data-structure layout

4.2 Description of mount, bind, move oper-
ations

The mount, unmount, bind, and move oper-
ations on shared mounts walk the propaga-
tion tree to collect all the affected mounts.
Hence we have designed an efficient iterator
propagation_next() that walks the prop-
agation tree and returns the next mount in the
propagation-tree. propagation_next()
implements a depth-first walk returning the
slave-mount first, followed by the peer mounts.
As the tree is walked, new mounts can get
linked into the propagation-tree.4 This can hap-
pen during bind, move, or rbind operations.
The iterator has enough information to skip
these new mounts as it walks the propagation
tree.

4If the new mountpoint is on a mount which already
resides in the same propagation-tree.

A mount, bind, rbind, or move operation un-
der a shared-mount typically involves creation
of a number of copies of the mount tree that
are to be mounted at the mountpoints where the
mount operation propagates. propagate_
mnt() walks the propagation tree of the desti-
nation mount, creating the necessary number of
new mount trees. It returns a list of these mount
trees. Also it ensures that all the mounts in each
of the newly created mount trees are associated
with their corresponding propagation trees. If
creation of some mount tree fails, all the newly
created copies are destroyed, in turn delet-
ing them from their corresponding propagation
trees. Note that the newly created mounts are
attached to the propagation trees, but are not
attached to the corresponding mount points.
The caller of propagate_mnt() is respon-
sible for attaching the created mount trees to
their corresponding mountpoint atomically. We
hold the namespace_sem semaphore during

2006 Linux Symposium, Volume Two • 211

the entire operation. That allows us to put
the newly created mounts into the propagation
trees immediately. propagation_next()
skips these new mounts, and nobody else can
walk the propagation trees until the semaphore
is released.

The mountpoint may not exist in some of the
mounts in a propagation tree.5 This is typically
the case when a subdirectory within a mount
is bind-mounted. In cases where the mount-
point does not exist, our implementation still
makes a copy of the mount tree, to be deleted
later. One could implement an efficient way to
avoid creation of this copy. Our implementa-
tion relies on the copy being around, because
we use it to clone newer copies of the mount
tree, these cloned copies being mounted on the
slaves of the mount in question. The function
get_source() tracks the copy of the mount
tree to be used while cloning a new copy of the
mount tree. propagate_mnt() keeps track
of these extra copies of the mount tree. Once all
the necessary mount trees are created, it deletes
these defunct copies.

attach_recursive_mnt() takes the
source mount tree and attaches it to the spec-
ified mountpoint in the destination mount.
It uses propagate_mnt() to ensure that
all the necessary mount trees are created
successfully. On success, it atomically attaches
all these mount trees at their corresponding
destinations. In the case of a move operation,
it also detaches the source mount tree from its
parent before attaching to the new mountpoint.

5Consider a shared mount A having subdirectory a
and b. When the subdirectory a is bind-mounted, a new
shared mount B is created. If a new mount is attempted
on directory b of mount A, the mount event though prop-
agates to B will not have a mountpoint to mount.

4.3 namespace clone operation

All the mounts in the original namespace, in-
cluding unbindable mounts, are cloned. The
new mounts are attached to their corresponding
propagation tree. If some allocations fail, the
newly created mounts are detached from their
propagation-tree and deleted.

4.4 Description of umount operation

The core of an unmount opera-
tion is in umount_tree() and
propagate_umount(). All the mounts
in the mount tree are first unhashed6 and
collected in a list. For each element in the
list we run through its parent’s propagation
tree, to collect the corresponding child mounts.
As explained in Section 3.6, we ignore the
child mounts that contain submounts. Note
that these mounts cannot be detached from
the propagation tree while we are walking on
it. Hence we detach them after we have com-
pletely collected all the mounts. At the same
time, they are detached from their filesystem-
namespaces. All these operations are done
under the vfsmount_lock spinlock as
well as the namespace_sem semaphore.
The spinlock guards against races with other
mount lookup routines. The semaphore
guards against races with other mount and
unmount operations. After all the mounts are
unhashed, we release the spinlock. And after
the semaphore is released, all the mounts are
detached from their parent and are destroyed
through release_mounts().

6Unhashing a mount makes the mount inaccessible to
any new lookups.

212 • Shared-Subtree Concept, Implementation, and Applications in Linux

5 Applications of shared subtree

As noted in Section 1, the isolation property of
filesystem namespace and the static nature of
bind mounts restricts their usage in various ap-
plications.

The shared-subtree semantics solve these is-
sues, and hence opens up the use of filesystem
namespace and bind mounts to various applica-
tions which include SELinux’s LSPP, MVFS,
Virtualization, and FUSE, among others.

6 Future Work

The shared subtree semantics provide power-
ful constructs. These constructs help to solve
problems faced by SELinux LSPP systems, the
MVFS filesystem, and other projects.

Though this feature is efficiently supported by
the kernel, currently the mount command7 is
unaware of shared-subtree semantics. As of
this writing, a patch has been submitted.

It is easy to set up propagation trees and mod-
ify them. But no interface exists to display the
setup of the propagation trees. It’s impossi-
ble for a normal user to identify the type of
a given mount without poking into the kernel
data structures. A procfs- or sysfs-based
interface that displays the propagation trees in
some sane format is needed.

In many setups /etc/mtab is not guaranteed
to match reality, which leads to enough con-
fusion. Introduction of shared-subtree seman-
tics aggravates the problem. It is very easy
to contaminate /etc/mtab with non-existent
mount entries. The mount command can never
be aware of the new mounts created by the ker-
nel due to propagation semantics. Although the

7Packaged in util-linux.

/proc/mounts interface captures these new
mounts, it ends up creating many identical en-
tries. Also it does not capture all of the mount
options. This entire mess warrants a clean and
sane interface that would capture all the mount
details.

Another problem is the lack of vfsmount ac-
counting; if we are going to allow non-root
mount, we will have to introduce some limits.
Otherwise it’s too easy to cause a DoS. It is
not as simple as “who had called mount(2),”
since we have to deal with extra slaves created
by user rbind with the master being created
by root and later mounted upon by root.

It is easy to create setups allowing, e.g., pass-
ing mounts between login sessions of a given
user while allowing him to have private names-
paces. That in itself does not require any ker-
nel modifications—it’s a matter of policy and
can be easily arranged by userland. Moreover,
it’s easy to arrange for user-controlled export of
parts of its namespace to other (willing) users,
with no action required by sysadmin. E.g., it
can be achieved by having /share shared in
the first namespace and sshd doing the follow-
ing:

1. create a new namespace

2. bind /share/$USER to ~/share

3. for each pair ($who, $what) such that
/share/$USER/$who/$what exists,
look in /share/$who/allowed
for peer $what $USER or
slave $what $USER. If the former
is found, rbind /share/$who/$what

on /share/$USER/$who/$what; if
the latter is found, do the same and
follow with marking the subtree under
/share/$USER/$who/$what as slave.

4. rbind /share/$USER to ~/share

2006 Linux Symposium, Volume Two • 213

5. mark subtree under /share as private.

6. umount -l /share

That provides ~/share as shared between all
sessions and allows exporting its parts to other
users. All control over such exports and im-
ports is done by users themselves: no sysadmin
intervention is required. libpam is the obvi-
ous place for such functionality.

Unfortunately, this and similar schemes exacer-
bate the need of non-root bindings. With those
we are firmly in the territory where modifying
namespace becomes a useful operation outside
of system setup context. In other words, that’s
where we run into the need of properly done
mount accounting. Implementation should be
relatively straightforward, but we need to get
the semantics right and verify that it takes care
of all corner cases.

7 Acknowledgement

We would like to thank the following people
for their help with this paper. Serge Hallyn
and Dave Hansen for providing input to this pa-
per. Nishanth Aravamudhan and Balbir Singh
for helping with the figures. We would also
like to thank Mike Waychison, Miklos Szeredi,
and Bruce J. Fields for their feedback and in-
put during implementation of Shared-Subtree.
To Avantika Mathur for providing the shared-
subtree test suite. It is very likely that there are
others who we have inadvertently failed to ac-
knowledge; for you, we apologize for the omis-
sion and thank you for you efforts.

8 Legal Statement

This work represents the view of the author and does
not necessarily represent the view of IBM.

IBM, IBM (logo), e-business (logo), pSeries, e
(logo) server, and xSeries are trademarks or reg-
istered trademarks of International Business Ma-
chines Corporation in the United States and/or other
countries.

Red Hat, the Red Hat “Shadow Man” logo, and all
Red Hat-based trademarks and logos are trademarks
or registered trademarks of Red Hat, Inc., in the
United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

214 • Shared-Subtree Concept, Implementation, and Applications in Linux

The Ondemand Governor
Past, Present, and Future

Venkatesh Pallipadi Alexey Starikovskiy

Intel Open Source Technology Center

venkatesh.pallipadi@intel.com

alexey.y.starikovskiy@intel.com

Abstract

ondemand is a dynamic in-kernel cpufreq
governor that can change CPU frequency de-
pending on CPU utilization. It was first intro-
duced in the linux-2.6.9 kernel. Its simplistic
policy provided significant benefits to laptops,
desktops, and servers alike by making use of
fast frequency-switching features of the proces-
sors to effectively power-manage them.

This paper starts with a description of the
ondemand governor present in the 2.6.9 ker-
nel: the algorithm and tuning parameters in that
governor. In particular, it highlights the signif-
icant difference between the ondemand gov-
ernor vs. the user-level cpufreq governors.
This section also includes a brief overview of
how to configure and run the ondemand gov-
ernor.

Next is a discussion of various optimizations
to the original ondemand algorithm. Some
of these changes were driven by the new pro-
cessor support of dynamic changing of fre-
quency in multi-core and multiprocessor sys-
tem environments. This section highlights the
challenges of changing frequency in a multi-
processor system environment such as prevent-
ing frequency change in one processor affect-

ing other processors. It also discusses relative
power/performance data with the ondemand
governor and its various optimizations.

This paper concludes with a few ideas about
where the ondemand governor is headed in
the future, including additional features that
are nice to have and how the ondemand gov-
ernor can be made more useful in a wide
range of systems—from handhelds to servers.
This discussion touches upon changes that may
be required in kernel subsystems other than
cpufreq, in order to improve effectiveness of
the ondemand governor.

1 Introduction

Most of the latest microprocessors have mecha-
nisms to save power by changing the core volt-
age and frequency at run time. Section 2.1
gives a detailed view on this.

This technique was first widely deployed on
mobile systems due to their battery life require-
ments, but is now common on desktops and
servers as well.

With this technique being widely used in dif-
ferent kinds of systems, there has been a

216 • The Ondemand Governor

constant stream of optimizations happening
in the cpufreq infrastructure itself, in the
ondemand governor, and also in low-level
drivers and ACPI [4]. Recent changes in
cpufreq include the ability to handle CPU
hot-plug cleanly and also the ability to deal
with processor groups sharing one frequency.
This latter feature support is important in multi-
core and multi-thread environments, where
platforms may have restrictions of running dif-
ferent logical processors at same frequency.
This paper will deal in detail with changes in
the ondemand governor and low-level gover-
nors that use ACPI to identify that all CPUs
share the same frequency.

Section 2 of this paper includes a primer on
cpufreq. Section 3 covers the motivation
for the ondemand governor and the original
ondemand algorithm. In Section 4, we dis-
cuss various optimizations to the ondemand
governor since its original inception into the
Linux kernel, followed by some ongoing inves-
tigations. In Section 5 we deal with how Fre-
quency Voltage changes happen in presence of
multiple logical processors in a package. This
issue, although orthogonal to the ondemand
governor in itself, is critical for saving power in
a multi-core and multi-thread CPU world. Sec-
tion 6 includes measurement results from our
lab, made with various governors and optimiza-
tions. We conclude the paper with a glimpse of
changes that are likely to come to ondemand
in the future. Unless otherwise mentioned, all
the kernel-specific details in the paper will be
for the 2.6.16 kernel.

2 Background

2.1 Physics

Current CMOS electronics consumes power in
three big areas:

P = P1 +P2 +P3

leakage – current going either through sub-
strate (under schematics) or not fully
closed transistors (through schematics)
and depends on voltage, thus this part
of the power will be proportional to the
square of the voltage:

P1 = IL ∗UC = U2
C/RL

recharging parasitic capacitance of wires and
inputs—depends on both frequency and
voltage, linear on frequency and square on
voltage.

P2 = U2
C/RP = U2

C ∗CP ∗F

shoot-through current – happens during the
switch of the CMOS circuit then one tran-
sistor is already open while opposite to it
is just started to close, and thus, is linear
proportional to frequency and square pro-
portional to voltage.

P3 = U2
C ∗F/RS

Summarizing the above, consumed power is
proportional to square of core voltage and ei-
ther constant or linear to frequency, depend-
ing on which power consumer on a chip dom-
inates. Maximum frequency of the CMOS cir-
cuit depends on core voltage as well, and thus,
to save power we need to decrease the core volt-
age, but beforehand set frequency to value, al-
lowed at this reduced voltage. Changing the
frequency alone does not bring any significant
benefits. This is why drivers that modulate the
clock without changing the voltage are ineffec-
tive at saving power.

2.2 Cpufreq and governors

cpufreq is the subsystem of the Linux ker-
nel that allows frequency to be explicitly set on

2006 Linux Symposium, Volume Two • 217

processors [3]. cpufreq provides a modular-
ized set of interfaces to manage the CPU fre-
quency changes. Figure 1 depicts the high-level
cpufreq infrastructure.

The primary components of this infrastructure
are as follows:

Cpufreq module provides a common inter-
face to the various low-level, CPU-specific
frequency control technologies and high-
level CPU frequency controlling policies.
cpufreq decouples the CPU frequency
controlling mechanisms and policies and
helps in independent development of the
two. It also provides some standard inter-
faces to the user, with which the user can
choose the policy governor and set param-
eters for that particular policy governor.

CPU-specific drivers implement different
CPU frequency changing technologies,
such as Intel R© SpeedStep R© Technology,
Enhanced Intel R© SpeedStep R© Tech-
nology [6], AMD PowerNow!

TM
, and

Intel Pentium R© 4 processor clock mod-
ulation. On a given platform, one or
more frequency modulation technologies
can be supported, and a proper driver
must be loaded for the platform to per-
form efficient frequency changes. The
cpufreq infrastructure allows use of one
CPU-specific driver per platform. Some
of these low-level drivers also depend on
ACPI methods to get information from
the BIOS about the CPU and frequencies
it can support.

In-kernel governors. The cpufreq infras-
tructure allows for frequency-changing
policy governors, which can change the
CPU frequency based on different criteria,
such as CPU usage. The cpufreq infras-
tructure can show available governors on
the system and allows the user to select a

governor to manage the frequency of each
independent CPU.

Kernel 2.6.16 comes bundled with five dif-
ferent governors. Three of these governors
can be run on any kind of CPU that has a
low-level driver to change the frequency at
run time and can be chosen as default gov-
ernor at compile time:

Performance governor keeps the
CPU at the highest possible fre-
quency within a user-specified
range.

Powersave governor keeps the CPU at
the lowest possible frequency within
a user-specified range.

Userspace governor exports the avail-
able frequency information to the
user level (through the sysfs) and
permits user-space control of the
CPU frequency. All user-space dy-
namic CPU frequency governors use
this governor as their proxy.

There are two relatively new governors,
ondemand and conservative, capa-
ble of frequent load monitoring on CPUs
which can do fast frequency switching.

ondemand governor was introduced
into Linux kernel in 2.6.9 and rest
of this paper covers in detail the al-
gorithm, usage, and recent, ongoing,
and future changes to this governor.

conservative governor is a fork of
the ondemand governor with a
slightly different algorithm to decide
on the target frequency. Most of the
configuration details of ondemand
in this paper also holds true for the
conservative governor.

218 • The Ondemand Governor

...

cpufreq module (with /proc and /sys interfaces)

performance powersave userspace ondemand

powersaved cpuspeed

acpi-cpufreq speedstep-centrino powernow-k8

ACPI processor driver

User-level

governors

In-kernel

governors

CPU-specific

drivers

Figure 1: cpufreq infrastructure

2.3 cpufreq and sysfs interfaces

The user interface to cpufreq is through
sysfs. cpufreq provides the flexibil-
ity to manage CPUs at a per-processor
level (as long as hardware agrees to man-
age CPUs at that level). The inter-
face for each CPU will be under sysfs,
typically at /sys/devices/system/cpu/

cpuX/cpufreq, where X ranges from 0
through N-1, with N being total number of log-
ical CPUs in the system.

The basic interfaces provided by cpufreq
are:

linux:> cd /sys/devices/system/cpu

linux:> cd cpu0/cpufreq

linux:> ls -1 -F

affected_cpus

cpuinfo_cur_freq

cpuinfo_max_freq

cpuinfo_min_freq

scaling_available_frequencies

scaling_available_governors

scaling_cur_freq

scaling_driver

scaling_governor

scaling_max_freq

scaling_min_freq

stats/

All these files can be read by doing a cat and
all the writable files can be written to using a
echo and redirection into the file. stats/ is
a directory and will be discussed in Section 2.4.
All the frequency values are in kHz.

Reading cpuinfo_max_freq and cpuinfo_

min_freq will give the maximum and min-
imum frequency supported by the CPU and
cpuinfo_cur_freq will read the current fre-
quency from hardware and display it.

scaling_available_frequencies lists
out all the available frequencies for the CPU.

scaling_available_governors lists out
all the governors supported by the kernel. Note
that the governor modules must be loaded
through modprobe for it to appear here. The
administrator can echo a particular available
governor into scaling_governor in order
to change the governor on a particular CPU.

scaling_cur_freq will return the cached

2006 Linux Symposium, Volume Two • 219

value of the current frequency from the
cpufreq subsystem. scaling_max_freq

and scaling_min_freq are user controlled
upper and lower limits, within which the gov-
ernor will operate at any time.

scaling_driver names the low-level
CPU-specific driver that is used to change the
CPU frequency.

In addition to above interfaces, the running
governor may add some more interfaces of its
own, which can be used to manage the fre-
quency or fine-tune the governor.

2.4 cpufreq-stats

The interfaces under the stats/ directory
provide the statistics about the usage of fre-
quency changes on any particular CPU. The ex-
act details of the interfaces and their meaning
can be found in [1].

2.5 cpufreq-based tools

Reading and changing different fields in the
specific sysfs directory by hand on a system
with a lot of CPUs can be painful and time con-
suming. Dominik Brodowski has led the devel-
opment of cpufrequtils containing a set of
tools to make use of cpufreq easier [2].

3 Original on-demand governor

3.1 Motivation

Of the three governors that were there in the
kernel before ondemand, the performance
and powersave governors were static gover-
nors. The userspace governor gave the user

(superuser or root) the control to set the fre-
quency on a particular platform. This userspace
interface could then be used by the daemons
running in userland to manage the CPU fre-
quency over time, depending on the load.
There are multiple userspace programs, like
cpuspeed and powersaved that can use
userspace governor interface and change
the frequency based on load. The userspace
governors would typically sample the utiliza-
tion every few seconds, and then take a decision
on what frequency to go to for the next sam-
ple interval. This method of changing the fre-
quency operates properly with almost any fre-
quency/voltage-changing hardware.

However, hardware capable of low-latency fre-
quency switching can take advantage of soft-
ware that does more aggressive sampling of uti-
lization and change the frequency more often
to suit the workload. For example, Enhanced
Intel Speedstep Technology can switch the fre-
quency with latency as low as 10µS. This faster
sampling will also help in quick response time
for changing workloads, which is critical in
servers and will also bring visible benefit for
laptop users. Think of CPU frequency going to
the max within a few milliseconds after click-
ing on OpenOffice and compare against click-
ing on OpenOffice, with the CPU running at
low frequency for several seconds, and then in-
creasing the frequency to the maximum.

But doing this frequent polling from userspace
may add more overhead due to kernel to user
transition and reading/writing /proc/ and
/sys files, etc. This was the original motiva-
tion behind the ondemand governor. Doing
the dynamic frequency change inside the ker-
nel, more often, with less overhead. Also, the
kernel is the right place to take the frequency
decision as it has lot of other information about
the system overall and the particular CPU [7].

220 • The Ondemand Governor

3.2 Algorithm

The design goal with the original ondemand
governor was to keep the performance loss due
to reduced frequency to minimum and to keep
the code simple. With that we came up with
a simplistic algorithm to dynamically manage
the frequencies of different CPUs on the sys-
tem. ondemand managed each CPU individu-
ally, hence on an SMP server, with only one ac-
tive thread, CPU running the active thread will
run at full speed, while other threads will con-
serve power by running at a lower frequency.

Figure 2 shows the original ondemand algo-
rithm at a high-level.

for every CPU in the system
every X milliseconds

get utilization since last check
if (utilization > UP_THRESHOLD)

increase frequency to MAX

every Y milliseconds
get utilization since last check
if (utilization < DOWN_THRESHOLD)

decrease frequncy by 20%

Figure 2: Original ondemand algorithm

Note that the sampling frequency is a function
of transition latency by the hardware and the
HZ, as HZ is the unit of idle measurement in the
current kernel.

3.3 Configuring ondemand governor

The default governor that the system uses de-
pends on the kernel configuration and the init
scripts in the installation. You can check the
current governor that is being used on your sys-
tem by looking at /sys/devices/system/
cpu/cpuX/cpufreq/scaling_governor.

If your system is not already using the
ondemand governor, you can switch the
governor using the cpufreq sysfs inter-
face. To use the ondemand governor, make
sure the ondemand governor is configured
in the kernel. If it is configured as a mod-
ule, do a modprobe of cpufreq_ondemand.
Then you can change the governor by a
simple echo ondemand > /sys/devices/

system/cpu/cpuX/cpufreq for each CPU
X. Note that in order to do this on every boot,
you will have to change/add an init script.

Also note that if your CPU is not capable of fast
switching of CPU frequency, then the above
echo command may fail and you may con-
tinue to use the governor that was set before.

3.4 Tunable Parameters

A single policy governor cannot satisfy all of
the needs of applications in various usage sce-
narios. The ondemand governor exports some
tuning parameters to userspace that can fine-
tune the algorithm for specific usage scenarios.
Below is the list of tunables as they appear in
/sys. Note that the will only appear if the
ondemand governor is active on this CPU.

linux: # cd \
/sys/devices/system/cpu
linux: # cd cpu0/cpufreq/ondemand/
linux: # ls -1
ignore_nice_load
sampling_rate
sampling_rate_max
sampling_rate_min
up_threshold

linux: # cat sampling_rate_max

55000000

linux: # cat sampling_rate_min

55000

These times are measured in microseconds, de-
noting the minimum and maximum sampling

2006 Linux Symposium, Volume Two • 221

rate. These values are read-only, and prede-
termined by the kernel as a function of P-state
transition latency.

linux: # cat sampling_rate
110000

sampling_rate is a read-write file control-
ling how often the ondemand governor checks
CPU utilization and tries to increase the CPU
frequency at this rate. This field is in units of
microseconds.

linux: # cat up_threshold
80

up_threshold is a read-write file show-
ing the CPU-utilization threshold. When-
ever the current utilization is more than up_
threshold, the ondemand governor will
increase the frequency to the maximum.

linux: # cat ignore_nice_load
1

ignore_nice_load is a read-write field
that tells ondemand to treat time spent in /tex-
titniced tasks as idle time.

4 ondemand governor optimiza-
tions

4.1 Changes between 2.6.9 and 2.6.16

Once the ondemand governor started getting
used more widely, there was a lot of community
feedback and patches to improve the algorithm.
Several significant changes that went in since
the original ondemand follow.

Automatic down-scaling of frequency The
original ondemand algorithm, whenever

it noticed a low utilization (less than 20%
busy) reduced the frequency one-by-one
through a range of values supported by
hardware. This conservative approach
was intended to minimize performance
impact. But, as it started getting used
more widely, we did not notice any
performance issues due to the algorithm
in general and there was opportunity to
do more aggressive frequency reduction.
Thanks to Eric Piel and his patch to
this effect, the ondemand algorithm
frequency down-scaling was changed to
jump directly to the lowest frequency that
can keep the CPU ~80% busy. This saves
more power and enables the algorithm to
go to right frequency in one hop under
steady-state conditions.

Coordination of frequencies in software
cpufreq supports multiple processors
sharing the same frequency due to the
hardware design. Say, in a particular
implementation, different processor cores
on a processor package are dependent
on each other in terms of frequency.
cpufreq supports it by managing these
two CPUs together as one entity. In order
to support this setup, the ondemand gov-
ernor also has to manage the frequency of
this entity based on the utilization of these
two CPUs. The ondemand governor was
changed to look at the utilization of all
CPUs that are dependent this way and
change the frequency of all of them based
on highest utilization among the group.

4.2 Changes under investigation

There are a few other changes to the algorithm
that are currently being investigated and can get
into the base kernel in immediate future.

Unify up-scaling and down-scaling paths
The original ondemand governor had a

222 • The Ondemand Governor

tunable to change the rate of ondemand
CPU usage polling to increase the fre-
quency and ondemand CPU usage
polling, and an independent tunable to
decrease the frequency. By default, the
CPU usage polling to decrease the fre-
quency was 10 times slower than the CPU
usage polling to increase the frequency.
The main reason for having this tunable
was to keep any performance loss due to
ondemand to a minimum. But over a
period of ondemand usages, we have
noticed that there is no advantage to
having this tunable. In recent kernels,
default sampling interval for frequency
decrease is same as sampling rate for
increasing the frequency.

By removing this option for different up-
and down-scaling sampling frequency, we
can cut the path length in ondemand
sampling by half, which will be critical
given how frequently we do the sampling.

Parallel calculation of utilization The origi-
nal ondemand was doing the sampling
and utilization in a centralized way for
all CPUs. This does not scale well with
increase in logical CPUs. One opti-
mization is to have this sampling done
at a per-cpu or per-domain having the
shared frequency level instead of central-
ized sampling. Also, we can remove the
locks/semaphore in the ondemand sam-
pling path that can make ondemand scale
well with increase in number of CPUs.

Dedicated workqueue ondemand has
been using keventd and the generic
workqueue interfaces to schedule the call-
backs for periodic sampling. This callback
would get called on one particular CPU,
and ondemand sampling will run in
context of keventd. One complication
here, however, is if we want to change the
frequency for a group of CPUs sharing

the frequency, we may end up moving this
particular process to a different CPU to
make some calls to change the frequency.
But we will be holding onto keventd
from the original CPU and we may be
delaying some other service that needs
keventd. So, another change that adds
value is to have dedicated kernel threads
for ondemand and do the sampling and
changing frequencies in the context of
that particular kernel thread.

5 Coordination of P-states

With more than one logical package per phys-
ical socket, there are different kinds of fre-
quency dependencies. This dependency is
mainly due to hardware implementation and
if OS knows about these dependencies, it
can make more informed frequency decisions.
There are different coordination schemes that
can be implemented on any system.

There are four coordination schemes of inter-
est. In the first two, the OS is ignorant of hard-
ware dependencies. In the remaining two, the
OS is aware of hardware dependencies.

5.1 Hardware coordination without OS
knowledge

The hardware can do the coordination among
these dependent logical CPUs internally with-
out the knowledge of the OS. One way to im-
plement it: hardware maintains multiple sets
of registers to store the frequency requested
by different logical processors, and then picks
the maximum frequency requested by the group
of these dependent CPUs to enforce that fre-
quency on all CPUs belonging to the group.
Hardware doing this coordination transparently

2006 Linux Symposium, Volume Two • 223

will mean that OS still thinks each CPU is run-
ning on its own frequency.

This scheme has both an advantage and a dis-
advantage. The advantage is that no change is
required in the OS to support this. cpufreq
will still think that each CPU is independent
and there will be different /sys/devices/
system/cpu/cpuX/cpufreq directories for
each CPU, even though they are dependent.

The disadvantage is that this can lead to bad de-
cision making at times, as in the following ex-
ample. CPU 0 and CPU 1 are dependent logical
CPUs and can run at one constant frequency.
Say at a given point in time, CPU 0 is at high-
est frequency (due to its load) and CPU 1 asks
for a lower frequency. Hardware will do the co-
ordination and run both CPUs at the higher fre-
quency. But the OS will think CPU 1 is running
at a lower frequency. On the next ondemand
polling, CPU 1 will again notice that the CPU
is idle (as it is actually still running at higher
frequency than requested) and try to reduce the
frequency further, even though the first lower
request had no effect. Now if CPU 0 goes idle
and lowers its frequency below CPU 1, then
CPU 1 is now the maximum and it may run
for a short time at a speed that is slower than
it would have requested if it were an indepen-
dent CPU.

5.2 BIOS coordination without OS knowl-
edge

This scheme is very similar to Hardware co-
ordination without OS knowledge. The only
difference is that the BIOS does the actual
coordination instead of hardware. BIOS can
keep track of frequency requests from different
CPUs in its own private space, pick the high-
est request and then make hardware calls to set
the frequency at that highest request. The ad-
vantage and disadvantage is same as above, but

with an additional disadvantage. Anything that
runs in BIOS has to trap through SMM and this
can result in an order of magnitude higher la-
tency than the hardware coordination.

5.3 Hardware/BIOS coordination with OS
knowledge

Similar to the two schemes above, except now
the OS knows that this particular group of
CPUs is dependent on each other. The OS
will now know that hardware coordination is
present and hardware can have additional inter-
faces, so that OS knows the frequency of a par-
ticular CPU over time. The OS can either man-
age each CPU independently (with a separate
cpufreq directory for each CPU) or can do
coordination in software and manage all the de-
pendent CPUs as one unit (with one cpufreq
directory for all the dependent CPUs).

5.4 Software coordination

In this scheme, the OS determines the log-
ical CPUs that are dependent and does all
the coordination required in software. The
OS can monitor all the dependent CPUs to-
gether and make one frequency change re-
quest to hardware, depending on informa-
tion from all the dependent CPUs. In this
case Linux will have one cpufreq direc-
tory for all the dependent CPUs and /sys/

devices/system/cpu/cpuX/cpufreq, for
all X in dependent CPUs, will be a sym-
bolic link to one common cpufreq inter-
face. /sys/devices/system/cpu/cpuX/

cpufreq/affected_cpus interface will pro-
vide the list of CPUs that share same frequency,
in case of software coordination. Also, note
that in this case, the OS may depend on the
BIOS to know what particular logical CPUs are
dependent on each other. ACPI 3.0 provides the

224 • The Ondemand Governor

_PSD interface where the OS can get this infor-
mation about all the CPUs that are dependent in
terms of frequency.

5.5 Linux support for coordination

Linux-2.6.17-rc*-mm* has support for
the ACPI 3.0 _PSD method, and the
speedstep-centrino and acpi-cpufreq

drivers can make use of this interface to deter-
mine the dependent CPUs (and also the mode
of coordination—Hardware or Software coor-
dination). Both the cpufreq and ondemand
governor have supported software coordination
since Linux-2.6.14. So, Linux can run the two
OS-aware coordinations schemes if the BIOS
exports the specific ACPI interfaces.

Currently, most of the BIOSes do not provide
any coordination information to OS and Linux
will run in the hardware or BIOS coordination
schemes.

6 Performance Measurements

6.1 Methodology used for measurements

In order to be able to compare different im-
provements to cpufreq algorithms, we have
set up an experimental system, running a stan-
dard web server workload over SSL. We have
measured 12V DC current to server CPUs.
Loading clients were connected to server by di-
rect 1Gb links. We choose to not use HTTP
accelerators such as TUX, because our primary
goal was not getting record scores, but to have
a well-defined dynamic server load. Pairs of
our graphs show consumed power and num-
ber of conforming client-server connections vs.
number of requested connections. The tested
system is a 4-socket Xeon MP dual-core and
hyper-threaded machine (with a total of 16 log-
ical processors) with 8GB of RAM.

6.2 Experiment setup

Power consumed by the system can be
measured by special power meters such as
WattsUp? or manually by means of various sen-
sors, introduced into the system under test. In
the latter case, one measures separately voltage
(U) (or treats it as a known value) and current
(I), running through the system and then mul-
tiplies acquired values to get consumed power
(P = U ∗ I). In the case of internal DC sup-
ply voltages (12V), one can sample current
with 100Hz frequency and get pretty high ac-
curacy. We used one of the cheapest USB
DACs around—PMD-1208LS, other choices
being devices from LabJack or even sound-
card input. In order to measure current with
the DAC one needs to convert it into voltage.
This could be done by inserting a milliOhm-
range resistor into a powering wire, or mea-
sure a magnetic flux around the wire with Hall-
effect sensor. We used a second approach with
split-core sensors CR5410S from CRMagnet-
ics which could be wrapped around the wire
without a need to break it. This setup allowed
for about 1-Watt variation in power measure-
ments from run to run, which is more than ad-
equate, considering more than 600 Watt peak
power consumption. Thus we choose to show
on graphs results as is, without additional aver-
aging.

 CPU

 CPU

power

supply

DAC

12V 220V AC

1 Gbit links

client

manager

Server

USB

Figure 3: Experiment setup

2006 Linux Symposium, Volume Two • 225

6.3 No power management, userspace,
original ondemand

The following picture shows the results on a
16-logical-CPU system with different gover-
nors. performance and powersave gov-
ernors have power delta of about 10%, while
ondemand and userspace stay in between.
Performance degradation is significant with
powersave and barely visible with dynamic
governors.

6.4 Original ondemand and experimental
governors

These graphs represent new experiments with
the ondemand:

2.6.9 First ondemand, from kernel 2.6.9, ap-
pears to not save any power in such a
system, while trashing performance. In-
cluded here for reference.

clean Removed duplicating down-sampling
calculations.

parallel Introduction of own workqueue and
scheduling of utilization calculations on
each CPU group.

fastcheck Make a check of the utilization
somewhat faster in the case of setting high
frequency.

idle Use idle_notifier to find exact idle
times.

7 Future Work

7.1 Impact on other subsystems—
Scheduler changes

Today the Linux scheduler does not have any
knowledge of frequency at which a processor is

running. It assumes each CPU on an SMP sys-
tem has the same amount of horse-power and
tries to balance the load equally across CPUs.
Recent smpnice patches have added the pro-
cess priority information into the scheduler. We
also need to add the CPU horsepower into the
scheduler as well.

[5] talks about making the scheduler aware of
frequency dependencies across logical proces-
sors in a multi-core environment. The sched-
uler can change the load balancing behavior,
depending on whether a system wants to op-
timize performance or power. For instance, on
a DP1 system with each package being dual-
core, and with performance policy, two active
threads should run on different packages, keep-
ing one core on each package idle. This will
optimize resource utilization of all the shared
resources across two cores on a package. When
the same setup is running in power optimized
policy, two active threads will run on two cores
of a single package, allowing other two cores
of other package to go idle and also to lower
frequency/voltage.

Even in normal SMP (without threads or cores),
to get maximum power savings, the scheduler
should try to get one CPU 100 percent busy,
even though with some loss in response time,
before moving tasks to next CPU. This is a yet-
to-be-explored area at this time.

7.2 Callback and micro-accounting for idle

The current ondemand governor depends on
the idle/busy statistics collected at the sched-
uler ticks. If at the tick instance the CPU
was idle, then whole tick is considered idle
and vice-versa. But, if we can do a micro-
accounting of idle time then we get a more
accurate number of time spent idle and time

1DP = Dual Package.

226 • The Ondemand Governor

 420

 440

 460

 480

 500

 520

 540

 560

 580

 600

 620

 150 200 250 300 350 400 450 500 550

12
V

 P
ow

er
, W

Requested connections

Powersave
2.6.9

Ondemand
Userspace

Performance

Figure 4: Power consumption with original governors

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 400 420 440 460 480 500 520 540

C
on

fo
rm

in
g

co
nn

ec
tio

ns

Requested connections

Powersave
2.6.9

Ondemand
Userspace

Performance

Figure 5: Performance with original governors

2006 Linux Symposium, Volume Two • 227

 420

 440

 460

 480

 500

 520

 540

 560

 580

 600

 620

 150 200 250 300 350 400 450 500 550

12
V

 P
ow

er
, W

Requested connections

Powersave
Ondemand

Clean
Parallel

Performance

Figure 6: Power consumption with experimental governors

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 400 420 440 460 480 500 520 540

C
on

fo
rm

in
g

co
nn

ec
tio

ns

Requested connections

Powersave
Ondemand

Clean
Parallel

Performance

Figure 7: Performance with experimental governors

228 • The Ondemand Governor

 420

 440

 460

 480

 500

 520

 540

 560

 580

 600

 620

 150 200 250 300 350 400 450 500 550

12
V

 P
ow

er
 ,W

Requested connections

Powersave
Ondemand
Fastcheck

Idle
Performance

Figure 8: Power consumption with experimental governors

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 400 420 440 460 480 500 520 540

C
on

fo
rm

in
g

co
nn

ec
tio

ns

Requested connections

Powersave
Ondemand
Fastcheck

Idle
Performance

Figure 9: Performance with experimental governors

2006 Linux Symposium, Volume Two • 229

spent doing useful work. The kernel can do the
micro-accounting by noting the time of entry
and exit of idle routine and interrupts.

If the idle handler across architecture has to
do accounting for exact idle time, ondemand
will have more accurate idle/busy data and can
take better frequency decisions. Though do-
ing micro-accounting for all the states like user,
kernel, nice, etc. may have some overhead, do-
ing it only for idle/non-idle should be relatively
easy. Andy Kleen has implemented idle noti-
fier callbacks for X86_64, and our experimen-
tal governor makes use of this infrastructure.
We needed to keep overhead of such account-
ing low, because it is called during each inter-
rupt enter/exit.

7.3 Real time threads and impact

The ondemand governor runs in the context
of a kernel thread and the real time processes
running on the system may get higher prior-
ity and run before the ondemand governor
gets a chance to increase the frequency. This
is the current issue with ondemand and real
time threads. There is no clean solution for this
problem, as if we try to increase the frequency
before the real-time process starts, the transi-
tion latency to increase the frequency will delay
the start of the real-time process and also, the
real-time process may not run for a long time,
negating the whole purpose of increasing the
frequency. One solution to this is to have some
callbacks from the scheduler, before it sched-
ules the real-time threads, to ondemand gov-
ernor, which can then increase the frequency
giving the benefit of increased frequency to real
time threads. Note that this has to be a special
case only for real-time threads, as adding some
additional checks/callbacks like this for normal
threads in context switch path will be a prob-
lem as it is a common case and should be be

delayed. More ideas on how to solve this is-
sue, as well as patches to solve this problem,
are welcome :-).

8 Acknowledgments

Thanks to our colleagues at Intel Open Source
Technology Center for their continuous sup-
port. Thanks to efforts of many developers
and testers in open source community. Spe-
cial thanks to Len Brown, Dominik Brodowski,
Andi Kleen, Eric Piel, and Thomas Renninger
for all the support, feedback, and patches.

References

[1] cpufreq-stats documentation.
Documentation/cpu-freq/cpufreq-stats.txt
in Linux kernel source.

[2] cpufrequtils project page.
http://www.kernel.org/pub/
linux/utils/kernel/cpufreq/
cpufrequtils.html.

[3] Dominik Brodowski. Current trend in
linux kernel power management, linuxtag
2005. http://www.free-it.de/
archiv/talks_2005/
paper-11017/paper-11017.pdf.

[4] Len Brown et al. Acpi in linux, ols 2005.
http://www.linuxsymposium.
org/2005/linuxsymposium_
procv1.pdf.

[5] Suresh B. Siddha et al. Chip multi
processing aware linux kernel scheduler,
ols 2005. http://www.
linuxsymposium.org/2005/
linuxsymposium_procv2.pdf.

230 • The Ondemand Governor

[6] Venkatesh Pallipadi. Enhanced intel
speedstep technology and demand-based
switching on linux, intel software net.
http://www.intel.com/cd/ids/
developer/asmo-na/eng/
195910.htm.

[7] Linus Torvalds. Linus about kernel
governor on lkml.
http://marc.theaimsgroup.
com/?l=linux-kernel&m=
103056055008566&w=2.

Disclaimer

The opinions expressed in this paper are those of the
authors and do not necessarily represent the position
of the Intel Corporation.

Linux is a registered trademark of Linus Torvalds.

Intel is a registered trademark of Intel Corporation.

All other trademarks mentioned herein are the prop-
erty of their respective owners.

Linux Bootup Time Reduction for Digital Still Camera

Chanju Park
Samsung Electronics, Co.
bestworld@samsung.com

Kyuhyung Kim
Samsung Electronics, Co.

kyuhyung.kim@samsung.com

Youngjun Jang
Samsung Electronics, Co.
yj03.jang@samsung.com

Kyungju Hyun
Samsung Electronics, Co.

kyungju.hyun@samsung.com

Abstract

Bootup time is a very important issue in the
DSC System because customers want to cap-
ture immediately specific image. In this paper,
we present the experience of the implementa-
tion methods and the performance evaluation
results for reduction of bootup time which was
used in SAMSUNG DSC platform. At first
we introduce the DSC platform and develop-
ment environments and next we explain the op-
timization method for the bootloader and the
kernel bootup time. We also describe root file
system, device driver module configuration and
DSC applications initialization for bootup time.
There are various techniques for linux bootup
time reduction and we explain the most impor-
tant differences.

1 Introduction

Recent digital convergence trends drive CE
products to have many functions in single de-
vice. The DSC also follows it that provides
many functions such as MP3, PMP, and net-
work function. Various real time operating
system (RTOS), such as ITRON [1], ZORAN

OS [2], VxWorks [3], etc., have been widely
used for the operating system of DSC. How-
ever, some of RTOSes does not support the ex-
tensibility, adaptability, and flexibility [4]. In
order to support these properties, we adopt the
embedded Linux as an OS in our DSC which
kernel features can be modified freely because
its source codes are opened.

Linux uses standard device driver interfaces
and it supports the POSIX APIs, so it pro-
vides diverse extensibility. Using the Linux
can considerably reduce the long-term develop-
ment cost so that the DSC can strengthen the
one of the most important competitive powers-
“Time to Market”. There are many CE prod-
ucts adopting embedded Linux [5]. However,
in DSC, only a few companies use it, such
as Ricoh Company that made prototype Linux
DSC [6].

There would be various important requirements
to load embedded Linux in the DSC. Among
them, the major requirement would be the real-
time performance, and the bootup time. Re-
cently, embedded Linux provides many fea-
tures for real time and the DSC hardware also
does many works for image processing to re-
duce S/W computation overhead. By H/W and
S/W supporting, we can achieve real-time re-

232 • Linux Bootup Time Reduction for Digital Still Camera

quirement of DSC. However, we still have a
important requirement, the bootup time.

In this paper, we will describe “bootup time
reduction” which is one of the major require-
ments in the Linux DSC. This paper organized
as follows. In the next session, we describe the
boot procedure of the DSC, and then present
the technologies relevant to improving bootup
time for Linux. The last section presents the
results of implementation and future research
direction.

2 Bootup time reduction methods

2.1 Environments

We used the Samsung DSC reference platform
for implementing Linux DSC. It has a 16/32-
bit RISC microprocessor, designed to provide
DSC features—6 mega pixel CCD, powerful
JPEG encoder/decoder, Divx decoder, audio
DSP, 64MB DDR memory controller, Camera
interface, SD Host & Multi-Media Card inter-
face, etc. Especially, it includes an OneNAND
flash memory and no NOR flash memory.

The initial Samsung FPGA DSC platform is
shown in Figure 1.

S5C7380x is the high spec digital camera plat-
form of Samsung, which integrates many pe-
ripherals for fast Image processing.

The major features of the platform are:

• Core: Arm926EJS (16K I/D cache)

• Image processor: Samsung S5C7380x

• System clock: 216Mhz Fclock, 108Mhz
Hclock

Figure 1: Initial Samsung FPGA DSC Platform
using S5C7380x

• Memory: 64MB SDRAM , 64MB One-
NAND flash

• DSC Module: CCD censor, Image Pro-
cessing Unit, AF/Zoom/Shutter/Iris mo-
tor, Digital LCD, JPEG encoder/decoder,
OSD, 3A(AE, AWB, AF) module, etc.

• OS: Linux kernel 2.4.20

• Kernel Size: about 1MB (uncompressed
Image)

• File System: Cramfs for root file system,
Robust File system for OneNAND

2006 Linux Symposium, Volume Two • 233

2.2 DSC Bootup Procedure

The booting of the DSC system is a pro-
cess from power-up to ready-to-shoot. (Af-
ter Ready- to-shoot state, we can capture any
images). It consists of three main operations,
“Boot loader”, “Kernel initialization,” and “Ap-
plication Initialization”. After power up, the
boot loader initializes the system and starts the
system process. Then it copies the kernel im-
age into memory. Once the kernel is loaded,
the kernel initializes many resources and loads
H/W module into memory, then it mounts sev-
eral file systems to the several mount points.

We summarize three steps of the bootup proce-
dure as follows:

• Boot Loader

1. System initialization

2. Kernel image copy to RAM

• Kernel Initialization

1. Init kernel

2. Init device drivers

• Application Initialization

1. Run RC script

2. Run Applications

3. Preview Mode (ready-to-shoot)

2.3 Boot loader

Bootloader is a program that runs just before an
OS really starts its work. It initializes a system
and loads a kernel image into RAM. If we use
NOR flash as a boot device, we can shorten the
bootup time using kernel XIP [7].

However, in our work, we should use the One-
NAND flash memory instead of using NOR

flash for two reasons. Samsung’s OneNAND is
a single chip flash that offers the ultra-high den-
sity of NAND and has the interface to NOR at
very attractive price. The OneNAND is based
on NAND architecture integrating buffer mem-
ory and logic interface. It takes both advantages
from high-speed data read function of NOR
flash and the advanced data storage function of
NAND flash. It is mandatory to make addi-
tional small boot loader for copying the kernel
image to memory.

After loading the kernel image, bootloader con-
tinues loading a RFS(Root File System) image
into RAM. Typically the RFS image is stored
in compressed form (gz), therefore, it must be
loaded from storage and decompressed. But by
making RFS on a cramfs File System, it allows
fast boot time since only used files are loaded
and uncompressed. In addition, we can con-
sider the initializing device drivers. In order
to shorten bootup time, the bootloader loads
driver concurrently as many as it can.

2.4 File system

Root file system (RFS) is essential element for
running kernel on embedded system. There are
many file systems, and these can be used as
Linux root file system. Each file system has
its own functionality, various bootup methods
with different bootup time. There are many
sub works to do for mounting file system. For
example, decompressing the compressed file
system, copying itself from storage device to
memory, searching the file system contents,
searching inodes, journaling, and so on. There-
fore, the reduction of RFS mounting time is
very important.

To minimize mounting time, we adopt the
CRAMFS as root file system. The CRAMFS
is designed for simple and small file system, so
it has smaller bootup time comparing to other

234 • Linux Bootup Time Reduction for Digital Still Camera

file systems. The CRAMFS reads only super
block among entire file system element while it
mounting root file system. We can have rel-
atively short boot time using the CRAMFS.
While the CRAMFS has a shorter boot time, it
has some demerits. It can be used only with
read-only attribute, so it’s recommended that
use the CRAMFS only on boot area, and use
another file system on other area that needs to
read and write operation. But if we use special
options for cramfs, specific directories would
not be compressed, so we can save the mount
time.

2.5 Application Optimization Issues

Loading DSC application module is final se-
quence of bootup procedure In DSC system.
After loading applications, bootup sequence
is finished and the system becomes ready-to-
shoot mode. This section describes about time
consuming part while loading and running ap-
plication on bootup sequence, and time reduc-
tion techniques of application.

1. Init script – After kernel bootup, ker-
nel executes init program which is located
at /sbin/init. This program does
some tasks according to /etc/inittab
script. For optimizing bootup time, it’s
necessary to remove unused service on init
script and to run only necessary applica-
tions. As we mentioned on before, this
init script and applications are included in
root file system, CRAMFS. CRAMFS has
an option which does not compress some
area. By using this option, we can reduce
bootup time.

2. Resource loading time – After initializ-
ing kernel and device drivers, system en-
ters into preview mode, and waits for user

input. So user can capture image when-
ever user wants after DSC init. On pre-
view mode, system displays some infor-
mation about system information, storage
information, image quality, date, etc.

This information is represented as icon,
font, menu images on the LCD display
unit. Because the OSD hardware unit in
DSC use these resources, we call it as
OSD data. All OSD data must be loaded
from permanent storage media to mem-
ory. But it is time wasting job to load all
OSD data during bootup time. We can re-
duce the loading time by selective loading
only necessary resources for booting. If
we need more OSD data, we can load them
later dynamically.

3. Lazy process creation – During DSC sys-
tem operates, many subtasks—like event
processing, resource management, image
processing, power management—are ex-
ecuted. Many processes are invoked for
executing these tasks. When creating a
process, system runs system call named
fork(). But invoking fork() wastes time
about tens of ms. It is an overhead when
used on bootup time. So it is recom-
mended to create processes when they are
needed, not to create them when booting
the system.

2.6 Other Optimization Methods

Until now, many DSC specific methods for re-
ducing bootup time are introduced. In this
section, we introduce some methods, what we
adopted to our DSC system, outperforming in
terms of boot time reduction.

1. Preset loops_per_jiffy – One of well
known method of kernel bootup time re-
duction is ‘preset_LPJ’. At each boot time,

2006 Linux Symposium, Volume Two • 235

the Linux kernel calibrates a delay loop
for estimating system performance. This
measures a loops_per_jiffy (LPJ)
value in calibrate_delay(). By us-
ing a pre-calculated LPJ value, we can re-
duce loop overhead, and save bootup time.

• Improvement: about 250ms

2. Disable Console Output – The output
of kernel bootup messages to the con-
sole takes time, but console output is not
needed on a production system. So we can
remove bootup messages by using ‘quiet’
argument to the kernel command line. For
example:

• Improvement: about 230ms

3. Device Driver Initialization – To con-
trol HW units on DSC system, the ker-
nel device driver are needed. All device
drivers have initialize routines, and these
are called during kernel bootup time. So
optimizing the device driver init routine
will reduce kernel bootup time. The de-
vice driver can be loaded into kernel as
two ways, the static method and the dy-
namic method. During kernel bootup,
only static drivers are loaded, and dy-
namic drivers are loaded as modules af-
ter the bootup sequence. So, if a device
driver is not necessary on system init, it
will be better using dynamic loading rather
than using static loading. By making de-
vice driver as module, we can reduce de-
vice driver init time while booting. On
our DSC system, we made device drivers
that are not used on bootup sequence—
USB, MPEG, STROBE, WDT, TV, etc.—
as modules, and loaded them at runtime.

• Improvement: tens of ms

4. Concurrent driver init – DSC system is
composed of various HW unit like mo-
tor (zoom, focus, iris), image processing

unit, JPEG en/decoder, MPEG en/decoder,
strobo, LCD, CCD, etc. Some of these
units are initialized at bootup time because
they are used right after bootup. Nor-
mally, these static device drivers are ini-
tialized in do_initcalls() function
while bootup time. But some kinds of de-
vices need long initializiation time. For
example, zoom motor has to moved to
some fixed location while system initial-
izing, so it may take 1–2 seconds. This
is a long time on system’s view. If
the zoom motor driver is initialized on
do_initcalls(), it may be the main factor of
boot time delay. So we initialized these
device drivers like zoom motor at boot
loader, the beginning part of whole boot
sequence. By doing so, zoom motor is ini-
tialized in parallel with other bootup code.
This is a device dependent method.

5. Memory allocation – The memory al-
location function like kmalloc() at
kernel or malloc() at application is
time consuming function. If these func-
tions are used during bootup sequence, it
may not be helpful to reducing bootup
time. We improved bootup time by re-
moving memory allocation function on
bootup sequence By allocating memory
after bootup, or by using memory pre-
allocation, we can remove memory allo-
cation function.

• Improvement: tens of ms

2.7 System suspend/resume

Bootup time is very important because DSC
user want to capture the image as quick as pos-
sible, The methods as we shows before are for
system initialization processes. But if we use
the system suspend/resume method, the bootup
time reduction will be implemented very ef-
fectively. The system suspend/resume is also

236 • Linux Bootup Time Reduction for Digital Still Camera

one of the power management method. Sys-
tem suspend means that all power of the system
break down except SDRAM, and in SDRAM
on which we store current system information
like as cpu register, I/O map information. Sys-
tem suspend means that there is no power in
the system except SDRAM and the system re-
members its state in SDRAM like as cpu reg-
isters, I/O device status, runtime global/local
variables, etc.

When system receives specific events like as
power button, the resuming procedure will be
started. The first thing for resuming is sup-
plying power and initializing the CPU, mem-
ory, etc. And next check if current state was
in resume mode and restore all data which
was in SDRAM. If we use the suspend/resume
method, reducing bootup time has good effi-
ciency, because only restoring system infor-
mation from the memory is needed. Addi-
tional works to do is initialize some devices
like as LCD, Motor, CCD, Image Processing
Devices. We can consider next things for sus-
pend/resume.

1. At begging of the bootloader, initialization
is needed for the devices which has long
initialization time like as zoom motor. Of
cause these kinds of devices have the fea-
ture of the concurrent initialization.

2. When system resumed, some user would
modify the DSC state. So it is need to
check system state and change the DSC
application for that state if changed.

3. During the system is in suspend state, the
power consumption has to satisfy the re-
quirement of marketing issues of DSC.

We can consider that if some level of time has
passed, the system would be power off au-
tomatically for low power consumption. Of

course, next time the DSC will be booted us-
ing normal booting.

With Samsung DSC platform, when we using
the suspend/resume method for bootup time re-
duction, total bootup time until review is 500ms
which is faster than motor initialization time.
So, it is need to use faster motor devices for
fast bootup time.

3 Results

3.1 Bootup time results

Using DSC specific and general bootup time
reduction methods which were described be-
fore, we can get following results from Sam-
sung DSC platform.

We show the bootup time results on Samsung
DSC in Table 1. Note: Times are approximate
values and in milliseconds

From this table, we can get the result that the
most time consumption areas are about 4 parts:
Image copy from flash memory to SDRAM at
boot loader, device driver initialization area,
file system related area, and DSC application
initialization area. So if we achieve more
bootup time reduction, we have to concentrate
at above areas.

3.2 System clock speed influence

System clock speed influences not only over-
all performance of system but also bootup time.
Following graph shows that the variation of
system clock speed influences bootup time at
the same DSC H/W platform.

As the results, bootup time is proportionate to
the system clock speed. So it is important to us-
ing maximum clock speed the system supports.

2006 Linux Symposium, Volume Two • 237

Booting Operation time
Bootloader Initialize CPU & RAM & Uboot 50

Copy kernel image (from flash to RAM) 450
Kernel Init setup_arch () 50

setup_arch () 50
trap_init () 10
kmem_cache_init() 10
mem_init () 20
vfs_caches_init () 20
page_caches_init () 10
rest_init() do_basic_setup() 190

prepare_namespace() 20
console_open() 20

Application ready to use file system 480
DSC process (preview mode) 650

total 1980

Table 1: Booting time results

3.3 Flash memory

We have seen in previous section that One-
NAND has the feature of NOR and NAND
flash memory. It supports two kinds of
read/write operation modes. The one is the syn-
chronous burst read mode and the other is asyn-
chronous random read mode. If we use syn-
chronous read mode, the read time will be very
fast. If system support full feature for One-
NAND, like as synchronous and cached mode,
its performance is almost same as the case us-
ing NOR flash.

Figure 3 shows the results of comparison of
OneNAND and NOR flash. The shadowing
means that kernel image will be copied into
memory. This had been tested in another sys-
tem by Samsung and presented at CELF for
Linux NAND file system solutions [11].

S5C7380x does not support synchronous mode,
but as Figure 3 shows, we have to check
whether the system can support OneNAND
synchronous mode when using other systems.

4 Further work

So far, we has introduced various methods for
DSC bootup time reduction using Linux. But
there are many other methods that were not
adopted but already well known [9].

Another user application issue is that we have
to check the remaining space of the card in the
storage device. If there is no space to store
any image, application has to display the in-
formation on LCD and has to processing rel-
evant works. In addition, most DSC applica-
tions using the specific file system format like
as DCF, which defines a common format for
digital cameras for compatibility [12].

The DCF defines also the directory and file
name structure at application booting time. But
If we can store the first Image to internal mem-
ories like as flash or SDRAM, there is no need
to initialize the card device at booting time, so
we can save the time.

At the same time, if we use kernel XIP, there is
no need to copy the kernel image from storage

238 • Linux Bootup Time Reduction for Digital Still Camera

Figure 2: Bootup time about each cpu clocks. All times are in milliseconds

Figure 3: OneNAND booting time comparisons

2006 Linux Symposium, Volume Two • 239

device to memory, so the bootup time will be
reduced dramatically. But this kind of methods
gives a little bit runtime overhead and increas-
ing the costs. There are many other methods for
bootup time reduction: pre-linking, lazy link-
ing, RTC read synch, and so forth. But in this
paper these methods are not introduced [10].

5 Conclusion

The use of embedded Linux is a little bit risky
on DSC for bootup time. When we imple-
mented Linux on the DSC at first, the bootup
time was more than 10 seconds. However,
we get the reasonable bootup time by adopting
suggested methods. Recently, the DSCs which
have other RTOS show a very fast bootup time.
We overcome the slow bootup time of conven-
tional embedded Linux for DSC by using our
methods.

Comparing to the performance of conventional
DSC using RTOS, the DSC with embedded
Linux shows a similar bootup time. As a result,
we can solve the problem of embedded Linux
bootup time for CE devices like the DSC. Of
course, if we apply the additional method for
the bootup time reduction, we can get better re-
sults.

We have to understand the feature of software
and hardware of the DSC, For all of these, we
have to evaluate the performance and the sta-
bility of the system although we can choose
more method. After first version implementa-
tion of the DSC, the bootup time is more than
10 seconds. But when we implement the sug-
gested methods for reduction, the bootup speed
has good results.

In recently, the DSC which had other RTOS
shows a very fast bootup time. And also, Sam-
sung Linux DSC has reasonable results. Of

course if we implement other methods for re-
duction, the bootup time will be faster To sum-
marize, we need to understand both software
and hardware of DSC and have to use the DSC
specific feature. But because we can not adopt
all methods for boot time reduction, we have to
check which should be implemented and evalu-
ate the over all performance results from adap-
tation.

References

[1] The Most Popular Operating System in
the World,
http://technews.acm.org/
articles/2003-5/1017f.html,
Linux Insider (10/15/03); Krikke, Jan

[2] Samsung Digimax V700 incorporates
Zoran Coach 7, http://www.
letsgodigital.org/en/news/
articles/story\2866.html

[3] PLATFORM FOR CONSUMER
DEVICES, VxWorks embedded
real-Time Operating System (RTOS),
Intel, Wind River Systems, Inc.,
www.windriver.com

[4] Embedded Linux startup reports success,
growth,
http://www.linuxdevices.
com/news/NS7176308845.html

[5] Adaptability, Extensibility, and
Flexibility in Real-Time Operating
Systems, Euromicro Symposium on
Digital Systems Design ,DSD’01, 2001

[6] Linux on a Digital Camera, Porting 2.4
Linux kernel to an existing digital camera
Alain Volmat Ricoh Company Ltd.
Proceedings of the Linux Symposium,July
21st-24th, 2004 Ottawa, Ontario Canada

240 • Linux Bootup Time Reduction for Digital Still Camera

[7] Bill Weinberg, Building Intelligent
Devices with MontaVista Linux
Consumer Electronics Edition,
MontaVista Software,
http://www.linuxpundit.com/
cv/docs/wp_cee.pdf

[8] onenand_ebrochure_200503, http:
//www.samsung.com/Products/
Semiconductor/OneNAND

[9] Tim R. Bird, Methods to Improve Bootup
Time in Linux, Sony Electronics
tim.bird@am.sony.com,Proceedings of
the Linux Symposium July 21th-24th,
2004 Ottawa, Ontario Canada

[10] BootupTimeReductionHowto,
http://tree.celinuxforum.
org/CelfPubWiki/
BootupTimeReductionHowto

[11] Case 3—comparing NOR XIP with
OneNAND quick-copy to RAM,
http://tree.celinuxforum.
org/CelfPubWiki/KernelXIP

[12] Design rule for Camera File system,
http://www.exif.org/dcf.PDF

A Lockless Pagecache in Linux—Introduction,
Progress, Performance

Nick Piggin
SUSE Labs, Novell Inc.
npiggin@suse.de

Abstract

Critical Linux pagecache operations can be
made lockless to provide improvements in per-
formance and scalability. I examine some exist-
ing pagecache synchronisation designs, then in-
troduce my lockless pagecache for Linux. Per-
formance and scalability of the implementation
is analysed and compared with that of other
schemes—this involves a comparison of bench-
mark results from a range of machines and
workloads. Finally, I give a progress report on
the present state of the work.

1 Introduction

The focus of this paper is to improve the mul-
tiprocessor scalability of the Linux pagecache
without compromising other performance char-
acteristics.

1.1 Pagecache

The pagecache is a transparent filesystem
cache. The fundamental functionality required
of the pagecache is to manage memory pages
that hold inode1 data, and which are stored and
retrieved according to their (inode, offset) tuple.

1An inode essentially represents a file’s contents.

Many modern UNIX-like operating systems,
including Linux, have the concept of a page-
cache, which obsoleted the buffer cache when
it was introduced with SVR4 UNIX.

A common use-case for the pagecache is a
page-sized and aligned read(2) system call; the
Linux kernel performs the following opera-
tions:

1. System call entry into the VFS (kernel’s
filesystem subsystem).

2. VFS determines which inode is specified
by the given file descriptor.

3. VFS calls into the memory manager to
read the required (inode, offset).

4. The memory manager queries the page-
cache for the page. If the page does not
exist, go to 5; if the page not valid, go to
7; otherwise go to 8.

5. memory manager allocates a new page,
mark its contents invalid, and store this
new page in the pagecache, representing
the given (inode, offset).

6. memory manager initiates a filesystem
read to populate the page.

7. thread will now wait until completion of
the read (which marks the page contents
as valid).

242 • A Lockless Pagecache in Linux—Introduction, Progress, Performance

8. memory manager will copy the required
data to the VFS for the read call.

1.2 Linux pagecache history

1.2.1 Linux 2.4: Globally locked pagecache

Linux 2.4 uses a fixed sized global hash-chain
data structure in order to store pagecache pages
based on their (inode, offset) tuple. Pagecache
pages are also present on per-inode lists of
clean and dirty pages. Access to these lists and
the hash table is synchronised by a single global
spinlock.

This global spinlock is one of the largest scal-
ability bottlenecks in the Linux 2.4 kernels
for many workloads. On a workload such as
dbench2 [8], Juergen Doelle [1] demonstrated
the poor scalability of this scheme, with al-
most no performance improvement when mov-
ing from 4 to 8 CPUs.

CPUs throughput
(normalised)

1 1.00
2 1.51
4 2.15
8 2.27

1.2.2 Linux 2.4: Molnar/Miller scalable
pagecache

Ingo Molnar and David Miller [4] attempted to
address the problem of the global pagecache
lock with a synchronisation scheme which pro-
tected the hash table with an individual lock
per hash-bucket, and protected per-inode lists
(which contain clean/dirty pages) with a per-
inode lock.

2dbench is a file server benchmark

This design is problematic because it intro-
duces another layer of locking to the system,
thus increasing the number of lock operations
and the cache footprint of a typical path through
the kernel. There is also complexity introduced
in order to avoid lock ordering deadlocks.

The Molnar/Miller pagecache was never used
in the Linux kernel, however it may have pro-
vided ideas which paved the way for the Ve-
likov/Hellwig design.

1.2.3 Linux 2.6: Velikov/Hellwig radix-tree
pagecache

Momchil Velikov and Christoph Hellwig de-
signed a radix-tree based pagecache architec-
ture, which is used by current Linux 2.6 ker-
nels. Pagecache pages are stored in a variable
height radix-tree, with one radix-tree per inode,
and each tree is indexed by the page’s offset
within the inode. The per-inode page lists were
retained for some time after its inclusion into
the kernel. Andrew Morton subsequently mod-
ified this design to remove these lists: the radix-
tree now maintains a hierarchy of ‘tags’ for
each node, one of which indicates dirty page-
cache, to speed up searches for dirty pages.

Each inode structure has a spinlock, tree_
lock, which is used to synchronise concurrent
access and modification of the radix-tree, and
to control access to the pagecache in general.

1.2.4 Other operating systems

OpenSolaris uses a complex arrangement of
hash tables and hashed locks in its pagecache
implementation, which is in some ways similar
to the Molnar/Miller scalable pagecache.

FreeBSD 6 uses a per-inode splay-tree and per-
inode locking in its pagecache, in the same ba-

2006 Linux Symposium, Volume Two • 243

sic way as the Velikov/Hellwig radix-tree page-
cache.

Most other free and open operating systems use
either hashes or trees with lock based synchro-
nisation, these are naturally suited to the appli-
cation.

1.3 Linux memory management

An introduction to the relevant details of the
Linux memory management implementation
needs to be given, to provide the reader with
background to understand the proposal for the
lockless pagecache. These details are slightly
simplified in places so as not to distract from
the main concepts being introduced. For fur-
ther reading, Mel Gorman [3] provides a thor-
ough examination of memory management in
Linux.

1.4 Memory, struct page

In Linux, every physical page frame that is to
be used as RAM by the kernel is represented
with a corresponding struct page struc-
ture. This structure contains fields flags for
general flags, _count is a reference count, and
various other data associated with the status and
management of the page frame.

The struct page is the usual way to re-
fer to a page, and the pagecache is no excep-
tion. It is the struct page representing a
given pagecache page that is stored in the page-
cache’s radix-tree.

Figure 1 gives an idea of how the struct
page relates to page-frames.3

3‘Two separate columns’ is slightly inaccurate be-
cause actually the mem_map array of struct page is
itself stored in physical memory frames, and it may not
be implemented as a single contiguous array, however
that is inconsequential to this discussion.

 page frame

 struct page

 physical memory

 mem_map array

Figure 1: How struct page relates to physical
memory pages

1.4.1 Page lifetimes, refcounting

struct page has a reference count,
_count, which is 0 when the page is free, and
is set to 1 when the page is allocated.

When some part of the kernel has finished with
a page and would like to free it, __free_
pages (shown in Figure 2) or a similar func-
tion would be called. This atomically decre-
ments the refcount and if that caused it to be-
come zero, the page is returned to the alloca-
tor. There is a get_page function, which in-
creases the refcount of an allocated page.

1: void __free_pages(struct page *page,
2: unsigned int order)
3: {
4: if (put_page_testzero(page)) {
5: if (order == 0)
6: free_hot_page(page);
7: else
8: __free_pages_ok(page, order);
9: }
10: }

Figure 2: __free_pages function in Linux

244 • A Lockless Pagecache in Linux—Introduction, Progress, Performance

1.4.2 Dirty pages

A pagecache page is considered dirty if its con-
tents are more recent than the contents of the
filesystem which it is caching. A pagecache
page would become dirty if a program invokes
the write system call to modify the data in an
inode. If a pagecache page is not dirty then it
is considered clean—it is storing a copy of file
data that is identical to its corresponding data
in the filesystem.

A clean page can be discarded from the page-
cache, because if it is required in future it will
be restored from the filesystem. Dirty pages
can not be discarded from the pagecache be-
cause that would result in data loss as the con-
tents of the disk are older than those in mem-
ory. A dirty page can be cleaned by directing
the filesystem to write the contents of the page
to its backing store.

1.4.3 Page reclaim

During the course of a system’s operation, if
memory becomes full, it will attempt to reclaim
pagecache pages in order to satisfy requests for
memory.

Clean pagecache pages are reclaimed by sim-
ply discarding them. It is important to ensure
that the pages are clean and that they have no
references to them before being reclaimed. A
reference to the page indicates it is in use—that
user may be in the process of dirtying the page
even if it is now clean.

This detail becomes important later on, be-
cause Linux currently relies on the per-inode
tree_lock to exclude read-side code when
performing these tests.

2 Lockless pagecache in Linux

This section will propose a model for a lockless
pagecache in Linux. By lockless, it is meant
that pagecache lookup (read-side) operations
will be performed without taking a lock. Inser-
tion and removal of pages, and ‘tag lookups’
are still performed with the same locking—
these operations are usually associated with
less frequent operations such as IO, truncation,
and page reclaim so are less important.

2.1 Lockless data structure

One fundamental protection provided by the
tree_lock spinlock that is taken by page-
cache lookup functions, is the protection of the
pagecache data structure. Hence, one thing re-
quired for lockless pagecache is a lockless data
structure.

Simple lockless data structures such as linked
lists and hashes are already used in Linux.
Lockless hash lookups are used in places such
as the pid hash and dcache hash, however
changing to a hash table would be a step back
from the per-inode radix-tree structure in Linux
2.6.4 What’s more, fundamentally changing the
nature of pagecache data structure is beyond the
scope of this paper, which is to examine just
pagecache synchronisation designs.

A lockless radix-tree using RCU has been de-
veloped [7] to be used as the lockless data
structure. Lockless radix-tree lookups can re-
turn stale data, data that no longer exists in the
radix-tree. It is up to the callers to deal with
stale data.

4O(log(N)) vs O(N) lookup complexity is one reason.

2006 Linux Symposium, Volume Two • 245

2.2 Linux pagecache synchronisation in-
troduction

With the ability to retrieve pagecache pages
from the radix-tree without taking a lock, the
problem of synchronising the pagecache itself
still exists. In Linux, this pagecache synchroni-
sation is performed using the same lock that is
used for data structure synchronisation.

The following is a description of the page-
cache synchronisation functions performed by
tree_lock in Linux 2.6. When held for
reading, the inode’s tree_lock in Linux
2.6 is used to provide the following pagecache
synchronisation guarantees (by providing ex-
clusion from writers):

• the existence guarantee;

• the accuracy guarantee.

When held for writing, tree_lock addition-
ally provides a guarantee that no new refer-
ences to the page is given (by also providing
exclusion from readers):

• the no new reference guarantee.

2.2.1 Existence guarantee

Providing existence guarantees is
likely the most difficult aspect of con-
currency control. The traditional
way of eliminating races between one
thread trying to lock an object and
another deallocating it, is to ensure
that all references to an object are
protected by their own lock [2]

An existence guarantee provides the guarantee
that an object will continue to exist and be valid

for a given period, typically for the time that a
sequence of operations are performed on that
object.

Linux pagecache lookup functions require the
guaranteed existence of a struct page in
pagecache, from the time it is looked up via
the radix-tree, until its reference count can be
incremented.5 This guarantee is provided by
holding the tree_lock for reading.

A problem of existence
The notion of an existence guarantee can be
difficult to understand at first; with traditional
lock based synchronisation, existence is almost
always implied at a fundamental level. Exis-
tence is best explained by examining the con-
sequences of its absence.

1: struct page *find_get_page(struct address_space *mapping,
2: unsigned long offset)
3: {
4: struct page *page;
5:
6: read_lock_irq(&mapping->tree_lock);
7: page = radix_tree_lookup(&mapping->page_tree, offset);
8: if (page)
9: page_cache_get(page);
10: read_unlock_irq(&mapping->tree_lock);
11: return page;
12: }

Figure 3: find_get_page, a pagecache lookup
function in Linux

Figure 3 shows a commonly used pagecache
lookup function in Linux. At line 8, page_
cache_get elevates the reference count of
the struct page, which prevents the page
from being freed. However if the tree_lock
were not held during this operation, then after
executing line 6 and before executing line 8, an-
other CPU can concurrently remove the page
from the pagecache and free it. When the orig-
inal CPU does execute line 8, it would be in-
crementing the reference count of a struct
page which has been freed and possibly allo-
cated for some other use.

5The elevated refcount then guarantees existence.

246 • A Lockless Pagecache in Linux—Introduction, Progress, Performance

2.2.2 Accuracy guarantee

After looking up a page in the pagecache radix-
tree, the tree_lock held for reading pro-
vides the guarantee that the page will remain
in the pagecache until the lock is released.

The accuracy guarantee is subtly different from
the existence guarantee. The existence guaran-
tee only provides that the page remains allo-
cated, it may still be removed from the page-
cache should its inode be truncated.

2.2.3 No new reference guarantee

The no new reference guarantee ensures that no
pagecache lookup routines will be allowed to
take a new reference to a particular page. This
guarantee is provided by holding tree_lock
for writing, thereby excluding those lookup
functions, which all take the lock for reading.

This guarantee is important for page reclaim
(and page migration). To reclaim a page, the
memory manager needs to ensure nobody can
take a new reference to the page before remov-
ing it from pagecache (see 1.4.3).

2.3 Providing guarantees without locking

Here, the fundamental concepts of the lock-
less pagecache synchronisation design are ex-
plained. That is, the methods that allow the
removal of the per-inode tree_lock from
some places where it is currently taken for
reading. In order to show that correctness is
maintained, it must be demonstrated that page-
cache synchronisation requirements, described
above in 2.2, can be provided by the lockless
design.

2.3.1 Permanence of struct page (exis-
tence guarantee)

Taking a reference on a pagecache struct
page without holding any locks relies on a key
observation which alleviates the requirement of
a strict existence guarantee. This is a central
idea behind lockless pagecache: a struct
page itself is never actually allocated or freed,
only its associated page frame is. This is made
clear when considering that free page frames
retain their associated struct page, it is
even used by the page allocator to manage the
free page frame.6

2.3.2 Speculative pagecache references (ac-
curacy guarantee)

With the necessity for an existence guarantee
alleviated, it is possible to ‘speculatively’ el-
evate the struct page’s reference count,
then verify that the operation was performed
on the correct page. If the page is no longer
at the same position in the pagecache after the
speculative reference, then it must have been
replaced or deleted, so the speculative reference
is dropped, and the whole operation retried.

There is an interesting corner case to consider,
because it may not be obviously correct imme-
diately. Suppose a particular pagecache page is
removed from the pagecache and freed, but is
then re-allocated and used as a pagecache page
for exactly the same (inode, offset) as it has
been previously. Now suppose that the specula-
tive reference loads the address of the struct
page when it is in the pagecache the first time
around, but the reference count is actually in-
cremented after the page has been freed and re-
allocated. The check to see whether the page
is still at the right place in the pagecache then

6One way the page allocator uses the struct
page is to keep track of the page on ‘free lists.’

2006 Linux Symposium, Volume Two • 247

finds that to indeed be the case, despite the page
having been freed and reallocated.

This case turns out to be no problem, because it
is equally possible that the initial address load
had been slightly delayed and found the page
after it had been reused. The important thing is
just that the struct page that actually had
its refcount increased is verified to be correct.

In one pagecache lookup function, find_
lock_page, the accuracy requirement goes
beyond increasing the refcount when the page
is known to be in the pagecache. This is ad-
dressed in subsection 2.5.

2.3.3 Lookup synchronisation point (no
new reference guarantee)

The ‘no new reference’ guarantee traditionally
provided by holding the tree_lock for writ-
ing is no longer enforced due to the lookup side
taking references without holding the lock for
reading. This problem is overcome by intro-
ducing a new bit in the page’s flags field.
Code that requires the no new reference guar-
antee will set this bit. After a speculative refer-
ence is taken on a page, this bit will be checked
and the operation retried if it was set.

Essentially the bit has become a synchronisa-
tion point and has taken over from the func-
tionality provided by tree_lock. Impor-
tantly, it is not a lock that is taken by the
read-side: it does not block writers, nor will
it cause cacheline contention between multiple
read-side lookups of the same page.

2.3.4 Guarantees in uniprocessor kernels

The Linux kernel offers a compilation config-
uration choice between uniprocessor (UP) or
multiprocessor (SMP) kernels. The UP kernel

option allows many optimisations in the result-
ing compiled code, in particular, spinlocks get
optimised away because there is no need to pre-
vent other processors from entering the critical
section. It is important to note that it is still
important to disable interrupts when providing
critical sections with exclusion from interrupts.

A UP kernel already effectively has lockless
pagecache lookup operations. The relatively
complex mechanisms for providing pagecache
synchronisation, described above, are not re-
quired for UP kernels. They are not required
because all pagecache write-side operations are
performed in process context and exclude inter-
rupts while running. Read-side operations need
only ensure that they are not interleaved with
any other process context, which can be done
so by having preemption disabled. Thus a spe-
cial case can be made for UP kernels, which
results in a lighter-weight lookup function.

2.3.5 Problems

There are subtle problems with this simplistic
description of the mechanics of taking a spec-
ulative reference when relying on the perma-
nence property of the struct page. They
stem from the fact that the existence guarantee
provided is not as strong as it could be. In par-
ticular, while the struct page itself does
not get deallocated, it can be used in completely
different ways depending on whether the page
is allocated, and what part of the kernel has al-
located the page.

Between the act of looking up the page and
speculatively taking a reference on the page,
it may have been removed from the page-
cache, then freed, then allocated somewhere
else. When taking the speculative reference, it
is possible for the page to be in any state. The
page may be free or re-allocated, perhaps for an
entirely different purpose than pagecache.

248 • A Lockless Pagecache in Linux—Introduction, Progress, Performance

Speculative references to free pages
One issue is free pages. Free pages have a re-
fcount of zero and exist in the page allocator.
Speculatively elevating the refcount of a free
page poses a number of problems.

It can be difficult to tell if the page actually was
free at that point (imagine a second speculative
reference that had elevated the count from 0 to
1). When dropping the speculative reference it
is essential that a free page is not freed again,
when the count reaches zero.

Another problem is the possibility that the page
might be allocated while a speculative refer-
ence has elevated the count, further complicat-
ing the task of determining the correct course
of action to take when dropping a failed specu-
lative reference.

All the problems associated with free pages are
avoided by introducing the new atomic primi-
tive atomic_inc_not_zero, to be used when
taking speculative references. atomic_inc_

not_zero increments the reference count only
when it is not zero, and returns success or fail-
ure. This allows free pages to be detected and
ignored.

Page refcounting uniformity
A second problem is one of ‘page refcount-
ing uniformity’ throughout the kernel. By the
time a speculative reference has been taken on
a page, it may have been freed then allocated
somewhere else (in which case atomic_inc_
not_zero will succeed). This speculative ref-
erence must be dropped when it is discovered
that the wrong page has been picked up. For
this reason, it is important that the entire kernel
treats the page’s refcount in the same manner,
and that dropping the last reference must free
the page.

Page refcount instability
There is a third problem, introduced by the fact
that any page taken from the allocator may have

an unstable refcount. Before being allocated,
the page may previously have been a page-
cache page, and may have a speculative refer-
ence taken on it at any time.

To solve this problem, no part of the kernel
should assume the refcount is stable, nor should
non-atomic operations be used to manipulate
the refcount. It can still be assumed that the ref-
count is be greater than or equal to the number
of references that are known to be held at any
point.

The lookup synchronisation point used to pro-
vide the ‘no new reference’ guarantee can be
used, when necessary, to determine that the
number of real references to a page is less than
or equal to the refcount in the struct page.

2.3.6 Why RCU is not used for struct
page existence guarantee

RCU is not used to provide existence guaran-
tees for a pagecache page. While this would be
possible, and would avoid many of the page ref-
erence counting problems encountered by rely-
ing on the permanence of struct page for
existence, RCU has problems of its own.

RCU freeing would add an extra stage for pages
to pass through before actually being freed.
This stage would involve batching up pages
into a list, and traversing the list again (after
an RCU grace period) in order to actually free
them. This scheme would have a number of
problems:

• Visiting the page again will introduce
overhead;

• within the grace period delay, the struct
page could have been evicted from the
CPU’s, introducing cache misses when
freeing the pages;

2006 Linux Symposium, Volume Two • 249

• the page allocator has per-CPU lists of
free pages, which can be accessed lock-
lessly. Page allocator locks need only
be taken when these lists overflow or un-
derflow. The extra RCU stage will keep
pages from reaching these per-CPU lists
for some time. This will increase the in-
cidence of underflow while the pages are
being held, and of overflow when they are
finally freed.

• the per-CPU lists attempt to keep track of
pages which are likely to be cache-hot and
those which are cache-cold, so they may
be used appropriately. The extra RCU
stage will reduce the effectiveness of these
estimations.

• RCU can take some time to go through
a quiescent state, this could be a problem
in low memory conditions if pages aren’t
freed quickly enough.

Lockless pagecache does use RCU for the
pagecache radix-tree nodes, however they are
less affected by the above problems: they are
much smaller than a page, and they are usually
allocated and freed less often than pagecache
pages.

2.3.7 page_cache_get_speculative

This subsection briefly introduces page_

cache_get_speculative, which is is the
core operation that implements pagecache syn-
chronisation, according to the methods de-
scribed above. Figure 4 is the actual C code for
page_cache_get_speculative, with the
simple uniprocessor implementation and some
comments removed for clarity.

In lines 6-8, a pointer to the radix-tree’s leaf-
node slot is dereferenced, the function returns

1: struct page *page_cache_get_speculative(struct page **pagep)
2: {
3: struct page *page;
4:
5: again:
6: page = rcu_dereference(*pagep);
7: if (unlikely(!page))
8: return NULL;
9:
10: if (unlikely(!get_page_unless_zero(page)))
11: goto again; /* page has been freed */
12:
13: while (unlikely(PageNoNewRefs(page)))
14: cpu_relax();
15:
16: smp_rmb();
17:
18: if (unlikely(page != *pagep)) {
19: /* page no longer at *pagep */
20: put_page(page);
21: goto again;
22: }
23:
24: return page;
25: }

Figure 4: page_cache_get_speculative
function

NULL if the slot is empty, otherwise the slot
contains a pointer to a struct page.

At line 10, the page’s refcount is incremented if
it was not previously 0; if it was, the operation
is restarted.7

Line 13 busy-waits while the page’s
‘NoNewRefs’ flag is set.8

When NoNewRefs is clear, lines 18–22 recheck
that this page is present in pagecache.9 If yes,
then success and the page is returned; if no,
the page’s refcount is decremented (and will be
freed if that caused it to reach 0), and the oper-
ation is restarted.

Note: page_cache_get_speculative re-
lies on memory barriers to order memory op-
erations correctly. Discussion of these barriers
at this point would distract from the fundamen-
tal details of the operation, and as such will not
be covered. The comments in the actual imple-
mentation explain all memory ordering in de-
tail.

7this relies on the permanence of struct page
and uniform page refcounting.

8The ‘NoNewRefs’ flag can be set to enforce the no
new references guarantee.

9This recheck provides the accuracy guarantee.

250 • A Lockless Pagecache in Linux—Introduction, Progress, Performance

2.4 Lockless pagecache operations

This section describes the re-implementation
of Linux pagecache lookup functions, using
the lockless radix-tree and the ‘speculative get
page’ operation, without using locks.

2.4.1 find_get_page

find_get_page has the following seman-
tics, if the given pagecache coordinates (map-
ping,10 offset):

• always contained the page, it must be re-
turned;

• were always empty, NULL must be re-
turned;

• ever contained a page, it may be returned;

• were ever empty, NULL may be returned.

If a page is to be returned, first its refcount
is incremented while it is in the pagecache.
find_get_pagemay return pages which are
no longer in the pagecache, so there is no prob-
lem with the lockless radix-tree lookup return-
ing stale data.

When a page has been found, page_cache_
get_speculative can be used to increment
its refcount and ensures the refcount was incre-
mented while the page was in the pagecache.
Figure 3 shows the locking version of the func-
tion, figure 5 is the lockless implementation.

2.5 find_lock_page

find_lock_page is similar to find_get_
page, however it is also required to lock the
page11 while it is in pagecache.

10mapping basically represents an inode
11A page is locked by waiting for a ‘lock’ bit in its

flags attribute to become clear, then setting it.

1: struct page *find_get_page(struct address_space *mapping,
2: unsigned long offset)
3: {
4: struct page **pagep;
5: struct page *page = NULL;
6:
7: rcu_read_lock();
8: pagep = radix_tree_lookup_slot(&mapping->page_tree,
9: offset);
10: if (pagep)
11: page = page_cache_get_speculative(pagep);
12: rcu_read_unlock();
13: return page;
14: }

Figure 5: Lockless find_get_page

The page lock actually pins a page in page-
cache, unlike the refcount. This means that af-
ter taking the page lock, it is sufficient to sub-
sequently recheck that the page indeed exists
in the expected position in pagecache. In or-
der to take the page lock, the page must be
prevented from being freed concurrently. This
existence guarantee is provided by first incre-
menting the page’s refcount by calling the lock-
less find_get_page.

2.5.1 find_get_pages

The find_get_pages function finds up to a
specified number of pages from a given offset
in an inode, and elevates the refcount of each
page found. The operation is performed com-
pletely under the tree_lock, which means
that all returned pages were all in pagecache at
the time each had their refcount incremented.

It is not possible to retain this atomicity with-
out holding tree_lock. Instead of being
replaced, a new function, find_get_pages_
nonatomic, is introduced which provides only
find_get_page semantics on a per page ba-
sis.

Truncation and invalidation
Truncation and invalidation are the main oper-
ations which use find_get_pages (in the
form of pagevec_lookup). They are typi-
cally invoked on a range of pages in an inode,

2006 Linux Symposium, Volume Two • 251

and pagevec_lookup is used to find these
pages.

The truncate and invalidate operations them-
selves only operate on a single page at a time,
so it is possible to use the lockless find_get_
pages_nonatomic as their pagecache lookup
function.

2.6 Lockless pagecache summary

This section described a design for lockless
pagecache lookup operations in Linux, us-
ing a lockless RCU radix-tree for the page-
cache data structure, and the page_cache_

get_speculative operation to provide the
required synchronisation without using a lock.

3 Performance results

In this section, the performance properties of
the lockless pagecache will be analysed, and
compared with the standard Linux 2.6 tree_
lock based pagecache synchronisation.

3.1 Benchmarking methodology

The benchmarks presented here aim to give a
fair representation of the basic performance and
scalability behaviour of the lockless pagecache.

Benchmarks are run on several architectures
where possible. It is important to show per-
formance behaviour on a diverse range of
hardware because low level details, especially
memory coherency and consistency, atomic op-
erations, can vary.

Benchmarks are run on uniprocessor and mul-
tiprocessor (UP, SMP, respectively) compiled
kernels if relevant. UP compiled kernels can

be optimised due to the fact that only a single
processor will be running at once, so locking,
atomic operations and memory consistency op-
erations can differ significantly.

All benchmarks were run 10 times, and the er-
ror bars represent a 99.9% confidence interval.

3.1.1 Kernels tested

The base kernel tested was 2.6.16. The ‘stan-
dard’ kernel includes a number of preparatory
patches [6] (which are now included in later
kernels), because they might have an impact
on performance. The ‘lockless’ kernel includes
all preparatory patches, as well as the lockless
pagecache patches [5].

3.2 find_get_page kernel level bench-
marks

Benchmark machines
G5 - Apple G5 PowerMac. 2 CPUs (PPC970,
2.5GHz, 1MB L2). 4GB RAM.
P4 - Intel Pentium 4. 2 CPUs (Nocona Xeon,
3.4GHz, 1MB L2, HyperThreading). 4GB
RAM.

find_get_page is a fundamental page-
cache lookup function in Linux, which is made
lockless with the lockless pagecache. The fol-
lowing tests were performed by timing loops
which ran in kernel mode for the duration of the
test (plus a single system call—fadvise—
used to initiate the test). All find_get_
page tests are performed on just a single file.

3.2.1 find_get_page single threaded
benchmarks

Single threaded performance on SMP compiled
kernels was tested from by looking up a sin-

252 • A Lockless Pagecache in Linux—Introduction, Progress, Performance

gle page 1,000,000 times (Figure 8), and by
looking up each page of a cached 1GB file in
turn (Figure 9). In the former test, the work-
ing set should completely fit in the cache of all
CPUs; in the latter case, each struct page
being operated upon will not be in CPU cache.
Uniprocessor (UP) kernels are also tested in
single threaded benchmarks. Figures 6 and 7
show the results of the same two tests on UP
kernels.

3.2.2 find_get_page multi threaded
benchmarks

Multi threaded performance was tested by
having two CPUs running find_get_page
1,000,000 times concurrently, first on the same
page (Figure 11), then on different pages of the
same file (Figure 10).

These microbenchmarks show that small sys-
tem performance of various architectures and
configurations has not suffered as a result of
the lockless pagecache implementation; in fact,
usually the opposite.

3.3 IO and reclaim benchmark

Page reclaim is an important operation for the
kernel, as it is part of almost any workload
that is filesystem IO intensive, and where the
working set does not fit completely into RAM.
Some examples may include desktop systems,
web and file servers, compile/build servers, and
some databases.

It is important to benchmark low level perfor-
mance of page reclaim and IO together, be-
cause the lockless pagecache implementation
changes both.

Figure 12 shows the results of reading 16GB
per thread from a large file. The system only

has 2GB of memory available for pagecache,
so most of the pagecache must be reclaimed in
the course of the test. In the single threaded
case, kswapd, the asynchronous reclaim dae-
mon, was restricted to the same CPU as the
reading thread. The file is sparse, so reading
from it is not limited by the speed of the sys-
tem’s block devices.

This benchmark together with the
find_get_page one demonstrate that
single threaded performance has not suffered,
and even been improved, with the lockless
pagecache.

 0

 10

 20

 30

 40

 50

2 thread1 thread

se
co

nd
s

pe
r

ite
ra

tio
n

2GB RAM available, threads reading 16GB from the same sparse file

standard
lockless

Figure 12: IO and page reclaim, SMP kernel, two
threads

3.4 Pagefault benchmark

Pagefaults of memory mapped files are one
of the most basic of operations initiated from
userspace, that require a pagecache lookup.
The following benchmark involves a number of
processes mapping 256MB chunks of the same
file (which is resident in pagecache), and touch-
ing each page (causing a pagefault), then un-
mapping the chunk; this sequence is repeated
64 times. The total throughput (amount of
pages faulted per second) is measured by the
time taken for all threads to complete

This benchmark was run on a dual core AMD
Opteron system, with 8GB RAM and 16 cores
(8 sockets), Figure 13 illustrates the results.

2006 Linux Symposium, Volume Two • 253

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2 4 6 8 10 12 14 16

T
ot

al
 th

ro
ug

hp
ut

 (
M

B
/s

)

Processes / CPUs used

Multi-process page faults from a single (in memory) file

standard
lockless

Figure 13: Pagefault scalability

The pagefault benchmark gives an idea of the
potential scalability improvement provided by
the lockless pagecache.

3.5 Data structure size

The lockless pagecache imposes a small impact
on the size of the radix-tree node data structure
as a result of using RCU for delayed dealloca-
tion. The impact is roughly a 5% increase in the
size of the node. This is undesirable, however a
radix-tree node itself takes much less than 1%
of the memory it can store in pagecache pages,
so the small size increase is not a major prob-
lem.

4 Conclusion

The lockless pagecache design has good poten-
tial. The design is not overly complex, and
the implementation has so far proven to be
robust. Initial benchmarks have shown that
performance is improved in many areas, and
the improvement in scalability of basic opera-
tions is significant. Further investigation of per-
formance in ‘real-world’ benchmarks is war-
ranted.

References

[1] Juergen Doelle. Re: [patch] align vm
locks, new spinlock patch. [Viewed
December 29, 2005], September 2001.

[2] Ben Gamsa, Orran Krieger, Jonathan
Appavoo, and Michael Stumm. Tornado:
Maximizing locality and concurrency in a
shared memory multiprocessor operating
system. In Proceedings of the 3rd

Symposium on Operating System Design
and Implementation, pages 87–100, New
Orleans, LA, February 1999. Preprint
Available: http://www.research.
ibm.com/K42/osdi-preprint.ps
[Viewed Dec 29, 2005].

[3] Mel Gorman. Understanding the Linux
Virtual Memory Manager. 2004.

[4] Ingo Mollnar and David Miller. Scalable
pagecache, February 2002. [Viewed
December 29, 2005].

[5] Nick Piggin. Lockless pagecache patches
for Linux 2.6.16.
http://www.kernel.org/pub/
linux/kernel/people/npiggin/
patches/lockless/2.6.16/2.6.
16-lockless.gz.

[6] Nick Piggin. Preparatory patches for
Linux 2.6.16. http://www.kernel.
org/pub/linux/kernel/people/
npiggin/patches/lockless/2.
6.16/2.6.16-prep.gz.

[7] Nick Piggin. Rcu radix-tree. Draft chapter
available http://www.kernel.org/
pub/linux/kernel/people/
npiggin/patches/lockless/2.
6.16-rc5/radix-intro.pdf.

[8] Andrew Tridgell. dbench. http://
samba.org/ftp/tridge/dbench/.

254 • A Lockless Pagecache in Linux—Introduction, Progress, Performance

 0

 10

 20

 30

 40

 50

 60

PowerMac G5Pentium 4

na
no

se
co

nd
s

pe
r

ite
ra

tio
n

1 000 000 find_get_page on the same page

standard
lockless

Figure 6: find_get_page UP
kernel, cache hot

 0

 20

 40

 60

 80

 100

PowerMac G5Pentium 4

na
no

se
co

nd
s

pe
r

ite
ra

tio
n

find_get_page on 1GB of pagecache pages, sequentially

standard
lockless

Figure 7: find_get_page UP
kernel, cache cold

 0

 20

 40

 60

 80

 100

 120

 140

PowerMac G5Pentium 4

na
no

se
co

nd
s

pe
r

ite
ra

tio
n

1 000 000 find_get_page on the same page

standard
lockless

Figure 8: find_get_page SMP
kernel, cache hot

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

PowerMac G5Pentium 4

na
no

se
co

nd
s

pe
r

ite
ra

tio
n

find_get_page on 1GB of pagecache pages, sequentially

standard
lockless

Figure 9: find_get_page SMP
kernel, cache cold

 0

 50

 100

 150

 200

 250

 300

 350

 400

PowerMac G5Pentium 4

na
no

se
co

nd
s

pe
r

ite
ra

tio
n

2 CPUs, 1 000 000 find_get_page on different page

standard
lockless

Figure 10: find_get_page
SMP kernel, two threads, different
pages

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

PowerMac G5Pentium 4

na
no

se
co

nd
s

pe
r

ite
ra

tio
n

2 CPUs, 1 000 000 find_get_page on same page

standard
lockless

Figure 11: find_get_page
SMP kernel, two threads, same page

The Ongoing Evolution of Xen

Ian Pratt
XenSource

ian@xensource.com

Dan Magenheimer
HP

dan.magenheimer@hp.com

Hollis Blanchard
IBM

hollisb@us.ibm.com

Jimi Xenidis
IBM

jimix@watson.ibm.com

Jun Nakajima
Intel

jun.nakajima@intel.com

Anthony Liguori
IBM

aliguori@us.ibm.com

Abstract

Xen 3 was released in December 2005, bring-
ing new features such as support for SMP guest
operating systems, PAE and x86_64, initial
support for IA64, and support for CPU hard-
ware virtualization extensions (VT/SVM). In
this paper we provide a status update on Xen,
reflecting on the evolution of Xen so far, and
look towards the future. We will show how
Xen’s VT/SVM support has been unified and
describe plans to optimize our support for un-
modified operating systems. We discuss how a
single ‘xenified’ kernel can run on bare metal as
well as over Xen. We report on improvements
made to the Itanium support and on the status
of the ongoing PowerPC port. Finally we con-
clude with a discussion of the Xen roadmap.

1 Introduction

Xen is an open-source para-virtualizing virtual
machine monitor or hypervisor. Xen can se-
curely execute multiple virtual machines on a

single physical system with close-to-native per-
formance. Xen also enables advanced features
such as dynamic virtual memory- and CPU-
hotplug, and the live relocation of virtual ma-
chines between physical hosts. The most recent
major release of Xen, Xen 3.0.0, took place on
5 December 2005.

In this paper we discuss some of the highlights
of the work involved in the ongoing evolution
of Xen 3. In particular we cover:

• HVM: the unified abstraction layer which
allows Xen to seamlessly support both
Intel and AMD processor virtualization
technologies;

• the work to allow a single Linux kernel bi-
nary image to run both on Xen and on the
bare metal with minimal performance and
complexity costs;

• the progress made in the IA64 port of Xen,
which has been much improved over the
last year; and

256 • The Ongoing Evolution of Xen

• the ongoing port of Xen to the Pow-
erPC architecture both with and without
firmware enhancements.

Finally we look towards the future development
of key technologies for Xen.

2 Hardware Virtual Machines

Although Xen has excellent performance, the
paravirtualization techniques it applies require
the modification of the guest operating system
kernel code. While this is of course possible
for open source systems such as Linux, it is
an issue when attempting to host unmodifiable
proprietary operating systems such as MS Win-
dows.

Fortunately, recent processors from Intel and
AMD sport extensions to enable the safe and
efficient virtualization of unmodified operating
systems. In Xen 3.0.0, initial support for In-
tel’s VT-x extensions was introduced; later in
Xen 3.0.2, further support was added to enable
AMD’s SVM extensions.

Although the precise details of VT-x and SVM
differ, in many aspects they are quite simi-
lar. Noticing this, we decided that we could
best support both technologies by introducing
a layer of abstraction: the hardware virtual ma-
chine (HVM) interfaces. The design of the
HVM architecture involved people from Intel,
AMD, XenSource, and IBM, but the primary
author of the code was IBM’s Leendert van
Doorn.

At the core of HVM is an indirection table of
function pointers (struct hvm_function_

table). This provides mechanisms to create
and destroy the additional resources required
for a HVM domain (e.g. a vmcs on VT-x or a
vmcb on SVM); to load and store guest state

(user registers, control registers, msrs, etc.);
and to interrogate guest operating modes (e.g.
to determine if the guest is running in real mode
or protected mode). By using this indirection
mechansism, most of the Xen code is isolated
from the details of which underlying hardware
virtualization implementation is in use.

Underneath this interface, vendor-specific code
invokes the appropriate HVM functions to deal
with intercepts (e.g. when I/O or MMIO op-
erations occur), and can share a considerable
amount of common code (e.g. the implementa-
tion of shadow page tables, and interfacing with
I/O emulation).

In the following we look first at a detailed case
study—the implementation of HVM guests on
64-bit x86 platforms—and then look toward fu-
ture work.

2.1 x86-64

One of the notable things in x86-64 Xen 3.0
is that we now support three types of HVM
guests, including:

• x86-32 (2-level page tables),

• x86-32 PAE (3-level page tables), and

• x86-64 (4-level page tables).

In this section, we discuss the challenges, and
we present the approaches we took for the x86-
64 Xen.

The HVM architecture allows 64-bit VMMs
(Virtual Machine Monitor) to run 32-bit guests
securely by setting up the HVM control struc-
ture as such. Given such hardware support, we
needed to work on the two major areas:

2006 Linux Symposium, Volume Two • 257

1. shadow page tables: x86-32 Xen sup-
ported only guests with 2-level page ta-
bles, and we needed to significantly extend
the code to support various paging models
in the single code base.

2. SMP support: SMP is the default configu-
ration on many x86-64 and PAE systems.
Supporting SMP HVM guests turns out to
be far from trivial.

2.1.1 Overview of Shadow Page Tables in
Xen 3.0

A shadow page table is the active or native page
table (i.e., with entries containing machine
physical page frame numbers) for a guest, and
it is constructed by Xen to reflect the guest’s
operations on the guest page tables while en-
suring that the guest address space is isolated
securely.

A guest page table is managed and updated by
the guest as it were in the native system, and it
is inactive or virtual in terms of address trans-
lations (i.e., with entries containing guest phys-
ical page frame numbers). This is done by
intercepting mov from/to cr3 instructions by
hardware virtualization. In other words, the
value read from or written to cr3is virtual in
HVM guests. This implies that the paging lev-
els could even be different in the shadow and
guest page tables.

From the performance point of view, shadow
page table handling is critical because page
faults are very frequent in memory intensive
workloads. A rudimentary (and very slow) im-
plementation is to construct shadow page ta-
bles from scratch every time the guest updates
cr3 or flushes the TLB(s). This is not efficient
because the shadow page tables are lost when
the guest kernel schedules the next processes
to run. Frequent context switches would cause
significant performance regression.

If one can efficiently tell which guest page ta-
ble entries have been modified since the last
TLB flush operations, we can reuse the previ-
ous shadow page tables by updating the only
the page table entries that have been modified.

The key technique that we used in Xen is sum-
marized as follows:

1. When allocating a shadow page upon #PF
from the guest, write protect the corre-
sponding guest page table page. By write-
protecting the guest page tables, we can
detect attempts to modify page tables.

2. Upon #PF against a guest page table page,
we save a ‘snapshot’ of the page; give
write permission to the page; and add the
page is added to an ‘out of sync list’ along
with information relating to the access at-
tempt (e.g. which address, etc.).

3. Next we give write-permission to the page,
thus allowing the guest to directly update
the page table page.

4. When the guest executes an operation that
results in the flush TLB operation, reflect
all the entries on the “out of sync list” to
the shadow page table. By comparing the
snapshot and the current page in the guest
page table, we can update the shadow page
table efficiently by checking if the page
frame numbers in the guest page tables
(and thus the corresponding shadow en-
tries) are valid.

2.1.2 2-Level Guest Page Table and 3-Level
Shadow Page Table

The issue with running a guest with 2-level
page tables is that such page tables can specify
only page frames below 4GB. If we simply use
a 2-level page table for the shadow page table,

258 • The Ongoing Evolution of Xen

the page frames that we can use are restricted
on any machine with more than 4GB memory.

The technique we use is to run such guests in
PAE mode that utilizes 3-level (shadow) page
tables, but retaining the the illusion that they
are handling 2-level page tables. This compli-
cates the shadow page table handling code in a
number of ways:

• The size of a PTE (Page Table Entry) is
different: 4-bytes in the guest (2-level)
page tables but 8-bytes in the shadow (3-
level) page tables.

• As a consequence, whenever the guest al-
locates an L1 (lowest level) page table
page, the shadow page table code needs to
allocate two L1 pages for it.

• Furthermore, the shadow code also needs
to manage an additional page table table
(L3) which has no direct correspondence
in the guest page table.

2.1.3 PSE (Page Size Extensions) Support

The PSE flag enables large page sizes: either 4-
MByte pages or 2-MByte pages when the PAE
flag is set. For 32-bit guests, we simply disable
PSE by cpuid virtualization. For x86-64 or
x86 PAE guests PSE is often a prerequisite: the
system may not even boot if the CPU does not
have the PSE feature. To address this, we em-
ulate the behavior of PSE in the shadow page
tables. The current implementation of 2MB
page support is to fragment it into a set of 4KB
pages in the shadow page table, since there is
no generic 2MB page allocator in Xen.

A set of primitives against the guest and
shadow page tables are defined as shadow
operations—shadow_ops. To avoid code du-
plication, we currently use a technique whereby

we compile the same basic code three times—
once each for x86, x86 PAE, and x86-64—but
with different implementations of key macros
each time. The appropriate shadow_ops is
set at runtime according to the virtual CPU
state.

2.1.4 SMP Support

SMP support requires various additional func-
tionality:

• Local APIC. To handle IPIs (interproces-
sor interrupts), SMP guests require the lo-
cal APIC. The local APIC virtualization
has been incorporated in the Xen hyper-
visor to optimize performance.

• I/O APIC. SMP guests also typically re-
quire the use of one or more I/O APIC(s).
I/O APIC virtualization has been incorpo-
rated in the Xen hypervisor for the same
reason above.

• ACPI. The ACPI MADT table is dynami-
cally set up to specify the number of vir-
tual CPUs. Once ACPI is present, guests
expect that the standard or full ACPI fea-
tures be available. During development
this caused a succession of problems, in-
cluding support for the ACPI timer, event
handling, etc.

• SMP-safe shadow page tables. At the time
of writing the shadow page table code uses
a single ‘big lock’ per-domain so as to
simplify the implementation. To improve
the scalability we need fine-grained locks.

Although HVM SMP guests are stable, we are
still working on performance optimizations and
scalability. For example, I/O device models
need to be multi-threaded to handle simultane-
ous requests from guests.

2006 Linux Symposium, Volume Two • 259

2.2 Ongoing Work

Ongoing work is looking at optimizing the per-
formance of emulated I/O devices. Unlike par-
avirtualized guest operating systems, HVM do-
mains are not aware that they are running on top
of Xen. Hence they attempt to detect H/W de-
vices and load the appropriate standard device
drivers. Xen must then emulate the behaviour
of the relevant devices, which has a consequent
performance impact.

The general model introduced before Xen 3.0.0
shipped was to use a device model assistant pro-
cess running in Domain 0 which could emulate
a set of useful devices. I/O accesses from the
unmodified guest would trap, and cause a small
I/O packet message to be sent to the emulator.
The latency involved here can be quite large
and so reduces the overall performance of the
guest operating system.

A first step to improving performance was to
move the emulation of certain simple platform
devices into Xen itself. For example, the APIC
and PIT are not particularly complicated and,
crucially, do not require any interaction with
the outside world. These devices tend to be ac-
cessed frequently within operating systems and
hence emulating these within Xen itself reduces
latency and improves performance.

A more substantial set of changes will address
both performance and isolation aspects: the
super-emulator. This approach involves asso-
ciating a paravirtualized stub-domain with ev-
ery HVM domain which runs with the same se-
curity credentials and within the same resource
container. Then when a HVM domain attempts
to perform I/O, the trap is instead reflected to
the stub-domain which performs the relevant
emulation, translating the device requests into
the equivalent operations on a paravirtual de-
vice interface.

Hence a simple IDE controller, for example,
can be emulated entirely within the super-
emulator but ultimately end up issuing block
read/write requests across a standard Xen de-
vice channel. As well as providing excellent
performance, this also means that HVM do-
mains appear the same as paravirtual domains
from the point of view of the tools, thus allow-
ing us to unify and simplify the code.

3 MiniXen: A Single Xen Kernel

The purpose of the miniXen project is to take
a guest Linux kernel which has been ported
to the Xen interfaces and combine this with
a thin version of Xen that interacts directly
with the native hardware allowing a single do-
main to run with near native performance. This
miniXen performs the bare minimum of opera-
tions needed to support a guest OS and where
possible passes events, such as interrupts and
exceptions, directly to the guest OS omitting
the normal Xen protection mechanisms.

An important first step in this was to allow the
guest kernel to run in x86 privilege ring zero
rather than ring one as a normal Xen guest does.
This is easily achieved by using the features
flags which Xen exports to all guests: a guest
checks for the relevant flag and runs in either
ring zero or one as appropriate.

An unfortunate side-effect of running the guest
kernel in ring zero is that a privilege level
change no longer occurs when making a hyper-
call or when an interrupt or exception interrupts
the guest kernel. This means that the hardware
will no longer automatically switch the guest
kernel stack for Xen’s own stack. Xen relies
on its own stack in order to store certain state
information. Therefore miniXen must check
at each entry point whether the stack pointer
points to memory owned by the guest kernel

260 • The Ongoing Evolution of Xen

or Xen and if necessary to fix up the stack by
locating the Xen stack via the TSS and moving
the current stack frame to the Xen stack before
continuing.

These checks and the movement of the stack
frame necessarily incur a performance penalty
which it is desirable to avoid. As all hypercalls
were to be either reimplemented or stripped
down in order to achieve the goal of perform-
ing the bare-minimum of work in miniXen it
was possible to also ensure that the hypercalls
did not require any state from the Xen stack.
Once this was achieved it was possible to turn
each hypercall into a simple call instruction by
rewriting the miniXen hypercall transfer page,
thus avoiding an int 0x82 hypercall and the
expensive stack fixup logic. A direct call into
the hypervisor is possible because unlike Xen,
miniXen does not need to truncate the guest
kernel’s segment descriptors in order to isolate
the kernel from the hypervisor.

Work is currently on-going to audit miniXen’s
interrupt and exception handling code to re-
move any need for state to be stored on Xen’s
stack and so allow those routines to run on the
guest kernel’s stack. Once this is complete then
miniXen should have no need for a stack of its
own and can simply piggy-back on the guest
kernels stack except for under very specialized
circumstances such as during boot.

Running the guest kernel in ring 0 allows us to
once again take advantage of the sysenter/
sysexit instructions to optimize system calls
from user space to the guest kernel compared
with the normal int 0x80 mechanism. Nor-
mally the sysenter instruction is not avail-
able to guests running under Xen because the
target code segment must be in ring 0. How-
ever with the guest kernel running in ring 0 it is
simple to arrange for the sysenter instruc-
tion to jump directly into the guest kernel. The
sysenter stack is configured such that it points
to the location of the TSS entry containing the

guest kernel’s stack allowing the kernel to im-
mediately switch to its own stack at the sysenter
entry point.

Normally Xen prevents a guest OS from cre-
ating a writable mapping of pages which are
part of a page table or descriptor table (GDT
or LDT) in order to trap any writes and audit
them for safety. For this reason guest kernels
only create read-only mappings to such pages
and a write therefore involves creating an addi-
tional writable mapping of a page in the hyper-
visor’s address space. However miniXen does
not need to audit the page or descriptor tables
and by making use of feature flags exported
from Xen to the guest kernel can cause the ker-
nel to create writable mappings of these pages.
This allows miniXen to write directly to these
pages and therefore allows page table updates
with native performance.

4 IA64

In the year since the last symposium, Xen/ia64
has made excellent progress and is slowly
catching up to Xen on x86-based plat-
forms. The Xen/ia64 community has grown
substantially, with major contributions from
organizations around the world; and the
xen-ia64-devel mailing list has grown to
over 160 subscribers.

Since Xen’s first release on x86, paravirtual-
ization has delivered near-native performance
and it is important to demonstrate that these
techniques apply to other architectures. Much
effort was put into a paravirtualized version
of Linux/ia64 and using innovative techniques
(e.g. “hyper-registers” and “hyper-privops”),
performance was driven to within 2% of na-
tive (as measured by a software develop-
ment benchmark). With guidance from the
Linux/ia64 maintainers, an elegant patch was

2006 Linux Symposium, Volume Two • 261

developed that adds a clean abstraction layer
to certain privileged instruction macros and re-
places only a handful of assembly routines in
the Linux/ia64 source. Interestingly, after this
patch is applied the resultant Linux/ia64 binary
can be run both under Xen and on bare metal—
a concept dubbed transparent paravirtualiza-
tion.

Block driver support using Xen’s fron-
tend/backend driver model was implemented
last summer and integrated into the Xen tree.
Soon thereafter Xen/ia64 was supporting
multiple Linux domains and work was recently
completed to cleanly shutdown domains and
reclaim resources. All architectural differences
were carefully designed and implemented to
fully leverage the Xen user-space tools so that
administrators use identical commands on
both Xen/x86 and Xen/ia64 for deploying and
controlling guest domains.

Preliminary support for Intel Virtualization
Technology for Itanium processors (VT-i) was
completed last fall and has become quite ro-
bust. It is now possible to run unmodified (fully
virtualized) domains in parallel with paravir-
tualized domains. Here also, existing device
models and administrative control panel inter-
faces were leveraged from the VT-x implemen-
tation for Xen/x86 to minimize maintenance
and maximize compatibility.

In many ways, Xen is an operating system and,
as an open-source operating system, there is no
need to re-create the wheel. Xen/x86 leveraged
a fair amount of code from an earlier version
of Linux and periodically integrates code from
newer versions. Xen/ia64 goes one step further
and utilizes over 100 code modules and header
files from Linux/ia64 directly. About half of
these files are completely unchanged and the
remainder require only minor changes, which,
for maintenance purposes, are clearly marked
with ifdefs. Since Linux/ia64 is relatively
immature and subject to frequent bug fixes and

tunings, Xen/ia64 can rapidly incorporate these
changes.

The value of this direct leverage was demon-
strated last fall when SMP host support was
added to Xen/ia64. Addition of SMP support
to an operating system is often a long painful
process, requiring extensive debugging to, for
example, isolate and repair overlooked locks.
For Xen/ia64, SMP support was added by one
developer in a few weeks because so much
working SMP code was already present or eas-
ily leveraged from Linux/ia64. Indeed, SMP
guest support was also recently added in-tree
and testing for both SMP host and SMP guest
support is showing surprising stability.

While Xen/ia64 has made great progress, much
more work lies ahead. Driver domain sup-
port, recently added back into Xen/x86, is es-
pecially important on the large machines com-
monly found in most vendors’ Itanium prod-
uct lines. Migration support may prove simi-
larly important. Some functionality has been
serialized behind a community decision to fun-
damentally redesign the Xen/ia64 physical-to-
machine mapping mechanisms, which also was
a prerequisite for maximal leverage and enable-
ment of the Xen networking split driver code.
With the completion of this redesign in late
Spring, networking performs well and it is be-
lieved that driver domains, as well as domain
save/restore and migration will all be easier to
implement and will come up quickly.

5 PowerPC

Xen is being ported to the PowerPC architec-
ture, specifically the PowerPC 970. The 970
processor contains processor-level extensions
to the PowerPC architecture designed to sup-
port paravirtualized operating systems. These

262 • The Ongoing Evolution of Xen

hardware modifications, made for the hypervi-
sor running on IBM’s pSeries servers, allow for
minimal kernel changes and very little perfor-
mance degradation for the guest operating sys-
tems. The challenge in a Xen port to PowerPC
is fitting the Xen model, developed on desktop-
class x86 systems, into this PowerPC architec-
ture.

One of the challenges for Xen on PowerPC
isn’t related to Xen itself, but rather the avail-
ability of hardware platforms capable of run-
ning Xen. Although IBM’s PowerPC-based
servers have the processor hypervisor exten-
sions we are exploiting in Xen, they also con-
tain firmware that doesn’t allow user-supplied
code to exploit those extensions. Current Pow-
erPC Xen development efforts have been on the
Maple 970 evaluation board and the IBM Full
System Simulator. The existing firmware on
Apple’s Power Macintosh G5 systems, which
are based on the PowerPC 970, disables the hy-
pervisor extensions completely.

As a secondary task, work is underway to run
Xen on PowerPC 970 with hypervisor mode
disabled, specifically Apple G5 systems. Al-
though possible, this model requires signifi-
cant modifications to the guest operating sys-
tem (pushing it to user privilege mode) and will
also incur substantial performance impact. This
port will be a stepping stone for supporting all
“legacy” PowerPC architectures such as Apple
G4 and G3 systems, and embedded processors.

5.1 Current Status

On PowerPC, the Xen hypervisor boots from
firmware and then boots a Linux kernel in
Dom0. The Dom0 kernel has direct access
to the hardware of the system, and so device
drivers initialize the hardware as in a normal
Linux boot. Once Dom0 has booted, a small
set of user-land tools are used to load and start

Linux kernels in unprivileged domains. At the
time of publication, the DomUs have no sup-
port for virtual IO drivers, so interaction with
the domain isn’t currently possible. However,
one can see from their boot output that they
make it to user-space.

The PowerPC development tree is currently be-
ing merged with the main Xen development
tree. PowerPC Xen is not yet integrated with
Xen’s management tools, and the unprivileged
domains, lacking device drivers, do not yet per-
form meaningful work. Once they do, it will
also become important to integrate with Xen’s
testing infrastructure and also to package builds
in a more user-friendly manner.

5.2 Design Decisions

The PowerPC architecture differs from the x86
in a number of significant ways. In the follow-
ing we comment on some of the key design de-
cisions we made during the port.

Hypervisor in Machine Mode PowerPC,
like most RISC-like processors, is able to ad-
dress all memory while translation is off (i.e.,
MMU disabled). This allows the hypervisor
to execute completely in machine (or “real”)
mode which removes any impact to the MMU
when transitioning from domain to hypervisor
and back. Bypassing the MMU allows us to
avoid TLB flushes, a significant factor in per-
formance. This decision does have two nega-
tive impacts though: it complicates access to
MMIO registers and inhibits the use of domain
virtual addresses.

The processor must access MMIO registers
without using the data cache. This is usually
implemented via attributes in MMU translation
entries, but since we run without translation this

2006 Linux Symposium, Volume Two • 263

method is unavailable to the hypervisor. Fortu-
nately, there is an architected mode that allows
the processor to perform the cache-inhibited
load/store operations while translation is off.
The problem of accessing memory through a
domain virtual address requires a more com-
plex software solution.

Many Xen hypercalls pass the virtual addresses
of data structures into the hypervisor. Xen
could attempt to translate the virtual addresses
to machine addresses without the aid of the
MMU, but the MMU translation mechanism
of PowerPC is complex enough to make soft-
ware MMU translation infeasible. An addi-
tional complication is that these data structures
could span a page boundary (and some span
many pages), and although those pages are vir-
tually contiguous, they will likely be discon-
tiguous in the machine address space.

After much agony, the solution developed to
overcome this problem is essentially to create a
physically addressed scatter/gather list to map
the data structures being passed to the hypervi-
sor. Since user-space is unaware of the phys-
ical addresses, the kernel must intercept hy-
percalls originating from user-space and create
these scatter/gather structures with physical ad-
dresses. The kernel then passes the physical
address of the scatter/gather structure to Xen
(which is able to trivially convert physical ad-
dresses to machine addresses). The end result
is Xen’s copy_from_guest() is passed the
address of this special data structure, and copy
data from frames scattered throughout the ma-
chine address space.

Hypercalls PowerPC Linux currently runs
on the hypervisor that currently ships with IBM
high end products. Like Xen, the POWER Hy-
pervisor virtualizes the processor, memory, in-
terrupts and presents a Virtual IO interface. In
order to capitalize on the existing Linux im-
plementation, Xen on PowerPC has adopted

the same memory management interfaces as
the POWER Hypervisor. However, the sup-
port for interrupts and Virtual IO come from
the Xen model. The strategy has resulted in
a small patch (< 200 LOC) for existing Linux
code, and an additional Xen “platform” for
arch/powerpc, with the rest of the Xen-
specific code in the common drivers/ direc-
tory. Since PowerPC Linux supports multiple
platforms in the same binary, the same kernel
can run on Xen, hardware, or other hypervisors,
with no recompile needed.

Interrupt Model On most PowerPC proces-
sors, interrupts are handled by delivering ex-
ceptions to fixed vectors in real-mode, and
are differentiated into two classes, synchronous
and asynchronous.

Synchronous interrupts are “instruction-
caused,” which include page faults, system
calls, and instruction traps. Under Xen, the
processor is run in a mode so that all syn-
chronous interrupts are delivered directly to the
domain. The hypervisor extensions provide a
special form of system call that is delivered to
the hypervisor, which is used for hypercalls.

Asynchronous interrupts are caused by timers
and devices. Timer interrupts are also delivered
directly to the domain. The hypervisor exten-
sions provide us with an additional timer that is
delivered to the hypervisor in order to preempt
the active domain.

Device interrupts, called “external exceptions,”
are delivered directly to the hypervisor, which
then creates an event for the appropriate do-
main. In PowerPC operating systems, the exter-
nal exception handler probes an interrupt con-
troller to identify the source of the interrupt. In
order to deliver the interrupt to the domain, we
supplied an interrupt controller driver for Linux
that consults Xen’s event channel mechanism to
determine the pending interrupt.

264 • The Ongoing Evolution of Xen

Memory Management The PowerPC hyper-
visor extensions define a Real Mode Area
(RMA), which isolates memory accessed in
real mode (without the MMU). This allows for
the interrupts that are delivered directly to the
domain to be delivered in real mode—the same
way they would work without a hypervisor. A
side effect of this is that domain “physical”
address space must be zero based. However,
since the physical address space is now differ-
ent from the machine address space, supporting
DMA becomes problematic. Rather than ex-
pose the machine address space to the domain
and write a DMA allocator in Linux to exploit
it, on 970-based systems we use the I/O Mem-
ory Management Unit (IOMMU) that Linux al-
ready exploits.

Atomic Operations The primary target of
Xen are the 32- and 64-bit variants of the
x86 architectures. That architecture contains a
plethora of atomic memory operations that are
normally not present in RISC processors. In
particular, PowerPC will only perform atomic
operations on 4-byte words (64-bit processors
can also perform 8-byte operations), and they
must be naturally aligned. This presents a
portability issue that must be resolved to sup-
port non-x86 architectures.

5.3 Conclusion

Xen has created an exceptional virtualization
model for an architecture that many consider
overly complex and has trailed the industry
in virtualization support. Xen’s virtualization
model developed in the absense of a hardware
framework, so the overall challenge of the Pow-
erPC port has been to adapt the Xen model to
exploit the capabilities of our hardware.

6 Xen Roadmap

Xen continues to develop apace. In this final
section we discuss four interesting ongoing or
future pieces of work.

6.1 NUMA Optimization

NUMA machines, once rarities except on big-
iron systems, are becoming more and more the
norm with the introduction of multi-core and
many-core processors. Hence understanding
memory locality and node topology has be-
come even more important.

For Xen, this involves work in at least three
areas. Firstly, we need to build a NUMA-
aware physical memory allocator for Xen itself.
This will enable the allocation of memory from
the correct zone or zones and avoid the per-
formance overheads associated with non-local
memory accesses.

Secondly, we need to make Xen’s CPU sched-
uler NUMA-aware: in particular it is important
to schedule a guest on nodes with local access
to the domain’s memory as far as is possible.
This is complicated on Xen since each guest
may have a large number of virtual CPUs (vC-
PUs) and an opposing tension will be to dis-
perse these to maximize benefit from the un-
derlying hardware.

Finally, the NUMA information really should
be propagated all the way to the guest operat-
ing system itself, so that a NUMA-aware guest
OS can make sensible memory allocation and
scheduling decisions for itself. All of this be-
comes even more challenging as vCPUs may
migrate between physical CPUs from time to
time.

2006 Linux Symposium, Volume Two • 265

6.2 Supporting IOMMUs

An IOMMU provides an address translation
mechanism for I/O memory requests. Popular
on big iron machines, they are becoming more
and more prevalent on regular x86 boxes—
indeed, a primitive IOMMU in the form of the
AGP GART has been found on x86 boxes for
a number of years. IOMMUs can help avoid
problems with legacy devices (e.g., 32-bit-only
PCI devices) and can enhance security and re-
liability by preventing buggy device drivers or
devices from performing out-of-bounds mem-
ory accesses.

This latter ability is incredibly promising. One
reason for the catastrophic effect of driver fail-
ure on system stability is the total lack of isola-
tion that pervades device interactions on com-
modity systems. By wisely using IOMMU-
technology in Xen, we hope we shall be able
to build fundamentally more robust systems.

Ideally this will not require too much work
since Xen’s grant-table interfaces were explic-
itly designed with IOMMUs in mind. In
essence, each device driver (virtual or other-
wise) can register a page of memory as inbound
or outbound for I/O—after Xen has checked the
permissions and ownership, an IOMMU entry
can be installed allowing the access. After the
I/O has completed, the entry can be removed.

6.3 Interfacing with ‘Smart’ Devices

A number of newer hardware devices incor-
porate additional logic to allow direct access
from user-mode processes. Most such devices
are targeted toward low-latency zero-copy net-
working, although storage and graphic devices
are moving in the same direction. One inter-
esting piece of future work in Xen will involve

leveraging such hardware to enable direct ac-
cess from guests (initially kernel-mode but ul-
timately perhaps even from guest user-mode).

As with the above-mentioned work on IOM-
MUs, this will build on the current grant-table
architecture. However additional thought is re-
quired to correctly support temporal aspects
such as the controlled scheduling of user re-
quests. Initial work here is focusing on Infini-
band controllers where we hope to be able to
provide extreme low-latency while maintaining
safety.

6.4 Virtual Framebuffer

Past versions of Xen have focused mostly on
server oriented environments. In these environ-
ments, a virtual serial console that is accessible
remotely through a TCP socket or SSH is usu-
ally enough for most use cases. As Xen ex-
pands its user base and begins to be used in
other types of environments, a more advanced
guest interface is required. The Xen 3.0.x se-
ries will introduce the first of a series of fea-
tures designed to target these new environments
starting with a paravirtual framebuffer.

A paravirtual framebuffer provides a virtual
graphics adapter that can be used to run graph-
ical distribution installers, console mode with
virtual terminal switching and scrollback, and
windowing environments such as the X Win-
dow System. The current implementation al-
lows these applications to run with no modifi-
cations and no special userspace drivers. Fu-
ture versions will additionally provide special
interfaces to userspace so that custom drivers
can be written for additional performance (for
instance, a custom X.org driver).

Traditional virtualization systems such as
QEmu, Bochs, or VMware provide graphics
support by emulating an actual VGA device.

266 • The Ongoing Evolution of Xen

This requires a rather large amount of emula-
tion code since VGA devices tend to be rather
complex. VGA emulation is difficult to op-
timize as it often requires MMIO emulation
for many performance critical operations such
as blitting. Many full virtualization systems
use hybrid drivers featuring additional hard-
ware features that provide virtualization spe-
cific optimized graphics modes to avoid MMIO
emulation.

In contrast, a fully paravirtual graphics driver
offers all of the performance advantages of a
hybrid driver with only a small fraction of the
amount of code. Emulation for the Cirrus Logic
chipset provided by QEmu requires over 6,000
lines of code (not including the VGA Bios
code). The current Xen paravirtual framebuffer
is implemented in less than 500 lines of code
and supports arbitrary graphic resolutions. The
QEmu graphics driver is limited to resolutions
up to 1024x768.

The paravirtual framebuffer is currently imple-
mented for Linux guests although the expecta-
tion is that it will be relatively easy to port to
other guest OSes. The driver reserves a por-
tion of the guests memory for use as a frame-
buffer. The location of this memory is commu-
nicated to the framebuffer client. The frame-
buffer client is an application, usually running
in the administrative domain, that is responsible
for either rendering the guest framebuffer to the
host graphics system or over the network using
a protocol such as VNC. The client can directly
map the paravirtual framebuffer’s memory us-
ing the Xen memory sharing APIs.

An initial optimization we have implemented
uses the guest’s MMU to reduce the amount of
client updates. Normally, applications within a
guest expect to be able to write directly to the
framebuffer memory without needing to pro-
vide any sort of flushing or update information.
This presents a problem for the client since it
has no way of knowing which portions of the

framebuffer is updated during a given time pe-
riod. We are able to mitigate this by using a
timer to periodically invalidate all guest map-
pings of the framebuffer’s memory. We can
then keep track of which pages were mapped in
during this interval. Based on the dirtied page
information, we can calculate the framebuffer
region that was dirtied.

In practice, this optimization provides updates
at a scanline granularity. In the future, we
plan on enhancing the guest’s userspace ren-
dering applications to provide greater granular-
ity in updates. This is particularly important
for bandwidth sensitive clients (such as a VNC
client).

We also plan on exploring other graphics re-
lated features such as 2D acceleration (region
copy, cursor offloading, etc) and 3D support.
There are also some interesting security related
features to explore although that work is just
beginning to take shape. Future versions of Xen
may also provide support for other desktop-
related virtual hardware such as remote sound.

7 Conclusion

Xen continues to evolve. Although it already
provides high performance paravirtualization,
we are working on optimizing full virtualiza-
tion to better serve those who cannot modify
the source code of their operating system. To
simplify system administration, we are work-
ing on supporting a single linux kernel binary
which can run either directly on the hardware
or on top of Xen. To allow a broader applica-
bility, we are enhancing or developing support
for non x86 architectures. And we are look-
ing beyond these to develop new features and
hence to ensure that Xen remains the world’s
best open source hypervisor.

NFSv4 Test Project

Bryce Harrington
OSDL

bryce@osdl.org

Aurelien Charbon
Tony Reix

Vincent Roqueta
Bull SAS

tony.reix@bull.net

J. Bruce Fields
CITI

bfields@fieldses.org

Trond Myklebust
Network Appliance, Inc.

Trond.Myklebust@netapp.com

Suresh Jayaraman
Novell

sjayaraman@novell.com

Jeff Needle, Barry Marson
Red Hat

jneedle@redhat.com, bmarson@redhat.com

Abstract

This paper presents the testing effort done
around NFSv41 by the Linux NFSv4 com-
munity. As an introduction, we explain the
rationale for such a heavy testing activity,
why NFSv4 was needed, the current status of
NFSv4, and some Use Cases. Chapter 3 de-
scribes the tools used for testing integral fea-
tures of NFSv4 in the areas of functionality, in-
teroperability, robustness, performance, and se-
curity: where they come from, and which parts
of NFSv4 they are aimed to test. We also de-
scribe some tools used for analyzing problems
and loads. Chapter 4 first explains the goals
of the NFSv4 testing team and how contrib-
utors are working together. Major events for
NFSv4 since January 2004 are displayed in a

1Network File System version 4.

developmental timeline. Then, four contribu-
tors (OSDL, Bull, Novell, Red Hat) amongst
many others describe in details their NFSv4
testing activity, explaining what they have al-
ready done and what their future plans are.
OSDL and Bull are contributing to the contin-
uous testing activity of fresh kernel+CITI ver-
sions, though Novell and Red Hat test NFSv4 in
the eco-system of their distributions. As a con-
clusion, the paper shows that the testing efforts
have generated significant improvements in all
the test areas and that the core of Linux NFSv4
is stable and powerful. Also, some ideas are
presented about the future of NFSv4 protocol
and of Linux NFSv4.

268 • NFSv4 Test Project

1 Introduction

NFS Version 4 adds a number of powerful new
features to address NFS shortcomings in secu-
rity, migration, performance and other areas. In
order to make NFSv4 the new industry standard
for Linux, these features must be thoroughly
and frequently tested to ensure they are func-
tional, robust, efficient, and secure. The goals
for testing NFSv4 on Linux are to make it more
stable, more mature, more interoperable with
other NFS implementations, and to improve the
entire ecosystem of software that interacts with
NFS.

NFSv4 for Linux has been under development
at CITI and NetApp since 2001. This Linux
NFSv4 testing task force started in 2004 with
participants from OSDL, Bull, IBM, NetApp,
Novell, and Red Hat, plus many other compa-
nies and individual contributors.

Because NFSv4 is a complex and critical in-
frastructure service, the testing is both very im-
portant and very challenging. Our key strategy
in achieving our goals has been a large and col-
laborative task force that focuses on different
testing approaches, sharing results and working
directly with the developers to validate fixes.

Development of Linux NFSv4 follows the
Open Source Release Early, Release Often
model. This means that new features for the
Linux implementation of the NFSv4 protocol
become available in the mainline kernel as soon
as they’re ready. Ultimately, the new features
will enable or enhance a number of Use-Cases
including high performance computing clus-
ters, large scale render farms, massive corpo-
rate provisioning, and secure Intranet and In-
ternet file sharing.

OSDL’s role is to facilitate this testing through
establishing a testing community around Linux
NFSv4. Initially, this involved planning ac-
tivities such as collaborating with stakeholders

in creation of a Test Matrix/Wiki itemizing and
prioritizing testing needs, and in providing op-
portunities for members of the community to
meet and collaborate. Recently, OSDL’s activi-
ties focus on participating in designing and run-
ning tests for regression and installation testing,
and for checking configuration robustness.

Terminology

Before getting into details about testing it is
useful to clearly define the terminology we
have adopted in testing NFSv4.

First, one may want to check that NFSv4 fea-
tures work as they have been designed for. Usu-
ally each function is tested separately to cover
the whole function set. It is: functional testing.

Second is interoperability testing, which in-
volves comparing the Linux NFSv4 implemen-
tation against other implementations, as well
as reviewing how Linux NFSv4 interacts with
other components in the system.

Then, one may want to check that NFSv4 still
continues to work under high load, often with
random and simultaneous operations. This
aims at generating extreme cases, not reachable
with functional tests, to stress the system. It is:
robustness testing.

Since many people need to know how many
clients can be connected to a NFSv4 server,
one must measure how long NFSv4 can de-
liver some service or how many actions can be
managed in parallel and in a defined period of
time: performance testing. Performance test-
ing consists in analyzing figures (speed, time,
CPU load, Memory load, etc.) and in trying to
determine where the bottlenecks are.

Security testing may have different meanings.
In the current case the goal of testing NFSv4
security is not to test that security tools used
by NFSv4 (like Kerberos) work well. Instead,

2006 Linux Symposium, Volume Two • 269

5
/04

6
/04

7
/04

8
/04

9
/04

1
0/0
4

1
1/0
4

1
2/0
4

1
/05

2
/05

3
/05

4
/05

5
/05

6
/05

7
/05

8
/05

9
/05

1
0/0
5

1
1/0
5

1
2/0
5

1
/06

2
/06

3
/06

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400
Ma il ing L ists

#em ail s on NFS v4 mai l in g lis t

NFS ma il i ng l i st

Figure 1: nfsv4 and nfs mailing list activity.

NFSv4 security testing first checks that NFSv4
still works fine under a security environment
like Kerberos, and then it checks that NFSv4
server does not reduce the security of Linux by
opening security holes malicious or dangerous
people could use.

nfsv4 and nfs mailing lists

Problems dealing with Linux CITI NFSv4 are
discussed on the nfsv4@linux-nfs.org
mailing list, though general Linux NFS
discussions about development and in-
teroperability are discussed on the
nfs@lists.sourceforge.net mailing
list. Figure 1 shows the activity of these 2
mailing lists since may 2004: nfsv4 mailing
list (in black), which has more than two
hundred different participants, now has about
the same activity than the nfs mailing list (in
red). As expected, the most talkative people
on nfs4 mailing list are: Bruce Fields, Bryce
Harrington, Trond Myklebust, Kevin Coffman,
and then Vincent Roqueta.

2 NFSv4 Description

2.1 Why NFSv4 ?
What is new in NFSv4 ?

NFSv4 brings a number of improvements to
NFS.

NFSv2 and NFSv3 do not themselves in-
clude file locking or ACL2 management; in-
stead, those functions are performed by sepa-
rate RPC3 protocols. In addition, a mount pro-
tocol is required to obtain the root file-handle of
an exported filesystem. Thus four distinct RPC
protocols are required for full functionality.

NFSv4 integrates all of these into the same pro-
tocol, simplifying firewall management and en-
abling previously unsupportable features, such
as mandatory file locking.

For security, NFS implementations have tradi-
tionally relied on private networks and locked-
down clients. The rpcsec_gss protocol
adds support for cryptographic security using
per-user credentials, thus eliminating the need
to trust every host on the network. While
NFSv2 and NFSv3 can also take advantage of
rpcsec_gss, NFSv4 is the first to require
implementation (not use) of rpcsec_gss,
and NFSv4 integrates it into the protocol more
thoroughly.

NFSv4 also allows servers to hand out delega-
tions to clients, giving the client shared (read-
only) or exclusive (read and write) access to the
file, for improved caching.

NFSv4 provides some support for filesys-
tem replication and migration with a new
fs_locations attribute that clients can use to
find other servers exporting the same filesystem
data.

2Access Control List.
3Remote Procedure Call.

270 • NFSv4 Test Project

NFSv4 enables better support for Windows
APIs with open share locks and a fine-grained
ACL model based on Windows.

The last two NFSv4 features are more subtle,
but together add an important layer of extensi-
bility.

First, NFSv4 brings in a mechanism for in-
troducing incremental updates to the protocol,
called minor versions. Draft specifications and
prototypes for minor version 4.1 are currently
available; see chapter 5 (Future of NFSv4) on
page 284 for details.

Second, NFSv4 operations are now sent as se-
ries of smaller operations, called compound
RPCs. For example, what an NFSv3 client
would do with a single NFSv3 WRITE opera-
tion might be accomplished by an NFSv4 client
using a compound RPC consisting of the three
operations: PUTFH (to indicate which file
the following operations apply to), WRITE,
and GETATTR (to update the client’s attribute
cache). The compound RPC adds flexibility
to the protocol, especially when extending it,
since new operations can combine with exist-
ing operations in interesting ways.

Finally, while NFS has always been a freely
documented and widely implemented protocol,
previous protocol specifications have been the
work of Sun Microsystems. NFSv4 is the first
version that is actually developed within the
IETF4 and hence whose development is also
open. In practice we have seen wide and fruit-
ful participation in the process.

2.2 Status of NFSv4 on Linux

The Linux NFSv4 client and server imple-
mentation supports all of the basic features of
NFSv4. In more detail:

4Internet Engineering Task Force.

Delegations are supported, and the client will
take advantage of a file delegation where pos-
sible to perform opens and closes without
contacting the server. Work is underway to
provide even more aggressive caching on the
client, if desired, using on-disk data caching.
The server implements delegations using leases
on the exported filesystem, allowing it to coop-
erate correctly with local and Samba users.

File locking is supported, and locks can be han-
dled entirely on the client when delegations al-
low.

ACLs are supported, though client-side ACL-
manipulation tools are still under development,
and server-side support is limited by the need to
store NFSv4 ACLs as less fine-grained POSIX5

ACLs.

Kerberos-based security is fully implemented,
and support for the public-key based SPKM36

and LIPKEY7 mechanisms is under develop-
ment.

We have patches implementing preliminary
support for replication and migration; further
work needs to be done to refine them and inte-
grate them into mainline.

Ongoing development includes stabilization
and tuning. We are also interested in improv-
ing NFS (especially NFSv4) support for cluster
filesystem exports; for example, we need to en-
sure that locks acquired by an NFS server on
one node of a cluster can be enforced by an
NFS server on another node.

Server user interfaces are under revision to pro-
vide a more consistent interface for users up-
grading from NFSv2 and NFSv3.

5Portable Operating System Interface
6Simple Public-Key Mechanism.
7Low Infrastructure Public Key.

2006 Linux Symposium, Volume Two • 271

2.3 Use Cases

The new features in the NFSv4 protocol are in-
tended to improve performance and reliability
for proved usage scenarios. While we cannot
enumerate every possible use, for testing pur-
poses we’ve identified several distinct use cases
where NFSv4 would be expected to show ben-
efit over previous versions.

Scientific computing cluster. Laboratories use
NFS to communicate between the nodes in a
large computational cluster. This usage sce-
nario involves days or weeks of quiescence,
with occasional bursts of heavy read activity,
followed by intensive write operations. This
use case will benefit from robust network re-
covery and good write performance.

Render farms. This use case is in a way the
inverse of the scientific cluster. Render farms
also involve a large number of computational
nodes, but the write operations are more con-
tinuous over time, punctuated by intensive read
operations. NFSv4’s delegation and caching
improvements may be the biggest benefits in
this use case.

Provisioning. A number of large users use net-
work filesystems for deployment of software or
software updates, either to large server installa-
tions or to large workstation deployments. In
either case, issues include congestion control
(such as if many machines attempt to access
server resources simultaneously), access con-
trol, and migration and replication.

Databases. Use of Network Attached Stor-
age (NAS) and similar technologies often re-
sults in designs that place a database back-end
on an NFS share. This usage provides benefits
including backup/rollback and flexible volume
management, but can raise performance con-
cerns. New features of NFSv4 worth exploring
with this use case are delegations and caching
improvements.

3 Testing Tools

Stability and robustness:

First and foremost, NFSv4 acts as a filesys-
tem. So, the main priority in NFSv4 testing is
checking that the filesystem is stable and ro-
bust. Many generic, Open Source filesystem
test tools are available to perform such tests;
many of them, including several listed below,
are part of the LTP8 [10].

IOZone [9] was originally a performance
tool. Developed by IOZONE.ORG, OR-
ACLE and HEWLETT PACKARD, it mea-
sures raw throughput of file operations
such as read, write, reread or rewrite.
These throughputs are measured with var-
ious file sizes and read/write sizes. A typ-
ical IOZone test has a total of 1430 mea-
surements. IOZone allows mounting and
unmounting filesystems with various pa-
rameters between tests. It can be used to
stress mount program with various param-
eters.

Fsx [10] is an APPLE COMPUTERS in-
file stress program available in LTP. It
performs the following file operations :
mapped read, mapped write, read, write,
truncate. FSX checks if data corruption
occurred during these operations.

Fsstress is FSX’s complement, and is also
available in LTP. It was written by SILI-
CON GRAPHICS INC.. It stresses filesys-
tem tree structure by doing random oper-
ations on the tree structure: file creation,
recursive directories, symlinks manipula-
tions.

Locks tests [10] launch multiple processes on
multiple clients. This tool was designed

8Linux Test Project.

272 • NFSv4 Test Project

by BULL SAS to stress NFSv4 locks, and
contributed to LTP. Processes try to per-
form locks-related operations on the same
file or file section. Results are compared
to the expected results. It can be used to
stress both network and local filesystems.

ACL tests [10] were written by BULL SAS in
order to stress ACLs within NFSv4, and
are available in LTP. The test suite creates
numerous users and ACL rules and com-
bines them; then it checks that actual ac-
cesses match ACL rules.

Connectathon 2004 [8] was designed by SUN

MICROSYSTEMS, INC to perform interop-
erability testing of critical operations. It
performs high-level operations that often
reveals interoperability troubles.

FFSB [12] is a versatile and useful filesys-
tem test. It was created and enhanced
for NFSv4 by IBM. It can both stress the
whole filesystem, mimic various load pro-
files and collect test information.

NetEm [13] is a kernel component developed
by Steve Hemminger at OSDL (available
when configuring the kernel) that allows
to modify network behavior. It provides
the following features:

• dynamic delay between packets
(RTT).

• packet loss, duplication, corruption,
re-ordering, collisions.

• rate control, and non-FIFO queuing.

It can be easily configured to mimic the
behavior of real networks.

NewPyNFS [14] is a Python-based test-suite
developed and maintained by the CEN-
TER FOR INFORMATION TECHNOLOGY

INTEGRATION (CITI) of the University
of Michigan. Unlike the tests described

above, it is not a black box test tool: it
implements a python NFSv4 client and
server. It was specifically designed to test
NFSv4 features, including ones that are
not yet fully implemented.

Analysis tools

OProfile is a kernel module used to collect
statistics of CPU load by function.

Ethereal [11] is a well known network ana-
lyzer. It helps checking that NFSv4 server
and clients exchange valid sequences of
information over the network.

Needed tools

Since new NFSv4 features should appear soon
within Linux NFSv4, appropriate new tests will
be needed.

Migration and Replication is a relatively new
feature, and a functional/robustness test will be
necessary. This test would emulate or demon-
strate the transfer of an NFSv4 share from one
NFS server to another, and it would check that
the client is able to continue accessing the data
seamlessly, while measuring the impact on the
client during the transition.

New tests will be needed to exercise full NFSv4
ACLs, Named Attributes, and Directory Dele-
gation.

We also need tests of the security of NFSv4.
We need to measure the impact on performance
of running NFSv4 with security and evaluate
the robustness of NFSv4 when attacked.

2006 Linux Symposium, Volume Two • 273

4 NFSv4 Tests

Hereafter we present the testing effort done by
four contributors: OSDL, Bull, Novell and Red
Hat. Many other companies and people have
contributed to improve NFSv4, testing it, pro-
viding patches, warning about mistakes, or pro-
viding information about oops and bugs they
are experiencing in their labs.

NFSv4 is being tested in three different ways:
1) OSDL and Bull have developed tests and are
using them plus others (filesystem tests, LTP)
to continuously check that no regression oc-
curs; 2) many contributors or early adopters are
using NFSv4 in their own complex and specific
environment; 3) Novell and Red Hat are hard-
ening NFSv4 in the environment of their future
distributions by using regression tests. These
different approaches are complementary. Re-
gression and stress tests enable to verify that
NFSv4 core is reliable in a clean and standard
environment. And tests done in various and
unique environments enable to check that the
whole NFSv4 ecosystem is robust and to clean
NFSv4 of all little mistakes in its childhood.

The timeline on page 274 presents the evolu-
tion of NFSv4 since beginning of 2004. Ver-
tical bars on the right show how main features
of NFSv4 have evolved, from bad (red) to good
(green). Main events appear in the middle. No-
tice that regressions appear from time to time
and are quickly fixed. Also notice how long it
took to make locks reliable.

4.1 OSDL

The Open Source Development Labs (OSDL)
[15] became involved in the NFSv4 testing ef-
fort at the request of the NFSv4 community and
through OSDL’s Data Center Linux (DCL) ini-
tiative. Initial involvement included assisting in

organizing efforts, identifying test plans, estab-
lishing testing priorities, and facilitating discus-
sion between companies and community mem-
bers. Today OSDL’s role is in conducting re-
gression testing of all kernel patch releases by
the NFSv4 community, and ancillary activities
to help facilitate and promote use of NFSv4.

The test matrix [16] is a listing of test tasks
that were felt to be needed to fully test the
Linux NFSv4 system, broken down into the
following categories: Functional, Robustness,
Performance, Interoperability, and Security.
Through discussions with testers and devel-
opers, these tasks were prioritized, and an
NFSv4 Testing Road-map was generated, item-
izing the high priority testing tasks and iden-
tifying which organizations will be perform-
ing which tasks. OSDL signed up for several
Functional/Robustness testing tasks involving
regression testing and cross-compile testing.

Cross-compile testing is done on every ker-
nel patch released by CITI using the Patch
Lifecycle Manager (PLM). These builds target
a number of different architectures, including
i386, x86_64, ppc, ppc64, sparc, sparc64, arm,
and alpha. Compiles are performed against
several different configs, including allyescon-
fig, allmodconfig, allnoconfig, and defconfig.
Sparse has also recently been added. These
builds have been useful in identifying both is-
sues particular to certain platforms (such as
only the ppc architecture, or only 64-bit sys-
tems), as well as variation in config settings.
For example, the developer may only be check-
ing his work with a given config setting turned
on, and may have accidentally added an is-
sue that only shows up with that config setting
turned off; this cross compile system will have
a better chance of catching these classes of de-
fects.

Regression testing is done using Crucible,
a framework to automatically download
new patches from CITI and kernels from

274 • NFSv4 Test Project

 1

F

M

A

M

J

J

A

S

O

N

D

J
2004

F

M

A

M

J

J

A

S

O

N

D

J
2005

F

M

J
2006

2.6.3

2.6.7

2.6.9
rc1

2.6.12
r2

2.6.14

2.6.15
rc3

2.6.16
rc

²

KE
RB

ER
OS

 5
SU

PP
OR

T
BA

SI
C

NF
Sv

4 F
UN

CT
IO

NS

IN
TE

RO
PE

RA
BI

LIT
Y

LO
CK

 S
UP

PO
RT

vi can edit a file
nfsd as module

2.6.6

VFS: Busy inodes
after unmount

2.6.11
r5

IPv6 Client,
version 1

various issues

64K pages
corruptions

gss regressions

Bull joins
NFSv4 team

NFSv4 gets its
own mailing list

First user
testing krb5

Much more people
 testing with krb5
OSDL Test Matrix

OSDL joins
NFSv4 team

core NFSv4 is stable
Administration tools

Netem introduced
to help Wan testing

Starting locks
validation

Locking,
Interoperability
Stable release
Migration guide

NFSv4
wiki

IRC
Chanel

NFSv4 ready for
early adopters

rpcsec_gss : first patches
 IPv6 client work start

starting to work on administration
Test tool selection First user

asking for krb5

Basic NFS4 ACL definitions
POSIX server translations

Start NFSv4 security negotiation
 implementation

ACL_support attribute

svc authentication
heavy changes

server reboot
recovery

reboot recovery
 IPv6 Client

3264bits
Interoperability

NFSv4 limits

Fix file creation limit
New IPv6 patch set

Unix interoperability
 2048+ connections

 by server

 x86_64 support
Starting WAN testing

ACL limits

NFS use
FS_Cache

NFSD delegation

Introducing spkm
& IPv6 server

Figure 2: Linux/NFSv4 History.

2006 Linux Symposium, Volume Two • 275

1
/05

2
/05

3
/05

4
/05

5
/05

6
/05

7
/05

8
/05

9
/05

1
0

/0
5

1
1

/0
5

1
2

/0
5

1
/06

2
/06

0

1

2

3

4

5

6

7

8

0

4

8

12

16

20

7 7 7

2
3

7

2

0

2

4

1
0

3

7

Improvement in Defect Density

Kernel Releases

Issues per Test
Run

D
ef

ec
ts

 p
er

 te
st

 r
un

Figure 3: Defects.

kernel.org. It then patches and compiles
the kernel on a client and a server, boots them
to that kernel, and then runs a sequence of tests
(cthon04, NewPyNFS, IOZone, and LTP) on
them. The results are collected, parsed, and
analyzed for abnormalities or other unusual be-
haviors. These are reported to the developers,
and efforts are taken to identify the root causes
where they are not obvious.

1
/0

5

2
/0

5

3
/0

5

4
/0

5

5
/0

5

6
/0

5

7
/0

5

8
/0

5

9
/0

5

1
0/05

1
1/05

1
2/05

1
/0

6

2
/0

6

0

5

10

15

20

25

30

35

40

Regression Test Runs

Total Test Runs

Issues Found

Figure 4: Regression Tests.

Typically, most issues the regression testing

finds is via the NewPyNFS test, such as
changes in return codes from functions affected
by recent development changes. In some cases
these identify legitimate defects, but in other
cases they simply indicate areas where differ-
ent people have interpreted the spec in different
ways; even this is useful because it identifies
areas where further discussions about the spec
are needed, to resolve what should happen. In
this latter case it is not uncommon for the test
suite to require modification to reflect the new
consensus.

The biggest challenges in establishing the au-
tomated framework is boot control. Invariably
the client or the server will hang. It is nec-
essary to use a watchdog process to automat-
ically detect that the machine has become in-
active (such as failure to respond to pings at a
time when it should respond), and then perform
a remote power cycle on it. As well, there is al-
ways a chance that a given kernel will not boot;
to account for this situation, the boot-loader’s
default kernel is kept to a static, known-good
kernel, and the kernel-to-test is specified via
lilo -R.

The hardware included in the OSDL test frame-
work is primarily x86 based systems running
Gentoo Linux, but also includes a NetApp filer,
an amd64, a ppc64, and an itanium 2. Other
hardware may be added in the future, depend-
ing on donations to the lab. The principle chal-
lenge to integrating new hardware is automat-
ing boot control; the system must support both
some form of remote power management (in
worst case, through use of a separate interrupt-
ible power unit), and a boot-loader mechanism
to test a new kernel and fallback to a known
good one on next reboot. Serial console access
and/or logging is also important for catching
console errors.

OSDL future work

276 • NFSv4 Test Project

Due to the success seen through use of the re-
gression test framework, it is expected that this
will be expanded with more tests, more hard-
ware, and more ways to put tests into complex
configurations. For example, to date the auto-
mated boot mechanisms have only been used
between tests to reset the system, however it
could be invaluable to boot the server or client
during a test, and double-check how the system
as a whole responds. Indeed, there is test code
in both LTP and NewPyNFS intended to check
performance through reboots; these test cases
are not typically run, for obvious reasons, so
this framework could enable us to increase our
testing coverage to these areas.

Building on this, network stability testing can
be done by introducing perturbations in the net-
work such as network partitions, dropped or
corrupted packets, and so forth.

To help promote the advantages of adopting
NFSv4, it would be worthwhile to add some
performance comparison capabilities to the test
harness. One idea is to simply perform timed
kernel builds over NFSv3 and NFSv4 mounts,
and compare performance. Another idea is
to create a 3D graphics render-farm using a
server and multiple clients using POV-Ray and
the POV-Any software, and to time the per-
formance of distributed renders. Ideally, these
should illustrate how NFSv4’s delegations and
other performance features impact real world
workloads.

4.2 Bull

Bull’s contribution to the Linux NFSv4 project
started in January of 2004.

When problems are found, either we directly
expose them to the NFSv4 developers or we
talk on the nfs4 mailing list or we open a new
bugzilla ticket, depending on the complexity of
each problem.

Each time a task is finalized (like: regression
tests on last kernel-CITI version, performance
measures, . . .) we publish a News on our web-
site [21].

We are using a limited number of machines:
four ia32 machines with two processors used
both for Linux testing and for Solaris interop-
erability, and two PowerPC machines used both
for Linux testing and for AIX interoperability.
One ia32 machine is a x86_64 machine and is
used for 64bits testing, complementing testing
with AIX 64bits. All machines are connected
with GigaBits boards and switches, for perfor-
mance measurement purposes. Machines are
installed with different Linux distributions (Fe-
doraCore from Red Hat, SLES from Novell,
and Debian).

4.2.1 Regression tests

Each release of the kernel and of the CITI
patchset is exercised with tests in order to de-
tect regressions in stability, robustness and per-
formance areas. In most cases, bugs are the
result of new patches. The goal is to ensure
that these bugs will be corrected in the next
CITI_NFS_ALL patch.

The following tests are run, using different
tools:

• Connectathon 04 testing suite: do basic
conformance testing.

• Two hours FSSTRESS and FSX tests:
check robustness.

• IOZone: compare performance with pre-
vious versions.

• LTP Locks and ACL tests.

2006 Linux Symposium, Volume Two • 277

Once a problem is discovered, a new bug re-
port is created in the Linux NFSv4 Bugzilla
[18]. Then, Linux NFSv4 developers at CITI
are warned directly or via the nfs4 mailing
list. They are provided with a stack trace if
a kernel Oops occurred or a network trace in
other cases.

Tests are run with two different underlying lo-
cal filesystems: ext3 and ReiserFS.

Regression tests are also used to detect interop-
erability issues. The tests are performed on dif-
ferent Linux platforms (ia32, x86_64 and ppc)
and with non-Linux client or server.

4.2.2 Stress and robustness

As a Network File System, NFSv4 provides
two types of functions and mechanisms:

Filesystem functions. Since NFSv4 mimics
the behavior of a local filesystem to appli-
cations, it provides common filesystem re-
lated functions, such as read, write, open,
mkdir . . . but also more advanced func-
tions such as fcntl, flock, acl . . .

NFSv4 specific functions. NFSv4 tries to
appear as a local filesystem, but it is
not. It provides several functions and
mechanisms over the network, and more
specifically over Internet. These functions
include: gss support, delegation, auto-
mounter, security negotiation, migration,
replication . . .

In order to ensure the stability and robustness
of NFSv4, all its functions have to be stressed.

Core filesystem functions

The first step when testing NFSv4 deals with
checking its stability on the main architec-
ture: ia32. Several tests are performed on core
NFSv4 functions. These functions are common
to all filesystems. They provide basic inter-
faces for in-file manipulation functions (open,
read, write, . . .) and filesystem tree manipula-
tion functions (mkdir, ls, ln).

The first goal of testing is to ensure that no cor-
ruption of data occurs when manipulating files.
The FSX stress tool is quickly run, and it must
be successful. It is used to prove that Linux
NFSv4 does not corrupt data.

The second goal of testing is to ensure that file
manipulations are correctly handled, especially
when using very long path or very deep sub-tree
structures and sub-directories with multiple
processes. When we started to use FSSTRESS

it helped to reveal numerous problems in many
areas (symlink overflow, deadlock or memory
leak) that are reliable now in the current ver-
sions of Linux NFSv4.

One year after we started using FSSTRESS (in
April 2005) Linux NFSv4 was able to sustain
the concurrent load of 10 processes during 24
hours, without any problem. Three months
later, NFSv4 reached 72 hours of stress under
FSSTRESS, without any bugs. From this date,
NFSv4 filesystem tree manipulation is consid-
ered to be stable.

Locks

When we started to stress lock features in early
2005, there was only one tool available to test
locks: Connectathon. We have used Connec-
tathon during some months to stabilize NFSv4
locks implementation. It helped to find many
bugs on several architectures.

278 • NFSv4 Test Project

However, Connectathon was not designed to
perform heavy stress operations. So, a new test
tool was required, that we designed and imag-
inatively named: LockTester. This lock test
launches an arbitrary number of processes on
one or more clients to heavily stress the NFSv4
server and client. Processes try to perform var-
ious lock-related functions on the file at the
same time. This tool has helped to find several
complex bugs, and it is recommended to use
it when running regression tests. It has been
successfully integrated into the LTP suite, in
network/nfsv4/locks branch (however,
it can be used with any filesystem).

By the end of 2005, one NFSv4 server was
able to manage more than 500 local concurrent
processes, and more than 2000 concurrent pro-
cesses launched from four machines (x86, ppc).

High Load

In order to over-stress NFSv4, we have used up
to 2048 IOZone processes running on two ma-
chines and concurrently loading NFSv4 on a re-
cent kernel: no problem was revealed.

4.2.3 ACLs

NFSv4 defines a flavor of Access Control Lists
(ACLs) resembling Windows NT ACLs, de-
scribed in an IETF Internet-Draft [5]. A num-
ber of operating systems use a different fla-
vor of ACL based on a POSIX draft. NFSv4
clients and servers on such operating systems
may wish to map between NFSv4 ACLs and
their native ACLs. Interoperability tests aim at
verifying this mapping.

An ACL test suite built with python scripts
and C programs has been added to the Linux
Test Project tree. It is now available in the
network/nfsv4 branch.

It aims at to test the following points:

• ACL conformance: verify that actual ac-
cess conforms to the access control list of
the file. It includes conformance testing of
ACLs on files and directories, but also on
default directory ACLs.

• ACL robustness: multiple clients stress
one server with random ACL requests on
one single file, or on multiple files.

• ACL limits: determine the maximum
length of an ACL. ACL limits tests have
been run with Linux, Solaris 10 and AIX
5.3 on server and client sides: no interop-
erability issues have been found.

The tests are delivered with tools that help man-
aging the thousands users needed by the tests.

Tests have been run with different underlying
filesystems: ext3, xfs and ReiserFS.

Main problems found:

The tests have shown that the main current limi-
tation is that the server does not allow the client
to retrieve an ACL greater than one memory
page, due to the underlying RPC. So, when
the name of users and groups appearing in the
ACLs are 6 characters long, the limit size is
about 35 ACL entries.

ACL Interoperability tests:

There are now three ACL models to deal with:
NFSv4, Windows, and "POSIX ACLs"/mode
bits. And one must decide what to do with them
all in the face of existing users, tools, and sys-
tem interfaces that assume one or the other. For

2006 Linux Symposium, Volume Two • 279

example: since individual clients and applica-
tions with different ACL models may not deal
well with the full generality of NFSv4 ACLs,
problems may also arise from clients reading
and modifying ACLs written by clients with
different expectations.

So it is useful to run these ACL tests as long
as the ACLs’ implementation in NFSv4 code is
under development.

Remaining tests:

Interoperability tests with Windows filesystems
need to be performed. Also, we have to develop
new tests that enable the testing of all the fea-
tures of NFSv4 ACLs, regardless of the under-
lying filesystem.

4.2.4 Performance

Most NFSv4 performance measures have been
done with IOZone, which is designed to mea-
sure a global throughput on a filesystem.

These IOZone tests, combined with vmstat,
have been useful to detect performance prob-
lems as well as functional ones, such as wrong
use of Kerberos 5.

NFSv4 compared to NFSv3 & Samba

NFSv4 (TCP) has been compared to other well
known network filesystems: NFSv3 (UDP) and
Samba.

Read performance

Figure 5 shows Read performance of NFSv3,
NFSv4 and Samba 3.

For large files (greater than 4 MegaBytes) and
both in asynchronous and synchronous (no
cache is used) modes, NFSv4 (red and purple
lines) and NFSv3 (green and sky blue lines)
have similar performance.

For small files (smaller than 4 MegaBytes) and
both in asynchronous and synchronous modes,
NFSv4 outperforms NFSv3.

For small files, NFSv4 performance is between
2 and 15 times better than Samba (cobalt blue
line). For large files, NFSv4 is over 15 times
better than Samba.

Write performance

Figure 6 shows Write performance of NFSv3,
NFSv4 and Samba 3.

In asynchronous mode with small files,
NFSv4 (red line) is about 6 times faster than
NFSv3 (green line) and 3 times faster than
Samba (cobalt blue line). The cache used by
NFSv4 is very efficient for small files.

For large files, NFSv4 (purple line) and NFSv3
(sky blue line) have similar performance.

In synchronous mode with small files, the per-
formance of NFSv4 and NFSv3 is between one
third and one half of the performance of Samba.
For large files, NFS is about 20% faster than
Samba. NFSv4 and NFSv3 show the same per-
formance.

Conclusions

While NFSv4 is still being developed, its per-
formance is similar to NFSv3 performance and
it outperforms Samba. For small files, NFSv4
performance clearly outperforms NFSv3.

280 • NFSv4 Test Project

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 64 256 1024 4096 16384 65536 262144 1.04858e+06

Kb
yt

es
/s

ec

File size in KBytes

Iozone performance

read nfs4_async
read nfs3_async

read samba_3
read nfs4_sync
read nfs3_sync

Figure 5: READ: NFSv4 vs NFSv3 (synchronous and asynchronous modes) & Samba3.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 64 256 1024 4096 16384 65536 262144 1.04858e+06

Kb
yt

es
/s

ec

File size in KBytes

IOZone performance

write nfs4_async
write nfs3_async

write samba_3
write nfs4_sync
write nfs3_sync

Figure 6: WRITE: NFSv4 vs NFSv3 (synchronous and asynchronous modes) & Samba3.

2006 Linux Symposium, Volume Two • 281

Configuration of Tests

• Network: GigaBit Ethernet

• Machines (client and server): dual ia32
machines

• Kernel: 2.6.15

• Test performed: IOZone standard tests
(-ace -r 32 -U)

4.2.5 Interoperability testing

Hardware interoperability

Since Linux NFSv4 will be used on different ar-
chitectures, it is worth checking early if all fea-
tures of Linux NFSv4 run perfectly on them.
We focus on issues generated by 32/64 bits
alignment and little/big endian problems. Tests
are done on Intel x86, Intel/AMD x86_64, and
IBM ppc64 architectures, used either as NSFv4
server or NFSv4 client. A couple of bugs re-
lated to these two kinds of problems have al-
ready been found and fixed.

These tests deal only with basic features of
Linux NFSv4.

Table 1 shows the status of the interoperabil-
ity tests when run with 2.6.12 kernel. Sev-
eral problems appeared when running Connec-
tathon 04, showing that Linux NFSv4 was not
ready for use on 64bits platforms with kernel
2.6.12.

Now, starting with 2.6.15 kernel, all these is-
sues have been fixed; and these interoperability
tests are now included in our regression testing
process.

Client
Server ia32 x86_64 ppc64
ia32 OK (1) OK

x86_64 OK OK (2)
ppc64 (3) (4) (3)

(1) On x86_64 platforms, lot of socket resets.
(2) Input/output error: cannot close a big file.
(3) On ppc64 client, locking does not deliver the ex-
pected behavior.
(4) Socket: error -11 when doing write/read opera-
tions on 30 MB files.

Table 1: Interoperability testing result matrix
on 2.6.12.

Software interoperability

Tests are run to detect problems between Linux
implementation of NFSv4 and other Unix im-
plementations. Since kernel 2.6.12, no prob-
lem has appeared about basic features of Linux
NFSv4 (Client or Server) when interoperating
with NFSv4 on Solaris 10 and AIX 5.3.

Future testing

Tests involving security have not been per-
formed yet with different architectures and with
other non-Linux Operating Systems. First tests
to be run should use: Kerberos (krb, krb5i,
krb5p) and SPKM.

4.2.6 WAN testing

NFSv4 has been designed to work over LAN9

as well as over Internet. So we have run tests
to stress Linux NFSv4 over WAN10. We used
the same stress tools we used for LAN testing:

9Local Area Network.
10Wide Area Network.

282 • NFSv4 Test Project

Fsx, and Fsstress. But the testing process over
WAN differs in the hardware environment.

Tests have been run between the CITI in
Michigan and the labs of BULL SAS in Greno-
ble, France. Though these tests appeared to
be very useful because several problem were
found, setting up and configuring machines for
tests was painful: patching and updating the
kernel is not easy through Internet.

To help us, the NETEM tool has been deployed
to emulate the behavior of Internet: high RTT11

delay, high RTT variations and packets loss.
This test environment has successfully helped
us to find WAN-only bugs, like timeouts. Then,
the new kernel containing appropriate fixes has
been tested over the real Internet connection,
between USA and France, and proved reliable.

Many problems have been fixed and WAN test-
ing covers most core NFSv4 functions.

4.2.7 Future plans

Once NFSv4 is widely used, people will proba-
bly ask for proof that a NFSv4 server connected
to the WAN cannot be used as a mean for pene-
trating a private network. After a first attempt in
end of 2005 to analyze the Linux NFSv4 code
by means of tools like Duma or Checker, we
plan to start a more ambitious study: attack
a Linux NFSv4 server with a modified Linux
NFSv4 client in order to search for weaknesses
in the Linux NFSv4 code, like overflows com-
monly used by attackers.

In the second half of 2006, we plan to con-
tinue NFSv4 regression testing, in order to con-
tinue finding problems in new kernel+NFSv4
versions as early as possible.

Running tests helps to improve the quality of
the newest versions of NFSv4. It is also very

11Round Trip Time.

important to deliver new test suites which will
be used by Linux distributions for checking
that NFSv4 behaves perfectly well in the eco-
system of their distribution. So we plan to con-
tinue writing tests for new features (like repli-
cation and migration, NFSv4 ACLs, named at-
tributes) and to deliver them to the LTP project,
as we did for ACLs and Locks tests in 2005.

4.3 Novell

NFSv4 support is available in SLES 10 by de-
fault. Novell started contributing to the testing
efforts by taking part in OSDL Testing confer-
ence calls and providing inputs. Later we de-
rived the test plan from OSDL test matrix and
started testing.

All SLES 10 beta builds are being validated.
The validation sequence is:

• Pynfs/NewPyNFS for protocol confor-
mance,

• Connectathon 04 for basic conformance
testing,

• Custom usability script which tests areas
which are not covered by Connectathon,

• Support for security modes (sys, krb5,
krb5i),

• Lock tests.

The major focus is on functionality, robust-
ness, interoperability and performance. Proto-
col conformance, POSIX conformance, instal-
lability, integration testing, use case scenarios,
and kerberos security modes were tested as part
of functionality testing. Stress testing, com-
parison against NFSv3, various security modes,
and various load scenarios were done as part
of performance testing. Robustness Testing in-
corporates fsstress, ffsb, resource limit testing

2006 Linux Symposium, Volume Two • 283

and crash recovery. The interoperability testing
includes NetApp and Solaris platforms and all
SLES 10 supported architectures.

Tools used

The tools used during various levels of test-
ing are: PyNFS, OpenPOSIX, LTP, Connec-
tathon, IOZone, fsstress, ffsb, Bull LockTester,
and custom usability scripts.

Future plans

Our future focus will be tests like NFSv4 ex-
porting cluster filesystem, NFSv4 testing un-
der XEN kernel, scalability, and other pending
items in performance and robustness testing.

4.4 Red Hat

Red Hat NFS developers contribute to two code
streams, Red Hat Enterprise Linux and the
community Fedora Core project. Red Hat En-
terprise Linux has supported portions of NFSv4
for the last couple of years. Fedora Core closely
tracks upstream development. By carefully
monitoring bug reports against Fedora Core, we
are able to gauge the maturity and readiness of
the upstream bits for our enterprise customers.

Red Hat has an automated test harness which
incorporates many of the tests mentioned ear-
lier, among others:

• LTP

• fsx

• fsstress

• Locks tests

• ACL tests

• Connectathon suite

We run these tests against our nightly base-
levels and compare the results against known
good builds for regressions or problems. In
addition, we have a performance group who
run many different benchmarks with a variety
of application mixes and closely monitor any
unexpected performance changes (we scan for
deltas of more than 3% to 5%).

We work closely with many key partners, who
run their own test suites. In some cases, these
test suites are proprietary, so when problem ar-
eas are encountered, we work together to come
up with reproducible test cases which we can
add to our test harness. We also work closely
with targeted customers during beta to test spe-
cific new functionality in an effort to lever-
age unique customer expertise or environments.
We monitor those results to see where we need
to enhance our internal testing and code re-
views.

Red Hat products are also fully deployed in
production throughout the company, and de-
velopment builds are deployed in test labs and
other controlled environments. There are few
quality metrics more powerful than having to
face your angry co-workers on your way to the
coffee pot!

Red Hat NFS developer Steve Dickson is a
Connectathon regular along with other Red Hat
employees. This is a very valuable opportunity
to ensure maximum interoperability of both our
stable RHEL builds as well as our latest devel-
opment trees.

284 • NFSv4 Test Project

5 Conclusions

Status of NFSv4 protocol
Future of NFSv4

There is a variety of extensions to the NFSv4
protocol under development, and Linux is serv-
ing as an important testbed for all of them.

Directory delegations allow enhanced (read-
only) caching of directory data.

pNFS allows NFSv4 clients to perform file IO
using alternate methods, including parallel IO
to multiple file servers and direct access to
block storage.

The Sessions extension fixes some of the trans-
port problems that have long plagued NFS, fi-
nally allowing a reliable replay cache that can
ensure only-once semantics.

Status of Linux NFSv4

This paper has shown that the efforts to date
have improved NFSv4 reliability and perfor-
mance since 2004 up to now.

The early regression testing has helped devel-
opers to quickly isolate and fix defects. Tests
done by OSDL and Bull have put NFSv4 into
high pressure situations, in LAN and WAN
modes. The NFSv4 test community’s efforts
have been successful in identifying many mi-
nor, medium and bad problems, on 32 and 64
bits architectures. Though the main testing ac-
tivity is done on ia32, tests are also done on
x86_64, PowerPC and ia64 processors. And
everyone knows that shaking code on different
architectures really helps in finding hidden mis-
takes and bugs!

Also, the availability of new test suites (ACLs
and Locks tests) through the LTP helps Linux

distributions to check that NFSv4 integrates
perfectly in their specific ecosystem.

The comparison of NFSv4 with NFSv3 has
shown the benefits delivered by NFSv4: high
reliability and very good performance on TCP.
Also, interoperability tests have shown that
Linux NFSv4 nicely interoperates with other
Unix NFSv4 implementations. People attracted
by Samba will enjoy a new NFS version that
delivers both Unix-Windows interoperability
and very good performance when reading files,
both in synchronous and asynchronous modes.

When we compare the status of Linux NFSv4
today against where it was when we started in
late 2004, we can see that the testing efforts
have generated significant improvements in all
test areas and that the core of Linux NFSv4 is
stable and powerful. Indeed, the NFSv4 infras-
tructure has attained quality standards which
surpass NFSv3 in many cases and offer secu-
rity levels that today’s users are desperate for.

Now that Novell and Red Hat have started test-
ing NFSv4 in depth on their distributions, this
is a clear signal for companies and individuals
that NFSv4 is ready to use on Linux. First for
experimentations, and soon in the field, where
Linux NFSv4 must prove that it scales nicely
with hundreds or thousands of clients.

Future of NFSv4 testing

There is still much functionality in develop-
ment for NFSv4, thus the Linux NFSv4 test
project will continue. New tests will be writ-
ten for testing the future Linux NFSv4 features:
Named Attributes, NFSv4 ACLs, Replication,
Migration. Also, the testing coverage must be
measured to know the percentage of NFSv4
code that is exercised when running tests over
NFSv4.

2006 Linux Symposium, Volume Two • 285

References

[1] IETF: RFC 3530: NFSv4 Protocol:
http://www.ietf.org/rfc/
rfc3530.txt

[2] IETF: NFSv4:
http://www.ietf.org/html.
charters/nfsv4-charter.html

[3] Paper: The NFS Version 4 Protocol:
http://www.nluug.nl/events/
sane2000/papers/pawlowski.
pdf

[4] Paper: Linux NFSv4: Implementation
and Administration:
http:
//lwn.net/2001/features/
OLS/pdf/pdf/nfsv4_ols.pdf

[5] NFSv4 ACLs :
http://www.ietf.org/
internet-drafts/
draft-ietf-nfsv4-acls-00.
txt

[6] CITI: NFSv4 Open Source Reference
Implementation:
http://www.citi.umich.edu/
projects/nfsv4/

[7] CITI: NFSv4 for Linux 2.6 kernels:
http://www.citi.umich.edu/
projects/nfsv4/linux/

[8] Connectathon:
http:
//www.connectathon.org/

[9] IOzone filesystem Benchmark:
http://www.iozone.org/

[10] LTP (FSX, ACL & Lock tests):
http://ltp.sourceforge.net/

[11] Ethereal (Network Protocol Analyzer):
http://www.ethereal.com/

[12] FFSB: Flexible File System Benchmark:
http://sourceforge.net/
projects/ffsb/

[13] NetEm: Network Emulator:
http://linux-net.osdl.org/
index.php/Netem

[14] NewPyNFS (NFSv4 Functionality Test):
http://www.citi.umich.edu/
projects/nfsv4/pynfs/

[15] OSDL: NFSv4 Testing for Linux:
http://developer.osdl.org/
dev/nfsv4/site/index.php

[16] OSDL NFSv4 Test Matrix v1.13:
http://developer.osdl.org/
dev/nfsv4/site/testmatrix/
testmatrix-1.13.pdf

[17] OSDL NFSv4 Wiki:
http://wiki.linux-nfs.org/
index.php/Main_Page

[18] NFSv4 Bugzilla:
http:
//bugzilla.linux-nfs.org/

[19] Linux NFSv4 Client and Server Mailing
Lists:
http:
//linux-nfs.org/cgi-bin/
mailman/listinfo/nfsv4

[20] Linux NFS mailing list:
http://lists.sourceforge.
net/lists/listinfo/nfs

[21] Bull: NFSv4 project:
http:
//nfsv4.bullopensource.org/

[22] Novell: SUSE Linux:
www.novell.com/linux/suse/

[23] Red Hat:
http://www.redhat.com/

286 • NFSv4 Test Project

Measuring Resource Demand on Linux
Resource allocation, Goldilocks style

Rik van Riel
Red Hat, Inc

riel@redhat.com

Abstract

Linux, and other Unix systems, have long had
pretty good measurement systems for resource
use. This resource use data, together with tools
like top and vmstat, has allowed system ad-
ministrators to effectively gauge system perfor-
mance and determine bottlenecks. However,
this needs to be done manually and is more art
than science and nobody knows exactly how
much resources a particular workload needs.

The result? Most machines have way more re-
sources than needed for the workload they run.
This is not a problem with dedicated comput-
ers, but once virtualization is introduced peo-
ple will ask the question “how many virtual ma-
chines can I run per physical system?”

From this question alone it is obvious that re-
source demand is not the same as resource use,
and resource demand should probably be mea-
sured separately by the operating system. In
this paper I will introduce ways to measure
resource demand for CPU, memory and other
common resources, examine why resource de-
mand is often different from resource, and ex-
plain how system administrators can benefit
from having resource measurements.

1 New problems

Virtualization is the buzzword of the day, but
besides its promises of reduced hardware cost,
reduced power use and world peace, it has the
potential to introduce almost as many problems
as it solves.

The most obvious one is that when two servers
get consolidated onto one, you now have the
operating systems from both servers to manage,
as well as the host operating system. Now the
sysadmin has to take care of three OSes instead
of two. Luckily system management is a fairly
well understood problem and this problem can
be reduced or solved with automated manage-
ment tools and the use of stateless Linux.

Consolidation of multiple workloads on one
system brings another problem to the fore-
ground. In order to increase the utilization of
systems and reduce the number of active phys-
ical computers as much as possible, the num-
ber of virtual machines per physical computer
needs to be maximized, which in turn means
that each virtual machine only receives the min-
imum amount of resources it needs.

Unfortunately current Unix and Linux systems
are only geared towards measuring current re-
source use. However, if a virtual machine has
512MB of memory allocated to it, there is no

288 • Measuring Resource Demand on Linux

way to tell whether it is enough for the work-
load it is running, or too much, or just right.
Without a way to know how much resources
each virtual machine really needs, dynamically
reassigning resources from one virtual machine
to another cannot be done reliably, and each vir-
tual machine will need to get excess resources
allocated to it, just in case. In short, resource
demand is not the same as resource use, and
operating systems will need to measure both.

This paper will cover resource demand mea-
surement of the following resources:

• CPU

• Memory

• Network I/O

• Disk I/O

2 CPU

A CPU shortage is easily detected from inside a
virtual machine: the processes in the system do
not get enough CPU time, the runqueue starts
growing longer, idle time is low and users start
complaining that the applications are reacting
really slowly. However, on a virtualized multi-
core or multi-processor system, this could have
multiple causes, each of which needs a different
solution.

The most obvious cause would be that the
CPUs in the system are simply too slow for this
workload. The only fix in this case would be a
hardware upgrade.

A second cause could be that while the system
has enough CPU power, the virtual machine
cannot use enough because it does not run on
enough CPUs simultaneously. For example, the

physical computer has 8 CPU cores, but the vir-
tual machine only has 2 virtual CPUs. In this
case the performance problem can be fixed by
adding more virtual CPUs to the virtual ma-
chine, allowing it to use more CPU cores si-
multaneously.

A third situation is that the system has enough
CPU power, the virtual machine has the po-
tential to use all the CPUs, but it does not get
scheduled in often enough because other virtual
machines are using the CPU time. The easy fix
in this scenario is migrating virtual machines to
other physical computers.

Because each scenario needs a different solu-
tion, and the first solution is a lot more ex-
pensive than the other two, it is important that
the operating system and the hypervisor keep
statistics that allow the system administrator to
distinguish the different cases from each other.

2.1 CPU steal time

CPU steal time is a concept from IBM’s S390
mainframes, and has been present in S390
Linux for a while. CPU steal time denotes the
time that:

• A virtual CPU had runnable tasks, but

• the virtual CPU itself was not running.

This occurs whenever the hypervisor schedules
another virtual CPU, usually from another vir-
tual machine, on the physical CPU. In short, it
measures the contention on the CPU between
multiple virtual machines. Linux running on
Xen also shows the CPU steal time, which
is the very last number in the cpuN lines in
/proc/stat (see figure 1).

These columns represent user time, nice time,
system time, idle time, iowait time, hardirq
time, softirq time and steal time respectively.

2006 Linux Symposium, Volume Two • 289

$ cat /proc/stat
cpu 82295 80106 166899 154966547 128436 7924 2729 17698
cpu0 82295 80106 166899 154966547 128436 7924 2729 17698
...

Figure 1: CPU statistics from /proc/stat on the 2.6 kernel

Astute readers will have noticed that the
number of columns in the CPU statistics in
/proc/stat have doubled since the 2.4 kernel. It
will be interesting to see how tools like top, vm-
stat and sar will cope with the new statistics,
considering both the needs of system admin-
istrators and the limitations of terminal screen
space.

2.2 Diagnosing the situation

When idle, iowait and steal time are all low,
the applications are getting most of the physical
CPU time. If the number of running threads is
the same as the number of CPUs, the only thing
that will improve performance is having faster
CPUs.

If the number of running threads or processes is
larger than the number of CPUs, allowing the
virtual machine to run on more physical CPUs
simultaneously, by adding virtual CPUs, may
be able to fix the performance problem.

If idle and iowait time are low, but cpu steal
time is high, that means your physical CPUs are
suffering from contention between multiple vir-
tual machines. Performance can be increased
by migrating some of the virtual machines to
other physical systems.

Of course, it is possible that every physical
server is loaded with one low priority virtual
machine to run calculations in the background,
for example scientific calculations or financial
risk analysis. Since these applications are sup-
posed to eat up all the CPU time that is avail-

able, migrating them around will make little
sense and CPU steal time on these low prior-
ity background virtual machines will simply be
a fact of life and not something to worry about.

3 Memory

Memory is a lot harder to reallocate from one
virtual machine to another. This is because
memory is a non-renewable resource. Every
second there is a new second of CPU time to di-
vide between virtual machines, but the amount
of memory in a system tends to stay constant.

This means that in order to give memory to one
virtual machine, it will have to be taken away
from another virtual machine. That in turn in-
volves the balloon driver and the pageout code
in the “donor” virtual machine, which can incur
a significant latency. Hence, memory allocation
between virtual machines focuses around these
areas:

• Identify which virtual machines need
more memory, and how much.

• Identify which virtual machines have too
much memory, and how much.

3.1 Refaults

A virtual (or physical) machine can benefit
from more memory when it spends a significant

290 • Measuring Resource Demand on Linux

amount of time waiting for memory to be paged
in, when that memory was recently evicted. In
order to estimate this, two factors need to be
considered.

The first is iowait time, or the time the CPUs in
the system have tasks that would be runnable if
it weren’t for the fact that they are waiting on
IO to complete.

The second factor is the number of recently
evicted pages that got faulted back in, and how
many pages got evicted after the page in ques-
tion got evicted. The second estimate is im-
portant because it shows exactly how much
more memory the virtual machine would have
needed to avoid this page fault. A histogram
with this statistic is shown in figure 2.

$ cat /proc/refaults
Refault distance Hits

0 - 32768 192
32768 - 65536 269
65536 - 98304 447
98304 - 131072 603

131072 - 163840 1087
163840 - 196608 909
196608 - 229376 558
229376 - 262144 404
262144 - 294912 287
294912 - 327680 191
327680 - 360448 79
360448 - 393216 68
393216 - 425984 41
425984 - 458752 45
458752 - 491520 31

New/Beyond 491520 2443

Figure 2: Refault statistics from /proc/refault

As an example, consider a page that gets faulted
in and was evicted fairly recently, with only
20,000 other pages having been evicted since
this page got evicted. In this case, if the vir-
tual machine had 20,000 more pages, all these
20,000 pages would still have been resident in
memory and this page fault would not have
happened.

Armed with this knowledge and a histogram
of refault distance versus the number of faults
at that distance, we can calculate roughly how
much IO the system would have avoided, if it
had certain amounts of memory more than it
has currently.

Consider a system that has 80% iowait time,
meaning it spends 80% of its time waiting
for IO to complete. If half of the IO being
done is on pages that were evicted “less than
200MB ago,” increasing the amount of memory
of that virtual machine by 200MB will reduce
the amount of IO necessary by 50%, which
could significantly increase the performance of
the workload on the system. Figure 3 shows an
example of how memory resizing avoids page
faults.

If the system has a batch type workload, this
could represent a 50% speedup in performance.
Because the VM uses a better replacement al-
gorithm than pure LRU, the results could be
better than the predicted 50% performance in-
crease.

Conversely, imagine another virtual machine
on the same system, running a totally differ-
ent workload. This workload mostly streams
over large quantities of data and rarely touches
the same page twice. Because of this, most of
its page faults will happen on pages that were
never seen before, or on pages that were evicted
very long ago. Giving this virtual machine
200MB extra memory is not going to help at
all, because it is not accessing a lot of recently
evicted data.

Without taking refault distance into account, it
would not have been possible to easily distin-
guish between the first virtual machine, which
gets a large performance boost from 200MB
extra memory, and the second virtual machine,
which would not have gotten any noticable
boost from being allocated extra memory.

2006 Linux Symposium, Volume Two • 291

MEMORY EXPANSION & EVICTED PAGES

RESIDENT PAGES

EVICTED PAGES

new page

CURRENT SYSTEM
MEMORY

1GB

512MB

DEMAND

404

191

192

269

447

603

1087
909

558

287

REFAULT DISTANCE:

How far from resident memory an evicted page is.

HITS:

How much a range of pages is in demand on the system.
In other words, how many faults have occurred when a page
that has been evicted is requested from resident memory.

RESIDENT PAGES

EVICTED PAGES

new page

CURRENT SYSTEM
MEMORY

1GB

512MB

2GB

3GB

2GB

3GB

DEMAND

404

191

192

269

447

603

1087
909

558

287

EVICTION

EVICTION

Figure 3: Increasing memory size avoids I/O on pages that would have otherwise been evicted and
refaulted.

292 • Measuring Resource Demand on Linux

3.2 Non-resident pages

Keeping track of recently evicted pages and re-
faults does not require utmost precision, which
leaves space for optimizations. The naive
implementation of non-resident page tracking
would keep the same metadata for a non-
resident page as for a page that is resident in
memory, e.g. a full struct page.

However, all we need when faulting a page
back in from swap or the filesystem is to:

• identify the page, with a high degree of
certainty,

• estimate roughly how many pages got
evicted from memory after the page in
question got evicted,

• using a data structure that is small, and

• allows for efficient and SMP scalable
lookup.

When evicting a page and when faulting it in
later, the kernel knows a number of details
about the page, such as the file (address_struct)
the page belongs to (page->mapping), the
offset of the page into that file (page->
index) and the inode number of the file. Not
only do these details uniquely identify the page
with pretty high certainty, they can also be eas-
ily hashed into a single value, meaning the
information needed to identify a non-resident
page only takes up 32 bits.

However, if we were to use traditional lookup
methods like a tree or linked list, the space
taken up by the lookup pointers alone would
triple or quadruple the space taken up by the
page identifier alone, and we haven’t even
stored information about when the page got
evicted from memory yet.

Another possibility would be a huge array with
a clock hand. Every time a page is evicted from
memory, record the hash value identifying the
page in the element pointed to by the clock
hand, and move the clock hand one position
forward. On pagein, scan the array until the
hash value identifying the page is encountered.
The distance the clock hand has advanced since
the page got evicted corresponds to the number
of pages that got evicted after this page. Space
efficient, but prohibitively expensive time wise
if the array contains hundreds of thousands of
elements, say one for each page in the system.

If a page is not found in the set of recently
evicted pages, we will categorize this fault as
being either a page we have never seen before,
or a page that was evicted so long ago we no
longer track it. This is represented in the last
line of /proc/refaults in figure 2.

A compromise is to use many small ar-
rays (a non-resident bucket, or struct nr_
bucket), each the size of one or two CPU
cache lines and with a clock hand. On pagein
we hash page->mapping and page->
index to determine which array to check. The
nr_bucket has only up to a few dozen entries,
which can be compared with the calculated
hash value very quickly since they all sit in the
same CPU cache line(s).

struct nr_bucket
{

atomic_t hand;
u32 page[NUM_NR];

} ____cacheline_aligned;

/* The non-resident page hash table. */
static struct nr_bucket * nonres_table;
static unsigned int nonres_shift;
static unsigned int nonres_mask;

Figure 4: An efficient data structure for track-
ing non-resident pages

The total refault distance, meaning the num-

2006 Linux Symposium, Volume Two • 293

ber of pages that got evicted since this page
got evicted, can be estimated by multiplying the
distance the clock hand has advanced since the
page got evicted (the clock hand local to the
nr_bucket) with the number nr_buckets. This
works if the hash value is good enough to dis-
tribute the evicted pages evenly between the
nr_buckets, which appears to be the case in
practice.

This method is space efficient, using one u32
per non-resident page and one clock hand per
small array of non-resident pages. If we use
a different hash of page->mapping and
page->index for selecting the nr_bucket
than the one used for identifying the page, we
effectively increase the hash size without need-
ing more storage.

Additionally, the information on whether a
page that is faulted in was recently evicted is
needed for advanced page replacement algo-
rithms, like 2Q, CAR/CART or CLOCK-Pro.
Some of these algorithms need a flag in addi-
tion to the page identifier; this flag should fit in
one or two bits of the u32, reducing the page
identifier to 31 or 30 bits.

3.3 Page references

Being able to identify which virtual machines
can and can not benefit from being allocated ex-
tra memory allows the system to allocate mem-
ory to the right virtual machines. What remains
unanswered is the question which virtual ma-
chines will not suffer a performance decrease
when their amount of virtual memory is re-
duced. After all, if we want to give extra mem-
ory to one virtual machine, that memory will
have to be taken away from another virtual ma-
chine.

The answer lies in page references. The page-
out code inside each virtual machine scans over

its memory and evicts the pages that have not
been accessed recently and/or frequently.

If a large fraction of the pages being scanned
by the memory management pageout code were
recently referenced, the virtual machine is us-
ing most of its memory and we should not take
away memory from this system.

On the other hand, if a virtual machine only ac-
cessed a small fraction of its pages, it is not us-
ing most of its memory. If this virtual machine
is spending a lot of time waiting for recently
evicted memory to be paged back in, it could
benefit from getting extra memory. However,
if the time spent waiting for recently evicted
memory is negligable, and it is not using most
of the memory it has, then this virtual machine
is a good candidate to take memory away from.
After all, it does not really need it...

Even an IO bound workload, e.g. a data mining
job that rarely accesses the same page twice,
can still fulfill these criteria and have memory
taken away from it. This is fine, because this
workload does not benefit from the memory,
and the resulting reduction in IO done by the
other virtual machine means more disk band-
width is left over for this workload.

Virtualization is often used because of the per-
formance isolation qualities it provides, so sys-
tems should not reduce the amount of mem-
ory allocated to a virtual machine by too much.
Quality of service benefits from having decent
minimum and maximum memory allocations
for each virtual machine, and varying the cur-
rent amount within that range as needed by the
workload.

4 Disk and Network I/O

Network bandwidth allocation can be done in a
very similar way to how CPU is allocated, with

294 • Measuring Resource Demand on Linux

the difference that the hypervisor has no easy
way to control incoming network traffic. Some
tricks can be played with TCP, but not all traf-
fic can be controlled. This means that fair shar-
ing of network bandwidth can not be fully im-
plemented by the virtualization software, and
more attention will have to be paid to making
sure that the workloads on the system do not
suffer from network contention, upgrading the
network bandwidth before it becomes a bottle-
neck.

Disk I/O is a little different from CPU an mem-
ory, because multiple I/O requests can be out-
standing simultaneously. With network or other
cluster accessible storage, it is even possible for
the storage subsystem to be busy serving re-
quests initiated by other systems. This makes
I/O bottleneck monitoring at the virtual ma-
chine level or even at the physical server level
hard or incomplete, and monitoring should
probably be done on the storage subsystem it-
self.

5 Conclusions

Consolidation is one of the big drivers of vir-
tualization. In order to maximize cost saving,
users will want to consolidate their workloads
on as few physical systems as needed for their
workloads. With live migration, users may
even be able to power off server capacity that
is not currently loaded.

However, in order to maximize consolidation
of multiple workloads, it is necessary to mea-
sure not just the amount of resources used by
each virtual machine, but also to estimate the
amount of resources that each virtual machine
really needs.

Changing system structure means that system
administrators with a good gut feeling on how

to tune physical servers may find that their in-
stincts do not always work on virtual machines.
Furthermore, automated system administration
tools have no instincts, so direct measurement
of resource demand will be a necessity.

Scheduling renewable resources like CPU time,
network bandwidth or disk I/O requests is
mostly straightforward. On the other hand,
reassigning non-renewable resources like disk
space or memory takes considerably more ef-
fort. This may justify fancy algorithms to allo-
cate the right amount of memory to each virtual
machine, and limit the times memory has to be
reassigned from one virtual machine to another.

6 References

Song Jiang, Feng Chen, and Xiaodong Zhang
CLOCK-Pro: an effective improvement of the
CLOCK replacement Proceedings of 2005
USENIX Annual Technical Conference
(USENIX’05), Anaheim, CA, April 10-15,
2005.

Sorav Bansal and Dharmenda S. Modha CAR:
Clock with Adaptive Replacement in
Proceedings of the USENIX Conference on
File and Storage Technologies (FAST), pages
187–200, March 2004.

Johnson, T., Shasha, D.: 2Q: A Low Overhead
High Performance Buffer Management
Replacement Algorithm, Proceedings of the
20th IEEE VLDB Conf., Santiago, Chile,
1994, pp. 439 - 450

Linux advanced page replacement
development page: http://linux-mm.
org/AdvancedPageReplacement

Improving the Approach to Linux Performance Analysis
An analyst point of view

Jose Santos
IBM’s Linux Technology Center

jrs@us.ibm.com

Guanglei Li
IBM’s China Development Lab

guanglei@cn.ibm.com

Abstract

In-depth Linux kernel performance analysis
and debugging historically has been a focus
which required resident kernel hackers. This
effort not only required deep kernel knowledge
to analyze the code, but also required program-
ming skills in order to modify the code, re-build
the kernel, re-boot and extract and format the
information from the system.

A variety of powerful Linux system tools
are emerging which provide significantly more
flexibility for the analyst and the system owner.
This paper highlights an example set of per-
formance problems which are often seen on a
system, and focuses on the methodology, ap-
proach, and steps that can be used to address
each problem.

Examples of a set of pre-defined SystemTAP
“tapsets” are provided which make it easier
for the non-programmer to extract information
about kernel events from a running system, ef-
fectively tracing some of the kernel behavior.
Some examples of performance problems in-
clude I/O problems, workload scalability is-
sues, and efficient system utilization. Available
tools such as SystemTAP, kprobes, oprofile,
and trace tools are compared and contrasted to
provide the system owner with real-life exam-
ples which can be used on their systems today.

1 Introduction

As the complexity of the Linux kernel in-
creases, so does the complexity of the prob-
lems that impact performance on a produc-
tion system. In addition, the hardware sys-
tems on which Linux runs today is also increas-
ing in complexity, scale, and size. Customers
are also running more robust and challenging
workloads in production environments and are
expecting more reliability, stability, and perfor-
mance from the underlying operating system
and hardware platform. The end result of all
this complexity is that new performance bar-
riers continue to emerge which in many cases
are increasingly difficult to analyze and under-
stand.

In the past, many of these problems required the
expertise of kernel developers to create special-
ized one-off tools that were specific to the prob-
lem at hand and are of little use to other prob-
lems. While this remains one of the more pow-
erful ways to do analysis of the kernel, it is lim-
ited to people with deep understanding of the
kernel subsystems. To some extent, this pre-
vents many users who are running on hardware
systems and software environments to which
developers may not have access, from doing
their own initial performance problem determi-
nation and assessments.

296 • Improving the Approach to Linux Performance Analysis

With the continued evolution of tools like
Oprofile and the development of new tools such
as SystemTap, there are now easier and more
consistent ways for users and developers to tap
into the performance problems present in spe-
cialized environment. By making these tools
less complicated to use, it allows for more
users to provide better information to develop-
ers which in turn enhances communications in
the community and functions as a learning tool
for the aspiring kernel hacker.

2 Identifying performance prob-
lems

2.1 Types of problems

Performance related problems can be split into
two general categories:

1. CPU bound problems

2. Non-CPU bound problems

CPU bound problems are caused when Sys-
tem Under Test (SUT) CPU resources are com-
pletely utilized, which means that the system
will not be able to process more information
faster. Due to their nature, CPU bound prob-
lems are generally easier to identify since there
are various tools available to determine the uti-
lization of these resource. For these kinds of
problems, a profiler is typically the best tool for
the job.

Problems that are not CPU bound are usually
caused by a lack of some other resource on the
SUT or other problems in the code that do not
allow for the various resources of the system be
fully utilized. These are a bit trickier to figure
out because there are numerous resources that

can be utilized in any given environment and
some investigation is required in order to iden-
tify what resource is causing any given perfor-
mance problem. A typical tool used to do initial
forensics of this problem is a system trace.

2.2 Basic analysis

Before the first email is sent or a kernel re-
compiled, there is some initial data that needs
to be gathered to determine the starting point of
the analysis process. Programs such as vmstat
and the tools from the sysstat package provide
valuable data at this stage. The data gathered
by these tools can give insights into possible
causes of the problems and act as a stating point
for the analysis process.

Another important information that needs to be
gathered is accurate and verbose system con-
figuration information as some problems can be
traced back to hardware or known device driver
issues. Its also important to know the limita-
tions of the hardware before assessing that there
is a performance problem in the first place.

Once this information is gathered, analysis of
vmstat output can provide usage activites from
memory, processes, CPU components that can
narrow down the scope of the analysis process.
If the system show very low activity when more
activity is expected the use of other programs
like iostat or sar can be use obtain a system ac-
tivity report. While iostat concentrates on disk
IO activity, sar can get information from var-
ious different components of the running sys-
tem, including detail interrupt information, net-
working cpu activity and more.

There are several books available on the market
that discuses some of these techniques in more
detail and are a valuable reference for analysis
work.

2006 Linux Symposium, Volume Two • 297

3 Oprofile

Oprofile is a system-wide profiler that can uti-
lize the performance counters available in a va-
riety of processors in order to create summary
reports of the activities that happes within the
system. One of Oprofiles greatest strengths is
its simplicity. A basic session consists of three
commands:

1. $opcontrol --setup --vmlinux=/boot/vmlinux

2. $opcontrol --start

3. $opreport -l -p /lib/modules/uname -r

This generates the output as shown in Figure 1.

By default Oprofile is configured to use the
CPU cycles performance counter as the trigger
for a profile event. Since the the tool relies on
performance counters as the trigger for collect-
ing data, the tool is most suited for analyzing
CPU bound problems.

While more advanced uses of Oprofile are be-
yond the scope of this paper1 the basic infor-
mation obtained though opreport can be exam-
ined to determine the cause of a performance
issue by viewing the frequency that a kernel or
user function spends on a given performance
counter event. A good guideline to follow is
that if the kernel is spending more than 5% of
its time in a single function, then this function
is a good candidate for further analysis.

Once a kernel function that causes the perfor-
mance abnormality has been identified, further
analysis needs to be done at the source code
level to figure out the root cause of the problem.
There is a tool on the Oprofile package called

1More examples of the capabilities of Oprofile can
be found at http://oprofile.sourceforge.
net/examples/

opannotate can help determine where within a
function Oprofile is receiving the greatest hits.
One drawback is that opannotate does little to
help figure out problems that are making such a
function show high utilization in Oprofile re-
ports. One example of this type of scenario
is when large amount of time is spent in spin-
lock code. This is typically not a problem with
the spinlock code itself, but rather the code that
calls a particular spinlock. The tool does how-
ever provide a good amount of information as a
starting point for the next tool described on the
paper.

4 SystemTap

Inspired by the work of Sun’s DTrace, engi-
neers from Red Hat with the help from other
companies created a new tool called System-
Tap. This tool, while still in its infancy, pro-
vides a wealth of opportunity not only to new
kernel programmers, but also for the veteran
kernel hacker. SystemTap provides a simplis-
tic language that is built to talk to a live ker-
nel. This simple language provides the user
with a way to interface with the kernel without
the complexities details that similar functional-
ity using kprobes and C code requires. This al-
lows for the creation of very detailed tools with
minimal amounts of code and helps the analyst
focus on the core problem. This is a big con-
trast to using the dynamic probe infrastructure
available in the Linux kernel today as these re-
quire the user to design a fully functional kernel
module. While this approach can provide some
benefits in speed as well as the flexibility to in-
strument the kernel, it does so at the expense
simplicity.

SystemTap relies on predefined functions
called tapsets in order to extract certain infor-
mation from the kernel. These tapsets are de-
signed to provide a set of predefined functions

298 • Improving the Approach to Linux Performance Analysis

CPU: P4 / Xeon with 2 hyper-threads, speed 3002.82 MHz (estimated)
Counted GLOBAL_POWER_EVENTS events (time during which processor is not stopped)
with a unit mask of 0x01 (mandatory) count 100000
samples % app name symbol name
2270717 73.6201 vmlinux-2.6.5-7.244-smp .text.lock.rwsem_spinlock
218144 7.0726 vmlinux-2.6.5-7.244-smp __down_read
201530 6.5339 vmlinux-2.6.5-7.244-smp __up_read
18968 0.6150 oprofile (no symbols)
11730 0.3803 tkrlog tkfind
10174 0.3299 libstdc++.so.5.0.6 std::string::compare(std::string const&) const

Figure 1: Sample Oprofile output

that make it simple to gather information from
the kernel. In situations where the tapsets do
not provide sufficient functionality needed to
analyze a problem, extra functionality can be
added by embedding C code into the script.
While this provides experienced users with the
ability to customize their instrumentation to
their need, the C code will run as-is, and if the
user is not cautious, a system crash may occur.
For this reason, embedded C code can only be
run in ’GURU Mode’ which restricts the use
of SystemTap to users with privileged access.
Even with this restriction, the user should take
care of the fact that badly generated code may
cause his system to fail. Since SystemTap re-
lies on kprobes for inserting probe points into
the kernel, it is also important to mention that
kprobe inserted in certain areas may lead to a
system crash. While a lot of these functions
have been black-listed to prevent users from
inserting probes in dangerous locations, some
probes can, under some circumstances, cause
system stability issues. As SystemTap matures,
the tools will be more robust and take precau-
tion to not insert probe points into such places
in the kernel.

One of the biggest advantages of SystemTap is
the ability to export kernel information to the
user. One of the traditional ways to export ker-
nel information to the user is using printk and
analyzing the output. While this works well
for debugging functionality problems, printk is
a costly operation and can change the perfor-

#!/usr/local/bin/stap
global trace

probe kernel.inline("idle_balance") {
trace[backtrace()] <<< 1

}

probe begin {
print("Starting IDLE backtace")

}

probe end {
foreach(stack in trace) {

print("===================\n")
printf("Count: %d\n",

@count(trace[stack]))
print_stack (stack)

}
}

Figure 2: Backtrace accounting when entering
the idle loop

mance characteristics of the problem at hand.
Although a developer can always create a more
complex code to store and export that data to
user space, this is a level of complexity that
not only requires deep kernel knowledge, but
also takes valuable time away from the prob-
lem solving.

In the code sample shown in Figure 2, the goal
is show how to analyze one of the most com-
mon performance problems that can be seen in
the field, the inability to drive a system to full
CPU capacity. There are many causes of not
being able to drive a system to full capacity; ex-
amples includes IO limitations or semaphores
restricting the scalability of the system. This
script instruments the idle_balance() so

2006 Linux Symposium, Volume Two • 299

that every time that the system is about to go
into the idle loop, a backtrace of the sequence
of events that caused us to go idle is shown.
The backtrace is then use as a key for an array
that increments each time the same backtrace
is hit. The end result is a count of backtraces
that can show the sequence of events that led
the machine to go idle. With this sequence of
events, tuning of the system or code changes
may be utilize to fix the problem that prevents
the system for doing more work.

In the previous example, the tapsets provided
by SystemTap were sufficient to analyze the
given problem. In code sample in Figure 3,
embedded C code is use in order to create a re-
port that shows how processes access memory
across NUMA nodes. The purpose of this script
is to assist the analysis of problems cause appli-
cation accessing memory across NUMA nodes.
This is typical in HPC (High Performance
Computing) environments were lots of remote
memory can cause huge stall in the processor
reducing the performance of the application.
To obtain memory access information from the
running system, a probe is inserted into the
__handle_mm_fault() in which the ad-
dress of the page fault can be extracted. In order
to translate kernel addresses to NUMA node
information, the function addr_to_node()
was created in embedded C code to fulfill this
functionality. All the information is later in-
serted into arrays that use the pid number, write
access, and numa nodes as keys for the coun-
ters.

5 Tracing

While tools such as SystemTap provide the
means to instrument the kernel in new exciting
ways, it still relies on the expertise of knowl-
edgeable developers or analysts to come up

with proper ways to use the tool in order to re-
solve a problem. Since the tool is so focused
in its approach, it is not the best tool to use in
situations where the problem has not been nar-
rowed down to a specific component of the ker-
nel. In these situations, getting a system trace
is often one of the best tools for getting infor-
mation that other tools such as Oprofile have
failed to uncover. A system trace consist of pre-
defined probe points called trace hooks that are
inserted key places located within the kernel.
These trace hooks are designed to give the user
a detailed activity histogram of a running sys-
tem. These system activity histograms can then
be analyzed in user space using scripts that gen-
erate detail reports or using visualization tools
that allow the user to view time spent on system
activities.

One of the advantages of using this method of
system analysis is that the work of determining
where probe points should be inserted in the
kernel has already done by the developers of
the tool. This is very appealing tool for devel-
opers doing analysis in customer environments
where the developer has restricted access to the
production environment. With a trace tool, the
developer simply needs to provide the customer
with the right set of instructions for client to run
the tool. The the data extracted from the system
is then passed on to the developer for further
analysis.

There are several tools currently in develop-
ment that provide trace functionality to the
Linux kernel. There are offerings like LT-
Tng (Linux Trace Toolkit Next Generation) and
LKST (Linux Kernel State Tracer) which re-
quire kernel patching but offer superior perfor-
mance and as well as tools like LKET(Linux
Kernel Event Trace) which are being imple-
mented on top SystemTap for user convenience
but at expense of some performance.

300 • Improving the Approach to Linux Performance Analysis

#!/usr/local/bin/stap -g
global execnames, page_faults, node_faults

function addr_to_node:long(addr:long)
%{

int nid;
int pfn = __pa(THIS->addr) >> PAGE_SHIFT;
for_each_online_node(nid)

if (node_start_pfn(nid) <= pfn &&
pfn < (node_start_pfn(nid) +
NODE_DATA(nid)->node_spanned_pages))

{
THIS->__retvalue = nid;
break;

}

%}

probe kernel.function("__handle_mm_fault") {
execnames[pid()] = execname()
page_faults [pid(), $write_access ? 1 : 0] ++
node_faults [pid(), addr_to_node($address)] ++

}

function print_pf () {
print (" Execname\t PID\tRead Faults\tWrite Faults\n")
print ("====================\t========\t===========\t============\n")
foreach (pid in execnames) {

printf ("%20s\t%8d\t%11d\t%12d\t", execnames[pid], pid,
page_faults[pid,0], page_faults[pid,1])

foreach ([pid2,node+] in node_faults) {
if (pid2 == pid)

printf ("Node[%d]=%d\t", node,
node_faults[pid2, node])

}
print ("\n")

}
}

probe begin {
print ("Starting pagefault counters \n")

}

probe end {
print ("Printing counters: \n")
print_pf ()
print ("Done\n")

}

Figure 3: Numa page fault accounting

2006 Linux Symposium, Volume Two • 301

5.1 LTTng—Linux Trace Toolkit Next
Generation

LTTng is a replacement of the original LTT
(Linux Trace Toolkit). It is an enhanced version
of the existing LTT instrumentation and uses
RelayFS to export the data to user space. It is
designed to be fully reentrant, scalable, exten-
sible, modular, precise, (declared to be around
100ns time accurate) and has low overhead, low
system disturbance, and architecture indepen-
dence.

LTTV (Linux Trace Toolkit Viewer) is a visu-
alization tool that complements LTTng by per-
forming analysis of the trace data generated by
LTTng and showing the results in text or in a
graphical display interface. It has a modular ar-
chitecture based on plug-ins which means that
you can use various text and graphical plugs to
handle different trace data. Multiple plug-ins
can interact with each other to further enhance
the analysis capabilities.

LTTng also has a code generator named gen-
event which will parse user customized event
descriptions and generate the necessary codes
to record events in the kernel. With the added
plug-in mechanism of LTTV, it makes it easier
to trace and analyze a new event inside the ker-
nel.

One of LTTng biggest weakness is that it re-
quires kernel patches. This limits its use to en-
vironments were kernel recompiles and lost of
downtime are allowed.

5.2 LKST—Linux Kernel State Tracer

LKST is another kind of kernel trace tool de-
veloped by Hitachi and Fujitsu. Like System-
Tap, it enables developers to investigate prob-
lems in the Linux Kernel without stopping the
machine. It will record kernel events such as

process context switching, exception, memory
allocation as trace data, and provides a log an-
alyzer tool to do some post-processing work.
Users can use LKST to analyze the errors hap-
pened inside a running kernel, and it could also
be used to do the performance analyzing work.
And what’s more, it is possible to change dy-
namically which events will be recorded, so
that developers can obtain information about
the events which they concern only. It is also
possible to change the handler associated with
each event.

Like LTTng, LKST requires patches to the Ker-
nel. Unlike SystemTap, LKST will add static
hook check points into various locations of
Linux Kernel, and the registered event handler
will be executed if the user chooses to probe
that event.

5.3 LKET—Linux Kernel Event Trace

LKET is an extension to the tapsets library
available on SystemTap. It was born out of the
necessity to gather trace information from en-
vironments were recompiling kernels is not al-
lowed. Its goal is to utilize the dynamic prob-
ing capabilities provided through SystemTap to
create a set of standard hooks that probe pre-
defined places in the kernel. This allows both
experienced kernel programmers, analysts and
customers to gather important information that
can be used as a starting point to analyze a per-
formance problem in their system.

The LKET tapset is designed to only gather the
trace hook events selected by the user. This al-
low the tool to be customize depending on the
nature of the problem being analyzed. Once
the data has been collected, it is then post-
processed according to the need of the user.
This provides a significant advantage over just
running a simple SystemTap scripts since the
data there is some what static. On the other

302 • Improving the Approach to Linux Performance Analysis

Hook Family Hooks Description
addevent.syscall addevent.syscall.entry Entry and exit of

addevent.syscall.return System Call events
addevent.process addevent.process.fork Process Creation

addevent.process.execve events
addevent.ioscheduler addevent.ioscheduler.elv_next_request IO Scheduler

addevent.ioscheduler.elv_completed_request activity events
addevent.ioscheduler.elv_add_request

addevent.tskdispatch addevent.tskdispatch.ctxswitch Task scheduling
addevent.tskdispatch.cpuidle events

addevent.scsi addevent.scsi.ioentry SCSI layer activity
addevent.scsi.iodispatching events
addevent.scsi.iodone
addevent.scsi.iocompleted

Table 1: Supported LKET trace hooks

hand, trace data can be process in various dif-
ferent ways to generate from simple to complex
reports. Detailed information is necessary in
order to create complex reports. That is why
each event hook contains common data such as
time stamp, processes ID information and CPU
information as well as some data that is specific
to the trace hook.

The trace hook event utilizes the aliasing func-
tionality of SystemTap. This allows for group-
ing of event base component of the kernel being
probed. Different aliases(addevent.eventName)
are defined to trace different kinds of events. As
of this writing, Table 1 show the current event
hooks provided by LKET. More event hooks
are scheduled to be implemented as develop-
ment continues.

Simplicity of use is one of the design goals
of LKET and SystemTap plays a big role
in achieving this goal. In order to enable
all the trace hooks available in LKET, a
simple SystemTap script containing “probe
addevent.* { }” is all that is needed. If a
more selected set of trace hooks is desired, one
can add individual trace hooks or trace hook
families to as described in Table 1.

To show an example of using LKET to trace
system calls of “updatedb” and do simple post-
processing we first SystemTap’s LKET tapset
to generate the trace data:

$ stap -e "probe addevent.syscall {}" \

-c "updatedb" -D ASCII_TRACE \

-I LKET_TAPSETS > probe.out

The generated trace data looks like:

1|1143485073|422541|8378|8368|8378|0|sys_mmap
2|1143485073|422550|8378|8368|8378|0|sys_mmap
1|1143485073|422556|8378|8368|8378|0|sys_close
2|1143485073|422562|8378|8368|8378|0|sys_close
1|1143485073|422602|8378|8368|8378|0|sys_read
2|1143485073|422611|8378|8368|8378|0|sys_read

To make this example simpler, we let LKET log
trace data in ASCII format instead of the de-
fault binary format. The ASCII trace format
uses “|” as the delimiter and its described in
Figure 5.3. The HookID’s for the system call
trace hooks are “1” for syscall entry and “2” for
syscall return. The syscall hooks have a single
“Hook data” field which in this case is the name
of the syscall.

After the data has been gathered, analysis of
the data can be delegated to scripts like the one

2006 Linux Symposium, Volume Two • 303

HookID tv.sec tv.u_sec pid ppid tid cpuid Hook data ...

Figure 4: ASCII trace format

#!/bin/awk -f
BEGIN {

FS="|";
}

{
if($1 == 1) {

start[$8,$6] = $2*1000 +$3/1000
} else {

stop[$8,$6] = $2*1000 +$3/1000
elapsed[$8]=stop[$8,$6]-start[$8,$6]
if(elapsed[$8] > max[$8])

max[$8]=elapsed[$8]
cnt[$8]++
total[$8] += elapsed[$8]

}
}

END {
printf "%-22s%-12s%-12s%-6s%-12s\n",

"name","max","average","count","total"
for(x in cnt) {

printf "%-22s%-12s%-12s%-6s%-12s\n", x,
max[x],total[x]/cnt[x],cnt[x],total[x]

}
}

Figure 5: AWK script for post-processing Sys-
tem Call

in Figure 5.3 to generate a report of the top 10
most costly system call during the execution of
updatedb.

$ awk -f post-processing.awk probe.out | sort

-nr -k 5 | head -n 10

The output looks like:

sys_getdents64 1.92896 0.021046 29728 625.651
sys_fstat64 5.03613 0.007144 43785 312.803
compat_sys 2.17603 0.020722 14600 302.534

_fcntl64
sys_close 3.37598 0.008320 29213 243.061
sys_fchdir 1.75 0.007192 29184 209.896
sys_fcntl 2.16382 0.007017 14600 102.444
sys_write 0.24512 0.032507 556 18.074
sys_rename 1.80811 1.80811 1 1.80811
sys_brk 0.26709 0.024827 65 1.61377
sys32_execve 0.43408 0.357544 2 0.71509

From left to right, the data are syscall name,
max time, average time, number of times being
called„ and total time of each system call. This
just illustrates one of the ways to analyze the
trace output data. Further analysis of the data
can be done by customizing the scripts to gen-
erate more complex results without the need to
gather the data again.

5.3.1 LKET Limitations

One of the current limitations of LKET is that
the overhead of kprobes added to the overhead
of the hook it self can cause some workload
to slow down significantly. New improvements
to the Kprobe subsystem plus enhancements to
SystemTap such as static probes and the binary
tracing mechanism will solve most of the per-
formance issues though.

Another short coming of the LKET tool is that
since the project has been in active develop-
ment for a short period of time, there lack of
availability of good post-processing tools. The
development team is working to create a post-
processing infrastructure for LKET so that the
tool can be more useful for first time users.

304 • Improving the Approach to Linux Performance Analysis

6 Conclusion

Gone are the days were developers needed to
resort to hack in order to analyze kernel perfor-
mance. Tools like Oprofile and SystemTap are
opening the doors to people new to Linux ker-
nel analysis. While Oprofile has shown its pow-
erful usefulness for the past couple of years,
SystemTap shows its flexibility by providing an
infrastructure were new tools can be developed.

7 Legal Statement

This work represents the views of the authors and
does not necessarily represent the view of IBM.

IBM is a registered trademark of International Busi-
ness Machines Corporation in the United States.

Linux is a registered trademark of Linus Torvalds in
the United States, other counties, or both.

Other company, product, and service names may be
trademarks or services marks of others.

Reference in this publication to IBM products or
services do not imply that IBM intends to make
them available in all countries in which IBM oper-
ates.

This document is provided “AS IS” with no express
or implied warranties. Use the information in this
document at your own risk.

References

[1] Frank Ch. Eigler, Systemtap tutorial,
March 27, 2006,
http://sourceware.org/
systemtap/tutorial/

[2] Steve Best, Linux Debugging and
Performance Tuning, Prentice Hall,
October 14, 2005

[3] Phillip G. Ezolt, Optimizing Linux
Performance, Prentice Hall, 2005

[4] SystemTap Mailing List Archives,
http://sources.redhat.com/
ml/systemtap/

[5] SystemTap Web Site, http:
//sourceware.org/systemtap

[6] Oprofile Website, http:
//oprofile.sourceforge.net

Resizing Memory With Balloons and Hotplug

Joel H. Schopp
IBM

jschopp@austin.ibm.com

Keir Fraser
University of Cambridge Computer Labratory

Keir.Fraser@cl.cam.ac.uk

Martine J. Silbermann
HP

martine.silbermann@hp.com

Abstract

In a virtualized environment it is often neces-
sary to resize the amount of memory allocated
to a particular copy of Linux. There are cur-
rently two viable approaches to adding and re-
moving memory: memory hotplug and a bal-
loon driver. We will compare and contrast
how these resizing technologies work indepen-
dently, weighing the benefits and drawbacks of
each one. We also will show how these two
resizing technologies could be used together to
provide the best of both worlds.

1 Introduction

It is often the case that Linux is not running on
real hardware. Instead Linux is running in a
virtualized enviornment such as Xen[2], Virtu-
alPC, pSeries, zVM, or VirtualIron[1]. In these
environments a premium is put on efficient uti-
lization of resources by balancing the use of
these resources during run time. Some of these
systems may partition resources, others may
fully virtualize them and assign real resources
dynamically. However, Linux still behaves as

if it were running on real, non-changing, hard-
ware by itself. This real hardware mentality
means that users of Linux have to reboot in or-
der to change while other operating systems in
the same environments do not miss a beat. In
many environments where reboot is impracti-
cal Linux will have bad performance. It will
have bad performance because it will not be
able to utilize extra memory made available af-
ter boot, and bad performance because it cannot
decrease its view of memory to closely match
decreases in the underlying memory it actually
has.

2 Motivation

The question for Linux is not if it will change to
accomodate new virtualized environments, but
how and when Linux will change. If the Linux
community wants to have Linux grow in the en-
terprise market we need to address some of our
missing features, an important one of which is
resizing memory.

306 • Resizing Memory With Balloons and Hotplug

3 Memory Hotplug Add

3.1 How Hotplug Add Works

Memory hotplug add works as if a physical
DIMM were added. The firmware, ACPI or
pHYP for example, tells the OS a new address
range of memory is available. The size of this
new range of memory must be a multiple of the
SECTION size in CONFIG_SPARSEMEM. On
powerpc the section size is 16MB, so 32MB or
64MB could be added, but 40MB could not be.
After Linux finds the new memory it sets up a
new mem_map[] and other structures. Finally
the kernel then adds the new memory into the
allocator, making it available for use.

3.2 Current Status

Memory hotplug add is in mainline as of
2.6.14. There is a dependency on CONFIG_
SPARSEMEM[3], which is also in mainline.
Hotplug add also required changes to the buddy
allocator[3]. Memory hot add works well in
NUMA and non-NUMA systems. In NUMA
systems new memory is added as if it were in
existing nodes. Code to online new nodes was
submitted on March 17th, 2005 by Yasunori
Goto. Current Distros SLES10 and RHEL5
have hotplug add enabled in powerpc kernels.

3.3 Hotplug Add Advantages & Disadvan-
tages

The biggest advantage hotplug add has is that
it is in the mainline tree. Because it is in main-
line the code remains up to date, and any ker-
nel based on mainline needs only be config-
ured on at compile time in order to use hotplug
add. Most major architectures are supported,

and much of the code is common to the ar-
chitectures making it easy to add new architec-
tures. Memory hotplug add solves the problem
of adding memory that wasn’t present at boot
to scale Linux up in response to changing re-
sources.

Hoptlug add has a dependency on CONFIG_
SPARSEMEM, which is still relatively new
and has not completely replaced CONFIG_
DISCONTIGMEM. Over time CONFIG_
SPARSEMEM is expected to fully replace
CONFIG_DISCONTIGMEM on i386, x86-64,
and ia-64 as it works well in mainline on all
supported architectures. However, as of this
writing Novell and Redhat have only enabled
CONFIG_SPARSEMEM in their powerpc ker-
nels. Another major disadvantage of memory
hotplug add is its compile time fixed granularity
which takes away some flexibility from smaller
environments. This is because the section size
is set at compile time and must be acceptable on
both large servers and small memory systems,
but is primarily targeted at larger memory sys-
tems.

4 Memory Hotplug Remove

4.1 How Hotplug Remove Works

In memory hotplug remove all the pages in
some memory section must be freed in a timely
fashion. Simultaneously, processes are running
as usual, and need to continue running with
good performance. It is thus necessary to move
the memory in the targeted section to a new
location safely and quickly. This is known as
memory migration. By removing unallocated
pages from the allocator and migrating all al-
located pages with memory migration it is thus
possible to completely empty all data from an
entire section. Once a memory section is empty

2006 Linux Symposium, Volume Two • 307

Figure 1: Memory remove uses migration to re-
move contiguous sections

all references to it can be removed. After it
is no longer referenced by the kernel memory
manager it can be safely removed as if it were
not there to begin with.

Not all memory is directly migrateable. The
Linux kernel has a constant offset between vir-
tual addresses and physical addresses. It also
caches some of the physical addresses. If
any of this non-migrateable memory is located
in the section targeted for removal, then the
whole section cannot be removed. Some of this
memory is reclaimed by running shrink_
list(). Other memory associated with
filesystems has filesystem callbacks. But unless
the Linux community decides to have a remap-
pable kernel there will always be some amount
of memory that cannot be migrated.

4.2 Current Status

Memory Hotplug remove is not in mainline.
Patches exist, released under the GPL, but are
only occasionally rebased. To be worthwhile
the existing patches would need either a remap-
pable kernel, which remains highly doubtful, or
a fragmentation avoidance strategy to keep mi-
grateable and non-migrateable pages clumped
together nicely. Two patch sets exist to do
fragmentation avoidance, the details of which
are in a paper by Mel Gorman and Andy
Whitcroft[4].

4.3 Hotplug Remove Advantages & Disad-
vantages

In hotplug remove the sections being removed
are large and contiguous so they don’t cause
any external fragmentation. The kernel also has
an accurate view of how much memory it really
has, leaving kernel developers the ability to be
smart instead of lucky about managing memory
efficiently. Hoptlug remove is in many ways an
ideal solution.

However, hotplug remove is not without disad-
vantages. It faces much opposition to being in-
tegrated in mainline kernels because of its de-
pendency on the fragmentation avoidance. This
opposition comes from the fact that fragmen-
tation avoidance modifies key kernel compo-
nents, making them more complex. Further-
more, memory hotplug as currently designed
has limitations on not being able to remove
memory containing certain kinds of allocations.
This limitation makes it less useful for physical
removal of DIMMs or of predictive disabling
of failing memory because of the likelyhood of
that memory containing non-removable alloca-
tions. For these and other reasons too lengthy to
present, hotplug remove’s major disadvantage
is that it will be a long process of community
feedback and development before it becomes
available in mainline kernels or from distribu-
tors.

5 Balloon Drivers

5.1 How Balloon Drivers Work

Balloon drivers have been used by virtualiza-
tion as a means to manage memory in a mul-
tiple virtual machines environment. The idea

308 • Resizing Memory With Balloons and Hotplug

is very simple and offers the advantage of be-
ing minimally invasive to the guest OS. How-
ever, it does require collaboration from this
guest in order for it to be effective. In 2002
Waldspurger[5] introduced the concept of bal-
looning as it was implemented in the VMware
ESX Server. In 2003 this concept was adopted
by the Xen team[6] to support their memory
management needs. The concept used by the
two virtualization approaches is the same, but
the terminology used in the implementation de-
scriptions vary. Therefore, we will use neutral
terminology in our description.

The basic function of the balloon driver is to
pass memory pages back and forth between the
hypervisor and the virtual machine page alloca-
tor. This provides a solution for load-balancing
and also addresses the issue of memory over-
subscription. When a virtual machine is created
a range of permissible amounts of memory al-
location is specified. The lower bound of that
range corresponds to the minimal amount of
memory under which the virtual machine can
reasonably operate; this is loosely defined as
being able to operate without excessive swap-
ping. The upper bound of that range corre-
sponds to the maximum amount of memory
that will ever be allocated to this VM no mat-
ter how much memory the hypervisor has avail-
able.

The balloon driver resides in the VM but is con-
trolled by the hypervisor. When the balloon in-
flates creating memory pressure in the VM the
memory management routines of the guest OS
must reclaim space to satisfy the driver alloca-
tion request. When memory is tight that might
necessitate that the guest OS decides which
pages to reclaim, possibly swapping those to
its own virtual disk. The reclaimed pages are
passed down to the hypervisor which in turn
makes the physical memory available to other
VMs. In order to guarantee separation between
VMs the page are zeroed out before being made

available to other VMs. When the balloon de-
flates the memory is made available again for
general use by this guest OS. Since the bal-
loon driver inflates by allocating memory in the
VM it is obvious that without the collabora-
tion of the guest OS this technique is not very
successful in releasing memory to the hyper-
visor. However, when the collaboration works
then ballooning can be a very effective and pre-
dictable way to positively affect performance in
an environment where workloads benefit from
additional memory[5].

Different mechanisms for requesting changes
in the size of the balloon are used in the two im-
plementations: in VMware the balloon driver
polls the server once per second for changes
in the balloon size, while Xen uses a mech-
anism relying on the XenStore/XenBus func-
tionality. XenBus provides a bus abstraction
for paravirtualized drivers to communicate be-
tween domains and XenStore is a filesystem-
like database that is accessible by all domains.
Most commonly, management tools configure
and control virtual devices by writing values
into keys in the database that trigger events in
drivers. In the case of the balloon driver the tar-
get size of the balloon is stored in a key and
the balloon driver sets a watch on it. When
the value of the key changes the driver immedi-
ately responds by trying to accomodate to the
requested size. Neither one of those mecha-
nisms has a significant impact in terms of per-
formance to the VM.

5.2 Balloon Drivers Advantages & Disad-
vantages

It is sometimes difficult to separate the advan-
tages and disadvantages of this technique, since
what could be viewed as an advantage could
also be viewd as a limitation. For example,
it is a definite advantage to be able to directly
use the native memory management routines of

2006 Linux Symposium, Volume Two • 309

Figure 2: Balloon Driver removes memory that
is already free, usually causing fragmentation

the guest OS without any changes. However,
the use of existing mememory managment rou-
tines becomes a real limitation when you are
trying to maintain low external memory frag-
mentation.

Also, the balloon driver is a very independent
entity in the VM whose size is only known by
itself and the hypervisor; there is currently no
notification to the applications that the balloon
driver is squeezing memory. Moreover mem-
ory statistics reporting tools such as top or
free will see no changes in the memory usage
since from the kernel’s perspective the memory
is used by the balloon driver.

Furthermore, even if the guest VM is trying to
collaborate the balloon driver might not be able
to reclaim the memory requested by the hyper-
visor fast enough to satisfy the system’s needs.

The most obvious disadvantages of ballooning
is that the balloon driver fragments the pseu-
dophysical memory map of the guest VM. Al-
though hotplug memory is more invasive, it
is able to alloc/dealloc contiguous regions of
memory. Thus it avoids fragmentation of the
memory map. Instead, the memory map can
be split up into sections using SPARSEMEM
and hoptlug can alloc/free whole sections at
a time, freeing memory metadata at the same
time you free the memory itself. It also poten-
tially makes it easier to implement compacting
of real physical memory, so that Xen itself does
not end up with excessive fragmented memory.

Figure 3: From left to right: System with bal-
loon driver, hotplug add operation, The same
system after hotplug add operation

6 Steps Towards Unification

Memory hotplug and balloon drivers serve sim-
ilar goals in different ways. They are like
peanut butter and jelly. Either one can be used
on its own, but if they are used together in
proper balance the end result can be better than
either alone.

6.1 Balloon Driver Plus Add

Balloon drivers are already in use in virtualized
environments, but are unable to use more mem-
ory than the Linux kernel was booted with. At
the same time memory hotplug add is already
in mainline kernels and allows Linux to add
memory that it wasn’t booted with. Without too
much code the existing balloon driver could be
modified to grow memory past normal balloon
limits using the hotplug add mechanism. The
small amount of new code would be contained
in the balloon driver, making it easy to merge
into mainline.

310 • Resizing Memory With Balloons and Hotplug

6.2 Balloon Driver Plus Remove

The reason hotplug remove is not merged into
mainline yet is because without fragmentation
avoidance it would not have a high rate of suc-
cess removing whole sections, making it not re-
liable enough to use on its own. However, us-
ing existing memory migration and just enough
code to enable removing sections does enable
the removing of sections in good conditions.
Again, using a balloon driver as a base it is pos-
sible to add hotplug remove into the mix. The
balloon driver could, with a minimal amount of
extra code, use hotplug remove as a primary ve-
hicle and when hotplug remove is unable to free
a whole section it could fall back to its normal
methodology.

This combination would improve on the frag-
mentation of the normal balloon allocator
whenever hotplug remove was used. It also
alleviates the dependence for fragmentation
avoidance, but would still benefit from any
fragmentation avoidance that was eventually
merged.

6.3 Make Balloon Memory Migrateable

One of the obstacles to using memory remove
in combination with a balloon driver is that
memory already taken away by the balloon
driver is unable to be removed a second time by
hotplug. This is easily alleviated by two simple
steps. The first step is to mark the pages already
taken by the balloon driver as migrateable. The
second step is to add event notifiers in the bal-
loon driver that would release its claim on any
memory targeted for removal.

By doing these two steps the hotplug remove
mechanism could remove sections that had
been fragmented by the balloon driver. This
would also clean up data structures associated
with that memory.

7 Conclusion

In an ideal world memory hotplug remove
would be the primary memory management in-
terface and would work on all memory. But
even without it there is a lot that can be done
with existing and easily merged technology to
help make Linux a more flexible OS in a virtu-
alized environment.

8 Acknowledgments

Many thanks to Yasunori Goto, Dave
Hansen, Mike Kravetz, Hirokazu Taka-
hashi, IWAMOTO Toshihiro, KAMEZAWA
Hiroyuki, Matt Tolentino, Bob Picco, Andy
Whitcroft, and all the hotplug developers.

9 Legal Statement

This work represents the view of the authors and
does not necessarily represent the view of IBM or
HP.

IBM is a trademark or registered trademark of In-
ternational Business Machines Corporation in the
United Sates and/or other countries.

HP is a trademark or registered trademark of
Hewlett Packard Corporation in the United States,
other countries, or both.

Linux is a registered trademark of Linus Torvalds.

References

[1] http://www.virtualiron.com

[2] http://www.xensource.com

2006 Linux Symposium, Volume Two • 311

[3] J. Schopp et al. Memory Hotplug Redux.
In Proceedings of the Ottawa Linux
Symposium,, Ottawa, Ontario, Canada,
July 2005.

[4] M. Gorman. The What, They Why and
the Where To of Anti Fragmentation. In
Proceeding sof the Ottawa Linux
Symposium,, Ottawa, Ontario, Canada,
July 2006.

[5] C. A. Waldspurger, Memory resource
management in VMware ESX server,
Proceedings of the 5th Symposium on
Operating Systems Design and
Implementation (OSDI 2002), ACM
Operating Systems Review, Winter 2002
Special Issue, pages 181-194, Boston,
MA, USA, Dec. 2002

[6] Paul Barham, Boris Dragovic, Keir
Fraser, Steven Han, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, Andrew
Warfield, Xen and the Art of
Virtualization, Proceedings of the 19th
ACM Symposium on Operating Systems
Principles, October 19-22, 2003

312 • Resizing Memory With Balloons and Hotplug

Collaborative Memory Management in Hosted Linux
Environments

Martin Schwidefsky
IBM Deutschland Entwicklung GmbH
Martin.Schwidefsky@de.ibm.com

Hubertus Franke
IBM T.J. Watson Research Center

frankeh@us.ibm.com

Ray Mansell
IBM T.J. Watson Research Center
Ray.Mansell@us.ibm.com

Himanshu Raj
Georgia Tech

rhim@cc.gatech.edu

Damian Osisek
IBM Systems and Technology Group

dlosisek@us.ibm.com

JongHyuk Choi
IBM T.J. Watson Research Center

jongchoi@us.ibm.com

Abstract

In hosted environments, multiple guest operat-
ing systems are hosted on top of a host operat-
ing system or hypervisor. The problem of over-
committing physical memory is either solved
by dynamically adjusting the memory sizes of
the guests or through transparent host paging.
Both approaches can introduce significant over-
head in heavily overcommitted memory sce-
narios due to frequent resize requests or due
to high paging I/O activity. This paper intro-
duces a novel approach to this problem, called
collaborative memory management (CMM). In
CMM, guests and host operating system ex-
change page usage and residency information.
This information is primarily used by the host
to reduce the amount of paging it needs to do
for the pages of its guests. The CMM design
and the Linux implementation and a prototype
for Linux for zSeries and the z/VM hypervisor
will be discussed.

1 Introduction

With the re-emergence of virtual machines
(VMM) as a means for workload and server
consolidation, memory pressure again has be-
come an important issue to solve. The prob-
lem of memory pressure stems from the fact
that guest operating systems, such as Linux, at-
tempt to utilize any available memory given to
the guest for its own caching purposes. As a re-
sult a static “partitioning” of the system would
significantly be limited by the available mem-
ory in the system. A static memory partitioning
is also contrary to the nature of many system
utilizations seen today, often bursty and with
time varying resource requirements (whether
cpu, memory, or I/O). It is exactly this variabil-
ity that virtualization tends to exploit.

Memory overcommitment is an attribute of the
application mix that runs on a system and as
such can not be eliminated. Ultimately, the
memory pressure resulting from memory over-
commitment has to be dealt with by either

314 • Collaborative Memory Management in Hosted Linux Environments

pushing it back into the guest OS or by resolv-
ing it in the host. Therefore, there is the poten-
tial for a high paging I/O rate in either the host,
the guest, or in both. High paging rates have
nonlinear impact on the application and system
response times and thus can limit the number of
guests that can effectively be hosted. This non-
linear performance impact makes dealing with
memory overcommitment unique as compared
to overcommitting other resources. Neverthe-
less, through proper global memory manage-
ment, one can hope to reduce the symptoms ex-
perienced due to memory overcommitment.

With respect to memory management among
multiple guests, two main approaches to over-
committing memory are commonly deployed:

• Dynamic Partitioning: individually guest
OSes are forced to dynamically change
their memory size to accommodate a
global memory strategy.

• Memory Virtualization: the host
swaps/pages guest memory similar to how
any operating system overcommits its
memory to its applications.

The work in this paper was motivated by IBM’s
Linux virtualization stack for the zSeries,
which virtualizes guest Linux systems over the
z/VM host/hypervisor. Besides the guest mem-
ory paging, z/VM also deploys dynamic par-
titioning. We have seen that customers deploy
hundreds of virtual machines over a single host,
sometimes resulting in unsustainable memory
overcommitments that neither dynamic parti-
tioning nor memory virtualization can satisfy
to meet quality of service expectations with re-
gard to response times.

Dynamic partitioning is the only possible
means when thin, non-paging hypervisors are
deployed. An example is XEN [2], which
para-virtualizes page table, i.e. the hypervisor

merely ensures that the guest creates only valid
mappings for the memory assigned to it. The
dynamicity of the memory sizing is achieved
by a technology known as ballooning [3, 2]. A
balloon driver, operating in each guest, com-
municates with the hypervisor and receives di-
rectives for modifying the guest memory size.
This is accomplished by allocating pages, thus
often forcing the guest’s page reclamation dae-
mon to run, and returning those pages to the hy-
pervisor for allocation to different guests. The
hypervisor disables access to these pages for
the donating guest and enables access to them
for the receiving guest. By growing and shrink-
ing memory balloons, OS memory sizes can be
adopted to deal with changing memory require-
ments by individual operating systems and in
the system overall.

In stable workloads with infrequently changing
guest working set sizes, the ballooning method
is quite adequate to “squeeze” the guests into
their right size. However, in highly overcom-
mitted memory scenarios with rapidly chang-
ing or bursty memory requirements, the bal-
looning approach to memory overcommitment
does pose various shortcomings. A host agent
(typically running at the hypervisor level) has
to constantly estimate working set sizes (for in-
stance through monitoring the page fault rates
and dispatch rate of its guest partitions) and re-
size the guest OS memory sizes. Though mem-
ory size estimation can be done with limited
overhead[3], the time to invoke the guest oper-
ating system (idle or not) and execute the bal-
looning module can lead to reduced response
times at the other guest(s) requiring more mem-
ory. Furthermore, it can pose a scalability
problem when hundreds of guest OSes are to
be hosted. First, the amount of memory har-
vested per image per balloon invocation de-
creases with the number of images. Second, the
achievable overcommitment is limited as guest
images require a minimum amount of memory
to operate and to avoid the dreaded OOM killer.

2006 Linux Symposium, Volume Two • 315

Memory virtualization as realized through host
operating system paging of its guests is the al-
ternative approach to overcommitting memory.
In highly overcommitted scenarios, host pag-
ing can provide a more responsive approach,
because (i) the host swaps guest OS memory
based on a global usage view, able to steal
pages from other guests and (ii) memory can
be overcommitted beyond the sum of the mini-
mal guest sizes. On the other hand host paging
has its own set of problems, most of which are
related to a very high swap rate. For instance,
assume that the host has elected to swap out an
older page. If the guest now decides that this
page needs to be swapped at the guest level, it
needs to be first brought back at the host level.
Other examples are unused guest pages that the
host blindly pages out. This clearly identifies
that there are overheads and unnecessary oper-
ations involved at this end of the spectrum of
dealing with memory pressure.

What is needed is a balanced approach that
allows us to reap the benefits of both ap-
proaches, while avoiding their shortcomings.
Hence, in this paper we introduce the Collab-
orative Memory Management (CMM) frame-
work. CMM deploys “infrequent” ballooning
(we refer to it as CMM1) to apply sufficient
long-term pressure on the various guests. There
is limited focus on this part in this paper, as this
is a well known approach in the literature [3].
Instead, in this paper we focus on the second
component of CMM, namely CMM2, a novel
information-sharing between host and guests
(we refer to it as CMM2). CMM2 enables us
to identify and avoid unnecessary host opera-
tions, thus reducing the host paging rate and
improving response and throughput of memory
allocation requests for a guest OS when overall
system memory is overcommitted.

We have implemented the CMM framework for
IBM’s z/Architecture System z9 and in partic-
ular using the z/VM host and the Linux guest.

The remainder of the paper is organized as fol-
lows. The general framework of CMM is de-
scribed in Section 2. The prototype imple-
mentation of this framework utilizing Linux
guests and the z/VM hypervisor is discussed
in Section 3. The changes we made to the
z/Architecture and the z/VM host are described
in Section 4. The current state of our analysis
is presented in Section 5. Conclusions, ongo-
ing work, and future directions are discussed in
Section 6.

2 Collaborative Memory Manage-
ment Framework

The introduction already identified ballooning
and host paging as the two fundamental ap-
proaches to memory overcommitment. It also
identified their individual drawbacks, namely
overhead and increased latency by inducing
pressure on the guests to release memory in the
case of ballooning, and increased host paging
activity in the case of host paging.

Ultimately, we believe a combined approach
that (i) deploys ballooning to deal with the
longer range shaping of guest memory sizes
and (ii) utilizes host swapping for the short term
oscillations in memory requirements, (iii) uti-
lizes host paging for the case where balloon-
ing can no further reduce the guest memory
sizes due to minimum operating memory re-
quirements by the guests, promises the best re-
sults.

The host deploys its own global host page evic-
tion algorithm (LRU) and can identify pages
that have system-wide aged the most, where as
an individual guest only has a limited view of
its own pages. On the other hand the host does
not have any knowledge about the utilization of
a guest page and as a result it must save the con-
tent of a guest page to the host swap area. The

316 • Collaborative Memory Management in Hosted Linux Environments

basic idea of CMM2 within collaborative mem-
ory management is to allow a highly efficient
mutual sharing of page status information be-
tween the guest and the host operating system
in order to optimize for overall system perfor-
mance and in order to reduce unnecessary swap
operations in the host.

In CMM2, the guest defines and maintains the
page usage state for each of its absolute pages.
By doing so, it indicates the content preserva-
tion requirements for each page expected by
the host page management. Equipped with this
information, the host/hypervisor knows at all
times and precisely whether a guest page that
has been selected for eviction/swapping, needs
to be preserved or not. Furthermore, the host
can make more informed decisions concerning
which guest memory pages to steal, thus min-
imizing the conflicts that otherwise inevitably
arise when two systems both believe they are
solely responsible for managing storage. In the
same manner knowing residency information
of its absolute memory can be utilized during a
guest’s paging operation. For instance, a guest
trying to swap a page that has already been
swapped by the host, creates a scenario known
as dual-swapping, where the guest needs to
have the page resident to swap it to its own
swap device, thus creating two additional I/O
operations. This can be avoided based on hav-
ing access to the residency information.

The page state for each guest absolute mem-
ory page (or its associated host virtual page),
defined by the cross product of the page us-
age state and the page residency state, is main-
tained by and shared through a page hypervisor
assist facility (HVA).

The usage states of a page are as follows:

• Stable (S): This is the default state for
guest memory pages. The content remains
what the guest sets it to; the host is respon-
sible for preserving the page content.

• Unused (U): The page content is meaning-
less to the guest; the host may discard the
page content at will.

• Volatile (V): The guest has indicated that
it can tolerate the loss of the page content;
however, the page still contains data that
may be useful in the future.

• Potential Volatile (P): This state is similar
to the volatile state. The guest can tolerate
the loss of the page content as long as the
page has not been modified. Page modi-
fication is indicated by the page dirty bit.
This bit needs to be accessible by the host.
If the host can not access the dirty bit then
the state machine can be simplified by re-
moving this state.

While the usage state of a page is primarily
modified by the guest, the page residency state
is only to be modified by the host, though the
guest can query it. The residency states of a
page are as follows:

• Resident (r): The page is assigned to a
backing frame in host memory and may be
referenced at machine speed.

• Preserved (p): No frame is associated; the
host has written the page contents to aux-
iliary swap storage.

• Logically zero (z): There is no associated
frame or backed content. The content of
the page is considered to be zero.

Thus the page state can be represented in 4-
bits per page. The details and maintenance of
the HVA, such as the location of the page state
bits and the means to issue the host service
call, are obviously highly architecture depen-
dent. Nevertheless, various constraints must
be satisfied. Only the host must be allowed

2006 Linux Symposium, Volume Two • 317

to modify the residency state; modifications
by the guest would pose a serious functional-
ity and security problem. Certain guest oper-
ations must be conditional based on the host
state. For instance, an operation frequently
used is SetStableIfNotDiscarded which
only makes a page stable if it has not been
discarded. Thus the most obvious implemen-
tation, namely allocating or mapping a page
status vector in the guest with r/w permission
is erroneous. However, separating the guest
and host state poses the problem of atomic ac-
cess, as states need to be modified and ac-
cessed atomically to ensure proper synchro-
nization between guest and host. Allowing a
lock to span across guest and host is a serious
design flaw, as it would allow a faulty guest to
lock up the host. Instead, for atomic accesses a
compare_and_swap needs to be utilized.

Therefore, the most sensible implementation is
to maintain the page state only in the host. The
host can utilize load/store access to the page
state. The guest uses a host service call to
modify the page state. The primitives the host
has to provide to the guest are the following:
SetStable, SetUnused, SetVolatile,
and SetPotentialVolatile which set
the page usage state to the requested target state
(S, U, V, or P), and the already mentioned
SetStableIfNotDiscarded.

The state transition diagram is shown in Fig-
ure 1. There are several noteworthy comments
to be made. The states Vz and Pz mark the
special “discarded” condition of a page entered
through a previous host discard operation. If
a guest accesses a Vz or Pz page, the host
will present a special discard fault to notify the
guest that the page has been removed and that
it needs to be recreated by the guest.

For reasons of symmetry and architectural
completeness, the {S,V,P}p → Up transition
is included in the state diagram. In principle,
a Up state makes little sense, as the backing

Ur Sr Vr Pr

Sp

Uz Sz Vz

guest states

host
states

unused (U) stable (S) volatile (V)
potential
volatile (P)

resident (r)

preserved (p)

zero (z)
discard
page

page
out

page
in

resolve

discard
page
if cleandiscard

page
discard
backing

addressing
exception

page discard
exception

Guest state change
Host state change

Guest reference

Vp Pp

page
out

page
in

page
out

page
in

discard
page

discard
page
if clean

Pz
Discarded

Up

addressing
exception,
discard
backing

(*)

(*) architecture
 dependent

Figure 1: State Transition Diagram

storage for this page would have to be main-
tained despite the fact that the page is unused.
However, in an implementation where the guest
state can be manipulated without the involve-
ment of a host service, this is the only valid
path. Subsequently moving the page into Sp
and accessing it would force a reload of the
page from the host swapping area, in which
case the opportunity for the elimination of a
host swap operation is lost. In contrast, in
implementations where the guest accomplishes
all guest transitions through a host service, the
{S,V,P}p→Uz transition can be immediately
made and at the same time the backing storage
can be freed. In more general terms, if the guest
page state transitions are implemented through
a host service call, we can always tag an im-
plicit host state transition onto that guest page
transition in order to optimize operations like in
the Up vs. Uz case. The other case is also true,
namely that host page transitions can cause im-
plicit guest state transitions. The state machine
can be simplified in several ways if the imple-
mentation for a particular architecture requires
and/or allows it:

• Collapse the two discarded states Vz and
Pz to a single discarded state Vz.

• Remove the Vp state. If the host can not
profit from preserving volatile pages, it

318 • Collaborative Memory Management in Hosted Linux Environments

can always choose to discard pages that
would enter the Vp state.

• Remove the Pp state. Without this state it
depends on the dirty bit what happens with
the page. If the page dirty bit is set, the
host needs to preserve the page and will
set the combined target state to Sp. If the
page is clean the host can discard the page.

• Remove the potentially volatile P page us-
age state. This simplification is necessary
for architectures that do not have hardware
per page dirty bits and no reasonably fast
alternative way to access the page dirty in-
formation from the host system.

Equipped with this framework, CMM2 now re-
quires the guest operating systems to identify
its discardable pages. It is reasonable to ex-
pect that both guest and host deploy some form
of LRU algorithm and that the aging order of
pages established in the guest is also roughly
established by the host. The benefit of CMM2
hence comes from the fact that when the host
discards a page based on its LRU information,
it conceptually does what the balloon driver
would have done (namely identifying an old
page and evicting it). However, it does so with
reduced latency since the guest and its balloon
driver do not have to be scheduled. The fact
that a page was discarded will be recognized
the next time the page is accessed by the guest
(at which point a discard fault is obtained) or
during the guest’s own reclamation process (at
which time no extra cost is incurred).

3 Linux Guest Implementation

The goal of the guest implementation for the
collaborative memory management optimiza-
tion is to mark free pages as unused and to get
as many pages into volatile or potential volatile

state as possible. Since the host can choose
to remove unused and volatile pages anytime
and potential volatile pages if they are not dirty,
there needs to be special cleanup code to deal
with discarded pages if the guest tries to access
them.

For free pages only two state transitions are
needed: the free operation of the buddy allo-
cator sets all pages of the freed block to un-
used, and the allocation operation makes the
pages stable again. A guest access to an unused
page is a programming error, the host imple-
mentation can either return an arbitrary value
to the guest instruction—preferably zero for se-
curity reasons—or present some kind of excep-
tion. No additional code is required to deal with
accesses to unused pages.

The host ensures that all pages of a Linux guest
have an initial page usage state of stable (S). In
case of z/VM as the host, the initial page state is
stable, logically zero (Sz). When the pages are
added to the buddy allocator their page usage
state changes to unused for the first time. All
other pages that are not entered into the buddy
system will always have a page usage state of
stable.

For each class of non-free pages that are con-
sidered for one of the volatile states, additional
code is required to clean up after a discard fault.
For the majority of page allocators in the kernel
the amount of code necessary to deal with the
discard faults makes it hard if not impossible to
make the pages volatile.

3.1 Volatile page and swap cache

The two classes of pages with the biggest po-
tential are the page cache and the swap cache.
The amount of code that is needed for the state
transitions and to deal with the discard faults
is acceptable and usually there are many pages

2006 Linux Symposium, Volume Two • 319

in the page or swap cache that can be made
volatile. All clean page and swap cache pages
that do have a backing on secondary storage are
candidates for one of the volatile states.

In an ideal situation all clean, read-only pages
in the page and swap cache which do have a
backing would be volatile, and all read-write
pages with a backing would be potentially
volatile. There are several conditions that either
preclude or make it hard to keep the pages in a
volatile state. For each user of a cached page
the page either needs to be made stable or there
is code in the discard fault handler that is able to
remove the reference to the page from that user.
For example, each reference to a page in a page
table represents a user of the page. The discard
fault handler is able to remove these entries for
discarded pages. On the other hand each page
address involved in an I/O operation represents
a user as well but the discard fault handler is
not able to remove these entries.

To avoid having to keep track of each indi-
vidual user of a page, a simple strategy is
used. Whenever the Linux memory manage-
ment does something with a page that the dis-
card fault handler can not undo, the page is
made stable. After the memory management
removed a condition that made it necessary to
keep the page in stable state, it is attempted to
make the page volatile again. This attempt can
fail due to the following reasons:

1. The page is reserved. Reserved pages are
special and may never be removed from
memory by the Linux guest, nor discarded
from memory by the host.

2. The page is marked dirty in the Linux in-
ternal page structure. The page content
is more recent than the data on the back-
ing device. The page content needs to get
written to the backing device first before
the page can be removed or discarded.

3. The page is in writeback. The page con-
tent is still needed until the I/O operation
has finished.

4. The page is locked. As long as the page is
locked the code that acquired the lock has
exclusive access to the page.

5. The page is anonymous. The page does
not have a backing, the only copy of the
page content is in memory.

6. The page has no mapping. Again the page
has no backing, the guest can not recreate
the page.

7. The page is not up to date. An I/O oper-
ation to get the page content into memory
has not yet completed. It does not make
sense to discard the page before it has been
up to date once, particularly since the I/O
was likely started due to an access.

8. The page is private. There is additional
information associated with the page via
the page->private pointer, e.g. jour-
naling data. To keep things simple, pages
with private information are kept stable.

9. The page is already discarded.

10. The page map count is not equal to the
page reference count minus one. There
is one reference for the cache itself and
one for each mapping of the page to a user
space process. The discard fault handler
can remove the cache entry and the user
space mappings but not the references of
any other user of the page.

11. The page has writable mappings, but
the platform lacks the potentially volatile
state.

12. The page is mlocked. The semantics of
memory locked pages it that they are avail-
able without doing guest I/O, therefore the
page has to be stable.

320 • Collaborative Memory Management in Hosted Linux Environments

If any of these conditions is true, the page can
not be made volatile. These are the rules for
the state transition to a volatile state, however,
the page state does not necessarily have to be
adjusted if one of the conditions changes. It
depends on the operation that is done with the
page if the page state needs to change. As a rule
of thumb, transitions to stable state are non-
negotiable. Transitions to less stringent states
(volatile or unused) can be done at a more con-
venient time and with the idea in mind to keep
the hot code paths lean.

3.2 Page and swap cache state transitions

The page usage state transitions can be di-
vided into transitions to stable state and the
attempts to do a transition to a volatile state.
For the transition to stable state there is al-
ways a user of a page who requires the stable
state. The prevalent method to get a new refer-
ence to a page is to use find_get_page or
one of its variants. To give back a reference
page_cache_release is used. There are
only three more relevant code paths in regard to
the transition to stable state, namely the get_

user_pages function, and the copy on write
breaks in do_wp_page and do_no_page.
The state transitions are conditional through
the SetStableIfNotDiscarded call, which
only moves a page into stable if the page has
not been discarded. If the page was discarded,
it is removed from the page cache and func-
tions return notfound. In case of the copy
on write breaks, the operations fails with VM_

FAULT_DISCARD and the instruction that trig-
gered the copy-on-write is repeated. This will
cause a standard page fault for a non-existent
page and the page will get loaded again.

The question when to try to move a page into
volatile state is not defined as sharply as the
question when a page needs to be stable. In
principle the attempt to make a page volatile

can be done anytime. To get the maximum
number of pages into volatile state, a check of
all twelve conditions would be required when-
ever one of the conditions becomes false. Due
to concurrent operations in the memory man-
agement this would be difficult to implement
and the resulting code would be slow. We can
afford to be less stringent for the state transi-
tions to volatile, there is no harm done if a small
percentage of the suitable pages are not made
volatile. By experimentation we found that it
is enough to do the checking for the volatile
transition when a page gets unlocked, when it
has finished writeback, when the page refer-
ence counter is decreased, and when the page
map counter is increased.

To get an idea how the state of a page changes
during the lifetime of the page, see the two di-
agrams in Figure 2, which represent the state
transitions based on various events in the ker-
nel for two common types of pages, shared
filemapped pages and anonymous pages. The
diagrams only show the state changes due to
read / write access via memory mapped pages.
There are other triggers for I/O operations that
are not covered in the diagrams, as they would
get too complex.

3.3 Concurrent page state updates

In a multiprocessor system the usage state of
a page can get updated concurrently on dif-
ferent processors. To ensure that the page
has the correct state, a make stable opera-
tion may not “overtake” the attempt to make
it volatile. If the make volatile has already
done all the necessary checking, it will pro-
ceed with a SetVolatile operation. If at
the same time another user of the page does a
SetStableIfNotDiscarded, it depends on
the timing if the page state is volatile or stable
after the two operations complete. The check of
the twelve conditions and the SetVolatile

2006 Linux Symposium, Volume Two • 321

free

Ur/Up/Uz

empty

Sr/Sp/Sz

alloc page
empty

Sr/Sp

file read
in I/O

free
page

uptodate

Vz/Pz

discard

uptodate

Pr

discard

start file
write I/O

end I/O, r/o
uptodateuptodate

uptodate uptodate

read only

Vr/Vp

dirty
Pr/Pp

hw-dirty
Sr/Sp

Sr

r/w
write access

end I/O

r/w or r/o r/w or r/o

r/w or r/o
in I/O

hw dirty bit

transferclean

end I/O
r/w

 r/w
mmap

 r/w
munmap

(a) shared filemapped page.

free

Ur/Up/Uz

alloc
page

empty
swap back.
Sr/Sp/Sz

swap
read

empty

Sr
in I/O

empty

Sr/Sp/Sz

alloc page uptodate

Sr/Sp

clear / copy
rw

free
page

uptodate

Vz/Pz

end I/O

discard

uptodate

ro
Vr/Vp

discard

remove
 from
 swap

hw dirty
bit transfer

write access

end I/O
clean

end I/O
dirty

swap write I/O

add
to swap

remove
from swap

 make
writable

uptodateuptodate

uptodate uptodate

rw, clean
Pr/Pp

rw, hw-dirty

rw, dirty
Sr

rw, in I/O
Sr/Sp

Pr/Pp

swap back. swap back. swap back.

swap back. swap back. swap back. swap back.

(b) anonymous page.

Figure 2: LifeCycle of two common Types of Pages in Linux

need to be done atomically in regard to the
SetStableIfNotDiscarded and one of the
conditions need to evaluate to true before doing
the SetStableIfNotDiscarded. To provide
the atomicity, a new page flag PG_state_
change is used. The function that makes a
page stable will wait until it can acquire the new
page flag to give it exclusive access to the page
state.

The make volatile operation does not have to
wait, it can just return instead. The current im-
plementation does this to avoid a potential dead
lock on the PG_state_change bit. The
worst thing that can happen is another suitable
page not in a volatile state. The end of I/O in-
terrupt usually releases the page lock which re-
sults in a try to make a page volatile. If a cpu
is interrupted while holding the PG_state_
change bit for a page this would be a dead
lock if the make volatile function waits for the
bit as well. The alternative solution would
be to disable the interrupts while holding the
PG_state_change bit. Disabling interrupts
is expensive, therefore the preferable solution is
to let the make volatile function return imme-
diately if the PG_state_change bit is un-
available.

3.4 Memory locked pages

The mlock() system call needs special atten-
tion in regard to discardable pages. A mem-
ory locked page may not be removed from the
page or swap cache. This means that memory
locked pages need to be stable. The function
that tries to make a page volatile needs a way
to check if a page has been locked. This in-
formation is kept in the flags field of the vir-
tual memory areas that refer to the page. To
avoid traversing vma lists, which could signif-
icantly impact performance, a field is added in
the struct address space. This flag field is set in
the mlock() code when a vma of the address
space gets locked. The flag is never removed;
once the address space of a file had an mlocked
vma, all future pages added to it will stay sta-
ble. The already present pages are made stable
with a call to get_user_pages.

3.5 Writable page table entries

For writable pages there is code required that
allows the pages to be put into the correct
state. For platforms without the ability to ac-
cess the guest page dirty bit information from
the host, the correct state is the stable state,
for platforms with the ability, it is the poten-
tially volatile state. In both cases, whenever

322 • Collaborative Memory Management in Hosted Linux Environments

a writable page table entry is created, a call
to a function is required that checks if the
page state needs to be corrected. The state
change has to be done before the first writable
mapping is established. To avoid unnecessary
state transitions or the need for a counter, a
new page flag PG_writable is added, that
is set with the creation of the first writable
mapping. Subsequent writable mappings just
check the bit and skip the state transition if
it is set. To avoid a search over all mappers
of a page for writable page table entries, ev-
ery time a writable page table gets removed the
bit PG_writable stays set until all read-only
mappers of the page have been unmapped as
well. Only then is the PG_writable bit reset
again.

3.6 Minor fault optimization

An important optimization is the avoidance of
page state changes for minor faults. All pro-
cesses start with empty page tables. Each page
accessed by the process gets mapped in reac-
tion to a page fault. In the straightforward im-
plementation, even if the pages required by a
process are already present in the page cache,
each minor fault will cause two page state
changes. find_get_page will force the
page into the stable state for a short period of
time until the page map counter is increased.
Using a special variant of find_get_page
that does not change the page state, it is pos-
sible to handle minor faults without doing a
single state change. If the page has been dis-
carded by the host the first access of the guest
will generate a discard fault which causes the
page cache page to get removed from memory,
including all page table entries referring to the
page.

That removes the state transitions on the mi-
nor fault path. A page that has been mapped
will eventually be unmapped again. On the

unmap path each page that has been re-
moved from the page table is freed with a
call to page_cache_release. In general
that causes an unnecessary page state transi-
tion from volatile to volatile. To avoid this
unnecessary state transition special variants
of put_page_testzero and page_cache_

release are introduced that do not try to make
the page volatile. page_cache_release_

nohv is then used in free_page_and_swap_
cache and release_pages. This makes the
unmapping of pages state transition free.

3.7 Removing discarded pages

Before a discarded page can be freed all refer-
ences to the page have to be released. The di-
rect removal of the references is not possible in
all cases. The discard fault handler can remove
the references of the page cache and all entries
of the page in the page tables. It can not remove
references that are not stored in known places.
Consider a process that wants to access a page
that is cached in the page cache. After the page
has been found in the page cache with a call to
find_get_page, the new reference to that
page is not stored somewhere in memory but
in a dynamic variable of some function. Most
likely it will even be cached in some cpu reg-
ister. If the page gets discarded before the new
reference is stored in a memory location where
the discard fault handler can find it, the refer-
ence will remain valid. That means that after
the discard fault handler completed, the page
might still exist. To prevent that a page gets re-
moved from the page cache more than once, the
discard fault handler marks the page with the
PG_discarded page flag. Any subsequent
discard fault will only remove page table en-
tries. The discard fault handler will remove a
page from the page cache without clearing the
page->mapping field. Due to races in the
memory management, a page can get mapped
to a process after the discard fault has removed

2006 Linux Symposium, Volume Two • 323

the page cache entry for the page. Any discard
fault for a page that occurs after the page has
been removed still needs the mapping informa-
tion to be able to remove the remaining page
table entries.

Further the PG_discarded bit is used to
postpone the freeing of discarded pages. Pages
that have been discarded are added to the dis-
carded page list. The pages on this list are
freed only if the guest is under memory pres-
sure. There are two reasons why this is desir-
able:

1. Before a discarded page can be reused, a
host action is required to provide a new
backing frame for the guest page. It is
faster to use only non-discarded pages
which do not require a host action as long
as the working set of the guest allows it.

2. It depends on the platform which informa-
tion is delivered by a discard fault. If the
discard fault handler gets absolute page
addresses instead of a virtual addresses—
which is the case for z/VM as the host
system—the discard fault handler needs to
make sure to get a valid page reference.
This is only possible if there are no pend-
ing discard faults for a page before the
page is freed. To ensure this, a synchro-
nization is done before the discarded page
list is freed.

4 System z Host Implementation

In this section, we briefly describe what
changes were required in the System z machine
architecture and in the host operating system to
support CMM2.

The prototype implementation on System z
with Linux guests and a z/VM host uses a sim-

plified state machine that collapses the two dis-
carded states Vz and Pz, and does not have the
preserved volatile states Up, Vp and Pp. The
simplified state diagram is shown in Figure 3.

Ur Sr Vr Pr

Sp

Uz Sz Vz

guest states

host
states

unused (U) stable (S) volatile (V)
potential
volatile (P)

resident (r)

preserved (p)

zero (z)

discard
page

page
out

page
in

resolve

discard page
if clean

page out
if dirty

discard
page

discard
backing

discard
backing

addressing
exception

block validity
exception

Guest state change
Host state change

Guest reference

Figure 3: Simplified State Transition Diagram

In order to keep the overhead for the page
state transitions low, the prototype uses a spe-
cial page state transition instruction called Ex-
tract and Set Storage Attributes, in short ESSA.
ESSA has been introduced with IBM’s newest
z/Architecture mainframe System z9 and at this
point is implemented in millicode. Since the
z/Architecture provides separate guest and host
managed page tables, which both are concate-
nated to establish a guest virtual to host abso-
lute mapping, the page states are maintained
within the host translation tables associated
with each respective guest. The ESSA instruc-
tion enables atomic page state changes both
from the guest and the host with a particular
protection domain. This allows the guest tran-
sitions to be issued atomically and without en-
tering into the host domain. Yet for guest tran-
sitions that require/desire an implicit host tran-
sition, the instruction traps into the host and the
entire transition and associated host actions are
performed.

With the introduction of the ESSA facility to
the z Architecture, z/VM [1] was modified to
recognize and handle both the extended stor-
age attributes and new storage access excep-

324 • Collaborative Memory Management in Hosted Linux Environments

tions associated with these page state attributes.
It also virtualizes the entire ESSA assist in
case the ESSA facility is not available on the
system, e.g. on previous System z machines.
Since one of the primary objectives of the new
architecture is to increase the efficiency with
which z/VM utilizes memory, its paging al-
gorithms were extended to recognize the new
memory attributes. For example, when prepar-
ing the list of frames which are candidates for
being stolen, frames for pages in the unused
state are reclaimed immediately. The demand
scan routines—those called to select candidate
pages when z/VM needs to free up frames—are
executed in several passes, the selection crite-
ria being relaxed on each pass. These routines
were changed so that unused pages are uncon-
ditionally selected on the first pass, and volatile
pages are unconditionally selected on the sec-
ond pass, regardless of the current selection cri-
teria. The net effect of these changes is to leave
in memory, for as long as possible, those pages
the guest has identified as being of primary im-
portance, thereby significantly reducing the risk
of stealing a page at random and then finding
that it needs to be paged back in again almost
immediately.

5 Evaluation

In this section we present results from a set
of experiments to establish the overhead and
scalability of CMM. In the first set of experi-
ments, we execute a set of particular workloads
on a single Linux guest without any z/VM host
memory constraints in order to study the fre-
quency with which state transitions are issued
and the amount of discardable pages observed
during the runs. These discardable pages can be
exploited in overcommitted memory scenarios.
For that we have chosen a kernel compile and a
SPECWeb2005 run. We then discuss the over-

head of ESSA instructions and the overhead of
their emulation.

Since specific state transition accounting is not
performed in the millicode instruction, we are
executing this on a previous version of the
z/Architecture that does not have the millicode
enabled. The z/VM host provides an emulation
for the missing instruction, which allows us to
run CMM2 enabled guests on older machines
and to instrument the emulation code to collect
the frequency information.

5.1 States and Transition Frequency

As the first workload we have chosen a linux
kernel build, which is commonly considered as
a quick, yet important benchmark. It rapidly
executes many processes, utilizes the filecache
and issues I/O operations and thus provides a
good exercise of many important kernel sub-
systems. The guest was configured as a 2-
way 256MB linux system. The benchmark is
comprised of two consecutive identical phases
started from a fresh Linux reboot. Each phase
consists of a kernel compile, a kernel clean, fol-
lowed by a search of the entire linux source for
a particular string.

The number of various page state transitions
per second experienced during the run and
represented by their associated ESSA instruc-
tions is shown in Figure 4(a). To dampen
the high frequency oscillations, we have ap-
plied a simple moving average SMA(3) fil-
ter. We can see that state transitions are ap-
proximately at 50K/sec. SetStable(S) and
SetUnused(U) track each other very closely.
This is due to the fact that individual compile
processes have short life times and page alloca-
tions (SetStable) are shortly followed by their
respective frees (SetUnused). The higher num-
ber of SetStableIfNotDiscarded transi-
tions is due to the fact that I/O is performed

2006 Linux Symposium, Volume Two • 325

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 100 200 300 400 500 600

#E
SS

A
O

PS

time (secs)

Total
SetStable
SetUnused
SetVolatile
SetStableIfNotDiscarded

(a) State Transition Frequency (ops/sec)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 100 200 300 400 500 600

#P
ag

es

time (secs)

Pages
Stable

Unused
Volatile

Potential
Discardable

(b) State Distribution

Figure 4: Anatomy of a Kernel Compile on a 2-way 256M Guest

using read/write operations, which have to
go through the filecache and use the find_
get_page variants.

A utility program executing concurrently on the
guest “scans” the all guest pages every sec-
ond using the ESSA extract instruction to es-
tablish the number of pages in each usage state.
The result (not including the extract ESSA) is
shown in Figure 4(b). Again a SMA(3) filter is
applied for smoothing effects. The thick solid
line defines the number of discardable pages
(U +V), which on average is about half of all
the guest memory. The first kernel compile
slowly increases the number of volatile pages,
which essentially is due to the increased num-
ber of files that have been read from the linux
source and remain in the file cache. At t=267s
the deep source search is initiated which essen-
tially brings the entire source tree into the file
cache depleting the free page pool. In the sec-
ond phase, the kernel source residency is slowly
reduced again as the source gets pushed out of
memory. This causes the decrease of the num-
ber of volatile pages.

To demonstrate the effect of the collabora-
tive memory management in a realistic enter-
prise computing workload, we show the state
transition characteristics of the SPECweb2005

benchmark, which is modeled after typical en-
terprise IT service scenarios in e-commerce,
banking, and corporate customer support Web
servers. In SPECweb2005, workload genera-
tors send HTTP requests to the Web servers
under evaluation at a given concurrency and
observe whether they are capable of handling
them without violating the service level guar-
antee in terms of response time and goodness
of responses.

We configured a Linux guest on z/VM as a
self-contained SPECweb2005 testbed. The sin-
gle guest Linux hosted Apache 2.2 as the front
end Web server, a SPECweb2005 backend sim-
ulator, and SPECweb2005 workload generat-
ing client along with JVM. The guest was
configured to have a single CPU and 1GB
of real memory. The support scenario of
SPECweb2005 was used in the experiment.

Figure 5(a) shows the different state transi-
tion frequencies (as expressed by their asso-
ciated ESSA ops and with a SMA(30) filter)
over a 20 minute run when the JVM is con-
figured with 256MB heap. The run is com-
prised of 3 phases, (i) initialization [0:50] secs,
(ii) rampup [50:230] secs, and (iii) steady state
run [230–]. One can see from the figure, that
the state change rate is rapidly changing in re-

326 • Collaborative Memory Management in Hosted Linux Environments

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 200 400 600 800 1000 1200 1400

#E
SS

A
O

PS

time (secs)

SetStable
SetUnused
SetVolatile
SetStableIfNotDiscarded

(a) State Transition Frequency (ops/sec)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 200 400 600 800 1000 1200 1400

#P
ag

es

time (secs)

Pages
Stable

Unused
Volatile

Potential

(b) State Distribution

Figure 5: Anatomy of a SPECweb2005 run on 1-way 1G Guest

sponse to varying request conditions. The aver-
age ESSA rate in steady state is about 15K/sec.

Figure 5(b) shows the dissection of memory
pages seen from the guest for the same run. At
steady state about half of the pages are Stable
while the other half remains Volatile. A large
portion of the stable pages is attributable to the
130M page JVM heap. Volatile pages are com-
prised of the page cache pages for the html files
and the download files of the SPECweb2005
Support benchmark.

The reasonable large amount of volatile pages
observed both in the Kernel Compile as well as
in SPECweb2005 confirms that the collabora-
tive memory management of the host VM will
be able to find discardable pages for fast mem-
ory provisioning in a typical enterprise work-
load. By utilizing this dynamic state transition
information, the host VM is able to reallocate
pages to those guests which need more pages in
order to meet their service level by harvesting
the discardable pages from other guest systems
and without invoking the victim guests. Nev-
ertheless, the high rate of state transitions, con-
cerned us from the start and let us to explore
the architectural support through the ESSA in-
struction.

5.2 Guest State Transition Overhead

We have timed the common non-trapping
ESSA instructions representing the guest tran-
sitions (∗r → ∗r) on a 1.65GHz z9 proces-
sor and obtained the following results: (i) Ex-
tract: 97.9nsecs; (ii) SetStable: 100.8nsecs;
(iii) SetVolatile: 103.7nsecs; (iv) SetUnused:
102.5nsecs; and (v) SetStableIfNotDiscarded:
106.5nsecs. For the kernel compile, which
poses a very high transition rate of 25K/sec per
cpu, the overhead amounts to ~0.25% and for
the SPECweb2005 run it amounts to ~0.15%.

For systems which do not have the ESSA milli-
code enabled, each ESSA instruction must trap
into z/VM and is emulated there. The execu-
tion times of emulating these instructions are
roughly 10 fold. This should give some bounds
on what to expect if this service is implemented
on other architectures through hypervisor traps.

5.3 Scalability

We now present our preliminary data on a
scalability and comparison analysis of various
memory management technologies. To do so,
a z/VM partition with 34 Linux guests was set

2006 Linux Symposium, Volume Two • 327

up. 32 guests each ran an Apache Webserver
that serves a 1200 1MB files. Two guests func-
tion as web clients to continuously request ran-
dom files from random servers. During the runs
on a 4-way host partition, the two clients con-
sumed ~50% of cpu cycles while each server
consumed ~6% of cpu cycles. The trans-
action rate was measured under varying host
physical memory size PM of the z/VM parti-
tion. The relative degradation as we shrank the
host memory size from PM = 64GB to PM =
256MB is shown in Figure 6. We observed the
following memory management strategies:

• Partitioned: physical memory is parti-
tioned equally among all guests. As a re-
sult all memory pressure is local to the
guests.

• HostPaging: the guests remain at a con-
stant guest memory size and overcommit-
ment is handled in the host.

• CMM1/Balooning: guests are dynami-
cally sized, yet host paging is also al-
lowed.

• CMM2: host and guest coordinate
through the HVA facility.

At PM = 64G all methods exhibit the same
performance as no effective difference exists.
First, in the static partitioned scenario, the guest
memory size RMi = PM/32 is varied down to
64MB and there is no effective performance
drop. This suggests that the working set size of
this workload is extremely small and the file-
cache is ineffective. The PM can not be re-
duced any further, as the guests are not able
to boot or run with less then RMi = 64MB.
Next, in the host paging case where clients
are setup with RMi = 1.5GB, the system re-
lies completely on host paging to deal with the
overcommitment. The system became unre-
sponsive beyond an overcommitment ratio of

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 256 512 1024 2048 4096 8192 16384 32768 65536

Re
la

tiv
e

#T
ra

ns
ac

tio
ns

Host Memory Size [MB]

Partitioned
HostPaging(1.5G)
CMM1(1.5G)
CMM2(1.5G)
CMM2(256M)
CMM2(096M)

Figure 6: Relative degradation in transaction
rate for a 32 server Apache benchmark for var-
ious global memory management methods and
under tightening memory constraints

(1.5 ∗ 32)/8 (PM = 8GB). With the existing
z/VM-Linux ballooning method, CMM1, a re-
configuration sample every 30 seconds and a
setting to allow guests to shrink down to RMi =
64MB, we were able to continue to reduce the
PM to 256M at about 50% performance loss
for guests that were configured with the initial
guest maximum guest size of RMmax

i = 1.5GB.
This is due to the fact that the workload is stable
and exhibits a small working set size and bal-
looning can shrink the RMi towards their work-
ing set size. With CMM2 for RMi = 1.5GB, we
can see that performance lacks the CMM1 bal-
looning curve, which is due to the fact that the
guests have to manage a larger amount of mem-
ory (1.5GB) as compared to the ballooning sce-
nario which effectively reduces the memory
that needs to be managed. CMM2 for RMi =
256MB guests very closely tracks the balloon-
ing method. To continue on that path, we ran
CMM2 for RMi = 96MB guests, we see that in
the range of 512M-3GB, CMM2 outperforms
CMM1 ballooning. This underscores that there
is potential in having CMM2 and CMM1 de-
ployed together, namely utilize CMM1 to size
the guests reasonably and then utilize CMM2
for short term overcommitments.

328 • Collaborative Memory Management in Hosted Linux Environments

6 Conclusions and Future Work

In this paper we introduced a novel approach
to collaborative memory management in hosted
operating system environments. We described
the problems that are associated with pure dy-
namic memory partitioning and pure host pag-
ing. We defined an architecture that will al-
low us to reap the benefits of both approaches,
while avoiding the drawbacks. Our approach
relies on an information sharing of guest page
usage and host residency information to facili-
tate and coordinate both the host and the guest
page reclamation process. The framework
has been implemented on IBM’s z/Architecture
running Linux on zSeries guests and the z/VM
host operating system. The information sharing
was implemented as a millicode instruction.

In the current state of our work, we have shown
for various scenarios that we can successfully
identify discardable guest pages in the host and
that the overhead can be kept within 0.25% for
maintaining the state information. We have also
presented our first scalability analysis that has
shown that CMM2 can outperform host paging
and CMM1 ballooning even for a very stable
non-bursty workload, as long as we can rely on
a mechanism to approximately size the guest
images.

The current ongoing work is a comprehensive
scalability analysis of the kernel compile, the
SPECWeb2005 and bursty workloads. In par-
ticular, the latter two we expect to exhibit better
performance with CMM2 as compared to the
other methods. We are also working on an ex-
tension that eliminates double paging faults.

References

[1] D.L.Osisek, K.M.Jackson, and P.H.Gum,
Esa/390 interpretive-execution

architecture - foundation for vm/esa, IBM
Systems Journal 30 (1991), no. 1, 34–51.

[2] I. Pratt, K. Fraser, S. Hand, C. Limpach,
A. Warfield, D. Magenheimer,
J. Nakajima, and A. Mallick, Xen 3.0 and
the Art of Virtualization, Proceedings of
the Ottawa Linux Symposium, 2005.

[3] Carl A. Waldspurger, Memory resource
management in vmware esx server,
SIGOPS Oper. Syst. Rev. 36 (2002),
no. SI, 181–194.

Copyright c© 2006 IBM.

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM and the IBM logo are trademarks or registered
trademarks of International Business Machines Cor-
poration in the United States and/or other countries.

UNIX is a registered trademark of The Open Group
in the United States and other countries.

Linux is a registered trademark of Linus Torvalds
in the United States, other countries, or both. Other
company, product, and service names may be trade-
marks or service marks of others. References in this
publication to IBM products or services do not im-
ply that IBM intends to make them available in all
countries in which IBM operates.

This document is provided “AS IS,” with no express
or implied warranties. Use the information in this
document at your own risk.

Chip Multi Processing aware Linux Kernel Scheduler

Suresh Siddha
suresh.b.siddha@intel.com

Venkatesh Pallipadi
venkatesh.pallipadi@intel.com

Asit Mallick
asit.k.mallick@intel.com

Abstract

Recent advances in semiconductor manufactur-
ing and engineering technologies have led to
the inclusion of more than one CPU core in a
single physical processor package. This, popu-
larly known as Chip Multi Processing (CMP),
allows multiple instruction streams to execute
at the same time. CMP is in addition to today’s
Simultaneous Multi Threading (SMT) capabil-
ities, like Intel R© Hyper-Threading Technology
which allows a processor to present itself as two
logical processors, resulting in best use of ex-
ecution resources. With CMP, today’s Linux
Kernel will deliver instantaneous performance
improvement. In this paper, we will explore
ideas for further improving peak performance
and power savings by making the Linux Kernel
Scheduler CMP aware.

1 Introduction

To meet the growing requirements of proces-
sor performance, processor architects are look-
ing at new technologies and features focusing
on enhanced performance at a lower power dis-
sipation. One such technology is Simultane-
ous Multi-Threading (SMT). Hyper-Threading
(HT) Technology[5] introduced in 2002, is In-
tel’s implementation of SMT. HT delivers two

logical processors running on the same execu-
tion core, sharing all the resources like func-
tional execution units and cache hierarchy. This
approach interleaves the execution of two in-
struction streams, making the most effective
use of processor resources. It maximizes the
performance vs. transistor count and power
consumption.

Recent advances in semiconductor manufac-
turing and engineering technologies are lead-
ing to rapid increase in transistor count on a
die. For example, forthcoming Itanium R© fam-
ily processor code named Montecito will have
more than 1.7 billion transistors on a die! As
the next logical step to SMT, these extra transis-
tors are put to effective use by including more
than one execution core with in a single physi-
cal processor package. This is popularly known
as Chip Multi Processing (CMP). Depending
on the number of execution cores in a pack-
age, it’s either called a dual-core[4] (two exe-
cution cores) or multi-core (more than two ex-
ecution cores) capable processors. In multi-
threading and multi-tasking environment, CMP
allows for significant improvement in perfor-
mance at the system level.

In this paper, in section 2 we will look at
an overview of CMP and some implementa-
tion examples. Section 3 will talk about the
generic OS scheduler optimization opportuni-
ties that are appropriate in CMP environment.

330 • Chip Multi Processing aware Linux Kernel Scheduler

Linux Kernel Scheduler implementation details
of these optimizations will be dwelled in sec-
tion 4. We will close the paper with a brief look
at CMP trends in future generation processors.

2 Chip Multi Processing

In a Chip Multi Processing capable physical
processor package, more than one execution
core reside in a physical package. Each core
has its own resources (architectural state, reg-
isters, execution units, up-to a certain level of
cache, etc.). Shared resources between the
cores in a physical package vary depending on
the implementation. Some of the implementa-
tion examples are

a) each core could have a portion of on-die
cache (for example L1) exclusively for itself
and then have a portion of on-die cache (for
example L2 and above) that is shared between
the cores. An example of this is the upcom-
ing first mobile dual-core processor from Intel,
code named Yonah.

b) each core having its own on-die cache hier-
archy and its own communication path to the
Front Side Bus (FSB). An example of this is
the Intel R© Pentium R© D processor.

Figure 1 shows a simplified block diagram of
a physical package which is CMP capable,
where two execution cores reside in one physi-
cal package, sharing the L2 cache and front side
bus resources.

A physical package can be both CMP and SMT
capable. In that case, each core in the physical
package can in turn contain more than one log-
ical thread. For example, a dual-core with HT
will enable a single physical package to appear
as four logical processors, capable of running
four processes or threads simultaneously. Fig-
ure 2 shows an example of a CMP with two

Figure 1: CMP implementation with two
cores sharing L2 cache and Bus interface

Figure 2: CMP implementation with two
cores, each having two logical threads. Each
core has their own cache hierarchy and com-
munication path to FSB

logical threads in each core and with each core
having their own cache hierarchy and their own
communication path to the FSB. An example of
this is the Intel R© Pentium R© D Extreme Edition
processor.

3 CMP Optimization opportunities

A multi-threaded application that scales well
and is optimized on SMP systems will have an
instantaneous performance benefit from CMP
because of these extra logical processors com-
ing from cores and threads. Even if the appli-

2006 Linux Symposium, Volume Two • 331

cation is not multi-threaded, it can still take ad-
vantage of these extra logical processors in a
multi-tasking environment.

CMP also brings in new optimization oppor-
tunities which will further improve the sys-
tem performance. One of the optimization op-
portunity is in the area of Operating System
(OS) scheduler. Making the OS scheduler CMP
aware will result in an improved peak perfor-
mance and power savings.

In general, OS scheduler will try to equally dis-
tribute the load among all the available proces-
sors. In a CMP environment, OS scheduler can
be further optimized by looking at micro archi-
tectural information(like L2 cache misses, Cy-
cles Per Instruction (CPI), . . .) of the running
tasks. OS scheduler can decide which tasks can
be scheduled on same core/package and which
can’t be scheduled together based on this micro
architectural information. Based on these deci-
sions, scheduler tries to decrease the resource
contentions in a CPU core or a package and
thereby resulting in increased throughput. In
the past, some work[10, 9] has been done in this
area and because of the complexities involved
(like what micro architectural information need
to be tracked for each task and issues in incor-
porating this processor architecture specific in-
formation into generic OS scheduler) this work
is not quite ready for the inclusion in today’s
Operating Systems.

We will not address the micro architectural in-
formation based scheduler optimizations in this
paper. Instead this paper talks about the OS
CMP scheduler optimization opportunities in
the case where the system is lightly loaded (i.e.,
the number of runnable tasks in the system are
less compared to the number of available pro-
cessors in the system). These optimization op-
portunities are simple and straight forward to
leverage in today’s Operating Systems and will
help in improving peak performance or power
savings.

3.1 Opportunities for improving peak per-
formance

In a CMP implementation where there are no
shared resources between cores sharing a phys-
ical package, cores are very similar to individ-
ual CPU packages found in a multi-processor
environment. OS scheduler which is optimized
for SMT and SMP will be sufficient for deliv-
ering peak performance in this case.

However, in most of the CMP implementations,
to make best use of the resources cores in a
physical package will share some of the re-
sources (like some portion of cache hierarchy,
FSB resources, . . .). In this case, kernel sched-
uler should schedule tasks in such a way that it
minimizes the resource contention, maximizes
the system throughput and acts fair between
equal priority tasks.

Let’s consider a system with four physical CPU
packages. Assume that each CPU package has
two cores sharing the last level cache and FSB
queue. Let’s further assume that there are four
runnable tasks, with two tasks scheduled on
package 0, one each on package 1, 2 and pack-
age 3 being idle. Tasks scheduled on package
0 will contend for last level cache shared be-
tween cores, resulting in lower throughput. If
all the tasks are FSB intensive (like for exam-
ple Streams benchmark), because of the shared
FSB resources between cores, FSB bandwidth
for each of the two tasks in package 0 will be
half of what individual tasks get on package
1 and 2. This scheduling decision isn’t quite
right both from throughput and fairness per-
spective. The best possible scheduling decision
will be to schedule the four available tasks on
the four different packages. This will result in
each task having independent, full access to last
level shared cache in the package and each will
get fair share of the FSB bandwidth.

On CMP with shared resources between cores

332 • Chip Multi Processing aware Linux Kernel Scheduler

in a physical package, for peak performance
scheduler must distribute the load equally
among all the packages. This is similar to
SMT scheduler optimizations in todays operat-
ing systems.

3.2 Opportunities for improving power
savings

Power management is a key feature in today’s
processors across all market segments. Dif-
ferent power saving mechanisms like P-states
and C-States are being employed to save more
power. The configuration and control infor-
mation of these power saving mechanisms are
exported through Advanced Configuration and
Power Interface (ACPI)[2]. Operating System
directed Configuration and Power Management
(OSPM) uses these controls to achieve desired
balance between performance and power.

ACPI defines the power state of processors and
are designated as C0, C1, C2, C3,. . . , Cn. The
C0 power state is an active power state where
the CPU executes instructions. The C1 through
Cn power states are processor sleeping (idle)
states where the processor consumes less power
and dissipates less heat.

While in the C0 state, ACPI allows the perfor-
mance of the processor to be altered through
performance state (P-state) transitions. Each
P-state will be associated with a typical power
dissipation value which depends on the operat-
ing voltage and frequency of that P-state. Using
this, a CPU can consume different amounts of
power while providing varying performance at
C0 (running) state. At a given P-state, CPU
can transit to numerically higher numbered C-
states in idle conditions. In general, numeri-
cally higher the P-states (i.e., lower the CPU
voltage) and C-states, the lesser will be power
consumed, heat dissipated.

3.2.1 CMP implications on P and C-states

P-states

In a CMP configuration, typically all cores in
one physical package will share the same volt-
age plane. Because of this, a CPU package
will transition to a higher P-state, only when
all cores in the package can make this transi-
tion. P-state coordination between cores can
be either implemented by hardware or soft-
ware. With this mechanism, P-state transition
requests from cores in a package will be co-
ordinated, causing the package to transition to
target state only when the transition is guar-
anteed to not lead to incorrect or non-optimal
performance state. If one core is busy running
a task, this coordination will ensure that other
idle cores in that package can’t enter lower
power P-states, resulting in the complete pack-
age at the highest power P-state for optimal per-
formance. In general, this coordination will en-
sure that a processor package frequency will be
the numerically lowest P-state (highest voltage
and frequency) among all the logical processors
in the processor package.

C-states

In a CMP configuration with shared resources
between the cores, processor package can be
broken up into different blocks, one block for
each execution core and one common block
representing the shared resources between all
the cores (as show in Figure 1). Depending on
the implementation, each core block can inde-
pendently enter some/all of the C-state’s. The
common block will always reside in the numer-
ically lowest (highest power) C-state of all the
cores. For example, if one core is in C1 and
other core is in C0, shared block will reside
in C0.

2006 Linux Symposium, Volume Two • 333

3.2.2 Scheduling policy for power savings

Let’s consider a system having two physical
packages, with each package having two cores
sharing the last level cache and FSB resources.
If there are two runnable tasks, as observed
in the section 3.1 peak performance will be
achieved when these two tasks are scheduled
on different packages. But, because of the P-
state coordination, we are restricting idle cores
in both the packages to run at higher power P-
state. Similarly the shared block in both the
packages will reside in higher power C0 state
(because of one busy core) and depending on
the implementation, idle cores in both the pack-
ages may not be able to enter the available
lowest power C-state. This will result in non-
optimal power savings.

Instead, if the scheduler picks the same package
for both the tasks, other package with all cores
being idle, will transition slowly into the lowest
power P and C-state, resulting in more power
savings. But as the cores share last level cache,
scheduling both the tasks to the same package,
will not lead to optimal behavior from perfor-
mance perspective. Performance impact will
depend on the behavior of the tasks and shared
resources between the cores. In this particular
example, if the tasks are not memory/cache in-
tensive, performance impact will be very min-
imal. In general, more power can be saved
with relatively smaller impact on performance
by scheduling them on the same package.

On CMP with no shared resources between the
cores in a physical package, scheduler should
distribute the load among the cores in a pack-
age first, before looking for an idle package. As
a result, more power will be saved with no im-
pact on performance.

4 Linux Kernel Scheduler enhance-
ments

Process scheduler in 2.6 Linux Kernel is based
on hierarchical scheduler domains constructed
dynamically depending on the processor topol-
ogy in the system. Each domain contains a
list of CPU groups having a common property.
Load balancer runs at each domain level and
scheduling decisions happen between the CPU
groups at any given domain.

All the references to “current Linux Kernel” in
the coming sections, stands for version 2.6.12-
rc5[6]. Current Linux Kernel domain scheduler
is aware of three different domains represent-
ing SMT (called cpu_domain), SMP (called
phys_domain) and NUMA (called node_
domain). Current Linux Kernel has core de-
tection capabilities for x86, x86_64, ia64 ar-
chitectures. This will place all CPU cores in
a node into different scheduler groups in SMP
scheduler domain, even though they reside in
different physical packages. The first step nat-
urally is to add a new scheduler domain rep-
resenting CMP (called core_domain). This
will help the kernel scheduler identify the cores
sharing a given physical package. This will en-
able the implementation of scheduling policies
highlighted in section 3.

Figure 3 shows the scheduler domain hierarchy
setup with current Linux Kernel on a system
having two physical packages. Each package
has two cores and each core having two logical
threads. Figure 4 shows the scheduler domain
hierarchy setup with the new CMP scheduler
domain.

4.1 Scheduler enhancements for improv-
ing peak performance

As noted in section 3.1, when the CPU cores in
a physical package share resources, peak per-

334 • Chip Multi Processing aware Linux Kernel Scheduler

Figure 3: Scheduler domain hierarchy with
current Linux Kernel on a system hav-
ing two physical packages, each having two
cores and each core having two logical
threads.

formance will be achieved when the load is
distributed uniformly among all physical pack-
ages. Following subsections will look into the
enhancements required for implementing this
policy.

4.1.1 Active load balance in presence of
CMP and SMT

With SMT and SMP domains in current Linux
Kernel, load balance at SMP domain will help
in detecting a situation where all the SMT sib-
lings in one physical package are completely
idle and more than one SMT sibling is busy
in another physical package. Load balance on
processors in idle package will detect this situ-
ation and will kick active load balance on one
of the non idle SMT siblings in the busiest
package. Active load balance then looks for
a package with all the SMT threads being idle
and pushes the task (which was just running be-
fore active load balance got kicked in) to one of
the siblings of the selected idle package, result-
ing in optimal performance.

Similarly, in the presence of new scheduler do-
main for CMP, load balance in SMP domain

Figure 4: Demonstration of active load bal-
ance with 4 tasks, on a system having two
physical packages, each having two cores
and each core having two logical threads.
Active load balance kicks in at the core do-
main for the first package, distributing the
load equally among the cores

will help detect a situation where more than one
core in a package is busy, with another package
being completely idle. Similar to the above,
active load balance will get kicked on one of
the non-idle cores in the busiest package. In
the presence of SMT and CMP, active load bal-
ance needs to pick up an idle package if one is
available; otherwise it needs to pick up an idle
core. This will result in load being uniformly
distributed among all the packages in a SMP
domain and all the cores with in a package.

In pre-2.6.12 “-mm” kernels, there is a change
in active load balance code which leverage the
domain scheduler topology more effectively.
Instead of looking for an idle package, active
load balance code is modified in such a way
that it simply moves the load to the processor
which detects the imbalance. In some of the
cases[1] this will take few extra hops in find-
ing a correct processor destination for a process
but because of simplicity reasons this was pur-
sued. This modification to active load balance
also works in the presence of both SMT and
CMP.

2006 Linux Symposium, Volume Two • 335

Figure 5: Demonstration of active load bal-
ance with 2 tasks, on a system having two
physical packages, each having two cores
and each core having two logical threads.
Active load balance kicks in at SMP domain
between the two physical packages, dis-
tributing the load equally among the phys-
ical packages

Figures 4 and 5 show how active balance plays
a role in distributing the load equally among
the physical packages and CPU cores in pres-
ence of CMP and SMT. Figure 6 shows how
the new active balance will help in distributing
the load equally among the physical packages,
even though there is no idle package available.
This will help from the fairness perspective.

4.1.2 cpu_power selection

One of the key parameters of a scheduler do-
main is the scheduler group’s cpu_power.
It represents effective CPU horsepower of the
scheduler group and it depends on the under-
neath domain characteristics. With SMP and
SMT domains in current Linux Kernel, cpu_
power of sched groups in the SMP domain is
calculated with the assumption that each ex-
tra logical processor in the physical package
will contribute 10% to the cpu_power of the
physical package.

With the new CMP domain, cpu_power for

Figure 6: Demonstration of active load bal-
ance with 6 tasks, on a system having two
physical packages, each having four cores.
Active load balance kicks in at SMP domain
between the two physical packages, dis-
tributing the load equally among the phys-
ical packages

CMP domains scheduler group will be same
as cpu_power of schedule group in current
Linux Kernel’s SMP domain (as the under-
neath SMT domain will remain same). Be-
cause of the new CMP domain underneath, new
cpu_power for SMP domains sched group
needs to be selected.

If the cores in a physical package don’t share
resources, then the cpu_power of groups in
SMP domain, will simply be the horsepower
sum of all the cores in that physical package.
On the other hand, if the cores in a physical
package share resources, then the cpu_power
of groups in SMP domain has to be smaller
than the no resource sharing case. We will dis-
cuss more about this in the power saving sec-
tions 4.2.1 and 4.2.2 and determine how much
smaller this needs to be for the peak perfor-
mance mode policy.

4.1.3 exec, fork balance

Pre-2.6.12 “-mm” kernels have exec, fork
balance[3] introduced by Nick Piggin. Setting

336 • Chip Multi Processing aware Linux Kernel Scheduler

SD_BALANCE_{EXEC,FORK} flags to domains
SMP and above, will enable exec, fork bal-
ance. Because of this, whenever a new pro-
cess gets created, it will start on the idlest pack-
age and idlest core with in that package. This
will remove the dependency on the active load
balance to select the correct physical package,
CPU core for a new task. This makes the pro-
cess of picking the right processor more opti-
mal as it happens at the time of task creation,
instead of happening after a task starts running
on a wrong CPU.

exec, fork balance will select the optimal CPU
at the beginning itself and if dynamics change
later during the process run, active load bal-
ance will kick in and distribute the load equally
among the physical packages and the CPU
cores with in them.

4.2 Scheduler enhancements for improv-
ing power savings

As observed in section 3.2, when the system
is lightly loaded, optimal power savings can be
achieved when all the cores in a physical pack-
age are completely loaded before distributing
the load to another idle package.

When the cores in a physical package share re-
sources, this scheduling policy will slightly im-
pact the peak performance. Performance im-
pact will depend on the application behavior,
shared resources between cores and the number
of cores in a physical package. When the cores
don’t share resources, this scheduling policy
will result in an improved power savings with
no impact on peak performance.

For the CMP implementations which don’t
share resources between cores, we can make
this power savings policy as default. For the
other CMP implementations, we can allow the

administrator to choose a scheduling policy of-
fering either peak performance (covered in sec-
tion 4.1) or improved power savings. Depend-
ing on the requirements one can select either of
these policies.

Following subsections highlight the changes re-
quired in kernel scheduler for implementing
improved power savings policy on CMP.

4.2.1 cpu_power selection

The first step in implementing this power sav-
ings policy is to allow the system under light
load conditions to go into the state with one
physical package having more than one core
busy and with another physical package be-
ing completely idle. Using scheduler group’s
cpu_power in SMP domain and with modifi-
cations to load balance, we can achieve this.

In the presence of CMP domain, we will set
cpu_power of scheduling group in SMP do-
main to the sum of all the cores horsepower
in that physical package. And if the load bal-
ance is modified such that the maximum load
in a physical package can grow up to the cpu_
power of that scheduling group, then the sys-
tem can enter a state, where one physical pack-
age has all its cores busy and another physical
package in the system being completely idle.

We will leave the cpu_power for the CMP
domain as before (same as the one used for
SMP domain in the current Linux Kernel) and
this will result in active load balance when
it sees a situation where more than one SMT
thread in a core is busy, with another core be-
ing completely idle. As the performance con-
tribution by SMT is not as large as CMP, this
behavior will be retained in power saving mode
as well.

2006 Linux Symposium, Volume Two • 337

4.2.2 Active load balance

Next step in implementing this power savings
policy is to detect the situation where there are
multiple packages being busy, each having lot
of idle cores and move the complete load into
minimal number of packages for optimal power
savings (this minimal number depends on the
number of tasks running and number of cores
in each physical package).

Let’s take an example where there are two
packages in the system, each having two cores.
There can be a situation where there are two
runnable tasks in the system and each end up
running on a core in two different packages,
with one core in each package being idle. This
situation needs to be detected and the complete
load needs to be moved into one physical pack-
age, for more power savings.

For detecting this situation, scheduler will cal-
culate watt wastage for each scheduling group
in SMP domain. Watt wastage represents num-
ber of idle cores in a non-idle physical pack-
age. This is an indirect indication of wasted
power by idle cores in each physical package
so that non-idle cores in that package run un-
affected. Watt wastage will be zero when all
the cores in a package are completely idle or
completely busy. Scheduler can try to mini-
mize watt wastage at SMP domain, by moving
the running tasks between the groups. During
the load balance at SMP domain level, if the
normal load balance doesn’t detect any imbal-
ance, idle core (in a package which is not wast-
ing much power compared to others in SMP
domain) can run this power saving scheduling
policy and see if it can pull a task (using active
load balance) from a package which is wasting
lot of power.

In the last example, idle core in package 0
can detect this situation and can pickup the
load from busiest core in package 1. To pre-

Figure 7: Demonstration of active load bal-
ance for improved power savings with 4
tasks, on a system having two physical pack-
ages, each having four cores. Active load bal-
ance kicks in between the two physical pack-
ages, resulting in movement of the complete
load to one physical package, resulting in im-
proved power savings

vent the idle core in package 1 doing the same
thing to the busiest core in package 0 (caus-
ing unnecessary ping-pong) load balance algo-
rithm needs to follow the ordering. Figure 7
shows a demonstration of this active load bal-
ance, which will result in improved power sav-
ings.

As the number of cores residing in a physical
package increase, shared resources between the
cores will become the bottleneck. As the con-
tention for the resources increase, power sav-
ing scheduling policy will result in an increased
impact on peak performance. As shown in Fig-
ure 7, moving the complete load to one phys-
ical package will indeed consume less power
compared to keeping both the packages busy.
But if the cores residing in a package share
last level cache, the impact of sharing the last
level cache by 4 tasks may outweigh the power
saving. To limit such performance impact, we
can let the administrator choose the allowed
watt wastage for each package. Allowed watt
wastage is an indirect indication of the schedul-
ing group’s horsepower. cpu_power of the

338 • Chip Multi Processing aware Linux Kernel Scheduler

scheduling group in SMP domain can be mod-
ified proportionately based on the allowed watt
wastage. Load balance modifications in sec-
tion 4.2.1 will limit the maximum load that
a package can pickup (under light load con-
ditions) and hence the impact to peak perfor-
mance. More power will be saved with smaller
allowed watt wastage. In the case shown in Fig-
ure 7, the administrator can say, for example,
that under light load conditions one physical
package should not be overloaded with more
than 2 tasks.

Setting the scheduler group’s cpu_power of
SMP domain to the sum of all the cores horse-
power (i.e., allowed watt wastage is zero) will
result in a package picking up the max load
depending on the number of cores. This will
result in maximum power saving. Setting the
cpu_power to a value less than the combined
horsepower of two cores (i.e., allowed watt
wastage is one less than the number of cores
in a physical package) will distribute the load
equally among the physical packages. This
will result in peak performance. Any value for
cpu_power in between will limit the impact
to peak performance and hence the power sav-
ings.

Administrator can select the peak performance
or the power savings policy by setting appro-
priate value to the scheduler group’s cpu_
power in SMP domain.

4.2.3 exec, fork balance

SD_BALANCE_{EXEC,FORK} flags needs to be
reset for domains SMP and above, causing the
new process to be started in the same physi-
cal package. Normal load balance will kick
in when the load of a package is more than
the package’s horsepower (cpu_power) and
there is an imbalance with respect to another
physical package.

5 Summary & Future work

CMP related scheduler enhancements dis-
cussed in this paper fits naturally to the 2.6
Linux Kernel Domain Scheduler environment.
Depending on the requirements, administra-
tor can select the peak performance or power
saving scheduler policy. We have prototyped
peak performance policy discussed in this pa-
per. We are currently experimenting with the
power saving policy, so that it behaves as ex-
pected under the presence of CMP, SMT and
under the light, heavy load conditions. Once
we complete the performance tuning and anal-
ysis with real world workloads, these patches
will hit the Linux Kernel Mailing List.

For the future generation CMP imple-
mentations, researchers and scientists are
experimenting[8] with “many tens of cores,
potentially even hundreds of cores per package
and these cores supporting tens, hundreds,
maybe even thousands of simultaneous execu-
tion threads.” Probably we can extend Moore’s
law[7] to CMP and can dare say that number
of cores per die will double approximately
every two years. This sounds plausible for
the coming decade at least. With more CPU
cores per physical package, kernel scheduler
optimizations addressed in this paper will
become critical. In future, more experiments
and work need to be focused on bringing micro
architectural information based scheduling to
the mainline.

Acknowledgments

Many thanks to the colleagues at Intel Open
Source Technology Center for their continuous
support.

Thanks to Nick Piggin and Ingo Molnar for al-
ways providing quick comments on our sched-
uler patches.

2006 Linux Symposium, Volume Two • 339

References

[1] Active load balance modification in
pre-2.6.12 “-mm” kernels. http:
//www.ussg.iu.edu/hypermail/
linux/kernel/0503.1/0057.html.

[2] Advanced configuration and power interface
spec 3.0. http://www.acpi.info/
DOWNLOADS/ACPIspec30.pdf.

[3] Balance on exec and fork in pre-2.6.12 “-mm”
kernels. http:
//www.ussg.iu.edu/hypermail/
linux/kernel/0502.3/0037.html.

[4] Intel dual-core processors.
http://www.intel.com/
technology/computing/dual-core.

[5] Intel hyper-threading technology.
http://www.intel.com/
technology/hyperthread.

[6] Linux kernel.
http://www.kernel.org.

[7] Moore’s law. http://www.intel.com/
research/silicon/mooreslaw.htm.

[8] Processor and platform evolution for the next
decade. http://www.intel.com/
technology/techresearch/idf/
platform-2015-keynote.htm.

[9] Daniel Nussbaum Alexandra Fedorova,
Christopher Small and Margo Seltzer. Chip
Multithreading Systems Need a New
Operating System Scheduler. SIGOPS, ACM,
2004.

[10] Jun Nakajima and Venkatesh Pallipadi.
Enhancements for Hyper-Threading
Technology in the operating System: Seeking
the Optimal Scheduling. WIESS, USENIX,
December 2002.

340 • Chip Multi Processing aware Linux Kernel Scheduler

Dynamic Device Handling on the Modern Desktop

David Zeuthen
Red Hat, Inc.

davidz@redhat.com

Kay Sievers
Novell, Inc.

kay.sievers@suse.de

Abstract

Today, where almost all devices can be added
and removed from a running system, the
whole system environment needs to dynami-
cally adopt to such changes. It creates the need
to move from static device specific configura-
tions given at install time to policy based run-
time device configuration and change propaga-
tion troughout the whole system including cur-
rently running system services and end user ap-
plications.

Architectural Overview

The Linux kernel 2.6 exports almost all inter-
esting internal device state in a special filesys-
tem and sends out events for every change.
Udev and HAL as system-wide services are
picking up these device events, possibly re-
quest more information from the device itself
or merge available information stored on the
system. A global list of devices, including
the whole device context is maintained and
made available to every possible consumer. All
changes to that list are propagated over a sim-
ple inter-process-communication (IPC) inter-
face. Applications can subscribe to a specific
class of changes and adapt itself according to
that. Based on the notification the application

has received, it can reflect that change accord-
ingly or in response request a specific action to
be taken for a specific device.

The Path of an Event

The core of the Linux kernel keeps the control
over the interfaces where devices can be con-
nected and disconnected at runtime. The ker-
nel drivers create or destroy internal device in-
stances, to handle and represent devices. These
device instances are exported through the spe-
cial filesystem sysfs. Most of the directories in
sysfs represent a device and the files in the di-
rectories are properties or methods to request a
specific action of the device:

/sys/class/block/sda
|-- dev
|-- device -> ../../devices/pci0000:00/\

0000:00:1f.2/host0/target0:0:0/0:0:0:0
...
| |-- read_ahead_kb
| ‘-- scheduler
|-- range
|-- removable
|-- sda1
| |-- dev
| |-- size
| |-- start
| |-- stat
| ‘-- uevent
‘-- uevent

The hierachy of the device directories repre-
sent the dependency of the devices given by

342 • Dynamic Device Handling on the Modern Desktop

the hardware itself and the logical stacking con-
structed by the kernel driver core. Every de-
vice is identified by its filesystem path, called
the devpath. Everytime a device is added or
removed an uevent is sent out over a kernel
netlink socket:

add@/class/input/devices/input5
ACTION=add
DEVPATH=/class/input/devices/input5
SUBSYSTEM=input
SEQNUM=1166
...

A raw message send over the socket looks like
this:

recv(3,"add@/class/input/devices/input5\0
ACTION=add\0
DEVPATH=/class/input/devices/input5\0
SUBSYSTEM=input\0SEQNUM=1166\0
CLASS=/class/input/devices\0
PHYSDEVPATH=/devices/pci0000:00/0000:00:1d.1/\

usb2/2-2/2-2:1.0\0
PHYSDEVBUS=usb\0PHYSDEVDRIVER=usbhid\0
PRODUCT=3/46d/c03e/2000\0
NAME=\"Logitech USB-PS/2 Optical Mouse\"\0
PHYS=\"usb-0000:00:1d.1-2/input0\"\0
UNIQ=\"\"\0EV=7\0KEY=70000 0 0 0 0 0 0 0 0\0
REL=103\0", 2048, 0) = 383

An event sequence for a USB storage device
looks like this:

add@/devices/pci0000:00/0000:00:1d.7/usb5/5-3
add@/devices/pci0000:00/0000:00:1d.7/\

usb5/5-3/5-3:1.0
add@/class/scsi_host/host13
add@/class/usb_device/usbdev5.15
add@/block/sdb
add@/class/scsi_generic/sg1
add@/class/scsi_device/13:0:0:0

remove@/class/scsi_generic/sg1
remove@/class/scsi_device/12:0:0:0
remove@/block/sdb
remove@/class/scsi_host/host12
remove@/devices/pci0000:00/0000:00:1d.7/\

usb5/5-3/5-3:1.0
remove@/class/usb_device/usbdev5.14
remove@/devices/pci0000:00/0000:00:1d.7/\

usb5/5-3

The udev [1] daemon listens on the socket and
matches the given event properties with a set of
simple rules:

KERNEL=="mice", NAME="input/$kernel_name"
ACTION=="add", MODALIAS=="?*", \
RUN+="/sbin/modprobe $modalias"

SUBSYSTEM=="scsi_device", ACTION=="add", \
RUN+="/sbin/modprobe sg"

KERNEL="sda[0-9]", \
IMPORT{program}="/sbin/vol_id --export $tempnode"

ENV{ID_FS_UUID}=="?*", \
SYMLINK+="disk/by-uuid/$env{ID_FS_UUID}"

RUN+="socket:/org/freedesktop/hal/udev_event"

Udev rules can specify the name of the de-
vice node to be created, request programs to
be executed to import additional data into the
event environment, or run external programs to
setup or initialize a device, or request a match-
ing module to be loaded into the kernel. Rules
can also pass the whole event udev has received
from the kernel, including possibly added data
collected from the device or system configu-
ration by executing a program or passing the
event over a domain socket.

A simple database with persistent device in-
formation is maintained by udev and can
be queried on demand by any program, but
udev does not watch any device state besides
adding or removal, and does not get notified
about things like battery state changes, media
changes in optical drives or card readers. The
udev infrastructure is limited to very short liv-
ing event handling to provide the initial setup
of a device and to reflect the kernels internal
device state to userspace.

All advanced subsystem specific knowledge
and device monitoring requires a stateful sys-
tem service that has specific knowlege about
certain classes of hardware, and has access to
information that can uniquely identify a device.

Abstraction and Meaningful Event
Context

In order to provide applications with more in-
formation than what the kernel or udev can pro-
vide, all hardware information is kept in the

2006 Linux Symposium, Volume Two • 343

stateful HAL daemon. Upon startup, the dae-
mon scans sysfs and builds a list of device ob-
jects. It connects to the udev daemon to get
notified about further device state changes and
updates its internal device representation from
that on accordingly. Each device object is iden-
tified by a Unique Device Identifier (UDI) and
each has a number of properties which simply
are key/value pairs:

udi =’/org/freedesktop/Hal/devices/volume_uuid\
_c66f3d19_2e10_44c0_9bd6_a8fefc476f7d’

volume.partition.msdos_part_table_type = 130
info.product = ’SWAP-hda2’
volume.size = 1077511680
volume.num_blocks = 2104515
volume.block_size = 512
volume.partition.number = 2
info.capabilities = {’volume’, ’block’}
info.category = ’volume’
volume.is_partition = true
volume.is_disc = false
volume.is_mounted_read_only = false
volume.is_mounted = false
volume.mount_point = ’’
volume.label = ’SWAP-hda2’
volume.uuid = ’c66f3d19-2e10-44c0-\

9bd6-a8fefc476f7d’
volume.fsversion = ’2’
volume.fsusage = ’other’
volume.fstype = ’swap’
storage.model = ’’
block.storage_device = ’/org/freedesktop/Hal/\

devices/storage_serial_NP0JT48299J8’
block.is_volume = true
block.minor = 2
block.major = 3
block.device = ’/dev/hda2’

These objects are exported via the D-BUS
[2] system message bus and each object
implements the org.freedesktop.Hal.
Device interface with methods that applica-
tions can use among other things to query prop-
erties. On Linux, there is almost a one to one
mapping between directories in sysfs and the
device objects. When new devices are plugged
in or out, device objects will appear and disap-
pear and applications listening on the message
bus can be notified. Depending on the device
object, properties may change values over time,
which also triggers notifications to subscribed
applications.

Most of the properties of HAL device objects
are derived from the contents of sysfs files,

some are read from the actual hardware us-
ing ioctl’s, some are merged from device in-
formation files and some are related to the ac-
tual device configuration. A device object has
one or more capabilities and for each capa-
bility a number of properties must be present.
Properties are name spaced; for example the
capability block requires properties prefixed
with block. Some properties are optional.
All properties are strongly typed (integer, dou-
ble, boolean, string, and list of strings are sup-
ported) and are defined in the HAL specifica-
tion [3].

Once a device object is constructed it is
matched by one or more device information
files to merge additional properties. These files
are simple XML files that define rules. For ex-
ample:

<match key="storage.model"
contains="Storage-CFC">

<merge key="storage.drive_type"
type="string">compact_flash</merge>

</match>

will match all device objects that contains
the string Storage-CFC in the storage.
model property and set the drive type to be a
Compact Flash reader, while

<!-- Sony Ericsson Handys with Memory Stick (Duo) -->
<match key="@storage.physical_device:usb.vendor_id"
int="0xfce">
<!-- K750i -->
<match key="@storage.physical_device:usb.product_id"
int="0xd016">
<merge key="storage.drive_type"
type="string">memory_stick</merge>

</match>
</match>

matches a specific USB device and sets the
drive to be of type memory stick. Since
the HAL specification [3] precisely defines the
properties (including the range of values they
can assume), an application can rely on this
property to e.g. display the right icon for such
drives that reads Compact Flash, MemoryStick
and so forth.

To provide up to date information including
when media is removed, HAL polls device

344 • Dynamic Device Handling on the Modern Desktop

files. This is a necessary since e.g. the Linux
kernel (rightly) refuses to do so, since it is not
always necessary.

For each device object, HAL provides a suffi-
cient number of properties for consumer appli-
cations to make intelligent choices about how
to react when new devices are added or re-
moved or when properties change. An example
is the way HAL abstracts batteries:

udi = ’/org/freedesktop/Hal/devices/acpi_BAT0’
battery.charge_level.percentage = 99
battery.charge_level.rate = 0
battery.charge_level.last_full = 20020
battery.charge_level.current = 19910
battery.voltage.current = 12429
battery.reporting.rate = 0 (0x0)
battery.reporting.current = 19910
battery.charge_level.capacity_state = ’ok’
battery.rechargeable.is_discharging = false
battery.rechargeable.is_charging = false
battery.is_rechargeable = true
battery.alarm.unit = ’mWh’
battery.alarm.design = 1002
battery.charge_level.unit = ’mWh’
battery.charge_level.granularity_2 = 1
battery.charge_level.granularity_1 = 1
battery.charge_level.low = 200
battery.charge_level.warning = 1002
battery.charge_level.design = 47520
battery.voltage.design = 10800
battery.voltage.unit = ’mV’
battery.technology = ’LION’
battery.serial = ’21805’
battery.model = ’IBM-08K8193’
battery.vendor = ’SANYO’
battery.present = true
battery.type = ’primary’

The battery capability is represented in the
way that the information about batteries is in-
dependent of whether the information is col-
lected via the ACPI or PMU power manage-
ment subsystems. HAL also represent some
uninterruptible power suppplies (UPS) devices
connected via USB in exactly the same way.
Also some wireless keyboards and mice hard-
ware will have capability battery since HAL
is able to report how much battery power is left.

Another kind of asynchronous information that
HAL reports are button events. HAL defines
the capability button:

udi = ’/org/freedesktop/Hal/devices/acpi_PWRF’

button.has_state = false
button.type = ’power’

udi = ’/org/freedesktop/Hal/devices/acpi_LID’
button.has_state = true
button.state.value = true
button.type = ’lid’

and the above snippet shows the representa-
tion of the power button and the lid button.
Since a button can be either pressed or remain
pressed down, the abstraction has the notion of
state. HAL creates device objects of capability
button from several sources including ACPI
(for power, sleep, lid buttons etc.), from con-
nected keyboards (to catch auxillary buttons in-
cluding sleep and eject buttons) and so forth.
When HAL detects that a button is pressed, an
asynchronous signal is emitted on the system
message bus and applications can react accord-
ingly. In the HAL universe this is known as
a DeviceCondition and it carries some detail
too.1

HAL supports the following capabilities:

• volume: Volumes

• storage: Drives

• net: Networking interfaces

• input: Input devices

• printer: Printers

• portable_audio_player: Portable
music players (mainly flash drives)

• alsa: ALSA audio devices

• oss: OSS audio devices
1Notably, HAL also emits device conditions on HAL

device objects representing optical drives when the eject
button is pressed. This enables applications in the desk-
top to unmount and eject the disc and solves the well-
known problem of nothing happening when the novice
user presses eject on the drive. Sadly, some broken hard-
ware does not supports this properly.

2006 Linux Symposium, Volume Two • 345

• laptop_panel: laptop panels

• ac_adaptor: AC adaptor

• battery: batteries

• button: special buttons on the system

• camera: for digital cameras (supported
by e.g. gphoto2)

One example of a consumer application that re-
lies solely on HAL for hardware information
is the gnome-power-manager application
[4]. In a nutshell, gnome-power-manager
is the one-stop solution for system-wide power
management on the GNOME desktop and it
rivals and exceeds what properitary operating
systems offers the end users. It includes neat
things like user interface dialogs for configur-
ing when to put the computer and display to
sleep; it support UPS’es; display brightness,
graphs of the discharge rate and so forth. In
many ways it is a great showcase of how one
can intelligent use the wealth of information
stored in HAL.

Handling Events from the Con-
sumers View

HAL was designed and architected primarily
with desktop applications in mind. One of the
goals was to make it easier to write desktop
software to automate configuration of hardware
with little or no user intervention. Another de-
sign goal was that end users should never ever
have to edit configuration in /etc since end
users are not expected to understand the file
(they are all different formats) and they will not
necessarily have privileges to do so.

Since UNIX-like operating systems are multi-
user, it is necessary to store and read the device

configuration settings from within the users
session as users may configure hardware in dif-
ferent ways. On the GNOME desktop this
means reading settings from the GNOME con-
figuration system gconf [5].

Historically, software for configuring hardware
wasn’t designed with the desktop in mind. One
reason for this is that configuring hardware re-
quires super user privileges and until D-BUS
emerged there was no good way of letting un-
privileged applications perform privileged op-
erations.

With HAL this has changed: each device object
in HAL may export one or more capability spe-
cific interfaces to be invoked by software run-
ning in the user session. That way global de-
vice state change events travel from the system
level through the user session, where the indi-
vidual user policy is stored, back to the system
to setup devices according to the users given
preference.

For example device objects of capability vol-
ume exports the org.freedesktop.Hal.
Device.Volume interface with the follow-
ing methods:

• Mount(): for mounting a volume into
the filesystem

• Unmount(): for unmounting a volume

• Eject(): for ejecting the volume

Each method may throw one or more ex-
pections, for example the Mount() method
may throw the following exceptions (omitting
prefix org.freedesktop.Hal.Device.
Volume):

• UnknownError: Some unknown error
occured

346 • Dynamic Device Handling on the Modern Desktop

• PermissionDenied: The user is not
allowed to mount the volume

• AlreadyMounted: The volume is al-
ready mounted

• InvalidMountOption: Attempted to
mount with an invalid mount option

• UnknownFilesystemType: The file
system is not supported on the system
(missing file system driver for instance)

• InvalidMountpoint: The mount
point specific is not allowed

• MountPointNotAvailable: The ap-
plication requested a mount point that is
not available

• org.freedesktop.Hal.Device.
PermissionDeniedByPolicy: The
caller lacked a PolicyKit privilege to
carry out this operation. The name of the
privilege is returned in the detail of the
exception.

This format is a lot more predictable and er-
ror handling friendly than the traditional way
of parsing the output of e.g. mount(1). Other
methods have well defined exceptions too.

At the time of writing, the following inter-
faces are supported by HAL (the list will have
the org.freedesktop.Hal.Device pre-
fix omitted):

• Volume: For mounting, unmounting,
ejecting volumes / filesystems

• Volume.Crypto: For setting up LUKS
volumes

• SystemPowerManagement: For sus-
pend, hibernate, poweroff, reboot

• LaptopPanel: For display bright-
ness on laptops; currently supports mod-
els from Toshiba, Asus, Panasonic,
IBM/Lenovo, Sony, HP 2

Since HAL uses D-BUS for IPC any unpriv-
ileged application may invoke device object
methods and this needs to be limited a no to
become a security issue. D-BUS by itself has
a notion of security policy but this is, by defi-
nition, quite limited since D-BUS knows only
little of the semantics of the object a given
method is invoked on. To remedy this, HAL
depends on PolicyKit [10] to check if the caller
have privileges to invoke a given method on a
given device object. This enables fine grained
control that allows only some users to mount
e.g. removable media while denying mounting
of fixed hard disks. For more information see
the PolicyKit documentation.

Current State and Future Plans

The combination of device properties, device
conditions and capability specific methods pro-
vides an extensible and stable interface. At
time of writing, HAL is already being ported
to other operating system kernels and envi-
ronments such as OpenSolaris [6]. All main-
stream Linux distributions today ship udev and
HAL and several desktop projects including
GNOME (through Project Utopia [8]) and KDE
(through Solid [9]) have HAL as a blessed 3 ex-
ternal dependency.

The task of “Making Hardware Just Work” is
greater than the sum of just an OS kernel,

2This all relies on laptop specific ACPI modules as
the kernel / X.org sadly lacks a standardized interface for
this

3but optional since desktops normally supports all
UNIX-like operating systems

2006 Linux Symposium, Volume Two • 347

drivers, udev, HAL, and the desktop environ-
ments; it requires integration and cooperation
between developers of all projects.

One of the driving motivations for introducing
HAL as a new layer between higher level soft-
ware and the system device enumeration and
discovery was to centralize the needed knowl-
edge about specific device subsystems at a sin-
gle location and provide a unified interface to
that information. As an effect of this effort,
a lot of higher level software ripped out its
own device discovery and monitoring code and
moved it into HAL. While at one side it is ex-
actly what was intended, on the other side it in-
creases the complexity in HAL and creates the
need to get people involved with very specific
subsystem knowledge at the low system level.

With the wide-spread use of HAL, which is
the first generic system-wide device monitor-
ing service, a lot of bugs in the Linux kernel
were dicovered, cause likely no other software
ever used the kernel interfaces that way or that
extensively. A lot of these issues got fixed over
time, but there is still a lot of improvement on
the low-level side neccessary, to offer applica-
tion developers a painless way to interact with
the system.

HAL will continue to try to unify the view
of the low-level interfaces to the higher-level
applications. Its goal is to take over tasks
that would require special defined policy in the
kernel, to replace device and system specific
knowledge from applications, and to replace
or integrate current stand-alone system services
into a unified interface for meaningful device
information and classification to applications.
Specific methods on device objects offered to
applications will fully integrate the user ses-
sion with the user owned preferences into the
system-wide device handling.

Acknowledgements

Havoc Pennington’s paper “Making Hardware
Just Work” [7] kicked off the HAL project and
it would never be a reality without help and
support from Greg Kroah-Hartmann, Robert
Love, Joe Shaw, Sjoerd Simons, the D-BUS
developers, Red Hat, Novell, and many other
people that thought about and worked closely
toghether on the multiple layers of this software
stack. We do not want to thank all the people
that do nothing but complain about specific de-
tails they do not like, or complain about the fact
that we need to change historical system behav-
ior to be able to satisfy todays requirements, but
at the same time use this software but never get
their hands dirty or help moving forward and
fixing all the problems we are facing.

References

[1] The Linux low-level Device Manager
http://www.kernel.org/pub/
linux/utils/kernel/hotplug/
udev.html

[2] D-BUS is a message bus system, a
simple way for applications to talk to one
another.
http://www.freedesktop.org/
wiki/Software/dbus

[3] David Zeuthen, et al. HAL specification
http://webcvs.freedesktop.
org/*checkout*/hal/hal/doc/
spec/hal-spec.html

[4] Richard Hughes. GNOME Power
Manager http:
//www.gnome.org/projects/
gnome-power-manager/

[5] Havoc Pennington, et al. GConf
configuration system http://www.
gnome.org/projects/gconf/

348 • Dynamic Device Handling on the Modern Desktop

[6] Artem Kachitchkine, et al. Tamarack:
Removable Media Enhancements in
Solaris http://opensolaris.
org/os/project/tamarack/

[7] Havoc Pennington. Making Hardware
Just Work http:
//ometer.com/hardware.html

[8] Project Utopia Mailing List http:
//mail.gnome.org/mailman/
listinfo/utopia-list

[9] Solid, The KDE Hardware Library
http://solid.kde.org/

[10] David Zeuthen, et al. PolicyKit
specification.
http://webcvs.freedesktop.org/

checkout/hal/PolicyKit/doc/

spec/polkit-spec.html

Unionfs: User- and Community-Oriented Development
of a Unification File System

David Quigley, Josef Sipek, Charles P. Wright, and Erez Zadok
Stony Brook University

{dquigley,jsipek,cwright,ezk}@cs.sunysb.edu

Abstract

Unionfs is a stackable file system that virtually
merges a set of directories (called branches)
into a single logical view. Each branch is as-
signed a priority and may be either read-only
or read-write. When the highest priority branch
is writable, Unionfs provides copy-on-write se-
mantics for read-only branches. These copy-
on-write semantics have lead to widespread
use of Unionfs by LiveCD projects including
Knoppix and SLAX. In this paper we describe
our experiences distributing and maintaining
an out-of-kernel module since November 2004.
As of March 2006 Unionfs has been down-
loaded by over 6,700 unique users and is used
by over two dozen other projects. The total
number of Unionfs users, by extension, is in the
tens of thousands.

1 Introduction

Unionfs is a stackable file system that allows
users to specify a series of directories (also
known as branches) which are presented to
users as one virtual directory even though the
branches can come from different file systems.
This is commonly referred to as namespace
unification. Unionfs uses a simple priority sys-
tem which gives each branch a unique priority.

If a file exists in multiple branches, the user
sees only the copy in the higher-priority branch.
Unionfs allows some branches to be read-only,
but as long as the highest-priority branch is
read-write, Unionfs uses copy-on-write seman-
tics to provide an illusion that all branches are
writable. This feature allows Live-CD develop-
ers to give their users a writable system based
on read-only media.

There are many uses for namespace unifica-
tion. The two most common uses are Live-
CDs and diskless/NFS-root clients. On Live-
CDs, by definition, the data is stored on a read-
only medium. However, it is very convenient
for users to be able to modify the data. Uni-
fying the read-only CD with a writable RAM
disk gives the user the illusion of being able to
modify the CD. Maintaining an identical sys-
tem configuration across multiple diskless sys-
tems is another application of Unionfs. One
simply needs to build a read-only system im-
age, and create a union for each diskless node.

Unionfs is based on the FiST stackable file sys-
tem templates, which provide support for lay-
ering over a single directory [12]. As shown
in Figure 1(a), the kernel’s VFS is responsi-
ble for dispatching file-system–related system
calls to the appropriate file system. To the VFS,
a stackable file system appears as if it were a
standard file system, but instead of storing or
retrieving data, a stackable file system passes

350 • Unionfs: User- and Community-Oriented Development of a Unification File System

NFS

nfs_rename()

FiST

User Process
rename()

vfs_rename()

Virtual File System

Ke
rn

el
U

se
r

fist_rename()

(a) Wrapfs layers over a single directory.

Unionfs

... NFStmpfs
tmpfs_rename() nfs_rename()

RORW

User Process
rename()

vfs_rename()

unionfs_rename()

Virtual File System

Ke
rn

el
U

se
r

(b) Unionfs layers over multiple directories.

Figure 1: User processes issue system calls, which the kernel’s virtual file system (VFS) directs to
stackable file systems. Stackable file systems in turn pass the calls down to lower-level file systems
(e.g., tmpfs or NFS).

calls down to lower-level file systems that are
responsible for data storage and retrieval. In
this scenario, NFS is used as the lower-level
file system, but any file system can be used
to store the data (e.g., Ext2, Ext3, Reiserfs,
SQUASHFS, isofs, and tmpfs). To the lower-
level file systems, a stackable file system ap-
pears as if it were the VFS. This makes stack-
able file system development difficult, because
the file system must adhere to the conventions
both of file systems (for processing VFS calls)
and of the VFS (for making VFS calls).

As shown in Figure 1(b), Unionfs extends the
FiST templates to layer over multiple direc-
tories, unify directory contents, and perform
copy-on-write. In this example, Unionfs is
layered over two branches: (1) a read-write
tmpfs file system and (2) a read-only NFS file
system. The contents of these file systems are
virtually merged, and if operations on the NFS
file system return the read-only file system er-
ror code (EROFS) then Unionfs transparently
copies the files to the tmpfs branch.

We originally released Unionfs in November
2004, after roughly 18 months of development

as a research project [10, 11]. We released
Unionfs as a standalone kernel module because
that was the most expedient way for users to
begin using it and it required less initial ef-
fort on our part. Unionfs was quickly adopted
by several LiveCDs such as SLAX [7] (De-
cember 2004) and Knoppix [5] (March 2005).
As of March 2006, Unionfs has been down-
loaded by over 6,700 users from 81 countries
and is distributed as part of other projects. Our
mailing list currently has 336 subscribers with
53 of them subscribed to our CVS update list.
Unionfs is an integral part of several LiveCDs,
so the actual number of Unionfs users is much
larger.

Maintaining Unionfs outside of the kernel has
both benefits and complications. By maintain-
ing the tree outside of the kernel, our user base
is expanded: users can still use their vendor’s
kernel, and we are able to support several ker-
nel versions. We were also able to release
Unionfs more frequently than the kernel. How-
ever, this makes our code more complex since
we must deal with changing interfaces between
kernel versions. It also raises questions about
the point at which support for a particular older

2006 Linux Symposium, Volume Two • 351

kernel version should be dropped. At this point,
Unionfs has become established enough that
we are moving towards a release that is ready
for mainline kernel submission.

Unionfs has complex allocation schemes (par-
ticularly for dentry and inode objects), and
makes more use of kmalloc than other file
systems. One hurdle we had to overcome
was lack of useful memory-allocation debug-
ging support. The memory-allocation debug-
ging code in recent -mm kernels does not pro-
vide sufficient debugging information. In our
approach, we log kmalloc and dentry alloca-
tions, and then post-process the log to locate
memory leaks and other errors.

In our efforts to move toward kernel inclusion
we have come across many aspects that conflict
with maintaining an out-of-kernel module. One
of the main issues is the ability to separate re-
search code from practical code. Features such
as persistent inodes and atomically performing
certain operations increase code complexity,
conflicting with the mantra “less code is better
code.” We also had to change the way we sepa-
rate file system components to provide simpler
and more easily maintainable code. In addition
to this, we also have to keep up with changes in
kernel interfaces such as the change of locking
primitives introduced in Linux 2.6.16.

The rest of this paper is organized as follows.
In Section 2 we describe Unionfs use cases. In
Section 3 we describe the challenges of main-
taining an out-of-tree module. In Section 4 we
describe some limitations of Unionfs. In Sec-
tion 5 we present a brief performance evalua-
tion of Unionfs. Finally, we conclude in Sec-
tion 6.

2 Use Cases

We have identified three primary use cases for
Unionfs. All of these common use cases lever-
age Unionfs’s copy-on-write semantics. The
first and most prevalent use of Unionfs is in
LiveCDs. The second is using Unionfs to pro-
vide a common base for several NFS-mounted
machines. The third is to use Unionfs for snap-
shotting.

LiveCDs. LiveCDs allow users to boot Linux
without modifying any data on a hard disk.
This has several advantages:

• Users can try Linux without committing to
it [5, 7].

• Special-purpose open-source software can
be distributed to non-technical users (e.g.,
for music composition [4]).

• System administrators can rescue ma-
chines more easily [2].

• Many similar machines can be set up with-
out installing software (e.g., in a cluster
environment [9], or at events that require
certain software).

The simplest use of Unionfs for LiveCDs uni-
fies a standard read-only ISO9660 file system
with a higher-priority read-write tmpfs file
system. Current versions of Knoppix [5] use
such a configuration, which allows users to in-
stall and reconfigure programs.

Knoppix begins its boot sequence by loading
an initial RAM disk (initrd) image of an
Ext2 file system and then executing a shell
script called /linuxrc. The linuxrc script
first mounts the /proc and /sys file systems.
Next, Knoppix loads various device drivers

352 • Unionfs: User- and Community-Oriented Development of a Unification File System

(e.g., SCSI, IDE, USB, FireWire) and mounts
a compressed ISO9660 image on /KNOPPIX.
After the Knoppix image is mounted, the
Unionfs module is loaded. Next a tmpfs
file system is mounted on /ramdisk. Once
Unionfs is mounted, this RAM disk becomes
the destination for all of the changes to the CD-
ROM. Next, the directory /UNIONFS is cre-
ated and Unionfs is mounted on that directory
with the following command:

mount -t unionfs \
-o dirs=/ramdisk=rw:/KNOPPIX=ro \
/UNIONFS /UNIONFS

The -t unionfs argument tells the mount
program that the file system type is Unionfs.
The -o dirs=/ramdisk=rw,/KNOPPIX=ro

option specifies the directories that make up the
union. Directories are listed in a order of pri-
ority, starting with the highest. In this case,
the highest-priority directory is /ramdisk,
which is read-write. The /ramdisk directory
is unified with /KNOPPIX, which is read-only.
The first /UNIONFS argument is a placeholder
for the device name in /proc/mounts, and
the second /UNIONFS argument is the lo-
cation where Unionfs is mounted. Finally,
linuxrc makes symbolic links from the root
directory to /UNIONFS. For example, /home
is a link to /UNIONFS/home. At this point
the linuxrc script exits, and init is exe-
cuted.

Other LiveCDs (notably SLAX [7]) use
Unionfs both for its copy-on-write semantics
and as a package manager. A SLAX distri-
bution consists of several modules, which are
essentially SQUASHFS file system images [6].
On boot, the selected modules are unified to
create a single file system view. Unifying the
file systems makes it simple to add or remove
packages from the LiveCD, without regener-
ating entire file system images. In addition

to the SQUASHFS images, the highest-priority
branch is a read-write tmpfs which provides
the illusion that the CD is read-write.

SLAX uses the pivot_root system call so
that the root file system is indeed Unionfs,
whereas Knoppix creates symbolic links to
provide the illusion of a Unionfs-rooted CD.
SLAX also begins its boot sequence by load-
ing an Ext2 initrd image and executing
linuxrc, which mounts /proc and /sys.
Next, SLAX mounts tmpfs on /memory. The
next step is to mount Unionfs on /union with
a single branch /memory/changes using
the following command:

mount -t unionfs \
-o dirs=/memory/changes=rw
unionfs /union

Aside from the branch configuration, the ma-
jor difference between this command and the
one from Knoppix is that instead of us-
ing /UNIONFS as a placeholder, the text
unionfs is used instead. We recommend this
approach (or better yet, the string none), be-
cause it is less likely to be confused with an
actual path or argument.

After mounting the mostly empty Unionfs,
SLAX performs hardware detection. The next
step is to load the SLAX modules, which are
equivalent to packages. The first step in loading
a module is to mount the SQUASHFS image on
/memory/images. After the SQUASHFS
image is mounted, SLAX calls our unionctl
to insert the module into the Union. The fol-
lowing command is used to insert SLAX’s ker-
nel module:

unionctl /union --add \
--after 0 --mode ro \
/memory/images/01_kernel

2006 Linux Symposium, Volume Two • 353

rootfs / rootfs rw 0 0

/dev/root /mnt/live ext2 rw,nogrpid 0 0

/proc /mnt/live/proc proc rw 0 0

tmpfs /mnt/live/memory tmpfs rw 0 0

unionfs / unionfs rw,dirs=/mnt/live/memory/changes=rw:...:/mnt/live/

→memory/images/02_core.mo=ro:/mnt/live/memory/images/01_kernel.mo=ro

→ 0 0

/dev/hdb /mnt/live/mnt/hdb iso9660 ro 0 0

/dev/hdb /boot iso9660 ro 0 0

/dev/loop0 /mnt/live/memory/images/01_kernel.mo squashfs ro 0 0

/dev/loop2 /mnt/live/memory/images/02_core.mo squashfs ro 0 0

. . .

Figure 2: The /proc/mounts file on SLAX after linuxrc is executed. Note that the Unionfs
line has been split (denoted by→). For brevity, we exclude seven additional SLAX packages.

The --after 0 argument instructs Unionfs
to insert the new directory, /memory/
images/01_kernel, after the first branch,
and the --mode ro argument instructs
Unionfs to mark this branch read-only. This
process is repeated for each module. SLAX
then creates /union/proc, /union/sys,
/union/dev, /union/tmp, and /union/
mnt/live. SLAX then changes the present
working directory to /union and unmounts
/sys. Next, Unionfs is made the root file sys-
tem using pivot_root:

pivot_root . mnt/live

This command makes Unionfs the root file sys-
tem, and remounts the initial RAM disk on
/union/mnt/live. Finally, SLAX starts
init using Unionfs as the root file system:

/usr/bin/chroot . sbin/init

After this procedure, SLAX produces the
/proc/mounts file seen in Figure 2.

NFS-mounted machines. Another use of
Unionfs is to simplify the administration of
diskless machines. A set of machines can share
a single read-only NFS root file system. This
enables administrators to maintain a common
image for all of the machines. This root file sys-
tem is then unified with a higher-priority read-
write branch so that users can customize the
machine or save data. If persistence is not re-
quired, then a tmpfs file system can be used as
the highest priority branch. If persistence is re-
quired, then a read-write NFS mount or a local
disk could be used for the user’s files.

Figure 3 shows a sample NFS /etc/
exports file for a diskless client configura-
tion. To ensure that none of the clients can tam-
per with the shared binaries on the server, we
export the /bin directory read-only. We then
export the persistent storage folder for each
client individually. This ensures that one client
cannot tamper with the persistent folder of an-
other.

Figure 4 shows the commands used to cre-
ate a union from a shared binary directory
and to provide a persistent backing store for
that directory on a second NFS mount. The
first command mounts /bin for our client.
The next command mounts the persistent data

354 • Unionfs: User- and Community-Oriented Development of a Unification File System

/bin client1(ro) client2(ro)

/store/client1 client1(rw)

/store/client2 client2(rw)

Figure 3: The contents of /etc/exports on the server which contains the clients’ binaries.

mount -t nfs server:/bin /mnt/nfsbins

mount -t nfs server:/store/‘hostname -s‘ /mnt/persist

mount -t unionfs none /bin -o dirs=/mnt/persist:/mnt/nfsbins=nfsro

Figure 4: Creating a union with two NFS-based shares for binaries and persistent data.

store for our client based on its hostname. Fi-
nally, we create a union containing the exported
/bin and /store/‘hostname-s‘ direc-
tories and mount it at /bin on our local client.
To have a full system that is exported via NFS,
one simply exports / instead of just /bin.
This permits a full system to be exported to the
diskless clients. However, such a set requires
the additional steps present in LiveCDs which
allows you to use /proc and /dev.

Snapshotting. The previous usage scenarios
all assumed that one or more components of
the union were read-only by necessity (either
enforced by hardware limitations or the NFS
server). Unionfs can also provide copy-on-
write semantics by logically marking a physi-
cally read-write branch as read-only. This en-
ables Unionfs to be used for file system snap-
shots. To create a snapshot, the unionctl
tool is used to invoke branch management
ioctls that dynamically modify the union
without unmounting and remounting Unionfs.
First, unionctl is used to add a new high-
priority branch. For example, the following
command adds /snaps/1 as the highest pri-
ority branch to a union mounted on /union:

unionctl /union --add /snaps/1

Next, unionctl is called for each existing
branch to mark them as read-only. The follow-
ing command will mark the branch /snaps/0
read-only:

unionctl /union --mode /snaps/0 ro

Any changes made to the file system take place
only in the read-write branch. Because the
read-write branch has a higher priority than all
the other branches, users see the updated con-
tents.

3 Challenges

While developing Unionfs we encountered sev-
eral issues that we feel developers should ad-
dress before they decide whether or not to aim
for kernel inclusion. Backward compatibility,
changes in kernel interfaces, and experimental
code are three such issues. In section 3.1, we
consider the advantages and disadvantages of
maintaining a module outside of the mainline
kernel. In section 3.2, we discuss the implica-
tions of developing a module that is aiming for
inclusion in the mainline Linux kernel.

2006 Linux Symposium, Volume Two • 355

3.1 Developing an out-of-kernel module

When first releasing Unionfs, we wanted to
ensure that as many people as possible could
use it. To accommodate this, we attempted to
provide backward compatibility with past ker-
nel versions. Initially, when Unionfs supported
Linux 2.4 it was easy to keep up with chang-
ing kernels, since most of the changes between
kernel versions were bug fixes.

In December of 2004, Unionfs was ported to
Linux 2.6 which introduced additional com-
plications. VFS changes between 2.4 and 2.6
(e.g., file pointer update semantics and lock-
ing mechanisms) required #ifdefed sections
of code to provide backward compatibility with
Linux 2.4. In addition, since we were support-
ing Linux 2.6, we had to be conscious of the
fact that the 2.6 kernel interfaces could change
between versions.

The benefit of supporting multiple kernel ver-
sions was that we could enable the use of
Unionfs on many different platforms. Although
LiveCD creators mostly preferred Linux 2.6
kernels, we found that some of them were
still working with 2.4. In addition, several
people were using Unionfs for embedded de-
vices, which at the time tended to use 2.4 ker-
nels. However, providing backward compati-
bility came with a few disadvantages and raised
the question of how far back we would go. Be-
cause there is no standard kernel for LiveCD
developers, there were bug reports and compat-
ibility issues across many different kernel ver-
sions.

Although Unionfs supported multiple kernel
versions, we had to choose which versions to
focus on. We increased the minimum kernel
version Unionfs required if: (1) it would make
us #ifdef code that was already #ifdefed
for backward compatibility, or (2) if it made
the code overly complex. After Unionfs was

ported to Linux 2.6, we found ourselves re-
peatedly raising the minimum kernel version
due to the large number of interface-breaking
changes. For example, 2.6.11 introduced the
unlocked_ioctl operation. The most inva-
sive change has been 2.6.16’s new mutex sys-
tem. Even though we have stopped support-
ing backward compatibility, users often submit
backward-compatibility patches which we ap-
ply but do not support.

Along with backward compatibility came in-
creased code complexity. Although backward
compatibility does not generally add much
code, the readability of the code decreased
since we kept many sections of #ifdefed
code. Moreover, it made debugging more dif-
ficult as Unionfs could run in more environ-
ments. In February of 2005, we decided to drop
support for Linux 2.4 to reduce the size and
complexity of the code. By placing the restric-
tion that Unionfs will only support Linux 2.6,
we were able to cut our code base by roughly
5%. Although this is not a large percentage,
this increased maintainability greatly since it
lowered the number of environments that we
had to maintain and test against. By removing
Linux 2.4 from our list of supported kernels, we
eliminated eleven different kernel versions that
we were supporting. This also allowed us to
remove a number of bugs that were related to
issues with backward compatibility and which
applied to Linux 2.4 only. Before dropping sup-
port for a specific kernel version, we release a
final version of Unionfs that supports that ker-
nel version.

Even though we removed 2.4 support from
Unionfs, it did not end the problems of back-
ward compatibility. With Linux 2.6, a new de-
velopment process was introduced where code
and interface changes that would previously
have been introduced in a development ker-
nel are placed into the stable branch. Linux
2.6.16 introduced a new set of locking mech-

356 • Unionfs: User- and Community-Oriented Development of a Unification File System

anisms where semaphores were replaced with
mutexes. Although this is one of the larger
changes we have seen, there are many such
changes that force us to deal with backward
compatibility within the 2.6 branch itself. This
led us to decide in February of 2006 to drop
backward compatibility completely and only
work with the latest release candidate so that
we can closely follow the kernel on our path to
inclusion. Since we make a release of Unionfs
before every major change we still have work-
ing copies of Unionfs for Linux 2.4 and earlier
versions of Linux 2.6.

3.2 Kernel Inclusion

In our efforts to prepare Unionfs to be submit-
ted to the kernel mailing list for discussion, we
had to address three major issues. First, due
to the incremental nature of Unionfs’s develop-
ment, the code base needed large amounts of re-
organization to conform to kernel coding con-
ventions. Second, Unionfs user-space utilities
use older methods for interfacing with the ker-
nel that needed to be replaced by newer more
desired methods, such as the use of configfs
and sysfs. Finally, features that were placed
in Unionfs for research interests needed to be
removed to make the code base more practical.

Since the Linux kernel is a massive project with
people contributing code to every component,
there are very strict guidelines for the way code
should be organized and formatted. While re-
viewing the code base for Unionfs, we realized
that some of the functions were unnecessarily
long. Even now, due to the complex fan-out
nature of Unionfs, many of the functions are
longer than we would like due to loops and con-
ditionals.

When looking into the methods available for
a user-mode process to communicate with our
file system, we noticed one trend. Every time

a person introduces an ioctl, there is an ob-
jection and a suggestion to find a better way of
handling what is needed. Because Unionfs uses
several ioctls for adding branches, mark-
ing branches read-only, and identifying which
branch a file is on, we decided that other meth-
ods should be explored. The preferred methods
for modifying and viewing kernel object states
are configfs and sysfs. Although both are
good options, they both have shortcomings that
prevented us from using them.

In the case of configfs, the major concern
was that the module is optional. This issue
could be addressed by marking configfs to
be selected by Unionfs, but that ignores a larger
issue. Many of the users of Unionfs are us-
ing it in embedded devices and on LiveCDs.
If we use configfs to control Unionfs’s
configuration, we are forcing those users to
use a larger kernel image that exceeds their
memory and storage constraints. With sysfs
we came across the issue of not having any
file-system–related kernel objects defined by
sysfs. To use sysfs, we would have to de-
sign and implement a complete set of VFS ker-
nel objects for sysfs and submit them for ker-
nel inclusion in addition to Unionfs.

To solve our problem of using ioctls for
branch manipulation, we decided to use the re-
mount functionality that already exists in the
kernel. Remount allows one to change the con-
figuration of a mount while leaving its files
open so processes can continue to use the files
after the remount operation is complete. This
lets us provide the ability to change branch con-
figurations easily without the need for ioctls,
by parsing the new options that are passed in
and applying the differences between the new
and old options. However, this still requires us
to maintain two ioctls for querying files and
another for debugging.

As of this writing, we are addressing a problem
associated with crossing mount points within

2006 Linux Symposium, Volume Two • 357

a union. The most common occurrence of
this problem is when a LiveCD performs a
pivot_root or a chroot to a Unionfs
mounted path. Currently LiveCD developers
mount Unionfs and then they proceed to move
the mount points for /proc and /sys to
/unionfs/proc and /unionfs/sys, re-
spectively. After this they pivot_root to
the union so that proc and sys are visible.
The reason that this problem exists is that cur-
rently Unionfs stacks on top of the superblock
for each branch. This presents a problem be-
cause it does not give us access to the data
structures that permit us to cross mount points.
Our solution to this problem is to redo how
Unionfs stacks on top of the branches by stack-
ing on a dentry and a vfsmount structure.
This will give us the additional information that
is needed to build the structures necessary to
cross mount points. Even with the ability to
cross mount points, it is not advised to stack
on pseudo file systems such as sysfs and
procfs. Since sysfs and procfs are not
only accessed through Unionfs, but rather are
also manipulated directly by the kernel, incon-
sistencies can arise between the caches used by
Unionfs and these file systems.

Because Unionfs started as a research project,
it had many theoretically interesting features
from a design perspective, which users did not
need in practice. Unionfs contains functionality
for copyup, this occurs when a file that exists on
a read-only branch is modified. When the file
is modified Unionfs attempts to copy the file
up to the nearest read-write branch. Some of
the early features of Unionfs included several
copyup modes, which allowed copyup to take
the permissions of the current user, the original
permissions of the file, or a set of permissions
specified at mount time.

In addition, there were several delete modes
which performed one of three actions:

• delete=whiteout (default) locates
the first instance of the file and unlinks
only that instance. This mode differs from
delete=first in that it will create a
whiteout for that file in the branch it re-
moved the file from.

• delete=all finds every instance of the
file across all branches and unlink them.

• delete=first located the first in-
stance of the file and unlinked only that
instance without creating a whiteout.

In the case of the delete mount option we found
that no one was using the delete=first
and delete=all options and that the
delete=whiteout option was strongly pre-
ferred. Because our user base is pre-
dominantly composed of LiveCD develop-
ers, delete=first was removed and
delete=all is only present if Unionfs is
compiled with UNIONFS_DELETE_ALL de-
fined.

We also had several modes to describe permis-
sions with which a whiteout was to be cre-
ated. When a file is deleted Unionfs will cre-
ate a .wh.name file where name is the name
of the file. This tells Unionfs that it should
remove this file from the view presented to
the user. These options were removed since
we found that copyup=currentuser and
copyup=mounter went completely unused
by our users:

• copyup=preserve (default) creates
the new file with the same permissions that
existed on the file which was unlinked.

• copyup=currentuser creates the
new file with the UID, GID, and umask
taken from the current user.

• copyup=mounter creates the new file
with UID, GID, and permissions specified
in the options string of the Unionfs mount.

358 • Unionfs: User- and Community-Oriented Development of a Unification File System

Although the extra options were interesting re-
search concepts, they were not practical for
what our users were using Unionfs for and only
served to increase code complexity.

Another instance of where ideas that are good
for research purposes fail in practice is in the
creation of whiteouts. Initially, when a white-
out was created while removing a file, the
whiteout was created atomically via rename
and was then truncated. This was done so that
if the process failed half-way through, there
would not be any ambiguity about whether the
file existed. This added additional complex-
ity to the code without sufficient gains in ei-
ther performance or functionality. Since then,
we have removed atomic whiteout creation due
to the inherent difficulty of maintaining the se-
mantics of open, yet deleted, files.

4 Limitations

During the development of Unionfs, we had
to make certain design decisions to help the
overall implementation. Such decisions often
impose limitations. We have identified three
such limitations in Unionfs: modification of
lower-level branches, mmap copyup with dy-
namic branch management, and scalability. We
discuss each in detail below.

Modification of lower-level branches. The
current design of Unionfs and other stackable
file systems on Linux results in double caching
of data and meta-data. This is an unfortu-
nate side-effect of the way the Linux VFS is
implemented—there is no easy coordination
between objects cached at different levels [1].
This forces us to maintain a list of lower VFS
objects for each upper object. For example, a
Unionfs inode contains an array of pointers to
all the corresponding inodes on the underlying

branches. Unionfs has to copy certain informa-
tion from the underlying inode for a file to the
Unionfs inode: metadata information such as
file size, access permissions, group and owner,
and so on.

Since Unionfs expects the underlying inode
(and therefore the file) to have certain proper-
ties about the file (e.g., have a size consistent
with that saved in the Unionfs inode) it is pos-
sible for inconsistencies to appear if a process
modifies the lower inode directly without go-
ing through Unionfs. We encourage our users
to avoid modifying the lower branches directly.
This works well in scenarios where many of the
branches are stored on read-only media (e.g.,
LiveCDs). However, there are some people
who want to use Unionfs to provide a unified
view of several frequently changing directories.
Moreover, if users delete or rename files or di-
rectories, then Unionfs points to the older ob-
ject, again yielding an inconsistent view.

mmap copyup with dynamic branch manage-
ment. When Unionfs was first implemented
in early 2004, only a bare-bone functionality
existed: the full set of system calls was not
implemented. Some of these system calls, in
particular mmap, are required for certain pro-
grams to function properly. The mmap sys-
tem call allows programs to map portions of
files into a process’s address space. Once a file
is mmapped, a process can modify it by sim-
ply writing to the correct location in memory.
Currently, Unionfs does not natively imple-
ment mmap operations, but rather passes them
down unchanged to the lower-level file system.
This has the advantage of preventing double
caching of data pages and its associated per-
formance and consistency pitfalls. However,
this comes with the drawback that Unionfs
does not receive notification of readpage
or writepage calls, so it cannot perform
copyup during a commit_write. The prob-

2006 Linux Symposium, Volume Two • 359

lem occurs when a process tries to modify a
page backed by a file on a read-only medium.
Just like in the regular open-for-write case, we
must copyup the file to a writable branch and
then perform the correct address space opera-
tions.

In March 2006, Shaya Potter, a Unionfs user
and contributor, released a partial implemen-
tation of mmap. The major problem with it
is the lack of copyup functionality while us-
ing mmap. Additionally, one has to be careful
with the implementation since certain file sys-
tems (e.g., OCFS2, GFS) must take additional
steps before calling prepare_write and
commit_write. We have made this mmap
functionality a compile-time option which is
off by default.

Scalability. Although we do not consider it
as serious as the two previous issues, the last
issue is scalability. Even though most Unionfs
users want two to six branches, there are some
that want more. In its current state, the max-
imum number of branches that Unionfs sup-
ports is 1,024 due to the use of FD_SET
and related macros. However, the overhead
of using Unionfs becomes high with just 200
branches, even for simple operations such as
readdir and lookup (see our evaluation in
Section 5). The problem with these operations
is that Unionfs needs to iterate through all the
branches; for each branch it needs to determine
whether or not it is a duplicate, whiteout, and
so on. Currently, we are storing stacking infor-
mation in a simple linear array. This structure,
while easy to access and use, has a search com-
plexity of O(n).

Of course, there are other operations, such
as llseek operating on directories, which
should be examined and possibly optimized.
For other operations, Unionfs is a bit more effi-
cient because it can use the dentry cache objects
that have been populated by lookup.

5 Evaluation

We conducted our benchmarks on a 1.7GHz
Pentium 4 machine with 1.25GB of RAM. Its
system disk was a 30GB 7,200 RPM Western
Digital Caviar IDE formatted with Ext3. In ad-
dition, the machine had one Maxtor 7,200 RPM
40GB IDE disk formatted with Ext2, which we
used for the tests. We remounted the lower file
systems before every benchmark run to purge
file system caches. We used the Student-t dis-
tribution to compute the 95% confidence inter-
vals for the mean elapsed, system, user, and
wait times. Wait time is the elapsed time less
CPU time used and consists mostly of I/O, but
process scheduling can also affect it. In each
case, the half-widths of the confidence inter-
vals were less than 5% of the mean. The test
machine was running a Fedora Core 4 Linux
distribution with a vanilla 2.6.16-rc6 kernel.

In all the tests, the highest-priority branch was
read-write, while all the other branches, if any,
were read-only. More detailed evaluation can
be found in our journal article [10].

5.1 Evaluation Workloads

We chose to perform two benchmarks to test
the extreme cases—on one end of the spectrum
there are CPU-intensive workloads, while on
the other end there are I/O-intensive workloads.

OpenSSH build. Building OpenSSH [8] is a
CPU-intensive benchmark. We used OpenSSH
4.0p1, which contains 74,259 lines of code. It
performs several hundred small configuration
tests, and then it builds 155 object files, one
library, and four scripts. This benchmark con-
tains a fair mix of file system operations, repre-
senting a workload characteristic of users. The
highest-priority branch was read-write, while
all the other branches, if any, were read-only

360 • Unionfs: User- and Community-Oriented Development of a Unification File System

Postmark. Postmark v1.5 simulates the op-
eration of electronic mail servers [3]. It per-
forms a series of file system operations such
as appends, file reads, creations, and deletions.
This benchmark uses little CPU but is I/O in-
tensive. We configured Postmark to create
20,000 files, between 512–10,240K bytes in
size, and perform 200,000 transactions. We
used 200 subdirectories to prevent linear direc-
tory look ups from dominating the results. All
of the branches were read-write, to distribute
the load evenly across branches. This is be-
cause Postmark does not have an initial work-
ing set, therefore using read-only branches does
not make sense for this benchmark.

5.2 Results

On average, Unionfs incurred only 10.7% max-
imum overhead over Ext2 on the OpenSSH
compile, and 71.7% overhead over Ext2 on
Postmark. These results are somewhat worse
compared to our previous benchmarks [10].
However, the difference in the OpenSSH com-
pile benchmark appears mainly in I/O wait
time, which could be contributed to copyup tak-
ing place. We did not use copyup in our previ-
ous benchmark.

OpenSSH build. We performed the
OpenSSH compile with two different lay-
outs of the data. The first distributed all the
files from the source code tarball over all the
branches using a simple round robin algorithm.
The other layout consists of a copy of the entire
source tree on each branch. For both layouts,
we have measured and plotted the elapsed,
system, and user times.

When the OpenSSH source code is uniformly
distributed across all the branches, the over-
head is a mere 0.99% (Figure 5). This is due

 0

 20

 40

 60

 80

 100

 120

 140

8421Ext2

El
ap

se
d

Ti
m

e
(S

ec
on

ds
)

Number of branches

106.5 107.5 107.7 108.2 108.7

Wait
User

System

Figure 5: OpenSSH compile: Source code uni-
formly distributed across all branches.

 0

 20

 40

 60

 80

 100

 120

 140

8421Ext2

El
ap

se
d

Ti
m

e
(S

ec
on

ds
)

Number of branches

106.5 107.7 109.0
112.1

117.8

Wait
User

System

Figure 6: OpenSSH compile: Source code du-
plicated on all branches.

to the simple fact that we must perform sev-
eral additional function calls before we hand of
control to the lower file system (Ext2). With
more branches, the overhead slightly increases
to 2.1% with 8 branches. This shows that
Unionfs scales roughly linearly for this bench-
mark.

With the OpenSSH source code duplicated on
all branches (Figure 6), the overheads were
slightly higher. A single branch configuration
incurred 1.2% overhead. The slight increase
in time is a logical consequence of Unionfs
having to check all the branches, and on each
branch dealing with the full source code tree

2006 Linux Symposium, Volume Two • 361

 0

 100

 200

 300

 400

 500

8421Ext2

El
ap

se
d

Ti
m

e
(S

ec
on

ds
)

Number of branches

252.2

425.0
432.4

413.6
433.1

Wait
User

System

Figure 7: Postmark: 20,000 files and 200,000
transactions.

which slows down linear directory lookups.
The 8-branch configuration increased runtime
by 10.7%. As with the previous data layout,
Unionfs scales roughly linearly.

Postmark. Figure 7 shows the elapsed, sys-
tem, and user time for Postmark. The elapsed
time overheads for Unionfs are in the range
of 64.0–71.7% above that of Ext2. Since
Postmark is designed to simulate I/O intensive
workloads, and all the VFS operations have
to pass through Unionfs, it is not surprising
that the overhead of Unionfs becomes appar-
ent. Fortunately, typical user workloads are
not I/O bound and therefore one will not notice
much performance degradation as shown by the
OpenSSH compile benchmarks.

6 Conclusion

It is often easy to create a piece of software
whose functionality is enough for the authors.
However, that functionality is usually a subset
of that required by real users. Since the first re-
lease in early 2004, user feedback has helped us
make Unionfs more complete and stable than

it would have been had a small team of de-
velopers worked on it without any community
feedback. Our users have used Unionfs for ap-
plications that were not even considered back
when Unionfs was originally designed, and lo-
cated bugs that would otherwise have gone un-
noticed.

For quite some time, Linux users wanted a
namespace unifying file system; Unionfs gives
them exactly that. While there are still several
known issues to deal with, Unionfs is steadily
becoming a polished software package. With
the increasing use and popularity of Unionfs
we felt that the next logical step was to clean
up Unionfs and submit it for kernel inclusion.

7 Acknowledgments

Unionfs would not be in nearly as good a state
if it was not for our user community, which has
submitted bug reports, patches, and provided us
with interesting use cases. There are far too
many contributors to list individually (there are
over 37 listed in our AUTHORS file, which only
includes those who have submitted patches),
and we extend thanks to all contributors and
users, named and unnamed. Early adopters and
bug reporters like Tomas Matejicek and Fabian
Franz helped immeasurably. Recently, Jun-
jiro Okajima has fixed many bugs and can be
counted on for high-quality patches. The exper-
imental mmap code currently in Unionfs was
contributed by Shaya Potter. Jay Dave, Puja
Gupta, Harikesavan Krishnan, and Mohammad
Nayyer Zubair worked on Unionfs in its early
stages.

This work was partially made possible by NSF
CAREER award EIA-0133589, NSF Trusted
Computing Award CCR-0310493, and HP/Intel
gift numbers 87128 and 88415.1.

362 • Unionfs: User- and Community-Oriented Development of a Unification File System

Unionfs is released under the GPL. Sources
and documentation can be downloaded from
http://unionfs.filesystems.org.

References

[1] J. S. Heidemann and G. J. Popek.
Performance of cache coherence in
stackable filing. In Proceedings of the
Fifteenth ACM Symposium on Operating
Systems Principles (SOSP ’95), pages
3–6, Copper Mountain Resort, CO,
December 1995. ACM SIGOPS.

[2] Inside Security IT Consulting GmbH.
Inside Security Rescue Toolkit.
http://insert.cd, 2006.

[3] J. Katcher. PostMark: A New Filesystem
Benchmark. Technical Report TR3022,
Network Appliance, 1997.
www.netapp.com/tech_
library/3022.html.

[4] P. Kerr. m-dist: live linux midi
distribution.
http://plus24.com/m-dist/,
2005.

[5] K. Knopper. Knoppix Linux.
www.knoppix.net, 2006.

[6] P. Lougher. SQUASHFS - A squashed
read-only filesystem for Linux. http:
//squashfs.sourceforge.net,
2006.

[7] T. Matejicek. SLAX – your pocket OS.
http://slax.linux-live.org,
2006.

[8] OpenBSD. OpenSSH.
www.openssh.org, May 2005.

[9] J. Silverman. Clusterix: Bringing the
power of computing together.
http://clusterix.net, 2004.

[10] C. P. Wright, J. Dave, P. Gupta,
H. Krishnan, D. P. Quigley, E. Zadok,
and M. N. Zubair. Versatility and unix
semantics in namespace unification.
ACM Transactions on Storage (TOS),
2(1), March 2006.

[11] C. P. Wright and E. Zadok. Unionfs:
Bringing File Systems Together. Linux
Journal, (128):24–29, December 2004.

[12] E. Zadok and J. Nieh. FiST: A Language
for Stackable File Systems. In Proc. of
the Annual USENIX Technical
Conference, pages 55–70, San Diego,
CA, June 2000. USENIX Association.

VMI: An Interface for Paravirtualization

Zach Amsden, Daniel Arai, Daniel Hecht, Anne Holler, Pratap Subrahmanyam
VMware, Inc.

{zach,arai,dhecht,anne,pratap}@vmware.com

Abstract

Paravirtualization has a lot of promise, in par-
ticular in its ability to deliver performance by
allowing the hypervisor to be aware of the id-
ioms in the operating system. Since kernel
changes are necessary, it is very easy to get
into a situation where the paravirtualized kernel
is incapable of executing on a native machine,
or on another hypervisor. It is also quite easy
to expose too many hypervisor implementation
details in the name of performance, which can
impede the general development of the kernel
with many hypervisor specific subtleties.

VMI, or the Virtual Machine Interface, is a
clearly defined extensible specification for OS
communication with the hypervisor. VMI de-
livers great performance without requiring that
kernel developers be aware of concepts that are
only relevant to the hypervisor. As a result,
it can keep pace with the fast releases of the
Linux kernel and a new kernel version can be
trivially paravirtualized. With VMI, a single
Linux kernel binary can run on a native ma-
chine and on one or more hypervisors.

In this paper, we discuss a working patch to
Linux 2.6.16 [1], the latest version of Linux as
of this writing. We present performance data on
native to show the negligible cost of VMI and
on the VMware hypervisor to show its overhead
compared with native. We also share some fu-
ture work directions.

1 Introduction

Virtual machines allow multiple copies of po-
tentially different operating systems to run con-
currently in a single hardware platform [5]. A
virtual machine monitor (VMM) is a software
layer that virtualizes hardware resources, ex-
porting a virtual hardware interface that reflects
the underlying machine architecture. A proces-
sor architecture whose instructions produce dif-
ferent results depending on the privilege level
at which they are executed is not classically
virtualizable [13]. An example of such an ar-
chitecture is the x86. Unfortunately, these ar-
chitectures require additional complexity in the
VMM to cope with these non-virtualizable in-
structions.

A flexible operating system such as Linux
has the advantage that the source code can
be modified to avoid the use of these non-
virtualizable instructions [15], thereby simpli-
fying the VMM. Recently, the Xen project [12]
has explored paravirtualization in some detail
by constructing a paravirtualizing VMM for
Linux. Once you have taken the mental leap
of accepting to change the kernel source, it be-
comes obvious that more VMM simplification
is possible by allowing the kernel to communi-
cate complex idioms to the VMM.

VMMs traditionally make copies of critical
processor data structures and then write-protect
the original data structures to maintain consis-

364 • VMI: An Interface for Paravirtualization

tency of the copy. The processor faults when
the primary is modified, at which time the
VMM gets control and appropriately updates
the copy. A paravirtualized kernel can directly
communicate to the VMM when it modifies
data structures that are of interest to the VMM.
This communication channel can be faster than
a processor fault. This leads to both elimination
of code from the VMM—i.e., simplicity—and
also performance.

While reducing complexity of the VMM is
good, we should be careful not to increase the
overall complexity of the system. It would be
unacceptable if the code changes to the ker-
nel makes it harder to maintain, or restricts it
portability, distributability or general reliabil-
ity. Performance and the simplification of the
VMM has to be balanced with these considera-
tions too. For instance, it is tempting to allow
the kernel to be aware of idioms from the hy-
pervisor for more performance. This can lead
to a situation where the paravirtualized kernel
is incapable of executing on a native machine
or on another hypervisor. Introducing hypervi-
sor specific subtleties into the kernel can also
impede general kernel development.

Hence, paravirtualization must be done care-
fully. The purpose of this paper is to propose
a disciplined approach to paravirtualization.

The rest of the paper is organized as follows. In
section 2, we describe the core guiding princi-
ples to follow while paravirtualizing the kernel.
In Section 3, we propose VMI, or the Virtual
Machine Interface, that is an implementation of
these guidelines. Section 4 describes the other
face of VMI, the part that interfaces with the
hypervisor. In Section 5, we share the key as-
pects of the Linux 2.6.16-rc6 implementation.
Section 6 describes several of the performance
experiments we have done and shares perfor-
mance data. In Section 7, we talk about our
future work. Section 8 describes work done by

our peers in this area. The paper concludes in
Section 9 by summarising our observations.

2 Challenges for Paravirtualization

There are several high level goals which must
be balanced in designing an API for paravirtu-
alization. The most general concerns are:

• Portability – it should be easy to port a
guest OS to use the API.

• Performance – the API must enable a
high performance hypervisor implementa-
tion.

• Maintainability – it should be easy to
maintain and upgrade the guest OS.

• Extensibility – it should be possible for
future expansion of the API.

• Transparency – the same kernel should
run on both native hardware and on mul-
tiple hypervisors.

2.1 Portability

There is some code cost to port a guest OS
to run in a paravirtualized environment. The
closer the API resembles a native platform that
the OS supports, the lower the cost of porting.
A low level interface that encapsulates the non-
virtualizable and performance critical parts of
the system can make the porting of a guest OS,
in many cases, to be a simple replacement of
one function with another.

Of course, once we introduce interfaces that
go beyond simple instructions, we have to go
to a higher level. For instance, the kernel
can manage its page tables cooperatively with

2006 Linux Symposium, Volume Two • 365

the VMM. In these cases, we carefully main-
tain kernel portability by relying on the kernel
source architecture itself. As an example, sup-
port for the page table interfaces in the Linux
operating system has proven to be very mini-
mal in cost because of the already portable and
modular design of the memory management
layer.

2.2 High Performance

In addition to pure CPU emulation, perfor-
mance concerns in a hypervisor arise from
the fact that many operations, such as ac-
cesses to page tables or virtual devices includ-
ing the APIC, require costly trapping memory
accesses. To alleviate these performance prob-
lems, a simple CPU-oriented interface must be
expanded to incorporate MMU and interrupt
controller interfaces.

Also, while a low level API that closely resem-
bles hardware is preferred for portability, care
must be taken to ensure that performance is not
sacrificed. A low level API does not explic-
itly provide support for higher level compound
operations. Some examples of such compound
operations are the updating of many page table
entries, flushing system TLBs, and providing
bulk operations during context switches.

Therefore, the interface must not preclude the
possibility of optimizing low level operations in
some way to achieve the same performance that
would be available had it provided higher level
abstractions. Then, deeply intrusive hooks into
the paravirtualized OS can be avoided while
preserving performance.

2.3 Maintainability

Concurrent development of the paravirtual ker-
nel and hypervisor is a common scenario. If

changes to the hypervisor are visible to the
paravirtual kernel, maintenance of the kernel
becomes difficult. Additionally, in the Linux
world, the rapid pace of development on the
kernel means new kernel versions are produced
every few months. This rapid pace is not al-
ways appropriate for end users, so it is not un-
common to have dozens of different versions
of the Linux kernel in use that must be actively
supported. To keep this many versions in sync
with potentially radical changes in the paravir-
tualized system is not a scalable solution.

To reduce the maintenance burden as much as
possible while still allowing the implementa-
tion to accommodate changes, a stable ABI
with semantic invariants is necessary. The un-
derlying implementation of the ABI, including
the details of how it communicates with the hy-
pervisor, should not be visible to the kernel. If
this encapsulation exists, then in most cases the
paravirtualized kernel need not be recompiled
to work with a newer hypervisor. This allows
performance optimizations, bug fixes, debug-
ging, or statistical instrumentation to be added
to the API implementation without any impact
on the guest kernel.

2.4 Extensibility

In order to provide a vehicle for new features,
new device support, and general evolution, the
API uses feature compartmentalization with
controlled versioning. The API is split into sec-
tions, and each section can be incrementally ex-
panded as needed.

2.5 Transparency

Any software vendor will appreciate the cost of
handling multiple kernels, so the API takes into
account the need for allowing the same paravir-
tualized kernel to run on both native hardware
[10] and on other hypervisors. See Figure 1.

366 • VMI: An Interface for Paravirtualization

VMI Layer for
VMware hypervisor

VMI Layer for
native

VMI Layer for
Xen 3.0.1

Native Machine

VMware hypervisor Xen 3.0.1

Native Machine Native Machine

VMI Linux

VMware hypercalls Xen hypercalls

VMI VMI VMI

Figure 1: VMI guests run unmodified on differ-
ent hypervisors and raw hardware

3 The Virtual Machine Interface

The VMI is the interface that the paravirtual-
ized kernel uses to communicate with the VMI
layer. The hypervisor interface is the other face
of the VMI layer which allows the VMI layer
to communicate with the hypervisor. It is the
VMI that is of relevance to the kernel. Any im-
pact from a change to the hypervisor interface
is absorbed by the the VMI layer and kept from
affecting the paravirtualized guest kernel.

The VMI layer itself is a compact piece of code,
usually developed and distributed by the hyper-
visor vendor. It is the VMI layer that hides the
differences between hypervisor interfaces, and
allows kernels and hypervisors to develop and
evolve independently of one another.

This section will discuss various aspects of
VMI. Subsequent sections will describe the
VMI layer and also the modifications we made
to port Linux to VMI.

3.1 Linear Address Space

The VMI specifies that a portion of the par-
avirtualized kernel’s linear address space is re-
served. This space is used by the VMI layer
and the hypervisor. See Section 4.4 for more
details.

3.2 Bootstrapping

Our implementation allows a paravirtualized
kernel to begin running in a fully virtualized
manner, compatible with a standard PC boot
sequence. The kernel itself may enter par-
avirtual mode by calling VMI_Init() at any
time, and we issue this call very early in ker-
nel startup. For hypervisors which do not sup-
port full virtualization, a protected mode entry
point to the kernel is required as well, which
we do not yet provide. It should be noted that a
transparently paravirtualized kernel must sup-
port the native boot sequence, so our imple-
mentation does not attempt to change that.

3.3 Non-virtualizable Instructions

Non-virtualizable instructions produce results
dependent on their privilege level. Since the
guest kernel is not run at the most privileged
level, these instructions cannot be issued di-
rectly. Instead, the VMI provides interfaces
for each of these instructions. Usually there is
one interface per non-virtualizable instruction,
so porting a new kernel is a trivial process.

3.4 Page Table Management

Aside from non-virtualizable instructions, a
major source of virtualization overhead on x86
is the need to virtualize the paging hardware

2006 Linux Symposium, Volume Two • 367

[12]. The hypervisor provides the paravir-
tual kernel with a normal x86 physical ad-
dress space. This physical address space must
be mapped onto the machine address space
of the host machine. The x86 architecture’s
hardware-walked page tables require that for
good performance, the virtual machine must
have a set of hardware page tables. There
are two basic approaches to solving this prob-
lem. The paravirtual kernel and hypervisor
can maintain two separate sets of page tables,
or the kernel and hypervisor can cooperate in
maintaining a single set of page tables. The
former approach, called shadow paging, re-
quires the hypervisor to maintain consistency
between the paravirtual kernel’s page tables
and the hardware page tables, but hides the ac-
tual machine mappings from the kernel. The
latter approach, called direct paging, requires
that the machine-to-physical and physical-to-
machine translation be done when reading and
writing the page tables, but eliminates the over-
head of maintaining two sets of page tables.
The current version of VMI [7] supports only
the first approach to maintaining hardware page
tables, but can easily be extended to also sup-
port the second mechanism.

A classical virtual machine monitor would trap
write accesses to the guest’s page tables in
order to keep the hardware page tables up
to date. This incurs significant overhead on
page table updates. VMI provides an inter-
face, VMI_SetPte(), for writing to page ta-
bles. For a hypervisor using the shadow pag-
ing technique, VMI_SetPte() both modifies
the guest’s page table, and notifies the hyper-
visor that the hardware page tables may need
to be updated. In the direct paging model,
VMI_SetPte() needs to perform a physical-
to-machine translation and update the page ta-
ble. Note that actually calling out to the hyper-
visor on every page table update would be un-
acceptably slow. See Section 4.4 for how page
table updates can be efficiently handled.

The guest is required to notify the hypervisor
of pages it will use as page tables via VMI_
RegisterPageUsage(). Similarly, VMI_
ReleasePage() is used when the guest will
no longer be using the page as a page table.
The hypervisor can use this information to help
keep its shadow page tables up to date or to pin
the type of the page to help limit the number of
page validations that are required when using
direct paging.

3.5 Device Support

The only non-CPU device that the VMI cur-
rently provides paravirtualized access to is the
x86 local APIC. The local APIC is the only de-
vice to which very fast access is an absolute re-
quirement for good system performance. We
emulate a complete x86 APIC, and merely pro-
vide fast accessors, VMI_APICRead() and
VMI_APICWrite(), for faster reading and
writing of APIC registers.

While we could have provided a more abstract
virtual interrupt controller, there is not much
performance benefit to doing so. Additionally,
in order to support running on native hardware,
a paravirtual kernel must contain code for deal-
ing with a real APIC anyway.

Other devices, such as disk controllers and
NICs are provided by complete device emula-
tion. While VMI does not preclude a hyper-
visor that provides more abstract device sup-
port such as Xen’s block device, we feel that
the driver code for such devices is mostly in-
dependent of the hypervisor interface, and does
not belong in the virtual machine interface.

3.6 SMP Support

For SMP systems, the BSP will call VMI_
SetInitialAPState for each application

368 • VMI: An Interface for Paravirtualization

processor, prior to sending the INIT IPI. The
APs can then start directly in C code. On na-
tive hardware, the boot sequence operates as is
and the VMI call is skipped.

Because we provide a full APIC implemen-
tation and the hypervisor shadows the guest’s
page tables, the only change needed to get SMP
virtual machines working was to change the
bootup code to allow the application proces-
sors to enter paravirtual mode. We have added
a mechanism for the BSP to set the entire ini-
tial state of each AP, including general purpose
registers, control registers, flags, and descriptor
tables. The APs can start directly in protected
mode, in a state ready to run x86 code.

We have plans to extend VMI as needed to sup-
port SMP direct-mode paging and provide an
event mechanism for remote CPUs.

3.7 Timer

Virtual machines will time share the physical
system with each other and with other pro-
cesses. Therefore, a VM’s virtual cpus (VCPU)
will be executing on the host’s physical cpus for
only some portion of the total cpu time.

VMI exposes a paravirtual view of time to the
kernel so that it may operate more effectively in
a virtual environment.

A VCPU is always in one of three mutually ex-
clusive states: running, halted, or ready. The
VCPU is in the ‘running’ state if it is execut-
ing. When the VCPU executes VMI_Halt(),
the VCPU enters the ’halted’ state and remains
halted until there is some work pending for the
VCPU (e.g. an alarm expires or host I/O com-
pletes on behalf of virtual I/O). At this point,
the VCPU enters the ’ready’ state (waiting for
the hypervisor to reschedule it).

VMI provides cycle counters for three time
domains: real time, available time and stolen

time. Real time progresses regardless of the
state of the VCPU. Stolen time is defined per
VCPU to progress at the rate of real time when
the VCPU is in the ready state, and does not
progress otherwise. Available time is defined
per VCPU to progress at the rate of real time
when the VCPU is in the running and halted
states, and does not progress when the VCPU
is in the ready state.

Additionally, wallclock time is provided by
VMI. Wallclock time is the number of nanosec-
onds since epoch, 1970-01-01T00:00:00Z (ISO
8601 date format).

VMI also provides a way for the VCPUs to set
periodic and one-shot alarms against real time
and stolen time cycle counters.

4 VMI Layer

This section describes an implementation of the
VMI layer for the VMware hypervisor. We also
discuss the techniques used by the VMI layer
to communicate with the hypervisor. While the
VMI layer is itself hypervisor dependent, we
expect that many of the ideas described here
will be employed by VMI layers used with
other hypervisors. In fact, we are currently de-
veloping a VMI layer for the Xen 3.0.1 hyper-
visor, and are using many of these same tech-
niques.

The VMI layer can be thought of as a thin ex-
tension of the hypervisor, running very close
to the paravirtual kernel. The VMI layer both
hides the hypervisor interface from the paravir-
tualized kernel and allows for efficient paravir-
tualization by providing a mechanism for mod-
ifying hypervisor state without incurring the
cost of calling down into the hypervisor itself.

The hypervisor interface consists of a hypercall
interface and a shared data area interface. The

2006 Linux Symposium, Volume Two • 369

hypercall interface is used to call into the hy-
pervisor to perform heavy-weight work. The
shared data area allows for efficient sharing of
state between the VMI layer and the hypervi-
sor, without incurring the cost of a hypercall.

4.1 VMI Calls

The VMI layer implements the VMI by provid-
ing the entry points that are invoked by the par-
avirtual kernel. The VMI layer code runs at the
same CPL as the paravirtualized kernel and can
therefore be invoked via a function call. VMI
calls are thus very fast.

The VMI layer code can service many VMI
calls by reading or writing the shared area. The
VMI layer code will only call out to the hy-
pervisor via a hypercall when it is truly nec-
essary to do so, such as writing to control reg-
ister 3 in order to change the page table base or
to write to an APIC registers with side effects
which must be implemented by the hypervisor.
Additionally, many VMI routines will queue a
hypercall in order to defer work that the hyper-
visor must perform at some later time.

4.2 Separation of Privilege

The x86 architecture has 4 privilege lev-
els, ranging from CPL 0 (kernel) to CPL 3
(user). Typical x86 operating systems, includ-
ing Linux, only use CPL 0 and CPL 3. In a vir-
tualization system, the hypervisor will typically
occupy CPL 0, while demoting the guest oper-
ating system kernel to CPL 1, 2, or 3. The VMI
Linux kernel has been modified to run at CPL
0 (for native runs), 1, or 2 (on hypervisors), but
not 3.

When running on the VMware hypervisor, the
VMI kernel will execute at CPL 2. When run-
ning on the Xen 3.0.1 hypervisor using the VMI

Hypervisor

Shared area

Guest

4032 MB

4064 MB

0 MB

4096 MB

Figure 2: Linear address space

layer that is under development, the VMI ker-
nel executes at CPL 1.

4.3 Hypercall Interface

Hypercalls are calls from the VMI layer to the
hypervisor itself. They require a privilege level
transition. We use the sysenter instruction to
perform the actual hypercall, since it is the
fastest way to enter CPL 0. The sysenter in-
struction does not provide a return address, so
we distinguish hypercall sysenters from guest
system calls by setting a marker in the shared
area data structure indicating that a hypercall is
in progress.

The hypercall interface is a contract between
the VMI layer and hypervisor. The paravirtual
kernel is not concerned with this interface.

4.4 Shared Data Area Interface

As mentioned earlier, a portion of the linear ad-
dress space is reserved for use by the hypervi-
sor and the VMI layer. The VMI layer shares
a data region with the hypervisor. The region

370 • VMI: An Interface for Paravirtualization

shared by the VMware VMI layer and hyper-
visor occupies the linear address range directly
above the guest range, and may grow to be as
large as 32 megabytes. The hypervisor occu-
pies the very top of the address space. See Fig-
ure 2.

The VMware shared data area includes virtual
cpu state such as the virtualized interrupt flag,
the contents of control registers, and the virtual
APIC state. The shared data area additionally
contains a hypercall queue, used to batch hy-
percalls.

The main use of the hypercall queue is to al-
low the guest to issue batch page table updates
without requiring a hypercall for each one. x86
semantics require that a page invalidation or
TLB flush be issued after a page table update,
so it is safe for the hypervisor to defer the hy-
percall to update the shadow page tables until
one of these events occur. Note however, that
the VMI_SetPte() call always updates the
guest’s page tables, so the guest’s page tables
are always up to date, even if the hypervisor’s
are not. It is also possible to batch together hy-
percalls other than PTE updates. This facility,
for example, could be used to update several
descriptors in the GDT, change the kernel stack
pointer, and change the page table base with a
single hypercall (though still requiring multiple
VMI calls).

Like the hypercall interface, the shared data
area interface is also a contract between the
VMI layer and the hypervisor, and therefore the
paravirtualized kernel need not be aware of the
shared area details.

5 VMI Integration in Linux

5.1 The Subarch Approach

Linux proved to be rather accommodating with
the infrastructure required for building a par-
avirtualized kernel. Rather than introduce a
completely new architecture into Linux, our
goal was to share as much code as possible
with the i386 architecture of Linux. The pro-
liferation of the i386 processor families has al-
ready led to a diverse set of hardware platforms
for which the i386 architecture can be com-
piled. These sub-architectures typically pro-
vide alternative interrupt controllers, trap han-
dlers, and vendor specific platform initializa-
tions, which corresponds quite well to the needs
of a VMI kernel. In addition, hooking the VMI
into Linux at the subarch level was desired,
since it gave a fully compatible native hardware
implementation, allowing us to fall back natu-
rally using standard hardware discovery mech-
anisms in the event that a hypervisor could not
be detected.

The subarch approach required moving non-
virtualizable and privileged processor defini-
tions into separate header files in the architec-
ture specific includes, but in general this was
pure code movement for the default architec-
ture, with corresponding VMI definitions to al-
low conversion to VMI calls. The most com-
plicated part of this was providing a reason-
able interface for separating the MMU page ta-
ble accessors, as the compile time PAE/non-
PAE header structure posed some difficulty. We
were able to eliminate many of the problems
here by mirroring the generic page-table code
and using defines at the subarch layer to indi-
cate the presence of alternative page table ac-
cessor functions. We also had to reorganize
how the subarch layers can override the default
definitions a little bit to eliminate all redundant

2006 Linux Symposium, Volume Two • 371

code, and generated a lot of code cleanup in the
i386 architecture layer along the way.

5.2 VMI call injection

The vehicle which we use for publishing the
VMI layer from the hypervisor to the guest is
a ROM module which is present in main mem-
ory. VMI call sites are tagged by building an-
notations at compile time about the location of
VMI calls. The code to make a call into the
VMI layer is emitted into a special translation
section, and the corresponding native instruc-
tions are left in place in the kernel, with ap-
propriate padding to allow the VMI layer call
translation to be copied into place.

The VMI subarch initialization code probes for
the ROM module early during boot and if found
it dynamically patches the kernel to convert all
tagged VMI call sites into calls into the VMI
layer. If no VMI hypervisor is detected, the
kernel can continue to run and discard the VMI
annotation and translation sections.

5.3 Descriptor tables

In general, Linux is quite minimal in the use of
segmentation, and as such, only a small section
of code needed to be changed to avoid introduc-
ing non-reversible segments (when the memory
value is changed after the segment register has
been loaded). Most of the calls to set the GDT
and descriptors are nicely compacted into the
boot and setup code, where there is no perfor-
mance impact.

5.4 Trap handlers

Our approach to handling the low level system
call and trap code was very much premised on

the goal of a transparently virtualized kernel.
As such, we avoided changes to this code as
much as possible. We did find two changes
unavoidable—first, we must convert instruc-
tions such as CLI and STI into suitable VMI
calls. Second, there exists code in the Linux
trap handlers to deal with unusual situations,
such as taking NMIs during entry to the ker-
nel from userspace, or reentry during a region
where the kernel is using a 16-bit stack, as is
necessary for emulation of certain legacy en-
vironments. The total changes required here
to meet both of these requirements were min-
imal, and resulted in less than 60 lines of code
change.

5.5 MMU implementation

Modifying Linux to make use of VMI_
SetPte() is relatively easy. Linux already
has macros for setting a page table entries:
set_pte, set_pmd, set_pud, and set_
pgd. Each of these invocations must be over-
ridden to use VMI_SetPte() in a VMI Linux
guest.

In addition, we needed to add an explicit flush
point to allow flushing of the page table up-
dates. On native hardware, this is unneces-
sary because the processor does not cache not-
present TLB mappings, and changes to present
mappings require either an explicit page invali-
dation or TLB flush. However, leaving page up-
dates in the hypercall queue for changes from
not-present to present would cause a delay in
setting that mapping in the hypervisor, and po-
tentially a spurious page fault. Fortunately, a
hook point already existed, as the Sparc pro-
cessor has an external caching MMU with the
same requirements. We simply hook update_
mmu_cache() and use it to flush the hyper-
call queue.

372 • VMI: An Interface for Paravirtualization

5.6 Timer implementation

The time subsystem of i386 Linux has some
characteristics that can cause suboptimal per-
formance and precision when executing on
a hypervisor. The paravirtualized kernel in-
cludes a new timer device module programmed
against the VMI timer and a new timer interrupt
handler driven by the VMI timer alarms to ad-
dress these issues. The VMI timer module and
VMI timer interrupt handler are installed condi-
tionally at boot up time if the VMI timer is de-
tected. Otherwise, the traditional timer device
code and interrupt handlers are used. This pro-
vides transparency. While these modifications
are new to i386 Linux, the S390 Linux time
subsystem has used many of the techniques de-
scribed below for some time.

The VMI timer device module implements the
timer_opts call-backs using the VMI timer.
The get_offset() and monotonic_
clock() routines are implemented using the
VMI real time cycle counter.

Additionally, the timer_opts delay()
routine is paravirtualized. When running on a
hypervisor, delays are not necessary when com-
municating with virtual devices. These delays
become no-ops. However, the smpboot.c
boot sequence does require delays, so on an
SMP system, the delay is implemented using
the VMI real time cycle counter.

Linux keeps track of the passage of time by
incrementing the jiffies and xtime coun-
ters. The Linux i386 timer subsystem updates
these counters by counting the number of timer
interrupts and multiplying this count by the pe-
riod of the timer interrupt. When running un-
der a hypervisor, this algorithm leads to poor
scaling in the number of virtual machines. If
the kernel programs the timer to interrupt M
times per second and there are N virtual ma-
chines running on the hypervisor, then in or-

der to keep the jiffies and xtime counts
consistent with real time, the hypervisor would
need to deliver a total of M*N virtual timer in-
terrupts per second.

To solve this scaling issue, the paravirtual-
ized kernel includes a new timer interrupt han-
dler and drives it with the VMI timer alarm
programmed against the available time cycle
counter. This handler does not count the num-
ber of interrupts it receives in order to incre-
ment the jiffies and xtime counters. In-
stead, the handler queries the VMI timer cycle
counters to determine the current real time and
updates the jiffies and xtime counters ac-
cordingly. With this algorithm, the counters are
kept up to date whenever the virtual machine
is executing, without the need for a predefined
interrupt rate. So, VMI alarms only need to be
delivered to a virtual cpu while it is executing
on a physical cpu. Therefore, even when run-
ning N virtual machines, only M virtual timer
interrupts need to be delivered by the hypervi-
sor.

On an SMP system, i386 Linux updates the
jiffies and xtime counters from the PIT
timer interrupt handler which only executes on
the boot cpu. Process time accounting is done
per-cpu using the local APIC timers firing on
all cpus. The VMI timer interrupt uses a dif-
ferent scheme to drive time keeping. The up-
dating of jiffies and xtime is performed
by all cpus. This is desirable when running on
a hypervisor because a virtual machine’s cpus
may not be scheduled to run together. There-
fore, the boot cpu may not always be execut-
ing while the other cpus are executing. By up-
dating jiffies and xtime from all cpus,
these counters remain consistent with real time
whenever any cpu of a virtual machine is exe-
cuting, not only when the boot cpu is executing.

Virtual timer interrupts may have a higher cost
than physical timer interrupts since they may

2006 Linux Symposium, Volume Two • 373

be implemented using software timers and in-
terrupt delivery is implemented in software. In
order to mitigate this cost, the VMI timer alarm
rate may be lowered independently of the value
of HZ, which is a compile time constant. The
VMI alarm rate can be set at boot time. In a
future version of the Linux VMI timer code,
we may allow the alarm rate to change dynami-
cally. The VMI timer alarm rate is decoupled
from HZ by the algorithm used by the VMI
timer interrupt handler, as described above.

The paravirtualized timer interrupt handler
calls update_process_times() on every
tick of available time rather than real time. This
way, time that is stolen is not accounted against
a process’ utime, stime, and time slice. In-
stead, stolen time is accounted to the steal
cpustat.

We implement sched_clock() using the
available time counter. Then, a process’
sleep_avg is computed using available time
so that it does not include the effects of time
that was stolen by the hypervisor.

The VMI timer code also provides an im-
plementation of NO_IDLE_HZ. When NO_
IDLE_HZ is enabled, a cpu will disable its pe-
riodic alarm before halting. Rather than using
the periodic alarm to unblock from the halt, the
cpu will set up a one-shot alarm for the next ex-
piring soft timer. This lowers the physical cpu
resources used by an idle virtual cpu, leading to
better scaling in the number of virtual machines
that can be run on the hypervisor.

5.7 Code cost

As we chose a subarch approach, with the goal
of sharing as much code as possible, the cost in
terms of code in Linux is quite small. With one
exception, our patches do not change any archi-
tecture dependent code at all. The only place

where this is done is in our timer patches, and
the no idle Hz changes we have made can ac-
tually benefit all architectures, with or without
virtualization.

The numbers presented here do not include
blank lines or comments in the count. New
lines are lines of code that were added for VMI
support, changed lines indicate lines which
were modified, and moved lines indicates a
count of pure code movement. The most sig-
nificant number is in the new subarch headers,
where a parallel implementation of all of the
CPU primitives was required. The VMI defini-
tions are much less compact, expanding to mul-
tiple lines. But in total, only 2% of the lines in
the i386 architecture layer had to be moved.

The VMware VMI layer code count is included
as well, although it is not part of the Linux ker-
nel changes, it gives some estimate as to the
amount of work required to implement a VMI
layer.

Component New Changed Moved
Trap handlers 25 29
Subarch headers 1382 243
Subarch code 271
Arch i386 code 20 6 13
Timer code 534 9 18
VMI layer code 1425
Total 3657 44 274

Table 1: VMI code sizes

As you can see, the footprint of VMI on
the kernel is tiny, and need not intrude into
architecture-neutral code at all. In fact, be-
cause of the clean encapsulation of the sub-
arch approach, even the i386 architecture code
is barely affected.

6 VMI Performance Data

In this section, we present data showing that
the overhead of the VMI layer on native Linux

374 • VMI: An Interface for Paravirtualization

performance is low. We also present data
comparing VMI Linux guest performance on
VMware’s hypervisor (under development) to
native performance, showing that the overhead
is reasonable for a variety of workloads. De-
scriptions of the workloads and how they were
run are given in Figure 3.

Table 2 contains data, previously posted to
LKML [6], comparing the performance of the
Linux 2.6.16-rc6 kernel running with the VMI
layer to that running without the VMI layer on
the following systems:

• P4: 2.4 GHz; Memory: 1024 MB; Disk:
10K SCSI; Server + Client NICs: Intel
e1000 server adapter

• Opteron: CPU: 2.2 GHz; Memory:
1024 MB; Disk: 10K SCSI; Server
+ Client NICs: Broadcom NetXtreme
BCM5704

using a UP version of the kernel for all work-
loads except the SMP workloads. We ran
dbench, netperf receive and send, and UP and
SMP kernel compile as general workloads that
emphasize, respectively, cpu and memory oper-
ations for (mostly cached) file I/O, gigabit net-
working I/O, and process switching and MMU
operations. On these workloads, the presence
of the VMI layer had no measurable impact on
performance.

To focus on the performance impact of the VMI
layer on kernel code, we also ran various ker-
nel microbenchmarks (both from lmbench and
home-grown). There were some measurable
impacts on these codes, but they were small. In
Table 2, boldface is used to highlight ratios that
are significantly different, when considering
the 95% confidence interval around the means
and the ranges of the small magnitude scores of
which they are comprised. On the P4, only four

of these codes (forkproc, shproc, mmap, page-
fault from lmbench) had overheads outside the
95% confidence interval and they were quite
low (2%, 1%, 2%, 1%, respectively). On the
Opteron, three lmbench codes (forkproc, ex-
ecproc, shproc) had overheads outside the 95%
confidence interval and they were also low (4%,
3%, 2%, respectively). The Opteron runs of
our in-house kernel microbenchmarks segv and
divzero showed overheads of 8% and 9%, re-
spectively, an anomaly we are investigating, but
have no answer for at this time.

Table 3 compares the performance of VMI
guests running on VMware’s hypervisor with
non-VMI native runs on 2.6.15 linux on the fol-
lowing platform:

• P4: 2.4 GHz 2way + hyperthreading;
Memory: 2048MB; Disk: 10K SCSI;
Server + Client NICs: Intel e1000 server
adapter

using a UP version of the kernel for all work-
loads except the SMP workloads.

For the reasons already described with re-
spect to the VMI native measurements, we ran
dbench, netperf receive and send, and UP and
SMP kernel compile. We ran all with 1024MB
guest memory to match the way they were run
natively. For these VMI guest measurements,
we also added UP and SMP SPECjbb2005, a
middle-tier java system benchmark that hap-
pens to accentuate the handling of guest time.
We ran this benchmark with 1640MB mem-
ory, both natively and in the guest, to avoid the
benchmark becoming memory-constrained.

Table 3 reflects current ‘top of trunk’ perfor-
mance.1 As you can see, most of these work-
loads have reasonably low overhead compared

1This performance data is collected from VMware
hypervisor technology that is in active development
stages, and hence is independent of product plans.

2006 Linux Symposium, Volume Two • 375

• Dbench [14] – Version 2.0 run as time ./dbench -c client_plain.txt 1; Repeat until
95% confidence interval width 5% around mean, report mean.

• Netperf [8] – MessageSize:8192, SocketSize:65536; netperf -H client-ip -l 60 -t
TCP_STREAM; Best of 5 runs.

• Kernel compile – Build of 2.6.11 kernel w/gcc 4.0.2 via time make -j 16 bzImage; Best of 3
runs.

• Lmbench [11] – Version 3.0-a4; obtained from sourceforge; Average of best 18 of 30 runs.

• Kernel microbenchmarks – getppid: loop of 10 calls to getppid, repeated 1,000,000 times; segv:
signal of SIGSEGV, repeated 3,000,000 times; forkwaitn: fork/wait for child to exit, repeated 40,000
times; divzero: divide by 0 fault 3,000,000 times; Average of best 3 of 5 runs.

• SPECjbb2005 [3] – Available from SPEC; Repeat until 95% confidence interval width 5% around
mean; report mean.

Figure 3: Benchmark Descriptions

with native. We are pursuing a number of opti-
mization opportunities to further improve per-
formance beyond that reported here. For ex-
ample, kernel compile speeds up significantly
from a prefaulting strategy in development.

Several of the workloads would benefit from re-
ducing the hypervisor’s timer interrupt rate to
below its current minimum rate of 1000/sec.
Netperf/receive native uses e1000/NAPI, which
greatly reduces native CPU utilization, while
the workload running in a guest with its virtual
nic does not and hence exhausts available cpu;
this is another area to be explored.

7 Future Directions

While we prototyped VMI using the VMware
products, we are very interested in supporting
other hypervisors, particularly the Xen hyper-
visor. As mentioned earlier, we are working on
a VMI layer for Xen 3.0.1.

We fully expect that VMI will evolve a bit as
support for new hypervisors is integrated. For

instance, the current VMI does not provide the
interfaces necessary for supporting direct pag-
ing mode for guest operating systems. While
Linux already provides an interface for writ-
ing to page table entries (the macro set_pte
and friends), it does not have an interface for
reading page table entries. We could introduce
such an interface, and machine-to-physical and
physical-to-machine mappings could be wholly
hidden within the VMI layer, allowing for very
clean support for direct paging mode. We have
chosen not to implement these at this time be-
cause it would require larger changes to Linux.

As 64 bit hardware has become more widely
deployed, adding support for 64 bit Linux
guests to the VMI is certainly of interest to us.

VMI was designed to be OS agnostic. As
such, when time permits, we will explore port-
ing more open OS’es to VMI. We have ported
our own OS, Frobos, to run inside a paravirtual
monitor using VMI as well.

376 • VMI: An Interface for Paravirtualization

Throughput [higher=better] P4 Opteron
Dbench/1client 1.00 1.00
Netperf/Recv 1.00 1.00
Netperf/Send 1.00 1.00
Latency [lower=better] P4 Opteron
UP Kernel Compile 1.00 1.00
SMP Kernel Compile 1.00 1.00
Lmbench null call 1.00 1.00
Lmbench null i/o 1.00 0.92
Lmbench stat 0.99 0.94
Lmbench open clos 1.01 0.98
Lmbench slct TCP 1.00 0.94
Lmbench sig inst 0.99 1.09
Lmbench sig hndl 0.99 1.05
Lmbench fork proc 1.02 1.04
Lmbench exec proc 1.02 1.03
Lmbench sh proc 1.01 1.02
Lmbench 2p/0K 1.00 1.14
Lmbench 2p/16K 1.01 0.93
Lmbench 2p/64K 1.02 1.00
Lmbench 8p/16K 1.02 0.97
Lmbench 8p/64K 1.01 1.00
Lmbench 16p/16K 0.96 0.97
Lmbench 16p/64K 1.00 1.00
Lmbench mmap 1.02 1.00
Lmbench prot fault 1.06 1.07
Lmbench page fault 1.01 1.00
Getppid 1.00 1.00
Segv 0.99 1.08
Forkwait 1.02 1.05
Divzero 0.99 1.09

Table 2: VMI-Native to Native Score Ratio

Dbench/1client 0.95
Netperf/Recv 0.79
Netperf/Send 0.94
UP SPECjbb2005 0.91
SMP SPECjbb2005 0.88
UP Kernel Compile 0.87
SMP Kernel Compile 0.78

Table 3: P4 VMI-Guest vs. Native Perfor-
mance

8 Related Work

We believed in the performance benefits of par-
avirtualization, but were convinced that a sin-
gle binary that ran on a hypervisor and on na-
tive hardware was the only practical alterna-
tive. Work done by Magenheimer [10] on trans-
parently paravirtualizing the Itanium (and in
fact coining the term itself) gave us the most
encouragement that this was a viable design
choice.

LeVasseur et al., in their work on pre-
virtualization [9], have developed an automated
way to generate a paravirtualized kernel, also
with an emphasis on working across multiple
hypervisors.

It is encouraging to see the shared belief that
paravirtualization needs to be done in a disci-
plined way, mindful of the kernel’s maintain-
ability, reliability and upgradability.

The Xen project has recently adopted the prin-
ciple of transparent paravirtualization (referred
to as microxen), further validating its practical-
ity. However, it is VMI that has shown the
way to accomplish transparent paravirtualiza-
tion with negligible overhead, and perturbation
to the kernel.

9 Conclusions

There are several important conclusions from
this exercise:

• The performance promise of paravirtual-
ization can be realized without forcing
large amounts of code into the kernel. In
particular, it is possible to separate the hy-
pervisor interface from the kernel itself,

2006 Linux Symposium, Volume Two • 377

which removes the need to port and main-
tain this code as part of the kernel. It is no
longer necessary to produce incompatible
kernels with each change of the hypervisor
interface. Nor is it necessary to compro-
mise the structure and the look-and-feel
of the Linux kernel by introducing hyper-
visor metaphors such as machine-frame
numbers into the kernel.

• VMI delivers the performance required
and still keeps a clean separation between
the kernel and the hypervisor. The sepa-
ration of the hypervisor interface from the
kernel is the key which allows a VMI ker-
nel to run on multiple hypervisors, and
even multiple incompatible versions of hy-
pervisors from the same vendor.

• It is not possible to match the perfor-
mance of the native kernel at the mi-
crobenchmark level without inlining the
native functions that would otherwise be-
come function calls.

• In the context of Linux, the best way to
minimize the code impact is by imple-
menting the virtualized architecture at the
subarch level.

• By providing alternative VMI code mod-
ules, debugging and statistics gathering
options can also be made available at boot
time, without changing any kernel code
or adding any runtime cost to virtual ma-
chines for the default case.

In addition, hardware assistance for virtualiza-
tion [4, 2] is being deployed in newer proces-
sors. Despite this, we see paravirtualization as
having a lasting impact on kernel design in the
virtualization arena for the following reasons.

• The latency of the hypercall is expected to
be lower than or equal to the cost of the

control transfer from the guest state to the
hypervisor state.

• The ability to batch multiple state changes
that would otherwise require separate con-
trol transfers to the hypervisor can best be
done with cooperation from the guest ker-
nel.

• The ability to avoid many conditional traps
to the hypervisor by executing code in the
VMI layer can actually enhance the per-
formance of hardware virtualization.

• In order for the timer subsystem of the
guest kernel to be precise and performant,
paravirtualization style modifications are
necessary.

• Paravirtualization, being a software tech-
nique, is inherently more nimble. It can
outpace hardware solutions, and be the
trendsetter when it comes to proving the
viability of a design.

With these beliefs, we have proposed a lower
impact approach to paravirtualization. It is de-
signed to be maintainable and flexible in the
long term. It is a very pragmatic interface, with
attention put into high performance. Our ex-
periments indicate that there is negligible time
lost in the interface layer itself. VMI is also
both hypervisor independent and OS indepen-
dent. This allows it to cope as hypervisor ver-
sions change or processor generations evolve,
all with unnoticeable overheads and zero im-
pact to the end user.

Building the VMI layer has increased our con-
fidence that the principles we sought after from
a paravirtualization interface are achievable.
VMI, even as it stands today is quite suitable to
play the role of the paravirtualization interface
for Linux.

378 • VMI: An Interface for Paravirtualization

10 Acknowledgements

We would like to thank Ole Agesen, Mendel
Rosenblum, Eli Collins, Rohit Jain, Jack Lo,
Steve Herrod, and in addition, anonymous re-
viewers for their comments and helpful sugges-
tions.

References

[1] Zachary Amsden. Vmi i386 linux
virtualization interface proposal. http:
//lkml.org/lkml/2006/3/13/140,
Mar 2006.

[2] Intel Corporation. Intel Virtualization
Technology Specification for the IA-32
Intel Architecture, April 2005.

[3] Standard Performance Evaluation
Corporation. Specjbb2005 java server
benchmark.
http://www.spec.org/jbb2005,
June 2005.

[4] Advanced Micro Devices. AMD64
Virtualization Codenamed ’Pacifica’
Technology: Secure Virtual Machine
Architecture Reference Manual, May
2005.

[5] Robert P. Goldberg. Survey of virtual
machine research. IEEE Computer 7(6),
June 1974.

[6] Anne Holler. Vmi i386 linux
virtualization interface proposal:
Performance data. http:
//lkml.org/lkml/2006/3/20/489,
Mar 2006.

[7] VMware Inc. Vmware hypercall
interface, version 2.0.
http://www.vmware.com/

standards/hypercalls.html, Mar
2006.

[8] Rick Jones. Netperf: a benchmark for
networking. http://www.netperf.
org/netperf/NetperfPage.html,
July 2002.

[9] J. LeVasseur, V. Uhlig, M. Chapman,
P. Chubb, B. Leslie, and G. Heiser.
Pre-virtualization: Slashing the cost of
virtualization. Technical report, Fakultät
für Informatik, Universität
Karlsruhe(TH), Nov. 2005. 2005–30.

[10] D. J. Magenheimer and T. W. Christian.
vblades: Optimized paravirtualization for
the itanium processor family.
Proceedings of the 3rd Virtual Machine
Research and Technology Symposium,
May 2004.

[11] Larry McVoy and Carl Staelin. Lmbench
suite of microbenchmarks for unix/posix.
http://sourceforge.net/

projects/lmbench, August 2004.

[12] Barnham P., Dragovic B., Fraser K.,
Hand S., Harris T., A. Ho, Neugerberger
R., Pratt I., and A. Warfield. Xen and the
art of virtualization. SOSP ’03:
Proceedings of the nineteenth ACM
symposium on Operating system
principles, pages 164–177, 2003.

[13] G.J. Popek and R.P. Goldberg. Formal
requirements for virtualizable third
generation architectures.
Communications of the ACM, 1974.

[14] Andrew Tridgell. Dbench: an
open-source netbench.
http://freshmeat.net/projects/

dbench/, December 2002.

[15] A. Whitaker, M. Shaw, and S.D. Gribble.
Scale and performance in the denali
isolation kernel. SIGOPS Oper. Syst. Rev.
36, SI, pages 195–209, 2002.

HTTP-FUSE Xenoppix

Kuniyasu Suzaki† Toshiki Yagi† Kengo Iijima†

Kenji Kitagawa†† Shuichi Tashiro†††

National Institute of Advanced Industrial Science and Technology†

Alpha Systems Inc.††

Information-Technology Promotion Agency, Japan†††

{k.suzaki,yagi-toshiki,k-iijima}@aist.go.jp

kitagake@alpha.co.jp, tashiro@ipa.go.jp

Abstract

We developed “HTTP-FUSE Xenoppix” which
boots Linux, Plan9, and NetBSD on Virtual
Machine Monitor “Xen” with a small bootable
(6.5MB) CD-ROM. The bootable CD-ROM in-
cludes boot loader, kernel, and miniroot only
and most part of files are obtained via Internet
with network loopback device HTTP-FUSE
CLOOP. It is made from cloop (Compressed
Loopback block device) and FUSE (Filesys-
tem USErspace). HTTP-FUSE CLOOP can re-
construct a block device from many small block
files of HTTP servers. In this paper we describe
the detail of the implementation and its perfor-
mance.

1 Introduction

We have studied boot methods which make
easy-to-use OSes and applications with small
change of PC. One solution is a CD-bootable
OS, but it requires downloading a big file (ap-
proximately 700MB ISO image) and burning

a CD-ROM. Furthermore it requires remaking
the entire CD-ROM when a bit of data is up-
dated. The other solution is a Virtual Machine
which enables us to install many OSes and ap-
plications easily. However, that requires in-
stalling virtual machine software.

We have developed “Xenoppix” [1], which
is a combination of CD/DVD bootable Linux
“KNOPPIX” [2] and Virtual Machine Monitor
“Xen” [3, 4]. Xenoppix boots Linux (KNOP-
PIX) as Host OS and NetBSD or Plan9 as Guest
OS with a bootable DVD only. KNOPPIX
is advanced in automatic device detection and
driver integration. It prepares the Xen environ-
ment and Guest OSes don’t need to worry about
lack of device drivers. For example, Plan9 is
an advanced OS but has few device drivers.
Xenoppix enables us to try easily such a spe-
cial OS.

Unfortunately Xenoppix is still a DVD-
bootable OS. It has a drawback of update dif-
ficulty. We wanted to get rid of the root file
system from the Xenoppix DVD and manage it
on an Internet server. It is a kind of thin client,
but it aims that anonymous users can use sev-

380 • HTTP-FUSE Xenoppix

eral OSes if they have a PC and Internet con-
nectivity. It also makes for easy maintenance
of OSes and applications because they are up-
dated on the server.

There are several ways to expose a root file sys-
tem on the Internet. There are NFS4 [5], Open-
AFS [6], SFS [7, 8], SFSRO [9], and SHFS [10]
as network file systems, and iSCSI [11] as
network block device. Unfortunately most of
them require special server software and spe-
cial ports which are closed by a firewall. They
also aren’t considered to be opened public for
anonymous users and have security problems.

To solve the problem we proposed a network
loopback device, HTTP-FUSE CLOOP. The
loopback device consists of small split and
compressed block files which are exposed on an
HTTP server. The block files are downloaded
by the loopback device driver when the relevant
address is accessed. The downloaded block
files are decompressed and mapped to loopback
device. These block files can be saved at a local
storage as a cache.

The mapping of block address to a block file
is done by an indexing table. The file name of
block files is MD5 value of its contents. The
indexing table has a list of MD5 file names.
When a block is updated, a new block file is
created with a new MD5 file name and the in-
dexing table is renewed. The old block files
don’t need to erase. We can easily rollback with
an old indexing table and block files. MD5 file
names are used to increase security. The down-
loaded files are validated by file names. Fur-
thermore, some block regions which have the
same contents are represented by a file and re-
duce the total volume of virtual block device.
This idea is resemble to Venti [13] of Plan9. In
a later section, we compare it to our method.

We made HTTP-FUSE Xenoppix which in-
cludes HTTP-FUSE CLOOP. The size of
bootable CD is 6.5MB and boots KNOPPIX

as Host OS and NetBSD and Plan9 as Guest
OS on Xen. In this paper we describe the
detail of HTTP-FUSE Xenoppix. In section
2 we introduce Xenoppix. The detail of net-
work block device “HTTP-FUSE CLOOP” is
described in Section 3. The current implemen-
tation of HTTP-FUSE Xenoppix is presented
in Section 4 and its performance is reported in
Section 5. We discuss related works and future
plans in Section 6, and conclude in Section 7.

2 Xenoppix

In this section we describe the detail of Xenop-
pix. Xenoppix is a combination of KNOPPIX
and Xen.

2.1 KNOPPIX

KNOPPIX [2] is a bootable CD/DVD Linux
with a collection of GNU/Linux software. It
is not necessary to install anything on a hard
disk, and it enables running GNU/Linux on any
PC. KNOPPIX can be used as a normal desktop
Linux because it includes a powerful graphical
desktop environment (KDE), office software
(OpenOffice.org), Web browsers (Konqueror
and Mozilla), image manipulation software
(GIMP), many games, etc. CD-bootable Linux
isn’t an exclusive feature of KNOPPIX. There
are many distributions: DemoLinux, Mepis,
Slax, Adios, etc. Among them, KNOPPIX is
a leading, popular CD bootable Linux, because
its automatic hardware detection/configuration
(AutoConfig) and compressed loopback device
(cloop) are excellent.

2.1.1 AutoConfig

AutoConfig function of KNOPPIX detects
individual devices and loads suitable de-
vice drivers. AutoConfig is achieved by

2006 Linux Symposium, Volume Two • 381

the /etc/init.d/knoppix-autoconfig

script at boot time. The script consists of a
hardware detection part and a driver setup part.
Hardware detection is done by the hwsetup
binary which is based on kudzu [12], the Red
Hat Linux hardware probing library. After
hardware detection, drivers are set up by setup-
scripts like mkxf86config. If a network
card is detected and DHCP is available, an IP
address is automatically set up.

2.1.2 cloop

Cloop is a compressed loopback device which
supports file system independence, transparent
decompression, and read only mounts. It re-
duces the space needed on the CD to about
50% down to 25% of the original file system.
KNOPPIX stores its root file system to a cloop
file and mounts it at boot time. 700MB vol-
ume of CD-ROM is almost occupied by a cloop
file /KNOPPIX/KNOPPIX. The rest of the vol-
ume is files for boot. Figure 1 shows the image
of KNOPPIX CD-ROM. Cloop reduces access
data of CD and make data-read fast with a help
of on-the-fly decompression.

Figure 1: The contents of KNOPPIX

2.2 Xen

Xen [3, 4] is a virtual machine monitor (VMM)
for x86 that supports execution of multiple

Guest OSes with close-to-native performance
and resource isolation.

Xen uses a very different technique than
the traditional virtualization, namely para-
virtualization. In paravirtualization, the Guest
OS is ported to an idealized hardware layer
which completely virtualizes all hardware in-
terfaces. When the OS updates hardware data
structures, such as the page table, or initiates
a DMA operation, it makes calls into an API
that is offered by VMM. The VMM keeps
stack of all changes made by the OS and op-
timally decides how to modify the hardware
on any context switch. VMM is mapped into
the address space of each Guest OS, minimiz-
ing the context switch time between any OS
and VMM. Finally, by co-operatively working
with the Guest OSes, VMM gains additional
insight into the intentions of the OS, and can
make the OS aware of the fact that it has been
virtualized. The para-virtualization is enabled
by small patched to the Host and Guest OSes.
On Xen-2.0.6, available Host OS is Linux and
Guest OSes are Linux, Free BSD, NetBSD, and
Plan9, which are all open source OSes.

2.3 Xenoppix = KNOPPIX + Xen

We customized KNOPPIX to include a virtual
machine monitor Xen. We call it Xenoppix.
Xenoppix sets up device drivers using Auto-
Config function of KNOPPIX and enables to
boot a Guest OS on Xen. The X Window Sys-
tem is prepared by KNOPPIX and the GUI of
Guest OS is mapped to X Windows using VNC
full-screen mode. It shows that Guest OS boots
as a standalone OS. Furthermore the Guest OS
can work as a server because it gets IP address
from external DHCP with VIF-Bridge of Xen.

The update of files are covered by UNIONFS
[14] on Host OS and Device Mapper [16] on
Guest OS. UNIONFS is a stackable file system

382 • HTTP-FUSE Xenoppix

Linux Xen VMM 0.12MB
2.6.12 kernel with Xen patch 1.3MB
(Domain0) miniroot 0.89MB

Root File System 870MB
NetBSD kernel with Xen patch 1.7MB
(DomainU) Root File System 140MB
Plan9 kernel with Xen patch 1.9MB
(DomainU) Root File System 140MB

Table 1: Size of files in Xenoppix DVD
(1.1GB)

which allows us CopyOnWrite on read only file
system. Device mapper is a Linux kernel mod-
ule for logical volume management. It enables
us to CopyOnWrite on the device level.

Figure 2: The contents of Xenoppix

Current Xenoppix includes 2 Guest OSes;
NetBSD and Plan9. Figure 2 shows the
contents of Xenoppix DVD which based on
KNOPPIX 4.0.2 CD version and Xen 2.0.6. Ta-
ble 1 shows the size of main files on Xenoppix
DVD. The boot loader “isolinux” is replaced by
“GRUB” because Xen requires loading VMM
before Linux kernel. Linux kernel and miniroot
is loaded as 2nd and 3rd modules by GRUB.
The Linux kernel with Xen patch boot at first
and prepare device drivers with AutoConfig of
KNOPPIX. After that Guest OS is booted on
Xen.

3 HTTP-FUSE CLOOP: A Net-
work Loopback Device of split
and compressed block files

We developed a network loopback device of
split and compressed block files. It is based
on a compressed loopback device “cloop” and
a user-space file system “FUSE” [15]. So we
call it HTTP-FUSE CLOOP.

3.1 cloop: Compressed Loopback Device

Cloop is a compressed loopback device which
saves virtual block device in a file. A cloop file
is made from a block device which has already
included root file system on it (Figure 3). The
block device is split by a fixed size (KNOP-
PIX’s default is 64KB) and compressed by zlib.
The data are saved in a cloop file with a header
which is a index of compressed blocks.

CD KNOPPIX has a 700MB cloop file which
stores 2GB block device. Cloop is a block de-
vice level abstraction and doesn’t care about the
file system. So any file systems can be saved to
cloop file, for example iso, ext2, etc. We adapt
the ext2 file system (block size of file system is
4KB) as default.

A cloop file is setup as a loopback device at
/dev/cloop* and the file system is mounted
(Figure 3). When a read request is issued from
the file system, cloop driver read a relevant
cloop block data from a cloop file using in-
dex header and decompresses the data at cloop
driver’s cache (64KB). Cloop driver returns re-
quest block unit (4KB) data of EXT2 from the
cache. The cached date doesn’t erase and is
used when the next read request is fit to the
cloop block.

2006 Linux Symposium, Volume Two • 383

Figure 3: Cloop of KNOPPIX

3.2 Drawback and Improvement of Cloop

Coop is convenient because it saves block de-
vice to a file and makes small. However a cloop
file itself becomes a big file. The size of tradi-
tional CD-KNOPPIX is about 700MB. It must
be treated as one file and takes much time to
download. Furthermore a big cloop file has to
re-build when a bit of date is updated.

To solve this problem, we develop a new block
device. Data of a block device is divided by a
fixed block size and saved to many small block
files. Saved data are also compressed. Block
files are treated as network transparent between
local and remote. So block files are location
free. Local storage acts as a cache. The feature
of the network loopback device follows:

• A block file is made of each 256KB block
device. A block data is compressed by zlib
and saved to a block file.

– The block split size “64KB” is too
small and makes too many files.

• Block files are mapped to a loopback de-
vice with index.idx file. index.idx
acts a header of cloop file.

• The loopback device is a virtual device.
The mapping of block file is done when
a relevant read request is issued.

– After mapping, the block file is
erasable from local storage, because
it can be re-downloaded from Inter-
net.

• A name of block file is the hash value of
MD5. If the block contents are same, they
are held together a same name file and re-
duce total file size. The block contents be-
come identifiable because it is confirmed
by the MD5 file name.

• Block files are downloadable from HTTP
server because HTTP is expected to be
strong file delivery infrastructure. For ex-
amples, mirror servers and proxy servers.

We used virtual file system “FUSE” (File sys-
tem in USEr-space) [15] to implement the vir-
tual loopback device. This situation resembles
to loopback device which is a virtual block de-
vice on a file system. The merit of virtualiza-
tion is to make easy to treat low level device.

384 • HTTP-FUSE Xenoppix

Figure 4: Structure of HTTP-FUSE CLOOP

Figure 4 shows structure of HTTP-FUSE
CLOOP. The driver is implemented as a part
of FUSE wrapper program. Block files and
index.idx are also made from a block de-
vice which includes root file system. The block
files and index.idx are downloadable by
HTTP server.

index.idx file is downloaded at first be-
cause it is used to setup HTTP-FUSE CLOOP.
When a read request is issued, HTTP-FUSE
CLOOP driver searches a relevant block file
with index.idx file. If a relevant file exists
on a local storage, the file is used. If not, the file
is downloaded from Internet. The download
program is implemented by “libcurl” and is in-
cluded in the FUSE wrapper. The downloaded
block file is stored in RAM-Disk or local stor-
age. If the storage space is not enough (more
than 80% is used), the previous downloaded
files are removed by LIFO of water mark al-
gorithm.

3.3 Update by difference blocks

The addressing of HTTP-FUSE CLOOP
is managed by the mapping table of

index.idx. So the update of HTTP-
FUSE CLOOP is done by adding updated
block files and renewing index.idx. The
rest block files are reusable. To achieve this
function, the file system on HTTP-FUSE
CLOOP have to treat block unit update as
EXT2 file system. “iso9660” is not suitable
because partial update of iso9660 changes the
location of following blocks. The updated
block is saved to a file with new file name of
MD5. Collision of file name will be rarely
happened. Even if a collision happens, we can
check and fix before uploading the block files.

Figure 5 shows an example of update of HTTP-
FUSE CLOOP. It is useful to update applica-
tions of KNOPPIX, especially for security up-
date. Furthermore we can rollback to an old
file system if old index.idx and block files
exist.

4 Implementation of HTTP-FUSE
Xenoppix

We adapt HTTP-FUSE CLOOP to Xenoppix.
HTTP-FUSE CLOOP driver and setup soft-
ware are included in a miniroot because they

2006 Linux Symposium, Volume Two • 385

Figure 5: Update of HTTP-FUSE CLOOP

are used before mounting the root file system.
The software to boot initial Host OS environ-
ment is stored in 6.5MB ISO image. The root
file system of Host OS is downloaded via In-
ternet with HTTP-FUSE CLOOP. The files for
Guest OS are also downloaded via Internet on
demand. Figure 6 shows the usage model of
HTTP-FUSE Xenoppix.

The downloaded block files are saved at a lo-
cal storage if it is available. The local stor-
age works as a cache. If the all block files are
saved to a local storage, HTTP-FUSE Xenop-
pix doesn’t need to download anymore. So
HTTP-FUSE Xenoppix can boot from local
storage as well as HTTP server.

4.1 Drawback and Settlement

Access request is passed as the following steps
on HTTP-FUSE CLOOP.

ext2 → cloop → FUSE →
(HTTP Internet) → block-file

Cloop is a virtual block device and the access
request is sequential. It means only one read
request is issued to cloop. It turns to download

Figure 6: Usage model of HTTP-FUSE KNOP-
PIX

a small block file. So HTTP-FUSE CLOOP
is vulnerable to network latency and causes
narrow band width. It can’t make bandwidth
extension with multi-connections, which is a
technique used by NFS, because it can’t accept
multiple read requests. Especially boot time
has no cue to hide latency and suffers affect of
latency.

To solve this problem, we add two functions,
netselect and DLAHEAD. Netselect enables
us to find the best site and DLAHEAD enables
us to download the necessary block files in ad-
vance.

4.1.1 netselect

netselect is a software that selects the
shortest latency site among candidates by us-
ing ping. We prepare several HTTP sites for
HTTP-FUSE Xenoppix and add a boot option
of netselect to find nearest site automati-
cally. Figure 7 shows the location of the sites.
We arranged the sites to be dispersed across the
globe as possible as we could. However the
sites are centered in North America and Japan
because of the cost to keep sites.

netselect is expected to make fast boot of

386 • HTTP-FUSE Xenoppix

Figure 7: Web Sites for HTTP-FUSE Xnoppix

HTTP-FUSE Xenoppix. However it can’t esti-
mate the bandwidth and traffic congestion. So
it doesn’t always find the best site.

4.1.2 DLAHEAD

We develop a function named DLAHEAD
(download ahead). DLAHEAD downloads the
necessary block files in advance. The list of
necessary block files is made from the boot pro-
file of HTTP-FUSE Xenoppix. DLAHEAD es-
tablishes multiple connections and downloads
block files in parallel. The default number of
connections is four. The downloaded block
files are saved to a local storage. The files work
as a cache and omit download of HTTP-FUSE-
CLOOP driver.

DLAHEAD is reasonable settlement but isn’t
almighty. It doesn’t cover all read request.
For examples, special boot options or unex-
pected device drivers. At that time, download is
done by HTTP-FUSE-CLOOP driver and suf-
fers network latency.

5 Performance Evaluation

We evaluated performance of HTTP-FUSE
Xenoppix at boot time. We analyzed the effect
of DLAHEAD and affect of network latency.

loopback Number of Size of Amount
file block files block file of files

HostOS Max 262,230
(KNOPPIX) 7,483 Min 277 6800 MB
680MB Ave 94,740
GuestOS Max 253,977
(NetBSD) 1,559 Min 277 130 MB
140MB Ave 86,642
GuestOS Max 262,230
(Plan9) 1,346 Min 277 94 MB
140MB Ave 73,161

Table 2: Feature of block files (256KB split)

We prepared test environment for this evalua-
tion. The server machine was Dell PowerEdge
1600SC with Pentium Xeon 2.8GHz, 1000M
MIC and 4GB memory. It ran apache2 as a
HTTP server. The client machine was IBM
ThinkPAD T23 with Pentium III 1GHz, 100M
NIC, 1GB memory, and 24x CD-ROM drive.
To synthesize network latency we used “dum-
mynet” of FreeBSD. We prepared FreeBSD
machine which had 2 NICs and acted as a net-
work bridge. The synthesized network latency
was 100msec.

At first we analyzed the feature of block files
of HTTP-FUSE Xenoppix. Table 2 shows the
size of block files. DLAHEAD downloads 729
block files (62MB) with four extra HTTP con-
nections.

5.1 Boot Time

The boot time was measured from prompt of
“GRUB” to the end of GUI setup. KNOPPIX
(Host OS) requires much time because the de-
fault desktop manager, KDE, is rich and needs
many block files. NetBSD and Plan9 boot as a
Guest OS on Xen. When a Guest OS is booted,
the Host OS (KNOPPIX) prepares X Windows
only. X Windows is used by full screen VNC
of Guest OS. On the VNC, NetBSD boots un-
til XDM (X Display Manager) and Pan9 boots
until its login console.

Table 3 shows boot time of each OS of HTTP-
FUSE Xenoppix. Each boot time includes

2006 Linux Symposium, Volume Two • 387

Xenoppix No Latency No Latency 100msec Latency 100msec Latency
DVD +DLAHEAD +DLAHEAD

KNOPPIX 184 173 157 (16, 9%) 432 282 (150, 35%)
94% 85% 235% 153%

NetBSD on Xen 162 176 166 (10, 6%) 384 231 (153, 40%)
108% 102% 237% 143%

Plan9 on Xen 127 135 130 (5, 4%) 340 200 (140, 41%)
106% 102% 268% 157%

Table 3: Boot Time (Sec). Upper part shows boot time and lower part shows percentage compared
to boot time of Xenoppix DVD. The value in parenthesis shows time and percent shortened by
DLAHEAD.

the time consumed to setup of HTTP-FUSE
CLOOP. The setup took 44 seconds on IBM
ThinkPAD T23. The table shows the time of
DVD Xenoppix as a reference.

The boot time of HTTP-FUSE Xenoppix was
almost same to DVD boot time when the net-
work latency is not synthesized. This re-
sult means that HTTP-FUSE Xenoppix is valid
at LAN environment, because HTTP-FUSE
Xenoppix makes easy to maintenance. At this
environment the effect of DLAHEAD was lit-
tle. It was less than 10%.

However it became prominent at 100msec la-
tency. It made 35%, 40%, and 41% faster than
no DLAHEAD on KNOPPIX, NetBSD, and
Plan9 respectively. The total boot time of each
OS was more than 2 times of DVD Xenoppix
when DLAHEAD is not enabled. But it became
about 1.5 times when DLAHEAD is enabled.
The results show necessity of DLAHEAD on
Internet.

5.2 Trace of Traffic and Throughput

We made graphs of traffic and throughput at
boot time. Figures 8 and 9 show the results.
From these results we found the amounts of
download were 110MB, 84MB and 69MB for
KNOPPIX, NetBSD and Plan9 respectively,
when DLAHEAD was not enabled. They were
115MB, 92MB, and 77MB when DLAHEAD

was enabled. DLAHEAD increased the total
amount of download because the block list was
a general and included some unused block files.

To compare Figure 8-A and 9-A we found the
affect of network latency. This results show
original HTTP-FUSE CLOOP was sensitive of
network latency. The peak throughput was
about 40 Mbps at no latency (Figure 8-C) but
they became only 4Mpbs at 100msec latency
(Figure 9-C). This results show importance to
find the nearest download site.

To compare Figures 8-D and 9-D we found
the effect of DLAHEAD. On each case the
DLAHEAD makes throughput wide but the ef-
fect is different. At no latency the peak band
throughput was about 100Mpbs. It was a maxi-
mum throughput at the environment and DLA-
HEAD finished at 10 second. The boot process
doesn’t catch up. So the total boot time is not
shortened so much. This results show the ad-
vantage of DLAHEAD will be not recognized
at LAN environment. However DLAHEAD
shows the effect at 100msec latency. The peak
throughput became 16Mbps (Figure 9-D). It
was four times of the case of no DLAHEAD.
The peak throughput continued till the end of
DLAHEAD. At this time downloaded block
files were took over to boot process and cut the
affect of network latency.

Unfortunately DLAHEAD is a kind of counter
measure. After the use of downloaded block

388 • HTTP-FUSE Xenoppix

A. Traffic without DLAHEAD B. Throughput without DLAHEAD

C. Traffic with DLAHEAD D. Throughput with DLAHEAD

Figure 8: Network Traffic and Throughput of Boot of HTTP-FUSE Xenoppix at No Latency

A. Traffic without DLAHEAD B. Throughput without DLAHEAD

C. Traffic with DLAHEAD D. Throughput with DLAHEAD

Figure 9: Network Traffic and Throughput of Boot of HTTP-FUSE Xenoppix at 100 msec Latency

2006 Linux Symposium, Volume Two • 389

files, the HTTP-FUSE driver has to download
with a single connection. Network latency con-
cerned to all download. So it is much important
to prepare worldwide HTTP servers as candi-
dates of netselect and find a short latency one.

6 Discussions

6.1 Venti of Plan9

“Venti” [13] is an archival block storage server
for Plan9. In this system, a unique hash of a
block’s contents acts as the block identifier for
read and write operations. This approach en-
forces a write-once policy, preventing acciden-
tal or malicious destruction of data. In addition,
duplicate copies of a block can be coalesced,
reducing the consumption of storage and sim-
plifying the implementation of clients. Venti
is a building block for constructing a variety
of storage applications such as logical backup,
physical backup, and snapshot file systems.

On HTTP-FUSE CLOOP, block data are also
managed by a unique hash MD5. However
each block data is saved as a file. File is a logi-
cal storage and easy to treat. It is easy to make
copies of block files and distribute them. So we
could use HTTP servers to distribute them via
Internet.

In comparison with Venti, the overhead of
HTTP-FUSE KNOPPIX seems to take much
time, especially it uses user-space file system
FUSE. However the most overhead was caused
by downloading a block file on Internet. This
point would be cared by netselect and DLA-
HEAD partially. But it’s not enough. We will
make an improvement of download method.
The native overhead of the driver is mentioned
in following section.

6.2 Deployment of Virtual Machine for OS
migration

There are several researches of deployment of
virtual machine for OS migration. “soulPads”
and “XenFS” have close relations to HTTP-
FUSE Xenoppix.

SoulPads [17] is same concept as Xenoppix. It
uses AutoConfig of KNOPPIX to prepare Host
OS environment and VMware Workstation to
run Guest OS. It is reasonable implementa-
tion but requires commercial license. Even if
VMware Workstation is replaced with VMware
Player, it is not re-distributed without permis-
sion. Furthermore SoulPads is based on potable
disk device and doesn’t have extension like a
HTTP-FUSE Xenoppix of 6.5MB CD-ROM.

XenFS [18] is project sharing disk image of
Xen. Unfortunately it is under development.
According project plan, the implementation of
XenFS is tightly coupling to API of Xen and
aims high performance. The target is same
to HTTP-FUSE Xenoppix but it uses a device
level abstraction HTTP-FUSE CLOOP. So it
doesn’t concern to File System.

6.3 How to distribute block files

Current implementation used fixed HTTP
servers to distribute block files. They were use-
ful but have to be maintained all servers when
block files are updated. So the cost to keep
servers is not small. We want to distribute
block files automatically with a help of P2P.
The candidates are “coral” [19, 20] and “Di-
jjer” [21]. Unfortunately their current imple-
mentations are not good at keeping quick re-
sponse and distributing many small files.

390 • HTTP-FUSE Xenoppix

6.4 Trusted boot by TPM

The block files are confirmed its contents by the
MD5 file names. However there is no warranty
of index file. If a user gets a fraud index file,
current HTTP-FUSE Xenoppix has no way to
check. So, we want to integrate the trusted boot
method offered TPM (Trusted Platform Mod-
ule) chip [22]. It will help to upgrade security
level.

6.5 Overhead of HTTP-FUSE CLOOP

The overhead of HTTP-FUSE CLOOP on
Xenoppix doesn’t look reasonable. It seems
to be some affects from Linux kernel patch of
Xen, because HTTP-FUSE CLOOP on normal
Linux kernel showed better performance. Un-
fortunately we have not found the reason yet.
We will analyze the behavior of HTTP-FUSE
CLOOP driver and improve the performance.

7 Conclusions

We developed a network loopback device
“HTTP-FUSE CLOOP” which is constructed
with split-and-compressed block files from
HTTP servers. We adopted it to Xenoppix and
made HTTP-FUSE Xenoppix which enabled to
boot Linux as a Guest OS and NetBSD and
Plan9 as a Guest OS with 6.5MB boottalbe CD.

The boot time of HTTP-FUSE Xenoppix was
almost same to original DVD Xenoppix at LAN
environment. Unfortunately it became worse at
Internet environment. It would be more than
two times of original DVD boot time when the
latency was 100msec. However we developed
methods to improve performance, netselect and
DLAHEAD. When DLAHEAD is enabled, the
boot time was improved about 40%.

The implementation hasn’t matured yet. To
make good performance we have to improve
the driver of HTTP-FUSE CLOOP as well as
block file distribution methods. We also have
to increase security. Furthermore we want to
try dynamic OS migration using HTTP-FUSE
Xenoppix in near future.

References

[1] Xenoppix,
http://unit.aist.go.jp/itri/

knoppix/xen/index-en.html

[2] KNOPPIX,
http://www.knopper.net/knoppix

[3] Xen, http://www.cl.cam.ac.uk/
Research/SRG/netos/xen/

[4] I. Pratt, Xen 3.0 and the Art of
Virtualization, Ottawa Linux Symposium
2005

[5] NFS4, http://www.nfsv4.org/

[6] Open-AFS,
http://www.openafs.org/

[7] SFS, http://www.fs.net/sfswww

[8] D. Maziéres, Self-certifying file system,
PhD thesis, MIT, 2000

[9] K. Fu, M.F. Kaashoek, and D. Maziéres,
Fast and secure distributed read-only file
system, ACM Transactions on Computer
Systems 20(1), 2002

[10] SHFS,
http://shfs.sourceforge.net/

[11] iSCSI, http:
//www.ietf.org/rfc/rfc3720.txt

2006 Linux Symposium, Volume Two • 391

[12] kudzu; Red Hat Linux hardware probing
library, http:
//rhlinux.redhat.com/kudzu/

[13] S. Quinlan and D. Dorward, Venti: a new
approach to archival storage, USENIX
Conference on File and Storage
Technologies 2002

[14] UNIONFS,
http://www.fsl.cs.sunysb.edu/

project-unionfs.html

[15] FUSE,
http://fuse.sourceforge.net/

[16] DeviceMapper,
http://sources.redhat.com/dm/

[17] R. Cáceres, C. Carter,
C. Narayanaswami, and M. Raghunath,
Reincarnating PCs with Portable
SoulPads, 3rd International Conference
on Mobile Systems, Applications, and
Services, 2005

[18] XenFS, http://wiki.xensource.
com/xenwiki/XenFS

[19] Coral Project,
http://www.coralcdn.org/

[20] M.J. Freedman, E. Freudenthal, and
D. Maziéres, Democratizing Content
Publication with Coral, USENIX
Symposium on Networked Systems
Design and Implementation 2004

[21] Dijjer Project,
http://www.dijjer.org/

[22] TPM of Trusted Computing Group,
https:

//www.trustedcomputinggroup.

org/groups/tpm/

392 • HTTP-FUSE Xenoppix

Virtual Scalability: Charting the Performance of Linux
in a Virtual World

Exploring the scalability of the Xen hypervisor

Andrew Theurer
IBM Linux Technology Center

habanero@us.ibm.com

Karl Rister
IBM Linux Technology Center

kmr@us.ibm.com

Orran Krieger
IBM T.J. Watson Research Center

okrieg@us.ibm.com

Ryan Harper
IBM Linux Technology Center

ryanh@us.ibm.com

Steve Dobbelstein
IBM Linux Technology Center

steved@us.ibm.com

Abstract

Many past topics at the Linux Symposium have
covered Linux Scalability. While still quite
valid, most of these topics have left out a hot
feature in computing: Virtualization. Virtual-
ization adds a layer of resource isolation and
control that allows many virtual systems to co-
exist on the same physical machine. However,
this layer also adds overhead which can be very
light or very heavy. We will use the Xen hy-
pervisor, Linux 2.6 kernels, and many freely
available workloads to accurately quantify the
scaling and overhead of the hypervisor. Areas
covered will include:

1. SMP Scaling: use several workloads on
a large SMP system to quantify perfor-
mance with a hypervisor.

2. Performance Tools: discuss how resource
monitoring, statistical profiling, and trac-

ing tools work differently in a virtualized
environment.

3. NUMA: discuss how Xen can best make
use of large system which have Non-
Uniform Memory Access.

1 Introduction

Although virtualization has recently received
much press and attention, it is not a new
concept in computing. It was first added to
IBM mainframes in 1968 and has continued
to evolve ever since [1]. Traditionally, virtu-
alization has been a capability that only high-
end systems possessed, but that has begun to
change in recent years. Commodity x86 servers
first gained virtualization capabilities through a
technique that is known as full virtualization
where each guest operating system was pro-
vided a completely emulated environment in

394 • Virtual Scalability: Charting the Performance of Linux in a Virtual World

which to run. While functional, this approach
suffers degradations in performance due to the
fact that all interaction between the guest oper-
ating system and the physical hardware must be
intercepted and emulated by the hypervisor.

A competing approach to full virtualization
known as paravirtualization has emerged that
attempts to address the deficiencies of full vir-
tualization. Para-virtualization is a technique
where guest operating system are modified to
provide optimal interaction between the guest
and the hypervisor layer upon which it is run-
ning. By modifying the guest operating system,
some of the performance overheads that are as-
sociated with full virtualization are eliminated
which leads to increased throughput capability
and resource utilization. Para-virtualization is,
however, not without its own challenges. The
requirement that the guest operating system be
modified is chief among these. Each and every
guest that the end user desires to run in the vir-
tualized environment must be modified in this
manner. This is a high cost to pay in time and
manpower. It also means that the support of
closed source operating systems is entirely at
the discretion of the controlling development
organization.

This paper focuses on paravirtualization as im-
plemented by the Xen [2][3] project. While the
expectation that the overhead of paravirtualiza-
tion with Xen is low, its original design and de-
velopment occurred on relatively small systems
such as those with one or two CPUs. It is only
in the last year of development that support for
SMP guests has been added along with support
for greater than 4GB of memory through the
addition of 32-bit PAE and native 64bit support.
For these reasons, many of the design decisions
were aimed at excising the utmost performance
in these types of configurations, but these deci-
sions may not lend themselves to scaling up-
ward with similar performance expectations.
As x86 hardware becomes increasingly com-

petitive at the high end—systems with 128 log-
ical CPUs and hundreds of gigabytes of mem-
ory are now possible—the desire to run virtual-
ized environments on systems of this scale will
increase. This paper will examine the perfor-
mance characteristics of Xen in this type of en-
vironment and identify areas that development
should focus on for scaling enablement.

2 What is scalability?

For this study, scalability applies to scaling up
the number of processors within a single sys-
tem. As such, we proceeded to measure and an-
alyze various workloads running from one to as
many as 16 processor cores. Without a hypervi-
sor, using a single operating system, the process
to measure scalability was fairly clear: start
with one processor, run workload(s), record re-
sults and analysis data, and repeat, increment-
ing processors until a maximum is reached.
However, introducing a hypervisor adds a twist
to measuring scalability. We still want to mea-
sure the throughput increase as we scale up the
processors, but how exactly do we do this? Not
only can we scale up the number of processors,
but we can also scale up the number of guest
operating systems. So, we have take a two-
pronged approach to this:

1. Start with one processor running a work-
load on one guest; guest is assigned that
processor. Add a processor and a new
guest; new guest is pinned to the new pro-
cessor. Scale to N processors.

2. Start with one processor running a work-
load on one guest; guest is assigned that
processor. Add a processor, but not a new
guest; assign the processor to the existing
guest. Scale to N processors.

2006 Linux Symposium, Volume Two • 395

To compare these results, we also have two sce-
narios which do not use a hypervisor:

1. Start with one processor running a work-
load on Linux. Add a processor and a
new instance of the workload on the same
Linux OS. Scale to N processors.

2. Start with one processor running a work-
load on one Linux OS; Add a processor
and repeat. Scale to N processors.

3 Tools

Virtualization of resources such as processors,
I/O, and time can create some unique problems
for scalability analysis. Abstracting these re-
sources can cause traditional performance and
resource analysis tools not accurately reporting
information. Many tools need to be modified to
work correctly with the hypervisor layer. The
following were used to conduct this study.

3.1 sysstat package

The sysstat[4] package provides the sar and
iostat system performance utilities. sar
takes a snapshot of the system at periodic inter-
vals, gathering performance data such as CPU
utilization, memory usage, interrupt rate, con-
text switches, and process creation. iostat
takes a snapshot of the system at periodic in-
tervals, gathering information about the block
devices for the disks such as reads per second,
writes per second, average queue size, average
queue depth, and average wait time. Both of
these utilities will only gather the statistics for
the domain in which they are running. To get
a more complete view of the system perfor-
mance, it sometimes helps to run the utilities

CPU Total Pct Virtual CPUs
0 [070.5] d0-0[006.3] d2-1[064.2]
1 [065.0] d0-1[000.0] d2-2[065.0]
2 [072.3] d0-2[000.1] d2-3[072.1]
3 [087.3] d0-3[000.2] d2-0[087.1]

Figure 1: Sample vm-stat output

simultaneously in multiple domains. For ex-
ample, iostat running in a guest domain will
only gather the disk I/O statistics as seen within
the domain. To get a more complete picture of
the disk I/O behavior one can run iostat in
Domain 0 to also gather the statistics for the
backend devices that are mapped to the guest
domain.

3.2 vm-stat

As mentioned above, the sar utility gathers
statistics for CPU utilization. When running
in a guest domain, however, the CPU utiliza-
tion statistics are meaningless since the do-
main does not have full usage of the physical
CPUs. What is needed is a complete view of
total system CPU usage broken down by do-
main. The xentop utility provides CPU uti-
lization statistics, but it displays them in real
time using an ncurses interface. xentop is not
useful when running automated performance
tests where the performance data are collected
for later analysis. Therefore, we wrote a new
utility, vm-stat, which queries the Xen hy-
pervisor at periodic intervals to get the CPU
utilization statistics, broken down by domain.
vm-stat writes its output to standard output,
making it useful for automated performance
tests.

Figure 1 shows sample output from vm-stat.
The first two columns show the physical CPU
usage. The subsequent columns show how
each physical CPU was allocated to a virtual

396 • Virtual Scalability: Charting the Performance of Linux in a Virtual World

CPU in the various domains. For example,
d2-3[072.1] states that the CPU was allo-
cated to domain ID 2, virtual CPU 3 for 72.1%
of the time.

3.3 Xenoprof

Xenoprof[5][6] adds extensions to OProfile[7].

From the OProfile About page:

OProfile is a system-wide profiler for
Linux systems, capable of profiling
all running code at low overhead.
OProfile is released under the GNU
GPL.

It consists of a kernel driver and a
daemon for collecting sample data,
and several post-profiling tools for
turning data into information.

OProfile leverages the hardware per-
formance counters of the CPU to en-
able profiling of a wide variety of
interesting statistics, which can also
be used for basic time-spent profil-
ing. All code is profiled: hardware
and software interrupt handlers, ker-
nel modules, the kernel, shared li-
braries, and applications.

From the Xenoprof home page:

Xenoprof allows profiling of con-
currently executing virtual machines
(which includes the operating sys-
tem and applications running in
each virtual machine) and the Xen
VMM [virtual machine monitor] it-
self. Xenoprof provides profiling
data at the fine granularity of individ-
ual processes and routines executing

 0

 5

 10

 15

 20

dbench3

reaim
 com

pute

reaim
 dbase

reaim
 fserve

reaim
 shared

sdet2

%
 O

ve
rh

ea
d

OProfile
Xenoprof

Figure 2: Overhead of OProfile and Xenoprof
by benchmark

in either the virtual machine or in the
Xen VMM.

Xenoprof is modeled on the OPro-
file profiling tool available on Linux
systems. Xenoprof consists of
three components: extensions to the
Xen virtual machine environment, an
OProfile kernel module adapted to
the Xen environment, and OProfile
user-level tools adapted to the Xen
environment.

Others have contributed to Xenoprof since its
release. Xiaowei Yang added enhancements
to map IP samples of passive domains to the
Xen/kernel symbol tables. Andrew Theurer
added support for the x86_64 architecture.

One of our concerns was whether Xenoprof
added sufficient overhead to change the charac-
teristics of a workload being profiled. It would
be difficult to diagnose performance issues of
a certain workload if the profiler significantly
changed the behavior of the system under the
workload. We ran a series of benchmarks with
and without profiling code to determine the
profiling overhead for both OProfile and Xeno-
prof. The results are shown in Figure 2.

The data revealed that Xenoprof adds overhead
that is comparable to that of OProfile. Since in

2006 Linux Symposium, Volume Two • 397

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t

Domains / Instances

dbench3

Domains
Instances

Figure 3: Dbench3 Aggregate Throughput

our experience we have not noticed the over-
head of OProfile to significantly change the
characteristics of a workload being profiled, we
expect that Xenoprof will have a similar negli-
gible effect on workloads that it is profiling.

4 Scaling up the number of do-
mains

It is possible that in certain workload situations,
running several small domains can yield perfor-
mance that is preferable to that of running a sin-
gle large Linux instance on the same hardware.
One such instance is illustrated in Figure 3. In
this particular case, we have the dbench work-
load running in two different configurations. In
the first configuration, labelled instances, we
are running one instance of dbench per CPU
(the task is pinned on the CPU) on indepen-
dently mounted tmpfs file systems. Each of
these tasks represents a separate workload in-
stance running side by side on the same sys-
tem image. While a simple concept, this setup
illustrates a fundamental scaling problem with
the Linux kernel, the system wide dcache lock.
Dbench stresses the dcache lock. The more
work that is added, the more the system begins
to strain under the load.

Xen offers an approach that can be used to
overcome this deficiency and not only main-
tain performance but actually yield sizable per-
formance advantages. By running separate
Linux guest domains (each domain pinned on
a single CPU, just like the dbench instances
on baremetal Linux) we can effectively add
more dcache locks which reduces contention
and therefore increases performance. As the
“Domains” line in the figure indicates, testing
of this configuration on Xen yields a very high
performance setup for this particular workload.

4.1 NUMA Support

Scaling up the number of domains on a large
box can involve spanning multiple NUMA
nodes. Without NUMA policies in the hyper-
visor, guests which have processors from one
node may have memory allocated from another
node, increasing memory latency and reducing
throughput.

The core strategy for Xen on NUMA systems
is to provide local resources whenever possible
with exceptions for function. The two main re-
sources are physical CPUs and memory. With
minimal information extracted from ACPI ta-
bles, we are able to provide mechanisms for
domains to acquire local resources leading to
domains using CPUs and memory contained
within a single NUMA node. Xen also allows
for a domain’s resources to span more than one
NUMA node. Currently, we are not providing
any optimizations for providing dynamic topol-
ogy information to the guest, though that is an
area of future work.

By utilizing the Xen’s existing infrastructure
for mapping virtual CPUs to physical CPUs,
we create domains and specify which physical
CPUs will be utilized initially by each domain.
Exposing the topology of which physical CPUs
are within which nodes of a NUMA system is

398 • Virtual Scalability: Charting the Performance of Linux in a Virtual World

all that is needed to ensure proper selection of
physical CPUs for an in-node domain.

The NUMA-aware page allocator for Xen
strives to provide memory local to the re-
quester as much as possible. We do, however,
make exceptions for DMA pages. Without an
IOMMU, we currently must prefer a non-local,
but DMA-able page if a guest specifically re-
quests such pages. Without this bias one can
imagine a scenario where the resulting page is
local to the requester but ultimately the guest
cannot make use of a page beyond 32-bit DMA
limits.

In responding to a domain’s request for mem-
ory, we can utilize the vcpu to CPU mapping
as a method of equitable distribution of mem-
ory across the nodes that a domain might be
within. This ensures that a domain, no matter
which virtual CPU is running, will have some
memory local to the node to which the physical
CPU belongs.

4.1.1 Topology Discovery

Xen’s NUMA topology discovery is depen-
dent on the presence of an ACPI System Re-
source Affinity Table (SRAT). This table pro-
vides mapping information for memory and
CPU resources to their respective proximity do-
main (node). Parsing of the memory affin-
ity tables contained within the SRAT yields an
array of physical memory address ranges and
the node to which they belong. The CPU to
proximity domain mapping populates a CPU
to node structure. This discovery is invoked
prior to initializing Xen’s heap and provides
topology information required for initializing
the per-node heap array properly.

4.1.2 Page Allocator Implementation

Xen’s heap of free pages is implemented as a
buddy allocator. The heap is split into three
zones: xen, domain, and dma. There are vari-
ous methods for requesting memory pages from
each zone. To aide in handing out pages lo-
cal to the node of the requester, we further di-
vide each zone in to a collection of pages per-
node. When we initialize and add pages to the
heap, we determine to which node the pages be-
long and insert accordingly. When handing out
pages, we can provide pages from the required
zone (required for functionality when request-
ing DMA-able pages) by exhausting the avail-
able memory for the target node before using
pages from a non-local node.

In addition to subdiving the heap’s zones, we
also wanted to preserve the existing, non-
NUMA aware API for requesting pages from
the heap. This allows us to progressively mod-
ify areas to make them NUMA aware through
performance tuning.

4.1.3 Performance with NUMA policy

Memwrite is a simple C program designed to
calculate memory access throughput. We use it
to stress the importance of node-local memory
allocation. The benchmark allocates a buffer
of memory and proceeds to write across the
entire buffer. We calculate the throughput by
dividing the size of the buffer and the time it
took to write a particular value to the entire
buffer. Memwrite also can fork off any num-
ber of child processes which will duplicate the
write of the buffer. Multiple parallel writes
add additional stress to the NUMA memory
interconnect which is bandwidth and latency
constrained as compared to local processor to
memory access.

2006 Linux Symposium, Volume Two • 399

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

Interleaving Remote Local

T
hr

ou
gh

pu
t M

B
/s

ec

Figure 4: Memwrite with Various NUMA Poli-
cies

Running baremetal NUMA-aware Linux, we
utilized the numactl tool to force the memory
and CPU selection to illustrate possible scenar-
ios for guests running on NUMA hardware, but
without NUMA support in Xen.

We benchmarked two worst-case allocation
scenarios against allocating the memory local
to each node. The results are shown in Figure 4.
The first case, labeled Interleaving, distributes
the memory across a set of nodes, which creates
significant traffic over the interconnect. The
second case, labelled Remote, selects CPUs
from one node and the memory on a separate
node. Both of these cases can happen without
NUMA support to help allocate memory and
processors. With NUMA-aware Xen, the pro-
cessor and memory selection can be controlled
to provide local-only resources resulting in in-
creased performance.

5 Scaling up the size of a single do-
main

In this section we attempt to scale a single
Linux guest, running on top of the Xen hypervi-
sor, to many processors. In doing so, we show
that some parts of the hypervisor inhibit the

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

16way14way12way10way8way6way4way2way

T
hr

ou
gh

pu
t

Processor Configuration

reAIM-FserverLinux without Xen
Linux with Xen

Figure 5: Guest scalability: baseline

guest’s ability to scale to 16 processors, com-
pared to Linux running without a hypervisor.

For these tests, we are using reAIM bench-
mark’s file server workload. This workload em-
ulates the characteristics of a Linux file server.
Running with just Linux, no hypervisor, yields
excellent scalability to 16 processors. Through-
put from 2 processors to 16 has a scaling fac-
tor of 7.47 (out of 8.0). The same Linux ker-
nel, patched to with work Xen, has a scaling
factor of 0.932 at 16 processors. The results
from these two runs are shown in Figure 5. Ob-
viously, we have some serious challenges pro-
hibiting similar scalability.

5.1 Scaling Issues

There are several scaling issues with this type
of situation. Most of them center around Xen’s
implementation of guest memory management.
When a guest makes changes to an applica-
tion’s memory, it must keep Xen in the loop.
Operations like page fault handling, fork, etc.,
require Xen’s participation. This is critical to
keep a guest from accessing other guests’ mem-
ory.

Xen allows the guest to write directly to a tem-
porarily detached page table. The guest can

400 • Virtual Scalability: Charting the Performance of Linux in a Virtual World

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

16way14way12way10way8way6way4way2way

T
hr

ou
gh

pu
t

Processor Configuration

reAIM-FserverLinux without Xen
Linux with Xen
 add perCPU pagetables

Figure 6: Guest scalability: added per CPU
writable page tables

update this page table with machine addresses
rather than pseudo-physical addresses. Since
there is no shadow page table, Xen must verify
the entries that are written by the guest. Virtu-
ally all of the operations to support this are pro-
tected by a single, domain-wide spinlock. The
spinlock protects primarily the two (and only
two) writable page tables per guest.

We have prototyped a change to support two
writable page-tables per virtual processor and
reduced the number of uses of the domain-wide
lock. The results are shown in Figure 6. This
alone can yield up to four times throughput gain
on 16-way guests.

However, scalability still lacks on large pro-
cessor guests. We turn to OProfile to find our
next problem. As we increase processors in
the guest, we see a disproportionate increase in
functions related to TLB flushing. On closer
inspection we see that most TLB flushes use
a CPU bit-mask containing all processors cur-
rently running that guest. Many of these TLB
flushes are for a particular application context,
and thus only need to flush processors which
are: (1) running the same guest and, (2) are run-
ning in the same context. As of this writing, we
do not have a implementation for this, but we
believe this could yield a substantial improve-

ment.

There are also other issues with TLB flush-
ing. Xen uses a system-wide spinlock when
implementing an interprocessor interrupt (IPI)
to flush many processors. Xen will flush the lo-
cal processor’s TLB, then acquire the lock, then
send an IPI to other processors in the bit-mask
to invalidate their TLB. With many processors
trying to flush a set of processors at the same
time, we have lock contention on the flush lock.
Invariably many of the processors wanting to
aquire this lock will wait, and in doing so, many
of the processors it would like to flush will have
been flushed while waiting for this lock. If we
can determine which processors were flushed
after we flushed our local processor, but before
we acquired the lock, we can remove those pro-
cessors from the IPI bit-mask.

To do this, we make use of an existing feature in
Xen, the tlbflushclock. The tlbflushclock
is a global clock which is incremented by all
processors’ TLB flush. Xen also keeps a per-
processor clock value for their own most recent
flush. So, we use this to reduce the bit-mask
before we send an IPI to TLB flush. When
a processor wants to flush a set of processors,
it first flushes its own TLB, then records the
tlbflushclock value. It then spins for the flush-
lock, after which we check to see if any of the
CPUs in the bit-mask have their own tlbflush-
clock value greater (more recent flush) than our
local flush. If so, those processors have already
TLB flushed and don’t need a flush again, re-
ducing the bit-mask for the IPI. The effect of
this patch is shown in Figure 7.

We still have some scaling challenges, so we
asked the question, “Are the writable page ta-
bles really efficient on an SMP guest?” We hy-
pothesize that with many processors, we have
a much greater chance that writable page tables
may be flushed back early, with few entries up-
dated. The overhead to replicate and detach an
entire page, only to flush the page back in and

2006 Linux Symposium, Volume Two • 401

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

16way14way12way10way8way6way4way2way

T
hr

ou
gh

pu
t

Processor Configuration

reAIM-FserverLinux without Xen
Linux with Xen
 add perCPU pagetables
 add TLB flush filter

Figure 7: Guest scalability: added TLB filter

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

16way14way12way10way8way6way4way2way

T
hr

ou
gh

pu
t

Processor Configuration

reAIM-FserverLinux without Xen
Linux with Xen
 add perCPU pagetables
 add TLB flush filter
 add emulated PT writes

Figure 8: Guest scalability: forced page table
write emulation

verify changes, may be too much if there are
only a few changes to the page. Simply by-
passing writable page tables and verifying each
write as it occurs may have less overhead. So,
we modified Xen to always handle each page
table write fault individually. The results for
SMP, shown in Figure 8, demonstrate that this
is a more efficient method.

6 Conclusion

Although Xen’s paravirtualization technique
has previously shown to perform extremely
well on uniprocessor guests on UP and 2-way

SMP systems, this paper has exposed many
challenges to achieve similar performance on
large SMP systems. However, we believe that
with more analysis and development, the Xen
hypervisor will overcome these obstacles.

7 Trademarks and Disclaimer

Copyright c© 2006 IBM.

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM and the IBM logo are trademarks or registered
trademarks of International Business Machines Cor-
poration in the United States and/or other countries.

Xen is a trademark of XenSource, Inc. in the United
States and other countries.

Linux is a registered trademark of Linus Torvalds in
the United States, other countries, or both.

Other company, product, and service names may be
trademarks or service marks of others. References
in this publication to IBM products or services do
not imply that IBM intends to make them available
in all countries in which IBM operates.

This document is provided “AS IS,” with no express
or implied warranties. Use the information in this
document at your own risk.

References

[1] http://www-03.ibm.com/
servers/eserver/zseries/
virtualization/features.
html

[2] Paul Barham, Boris Dragovic, Keir
Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and

402 • Virtual Scalability: Charting the Performance of Linux in a Virtual World

Andrew Warfield. Xen and the Art of
Virtualization SOSP’03, October 19–22,
2003, Bolton Landing, New York, USA.

[3] Ian Pratt, Keir Fraser, Steven Hand,
Christain Limpach, Andrew Warfield,
Xen 3.0 and the Art of Virtualization,
Linux Symposium, Ottawa, 2005.

[4] http://perso.wanadoo.fr/
sebastien.godard

[5] Aravind Menon, Jose Renato Santos,
Yoshio Turner, G. (John) Janakiraman,
Willy Zwaenepoel, Diagnosing
Performance Overheads in the Xen
Virtual Machine Environment, First
ACM/Usenix Conference on Virtual
Execution Environments (VEE’05),
Chicago, Illinois, June 11–12, 2005.5
http:

//www.usenix.org/publications/

library/proceedings/vee05/

full_papers/p13-menon.pdf

[6] http:
//xenoprof.sourceforge.net

[7] http://OProfile.
sourceforge.net/news

Automatic System for Linux Kernel Performance
Testing

Alexander Ufimtsev
University College Dublin

alexu@ucd.ie

Liam Murphy
University College Dublin
Liam.Murphy@ucd.ie

Abstract

We introduce an automatic and open kernel
testing system. We argue that only by open-
ing a test system to the community and ag-
gregating the results from a variety of sources
can one get a comprehensive picture of the ker-
nel’s performance status. Our system can also
help identifying problems with specific parts of
code whether it is a device driver, some other
module, or platform-specific code. Design of
both client and server parts of the system is de-
scribed. Since the system is open, specific em-
phasis in the client part is placed on success-
ful automation and configuration of the test-
ing process. The emphasis of the server part
is placed on regression detection and acciden-
tal/malicious input elimination. Current imple-
mentation status is presented.

1 Introduction

Testing is an integral part of any quality soft-
ware development process. Some software
development practices even dictate the neces-
sity of writing tests prior to writing an actual
method, function, or process for it. However,
some of the extra functional requirements can

only be checked during integration or even sys-
tem testing. Performance is one of the ex-
tra functional requirements that is difficult to
check outside of a proper testing environment.
Automating system performance tests require a
lot of provision and foresight from the authors,
taking into account all unusual and unpredicted
situations that might happen during the tests.
Watchdogs and exception handling are required
for specific benchmarks, buggy code, crashes,
file corruption—a lot of things might go wrong
when working with unstable code. The mat-
ter becomes even more difficult when trying to
do performance testing of the kernel. Since
the kernel is not a process that can simply be
killed and restarted, but rather a host to the pro-
cesses itself, the ability to handle test excep-
tions gracefully is quite limited. Of course, it is
possible to use virtualization methods, such as
User-mode Linux [1], VMware [3], or Xen [2]
to improve control over the whole test process.
However, the performance results obtained us-
ing virtualization are not authentic for the ac-
tual hardware, but rather for the specific virtu-
alization kernel is tested with. Comprehensive
automatic kernel tests help to prevent instability
issues and performance regressions, while lack
thereof is considered to be a significant contrib-
utor to the kernel quality problem.

404 • Automatic System for Linux Kernel Performance Testing

2 Related Work

Two of the most well-known projects dealing
with Linux kernel performance are Automatic
test system by Bligh [4] and Linux Kernel Per-
formance project by Chen et al. [5]. The for-
mer is a widely publicized automated system
that performs a variety of tests on a number
of high-end machines with a smaller set of test
tools. The latter is a less known (semi-) auto-
mated system that utilizes fewer hardware re-
sources but provides a more comprehensive set
of benchmarks. Other related work includes
kerncomp [6] and Open Source Development
Lab’s Linux Stabilization and Linux Testing [7]
and Linux 2.6 Compile Statistics [8]. Most
of the kernel testing statistics are from avail-
able “big iron” machines. Though undoubt-
edly useful, the test results produced by these
projects are quite unrepresentative, since they
tend to test kernel performance on very specific
hardware with very specific configurations. As
authors note themselves, “[p]erformance tests
and ratings are measured using specific com-
puter systems and/or hardware and software
components and reflect the approximate per-
formance of these components as measured by
those tests.” [5]

3 Proposed Solution

The Linux kernel can run on all kinds of plat-
forms supporting a variety of hardware, and has
a huge number of configurable parameters. We
argue that community involvement is necessary
to get a comprehensive picture of kernel perfor-
mance the same way kernel is being developed
itself. By analyzing test data performed on var-
ious types of hardware with statistical and data-
mining methods, it is possible to construct a
detailed picture of kernel behavior on different
computer architectures, configurations, and de-
vices.

3.1 System Requirements

The goal of our project is an extensible
and easy-to-use automatic testing system that
downloads, compiles, installs, and runs perfor-
mance tests of kernel branch snapshots. The re-
sulting data are sent to a server and then made
available to developers via a web interface. If a
regression is found, our system can pinpoint the
problem down to specific architecture, device
driver, submitter, and theoretically, the specific
configuration that causes it.

The following features were identified as essen-
tial for this open and community-driven testing
system:

• Security – system should be secure. We
need to be able to identify and isolate er-
roneous and malicious input so the over-
all results are not affected. Therefore re-
quired user registration needs to be en-
forced for use of the system.

• Simplicity – system should be as simple as
possible to appeal to a wider range of au-
dience. Ease of installation and configura-
tion, ease of result interpretation.

• Compatibility – system should be able to
run in a similar fashion on a variety of ar-
chitectures.

• Extendability – system should be config-
urable and extendable to be able to include
more tests, test different kernel branches,
be able to send data to various servers, if
necessary.

• Stability – system should try to recover
from various errors during testing and be
able to avoid them, if necessary.

• Speed – developers and testers should not
wait too long before they can see the re-
sults.

2006 Linux Symposium, Volume Two • 405

3.2 Architecture Overview

The high-level overview of the system is pre-
sented in Figure 1. Multiple client machines
that run on various hardware perform tests sub-
mit the results to the submission management
module of the server. Results are processed and
stored in a database backend. Analysis and Pre-
sentation module processes data and makes the
information available to the developers. The

Figure 1: High-level system overview

following sections discuss the architecture of
client and server.

4 Client Architecture

Client architecture is presented in Figure 2. In-
stallation of the kernel image takes place after
successful compilation. Current implementa-
tion of the system does not support modules
and requires a single monolithic kernel that is
installed as a single file. After booting, the
system gives an administrator a chance to in-
tervene and interrupt the tests within a certain
time before the tests actually start. After test
runs the results are parsed, signed with a key
that tester obtained from the server, and sent to
that server. Once the results are sent, the client
updates repositories and looks for changes. If
no changes are introduced to the tested reposi-
tories, the computer waits a certain amount of
time and tries to update again. Otherwise the
branch selection decision is made based on the

updated source, amounts and dates of previ-
ous tests, and whether tests failed or succeeded.
Upon successful compilation, the kernel is in-
stalled and booted into, otherwise it waits and
updates the repositories again. As an alterna-

Figure 2: Client Logic

tive to pure waiting before attempting to up-
date the repositories again, the system could
perform other tests using the same source code
and kernel to determine current results/stability.
The behavior depends on the number of source
trees for testing configured in the test client and
the frequency of their updates.

4.1 Tests

To be compatible with the majority of architec-
tures, we plan to use available standard bench-
marking tools. Martin [9] provides a good
overview of the available tools. The tests were
separated into “mini” and “standard” packages.
The “mini” package needs to be used on ma-
chines with limited resources, where gcc is

406 • Automatic System for Linux Kernel Performance Testing

not available. “Standard” also contains tools
that require use of gcc for proper functional-
ity. Both “mini” and “standard” sets are easily
extendable and customizable, if necessary.

Long Tests vs. Short Tests. On one hand, de-
velopers would like to know about the test re-
sults as soon as possible. On another hand, tests
are useless if they do not provide certain accu-
racy. Long tests are randomly introduced to the
system to check the validity of the short tests.
Approximately every 10–15 runs, instead of a
short run, the system is going to perform a long
run, using longer startup, cooldown, and mea-
sure time parameters for different tests.

Watchdogs. Watchdogs are essential for stable
functionality of the tests. Quite a few tests can
misbehave when working on a non-stable ker-
nel. Lockups or race conditions, segmentation
faults or file corruptions—watchdogs should
try every possible way to recover the tests and
continue. Currently we can prevent lockups of
the test processes and secure deletion of the
temporary files due to abnormal program ter-
minations. It is not possible for now to recover
from kernel panic, for instance. See Section 6
for more information.

4.2 Snapshot Selection

Selection of a snapshot for subsequent compila-
tion and testing depends on a number of things.
First, a user can select the kernel branches that
he or she is interested in testing. By default
each branch has an equal priority, which can
be changed at configuration time. Other fac-
tors that also affect the choice are the number of
previously performed compilations, their over-
all success rate, and date and time of the last
compilation attempt.

5 Server Architecture

The centralized server software manages data
submissions, data aggregation, and results pre-
sentation.

5.1 Data Submission Management

Server checks the signature of the sent dataset
to determine whether it should be accepted or
rejected. Unsigned submissions are accepted
by default, but this policy can be reconfigured
by server admins. The following information is
sent by clients to a server by default:

• test results

• .config file

• snapshot of /proc

• mount output

• gcc version (for standard tests)

• glibc version

All this information, except for the test results
is only sent to the server if allowed by admins
to do so and changed from a previous run due
to configuration or software and hardware up-
grade. It is used for datamining and problem lo-
calization as explained in the Section 5.2. Other
information can be added, if necessary.

5.2 Data Analysis and Aggregation

Data analysis is performed for filtering out
faulty or erroneous data and for regression de-
tection. Since the amount of available hardware
and software options is too great, we are mostly
interested in deltas (∆), not the absolute num-
bers. Below is an algorithm used for data anal-
ysis.

2006 Linux Symposium, Volume Two • 407

1. Calculate personal cut-off average (avg)
∆, personal sliding avg ∆. This is a neces-
sary part of the calculation. We work with
deltas since absolute numbers are almost
useless due to variety of hardware the tests
run on.

2. Compare them to common cut-off avg ∆

and sliding avg ∆. If there is no signif-
icant difference, update common. Go to
END. Now we know that there is proba-
bly no problem with the current build. It
is not interesting, so we finish analysis.
Otherwise—keep going.

3. Compare the results to the rest of the
similar parameters mentioned in the Sec-
tion 5.1. If there is a number of results
submitted already that deviate from the av-
erage results and some of the parameters
are common, we localize our search and
mark these parameters for further inspec-
tion. If no similar configurations show the
same type of deviation, we mark results as
suspicious for further analysis.

4. We inspect the submissions to the source
tree at this update to see any similari-
ties between localized potential problems
and patches submitted to that area of the
source tree. If there are any matches, there
is a high probability that those changes
introduced a detected regression (or im-
provement, for that matter). Report our
findings.

5.3 Results Presentation

Once newly arrived data are analyzed, the pre-
sentation module updates the result pages. The
summary page contains all the important devel-
opment for the projects and highlights possi-
ble problems. The rest of the statistics are also
available.

6 Potential Problems

There are a number of potential problems that
currently do not have a solution. First, run-
ning a development version of the kernel, com-
piling and booting into that kernel creates an
instability point in the system. There is little
that can be done for majority of architectures
if kernel panics during the boot or during the
tests. Some hardware allows a computer to be
rebooted remotely; the others require human
intervention. Hardware watchdogs can help to
solve this problem, though. And even if a sys-
tem is restarted automatically, it needs to be
able to boot into a safe and stable kernel instead
of the buggy one. This would require modifi-
cation of the bootloader for majority of archi-
tectures. And even if the safe kernel is chosen,
there is always a possibility that tests running in
the unstable kernel have corrupted the filesys-
tem.

Another major concern is an accuracy of the
tests. Aggregating a huge amount of data, some
of which might be malicious, is a tedious task.
Also, the system needs to be very precise in
order to be useful. Even 99% accuracy is not
enough since the remaining 1% of false posi-
tives would create a frustration with users that
would at some point just stop using the system.

7 Current Status and Future Work

Currently the system is being implemented
with clients up and running on three architec-
tures: x86, alpha, and ppc. Preliminary result
aggregation of the results is also implemented
on the server side of the test suite. We are look-
ing into ways of solving open questions men-
tioned in Section 6. One of the possible ways
of battling file system corruption is a way sug-
gested by Instalinux [10] through creation of a

408 • Automatic System for Linux Kernel Performance Testing

customized bootable CD while the current sys-
tem state is stored on the server in members
profile.

Since the system is now in the active devel-
opment stage, we plan to introduce more fea-
tures into it and make its presentation (as well
as open it to the community) during the presen-
tation.

8 Conclusion

The design and current implementation status
of an automatic system for Linux kernel test-
ing was presented. Both client and server parts
of the system were discussed, processing algo-
rithms mentioned. Potential problems and pos-
sible ways of solutions were also addressed.

The advantage of this system over already ex-
isting ones is that the system allows developers
to have a coherent view on kernel performance.
The accepted results come from various hard-
ware architectures and software configurations
with the help of the Linux community.

9 Acknowledgment

Authors would like to thank Valentin Chulkov
and Niamh Mahon of UCD for their help with
the project.

References

[1] User-mode Linux.
http://user-mode-linux.
sourceforge.net. (2006)

[2] XenSource.
http://www.xensource.com.
(2006)

[3] VMware. http://www.vmware.com
(2006)

[4] M.J. Bligh. Automated Linux Testing.
http://test.kernel.org. (2006)

[5] Chen, K. and Chen, T. The Linux Kernel
Performance Project. http://
kernel-perf.sourceforge.net.

[6] Wienand, I. and Williams, D. Tools for
Automated Regression Testing of the
Linux kernel kerncomp.sourceforge.net
(2006)

[7] Open Source Development Labs. Linux
Stabilization and Linux Testing.
http://osdl.org/projects/
26lnxstblztn/results. (2006)

[8] Open Source Development Labs. Linux
2.6 Compile Statistics.
http://developer.osdl.org/
cherry/compile (2006)

[9] J. Martin. Linux Test Tools.
http://ltp.sourceforge.net/
tooltable.php (2006)

[10] Instalinux.
http://www.instalinux.com.

MD RAID Acceleration
Support for Asynchronous DMA/XOR Engines

Dan J. Williams
Intel Corporation

dan.j.williams@intel.com

Abstract

The Linux MD driver performs RAID manage-
ment operations entirely with software routines
running on the CPU. This paper discusses the
theoretical performance advantages of modify-
ing MD’s RAID-5 implementation to offload its
operations to dedicated hardware resources.

1 Introduction

RAID (Redundant Array of Inexpensive Disks)
host bus adapters are a common feature of
server-class platforms. The core of these
adapters is typically an embedded system-on-
a-chip architecture comprised of a low power
CPU paired with dedicated XOR calculation
hardware and a memory controller. Firmware
on this chip is tasked with taking a set of disks,
combining them with a given RAID algorithm,
and then exposing the RAID volume to the host
operating system.

Today, system-on-a-chip I/O processor (IOP)
designs are being reused in external storage ap-
plications, where the firmware is replaced with
Linux. OEM’s take advantage of this low cost
hardware and Linux based storage software to
produce entry-level NAS (Network Attached

Storage) and SAN (Storage Area Network) ap-
pliances. The problem, however, is that the
Linux MD driver does not take into account
the dedicated RAID acceleration capabilities of
an IOP. This paper discusses the implemen-
tation and benefits of modifying Linux’s MD
driver architecture to offload its compute inten-
sive operations when in the presence of dedi-
cated hardware (compute intensive operations
include block xor, copy, compare, and zeroing).
A corollary of this goal will be the capabil-
ity for MD to spread operations over multiple
CPUs in SMP configurations. It goes without
saying that the performance of MD in systems
without offload capabilities must not be signif-
icantly impacted.

The general approach of this work, as sug-
gested by Neil Brown on the linux-raid mailing
list [NB1], is to have MD queue block opera-
tions to a separate thread / resource. The fol-
lowing benefits arise from this approach:

1. Reduced CPU Utilization: Once an oper-
ation has been handed off to the backend
hardware, the kernel is free to prepare the
next RAID operation, causing a pipelining
effect, or it can spend cycles in other areas
of the system.

2. Speed improvements from hardware
memory copies and XOR operations: The

410 • MD RAID Acceleration

architecture of the dedicated hardware
units on an IOP is designed to process
block operations at a higher rate than a
software routine on the CPU

3. Reduced cache pollution: Some data in-
volved in RAID calculations is never con-
sumed by a client thread, or is temporally
distant from consumption.

The overarching goal of these changes is to in-
crease the appeal of Linux powered IOP plat-
forms in the external storage appliances mar-
ket by taking maximum advantage of IOP hard-
ware in RAID array management.

2 Background

The IT industry’s increasing intolerance for
downtime paired with the continued growth of
storage capacity requirements drives the mar-
ket for RAID technologies. The RAID-5 and
RAID-6 algorithms seek to increase fault tol-
erance while reducing the cost per unit of ca-
pacity compared to RAID-1/10 technologies.
Server systems that implement RAID-5/6 typ-
ically do so with a RAID host bus adapter.
Even though most server class operating sys-
tems can run the algorithms natively in the sys-
tem kernel, users typically want to spend CPU
cycles on transaction processing and leave stor-
age subsystem maintenance operations for the
adapter. In addition to offloading parity calcu-
lations adapters assume interrupt handling re-
sponsibilities for the disk controllers participat-
ing in the array. This, combined with large
caches isolated from system RAM, allows the
adapter to accelerate accesses to the disk array.

It naturally follows that when Linux is ported
to run on the adapter processor, MD should
be re-crafted to take advantage of the spe-
cialized hardware. An initial proof-of-concept

experiment was attempted that made minimal
changes to the current MD stack. However, it
became apparent from this work that more fun-
damental changes to MD were needed in order
to optimize the potential performance benefit of
the offload engines. A description of the per-
formance shortcomings of this first experiment
and the potential benefits of the current work is
best understood after a discussion of the current
MD architecture.

3 MD RAID-5 Architecture Intro-
duction

In essence, MD is a Linux block device driver
that redirects incoming requests to a set of
backing block devices that comprise the RAID
array. There are no restrictions on the types
of backing devices as long as they expose the
Linux block I/O interface; in other words, be-
yond disks it is possible to use loop back de-
vices, network block devices (NBD), or even
other MD devices in a RAID configuration.
Clients of an array submit a bio1 directly
to MD’s request queue via its custom make_
request method. This routine acts as front-
end for the stripe cache and the stripe handling
state machine. Compare this to standard disk
block device drivers where make_request
is the front end of one of Linux’s I/O scheduler
queues that coalesce and reorder the requests
before submitting transactions to the disk. The
stripe cache is a read-write-allocate and write-
through cache of the blocks (pages) associ-
ated with backing disk data. It is worth not-
ing that the stripe cache sits below the page
cache in Linux’s memory hierarchy increasing
the chance that a client request can be serviced

1A bio is the unit of operation for the block I/O
layer. A bio describes the source / destination sector
of a transaction and points to a list of bio_vecs which
can be thought of as a scatter-gather list [LKD].

2006 Linux Symposium, Volume Two • 411

by data in system RAM rather than suffering
large latencies waiting for the disk to return the
data. Before digging deeper into how the stripe
cache gets populated and managed, a descrip-
tion of the key RAID-5 data structure, struct
stripe_head, and the handle_stripe
routine is required.

MD logically organizes the sectors of the back-
ing disks into a series of stripe_heads.
Each stripe_head contains an array of N
r5devs, where N is the number of member
disks and an r5dev is the data structure that,
among other things, points to a PAGE_SIZE
block of data that it is the cached version of data
on the backing device. The following is a full
description of the r5dev structure members:

• struct bio req: bio reserved for
sending transactions to the backing disk

• struct bio_vec vec: bio_vec re-
served to describe the location of data for
transactions to the backing disk

• struct page *page: The stripe
cache version of disk data

• struct bio *toread,

*towrite: Lists of incoming requests
queued via make_request

• struct bio *written: Queue for
write transactions that have hit the stripe
cache but now need to be propagated to the
backing disk

• sector_t sector: Logical sector of
the array that the page pointer references

• unsigned long flags: Bit field that
contains the state of the cached buffer,
and flags for requesting service like R5_
Wantread and R5_Wantwrite

As mentioned the r5dev array is a member of
the stripe_head data structure. The perti-
nent members of this structure required for the
stripe cache are:

• sector_t sector: Logical array sec-
tor associated with the stripe_head

• int pd_idx: Which device in the
r5dev array holds the parity information
for this stripe. The parity information ro-
tates according to a separate algorithm;
by default this is left-symmetric. In the
RAID-4 case the parity disk is constant
across the entire array.

• unsigned long state: State of the
stripe that tracks whether the stripe needs
servicing, whether it is waiting for data be-
fore a transaction can continue, or whether
it is part of a secondary operation like syn-
chronizing or expanding.

• atomic_t count: This reference
counter logs the number of individual
threads that are currently operating on the
stripe. Once each thread has had a chance
to log its requests, the stripe_head is
passed to the raid5d kernel thread for
further handling.

• spinlock_t lock: Serializes access
to the contents of the stripe_head.

A stripe_head begins life when a transac-
tion, received via make_request, targets the
physical disk sectors of its backing disks. It
ends life when its reference count drops to zero
(no client threads are performing operations)
making it a candidate for stripe cache victim-
ization.

412 • MD RAID Acceleration

4 MD RAID Acceleration

The state transitions and operations that a
stripe_head undergoes on its path from ac-
tivation to victimization are the focus of the
present acceleration work. The current flow for
a write operation follows; the description as-
sumes that we are overwriting complete blocks
in the stripe resulting in a ‘reconstruct-write’
operation.

1. A thread submits a bio with data to be
written to make_request. make_
request calls add_stripe_bio
which checks to make sure that a request
is not already pending before queuing the
new request. In the case that a request
is already pending the thread is put to
sleep, and subsequently woken once the
preceding request has been submitted.

2. With a new bio posted to the stripe
make_request, still in the context of
the requesting thread, calls handle_
stripe to start the raid5 state machine.
Assuming this is the first operation to the
stripe, handle_stripe will determine
that it needs to fill the cache with all the
other blocks in the stripe in order to per-
form the xor parity calculation. Once
handle_stripe submits the read re-
quests to the backing disks it hands over
further stripe operations to raid5d.2

3. Once all of the reads to disks have
completed raid5d is woken up to ad-
vance the state of the stripe and per-
form the ‘reconstruct-write’ operation. A
reconstruct-write involves copying data
from the bio (submitted in step 1) into the
relevant blocks, zeroing the parity block,

2raid5d is a thread that collects and executes array
maintenance operations, there is one thread for each ar-
ray in the system.

and finally regenerating parity across all
the blocks in the stripe. It is important to
note that all of the work in this step is per-
formed under a per stripe lock.3 The writ-
ten blocks and the updated parity block are
now submitted to the backing disks.

4. raid5d is woken up again when the
writes complete. It signals completion
of the original write request (submitted
in step 1) by calling the bi_end_io
method of the bio. Assuming no new re-
quests have been submitted to this stripe
it is transitioned to an inactive state and
raid5d returns to sleep.

The acceleration work targets the operations of
moving data out of the stripe cache,4 main-
taining parity, and recovering degraded blocks
from the other disks. These operations entail
memory block copying, block xor, block xor
with a ‘zero-result’ check (to verify parity), and
block fills (to prepare parity blocks that will
be overwritten). On an I/O processor, like the
IOP333, all of these operations can be carried
out in hardware. Initial proof-of-concept work
along these lines helped to illuminate the form
of the final design. The experiment involved
making in-line replacements of the software
xor routine with a routine that set up and ran
the operation with the hardware unit; however,
it did not show significant improvement gains.
As Neil Brown said on the linux-raid mailing
list, “I’m not surprised that simply replacing
xor_block with calls into the hardware en-
gine didn’t help much. xor_block is cur-
rently called under a spinlock, so the main pro-
cessor will probably be completely idle while
the AA is doing the XOR calculation, so there
isn’t much room for improvement.” [NB1]

3The stripe lock is a per stripe spin_lock that
prevents other threads from concurrently modifying the
stripe’s state in the handle_stripe routine.

4Moving data into the stripe cache is handled by the
block drivers of the backing devices.

2006 Linux Symposium, Volume Two • 413

Performing the operations under a spin lock
in raid5d prevents pre-emption, precludes
multiple operations being queued to the same
stripe, and from a system throughput perspec-
tive stalls the stripes waiting in raid5d’s
queue. The first phase of the current accel-
eration work is to move the block operations
outside the stripe_head lock, and outside
of raid5d. The current patches achieve this
by submitting the operations to a kernel work
queue. This has the side benefit of allowing
SMP systems, without xor and copy engines, to
spread RAID work over multiple CPUs. One of
the effects of using the raid5d thread to shep-
herd the stripe_head through its states of
operation is that work that is parallel in nature
is processed in a single threaded fashion. SMP
systems with the work queue changes will be
able to accept work from multiple threads and
then disperse that work across all the CPUs in
the system. In the uni-processor IOP case, the
work queue will interface with an offload API
to submit batches of operations to hardware en-
gines. The I/OAT DMA engine API [IOAT],
presented at last year’s OLS 2005, is the basis
for this acceleration interface.

In the presence of hardware offload engines, the
work queue will be responsible for de-queuing
requests as fast as possible while maintaining
the order of transactions. The order of trans-
actions is important because RAID operations,
like the write case outlined earlier, require sev-
eral steps that must complete in order. For ex-
ample, consider a case where the work queue
submits the drain operation (copy from bio to
stripe cache) for a write, and subsequently ad-
vances to the stage that performs the xor across
the new data in the stripe. If the xor starts be-
fore the copy completes, the parity becomes
corrupted. It is possible to envision systems
with several flavors of hardware offload con-
figuration; some may have an all in one unit
that can handle all the block operations from
a single queue, while some may have several

discrete units, one per operation type. A given
work queue thread implementation is required
to detect and manage cases where an operation
must be stalled until a hardware unit completes.
Again, this is not necessary if the hardware can
maintain ordering.

The raid5d thread in this new model is
now only tasked with finding work, submitting
work, and advancing the state machine. This
new arrangement aims submitting work, and
advancing the state machine. Block operations
are queued to a separate, to reclaim CPU cycles
spent performing block operations and allocate
them to other system tasks. With hardware ac-
celeration this model also enables some con-
figurations to entirely eliminate the CPU data
cache footprint of the stripe cache. Consider
that high performance disk adapter drivers ar-
range for data to be directly pushed and pulled
from memory by the device (bus mastering).
With this capability stripe data enters the stripe
cache via a device to host write operation, is
maintained in the cache via DMA engine xor
operations, and leaves the cache by either a de-
vice to host read operation or a DMA copy to
bio operation, never dirtying cache lines in
the CPU. The need to repetitively synchronize
the stripe cache with main memory was a con-
tributing factor to the sub-optimal performance
of the proof-of-concept experiment.

5 Conclusion

MD driver block operations can be accelerated
by taking full advantage of the hardware fea-
tures of an IOP. To date, patches have been
submitted to move the block operations to a
work queue and the next steps are to integrate
the dmaengine API into the work queue. Once
the RAID-5 changes have settled, the same ap-
proach will be applied to the RAID-6 layer
where parity manipulation can be significantly

414 • MD RAID Acceleration

more compute intensive. This work, while pri-
marily beneficial to embedded systems with
hardware-offload engines, also has the potential
to enhance MD performance on SMP systems.

References

[NB1] Neil Brown, Re: Accelerating Linux
software raid, Electronic
Communication, September 2005,
http://marc.theaimsgroup.com/

?l=linux-raid&m=

112648052213893&w=2

[NB2] Neil Brown, Re: [RFC][PATCH 000 of
3] MD Acceleration and the ADMA
interface: Introduction, Electronic
Communication, February 2006
http://marc.theaimsgroup.com/

?l=linux-raid&m=

113988782117987&w=2

[LKD] Robert Love, Linux Kernel
Development, Second Edition, 2005

[LDD] Jonathan Corbet, Alessandro Rubini,
and Greg Kroah-Hartman, Linux Device
Drivers, 3rd Edition, 2005

[IOAT] Andrew Grover and Chistopher
Leech, Accelerating Network Receive
Processing: Intel I/O Acceleration
Technology, Linux Symposium, 2005,
http://www.linuxsymposium.org/

2005/linuxsymposium_procv1.pdf

Catalyzing Hardware Driver Development
A Case Study in Four Acts

Darrick J. Wong
IBM Linux Technology Center

djwong@us.ibm.com

Alexis Bruemmer
IBM Linux Technology Center

alexisb@us.ibm.com

Don Fry
IBM Linux Technology Center

brazilnut@us.ibm.com

Mark Salyzyn
Adaptec, Inc.

mark_salyzyn@adaptec.com

Abstract

Hardware driver support is perhaps one of the
most difficult hurdles to overcome in the march
towards world domination. Unfortunately, get-
ting that support for Linux R© is not always a
trivial task. This process involves, at a min-
imum, coordination between Linus Torvald’s
patch lieutenants and the hardware vendors’ en-
gineering and legal departments; on a more
practical level, the hardware vendors need to
build and maintain good communication chan-
nels with the various distributions to gather
feedback and to solve problems. We partici-
pate in those complex interactions to catalyze
the development process, and build open source
alternatives when that fails. For this presenta-
tion, we offer four examples of this catalytic
process, and discuss the task of helping hard-
ware vendors to merge functionality, when pos-
sible, from an internal driver release train into
mainline.

In the first case, we discuss how ongoing
maintenance and enhancement work with the
longtime mainline resident pcnet32 driver
progresses without much hand-holding from
AMD R©, the original hardware vendor; the

case details the traditional process of collabo-
rative driver development among many enthu-
siasts. The second case explores working with
Adaptec R© to evaluate, diagnose, and resolve
performance issues with the aacraid driver
and ongoing work to clean up widespread con-
fusion in comparing versions of the driver.
With regards to the third case, we discuss as-
sistance given to Adaptec to address issues
blocking the aic94xx Serial Attached SCSI
driver from entering mainline. In the final case,
we discuss negotiating with Adaptec for hard-
ware behavior specifications, implementing a
HostRAID R© plugin for dmraid (presented at
OLS 2005), altering device-mapper to make
grub work better, and assisting the distribu-
tions to support installation and booting off of
a dmraid device.

1 Introduction

This is not your typical OLS paper. Unlike
most papers, which focus on some part of the
kernel and describe technical details of work
surrounding that component to invite discus-
sion, this paper instead looks at four differ-

416 • Catalyzing Hardware Driver Development

ent kernel drivers, emphasizing the issues en-
countered and resolved as a part of improv-
ing driver support in the core kernel and re-
lated support packages with the goal of mak-
ing everything work out of the box. Of par-
ticular interest are the resolutions to the ques-
tions raised during OSDL R©’s Open Driver fora
at both LinuxWorld R© Expositions in 2005.1

The first case presented in this paper reflects
the classical method through which drivers
are developed for Linux and the remaining
three involve complex coordinations between
the IBM R© Linux Technology Center (LTC),
hardware vendors, and the Linux community.

2 Working on a Driver Indepen-
dently (pcnet32)

Don Fry has worked on the pcnet32 driver
at IBM for several years, during which time
he has fixed a lot of bugs and helped out with
pcnet32-related Xen R© emulation. In this
first case, Mr. Fry’s work on the driver is show-
cased as an example of the classical Linux
driver development process.

The pcnet32 driver has been around for a
long time. It was written by Thomas Bogen-
doerfer and is a good driver. It supports many
different versions of the chipset manufactured
by AMD and sold on many different boards and
platforms, as well as both PCI R© and VLB vari-
ants of the 32-bit successor to the 16-bit Lance.
The latest versions of the pcnet32 card also
support 64-bit addressing, though that is not
supported by the Linux driver.

2.1 Startup and Early Mistakes

In late 2003, Mr. Fry was asked by his em-
ployer, IBM, to “harden” the pcnet32 driver,

1http://developer.osdl.org/dev/
opendrivers/wiki/index.php/Roadmap

a generic task with as many meanings as there
are implementers. Several internal bugs had
been filed against pcnet32 and were used as
the starting point. Many of the bugs were re-
lated to performance problems or hangs, so net-
perf was used to try to reproduce the bugs. Mr.
Fry spent time reading through the driver to
understand how it was written and also down-
loaded the specs for the chipsets from the AMD
Web site.

Several bugs were found and a patch was cre-
ated and submitted to correct them. Unfor-
tunately, Mr. Fry was fairly new to the open
source model and rolled several different fixes
into one incohesive patch, a common mistake
made by people who are not familiar with
Linux development techniques. The patches
were sent to the maintainer and to the netdev
mailing list, but repeated requests for comment
over a period of several months were ignored
by the maintainer. In early February, it was
pointed out that the pcnet32 patch was re-
ally several patches that should be broken into
functional pieces and resubmitted, after which
they were finally accepted. During mid to late
February 2004, there was a flurry of patches
submitted and accepted that fixed a bunch of
little things that had been found internally, as
well as other bugs found and fixed by people
outside of IBM.

Enhancements to aid debugging and hotplug
add/remove support were added by other peo-
ple at IBM. Mr. Fry sent some requests to AMD
to learn where to get hardware to enhance his
testing pool and met with little success; it be-
came clear that any driver maintenance work
would likely be done without AMD being an
active participant. By early April, the first bugs
in the newly added code were being fixed and
some performance changes were being added
to the drivers. Other people inside IBM also
contributed code to aid debugging of the driver.

In late April, the changes to pcnet32 were

2006 Linux Symposium, Volume Two • 417

being seen and improved upon by others in
the community. One of the problems with the
pcnet32 driver is that the interrupts used by
the driver had to start at 2 and there was code
added long ago in other portions of the kernel
to work around this “feature.” A patch was sub-
mitted by somebody outside of IBM to hack
around this conundrum, though Mr. Fry rewrote
the patch to eliminate the original problem al-
together. It is a common occurrence for some-
body to submit a patch for inclusion only to find
that someone else disagrees with the approach
strongly enough to rework the patch or write
their own version; barring flame wars, this is a
practice that is strongly encouraged.

This development and further bug fixing were
directed at the 2.6 version of Linux, but the
same patches were backported to 2.4 since the
same bugs existed there and more people were
using 2.4 at the time. Some of the changes were
to handle rarely taken error cases better, or to
use newer helper routines in the kernel, elim-
inating redundant code in the driver. In any
case, continued development of the pcnet32
driver in both the 2.6 and 2.4 kernels helps to
keep the associated hardware relevant and us-
able into the future, even after many years of
service.

Changes were not without mishaps. One
change that was not properly tested caused
hangs in VMWare R©. A fix by a user of
the driver on VMWare corrected the problem
quickly. With additional testing, the hang and
fix were verified on hardware as well. Never
submit a patch that has not been tested, even if
it only changes one character!

Continued testing revealed more problems that
were hit when packet rates increased. If frames
were received fast enough, the driver would
never exit the receive interrupt routine. Rx
Polling Mode (NAPI) was suggested as a bet-
ter fix, but that has not yet been successfully
implemented for this chipset. More discussion

will be required among the network stack main-
tainers to determine the best way to implement
this.

One of the problems reported was found by ac-
cident when debugging another problem. One
of the versions of the chipset behaves differ-
ently when some “reserved” bits are not set to
zero. The driver did not properly handle re-
served bits, which caused all frames to be sent
with a “carrier error” even though no error ac-
tually occurred. Mr. Fry had been looking for
the “carrier error” cause and not making any
progress. A comment made regarding a differ-
ent problem also applied to the “carrier error”
case and turned out to be the cause of the mal-
function. In this case, it would have been very
helpful to have had access to the hardware en-
gineers, because hardware does not always be-
have as the documentation states.

Sometimes, however, AMD did provide some
guidance to fix bugs. One of the algorithms
needed to handle the Media Independent Inter-
face was not properly implemented. Working
for a large company allowed Mr. Fry to contact
the right people to get answers to questions that
he had had little success pursuing as an individ-
ual.

2.2 People Fix Their Favorite Issues

By working with various people in the Linux
community, it has become rather apparent that
some people will appear on the mailing lists
long enough to fix the features that they think
are broken, and promptly disappear. Another
version of the chip, the 79C978, had features
that a user wanted, so he sent in a patch to en-
able them. After some suggestions were pro-
posed, Mr. Fry purchased a pair of 79C978
boards to be able to do better regression testing.
Other users have submitted patches that allow
the driver to resize transmit rings and receive

418 • Catalyzing Hardware Driver Development

rings with ethtool, and to work properly with
boards that only have fiber-optic interfaces. In-
deed, it seems that many of the patches received
on the Linux kernel mailing list are one-time
events.

2.3 Different Architectures Hit Different
Bugs

One benefit of maintaining good relations with
people in the Linux community is that they can
test code and find bugs in exotic environments
to which patch authors might not have ac-
cess. Specifically, big-endian systems such as
POWER R© did not display some debugging or
error information correctly, and recurring hangs
were reported that could not be reproduced at
all on i386 R© systems. By asking debugging
questions to the people who had helped out on
other problems, Mr. Fry was able to resolve the
hangs.

2.4 The Present

In August 2004, Mr. Bogendoerfer sent Mr. Fry
a patch to support boards with multiple physi-
cal access points (PHYs). He was not ready yet
to submit the patch, so Mr. Fry did some testing
and made some suggestions. Other pcnet32
questions from Tony at Allied Telesyn R© in
October resulted in Mr. Fry obtaining some
boards with multiple PHYs and fiber-only in-
terfaces which facilitated debugging later prob-
lems. Another user of multi-PHY boards sub-
mitted a patch in 2006 to support them. Some
e-mail was exchanged in February and March,
showing the proposal by Mr. Bogendoerfer.
Tony liked Mr. Bogendoerfer’s fix better and
made some suggestions to improve it. With the
increased activity on the multi-PHY front and
the additional testing the patches had received,
it was time to submit the enhancements; they
were accepted in late March 2006.

2.5 The Future

Allied Telesyn has their own version of the
pcnet32 driver that they support because the
mainline version does not meet their needs.
Perhaps the fix for multiple PHYs will allow
them to merge their fork into the new mainline
driver because it is painful to maintain multi-
ple versions of a driver and confusing for peo-
ple with pcnet32 boards to keep track of the
variants of the driver. This forking problem will
be explored in the following three case studies.
Finally, as bugs continue to be found and fixed,
there are features such as NAPI that should be
implemented.

3 Co-Development with a Vendor
(aacraid)

Mark Salyzyn and Alexis Bruemmer worked to-
gether to improve the aacraid driver that ex-
isted in the Red Hat R© Enterprise Linux (RHEL)
and SUSE Linux Enterprise (SLES) distribu-
tions. This second case studies their combined
efforts.

The aacraid driver supports mid-range
Adaptec RAID controllers. It was first included
in the 2.4.17 mainline kernel; residing in main-
line allowed the driver to stay current. How-
ever, the versions of the driver that existed in
various distribution kernels were not up-to-date
and lacked needed functionality to work ef-
fectively with the newest Adaptec RAID con-
trollers. By fall of 2005, there was enough cus-
tomer demand that an effort began in the IBM
LTC to update the aacraid driver in both
Novell R© and Red Hat’s Linux distributions.

3.1 Porting from Mainline

In some cases, backporting the mainline kernel
driver to a distribution sufficed. As an exam-

2006 Linux Symposium, Volume Two • 419

ple, for SLES 9, the IBM LTC created a back-
port patch that was reviewed by Adaptec and
then tested on various xSeries R© hardware. Per-
formance testing revealed no read/write perfor-
mance regressions; stress testing also demon-
strated that an I/O freeze witnessed with an
older version of the driver had been eliminated.

In another case, however, Red Hat wanted an
even more advanced version of the driver than
what existed in the current mainline. This
meant not only backporting code from main-
line, but also sorting through a mix of nearly
one-hundred patches that were in various stages
of the community acceptance process. Specif-
ically, there were patches that were in a queue
to be submitted but had not been accepted into
either Mark Haverkamp’s aacraid develop-
ment tree at Adaptec or downstream into the
tree of the SCSI maintainer, James Bottomley;
patches that had yet to traverse from Mr. Bot-
tomley’s tree to the other gatekeepers such as
Andrew Morton and Alan Cox; and patches
that had trickled through all the gatekeepers
but had yet to be included in Linus’ tree. All
of these patches were reviewed to determine
which would be accepted and which ones Red
Hat cared about the most. This enormous
process was led by Red Hat’s Tom Coughlan
and Mark Salyzyn. The final patches for both
RHEL 3 and 4 were then tested by all par-
ties involved (Red Hat, Adaptec, IBM LTC)
to verify not only that the patch worked, but
also that there were no I/O read/write perfor-
mance degradations. A series of adjustments
were made to the original Red Hat patch to in-
crease the I/O read write performance; in some
cases an improvement of 40% was witnessed.
Lastly, stress testing verified that an I/O freeze
had been eliminated.

3.2 Key Involvements by IBM

At this point, the keen reader may wonder why
is IBM involved in such situations. In this
case, not all of the development needed to be
done by IBM, so why are we the middle man?
Though IBM does have extensive hardware re-
sources for testing, our role at the IBM LTC
goes far beyond providing hardware. Because
the IBM LTC deals with hardware vendors,
distributions, and the kernel community, our
most useful asset is our relationship with these
entities. This effort was a great example of
this—creating the communication channel be-
tween Messrs. Coughlan and Salyzyn allowed
Mr. Coughlan to present his concerns about the
potential to introduce performance problems,
which Mr. Salyzyn could then address. Further-
more, this relationship enabled Adaptec to push
for an updated driver in the Red Hat’s RHEL
releases while addressing Red Hat’s regression
concerns. Both companies were satisfied with
the finished product.

3.3 Future Work for aacraid

A tremendous amount of work has been done to
improve the aacraid driver. However, look-
ing towards the future, there are some issues
that need to be addressed with regards to main-
taining the code base, as well as processes that
need to continue, such as eliminating regres-
sions, and increasing performance.

3.3.1 Version Problems

Regrettably, the version of the aacraid driver
supported by Adaptec is slightly different from
the version that exists in mainline. Because
custom patches are often created in order to
keep older distribution kernels compatible with

420 • Catalyzing Hardware Driver Development

new hardware, the version existing in those ker-
nels varies. Worse yet, the module version
numbers are not a reliable comparison factor.
For example, the version numbers reported by
the Adaptec driver and the RHEL 3 and RHEL
4 drivers are identical (1.1-5[2412]), yet the
source code is not. Some coherency between
driver levels and version numbers needs to be
established.

3.3.2 Performance Verification and Im-
provement

Extensive performance testing was done on the
recently updated aacraid driver that exists in
RHEL 4 U3. This type of performance testing
needs to continue as firmware is updated and
new aacraid driver updates are released by
Adaptec to measure the effect that new driver
updates have on performance. Also, it would
be interesting to see how Adaptec RAID con-
trollers with the aacraid driver stack up to
software RAID.

4 Development with Vendor
and Community Assistance
(aic94xx)

Alexis Bruemmer is a member of the IBM LTC
team that pushed for the acceptance of the
aic94xx driver into mainline. This chapter
discusses that process.

The Adaptec 94xx series chip is a Serial At-
tached SCSI disk controller. Currently, there
is no driver support for the 94xx controller
in mainline or in any distributions. There is
an Adaptec-supported open source driver avail-
able (the adp94xx driver) but, because of
its structure, there is no hope of seeing it ac-
cepted upstream. Because the 94xx controller

is needed to boot the system in many hardware
configurations, installing on such a system re-
quires a driver update disk (DUD). The lack of
upstream solutions is a problem for anyone us-
ing 94xx controllers. Adaptec, aware of the im-
portance of having an in-box Linux-based solu-
tion for customers using their controller, began
development on a driver that was closer to the
Serial Attached SCSI driver design that the ker-
nel community desired. In early 2005, Adaptec
posted the aic94xx driver, an open source,
mainline friendly, 94xx controller driver writ-
ten by Luben Tuikov.2 Unfortunately, there
were two main issues with this driver: much
of the code was inadequately tested and did not
always work correctly, and Mr. Tuikov opted
to create an entirely new Serial Attached SCSI
transport layer, sas_class, instead of build-
ing off the existing transport layer, scsi_
transport_sas. These issues would have
to be resolved before the driver could be ac-
cepted upstream.

4.1 Uncovering the Bugs

A small team made up of both Adaptec and
IBM LTC members worked together to test the
aic94xx driver on as many hardware plat-
forms as possible to try to uncover and re-
solve bugs. A list of approximately ten issues
were identified, prioritized, and assigned ac-
cordingly. These bugs ranged from incompati-
bility on certain architectures to race conditions
during boot up. Unfortunately, it seemed that
once one bug was resolved, two more were un-
covered. For example, when a working solution
was found for the race condition encounter dur-
ing boot up, the team was finally able to boot a
machine with a Serial Attached SCSI expander,
only to find that the expander code was highly
unreliable. Just as the IBM LTC team began
to diagnose and address problems with the ex-
pander code, Mr. Bottomley decided to begin

2Now maintained by Rob Tarte.

2006 Linux Symposium, Volume Two • 421

the Serial Attached SCSI transport layer merge
process that will be explained in the next sec-
tion. In the process of this merge, the expander
code and the discovery code changed more dra-
matically than the team predicted, making all
previous boot-up and expander patches obso-
lete. Even with the many setbacks and project
re-directions, however, progress is slowly being
made on each bug, and the aic94xx driver is
stabilizing as time goes on.

4.2 The Great Merge

Besides providing fixes for the existing bugs
in the aic94xx driver, a merge between the
sas_class and scsi_transport_sas
transport layers needed to be performed in or-
der to eliminate redundant code. This daunting
task was tackled by Mr. Bottomley. The IBM
LTC assisted him by providing hardware, aid-
ing in the test process, as well as proposing so-
lutions for bugs in the merged code. Through
the collaborative efforts of Mr. Bottomley and
the IBM LTC, there has been a successful
merge between the sas_class (now named
scsi_transport_sas_domain) and the
scsi_transport_sas layers.

4.3 Future Work and Goals

Having the two separate transport layers suc-
cessfully merged, the only thing holding up
the aic94xx driver from mainline acceptance
is an unresolved bug. As of March 2006, a
solution to this bug has been posted on the
linux_scsi mailing list, so acceptance is very
close.

Even after upstream acceptance, there will still
be outstanding bugs. The very large list of
problems that the team started with has dwin-
dled down to a few, but issues remain. Plus,
aic94xx is a new driver and we can expect to

continue to uncover bugs as the driver gets used
more heavily. It is the goal of the IBM LTC to
make this driver stable and successful, so these
efforts will continue.

5 Replacing a Proprietary Vendor
Driver (hostraid)

Darrick Wong has been working with Adaptec
to augment functionality and to add HostRAID
support to dmraid as a replacement for a
closed source module. This chapter examines
the process by which he achieved that goal.

Adaptec HostRAID is an add-in BIOS com-
ponent that attaches to various SCSI, SATA
and Serial Attached SCSI controllers to provide
bootable software RAID (“fakeraid”) for entry-
level RAID configurations. Like all fakeraids,
the HostRAID component relies on a kernel
driver to handle the actual I/O processing; this
driver was only available in the form of the
a320raid binary driver on Adaptec’s Web
site. The disadvantages of this approach are nu-
merous: driver support exists only for a few dis-
tributions, bugs in binary modules are difficult
to diagnose, version mismatches cause confu-
sion, and the kernel becomes tainted. These
issues cause enormous headaches for more
than just customers; as Greg Kroah-Hartman
pointed out at OSCON last year,3 out-of-kernel
drivers represent an ongoing maintenance prob-
lem for vendors as well, since a certified driver
disk for a distribution often does not appear for
anywhere between weeks and months after a
distribution release. The response to all this, of
course, is for somebody to write an open source
driver and push it into the kernel.

3http://www.kroah.com/linux/talks/
oscon_2005_state_of_the_kernel/index.
html

422 • Catalyzing Hardware Driver Development

5.1 Why dmraid?

It turns out that Adaptec attempted to write and
submit an open-source driver a few years ago.
The community discussed this “emd” driver
but rejected it in favor of a different approach
using device-mapper. The Adaptec developers
disagreed with the proposed implementation,
and ceased emd development. Due to contin-
uing complaints about the lack of out-of-the-
box HostRAID support in Linux, Mr. Wong
decided in late 2005 to look into bridging the
gap created by the abandonment of the emd
driver; it seemed like it would not be difficult
to transform the relevant parts of emd into a
metadata format plugin for Heinz Mauelsha-
gen’s dmraid program. If successful, this rep-
resents a huge win for everybody—the support
that was called for in the previous section is
built without the need to write an entire RAID
stack, and users get the support for which they
have been clamoring! However, there were sig-
nificant challenges even with this approach.

5.2 Convincing the Hardware Vendors

The first hurdle that had to be surmounted was
selling dmraid as an a320raid replacement
not only internally but also to Adaptec. As
anticipated, the biggest challenges to the pro-
posal was the suggestion that it would be eas-
ier to push Adaptec to maintain a320raid,
and figuring out how to write this open source
replacement without damaging the relationship
between the two companies. Fortunately, the
arguments presented by Mr. Kroah-Hartman4

in favor of merging open source drivers up-
stream convinced management to go with the
dmraid approach because everybody liked the
prospect of Linux working out of the box in
places where it previously did not. However,

4See Documentation/stable_api_
nonsense.txt.

due to business realities, staffing limits and tim-
ing, it was difficult for Adaptec to commit the
resources to complete the effort on its own.
IBM, on the other hand, had a strong business
case to reduce technical support load by aug-
menting dmraid and pushing it into the distri-
butions. Thus it was decided that there was suf-
ficient impetus at both companies to start a co-
operative effort to get the dmraid work done.

However, that was only half the story—
learning how the hardware works and build-
ing testing rigs can be a Herculean effort.
In this case, though, it helped enormously
that in addition to the emd source floating
around in the Google R© search engine and the
IBM LTC’s HostRAID-equipped test systems,
Adaptec’s engineers were available to answer
questions about how the hardware actually op-
erated. They were also indispensable in provid-
ing pointers to relevant metadata standards that
went a long way towards revealing the intent
behind how things worked. They also provided
some sample hardware for testing purposes.

5.3 Writing and Pushing Code

Armed with specifications, Mr. Wong wrote
the HostRAID format handler for dmraid and
sent it around on the dm-devel and ataraid mail-
ing lists for review. After a few rounds of
improvements and testing, the basic handler
code was incorporated into the 1.0.0rc10 re-
lease of dmraid. Acting as a mediating code-
monkey between Adaptec and the dmraid de-
velopers has been a surprisingly straightfor-
ward process—Mr. Wong asks the hardware
vendor what the software has to do to drive the
hardware, asks the upstream maintainers how
the code should integrate itself with the exist-
ing corpus, and produces something that (hope-
fully) satisfies both. Fortunately, dmraid is a
userspace configuration program and not a core
kernel component, which made debugging and

2006 Linux Symposium, Volume Two • 423

acceptance easier. Small-scale stress and per-
formance tests have not revealed any major re-
gressions against the a320raid driver.

Despite the device-mapper code having been
in the 2.6 kernel for quite a long time, there
were still a few instances where code had to
be submitted to the mainline kernel to make
things work as smoothly as they did with the
binary drivers. In the course of testing a full-
system bringup with dmraid, it was discov-
ered that device-mapper devices do not report
disk geometry through the HDIO_GETGEO ioctl.
This is not a problem for architectures that do
not rely on disk geometries, but two notable
geometry-dependent programs (fdisk and grub
on i386 and x86_64 systems) can potentially
trip over this omission. A patch was created
fairly quickly and submitted to linux-kernel for
discussion, with the first few iterations of the
patches encountering objections for one reason
or another. Eventually, the patches were re-
worked into an acceptable form, and they went
into 2.6.17. Though this particular set of inter-
actions did not involve Adaptec, it serves as a
good example of how one can work with objec-
tors even if one’s first patch fails to gain trac-
tion; clearly, giving up would not have been the
best option!

The second phase of development for Hos-
tRAID support was trickier to manage. In
March 2006, Mr. Wong became more deeply
involved in the development of the general
dmraid framework to add support for hot ar-
ray reconfiguration. Unlike the first phase,
where the dmraid design was well estab-
lished, and writing the software was an exercise
of connecting the dots from the metadata spec-
ifications to the existing program, this portion
made Mr. Wong negotiate directly with several
engineers at Red Hat to get approval for the de-
sign of new features. As of April 2006, the hot
reconfiguration work was still in progress.

5.4 Selling Distributions on the Solution

The last piece of the puzzle was perhaps the
most difficult to set in place: getting major dis-
tributions to agree to integrate dmraid into
their core package sets and the installer.

For a hardware vendor, this can be a daunting
task. While it is true that there is only one
Linux community, there are many distributions.
Furthermore, the big distributions want to see
third-party pieces like the dmraid patches in-
tegrated upstream before they will take the fea-
tures, thus making the job of a hardware vendor
difficult. Given the difficult patch examination
discussed in section 3.2, Red Hat and Novell’s
insistence upon this point is not surprising. Fur-
thermore, in terms of negotiating patches with
distributions, the IBM LTC has a particularly
advantageous channel to go to bat for the hard-
ware vendors because people in the IBM LTC
spend a lot of time talking to the distributions.
However, this is a fine line to walk because
those same Linux vendors do not necessarily
want the increased support load. Because these
low-end RAID solutions are often used as boot
drives on systems and not as a bolt-on solution
that can be configured after installation, there is
an added burden that the distributions must be
convinced that it is in their best interest to mod-
ify their installers to know how to use dmraid.

In practical terms, this meant talking to three
big distributions: Red Hat for RHEL, Nov-
ell for SLES, and Ubuntu R©. In the case of
Red Hat, the process was easy—because Heinz
Mauelshagen, the author of dmraid, works
for Red Hat, the release managers for Fedora R©

Core were already familiar with the project.
This familiarity decreased their resistance to
accepting dmraid because Mr. Wong was sup-
porting a project of Red Hat’s and asking them
to put it in their distributions, instead of cre-
ating a wad of code that they had never seen
before, and asking them to incorporate it. As

424 • Catalyzing Hardware Driver Development

of April 2006, dmraid support was being de-
veloped for a future Ubuntu release, talks were
ongoing with Novell about SLES, and Red Hat
was asked to incorporate the dmraid features
of Fedora Core into their enterprise distribu-
tion.

5.5 Where Does the Project Go from here?

One critical question emerged from this driver
writing effort—since Mr. Wong did a large
chunk of the work, how could he avoid giving
hardware vendors the impression that some-
body at IBM will write their drivers for them,
and instead convince them to take an active role
in driver development? Obviously, there is a bit
more political maneuvering and business case
manipulation going on behind the scenes, but
even on a purely technical level there are sev-
eral reasons why it is still better for hardware
vendors to write drivers themselves. First of
all, Mr. Wong unfortunately did not have ac-
cess to all of the documentation and design
work that went into Adaptec’s chips. Though
it is his hope that there were no glaring defi-
ciencies introduced into the HostRAID-related
parts of the dmraid code, only Adaptec would
really know the answer to that, and develop-
ment would be far more efficient if there was
no need for him to play middle-man. Hardware
vendors have their own driver writing teams
that do have easy access to the hardware de-
signers; these teams ought to handle the major-
ity of the technical work and pull IBM in as a
catalyst to help them to negotiate with the code
maintainers in the community and the distribu-
tions. Furthermore, the thrust of these driver
writing efforts is to encourage the vendors to
work with the community and the distributions
and not to rely totally on others to write open
drivers for them. Creating all-out replacements
for binary drivers is a last resort when nothing
else works.

Moreover, there are enough users of HostRAID
asking for better Linux support that the ex-
istence of the HostRAID plugin for dmraid
project should be a signal that Linux is not
cutting into Adaptec’s user base. More likely,
good driver support would increase the num-
ber of HostRAID users. Nobody likes to
have to feed driver disks to machines at in-
stall time; negative feedback about this tedium
from Linux users will likely coax future server
design teams to choose more Linux-friendly
components so that everything just works, thus
avoiding support problems before they happen.
Finally, working with the community makes
everyone happy; the code that was written is
proof that hardware vendors really can engage
people in the community, given the right cata-
lyst.

On the technical side, there is plenty still to be
done—the a320raid migration story is still
a bit rocky, dmraid lacks full support for the
Storage Networking Industry Alliance’s Disk
Data Format (DDF), which was an attempt to
standardize metadata formats, and of course the
code will benefit from more testing. It would
also be useful to explore how the dmraid code
can be used as a recovery mechanism—ideally,
one could yank the drives from a machine with
a failed HostRAID controller, put them into any
machine running Linux, and still be able to re-
cover data from the array. Lastly, a perfor-
mance comparison between hardware RAID,
dmraid, and the binary driver ought to be
made.

6 Lessons Learned

In the process of helping independent hardware
vendors (IHVs) to work with the Linux com-
munity and the distributions, and even develop-
ing code to support and better utilize our own
hardware, several rules have become readily

2006 Linux Symposium, Volume Two • 425

apparent. These guidelines are not imposed by
the community just to force changes or to ob-
struct participation; as Mr. Kroah-Hartman has
emphasized in the past, these suggestions are
made to help code submitters find more bugs,
to help kernel hackers to find bugs, and to make
drivers more maintainable if somebody else be-
comes responsible for the code. Here, then, are
suggestions compiled by many people over the
years:

• Please read the files in
Documentation/.

• Do not roll unrelated fixes into one inco-
hesive patch.

• There are others who use the same code
and will be interested in the patches; do
not assume that they will not help to im-
prove the code.

• Someone may totally rewrite a patch sub-
mission. This is perfectly fine; what mat-
ters is the patch that gets committed, be-
cause that is what the customers use.

• Always test patches.

• Somebody will find esoteric code-
breaking conditions that nobody antici-
pated.

• The world extends beyond i386 and
x86_64 systems. Solve problems generi-
cally.

• The road to integration may be long and
hard, but the code will be better because
of that.

• IHVs need to maintain good relationships
with distributions. This means that IHVs
need to stay abreast of the distribution’s
release plans, ensure that any code that

will be submitted for a release has al-
ready been approved upstream, and pos-
sibly even contribute sample hardware for
testing.

• Code forks are good for developers with
divergent goals if there are solid reasons
for forking.

• Do not ask the community for input and
ignore them. If a developer does not like
what another has to say, that developer
ought to talk to the objector. If a developer
thinks that other person’s proposal is im-
possible, that sentiment should be demon-
strated with code.

• Wholesale rejections of code are not a rea-
son to disappear. Just because people are
not amenable to the proposed approach
does not mean that they will be hostile to
all approaches.

• Driver writers should inform others of
what they are working on early to avoid
wholesale rejections once the work is fin-
ished. The development process in place
does not have one submission deadline; it
instead works in an iterative fashion.

• Hardware manufacturers need to be in-
volved with the development of their
drivers.

• Having code committed upstream is a
powerful endorsement when trying to con-
vince distributions to take the code.

• Adapting business processes to work with
the Linux community may be hard, but do-
ing so opens the door to new customers
who ignore products that lack Linux sup-
port and buy products that do.

• Open drivers extend the life of hardware.

426 • Catalyzing Hardware Driver Development

• Legal departments can set up barriers to
working with Linux, but even limited par-
ticipation is better than none at all.

7 Unanswered Questions

As the clever reader may already have sus-
pected, a task of this gargantuan scope raises
perhaps as many questions as it resolves. On
the technical side, it is not always clear who
will maintain and enhance the code that has
been written. As the pcnet32 driver case il-
lustrates, the work may be picked up by various
individuals with itches to scratch; as the other
three cases show, the driver maintenance job
becomes a collaborative effort between several
different groups. One scenario that has not been
explored, however, is the case where somebody
at IBM writes a rudimentary driver to get the
process started and gradually pushes the devel-
opment burden back to the hardware vendor.
Depending on the vendor’s ability to adapt to
the community’s development style, this is a
transition that must be managed carefully—at a
bare minimum, the legal issues of moving code
ownership around will have to be sorted out,
and the vendors will have to be trained to work
in an environment where third parties have the
power to reject their code. Furthermore, early
engagement with the consumers of the code is a
crucial ingredient to integration. As this paper
has also illustrated, developing a driver without
the agreement of the required maintainers usu-
ally results in patch rejection.

A second issue to arise from this arrangement is
the question of what to do about customer sup-
port. When a support endpoint such as a distri-
bution or a vendor owns the code, responsibility
for that code naturally falls upon the endpoint;
this breaks down when the authors are acting
as an intermediary between distributions, ven-
dors, and (potentially) other parties. As the in-

termediaries, IBM could, presumably, coordi-
nate a concerted response, but the goal is to fix
the driver support problems first, and to try to
make the vendors responsible for the drivers af-
ter that.

8 Wrapup

Having blazed some of the trails towards the
goal of helping developers, product managers,
legal teams, et al. and hardware manufactur-
ers to learn how to become participants in the
Linux community, it is hoped that others who
are trying to encourage third parties and hard-
ware vendors to join the Linux movement can
use our experiences as a guide for how to go
about this process. Furthermore, it is hoped
that the questions for which no satisfactory res-
olution has been found will catalyze debate as
to what options will work. Jonathan Corbet’s
BOF session at this same OLS conference may
shed some light on this. Perhaps future Open
Driver fora will attract more than just devel-
opers to this question; for certain, driver writ-
ing efforts such as these will not always be
the products of individual contributors going
forward, which means that project leaders and
lawyers at hardware manufacturers need to be
educated about ways to co-operate with Linux.

We would also like to thank (in no particular
order) the following people for their help with
this paper and our other efforts: James Bottom-
ley, Jeff Garzik, Greg Kroah-Hartman, and An-
drew Morton; Rob Tarte and Tom Treadway of
Adaptec; Craig Thomas of OSDL; Tom Cough-
lan, Alasdair Kergon, and Heinz Mauelshagen
of Red Hat; and finally Mike Anderson, Pat
Gaughen, Dave Hansen, Sheila Harnett, AJ
Johnson, Chris McDermott, Paul McKenney,
Ram Pai, and Russ Weight of IBM. To the many
people who reviewed this paper, we also send
our enormous thanks. Furthermore, it is very

2006 Linux Symposium, Volume Two • 427

likely that there are others who we have inad-
vertently failed to acknowledge; to all of you,
we apologize for the omission and thank you
for your efforts.

9 Legal Statements

Copyright c© IBM Corporation 2006.

Copyright c© 2006 Adaptec Inc.

This work represents the views of the authors and
does not necessarily represent the views of IBM or
Adaptec.

IBM, xSeries and POWER are trademarks or reg-
istered trademarks of International Business Ma-
chines Corporation in the United States and/or other
countries.

Adaptec and HostRAID are trademarks or regis-
tered trademarks of Adaptec Inc. in the United
States and/or other countries.

Novell is a registered trademark and SUSE is a
trademark of Novell, Inc. in the United States and
other countries.

Ubuntu and Canonical are registered trademarks of
Canonical Ltd. in the United States and/or other
countries.

Xen and XenSource are trademarks of XenSource,
Inc. in the United States and/or other countries.

PCI is a trademark of the Peripheral Component In-
terconnect - Special Interest Group (PCI-SIG).

Google is a trademark of Google Inc.

VMWare is a registered trademark of VMWare, Inc.
in the United States and/or other countries.

Red Hat and Fedora are registered trademarks of
Red Hat, Inc. in the United States and other coun-
tries.

OSDL is a trademark of Open Source Development
Labs, Inc.

Allied Telesyn is a registered trademark of Allied
Telesyn, Inc.

LinuxWorld is the registered trademark of Interna-
tional Data Group, Inc.

Linux is a registered trademark of Linus Torvalds.

Intel and i386 are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the
United States and other countries.

Other company, product, and service names may be
trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make
them available in all countries in which IBM oper-
ates.

This document is provided “AS IS,” with no express
or implied warranties. Use the information in this
document at your own risk.

428 • Catalyzing Hardware Driver Development

