
Proceedings of the
Linux Symposium

Volume Two

July 21st–24th, 2004
Ottawa, Ontario

Canada





Contents

kobjects and krefs: lockless reference counting for kernel structures 295

Greg Kroah-Hartman

The Cursor Wiggles Faster: Measuring Scheduler Performance 301

Rick Lindsley

On a Kernel Events Layer and User-space Message Bus System 311

Robert Love

Linux-tiny and directions for small systems 317

Matt Mackall

Xen and the Art of Open Source Virtualization 329

Dan Magenheimer

TIPC: Providing Communication for Linux Clusters 347

Jon Paul Maloy

Object-based reverse mapping 357

Dave McCracken

The World of OpenOffice 361

Michael Meeks

TCPfying the Poor Cousins 367

Arnaldo Carvalho de Melo

IPv6 IPsec and Mobile IPv6 implementation of Linux 371

Kazunori Miyazawa



Getting X Off the hardware 381

Keith Packard

Linux 2.6 performance improvement through readahead optimization 391

Ram Pai

I would hate user space locking if it weren’t that sexy. . . 403

Inaky Perez-Gonzalez

Workload Dependent Performance Evaluation of the 2.6 I/O Schedulers 425

Steven L. Pratt

Creating Cross-Compile Friendly Software 449

Sam Robb

Page-Flip Technology for use within the Linux Networking Stack 461

John A. Ronciak

Linux Kernel Hotplug CPU Support 467

Rusty Russell

Issues with Selected Scalability Features of the 2.6 Kernel 481

Dipankar Sarma

Achieving CAPP/EAL3+ Security Certification for Linux 495

Kittur (Doc) S. Shankar

Improving Linux resource control using CKRM 511

Rik van Riel

Linux on a Digital Camera 525

Alain Volmat



ct_sync: state replication of ip_conntrack 537

Harald Marc Welte

Increasing the Appeal of Open Source Projects 547

Mats Wichmann

Repository-based System Management Using Conary 557

Matthew S. Wilson

On-demand Linux for Power-aware Embedded Sensors 573

Carl D. Worth

Virtually Linux 583

Chris Wright





Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.





kobjects and krefs
lockless reference counting for kernel structures

Greg Kroah-Hartman∗

Linux Technology Center
IBM Corp.

greg@kroah.com

gregkh@us.ibm.com

Abstract

This paper will describe the current kobject and
kref kernel structures in detail. It will cover
why they were created, how to use them, and
how the internals work. It will also cover a few
directions that these structures might be taking
in the future.

1 Introduction

The Linux kernel file Documentation/
CodingStyle has the following statement
about reference counting:

Data structures that have visibil-
ity outside the single-threaded en-
vironment they are created and de-
stroyed in should always have refer-
ence counts. In the kernel, garbage
collection doesn’t exist (and outside
the kernel garbage collection is slow
and inefficient), which means that
you absolutely _have_ to reference
count all your uses.

This requirement of providing proper refer-
ence counting for kernel structures has caused

∗This work represents the view of the author and
does not necessarily represent the view of IBM.

developers to create their own logic and
functions to implement this feature. Dur-
ing the development of the Linux Kernel
Driver model[4], a simple structure,struct
kobject , was created that provided auto-
matic reference counting for any user of the
object. Unfortunately,struct kobject is
closely tied to the kernel driver model, and for
any data structure that does not want to show
up in sysfs, and participate in the global kernel
“web woven by a spider on drugs”[2], using
a struct kobject only for reference counting is
a big waste of memory resources and is much
more complex than needed. To this end, the
data structure,struct kref , was created
to provide a simple, and hopefully failproof
method of adding proper reference counting to
any kernel data structure.

2 How to use it

To use thestruct kref structure, simply
embed it within the structure that reference
counting is needed for. For example, to add ref-
erence counting to a structure calledstruct
foo then it would be defined as:

struct foo {
...
struct kref kref;
...
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};

It is not important that thestruct kref
structure be the first or last element of the
structure that it is embedded in. The only re-
quirement is that the wholestruct kref
structure be in the structure being reference
counted, not a pointer to the astruct kref
structure.

When thestruct foo structure is initial-
ized, thekref variable must also be initialized
before reference counting can be used. This is
done with a call to thekref_init function:

struct foo *foo;
foo = kmalloc(sizeof(*foo),

GFP_KERNEL);
kref_init(&foo->kref,

foo_release);

The parameterfoo_release is a pointer
The first parameter ofkref_init is a pointer
to the struct kref structure that is to be
initialized. The second parameter is a pointer
to the release function for the structure. This
release function is described in detail below.

After the kref structure has been initialized, the
internal reference count of the structure is set to
1. Now the reference count can be incremented
and decremented at will.

To increment the reference count of a kref
structure, the functionkref_get is called:

/* get a new reference to our
foo structure */

kref_get(&foo->kref);

When a user of the structure is finished with
it, thekref_put function should be called to
release the reference:

/* finished with this

foo structure */
kref_put(&foo->kref);

This function should also be called after the
original creator of the structure that the kref
variable is in, is finished with the structure. The
kfree function mustNOT be directly called
because other portions of the kernel could have
valid references to this structure.

After the kref_put function is called, the
structure can not be referred to by any future
code, as the memory for that structure could be
now gone.

When the last reference count is released, the
function that was passed to the originalkref_
init function is called to release the mem-
ory used by the structure. The prototype of this
function must accept a pointer to astruct
kref :

void foo_release(struct kref
*kref)

{
struct foo *foo;

foo = container_of(foo,
struct foo,
kref);

kfree(foo);
}

As the above example function shows, to
get back to the originalstruct foo struc-
ture location, thecontainer_of macro is
used. For a complete description of how the
container_of macro works, please see[1].

As there are not any locks within thekref
structure, there are three rules that need to be
followed when using this reference counting
logic:

• If the code accessing the variable already
has a valid reference to the structure, it is
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safe, and required to increment that ref-
erence with a call tokref_get in order
to give the variable to any other piece of
code.

• If the code accessing the variable already
has a valid reference to the structure, then
it is safe to release that reference with a
call tokref_put .

• If the code wanting to access the variable,
does not have a valid reference, then it
needs to serialize with a place within the
code where the last call tokref_put put
could happen.

This last rule can not be emphasized enough.
The only reason that thestruct kref can
work without any internal locks is because a
call to kref_get can not happen at the same
time thatkref_put is happening. In order to
ensure this, a simple lock for the driver or sub-
system that owns the specificstruct kref
reference can be used.

An example of using such a lock can be seen in
Figure 1.

So, with the three simple functions,kref_
init , kref_get , and kref_put , com-
bined with a release function that the caller
provides, complete reference counting can be
added to any kernel structure.

3 How it works

struct kref is a very tiny structure with
only two elements:

struct kref {
atomic_t refcount;
void (*release)(struct kref *kref);

};

The refcount variable is an atomic counter
that is used to hold the reference count of the

structure. Therelease variable is a pointer
to a function that will be called when the last
user of the structure is finished with the struc-
ture.

Thekref_init function is a mere three lines
long:

void kref_init(struct kref *kref,
void (*release)
(struct kref *kref))

{
WARN_ON(release == NULL);
atomic_set(&kref->refcount,1);
kref->release = release;

}

First a warning is printed out to the syslog if
a release callback is not provided, as this
is not allowed. Then therefcount vari-
able is initialized to 1 as the structure needs to
have a single initial reference count. After that
the release function pointer is stored in the
release variable in the structure.

The kref_get function is also only three
lines of code:

struct kref *kref_get(struct kref *kref)
{

WARN_ON(!atomic_read(&kref->refcount));
atomic_inc(&kref->refcount);
return kref;

}

Again, a warning is printed out to the syslog if
the refcount variable is zero. This catches
the very common error of callingkref_get
without first callingkref_init . After that,
the refcount variable is incremented, and
then a pointer to the same structure is returned.
This return type makes it easier for code to do
things pass the result ofkref_get as a func-
tion parameter:

do_foo(kref_get(my_kref));

Keeping with the tradition of tiny functions, the
kref_put function weighs in at a whopping
two lines:
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/* prevent races between open() and disconnect() */
static DECLARE_MUTEX (disconnect_sem);

static int skel_open(struct inode *inode, struct file *file)
{

struct usb_skel *dev;
struct usb_interface *interface;

/* prevent disconnects */
down (&disconnect_sem);

interface = usb_find_interface(&skel_driver, iminor(inode));
dev = usb_get_intfdata(interface);

/* increment our usage count for the device */
kref_get(&dev->kref);
up(&disconnect_sem);

...
}

static void skel_disconnect(struct usb_interface *interface)
{

struct usb_skel *dev;
int minor = interface->minor;

/* prevent skel_open() from racing skel_disconnect() */
down (&disconnect_sem);

dev = usb_get_intfdata(interface);
usb_set_intfdata(interface, NULL);

/* give back our minor */
usb_deregister_dev(interface, &skel_class);

/* decrement our usage count */
kref_put(&dev->kref);

up(&disconnect_sem);
}

Figure 1: Using a lock to ensure safe access tokref_put

void kref_put(struct kref *kref)
{

if (atomic_dec_and_test
(&kref->refcount))

kref->release(kref);
}
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This function decrements the value stored in
the refcount variable, and if the result is
zero, this was the last reference to the struc-
ture, so the function stored in therelease
variable is called to clean up the memory used
by this structure.

4 kref vs. kobject

This paper has focused on on howstruct
kref works, and ignored struct
kobject . For the most part, both struc-
tures work identically, with the following
minor differences:

• struct kobject does not contain a
release function. When astruct
kobject ’s last reference count is decre-
mented, the release function of the
struct kset that is associated with
the struct kobject is called. For
more details on howstruct kobject
andstruct kset is related, please see
[3].

• A struct kobject can be ini-
tialized with two different functions,
kobject_register or kobject_
init . kobject_register calls
kobject_init and then calls
kobject_add to add the kobject
to the sysfs hierarchy. If astruct
kobject is to not be used within the
sysfs hierarchy, thenkobject_add
should never be called.

• A struct kobject can have its ref-
erence count incremented with a call to
kobject_get and decremented with
a call to kobject_put . But if the
kobject was initialized with the sysfs
core with a call to eitherkobject_
add or kobject_register , then it
needs to be removed from it with a

call to kobject_del , which will also
call kobject_put on the struct
kobject . After a struct kobject
has hadkobject_del called for it,
the kboject_get function can not be
called on the variable without having a
previous reference count already on the
variable. This is the same as the previ-
ously mentioned issue for callingkref_
put without serializing the access.

• Before using astruct kobject , the
structure must be initialized to zero by us-
ing memset beforekobject_init or
kobject_register is called. If not, a
warning will be printed out to the syslog.

5 Future

In future releases of the Linux kernel, the
struct kobject will probably loose its in-
ternal reference count and use thestruct
kref instead. If this happens,struct
kref might have to be changed in order to
support passing therelease callback as a pa-
rameter to thekref_put function, in order
to save the storage size of the function pointer
from the structure.

Other kernel uses of aatomic_t variable
will probably be converted to use thestruct
kref interface instead of providing their own
logic to handle reference counting.

6 Legal Statement

IBM is a registered trademark of International Busi-
ness Machines in the United States and/or other
countries.

Linux is a registered trademark of Linus Torvalds

Other company, product, and service names may be
trademarks or service marks of others.
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The Cursor Wiggles Faster: Measuring Scheduler
Performance
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Abstract

Trying to pin down whether changes to the 2.5
and 2.6 scheduler have helped or hurt perfor-
mance, especially on interactive programs, has
been both difficult to quantify and very subjec-
tive. One favored test has been to create your
favorite load and then move your cursor around
and observe how slow or fast it is. Another one
is to drag a window across your desktop and
see how quickly it gets redrawn. And I would
certainly be skewered if I didn’t mention what
is probably the favorite: playing your favorite
music while under load and listening intently
for skips.

Unfortunately, all these measurements are sub-
jective, and even, at times, argumentative.
With scheduler statistics installed, one can ac-
curately measure such things as the amount of
time processes are spending on the processor or
the amount of time they are waiting for the pro-
cessor. This means that on SMP and NUMA
machines, load balancing efforts can be objec-
tively evaluated, and process migration deci-
sions more effectively reviewed. And all of this
can be done with no measurable impact to the
system.

This paper will describe what information can
be captured, use that information to charac-
terize some simple loads, and describe how
that same information may be coordinated with
other system measurements both to character-

ize new loads, and to more clearly identify
scheduler shortcomings.

1 Introduction

As the 2.5 code revisions came out in mid- to
late 2003, the scheduler, like much of the 2.5
release, became more and more stable. True,
there was still work to be done in some areas,
like SMP and NUMA. Although an increas-
ing number of dual-CPU desktops and even
laptops introduced more users to the world
of SMP, it was the high end users with 16,
32, 128, or even more CPUs that really were
stretching the existing SMP and NUMA code.
The increasing load on the existing infrastruc-
ture was causing developers to realize that
code paths they previously thought “impossi-
ble” were really “rarely,” and paths deemed
“infrequent” were unfortunately morphing to
“once or twice a day.”

And an odd thing happened on the way to bet-
ter code for the high end machines. Those
pesky desktop and laptop users got in the way.
With every fix that would demonstrably im-
prove the situation for the big iron, dozens of
desktop and laptop owners would immediately
pick up the new code, try it out, and more of-
ten than not, pronounce it faulty. Why? Be-
causetheir 2-proc SMP machines were used
very differently than the file servers and web
servers that the 128-proc systems had become.
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The testing and measurements that had gone
into verifying the patch did not test the system
the same way the desktop users did. Conse-
quently, these desktop users saw very differ-
ent results, and formed very different opinions
about the correctness and usefulness of these
high-end SMP fixes.

And while their opinions mattered, of course,
addressing their concerns was difficult. They
were using human eyes and ears—notoriously
unreliable biological components known to be
fraught with frequent failure and highly subjec-
tive readouts—to detect problems with code.
These observations needed to be backed up
with numbers somehow.

2 Why is the wiggle so important?

So why weren’t the big iron folks seeing the
same problems as the desktop people if they
were both utilizing the same code? The an-
swer lay in usage patterns. People with laptops
and desktops did not run two dozen instances
of a server daemon that depended on ultra fast
cache and great amounts of parallelism. They
did not have petabytes of disk, and typically
did not have gigabytes of memory either. They
didn’t read terabytes of disk per minute, nor
expect to fully utilize their bus bandwidth on a
regular basis.

These folks browsed the web, sorted mail, and
compiled kernels while, in the background,
they listened to their favorite playlist. While
doing this, they would notice that with the new
scheduler mods, their windows took longer to
redraw. Or their cursor moved more sluggishly
under this relatively heavy load. Or their mu-
sic skipped now and then because their music
player didn’t get back on the CPU soon enough
to catch the next few notes.

That’s not to make light of their complaints;
they were uncovering real problems that exist-

ing testing was inadequate to find. In fact, there
were two main problems that needed to be
solved. One was to close the testing hole by re-
liably repeating the tests that the desktop users
were running, and repeating them on as wide a
variety of hardware as the original patches had
been run on. The other was that even the desk-
top users quibbled among themselves, some-
times, about whether wiggles, skips, and re-
draws had degraded. It was important to find
a way to measure this “wiggle effect” in some
quantifiable, objective way so you could reli-
ably tell whether a new patch worsened it or
improved it.

Server software, for its part, didn’t need mu-
sic to function, didn’t need cursors to point
with, and it sure didn’t care how fast windows
were redrawn. These highly interactive ac-
tivities had no place in server evaluations. It
was typically all aboutthroughput, and plac-
ing stress on some subsystem or another: disk,
memory, or network, typically. Stress on the
scheduler was a given. Even though dozens of
benchmarks exist for measuring the throughput
of high-end machines, producing megabytes or
even gigabytes of analysis and data, there was
no easy way to automate the type of subjective
human observation that desktop users were us-
ing. There was no way to have weekly regres-
sion tests pick it up, nor any way to precisely
duplicate the environment in which these ob-
servations were being made. In short, there
was no way to quantify the observations being
made, so no existing tests could detect regres-
sions in this area.

Previous scheduler modifications had labeled
applications that tended to spend a lot of time
waiting for I/O as “interactive,” and attempted
to give scheduler bonuses to those tasks when
the I/O they had been waiting for completed.
This wassupposedto provide the exact behav-
ior the desktops werenotseeing. The suspicion
was that either these types of applications were
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not being correctly recognized, or they were
not being given sufficient bonuses.

3 Isolating the wiggle

The first part of the solution was recognizing
that the “wiggle effect” comes from tasks not
regaining the CPU fast enough. The second
part was recognizing that the audible stutter
from a music player, or the delay in redraw-
ing a window, were showing the same problem
as wiggling the cursor.

In the case of a cursor, coordinates from a serial
mouse are presented as a stream of input to the
windowing system. If the task that moves the
cursor is not brought to a CPU quickly enough,
there will be a lag between the time the move-
ment is initiated and the time it appears on the
screen. With all the input consumed, the task
again goes to sleep even though a split second
later more input appears as the mouse contin-
ues to move. While this is an efficient way to
handle a serial mouse, it is dependent on hit-
ting the processor quickly enough to guarantee
the input stream doesn’t back up too much. If
the consuming task does not get to run quickly
enough, the cursor will appear to move across
the screen in a staccato fashion, even though
the mouse itself is being moved smoothly.

In the case of a music player, the application
(say,xmms) will read a certain amount of input
from a file, but it will take longer to play it to
the speaker. Even though this is, in general, a
very I/O-intensive task, there are times when
xmmswill go to sleep either waiting for output
to drain to the speaker or input to come from
the file. Waking up too slowly from these self-
imposed interruptions is what causes the music
to pause or stutter.

Slow window redrawing is a case of applica-
tions taking too long after notification to wake
up and redraw. Thismightalso be attributed to

slow interprocess communication or slow sig-
nal delivery, but it should be easy to rule out
these causes if we were to measure the time a
task spent in a queue waiting for a processor.

A patch for scheduler statistics has been avail-
able since 2.5.591. However, it was with the
2.6.0-test5 release in September of 2003 that it
was updated to include code to measure task
latency. The task is given a new timestamp
when it is placed in a run queue, placed on a
processor, or removed from a processor. This
makes it trivial to determine how long the task
spent in the run queue before making it to the
processor. It has the side effect of allowing us
to also measure, on average, how long a task
remains on the processor before relinquishing
it, usually voluntarily. This allows us to easily
characterize the kind of load a benchmark may
place on a system.

Adding statistics counting to the scheduler path
was a dicey task. This is one of the most heav-
ily used paths in the system, and anything that
slows down this path can have a catastrophic
effect on the system as a whole. Consequently,
the statistics patch tries to do what it can to
gather accurate statistics without the use of a
lock.

• Per-CPU counters are used, and incre-
mented only by their respective CPU. This
makes update collisions (and loss of data)
impossible.

• Even so, when possible, these counters are
incremented while a per-CPU runqueue
lock is already acquired.

• Counters are only incremented, so minor
variations from unflushed caches that may
be observed while reading another CPU’s
counters can be safely ignored. (The

1http://oss.software.ibm.com/developerworks/
opensource/linux/patches/?patch_id=730
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counters are declared unsigned long, so
user-level utilities on 32-bit architectures
must take note that the counters could
wrap. While theoretically possible on 64-
bit machines, wrapping is far less likely
than on 32-bit machines.)

Measurements were taken across several dif-
ferent releases using several different bench-
marks to see if any statistical impact could
be found on the benchmarks when scheduler
statistics were utilized. To date, none have
been found.

After the patch is applied, the counters can be
obtained by reading/proc/schedstat . A
full description of the statistics collected can be
found inDocumentation/schedstats.
txt in the kernel source. The patch itself in-
troduces a config option SCHEDSTATS that is
on by default; if it is turned off, all the addi-
tional code is compiled out. There are three
important fields:

timestampN
This line indicates a timestamp, in jiffies,
of when this output was produced. The
statistics are most effectively utilized
when collected at small regular intervals,
since this allows you to more accurately
see how the behavior of a load or bench-
mark may change over its lifetime. Any
process reading this file, however, is sub-
ject to the same scheduler delays it is try-
ing to measure. Consequently, a simple
script like

while true
do

sleep 10
cat /proc/schedstats >> \

/tmp/stat.out
done

may find it collects statistics roughly ev-
ery 10 seconds when the system is lightly
loaded, but every 15-20 seconds or more
when the system is heavily loaded. The
code to note the timestamp is just a few
lines before the data is totaled in the ker-
nel, and on a non-preemptible kernel is an
inexpensive way of identifying the time at
which the snapshot wasactuallytaken.

cpuN n n n n n n n n . . .
These are the values of the counters for
cpu N. The precise meaning of these
counters will vary depending on the ver-
sion of scheduler statistics being utilized.
A few examples of data collected are:

1. number of times some functions
were called

2. number of times certain functions
were called under certain circum-
stances (i.e., were the runqueues un-
balanced? was this processor idle?)

3. total number of milliseconds that
tasks on this processor have used,
not including the current one

4. total number of milliseconds that
tasks that ran here had to wait in
queue

versionN
identifies the version of output being pro-
duced. Since the meaning of fields (and
the number of fields) in thecpuN line,
above, can vary in different versions of
scheduler statistics, this allows tools to be
as flexible or inflexible as desired when
processing input.

A sample of the output from/proc/
schedstat is provided in Appendix A.
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4 What would I use statistics for?

Scheduler statistics can serve three basic pur-
poses. In many cases, they are doing no more
than providing some detailed code path and
profiling data. Knowing, for instance, that
a particular function was called 50,000 times
during a benchmark run may be key if it is ex-
pected to be called a dozen times—or a mil-
lion. Similarly, knowing that 22,000 of those
calls were made while the processor was idle,
or made on just one of eight CPUs, may also
be quite informative. About half the counters
provide this sort of information, and it must be
coupled with a knowledge of what to expect
given your workload in order to detect anoma-
lies.

Another purpose is to provide information be-
yond just counting. There is a counter that
sums the imbalance found when queues are
inspected. Combine this with the number of
times you called this function and you can de-
termine the average imbalance between run-
queues. In most cases you wouldn’t want this
to exceed 1. Truth is, though, that a flurry
of forking or even I/O completions might sud-
denly cause a processor to suddenly find it-
self with significantly more runnable tasks than
other processors. Seeing where these spikes
happen during the test run, and how often they
happen, may help to suggest better “default”
behavior in the scheduler or even tuning in the
benchmark itself.

The last purpose has already been mentioned—
task latency. We already need to note when a
task is queued on a processor and when it ac-
quires a processor. By noting one more thing—
when it leaves the processor—we can also de-
termine what I call therunslice.

The runslice is the amount of time a task
spendson the processor before yielding it. In
contrast, thetimeslicealloted by the scheduler

indicates how long the task may run before it is
forcedoff. Processes are usually given gener-
ous timeslices (100 ms is the default) but typi-
cally don’t use all of them at one shot. A task
may need to put itself to sleep, perhaps to wait
for input, before it has used up that full 100
ms. It will have any unused amount available
to it when the event awakens it, but how long
it spends on the processor can be an impor-
tant characteristic of the system load. If a task
spends only a few milliseconds before giving
up the processor, it may be I/O-bound. By the
same token, if it uses its full timeslice every
time before being kicked off, then it is CPU-
bound.

While many benchmarks are already character-
ized as CPU- or I/O-bound, they are rarely that
way from beginning to end. Seeing this behav-
ior graphed over a period of time can be very
informative to a person trying to tune the sys-
tem or the benchmark.

5 Diagnostic examples

The data that the scheduler statistics collect can
be utilized in several different ways.

5.1 Using the function counts to characterize
behavior

Recently a colleague remarked that he was run-
ning a benchmark that he expected to fully load
a machine; yet profiling was reporting that the
system was in the idle routine 50% of the time.
He increased the load significantly on the ma-
chine and idle time only dropped to 49%. He
couldn’t believe the machine still had spare cy-
cles, so we used the scheduler statistics to de-
termine what was happening.

From the beginning of the benchmark, we cap-
tured the counters in/proc/schedstat ev-
ery 10 seconds with a shell script. When the
benchmark exited, we killed the shell script.
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Figure 1:load_balance() andsched_balance_exec() counts

The two pieces of information that proved most
useful were the number of calls per second
(cps) for load_balance() and sched_
balance_exec() . In Figure 1, you can
see that thecpsfor load_balance() varies
markedly between plateaus of around 4000-
4500, and valleys of 100-200. When the sys-
tem is idle, it callsload_balance() as of-
ten as once a millisecond to try to find work.
When it is busy, it backs off to five times a
second. The graph here is clearly indicating
that this benchmark has at least two periods of
about 100 seconds each out of about 450 sec-
onds total where it is largely idle.

At about the same time that thecpsfor load_
balance() is high, the cps for sched_
balance_exec() is low. This function is
called when tasks issue theexec() system
call, and is used to do some opportunistic re-
balancing. We observed that just as the sys-
tem starts to get busy,sched_balance_
exec() tails off.

The data suggested that this benchmark had a
notable rampup and cooldown period. With

this information in hand, simple observation of
top(1)while running the benchmark confirmed
what the scheduler statistics suggested. The
benchmark had a fairly lengthy single-threaded
setup: creating log files, making directories for
results, and compiling short programs it would
use. It then forked many tasks and set them
all running to actually start the benchmark.
When the test was over, there was again a sin-
gle threaded task that collected the data created
before several tasks organized the data.

5.2 Using latency and runslice information

In another situation, a disk-intensive bench-
mark was doing much worse with a different
version of the scheduler. Figure 2 shows a mea-
surement of the latency from the two runs.

In the “broken” run, the latencies were nearly
twice that of the “working” run. Tasks were
taking longer to reach the CPU in the bro-
ken case. Yet the runslice information shows
comparable (and very short) times spent on the
CPUs. If tasks were running very short periods
of time, but waiting longer to run, what could
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Figure 2: Latency and runslice duration

have been the cause?

Enlightenment was finally attained by viewing
the average imbalance (Figure 3) during each
of the runs. On the average, the imbalance was
twice as great in the broken run as in the work-
ing run. Since the runslice was so small, this
suggested that tasks were becoming runnable
quickly but simply not being balanced often
enough. Some queues were getting quite long
while others (presumably) were staying short.
Additional debugging showed that tasks were
indeed awakening (probably by completed I/O)
quite frequently but most of the balancing was
happening only when one CPU fell idle and
went looking for work. These longer queues
in the broken run were persisting longer than
those in the working run, and tasks stuck in
them were waiting a fraction of a millisecond
longer than before.

6 Conclusion

There is still work to do.

Recent scheduler changes present in Andrew
Morton’s -mm tree will dramatically change
what is important to measure in the sched-
uler. Additionally, these same changes in-
troduce some self-tuning characteristics which
may benefit from statistics describing how of-

Figure 3: Average load imbalances

ten they are retuned.

There is also some evidence that NUMA ma-
chines may benefit from device, task, or mem-
ory affinitization strategies which try to keep
data from crossing NUMA node boundaries.
Scheduler statistics can be used to reliably
demonstrate whether these strategies are being
effective.

Lastly, the data provided by scheduler statis-
tics probably ought to be moved out of /proc
eventually, as there is an ongoing effort to re-
turn /proc to its original task of just listing pro-
cesses.

Scheduler statistics provide a quantifiable
means of measuring scheduler changes. Much
as disk statistics can be used to a variety
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of ends—measuring disk utilization, through-
put rates, and transfer rates, for example—
scheduler statistics can help with analysis of a
variety of situations. The latest revisions go
to lengths to avoid creating “Heisenbugs,” or
bugs which disappear when you try to examine
them closely. Perhaps best of all, developers
need not rely on mice and windowing systems
to measure their test results. Latency num-
bers, in particular, provide a key way of mea-
suring scheduler success, and runslice figures
can help characterize the load that tests create
so that the best set of tests can be chosen to test
a particular feature or system. Cursor wiggles
and audible skips can be set aside until they are
needed again.

Disclaimer

This work represents the view of the author and
does not necessarily represent the views of IBM.

IBM is registered trademark of International Busi-
ness Machines Corporation in the United States
and/or other countries worldwide.

Other company, product, and service names may be
trademarks or service marks of others.

Appendix A

Table 1 is a sample of what/proc/
schedstat might look like for a 2-proc ma-
chine. The actual format and number of coun-
ters will vary between different versions. For
purposes of this example, the last three lines
are artificially folded for readability, but in ac-
tual output, each would be one long line.

This is a brief description of each of the 23
counters for version 4 output. Applications can
check theversion field to make sure they
look for and correctly interpret the counters.
Note that all counters may wrap back to zero,

and applications using these counters should
be prepared to deal with that. Since all coun-
ters start at zero at boot time, the most useful
way to use them is to get periodic snapshots of
the counters, then subtract one set from a pre-
viously obtained one to obtain the delta. All
counters are per-processor.

1. in sched_yield() , number of times
both the active and the expired queue were
empty

2. in sched_yield() , number of times
just the active queue was empty

3. in sched_yield() , number of times
just the expired queue was empty

4. in sched_yield() , number of times
sched_yield() was called

5. inschedule() , number of times the ac-
tive queue had at least one other task on it

6. in schedule() , number of times we
switched to the expired queue and reused
it

7. number of timesschedule() was
called

8. number of times load_balance()
was called at an idle tick

9. number of times load_balance()
was called at a busy tick

10. number of timesload_balance()
was called fromschedule()

11. number of timesload_balance()
was called

12. sum of imbalances discovered (if any)
with each call toload_balance()

13. number of timesload_balance()
was called when we did not find a “bus-
iest” queue
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version 4
timestamp 4295814751
cpu0 8909 9103 612 11869 264585 9821 392921 1065335 406 140662 1206403 62905
1192940 0 13440 13469 0 0 0 0 82278 1497607 264615
cpu1 5138 5328 577 8126 265205 6270 402877 943453 1005 149999 1094457 77670
1074828 0 13469 13440 0 0 0 0 200998 448842 265175
totals 14047 14431 1189 19995 529790 16091 795798 2008788 1411 290661 2300860
140575 2267768 0 26909 26909 0 0 0 0

Table 1: Sample output from/proc/schedstat

14. number of timesload_balance()
was called frombalance_node()

15. number of timespull_task() moved
a task to this cpu

16. number of timespull_task() stole a
task from this cpu

17. number of timespull_task() moved
a task to this cpu from another node (re-
quiresCONFIG_NUMA)

18. number of timespull_task() stole a
task from this cpu for another node (re-
quiresCONFIG_NUMA)

19. number of timesbalance_node()
was called

20. number of timesbalance_node()
was called at an idle tick

21. sum of all time spent running by tasks (in
ms)

22. sum of all time spent waiting by tasks (in
ms)

23. number of tasks (not necessarily unique)
given to the processor

The last three make it possible to find the aver-
age latency on a particular runqueue or, if taken
from the totals fields, the overall system.
Given two points in time, A and B,(22B −
22A)/(23B − 23A) will give you the average

time tasks had to wait after being scheduled to
run but before actually running.

/proc/<pid>/stat

This version of the patch also changes the
stat output of individual tasksto include
the same latency and runslice information de-
scribed above. Three new fields, correspond-
ing to the last three fields described above, are
added to the end of the per-taskstat file, but
apply only for that task rather than a whole pro-
cessor.
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On a Kernel Events Layer and User-space Message
Bus System
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Abstract

Various Linux usage scenarios, particularly the
widely accepted server and the rapidly growing
desktop, require a lightweight, simple, asyn-
chronous mechanism for kernel to user-space
communication. Such a mechanism is cru-
cial for the transmissions of events to user-
space in a type-safe and clean manner. Further,
a system-level messaging bus, which can de-
liver messages up the system stack on both a
system-wide and per-user level, is required to
further the integration of the Linux system.

This talk will discuss the design and imple-
mentation for two specific solutions, the Kernel
Events Layer and D-BUS, to these two prob-
lems. Finally, useful solutions built on the sum
of these technologies will be discussed—such
as a fully integrated Linux desktop, from the
kernel up through the GNOME desktop.

1 Introduction

Usually considered a plus of open source de-
velopment, the Linux system is developed
piece-meal, resulting in cleanly separated lay-
ers and properly defined interfaces. This sep-
aration, however, also results in a lack of in-
tegration among the various components com-
prising the system stack. In particular, the lack
of integration is readily manifest between the
lower levels of the stack—kernel and system-

level components—and the upper levels of the
system, such as the desktop environment on
desktop machines.

A particularly important, but missing, compo-
nent of the Linux system is an ubiquitous IPC
mechanism and events system. Such a com-
ponent would facilitate the dissemination of
information up the system stack, better inte-
grating the Linux system from the kernel up
through the system layers, the desktop, and the
end user applications and daemons. With well
defined interfaces, such integration could occur
while continuing the current separation and in-
teroperability of Linux components.

What would such an IPC mechanism and event
system allow? Quite a bit. Photo applications
could start automatically in response to cam-
era insertion. The volume of your music player
could automatically lower in response to your
phone ringing. System shutdown, reboot, and
suspend messages could be trasmitted up the
stack. HA applications could receive instant
notifications from the kernel. No longer need
components in the system live separate lives
from the kernel, the layers below them, and
themselves. Now, applications can communi-
cate, listen, and evolve.

Such a system may be broken into three re-
quirements:

• Kernel support implementing a kernel-to-
user event mechanism
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• A user-space message transport and IPC
mechanism

• Applications sending and receiving such
messages

This paper will discuss two specific implemen-
tations of these requirements:

• The Kernel Events Layer

• D-BUS

2 The Kernel Events Layer

2.1 Goals and Design

Current user-space grokking of the kernel typ-
ically requires some combination of periodic
polling, parsing of unformatted text files from
/proc , and luck. The Linux kernel currently
lacks a mechanism for kernel to user-space
communication.

The requirements for such a system include:

• simple and clean

• low overhead and scalable

• asynchronous transport accessible with-
out polling

• type-safe

• generic enough for use in multiple usage
scenarios

• support for formalized sender interfaces,
allowing standardized messaging

Event systems have been proposed and even
implemented, but they generally receive min-
imal community buyin, presumably due to a
lack of one or moe of these requirements (more
than likely, the “simple” bit).

2.2 Implementation

The Kernel Events Layer implements an event
system satisfying these requirements.

Usage is simple:

send_event (int type, char
*interface, char *fmt, ...)

Thetype parameter specifies a constant value
representing the type of message being sent.
The interface value specifies the origina-
tor of the message. It is used to provide an in-
terface object for object-based component and
IPC systems such as CORBA and D-BUS. Fi-
nally, fmt and any following arguments pro-
vide the usualva_list of format and argu-
ments.

Example:

send_event (DBUS_NORMAL,
"org.kernel.arch.cpu",
"overheating")

This specifies a message from the
org.kernel.arch.cpu interface with a
value ofoverheating .

The actual implementation of the Kernel
Events Layer uses netlink. In fact, the Kernel
Event Layer is simply specific netlink socket
into user-space in which the event is formated
and then reconstructed by user-space. Netlink
is fast, simple, and already in the kernel. Thus
it was a natural choice.

The Kernel Events Layer code uses
netlink_broadcast() internally.

2.3 Real World Usage

The Kernel Events Layer is independent
of any specific user-space transport mecha-
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nism. The assumed use case is to create
a new daemon (or modify an existing dae-
mon, like the D-BUS system message bus,
dbus-system-1 ). This daemon listens on
the netlink socket, reading each event as it oc-
curs. The events are parsed and reconstructed
into the format native to the user-space trans-
port mechanism.

In the case of D-BUS, thedbus-system-1
daemon sends the kernel events out the system
message bus. Components up the system stack
may then receive the kernel events right off the
D-BUS system bus, along with other system-
wide messages.

3 D-BUS

D-BUS is a user-space IPC system.

D-BUS varies from other IPC mechanisms in
that it provides a bus system (as opposed to
point-to-point) over which messages (as op-
posed to byte streams) are transported. Mes-
sages include a header containing metadata
about the message itself and a body containing
the data. The bus system is created by form-
ing a point-to-point connection between the D-
BUS daemon and each listener. The daemon
acts as the hub and the listeners as the spokes
of a wheel.

D-BUS provides both a system-wide and a
per-user session bus. The system-wide bus is
used to dissemenate information on a machine-
global scale. A single system daemon provides
this service, allowing applications up the stack
to receive messages from components down
the stack. A security system implements ac-
cess control.

The per-user session bus exists on a per-user
basis, with one daemon created for each user
session. The per-user daemon is used for gen-
eral application IPC and is physically separate

from the system-wide bus. The per-user dae-
mon is generally used for traditional point-to-
point IPC.

D-BUS is the name given to this system. It is
composed of several architectural layers:

• The message bus daemon

• The D-BUS library, libdbus , which
connects to applications together

• Wrapper libraries and bindings that wrap
libdbus for direct use on various appli-
cation frameworks, such as Glib or QT,
and various languages, such as C# and
Python. The wrapper libraries and bind-
ings provide the API that most program-
mers should use as they both simplify the
rather low-levellibdbus API and pro-
vide an API more familiar and fit for that
particular environment.

3.1 D-BUS Concepts

D-BUS introduces various concepts that com-
prise the IPC system.

• The bus is either the system-wide global
bus or the per-user session bus.

• Objectsrepresent an instance of a specific
listener of a D-BUS message. Objects
are contained within the applications that
use D-BUS, and generally map to objects
in object-oriented languages. Because D-
BUS would not find using a pointer or ref-
erence to identify an object very friendly,
it introduces a name for each object. The
name resembles a UNIX filesystem path,
such as /org/kernel/fs/filesystem.

• Interfaces represent methods or signals
implemented on an object. Each object
supports at least one interface.
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• Messagesare sent to and from a defined
method or signal. D-BUS supports mul-
tiple message types: method invocation,
method return, error message, and signal.

3.2 Use of D-BUS

D-BUS’s simplicity, performance, and use of
the message and bus paradigm set it up for use
across the entire Linux system and make it a
perfect replacement for CORBA, DCOP, and
other IPC mechanisms.

Multiple projects are taking advantage of D-
BUS. They include:

• Project Utopia uses D-BUS as the IPC
mechanism to link the kernel, udev, HAL,
and the GNOME desktop.

• A CUPS patch uses D-BUS to transmit in-
formation about the printer spool.

• Jamboree uses D-BUS to automatically
mute the volume.

• A Gconf patch uses D-BUS as the Gconf
transport mechanism.

4 The Kernel Events Layer, D-
BUS, and Project Utopia

D-BUS is used as the backbone of Project
Utopia, an umbrella project aiming to bring
improved hardware management and system
integration to the Linux system and GNOME
desktop. Project Utopia uses D-BUS to link
the kernel, up through hotplug, udev and HAL
to the rest of the system. Libraries utilizing
D-BUS and built on top of HAL provide en-
hanced hardware support. Applications at the
desktop level can then reap the benefits.

4.1 Example: libinput

libinput is a simple library for managing
input devices that sits on top of HAL and com-
municates to HAL beneath it and the appli-
cations above it via D-BUS.libinput is
used to enumerate all input devices on the sys-
tem. libinput also provides an interface
for applications to register callbacks, and in-
tegrate these callbacks into its mainloop. The
callbacks are invoked when input devices are
added to or removed from the system.

Sample usage of enumerating all input devices
on the system:

struct input *devices;

if (input_init ())
/* error ... */

devices = input_devices_get ();
while (devices) {

/* ... */
devices = devices->next;

}
input_devices_put (devices);

Given a specificstruct input , the library
provides wrappers for opening and closing the
device viaopen (2) andclose (2). This is not
strictly required, but furthers the abstracting of
device nodes not only from the user but even
from the application.

Example:

fd = input_device_open (device, 0);

/* ... */

input_device_close (device);

Registering of the callbacks is also easy:

void my_mainloop
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(DBusConnection *dbus_connection)
{

dbus_connection_setup_with_g_main
(dbus_connection, NULL);

}

void my_added
(struct input *device)
{

printf
("%s was just "

"hotplugged!\n",
device->product);

}

void my_removed
(struct input *device)
{

printf
("%s was just "

"hotunplugged!\n",
device->product);

}

/* ... */
input_init_with_callbacks

(&my_mainloop,
&my_added,
&my_removed);

gtk_main ();

When an input device is added or re-
moved from the system,my_added andmy_
removed are invoked as appropriate.

The goals behind such a library are twofold:

• Abstract away concepts of device nodes
and low-level system-specific behavior
and allow application developers to search
for enumerate the devices on a system
through simple interfaces.

• Allow asynchronous poll-free hack-free
callbacks into the application to notify the
program of changes in events, such as a
new joystick on the system.

5 Conclusion

The Kernel Events Layer and D-BUS are two
crucial components in better unifying and in-
tegrating the Linux system. They provide the
infrastructure required for a future rich with in-
formation exchange. Where all levels of the
desktop can communicate—talking, listening,
evolving.
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Abstract

Linux-tiny is a project to reduce the mem-
ory and storage footprint of the 2.6 Linux ker-
nel for embedded, handheld, legacy, and other
small systems. I describe strategies for kernel
size reduction, some of the major areas already
investigated and the results achieved, as well as
some avenues for further exploration.

1 Introduction

Historically, Linux had a reputation for run-
ning on very modest systems. My first dedi-
cated Linux box, running a 0.99 kernel circa
1994, provided mail, FTP, web, dial-in, and
shell services on a 16MHz 386SX with a mere
4 megabytes of RAM. In the 10 years since
then, Linux has grown to the point where it
runs on machines with over a thousand proces-
sors and a terabyte of RAM. Not surprisingly,
a modern Linux distribution can have difficulty
getting to a shell prompt on machines with less
than 8 megabytes of RAM, let alone doing use-
ful work.

1.1 What happened?

In the time between the 0.99 and 2.6 kernels,
we’ve seen Linux become a serious commer-
cial endeavor, we’ve seen kernel hackers get
jobs (and get big machines on their desks), and
we’ve seen a massive boom in Internet use and
personal computing. Linux developers have

been targeting high end computing and ris-
ing demand for hardware has seen prices drop
tremendously.

But there are still small machines! Hand-helds
and embedded systems are perennially pressed
for space to match their desktop counterparts
and many people throughout the world still rely
on legacy machines to get their work done.
What can be done to recapture the ‘small is
beautiful’ utility of those early systems?

1.2 Where is the growth?

The process by which any large software
project grows can aptly be described asdeath
by a thousand cuts. The accumulation of bloat
occurs change by change and creeps in from
several different directions.

Perhaps the most visible is the addition of new
features, which generally requires the intro-
duction of wholly-new code. Frequently fea-
tures are considered so small or so essential
that no thought is given to making them op-
tional. As the median system size grows, this
new code tends to be more verbose and less
concerned with space issues.

The next, more subtle culprit isperformance.
Given the fundamental importance of kernel
performance to overall system performance,
trade-offs of size for speed are easy to justify.
Unfortunately the accumulation of many such
trade-offs can leave us with a system that no
longer boots. Ironically, the evolution of pro-
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cessors has brought us to a point where cache
footprint can be critical to performance so a lot
of the choices that have been made in this area
bear rethinking.

Next we havecompatibility andcorrectness.
Every time the system is extended to better
support a slightly different piece of hardware
or work around another corner case, more code
is added. Occassionally cleanups and unifica-
tions make some of this code redundant, but
this is the exception. A related phenomenon is
the evolution of the kernel APIs and the accu-
mulation of obsolete code for the sake of back-
ward compatibility.

2 Linux-Tiny for the small system
niche

There have been numerous efforts to address
the above phenomena for various components
of Linux systems, but most of the attention
has been addressed at userspace (arguably the
biggest offender). Experiments with pre-2.6.0
kernels however suggested it was time to pay
some more attention to the kernel itself. So
in December of 2003, I decided to create a
new 2.6-based tree dedicated to small systems
which I named Linux-Tiny [3] (someone had
already borrowed my initials for their tree).

2.1 Methodology

With stated targets of embedded, hand-held,
and legacy machines, the -tiny tree attempts
to tailor the kernel to the needs of small sys-
tems. The tree is maintained as a series of small
patches stacked on top of mainline kernel re-
leases, managed with the quilt tool [1] (previ-
ously with Andrew Morton’s patch scripts [4]).

Patches try to observe the following criteria:

• configurable: changes that are not clearly

wins for all systems should be config-
urable so that users can make their own
trade-offs

• non-invasive: patches should be small,
self-contained, and largely independent so
that integrators can cherrypick the patches
they’d like to use

• mergeable: while not mandatory, patches
should try to be acceptable to the mainline
kernel in both style and approach; merg-
ing to mainline is a priority

In addition to patches focusing on reducing
kernel footprint, I’ve also added a number of
patches to do debugging and auditing includ-
ing netconsole, kgdb, and kgdb-over-ethernet
support.

2.2 Setting goals

Everyone has a different set of functionality re-
quirements in mind for small systems. The fea-
tures needed on a handheld are very different
from those needed for a network appliance or
a kiosk. Thus, choosing a subset of features to
develop towards is tricky.

The approach I’ve taken is to choose a series
of targets to optimize, and the first is a min-
imal x86 kernel with filesystem, console, and
TCP/IP support. How small can we make this
kernel? This puts a focus on the most of the
common core functionality of Linux and pro-
vides a useful benchmark for progress.

3 Finding bloat

As mentioned above, there are many sources
of bloat. There are also several forms it can
take: as superfluous code, statically or dy-
namically allocated data, inline functions or
macros, compiler mis-optimizations, or cut-n-
paste coding.
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Given that the kernel is on the order of several
hundred kilobytes, tackling bloat is going to
be a matter of trimming several kilobytes here
and a couple kilobytes there. While one could
simply pick any source file and read through it
searching for cleanup opportunities, there are
some more straightforward ways of finding the
“low-hanging fruit”.

3.1 Using nm(1) and size(1)

The easiest place to begin is by using thenm
tool to find large functions and data structures.
Comparing the (hexadecimal) numbers from
nm(1) with size(1) gives us a good start
at understanding the relative sizes of some of
the major subsystems and their components
compared to the kernel as a whole. For in-
stance, we can see by comparing Table 1 and
Table 2 that the staticide_hwifs data struc-
ture alone takes 15360 bytes, over 2% of the
data portion of the default kernel.

3.2 Measuring function inlining

Function inlining and macro expansion present
a special problem for our bloat detection ef-
forts. In the early 1990s, inlining was a very
popular performance technique to avoid func-
tion call branches. A great number of key func-
tions are marked for inlining in the kernel and
their usage and size impact is obscured because
they become a seamless part of the functions
that use them. Auditing their usage becomes
a matter of convincing the compiler to tell us
when inlines are being instantiated in a build
and then estimating how large these functions
are when expanded inline.

Rather than modifying the compiler itself, the
first part of this puzzle was hacked around by
redefininginline to include the GCC exten-
sion __attribute__((deprecated)) .
This causes a very useful warning like the fol-
lowing to be generated:

arch/i386/kernel/semaphore.c:58:
warning: ‘get_current’ is
deprecated (declared at
include/asm/current.h:16)

By post-processing these voluminous warning
messages, we can determine which inline func-
tions are instantiated directly in C files as well
as which are called as parts of other inlines and
finally calculate the total number of direct or
indirect instantiations of each (see Table 3).

The second part of this puzzle was more chal-
lenging. While we know in which modules
and how often inlines are instantiated, we can-
not yet calculate their sizes. I made several
attempts to generate approximate size data by
looking at GCC’s symbolic debugging output,
but this tended to be easily confused by inlin-
ing and was too inaccurate for use.

Recently Denis Vlasenko took another stab
at this and wrote a set of scripts called in-
line_hunter [5] to generate a set of dummy
functions wrapping single calls to inlines.
While these sizes won’t directly reflect the
size of inline instantiations due to function
call overhead and lost optimization opportuni-
ties, for larger inline functions, it has proven
fairly representative. Some of the larger inlines
found with this approach are shown in Table 4.

3.3 Tracking dynamic allocations

Of course much of the kernel’s memory foot-
print is from dynamic allocations. Memory
used for page tables, tracking running pro-
cesses, indexing hashes and so forth is allo-
cated at runtime and can vary with the size of
the load. A number of these are hash tables to
increase look-up performance, which for small
systems can be less important than simply fit-
ting in memory.

There are several important allocators in the
kernel. First, the bootmem allocator which
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2.6.5\$ nm --size -r vmlinux | head -20
00008000 b __log_buf
00007000 D irq_desc
00004e78 d pci_vendor_list
00004000 b bh_wait_queue_heads
00003c00 B ide_hwifs
0000213a T vt_ioctl
00002000 D init_thread_union
00001880 D contig_page_data
0000163b T journal_commit_transaction
00001500 b irq_2_pin
000012f5 T tcp_sendmsg
00001162 t n_tty_receive_buf
00001080 d per_cpu__tvec_bases
00001000 t translation_table
00001000 b sd_index_bits
00001000 D init_tss
00001000 b doublefault_stack
00001000 B con_buf
00001000 b cache_defer_hash
00000fe0 T cdrom_ioctl

Table 1: nm output for 2.6.5 default config

handles a number of critical allocations at
startup. As there are not terribly many of
these, they can be audited very simply with
printk() techniques.

Second, the SLAB allocator is used to quickly
allocate sets of objects of the same size and
type. The kernel provides a way to track these
allocations with/proc/slabinfo .

The more generalkmalloc() allocator has
been rebuilt on top of the aforementioned
SLAB allocator, translating kmalloc requests
into requests from a set of ascending generic
SLAB sizes. Thus allkmalloc() allo-
cations are lumped together by size in the
/proc/slabinfo output. That can be help-
ful if you know what you’re looking for, but
doesn’t give many hints as to which parts of
the kernel are using that memory.

To address this deficiency, I’ve created a
small footprint tool for tracking allocations via
/proc/kmalloc (see Table 5). This works
by tracking the address of each allocation along
with the address of the allocating function in
a simple hash table. Also tracked are net and
gross allocation sizes and counts per caller.
When akfree() call is made, it is matched
up to its caller for accounting purposes and re-
moved from the hash. Thus it is possible not
only to determine how much dynamic memory
is used by each function but also to easily iden-
tify memory leaks.

4 Some notable opportunities for
code trimming

The above methods have revealed numerous
opportunities for cutting back the kernel’s
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2.6.5\$ size vmlinux */built-in.o
text data bss dec hex filename

3366220 673296 166824 4206340 402f04 vmlinux
1181276 250808 48000 1480084 169594 drivers/built-in.o

735152 32593 30628 798373 c2ea5 fs/built-in.o
18151 1120 1316 20587 506b init/built-in.o
21841 172 204 22217 56c9 ipc/built-in.o

159632 16115 42402 218149 35425 kernel/built-in.o
2870 0 0 2870 b36 lib/built-in.o

129669 9068 2884 141621 22935 mm/built-in.o
580407 33816 18856 633079 9a8f7 net/built-in.o

1869 0 0 1869 74d security/built-in.o
325923 11114 3016 340053 53055 sound/built-in.o

134 0 0 134 86 usr/built-in.o

Table 2: size output for 2.6.5 default config

memory footprint, many of which remain to be
examined. What follows are some of the more
notable areas that have been explored.

4.1 Debugging data

The kernel has numerous facilities for trapping
and reporting problem conditions and other
status information, includingprintk() ,
bug() , warn() , panic() , and friends. In
ideal circumstances, these facilities go unexer-
cised. And in the extreme, embedded boxes
may have no means of reporting this data, due
to lack of a display, writable storage, or the
like. Unfortunately, not only do these facilities
use a substantial amount of code, their users
need extra space for error message strings, file-
names, and line numbers.

Linux-tiny has a set of configuration options
to compile out most of this code and remove
the debugging strings and data from the kernel.
Disabling support forprintk() saves well
over 100K. Independent options control the in-
clusion of thebug() infrastructure and sup-
port for trapping panics and doublefaults.

4.2 Optional interfaces

For systems with well-defined application re-
quirements, many of the kernel’s APIs are
unnecessary. Cutting-edge, obsolete, or ob-
scure features are obvious candidates for con-
figurable removal.

• sysfs: The new sysfs filesystem makes
substantial memory demands (which can
be more than half a megabyte even on
the smallest systems) but its features may
well not be essential to current systems.
The -tiny tree was a testbed for options to
entirely remove sysfs or to use a lighter
“backing store” version.

• ptrace, aio, posix-timers: These fea-
tures are among those that are only used
by a small set of applications. These
and other Linux-tiny options are enabled
under the CONFIG_EMBEDDED menu,
which marks them as making the kernel
non-standard.

• uid16, vm86: Some of the many legacy
interfaces in the kernel. Modern appli-
cations and libraries use 32-bit user and
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group IDs and vm86 support is used to run
16-bit code for emulators like DOSEMU
and Wine and for some video drivers used
by X.

• ethtool, tcpdiag, igmp, rtnetlink: One of
the most complicated parts of the kernel is
the networking layer, which has grown a
variety of APIs to gain access to its many
features. But for most users, the interfaces
used by the classicifconfig(8) and
route(8) tools are sufficient.

4.3 4K stacks

During the 2.1 kernel series (circa 1998), the
x86 kernel increased the size of the per-task
kernel stacks from 4K to 8K to work around
issues with stack depth. In addition to the ob-
vious increase in overhead for every userspace
process, several new kernel daemons have been
added, all with their own stacks. Another is-
sue is that finding pairs of contiguous pages
to build an 8K stack can be very difficult on a
machine with memory pressure and especially
so on machines with a small number of total
pages.

Many of the problems that made 4K stacks
problematic have since been addressed and 4K
stacks are now practical for most applications.
Linux-tiny has served as an early testbed for
reintroducing 4K stack support to the mainline
2.6 kernel and includes a developer tool called
checkstack that will automatically disas-
semble a kernel to find the most extreme stack
space users.

4.4 The SLOB allocator

Most memory in the kernel is managed ei-
ther directly or indirectly through the SLAB
allocator. SLAB maintains separate caches
for objects of given sizes and types and can
very quickly manage allocations for them. In

some cases, it can even arrange for objects to
be pre-initialized without any additional over-
head. SLAB also has some resistance to trou-
blesome memory fragmentation issues. While
simple in principle, the SLAB code ends up be-
ing quite complex from its efforts to squeeze
the maximum possible performance out of the
allocator.

The primary downside to SLAB is that because
it maintains a collection of independent caches
which are all one or more pages, it ends up
leaving quite a bit of unused space in each
SLAB cache. In addition, askmalloc is im-
plemented on top of SLAB using a set of preset
object size SLABs, there is quite a bit of ex-
tra space allocated for the averagekmalloc
call. Measurements with the previously de-
scribed/proc/kmalloc tool report that ex-
tra overhead can amount to 25-30% of the total
memory allocated bykmalloc .

Linux-tiny provides an optional replacement
for SLAB that I’ve dubbedSLOB(simple list
of blocks). SLOB trades performance for space
efficiency by implementing a more traditional
list-based allocator that also understands re-
quests for objects with particular alignments.
The APIs used by SLAB andkmalloc() are
provided by a small emulation layer.

SLOB manages all objects at a granularity of 8
bytes so overhead for odd object sizes is min-
imized. It also does away with the numer-
ous partly-used caches of the SLOB approach.
Finally, the SLOB code is much simpler and
takes up less than one tenth of the space of the
standard SLAB allocator.

4.5 TinyVT

As you can see from Table 1, the largest single
function in the default kernel isvt_ioctl() ,
which manages many of the special features
of the Linux console. As most early Linux
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users didn’t have the memory for running a
full-fledged X desktop, the native Linux text
console is very powerful, with support for
scrollback, selection, virtual console switch-
ing, Unicode translation and character sets,
screen blanking, and so on.

These features can be very handy for some
users, but on a palmtop or kiosk running a
GUI, or for a minimal rescue disk, they’re
dead weight. Linux-tiny includes a heavily
trimmed down replacement for the standard
console code which drops many of these fea-
tures and can trim a couple percent off the size
of the kernel image.

5 Results

Recent releases of Linux-tiny contain the
above options and numerous others. My test
configuration, with support for a text console,
IDE disks, the Ext2 filesystem, TCP/IP, and a
PCI-based network card results in a 363K com-
pressed kernel image. Other users of Linux-
tiny have reported kernel configurations result-
ing in images as small as 191K.

Booting the test configuration withmem=2M,
which gives a total of of 1664K after account-
ing for BIOS memory holes, still leaves ample
room for a lightweight userspace (see Table 6).
A similarly configured mainline kernel without
the -tiny patches compiles to a kernel image
of over 500K and has difficulty booting with
mem=4M.

For comparison, the earliest Linux distribution
kernel I’ve been able to locate, a 0.99pl15 ker-
nel from Slackware 1.1.2 circa 1994, is a mere
301K. Modernhighly-modularized 2.6
kernels from Fedora Core 2 and SuSE 9.1
weigh in at 1.2M and 1.5M respectively while
the default 2.6.5 kernel config builds a 1.9M
compressed kernel.

6 Further directions

There are many further avenues to pursue and
subsystems to trim. Some of the more aggres-
sive ideas on the to-do list include:

• A lightweight replacement network stack:
Minimal TCP stacks like uIP [2] have suf-
ficient functionality for simple network
applications and have extremely small
footprints.

• Replacements for fixed-sized hash tables:
Existing kernel hash tables have difficulty
scaling with workloads and memory sizes.
Other approaches like radix trees might
be better in some areas and avoid wasted
memory when the indexes are empty.

• Support for bunzip2: Linux-tiny now has
a simplified interface to the boot-time de-
compressor and allows for replacements
to be easily dropped in. While bzip2 com-
pression won’t save any memory at run-
time, it will save valuable storage space
on embedded systems.

• Pageable kernel memory: Following an
approach similar to the__init approach
in current kernels, it should be possible
to mark specific functions and data in the
kernel core as pageable, provided they
meet some specific requirements.

• Tracking kernel growth: Using automated
tools to track the size of kernel functions
and subsystems from release to release
will help catch new bloat when it appears.

Of course, as most of the bloat in the kernel has
been introduced in small increments, most of
the improvements will be of the same variety.
Contributions are encouraged!
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1560 get_current (1294 in *.c)
calls:
callers: <other>(336) capable(122) unlock_kernel(44) lock_kernel(33)
flush_tlb_page(11) flush_tlb_mm(10) find_process_by_pid(6)
flush_tlb_range(4) current_is_kswapd(4) current_is_pdflush(3)
rwsem_down_failed_common(2) on_sig_stack(2) do_mmap2(2) __exit_mm(2)
walk_init_root(1) scm_check_creds(1) save_i387_fsave(1)
sas_ss_flags(1) restore_i387_fsave(1) read_zero_pagealigned(1)
handle_group_stop(1) get_close_on_exec(1) fork_traceflag(1)
ext2_init_acl(1) exec_permission_lite(1) dup_mmap(1) do_tty_write(1)
de_thread(1) copy_signal(1) copy_sighand(1) copy_fs(1) check_sticky(1)
cap_set_all(1) cap_emulate_setxuid(1) arch_get_unmapped_area(1)

546 current_thread_info (286 in *.c)
calls:
callers: <other>(207) copy_to_user(95) copy_from_user(86)
tcp_set_state(22) test_thread_flag(20) verify_area(13)
tcp_enter_memory_pressure(6) sock_orphan(3) icmp_xmit_lock(2)
csum_and_copy_to_user(2) tcp_v4_lookup(1) sock_graft(1)
set_thread_flag(1) neigh_update_hhs(1) ip_finish_output2(1) gfp_any(1)
fn_flush_list(1) do_getname(1) clear_thread_flag(1) alloc_buf(1)
activate_task(1)

413 atomic_dec_and_test (55 in *.c)
calls:
callers: put_page(103) kfree_skb(101) <other>(47) mntput(34)
in_dev_put(23) neigh_release(19) tcp_tw_put(18) fib_info_put(17)
sock_put(15) put_namespace(6) mmdrop(6) __put_fs_struct(4)
tcp_listen_unlock(3) ipq_put(3) finish_task_switch(2) __detach_pid(2)
task_state(1) de_thread(1)

255 tcp_sk (134 in *.c)
calls:
callers: <other>(117) tcp_reset_xmit_timer(30) tcp_set_state(22)
tcp_current_mss(13) tcp_initialize_rcv_mss(6) tcp_free_skb(6)
tcp_check_space(6) tcp_data_snd_check(5) tcp_clear_xmit_timer(5)
tcp_synq_removed(3) tcp_select_window(3) westwood_update_rttmin(2)
westwood_acked(2) tcp_synq_len(2) tcp_synq_drop(2)
tcp_ack_snd_check(2) __tcp_inherit_port(2) tcp_use_frto(1)
tcp_synq_young(1) tcp_synq_is_full(1) tcp_synq_added(1)
tcp_prequeue(1) tcp_listen_poll(1) tcp_event_ack_sent(1)
tcp_connect_init(1) tcp_acceptq_queue(1) do_pmtu_discovery(1)

Table 3: Some large inline counts and users for 2.6.5-tiny1
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Size Uses Wasted Name and definition
===== ==== ====== ================================================

56 461 16560 copy_from_user include/asm/uaccess.h
122 119 12036 skb_dequeue include/linux/skbuff.h
164 78 11088 skb_queue_purge include/linux/skbuff.h

97 141 10780 netif_wake_queue include/linux/netdevice.h
43 468 10741 copy_to_user include/asm/uaccess.h
43 461 10580 copy_from_user include/asm/uaccess.h

145 77 9500 put_page include/linux/mm.h
49 313 9048 skb_put include/linux/skbuff.h

109 101 8900 skb_queue_tail include/linux/skbuff.h
381 21 7220 sock_queue_rcv_skb include/net/sock.h

55 191 6650 init_MUTEX include/asm/semaphore.h
61 163 6642 unlock_kernel include/linux/smp_lock.h
59 165 6396 lock_kernel include/linux/smp_lock.h

127 59 6206 dev_kfree_skb_any include/linux/netdevice.h
41 289 6048 list_del include/linux/list.h
73 83 4346 dev_kfree_skb_irq include/linux/netdevice.h

131 39 4218 netif_device_attach include/linux/netdevice.h
110 44 3870 skb_queue_head include/linux/skbuff.h

84 59 3712 seq_puts include/linux/seq_file.h
57 75 2738 skb_trim include/linux/skbuff.h
45 96 2375 skb_queue_head_init include/linux/skbuff.h
41 111 2310 list_del_init include/linux/list.h

102 23 1804 __nlmsg_put include/linux/netlink.h

Table 4: Size estimates found by inline_hunter
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# cat /proc/kmalloc
total bytes allocated: 266848
slack bytes allocated: 37774
net bytes allocated: 145568
number of allocs: 732
number of frees: 282
number of callers: 71
lost callers: 0
lost allocs: 0
unknown frees: 0

total slack net alloc/free caller
256 203 256 8/0 alloc_vfsmnt+0x73

8192 3648 4096 2/1 atkbd_connect+0x1b
192 48 64 3/2 seq_open+0x10

12288 0 4096 3/2 seq_read+0x53
8192 0 0 2/2 alloc_skb+0x3b

960 0 0 10/10 load_elf_interp+0xa1
1920 288 0 10/10 load_elf_binary+0x100

320 130 0 10/10 load_elf_binary+0x1d8
192 48 96 6/3 request_irq+0x22

7200 1254 7200 75/0 proc_create+0x74
64 43 64 2/0 proc_symlink+0x40

4096 984 0 1/1 check_partition+0x1b
69632 0 45056 17/6 dup_task_struct+0x38

128 48 128 2/0 netlink_create+0x84
128 20 128 1/0 ext2_fill_super+0x2f

32 28 32 1/0 ext2_fill_super+0x385
32 31 32 1/0 ext2_fill_super+0x3b6

608 76 384 19/7 __request_region+0x18
64 32 64 2/0 rand_initialize_disk+0xd

8192 2016 8192 2/0 alloc_tty_struct+0x10
128 56 128 2/0 init_dev+0xba
128 56 128 2/0 init_dev+0xf3
128 0 128 2/0 create_workqueue+0x28

8960 1680 8960 70/0 tty_add_class_device+0x20
2048 960 2048 4/0 alloc_tty_driver+0x10
9280 2332 9280 4/0 tty_register_driver+0x2d

288 0 288 9/0 mempool_create+0x16
1280 196 1280 9/0 mempool_create+0x41
1536 384 1536 8/0 mempool_create+0x8f

64 28 64 1/0 kbd_connect+0x3e
928 348 0 29/29 kmem_cache_create+0x235

28288 1448 28288 81/0 do_tune_cpucache+0x2c
...

Table 5: Tracking usage of kmalloc/kfree in -tiny
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Uncompressing Linux... Ok, booting the kernel.
# mount /proc
# cat /proc/meminfo
MemTotal: 980 kB
MemFree: 312 kB
Buffers: 32 kB
Cached: 296 kB
SwapCached: 0 kB
Active: 400 kB
Inactive: 48 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 980 kB
LowFree: 312 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 0 kB
Writeback: 0 kB
Mapped: 380 kB
Slab: 0 kB
Committed_AS: 132 kB
PageTables: 24 kB
VmallocTotal: 1032172 kB
VmallocUsed: 0 kB
VmallocChunk: 1032172 kB
#

Table 6: Boot log for a 2.6.5-tiny1 test configuration with mem=2m
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Abstract

Virtual machine (VM) technology has been
around for 40 years and has been experiencing
a resurgence with commodity machines. VMs
have been shown to improve system and net-
work flexibility, availability, and security in a
variety of novel ways. This paper introduces
Xen, an efficient secure open source VM mon-
itor, to the Linux community.

Key features of Xen are:

1. supports different OSes (e.g. Linux 2.4,
2.6, NetBSD, FreeBSD, etc.)

2. provides secure protection between VMs

3. allows flexible partitioning of resources
between VMs (CPU, memory, network
bandwidth, disk space, and bandwidth)

4. very low overhead, even for demanding
server applications

5. support for seamless, low-latency migra-
tion of running VMs within a cluster

We discuss the interface that Xen/x86 exports
to guest operating systems, and the kernel
changes that were required to Linux to port
it to Xen. We compare Xen/Linux to User

Mode Linux as well as existing commercial
VM products.

1 Introduction

Modern computers are sufficiently powerful
to use virtualization to present the illusion of
many smaller virtual machines (VMs), each
running a separate operating system instance.
This has led to a resurgence of interest in VM
technology. In this paper we present Xen,
a high performance resource-managed virtual
machine monitor (VMM) which enables ap-
plications such as server consolidation, co-
located hosting facilities, distributed web ser-
vices, secure computing platforms, and appli-
cation mobility.

Successful partitioning of a machine to support
the concurrent execution of multiple operating
systems poses several challenges. Firstly, vir-
tual machines must be isolated from one an-
other: it is not acceptable for the execution
of one to adversely affect the performance of
another. This is particularly true when vir-
tual machines are owned by mutually untrust-
ing users. Secondly, it is necessary to support
a variety of different operating systems to ac-
commodate the heterogeneity of popular appli-
cations. Thirdly, the performance overhead in-
troduced by virtualization should be small.
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Xen hosts commodity operating systems, albeit
with some source modifications. The prototype
described and evaluated in this paper can sup-
port multiple concurrent instances of our Xen-
Linux guest operating system; each instance
exports an application binary interface identi-
cal to a non-virtualized Linux 2.6. Xen ports of
NetBSD and FreeBSD have been completed,
along with a proof of concept port of Windows
XP.1

There are a number of ways to build a sys-
tem to host multiple applications and servers
on a shared machine. Perhaps the simplest is
to deploy one or more hosts running a stan-
dard operating system such as Linux or Win-
dows, and then to allow users to install files and
start processes—protection between applica-
tions being provided by conventional OS tech-
niques. Experience shows that system adminis-
tration can quickly become a time-consuming
task due to complex configuration interactions
between supposedly disjoint applications.

More importantly, such systems do not ad-
equately support performance isolation; the
scheduling priority, memory demand, network
traffic and disk accesses of one process impact
the performance of others. This may be ac-
ceptable when there is adequate provisioning
and a closed user group (such as in the case of
computational grids, or the experimental Plan-
etLab platform [11]), but not when resources
are oversubscribed, or users uncooperative.

One way to address this problem is to retrofit
support for performance isolation to the op-
erating system, but a difficulty with such ap-
proaches is ensuring thatall resource usage is
accounted to the correct process—consider, for
example, the complex interactions between ap-
plications due to buffer cache or page replace-

1The Windows XP port required access to Microsoft
source code, and hence distribution is currently re-
stricted, even in binary form.

ment algorithms. Performing multiplexing at a
low level can mitigate this problem; uninten-
tional or undesired interactions between tasks
are minimized. Xen multiplexes physical re-
sources at the granularity of an entire operat-
ing system and is able to provide performance
isolation between them. This allows a range
of guest operating systems to gracefully coex-
ist rather than mandating a specific application
binary interface. There is a price to pay for this
flexibility—running a full OS is more heavy-
weight than running a process, both in terms of
initialization (e.g. booting or resuming an OS
instance versusfork /exec ), and in terms of
resource consumption.

For our target of 10-100 hosted OS instances,
we believe this price is worth paying: It allows
individual users to run unmodified binaries, or
collections of binaries, in a resource controlled
fashion (for instance an Apache server along
with a PostgreSQL backend). Furthermore it
provides an extremely high level of flexibility
since the user can dynamically create the pre-
cise execution environment their software re-
quires. Unfortunate configuration interactions
between various services and applications are
avoided (for example, each Windows instance
maintains its own registry).

Experience with deployed Xen systems sug-
gests that the initialization overheads and ad-
ditional resource requirements are in practice
quite low: An operating system image may be
resumed from an on-disk snapshot in typically
just over a second (depending on image mem-
ory size), and although multiple copies of the
operating system code and data are stored in
memory, the memory requirements are typi-
cally small compared to those of the applica-
tions that will run on them. As we shall show
later in the paper, the performance overhead of
the virtualization provided by Xen is low, typ-
ically just a few percent, even for the most de-
manding applications.
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2 XEN: Approach & Overview

In a traditional VMM the virtual hardware ex-
posed is functionally identical to the underly-
ing machine [14]. Althoughfull virtualization
has the obvious benefit of allowing unmodified
operating systems to be hosted, it also has a
number of drawbacks. This is particularly true
for the prevalent Intelx86architecture.

Support for full virtualization was never part
of the x86 architectural design. Certain su-
pervisor instructions must be handled by the
VMM for correct virtualization, but executing
these with insufficient privilege fails silently
rather than causing a convenient trap [13]. Effi-
ciently virtualizing the x86 MMU is also diffi-
cult. These problems can be solved, but only at
the cost of increased complexity and reduced
performance. VMware’s ESX Server [3] dy-
namically rewrites portions of the hosted ma-
chine code to insert traps wherever VMM in-
tervention might be required. This translation
is applied to the entire guest OS kernel (with
associated translation, execution, and caching
costs) since all non-trapping privileged instruc-
tions must be caught and handled. ESX Server
implements shadow versions of system struc-
tures such as page tables and maintains consis-
tency with the virtual tables by trapping every
update attempt—this approach has a high cost
for update-intensive operations such as creat-
ing a new application process.

Notwithstanding the intricacies of the x86,
there are other arguments against full virtual-
ization. In particular, there are situations in
which it is desirable for the hosted operating
systems to see real as well as virtual resources:
providing both real and virtual time allows a
guest OS to better support time-sensitive tasks,
and to correctly handle TCP timeouts and RTT
estimates, while exposing real machine ad-
dresses allows a guest OS to improve perfor-
mance by using superpages [10] or page color-

ing [7].

We avoid the drawbacks of full virtualization
by presenting a virtual machine abstraction
that is similar but not identical to the under-
lying hardware—an approach which has been
dubbedparavirtualization[17]. This promises
improved performance, although it does re-
quire modifications to the guest operating sys-
tem. It is important to note, however, that we
do not require changes to the application bi-
nary interface (ABI), and hence no modifica-
tions are required to guestapplications.

We distill the discussion so far into a set of de-
sign principles:

1. Support for unmodified application bina-
ries is essential, or users will not transi-
tion to Xen. Hence we must virtualize all
architectural features required by existing
standard ABIs.

2. Supporting full multi-application operat-
ing systems is important, as this allows
complex server configurations to be virtu-
alized within a single guest OS instance.

3. Paravirtualization is necessary to obtain
high performance and strong resource iso-
lation on uncooperative machine architec-
tures such as x86.

4. Even on cooperative machine architec-
tures, completely hiding the effects of
resource virtualization from guest OSes
risks both correctness and performance.

In the following section we describe the virtual
machine abstraction exported by Xen and dis-
cuss how a guest OS must be modified to con-
form to this. Note that in this paper we reserve
the termguest operating systemto refer to one
of the OSes that Xen can host and we use the
term domainto refer to a running virtual ma-
chine within which a guest OS executes; the
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distinction is analogous to that between apro-
gram and aprocessin a conventional system.
We call Xen itself thehypervisorsince it oper-
ates at a higher privilege level than the super-
visor code of the guest operating systems that
it hosts.

2.1 The Virtual Machine Interface

The paravirtualized x86 interface can be fac-
tored into three broad aspects of the system:
memory management, the CPU, and device
I/O. In the following we address each machine
subsystem in turn, and discuss how each is pre-
sented in our paravirtualized architecture. Note
that although certain parts of our implemen-
tation, such as memory management, are spe-
cific to the x86, many aspects (such as our vir-
tual CPU and I/O devices) can be readily ap-
plied to other machine architectures. Further-
more, x86 represents aworst casein the areas
where it differs significantly from RISC-style
processors—for example, efficiently virtualiz-
ing hardware page tables is more difficult than
virtualizing a software-managed TLB.

2.1.1 Memory management

Virtualizing memory is undoubtedly the most
difficult part of paravirtualizing an architec-
ture, both in terms of the mechanisms re-
quired in the hypervisor and modifications re-
quired to port each guest OS. The task is
easier if the architecture provides a software-
managed TLB as these can be efficiently vir-
tualized in a simple manner [5]. A tagged
TLB is another useful feature supported by
most server-class RISC architectures, includ-
ing Alpha, MIPS and SPARC. Associating an
address-space identifier tag with each TLB en-
try allows the hypervisor and each guest OS
to efficiently coexist in separate address spaces
because there is no need to flush the entire TLB

when transferring execution.

Unfortunately, x86 does not have a software-
managed TLB; instead TLB misses are ser-
viced automatically by the processor by walk-
ing the page table structure in hardware. Thus
to achieve the best possible performance, all
valid page translations for the current ad-
dress space should be present in the hardware-
accessible page table. Moreover, because the
TLB is not tagged, address space switches typ-
ically require a complete TLB flush. Given
these limitations, we made two decisions: (i)
guest OSes are responsible for allocating and
managing the hardware page tables, with mini-
mal involvement from Xen to ensure safety and
isolation; and (ii) Xen exists in a 64MB section
at the top of every address space, thus avoiding
a TLB flush when entering and leaving the hy-
pervisor.

Each time a guest OS requires a new page
table, perhaps because a new process is be-
ing created, it allocates and initializes a page
from its own memory reservation and regis-
ters it with Xen. At this point the OS must
relinquish direct write privileges to the page-
table memory: all subsequent updates must be
validated by Xen. This restricts updates in a
number of ways, including only allowing an
OS to map pages that it owns, and disallow-
ing writable mappings of page tables. Guest
OSes maybatch update requests to amortize
the overhead of entering the hypervisor. The
top 64MB region of each address space, which
is reserved for Xen, is not accessible or remap-
pable by guest OSes. This address region is
not used by any of the common x86 ABIs how-
ever, so this restriction does not break applica-
tion compatibility.

Segmentation is virtualized in a similar way,
by validating updates to hardware segment de-
scriptor tables. The only restrictions on x86
segment descriptors are: (i) they must have
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lower privilege than Xen, and (ii) they may not
allow any access to the Xen-reserved portion
of the address space.

2.1.2 CPU

Virtualizing the CPU has several implications
for guest OSes. Principally, the insertion of a
hypervisor below the operating system violates
the usual assumption that the OS is the most
privileged entity in the system. In order to pro-
tect the hypervisor from OS misbehavior (and
domains from one another) guest OSes must be
modified to run at a lower privilege level.

Efficient virtualizion of privilege levels is pos-
sible on x86 because it supports four distinct
privilege levels in hardware. The x86 privi-
lege levels are generally described asrings, and
are numbered from zero (most privileged) to
three (least privileged). OS code typically exe-
cutes in ring 0 because no other ring can ex-
ecute privileged instructions, while ring 3 is
generally used for application code. To our
knowledge, rings 1 and 2 have not been used
by any well-known x86 OS since OS/2. Any
OS which follows this common arrangement
can be ported to Xen by modifying it to exe-
cute in ring 1. This prevents the guest OS from
directly executing privileged instructions, yet it
remains safely isolated from applications run-
ning in ring 3.

Privileged instructions are paravirtualized by
requiring them to be validated and executed
within Xen—this applies to operations such
as installing a new page table, or yielding the
processor when idle (rather than attempting to
hlt it). Any guest OS attempt to directly ex-
ecute a privileged instruction is failed by the
processor, either silently or by taking a fault,
since only Xen executes at a sufficiently privi-
leged level.

Exceptions, including memory faults and soft-
ware traps, are virtualized on x86 very straight-
forwardly. A table describing the handler for
each type of exception is registered with Xen
for validation. The handlers specified in this
table are generally identical to those for real
x86 hardware; this is possible because the ex-
ception stack frames are unmodified in our par-
avirtualized architecture. The sole modifica-
tion is to the page fault handler, which would
normally read the faulting address from a priv-
ileged processor register (CR2); since this is
not possible, we write it into an extended stack
frame2. When an exception occurs while exe-
cuting outside ring 0, Xen’s handler creates a
copy of the exception stack frame on the guest
OS stack and returns control to the appropriate
registered handler.

Typically only two types of exception oc-
cur frequently enough to affect system perfor-
mance: system calls (which are usually im-
plemented via a software exception), and page
faults. We improve the performance of sys-
tem calls by allowing each guest OS to reg-
ister a ‘fast’ exception handler which is ac-
cessed directly by the processor without indi-
recting via ring 0; this handler is validated be-
fore installing it in the hardware exception ta-
ble. Unfortunately it is not possible to apply
the same technique to the page fault handler
because only code executing in ring 0 can read
the faulting address from registerCR2; page
faults must therefore always be delivered via
Xen so that this register value can be saved for
access in ring 1.

Safety is ensured by validating exception han-
dlers when they are presented to Xen. The
only required check is that the handler’s code
segment does not specify execution in ring 0.
Since no guest OS can create such a segment,

2In hindsight, writing the value into a pre-agreed
shared memory location rather than modifying the
stack frame would have simplified the XP port.
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it suffices to compare the specified segment se-
lector to a small number of static values which
are reserved by Xen. Apart from this, any other
handler problems are fixed up during excep-
tion propagation—for example, if the handler’s
code segment is not present or if the handler
is not paged into memory then an appropri-
ate fault will be taken when Xen executes the
iret instruction which returns to the handler.
Xen detects these “double faults” by checking
the faulting program counter value: if the ad-
dress resides within the exception-virtualizing
code then the offending guest OS is terminated.

Note that this “lazy” checking is safe even for
the direct system-call handler: access faults
will occur when the CPU attempts to directly
jump to the guest OS handler. In this case the
faulting address will be outside Xen (since Xen
will never execute a guest OS system call) and
so the fault is virtualized in the normal way. If
propagation of the fault causes a further “dou-
ble fault” then the guest OS is terminated as
described above.

2.1.3 Device I/O

Rather than emulating existing hardware de-
vices, as is typically done in fully-virtualized
environments, Xen exposes a set of clean and
simple device abstractions. This allows us to
design an interface that is both efficient and sat-
isfies our requirements for protection and iso-
lation. To this end, I/O data is transferred to
and from each domain via Xen, using shared-
memory, asynchronous buffer-descriptor rings.
These provide a high-performance communi-
cation mechanism for passing buffer informa-
tion vertically through the system, while al-
lowing Xen to efficiently perform validation
checks (for example, checking that buffers are
contained within a domain’s memory reserva-
tion).

Linux subsection # lines
Architecture-independent 78
Virtual network driver 484
Virtual block-device driver 1070
Xen-specific (non-driver) 1363
Total 2995
Portion of total x86 code base 1.36%

Table 1: The simplicity of porting commodity
OSes to Xen.

Similar to hardware interrupts, Xen supports
a lightweight event-delivery mechanism which
is used for sending asynchronous notifications
to a domain. These notifications are made by
updating a bitmap of pending event types and,
optionally, by calling an event handler speci-
fied by the guest OS. These callbacks can be
‘held off’ at the discretion of the guest OS—to
avoid extra costs incurred by frequent wake-up
notifications, for example.

2.2 The Cost of Porting an OS to Xen

Table 1 demonstrates the cost, in lines of code,
of porting commodity operating systems to
Xen’s paravirtualized x86 environment.

The architecture-specific sections are effec-
tively a port of the x86 code to our paravirtual-
ized architecture. This involved rewriting rou-
tines which used privileged instructions, and
removing a large amount of low-level system
initialization code.

2.3 Control and Management

Throughout the design and implementation of
Xen, a goal has been to separate policy from
mechanism wherever possible. Although the
hypervisor must be involved in data-path as-
pects (for example, scheduling the CPU be-
tween domains, filtering network packets be-
fore transmission, or enforcing access control
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Figure 1: The structure of a machine running
the Xen hypervisor, hosting a number of dif-
ferent guest operating systems, includingDo-
main0running control software in a XenLinux
environment.

when reading data blocks), there is no need for
it to be involved in, or even aware of, higher
level issues such as how the CPU is to be
shared, or which kinds of packet each domain
may transmit.

The resulting architecture is one in which the
hypervisor itself provides only basic control
operations. These are exported through an
interface accessible from authorized domains;
potentially complex policy decisions, such as
admission control, are best performed by man-
agement software running over a guest OS
rather than in privileged hypervisor code.

The overall system structure is illustrated in
Figure 1. Note that a domain is created at boot
time which is permitted to use thecontrol in-
terface. This initial domain, termedDomain0,
is responsible for hosting the application-level
management software. The control interface
provides the ability to create and terminate
other domains and to control their associated
scheduling parameters, physical memory allo-
cations and the access they are given to the ma-
chine’s physical disks and network devices.

In addition to processor and memory resources,
the control interface supports the creation and

deletion of virtual network interfaces (VIFs)
and block devices (VBDs). These virtual I/O
devices have associated access-control infor-
mation which determines which domains can
access them, and with what restrictions (for ex-
ample, a read-only VBD may be created, or
a VIF may filter IP packets to prevent source-
address spoofing or apply traffic shaping).

This control interface, together with profil-
ing statistics on the current state of the sys-
tem, is exported to a suite of application-
level management software running inDo-
main0. This complement of administrative
tools allows convenient management of the en-
tire server: current tools can create and destroy
domains, set network filters and routing rules,
monitor per-domain network activity at packet
and flow granularity, and create and delete vir-
tual network interfaces and virtual block de-
vices.

Snapshots of a domains’ state may be captured
and saved to disk, enabling rapid deployment
of applications by bypassing the normal boot
delay. Further, Xen supportslive migration
which enables running VMs to be moved dy-
namically between different Xen servers, with
execution interrupted only for a few millisec-
onds. We are in the process of developing
higher-level tools to further automate the ap-
plication of administrative policy, for example,
load balancing VMs among a cluster of Xen
servers.

3 Detailed Design

In this section we introduce the design of the
major subsystems that make up a Xen-based
server. In each case we present both Xen and
guest OS functionality for clarity of exposition.
In this paper, we focus on the XenLinux guest
OS; the *BSD and Windows XP ports use the
Xen interface in a similar manner.
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3.1 Control Transfer: Hypercalls and Events

Two mechanisms exist for control interactions
between Xen and an overlying domain: syn-
chronous calls from a domain to Xen may be
made using ahypercall, while notifications are
delivered to domains from Xen using an asyn-
chronous event mechanism.

The hypercall interface allows domains to per-
form a synchronous software trap into the
hypervisor to perform a privileged operation,
analogous to the use of system calls in conven-
tional operating systems. An example use of a
hypercall is to request a set of page-table up-
dates, in which Xen validates and applies a list
of updates, returning control to the calling do-
main when this is completed.

Communication from Xen to a domain is pro-
vided through an asynchronous event mech-
anism, which replaces the usual delivery
mechanisms for device interrupts and allows
lightweight notification of important events
such as domain-termination requests. Akin to
traditional Unix signals, there are only a small
number of events, each acting to flag a partic-
ular type of occurrence. For instance, events
are used to indicate that new data has been re-
ceived over the network, or that a virtual disk
request has completed.

Pending events are stored in a per-domain bit-
mask which is updated by Xen before invok-
ing an event-callback handler specified by the
guest OS. The callback handler is responsible
for resetting the set of pending events, and re-
sponding to the notifications in an appropriate
manner. A domain may explicitly defer event
handling by setting a Xen-readable software
flag: this is analogous to disabling interrupts
on a real processor.

Figure 2: The structure of asynchronous I/O
rings, which are used for data transfer between
Xen and guest OSes.

3.2 Data Transfer: I/O Rings

The presence of a hypervisor means there is
an additional protection domain between guest
OSes and I/O devices, so it is crucial that a
data transfer mechanism be provided that al-
lows data to move vertically through the sys-
tem with as little overhead as possible.

Two main factors have shaped the design of
our I/O-transfer mechanism: resource manage-
ment and event notification. For resource ac-
countability, we attempt to minimize the work
required to demultiplex data to a specific do-
main when an interrupt is received from a
device—the overhead of managing buffers is
carried out later where computation may be ac-
counted to the appropriate domain. Similarly,
memory committed to device I/O is provided
by the relevant domains wherever possible to
prevent the crosstalk inherent in shared buffer
pools; I/O buffers are protected during data
transfer by pinning the underlying page frames
within Xen.

Figure 2 shows the structure of our I/O descrip-
tor rings. A ring is a circular queue of descrip-
tors allocated by a domain but accessible from
within Xen. Descriptors do not directly con-
tain I/O data; instead, I/O data buffers are al-
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located out-of-band by the guest OS and in-
directly referenced by I/O descriptors. Ac-
cess to each ring is based around two pairs
of producer-consumer pointers: domains place
requests on a ring, advancing a request pro-
ducer pointer, and Xen removes these requests
for handling, advancing an associated request
consumer pointer. Responses are placed back
on the ring similarly, save with Xen as the pro-
ducer and the guest OS as the consumer. There
is no requirement that requests be processed in
order: the guest OS associates a unique identi-
fier with each request which is reproduced in
the associated response. This allows Xen to
unambiguously reorder I/O operations due to
scheduling or priority considerations.

This structure is sufficiently generic to support
a number of different device paradigms. For
example, a set of ‘requests’ can provide buffers
for network packet reception; subsequent ‘re-
sponses’ then signal the arrival of packets into
these buffers. Reordering is useful when deal-
ing with disk requests as it allows them to
be scheduled within Xen for efficiency, and
the use of descriptors with out-of-band buffers
makes implementing zero-copy transfer easy.

We decouple the production of requests or re-
sponses from the notification of the other party:
in the case of requests, a domain may enqueue
multiple entries before invoking a hypercall to
alert Xen; in the case of responses, a domain
can defer delivery of a notification event by
specifying a threshold number of responses.
This allows each domain to trade-off latency
and throughput requirements, similarly to the
flow-aware interrupt dispatch in the ArseNIC
Gigabit Ethernet interface [12].

3.3 Subsystem Virtualization

The control and data transfer mechanisms de-
scribed are used in our virtualization of the var-
ious subsystems. In the following, we discuss

how this virtualization is achieved for CPU,
timers, memory, network and disk.

3.3.1 CPU scheduling

Xen currently schedules domains according to
the Borrowed Virtual Time (BVT) scheduling
algorithm [4]. We chose this particular algo-
rithms since it is both work-conserving and has
a special mechanism for low-latency wake-up
(or dispatch) of a domain when it receives an
event. Fast dispatch is particularly important
to minimize the effect of virtualization on OS
subsystems that are designed to run in a timely
fashion; for example, TCP relies on the timely
delivery of acknowledgments to correctly es-
timate network round-trip times. BVT pro-
vides low-latency dispatch by using virtual-
time warping, a mechanism which temporarily
violates ‘ideal’ fair sharing to favor recently-
woken domains. However, other scheduling al-
gorithms could be trivially implemented over
our generic scheduler abstraction. Per-domain
scheduling parameters can be adjusted by man-
agement software running inDomain0.

3.3.2 Time and timers

Xen provides guest OSes with notions of real
time, virtual time and wall-clock time. Real
time is expressed in nanoseconds passed since
machine boot and is maintained to the accu-
racy of the processor’s cycle counter and can
be frequency-locked to an external time source
(for example, via NTP). A domain’s virtual
time only advances while it is executing: this
is typically used by the guest OS scheduler to
ensure correct sharing of its timeslice between
application processes. Finally, wall-clock time
is specified as an offset to be added to the cur-
rent real time. This allows the wall-clock time
to be adjusted without affecting the forward
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progress of real time.

Each guest OS can program a pair of alarm
timers, one for real time and the other for vir-
tual time. Guest OSes are expected to main-
tain internal timer queues and use the Xen-
provided alarm timers to trigger the earliest
timeout. Timeouts are delivered using Xen’s
event mechanism.

3.3.3 Virtual address translation

As with other subsystems, Xen attempts to vir-
tualize memory access with as little overhead
as possible. As discussed in Section 2.1.1,
this goal is made somewhat more difficult by
the x86 architecture’s use of hardware page ta-
bles. The approach taken by VMware is to pro-
vide each guest OS with a virtual page table,
not visible to the memory-management unit
(MMU) [3]. The hypervisor is then responsible
for trapping accesses to the virtual page table,
validating updates, and propagating changes
back and forth between it and the MMU-visible
‘shadow’ page table. This greatly increases
the cost of certain guest OS operations, such
as creating new virtual address spaces, and
requires explicit propagation of hardware up-
dates to ‘accessed’ and ‘dirty’ bits.

Although full virtualization forces the use of
shadow page tables, to give the illusion of con-
tiguous physical memory, Xen is not so con-
strained. Indeed, Xen need only be involved in
page tableupdates, to prevent guest OSes from
making unacceptable changes. Thus we avoid
the overhead and additional complexity asso-
ciated with the use of shadow page tables—the
approach in Xen is to register guest OS page ta-
bles directly with the MMU, and restrict guest
OSes to read-only access. Page table updates
are passed to Xen via a hypercall; to ensure
safety, requests arevalidatedbefore being ap-
plied.

To aid validation, we associate a type and ref-
erence count with each machine page frame.
A frame may have any one of the following
mutually-exclusive types at any point in time:
page directory (PD), page table (PT), local de-
scriptor table (LDT), global descriptor table
(GDT), or writable (RW). Note that a guest
OS may always create readable mappings to
its own page frames, regardless of their current
types. A frame may only safely be retasked
when its reference count is zero. This mecha-
nism is used to maintain the invariants required
for safety; for example, a domain cannot have
a writable mapping to any part of a page table
as this would require the frame concerned to
simultaneously be of types PT and RW.

The type system is also used to track which
frames have already been validated for use in
page tables. To this end, guest OSes indicate
when a frame is allocated for page-table use—
this requires a one-off validation of every en-
try in the frame by Xen, after which its type
is pinned to PD or PT as appropriate, until a
subsequent unpin request from the guest OS.
This is particularly useful when changing the
page table base pointer, as it obviates the need
to validate the new page table on every context
switch. Note that a frame cannot be retasked
until it is both unpinned and its reference count
has reduced to zero – this prevents guest OSes
from using unpin requests to circumvent the
reference-counting mechanism.

3.3.4 Physical memory

The initial memory allocation, orreservation,
for each domain is specified at the time of
its creation; memory is thus statically parti-
tioned between domains, providing strong iso-
lation. A maximum-allowable reservation may
also be specified: if memory pressure within
a domain increases, it may then attempt to
claim additional memory pages from Xen, up
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to this reservation limit. Conversely, if a
domain wishes to save resources, perhaps to
avoid incurring unnecessary costs, it can re-
duce its memory reservation by releasing mem-
ory pages back to Xen.

XenLinux implements aballoon driver [16],
which adjusts a domain’s memory usage by
passing memory pages back and forth be-
tween Xen and XenLinux’s page allocator.
Although we could modify Linux’s memory-
management routines directly, the balloon
driver makes adjustments by using existing
OS functions, thus simplifying the Linux port-
ing effort. However, paravirtualization can be
used to extend the capabilities of the balloon
driver; for example, the out-of-memory han-
dling mechanism in the guest OS can be mod-
ified to automatically alleviate memory pres-
sure by requesting more memory from Xen.

Most operating systems assume that memory
comprises at most a few large contiguous ex-
tents. Because Xen does not guarantee to al-
locate contiguous regions of memory, guest
OSes will typically create for themselves the
illusion of contiguousphysical memory, even
though their underlying allocation ofhardware
memoryis sparse. Mapping from physical to
hardware addresses is entirely the responsibil-
ity of the guest OS, which can simply main-
tain an array indexed by physical page frame
number. Xen supports efficient hardware-to-
physical mapping by providing a shared trans-
lation array that is directly readable by all do-
mains – updates to this array are validated by
Xen to ensure that the OS concerned owns the
relevant hardware page frames.

Note that even if a guest OS chooses to ig-
nore hardware addresses in most cases, it must
use the translation tables when accessing its
page tables (which necessarily use hardware
addresses). Hardware addresses may also be
exposed to limited parts of the OS’s memory-

management system to optimize memory ac-
cess. For example, a guest OS might allo-
cate particular hardware pages so as to opti-
mize placement within a physically indexed
cache [7], or map naturally aligned contigu-
ous portions of hardware memory using super-
pages [10].

3.3.5 Network

Xen provides the abstraction of a virtual
firewall-router (VFR), where each domain has
one or more network interfaces (VIFs) logi-
cally attached to the VFR. A VIF looks some-
what like a modern network interface card:
there are two I/O rings of buffer descriptors,
one for transmit and one for receive. Each di-
rection also has a list of associated rules of the
form (<pattern>, <action>)—if the pattern
matches then the associatedaction is applied.

Domain0 is responsible for inserting and re-
moving rules. In typical cases, rules will be
installed to prevent IP source address spoof-
ing, and to ensure correct demultiplexing based
on destination IP address and port. Rules may
also be associated with hardware interfaces on
the VFR. In particular, we may install rules to
perform traditional firewalling functions such
as preventing incoming connection attempts on
insecure ports.

To transmit a packet, the guest OS simply en-
queues a buffer descriptor onto the transmit
ring. Xen copies the descriptor and, to ensure
safety, then copies the packet header and ex-
ecutes any matching filter rules. The packet
payload is not copied since we use scatter-
gather DMA; however note that the relevant
page frames must be pinned until transmission
is complete. To ensure fairness, Xen imple-
ments a simple round-robin packet scheduler.

To efficiently implement packet reception, we
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require the guest OS to exchange an unused
page frame for each packet it receives; this
avoids the need to copy the packet between
Xen and the guest OS, although it requires
that page-aligned receive buffers be queued at
the network interface. When a packet is re-
ceived, Xen immediately checks the set of re-
ceive rules to determine the destination VIF,
and exchanges the packet buffer for a page
frame on the relevant receive ring. If no frame
is available, the packet is dropped.

3.3.6 Disk

Only Domain0 has direct unchecked access
to physical (IDE and SCSI) disks. All other
domains access persistent storage through the
abstraction of virtual block devices (VBDs),
which are created and configured by manage-
ment software running withinDomain0. Al-
lowing Domain0 to manage the VBDs keeps
the mechanisms within Xen very simple and
avoids more intricate solutions such as the
UDFs used by the Exokernel [6].

A VBD comprises a list of extents with asso-
ciated ownership and access control informa-
tion, and is accessed via the I/O ring mecha-
nism. A typical guest OS disk scheduling al-
gorithm will reorder requests prior to enqueu-
ing them on the ring in an attempt to reduce
response time, and to apply differentiated ser-
vice (for example, it may choose to aggres-
sively schedule synchronous metadata requests
at the expense of speculative readahead re-
quests). However, because Xen has more com-
plete knowledge of the actual disk layout, we
also support reordering within Xen, and so re-
sponses may be returned out of order. A VBD
thus appears to the guest OS somewhat like a
SCSI disk.

A translation table is maintained within the hy-
pervisor for each VBD; the entries within this

table are installed and managed byDomain0
via a privileged control interface. On receiving
a disk request, Xen inspects the VBD identi-
fier and offset and produces the corresponding
sector address and physical device. Permission
checks also take place at this time. Zero-copy
data transfer takes place using DMA between
the disk and pinned memory pages in the re-
questing domain.

Xen servicesbatchesof requests from com-
peting domains in a simple round-robin fash-
ion; these are then passed to a standard ele-
vator scheduler before reaching the disk hard-
ware. Domains may explicitly pass downre-
order barriersto prevent reordering when this
is necessary to maintain higher level seman-
tics (e.g. when using a write-ahead log). The
low-level scheduling gives us good through-
put, while the batching of requests provides
reasonably fair access. Future work will in-
vestigate providing more predictable isolation
and differentiated service, perhaps using exist-
ing techniques and schedulers [15].

4 Evaluation

In this section we present a subset of our eval-
uation of Xen against a number of alternative
virtualization techniques. A more complete
evaluation, as well as detailed configuration
and benchmark specs, can be found in [1] For
these measurements, we used our 2.4.21-based
XenLinux port as, at the time of this writing,
the 2.6-port was not stable enough for a full
battery of tests.

There are a number of preexisting solutions
for running multiple copies of Linux on the
same machine. VMware offers several com-
mercial products that provide virtual x86 ma-
chines on which unmodified copies of Linux
may be booted. The most commonly used ver-
sion is VMware Workstation, which consists
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of a set of privileged kernel extensions to a
‘host’ operating system. Both Windows and
Linux hosts are supported. VMware also offer
an enhanced product called ESX Server which
replaces the host OS with a dedicated kernel.
By doing so, it gains some performance bene-
fit over the workstation product. We have sub-
jected ESX Server to the benchmark suites de-
scribed below, but sadly are prevented from re-
porting quantitative results due to the terms of
the product’s End User License Agreement. In-
stead we present results from VMware Work-
station 3.2, running on top of a Linux host
OS, as it is the most recent VMware product
without that benchmark publication restriction.
ESX Server takes advantage of its native archi-
tecture to equal or outperform VMware Work-
station and its hosted architecture. While Xen
of course requires guest OSes to be ported, it
takes advantage of paravirtualization to notice-
ably outperform ESX Server.

We also present results for User-mode Linux
(UML), an increasingly popular platform for
virtual hosting. UML is a port of Linux to run
as a user-space process on a Linux host. Like
XenLinux, the changes required are restricted
to the architecture dependent code base. How-
ever, the UML code bears little similarity to
the native x86 port due to the very different na-
ture of the execution environments. Although
UML can run on an unmodified Linux host, we
present results for the ‘Single Kernel Address
Space’ (skas3) variant that exploits patches to
the host OS to improve performance.

We also investigated three other virtualiza-
tion techniques for running ported versions of
Linux on the same x86 machine. Connec-
tix’s Virtual PC and forthcoming Virtual Server
products (now acquired by Microsoft) are sim-
ilar in design to VMware’s, providing full x86
virtualization. Since all versions of Virtual PC
have benchmarking restrictions in their license
agreements we did not subject them to closer

analysis. UMLinux is similar in concept to
UML but is a different code base and has yet
to achieve the same level of performance, so
we omit the results. Work to improve the per-
formance of UMLinux through host OS modi-
fications is ongoing [8]. Although Plex86 was
originally a general purpose x86 VMM, it has
now been retargeted to support just Linux guest
OSes. The guest OS must be specially com-
piled to run on Plex86, but the source changes
from native x86 are trivial. The performance of
Plex86 is currently well below the other tech-
niques.

4.1 Relative Performance

The first cluster of bars in Figure 3 repre-
sents a relatively easy scenario for the VMMs.
The SPEC CPU suite contains a series of
long-running computationally-intensive appli-
cations intended to measure the performance
of a system’s processor, memory system, and
compiler quality. The suite performs little I/O
and has little interaction with the OS. With
almost all CPU time spent executing in user-
space code, all three VMMs exhibit low over-
head.

The next set of bars show the total elapsed time
taken to build a default configuration of the
Linux 2.4.21 kernel on a local ext3 file sys-
tem with gcc 2.96. Native Linux spends about
7% of the CPU time in the OS, mainly per-
forming file I/O, scheduling and memory man-
agement. In the case of the VMMs, this ‘sys-
tem time’ is expanded to a greater or lesser de-
gree: whereas Xen incurs a mere 3% overhead,
the other VMMs experience a more significant
slowdown.

Two experiments were performed using the
PostgreSQL 7.1.3 database, exercised by
the Open Source Database Benchmark suite
(OSDB) in its default configuration. We
present results for the multi-user Information
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Figure 3: Relative performance of native Linux (L), XenLinux (X), VMware workstation 3.2 (V)
and User-Mode Linux (U).

Retrieval (IR) and On-Line Transaction Pro-
cessing (OLTP) workloads, both measured in
tuples per second. PostgreSQL places consid-
erable load on the operating system, and this is
reflected in the substantial virtualization over-
heads experienced by VMware and UML. In
particular, the OLTP benchmark requires many
synchronous disk operations, resulting in many
protection domain transitions.

The dbench program is a file system bench-
mark derived from the industry-standard ‘Net-
Bench’. It emulates the load placed on a file
server by Windows 95 clients. Here, we ex-
amine the throughput experienced by a single
client performing around 90,000 file system
operations.

SPEC WEB99 is a complex application-level
benchmark for evaluating web servers and the
systems that host them. The benchmark is
CPU-bound, and a significant proportion of the
time is spent within the guest OS kernel, per-
forming network stack processing, file system
operations, and scheduling between the many
httpd processes that Apache needs to handle

the offered load. XenLinux fares well, achiev-
ing within 1% of native Linux performance.
VMware and UML both struggle, supporting
less than a third of the number of clients of the
native Linux system.

4.2 Operating System Benchmarks

To more precisely measure the areas of over-
head within Xen and the other VMMs, we per-
formed a number of smaller experiments tar-
geting particular subsystems. We examined
the overhead of virtualization as measured by
McVoy’s lmbenchprogram [9]. The OS per-
formance subset of the lmbench suite consist
of 37 microbenchmarks.

In 24 of the 37 microbenchmarks, XenLinux
performs similarly to native Linux, tracking the
Linux kernel performance closely. In Tables 2
to 4 we show results which exhibit interest-
ing performance variations among the test sys-
tems; particularly large penalties for Xen are
shown in bold face.

In the process microbenchmarks (Table 2), Xen
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Config null
call

null
I/O

open
close

slct
TCP

sig
inst

sig
hndl

fork
proc

exec
proc

sh
proc

Linux 0.45 0.50 1.92 5.70 0.68 2.49 110 530 4k0
Xen 0.46 0.50 1.88 5.69 0.69 1.75198 768 4k8
VMW 0.73 0.83 2.99 11.1 1.02 4.63 874 2k3 10k
UML 24.7 25.1 62.8 39.9 26.0 46.0 21k 33k 58k

Table 2:lmbench : Processes - times inµs

Config 2p
0K

2p
16K

2p
64K

8p
16K

8p
64K

16p
16K

16p
64K

Linux 0.77 0.91 1.06 1.03 24.3 3.61 37.6
Xen 1.97 2.22 2.67 3.07 28.7 7.0839.4
VMW 18.1 17.6 21.3 22.4 51.6 41.7 72.2
UML 15.5 14.6 14.4 16.3 36.8 23.6 52.0

Table 3: lmbench : Context switching times
in µs

Config 0K File 10K File Mmap Prot Page
create delete create delete lat fault fault

Linux 32.1 6.08 66.0 12.5 68.0 1.06 1.42
Xen 32.5 5.86 68.2 13.6 139 1.40 2.73
VMW 35.3 9.3 85.6 21.4 620 7.53 12.4
UML 130 65.7 250 113 1k4 21.8 26.3

Table 4: lmbench : File & VM system laten-
cies inµs

exhibits slowerfork, exec, andshperformance
than native Linux. This is expected, since these
operations require large numbers of page ta-
ble updates which must all be verified by Xen.
However, the paravirtualization approach al-
lows XenLinux to batch update requests. Cre-
ating new page tables presents an ideal case:
because there is no reason to commit pending
updates sooner, XenLinux can amortize each
hypercall across 2048 updates (the maximum
size of its batch buffer). Hence each update
hypercall constructs 8MB of address space.

Table 3 shows context switch times between
different numbers of processes with different
working set sizes. Xen incurs an extra over-
head between 1µs and 3µs, as it executes a hy-
percall to change the page table base. How-
ever, context switch results for larger work-

ing set sizes (perhaps more representative of
real applications) show that the overhead is
small compared with cache effects. Unusually,
VMware Workstation is inferior to UML on
these microbenchmarks; however, this is one
area where enhancements in ESX Server are
able to reduce the overhead.

The mmap latencyand page fault latencyre-
sults shown in Table 4 are interesting since they
require two transitions into Xen per page: one
to take the hardware fault and pass the details
to the guest OS, and a second to install the up-
dated page table entry on the guest OS’s behalf.
Despite this, the overhead is relatively modest.

One small anomaly in Table 2 is that Xen-
Linux has lower signal-handling latency than
native Linux. This benchmark does not re-
quire any calls into Xen at all, and the 0.75µs
(30%) speedup is presumably due to a fortu-
itous cache alignment in XenLinux, hence un-
derlining the dangers of taking microbench-
marks too seriously.

4.3 Additional Benchmarks

We have also conducted comprehensive exper-
iments that: evaluate the overhead of virtual-
izing the network; compare the performance
of running multiple applications in their own
guest OS against running them on the same
native operating system; demonstrate perfor-
mance isolation provided by Xen; and examine
Xen’s ability to scale to its target of 100 do-
mains. All of the experiments showed promis-
ing results and details have been separately
published [1].

5 Conclusion

We have presented the Xen hypervisor which
partitions the resources of a computer between
domains running guest operating systems. Our
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paravirtualizing design places a particular em-
phasis on protection, performance and resource
management. We have also described and eval-
uated XenLinux, a fully-featured port of the
Linux kernel that runs over Xen.

Xen and the 2.4-based XenLinux are suffi-
ciently stable to be useful to a wide audi-
ence. Indeed, some web hosting providers
are already selling Xen-based virtual servers.
Sources, documentation, and a demo ISO can
be found on our project page3.

Although the 2.4-based XenLinux was the ba-
sis of our performance evaluation, a 2.6-based
port is well underway. In this port, much care is
been given to minimizing and isolating the nec-
essary changes to the Linux kernel and mea-
suring the changes against benchmark results.
As paravirtualization techniques become more
prevalent, kernel changes would ideally be part
of the main tree. We have experimented with
various source structures including a separate
architecture,a la UML, a subarchitecture, and
a CONFIG option. We eagerly solicit input and
discussion from the kernel developers to guide
our approach. We also have considered trans-
parent paravirtualization [2] techniques to al-
low a single distro image to adapt dynamically
between a VMM-based configuration and bare
metal.

As well as further guest OS ports, Xen it-
self is being ported to other architectures. An
x86_64 port is well underway, and we are keen
to see Xen ported to RISC-style architectures
(such as PPC) where virtual memory virtual-
ization will be much easier due to the software-
managed TLB.

Much new functionality has been added since
the first public availability of Xen last Octo-
ber. Of particular note are a completely re-
vamped I/O subsystem capable of directly uti-

3http://www.cl.cam.ac.uk/netos/
xen

lizing Linux driver source, suspend/resume and
live migration features, much improved con-
sole access, etc. Though final implementation,
testing, and documentation was not complete
at the deadline for this paper, we hope to de-
scribe these in more detail at the symposium
and in future publications.

As always, there are more tasks to do than there
are resources to do them. We would like to
grow Xen into the premier open source virtual-
ization solution, with breadth and features that
rival proprietary commercial products.

We enthusiastically welcome the help and con-
tributions of the Linux community.
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Abstract

Transparent Inter Process Communication
(TIPC) is a protocol specially designed for ef-
ficient intra cluster communication, leveraging
the particular conditions present within clus-
ters of loosely coupled nodes.

TIPC provides a powerful infrastructure for de-
signing distributed, site-independent, scalable,
highly- available and high-performing applica-
tions, as well as a good support for cluster, net-
work and software management functionality.
In this paper, we will discuss the motives for
developing TIPC and describe its architecture.
Then, we will present the most important fea-
tures of TIPC, such as its functional, location
transparent, addressing scheme, lightweight
reactive connections, reliable multicast, sig-
nalling link protocol, topology subscription
services and more. We will also discuss the
various design decisions that influenced the im-
plementation of these features. We conclude
by describing the current implementation sta-
tus and our planned roadmap for TIPC.

1 Introduction

For the last six years, telecom equipment ven-
dor Ericsson has been developing and deploy-
ing a tailor-made reliable communication pro-
tocol, TIPC,for their cluster-based products.
This protocol has recently undergone a sig-
nificant redesign, and is now available as a
portable source code package of about 12,500

lines of C code. The code implements a Linux
kernel driver, a design that has made it possible
to improve performance (35% faster than TCP)
and minimize code footprint.

Figure 1:Functional View of TIPC

The current version is available under a dual
BSD/GPL license from [1]. TIPC is supported
on Linux 2.4 and 2.6; and several proprietary
portations to other OS’es (OSE, True64, Vx-
Works) also exist.

TIPC offers an interesting combination of fea-
tures, some of them quite unique, to achieve
the overall goal: to make the cluster act as one
single computer from a communication view-
point, while helping applications to keep track
of and adapt to topology changes. Figure 1 il-
lustrates a functional view of TIPC.
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2 Motivation

There are no standard protocols available today
that fully satisfy the special needs of applica-
tion programs working within highly available,
dynamic cluster environments. Clusters may
grow or shrink by orders of magnitude; mem-
ber nodes may crash and restart, routers may
fail and be replaced, services may be moved
around due to load balancing considerations,
etc. All this must be possibe to handle without
significant disturbances of the service offered
by the cluster. In order to minimize the effort
by the application programmers to deal with
such situations, and to maximize the chance
that they are handled in a correct and optimal
way, the cluster internal communication ser-
vice should provide special support, helping
the applications to adapt to changes in the clus-
ter. It should also, when possible, leverage the
special conditions present within cluster envi-
ronments to present a more efficient and fault-
tolerant communication service than more gen-
eral protocols are capable of.

2.1 Existing Protocols

TCP [2] has the advantage of being ubiquitous,
proven, and wellknown by most programmers.
Its most significant shortcomings in a real-time
cluster environment are the following:

• TCP lacks any notion of functional
addressing and addressing transparency.
Mechanisms exist (DNS, CORBA Nam-
ing Service) for transparent and dynamic
lookup of the correct IP-adress of a desti-
nation, but those are in general too static
and too inefficient to be useful in a dy-
namic, real-time environment.

• Performance is not as good as it could be,
especially for intra-node communication
and for short messages in general. For

intra-node communication, other more ef-
ficient mechanisms are available, at least
on Unix, but then the location of the des-
tination process has to be assumed, and
can not be changed. It is desirable to
have a protocol working efficiently for
both intra-node and inter-node messaging,
without forcing the user to distinguish be-
tween these cases in his code.

• The heavy connection setup/shutdown
scheme of TCP is a disadvantage in a dy-
namic environment. The minimum num-
ber of packets exchanged for even the
shortest TCP transaction is nine (SYN,
SYNACK, etc.), while with TIPC this can
be reduced to two, or even to one if con-
nectionless mode is used.

• The connection-oriented nature of TCP
makes it impossible to support true mul-
ticast.

Stream Control Transmission Protocol (SCTP)
[3] is message oriented; it provides some
level of user connection supervision, message
bundling, loss-free changeover, and a few more
features that may make it more suitable than
TCP as an intra-cluster protocol. Otherwise,
it has all the drawbacks of TCP already listed
above.

Apart from these weaknesses, neither TCP
nor SCTP provide any topology informa-
tion/subscription service, something that has
proven very useful both for applications and
for management functionality operating within
cluster environments.

Both TCP and SCTP are general purpose pro-
tocols, in the sense that they can be used safely
over the Internet as well as within a closed
cluster. This virtual advantage is also their
major weakness: they require funtionality and
header space to deal with situations that will
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never happen, or only infrequently, within clus-
ters.

2.2 Assumptions

The TIPC design is based on the following
assumptions, empirically known to be valid
within most clusters.

• Most messages cross only one direct hop.

• Transfer time for most messages is short.

• Most messages are passed over intra-
cluster connections.

• Packet loss rate is normally low; retrans-
mission is infrequent.

• Available bandwidth and memory volume
is normally high.

• For all relevant bearers packets are check-
summed by hardware.

• The number of inter-communicating
nodes is relatively static and limited at
any moment in time.

• Security is a less crucial issue in closed
clusters than on the Internet.

Because of the above one can use a simple,
traffic-driven, fixed-size sliding window proto-
col located at the signalling link level, rather
than a timer-driven transport level protocol.
This in turn gives a lot of other advantages,
such as earlier release of transmission buffers,
earlier packet loss detection and retransmis-
sion, and earlier detection of node unavailabil-
ity, only to mention some. Of course, situations
with long transfer delays, high loss rates, long
messages, security issues, etc. must be dealt
with as well, but rather from the viewpoint of
being exceptions than as the general rule.

3 Five-Layer Network Topology

From a TIPC viewpoint the network is orga-
nized in a five-layer structure (Figure 2).

Figure 2:TIPC Network Topology

The top level is theTIPC network. This is
the ensemble of all computers (nodes) inter-
connected via TIPC, i.e., the domain where
any node can reach any other node by using
a TIPC network address. A TIPC network is
distringuished from other networks by itsnet-
work identity, a 32-bit value that is known by
all nodes.

The next level in the hierarchy is an entity
called zone. This “cluster of clusters” is
the maximum scope of location transparency
within a network, i.e., the domain where any
process can reach any other process by using
a functional address rather than a network ad-
dresses.

The third level is what we call thecluster. This
is a group of nodes interconnected all-to-all via
one or two TIPC links.

The fourth level is the individualsystem node,
or justnode. There may be up to 2047 system
nodes in a cluster.

The lowest level is theslave node. Slave nodes
provide the same properties regarding location
transparency and availability as system nodes,
but they don’t need full physical connectivity
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to the rest of the cluster. One link to one system
node is sufficient, although there may be more
for redundancy reasons.

All entities within a TIPC network are accessed
using a TIPC network address, a 32-bit value
subdivided into a zone, cluster, and node field.
This address is internally mapped to the ad-
dress type for the communication media actu-
ally used, e.g., an Ethernet address or an IP-
address/port number tuplet.

4 Location-Transparent
Functional Addressing

To present a cluster as one computer, the ad-
dressing scheme used must hide the physical
location of a requested service to its users. To
achieve this, TIPC provides a functional ad-
dress type, calledport name, to be used both
for connectionless messaging and connection
setup calls. Binding a socket to a port name
corresponds to binding it to a port number in
other protocols, except that the port name is
unique and has validity for the whole cluster,
not only the local node. A caller wanting to set
up a connection needs only to specify this ad-
dress, and the TIPC internal translation service
ensures that the request ends up in the right
socket, on the right node.

A port name consists of two 32-bit fields. The
first field is called thename typeand typically
identifies a certain service type or function.
The second field is thename instanceand is
used as a key for accessing a certain instance
of the requested service. This address structure
gives excellent support for both service parti-
tioning and service load sharing.

Further support for service partitioning is pro-
vided by an address type calledport name se-
quence. This is a three-integer structure defin-
ing a range of port names, i.e., a name type plus

the lower and upper boundary of the instance
range. By allowing a socket to bind to a se-
quence, instead of just an individual port name,
it is possible to partition a service’s scope of re-
sponsibility into sub-ranges, without having to
create a vast number of sockets to do so.

Figure 3:Functional Addressing

This addressing scheme is illustrated by the
example in Figure 3. Two processes, partition
A and partition B of the servicefoo, bind their
sockets to the port name sequences[foo,0,99]
and[foo,100,199]respectively (foo represents
the name type part of the sequence). A
process wanting to send a message to instance
number 33 of that service, uses the port name
[foo,33] as destination address. The TIPC
name translation function will find that the
indicated instance is within the range bound to
by partition A, and directs the message to A’s
socket.

There are very few limitations on how
name sequences may be bound to sockets. One
may bind many different sequences, or many
instances of the same sequence, to the same
socket, to different sockets on the same node,
or to different sockets anywhere in the cluster.

4.1 Binding Scope

Although complete location transparency is de-
sirable and sufficient for most applications,
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there must be ways to control this property for
those who may need to do so. Hence, when
binding a name sequence to a socket, it’s pos-
sible to qualify it with abinding scopeparam-
eter, indicating how far the knowledge of the
binding should be distributed in the network.
The typical behavior is to spread it to the nodes
in the binder’s cluster, but it is possible to ex-
tend the scope to the whole zone, or limit it to
the local node.

4.2 Lookup Domain

Similarly, a client may indicate alookup do-
main for a message or connection setup re-
quest. This is a TIPC network address not only
indicating where the lookup, i.e., the transla-
tion from a port name to socket address, should
first be done, but implicitly even the lookup al-
gorithm to be used.

Two such algorithms are available: 1)round-
robin lookup is used when the lookup do-
main is non-zero and there is more than one
matching server. Internally TIPC selects the
server from a circular list; which root entry is
stepped between each lookup. 2)Closest-first
lookup is used when the lookup domain is zero.
Here, the translation is always performed at the
client’s node and will first look for a match-
ing socket on the local node. If none such is
found, the algorithm will successively look for
matches elsewhere in the cluster and finally in
the whole zone.

5 Reliable Functional Multicast

Functional addressing is also used to provide
a reliable multicastservice. If the sender of
a message indicates a port name sequence in-
stead of a port name as destination, a replica
of the message is sent to all sockets bound to
a name sequence fully or partially overlapping
with that sequence (Figure 4).

Figure 4:Reliable Functional Multicast

Only one replica of the message is sent to each
identified target port, even if it is bound to more
than one matching sequence. Whenever pos-
sible, this function will make use of the mul-
ticast/broadcast properties of the carrying me-
dia. In such cases, reliability is ensured by a
specialreliable cluster broadcast[4][5] proto-
col implemented internally in TIPC.

6 Name Translation Table

Translation from port name to socket addresses
is performed transparently and on-the-fly via
an internal translation table, replicated on each
node. When a socket is bound to a port name
sequence, a corresponding table entry is dis-
tributed to all nodes within the binding scope,
i.e., the local cluster in most cases.

7 Topology Services

TIPC also provides a mechanism for inquiring
or subscribing for the availability of port names
or ranges of port names.

7.1 Functional Topology Service

This functional topology serviceis built on and
uses the contents of the local instance of the
name translation table.
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To access this service, a user makes a block-
ing or nonblocking request to TIPC, asking it
to indicate when a name sequence within the
requested range is bound to or unbound. The
request is associated with a timer, giving the
duration of the subscription. A timer value of
zero causes the call to return or issue a sub-
scription event immediately, making it a pure
inquiry, while a value of -1 makes it stay for-
ever, indicating every change pertaining to the
requested name sequence.

Figure 5:Functional Topology Subscription

Figure 5 illustrates this service: If the client
process (see also example in Figure 3) wants
to syncronize itself with the servers before
starting any communication he issues asub-
scribe()call to TIPC, telling it to indicate when
a server overlapping with the subscribed range
becomes available. Since both ranges of par-
tition A and B are within the given range
[foo,0,500], the client will receive two such in-
dications, informing about the exact range of
the new bindings. If there is only a partial
overlap, e.g., if the client should subscribe for
[foo,0,150] instead, he will only be informed
about the actual overlap, i.e.,[foo,100,150]for
partition B.

7.2 Physical Topology Service

The physical network topology may be con-
sidered a special case of the functional topol-

ogy, and can be kept track of in the same
way. Hence, to subscribe for the availabil-
ity/disappearance of a specific node, a group
of nodes, or a whole cluster, the user specifies
a dedicated port name sequence, representing
this function and the range of nodes he wants
to subscribe for. A special name type (zero)
is used for this purpose, while the lower and
upper boundaries are represented by TIPC net-
work addresses—as described earlier, those are
in reality 32-bit numbers.

Figure 6:Physical Topology Subscription

In the example in Figure 6, the client process
subscribes for the node range [0,9] within zone
number 1, cluster number 1. Hence, when
node <1.1.3> (i.e., zone 1, cluster 1, node
3) establishes a link to the client’s node, the
client will immediately be informed about this.
For this particular service, TIPC will by it-
self bind/unbind the corresponding port name
as soon as it discovers or loses contact with a
node.

8 Lightweight Connections

The number of active user connections within
a big cluster may be extremely large, and each
cluster node must be able to establish and ter-
minate thousands of such connections per sec-
ond.
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8.1 Simple Setup/Shutdown

To deal with this dynamism, TIPC connections
are made very lighweight, in reality leaving the
user to decide the setup/shutdown sequence.
The protocol as such does not specify how con-
nections are established and shut down, so an
application caring about performance is free
to use its own scheme, e.g., only exchanging
payload-carrying messages.

For convenience an alternative, TCP-style con-
nection type is also provided on Linux, with
exchange of hidden protocol messages and
stream-oriented data exchange.

8.2 Reactive Connections

TIPC connections are highly reactive and give
the users almost immediate failure indication
if anything should happen at the endpoints, or
to the media between them. This is due to
a connection supervision and abortion mech-
anism, which takes advantage of the properties
of the local operating system to detect process
crashes, or the status of the concerned links to
detect node crashes or carrier failure. When
any of this happens, a specialconnection shut-
down message is spontaneously generated by
TIPC and sent to the affected endpoint or end-
points, along with an appropriate error code.
This error code delivered up to the user in the
failure indication. In some cases, when the
failure is detected due to inability to deliver
a message, the original message is returned to
the sender along with the error code, to further
enable him to analyze the situation and take
proper action. Thismessage rejectionmech-
anism is also used when connection-less mes-
sages are undeliverable.

9 Link-Level Protocol

Assuming that most clusters are relatively
static in size, some of the tasks normally per-
formed at the transport protocol level have
been moved down to the signalling link level.

9.1 Link-level Retransmission

Implementing the retransmission protocol at
this level has several advantages. First, it
gives better resource utilization since all pack-
ets, connectionless and connection oriented,
are funneled into one single packet sequence
per node pair. Each packet can hence carry
the acknowledge of many received packets, re-
gardless of their origin, and we need not keep
transmission buffers longer than strictly neces-
sary. Second, packet losses can be detected and
restransmission performed earlier than would
otherwise be the case. Third, packet delivery
and sequentiality guaranteed at the link level
eliminates any need for per packet timers at the
transport level—a background timer per link
is sufficient to ensure those properties. As a
result, we obtain a packet flow that is both
smoother and more “traffic driven” than with
corresponding transport level protocols, which
often rely on timers to keep traffic running.

9.2 Link-level Node Supervision

Internode connectivity is also ensured at the
link level. First, a background timer for each
link endpoint supervises the traffic flow on the
link and initiates a probing procedure if the
peer is silent too long. Second, if a link is
found to have failed after probing, there is a
mechanism to steer its traffic over to the re-
maining link to the same node, if there is one.
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9.3 Link-level Redundancy and Load Sharing

In fact, having two links and two carriers be-
tween each node pair is considered the nor-
mal configuration when using TIPC, as it elim-
inates any single point of failure in the commu-
nication service. The failover procedure used
on such occations is completely transparent to
the users, and complies to the same QOS as
is guaranteed by each individual link: no mes-
sage losses, no duplicates, and in-sequence de-
livery. The relationship between dual links
is configurable; while full load sharing is the
default behavior, an active-standby scheme is
also supported.

Detection time for a failed link, and conse-
quently for a crashed node, is configurable and
is by default set to 1500 ms in the current im-
plementation.

10 Automatic Neighbour Detection

Signalling links may be configured manually,
but this is a tedious task if the size of a cluster
runs up to dozens or even hundreds of nodes.
Therefore, TIPC uses a designated neighbour
detection protocol to establish links between
nodes. Within a cluster this protocol is very
simple. Each starting node uses the multicast
or broadcast capability of the carrying media
to tell about its existence, and expects a corre-
sponding unicast response from all nodes rec-
ognizing it as part of the cluster.

Between clusters, both multicast and a uni-
cast “pilot” link may be used, and results in a
link pattern where each node in one cluster has
links to a configurable (default two) number of
nodes in the other cluster.

11 Performance

The performance figures we have are from the
Linux-2.4 version of TIPC. We have not yet
been able to do code optimizations and corre-
sponding measurements on the Linux-2.6 ver-
sion.

Performance was measured by letting a set of
16 process pairs on two nodes exchange mes-
sages in a ping-pong like manner at full speed.
This ensures that the CPUs always runs at
100% load, and we can assume that almost all
execution time is spent on transferring TIPC
messages. We measured the time it took to
exchange a message of a certain size 16 X 10
000 000 times, and divided the obtained value
with number of messages. The result gives
pure CPU execution time per message, auto-
matically excluding latency times on the net-
work and in the OS’s sceduling queues, which
is anyway the same for all protocols. For com-
parison, a similar measurement sequence was
done for TCP, on the same OS and hardware.

Table 1 shows measured execution time for
transferring a message process-to-process be-
tween two 750 Mhz Pentium III based nodes.
The communication media used was two par-
allel 100 Mb Fast Ethernet switches.

Msg Size TIPC TCP
[bytes] [µs] [µs]

64 25 38
256 29 42

1024 44 52
4096 176 178

16384 704 716
65408 3200 2800

Table 1:Inter Node Execution time (send + re-
ceive) for TIPC and TCP messages

The overall result shows that TIPC is around
35% faster than TCP for inter-node messages
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smaller than Ethernet MTU, while perfor-
mance is about the same for larger messages. A
similar measurement, where all processes were
kept on the same node, showed that TIPC is
about four times faster (6µs vs 25µs) than
TCP for 64 byte intra-node messages; the dif-
ference decreasing linearly with message size.
At 64 Kbyte messages performance was even
here almost the same.

12 Implementation

12.1 Source Code

The latest implementation on Linux is avail-
able as a source code package of 12,500 lines
of C-code from [1]. It compiles into a load-
able module of 167 Kbyte for the Linux-2.6
kernel, and it requires no kernel patches to be
installed. This version, just as an earlier one
for Linux-2.4, is stable, but still has some limi-
tations. Most notably, only single-cluster com-
munication is supported for now; it is not pos-
sible to set up links between nodes in different
clusters or different zones.

12.2 Standardization

Open Source Development Lab (OSDL) has
defined TIPC as a cornerstone in their Carrier
Grade Linux (CGL) strategy, and people from
OSDL are contributing actively to the code.
TIPC meet several Priority 1 requirements and
many Priority 2 requirements in the clustering
specifications of Carrier Grade Linux version
2.0 [7]. Within IETF, the ForCES Work Group
is considering TIPC to be used as transport pro-
tocol between forwarding and control elements
in distributed routers. An IETF-draft [4] with
a complete specification was presented for the
WG at IETF-59 for this purpose.

12.3 Roadmap

The goal is to have TIPC accepted as an in-
tegrated part of the Linux kernel in future
releases (2.7/2.8). Before the end of 2004,
we also want to have it accepted as the pre-
ferred protocol for intra cluster transport of the
ForCES protocol. Also, before the end of this
year, we plan to have developed full support for
inter-cluster and inter-zone communication, as
well as a redesigned slave node communication
framework.

13 Conclusion

Within Ericsson, TIPC has proven to be a very
useful toolbox for design of high-availability
clusters. It is our hope that this experience will
be repeated by others now as the potential of
advanced clustering is becoming more widely
recognized.
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Abstract

Physical to virtual translation of user addresses
(reverse mapping) has long been sought af-
ter to improve the pageout algorithms of the
VM. An implementation was added to 2.6
that uses back pointers from each page to its
mapping (pte chains). While pte chains do
work, they add significant spaceoverhead and
significant time overhead during page map-
ping/unmapping and fork/exit.

I will describe an alternative method of reverse
mapping based on the object each page belongs
to. I will discuss the partial implementation
I did last year as well as the work done by
Hugh Dickins and Andrea Arcangelli to com-
plete it. I will describe the current implemen-
tations, their relative strengths and weaknesses,
and what plans if any there are for solutions to
the remaining issues.

1 Introduction

Up through version 2.4, the Linux® kernel
had no mechanism for translating physical ad-
dresses to user virtual addresses, commonly
called reverse mapping, or rmap. This meant it
was not possible for the memory management
subsystem to point to a physical page and re-
move all its mappings. There was a mechanism
that walked through each process’s mappings
and selected pages to unmap. Only after all a
page’s mappings were removed could it be se-
lected for pageout.

Many in the memory management community
considered this very inefficient. Page aging and
removal could be made much more efficient if
the page could be directly unmapped when it
was ready to be removed. Some form of rmap
was clearly needed for this to work.

2 PTE Chains

Rik van Riel implemented an rmap mecha-
nism that added a chain of pointers to each
page back to all its mappings, commonly called
pte_chains . It works by adding a linked list
to the control structure for each physical page
(struct page) which points to all the page ta-
ble entries that map that page. His code was
accepted into mainline early in the 2.5 devel-
opment cycle.

Once this rmap implementation was in place
the page aging and removal algorithm was
changed to use it, streamlining the code and al-
lowing better tuning.

One negative to thepte_chain implemen-
tation was a significant performance cost to
fork , exec , and exit . The cost to these
functions was related to the amount of mem-
ory mapped to the process, but was close to an
order of magnitude worse.

A second cost was space. In its original form
pte_chains cost two pointers per mapping.
An optimization eliminated the extra structure
for singly-mapped pages and another optimiza-
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tion added multiple pointers per list entry, but
the space taken by thepte_chain structures
was still significant.

3 A Brief History of Object-based
Rmap

Processes do not really map memory one page
at a time. They map a range of data from an
offset within some object (usually a file) to a
range of addresses. The virtual addresses of all
pages within that range can be calculated from
their offset in that object and the base mapping
address of the range.

The kernel has the information to do object-
based reverse mapping for files. Eachstruct
page for a file has an offset and a pointer to
a struct address_space , which is the
base anchor for all memory associated with a
file. Every time a range of data from that file
is mapped to a process, avm_area_struct
or vma is created. Thevma contains the vir-
tual address of the mapping and the base offset
within the file. It is then added to a linked list
of all vmas in theaddress_space for that
file.

The remaining problem in the kernel is anony-
mous memory. Blocks of anonymous memory
havevmas but thesevmas are not connected to
any common object that can be used for reverse
mapping.

3.1 Partial Object-based Rmap

Given this information, last year I did a sam-
ple implementation of object-based rmap for
files, but left thepte_chain implementation
in place for anonymous memory. It works by
following the pointer in thestruct page to
the struct address_space , then walk-
ing the linked list ofvmas to find all that con-
tain the page. A simple calculation then de-

termines the virtual address of that page and a
page table walk finds the page table entry.

This implementation recovers the performance
of fork , exec , andexit and eliminates the
space penalty used bypte_chain structures.
It introduces a performance penalty when it
walks the linked list ofvmas, but this is in-
curred by the page aging code instead of the
application code. It could still be significant,
however, since it rises linearly with the num-
ber of times any part of the file is mapped while
with pte_chains the cost rises linearly with
the number of times that page is mapped.

3.2 First Cut at Full Object-based Rmap

Hugh Dickins took my implemenation and
extended it to handle anonymous mappings,
eliminating pte_chains entirely. He did
this by creating ananonmm object for each
process that all anonymous pages belong to.
All anonmmstructures are linked together by
fork . A new anonmmstructure is allocated
onexec . The offset stored instruct page
is the virtual address of the page, while the ob-
ject pointer points to ananonmmthat the page
is mapped in.

Finding all mappings of a page is simple. The
pointer in struct page is followed to the
anonmmchain, which is then walked looking
for mappings of that page at the virtual address
specified in the offset.

Hugh’s initial patch ignored the problem of
shared anonymous pages that were remapped
by an mremap call. The problem with
mremap is that it allows an anonymous page
to be at different virtual addresses in different
processes, but there is only one offset for the
page.

After some initial discussion among the com-
munity, both Hugh and I moved on to other
things.
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3.3 A Second Cut at Full Object-based Rmap

In February of this year Andrea Arcangeli be-
gan to investigate what could be done about
the problems ofpte_chains . He took my
partial object-based rmap patch and imple-
mented his own solution for anonymous mem-
ory, calledanon_vma .

The basic mechanism ofanon_vma is the
addition of ananon_vma structure linked to
each vma that has anonymous pages. The
anon_vma structure has a linked list of
all vmas that map that anonymous range.
The pointer instruct page points to the
anon_vma and the index is the offset into the
current mapping.

An advantage of Andrea’sanon_vma struc-
ture is that it solves the mremap problem that
theanonmmstructure did not. Since the offset
stored in each page is relative to the base of the
vma that maps it, the region can be remapped
without changing the offset. However, since
vmas can be merged, it is not an an absolutely
painless solution.

4 Advancements All Around

In response to Andrea’s patch, Hugh resumed
work on hisanonmmpatch. Prompted by a
discussion among the community and an ap-
proach suggested by Linus, Hugh implemented
a simple scheme for handling the remap case.
For each page, if there is only one reference,
that page can simply have its offset changed.
If the page is shared, a copy is forced and the
new unshared page is mapped at the new ad-
dress. Since all anonymous pages are already
copy-on-write, it is likely that the page would
be written to eventually and the copy taken.
It is possible that some read-only pages might
be duplicated, but to date there is no evidence
that any code actually remaps shared read-only

anonymous pages.

5 Thevma List Problem

All these implementations still include the
original implementation for file pages, includ-
ing the need to walk the linked list ofvmas
attached to theaddress_space structure.
This has been identified as a possible per-
formance issue for massively mapped files,
though few if any real-life examples have been
found. A few optimizations have been tried,
including sorting the list by start address and
making a two level list based on start and end
address. Both these solutions share the prob-
lem that adding or modifying avma is fairly
expensive and holds the associated lock for a
long time.

A recent contribution by Rajesh Venkatasubra-
manian is the use of aprio_tree , which is
similar to a radix tree but supports sorting ob-
jects by both start and end addresses. It adds
some complexity to thevma list but greatly
reduces the potential performance impact of a
large number of mappings.

6 The remap_file_pages
Problem

While object-based rmap appears relatively
simple, there is one new feature that greatly
complicates the problem. This feature is
remap_file_pages .

The remap_file_pages system call was
introduced during the 2.5 development cycle.
It works on a range of shared memory mapped
from a file, and allows an application to change
the memory range to map a different offset
within that file. This is done without modifying
the vma describing the mapping. This means
the offsets specified within thevma are now
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wrong. Since theaddress_space pointer
and offset within thepage structure are intact,
the page can still be mapped back to its place in
the file, but it is no longer possible to use this
information to find its virtual mappings. The
vma is called anonlinear vma and is put
on a special list within theaddress_space .

Andrea and Hugh have provided two different
solutions to the problem of what to do when a
nonlinear page is called to be unmapped. An-
drea’s solution is the more draconian in that it
walks the list of nonlinearvmas and unmaps all
pages in them until the page in question has no
more mappings. Hugh’s solution only unmaps
a fixed number of nonlinear pages and makes
no attempt to unmap the actual page passed in.

7 Release Status

As of the date this was written, Hugh has been
submitting incremental rmap changes to An-
drew Morton for the -mm tree over the past
couple of months. The early submissions were
primarily cleanup, but later patches included
first my partial object-based rmap implementa-
tion followed by hisanonmmimplementation,
which completely removed thepte_chain
code.

Hugh has just submitted a final set of patches to
Andrew that removes hisanonmmimplemen-
tation and replaces it with Andrea’sanon_
vma implementation.

The general expectation among the VM devel-
oper community is that once this code has been
adequately tested in the -mm tree that it will
replace the existingpte_chain implementa-
tion in mainline 2.6.

Legal Statement
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ness Machines Corporation in the United States,
other countries, or both.

Linux is a registered trademark of Linus Torvalds.
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the trademarks or service marks of others.



The World of OpenOffice

Michael Meeks
Novell, Inc.

mmeeks@novell.com

Abstract

In this talk I will present some of the is-
sues facing OpenOffice.org, particularly re-
lated to: performance, interoperability, build-
ability, ABI / engineering and release practice.
We’ll look at how to build the beast, the UNO
component model, and iterate a quick hack be-
fore your eyes. We’ll also show some of the
flash new features including the Gnome desk-
top integration work.

1 A friendly giant

The OpenOffice.org source base is one of the
largest monolithic Free software projects in ex-
istence, even with the pre-compiled mozilla bi-
naries for several architectures stripped out:

Project
Source bz2

(MB)
Mozilla 1.4.1 31
Linux 2.6.7 33
GNOME 2.6.2 108
OO.o 1.1.2 160

OpenOffice.org (OO.o) represents one of the
largest single contributions to Free software
ever. Given this, it is somewhat incredible that
Sun immediately settled on a licensing scheme
in that is both liberal and substantially symmet-
ric.

OpenOffice.org is licensed under two licenses:

• LGPL– the familiar, and best Lesser GPL.

• SISSL – essentially X11 with trip-wires
for malicious UNO API, and XML file
format compatibility breakage.

While it is necessary to share copyright with
Sun by signing the Joint Copyright Assignment
(JCA)[2], the use of OO.o code in StarOffice
can be considered as being achieved under the
SISSL[3] provisions.

Thus there is clearly huge potential for add-
ins, integration with proprietary data-feeds,
macros, etc.

2 Sun’s dilemma

Sun’s StarOffice product substantially consists
of the OpenOffice.org core, as seen in public
CVS, with the addition of a few extra propri-
etary modules. While this means that all the
latest bug fixes are available in public CVS, it
creates a number of frustrating artificial prob-
lems:

2.1 Release Engineering

• minor release cycles – there is a
correct separation of commercial updates;
of around once per quarter; thus this tends
to be the frequency of minor OO.o re-
leases regardless of bugginess.

• release patch-size – there is a
fixed upper-bound on the size of a cus-
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tomer patch download, thus ABI alter-
ations in low-level libraries which would
have a large knock-on effect, are forbid-
den.

• ultra conservatism – since cus-
tomer updates are infrequent there is little
incentive to back-port fixes to the stable
branch; so many, trivial but high-impact
fixes don’t make it.

• major release cycles – for rea-
sons unknown StarOffice works on an 18-
month release cycle, so—at times (given
freezes, etc.), it is possible to punt a fea-
ture / fix by nearly 2 years.

Clearly many of these problems make the OO.o
development process somewhat cumbersome.

2.2 Portability Engineering

In contrast to many Free software project,
StarOffice and hence OO.o, is designed to run
on a broad spectrum of operating systems and
versions. By contrast, e.g. GNOME applica-
tions, would typically require the latest version
of GNOME to run.

This creates a number of interesting, hard-core
engineering issues, and shows up the true state
of Linux as a robust platform for ISVs.

For example, for font discovery much Linux
software will link to the pleasant fontconfig li-
brary, and use purely client-side font render-
ing. OO.o in contrast has to run on older (or
newer) platforms where there is either no font-
config install, or it has a changed ABI, or it is
badly configured. Thus the OO.o font discov-
ery method uses the following heuristics:

• fontconfig – since this may not be
available, we try todlopen it, hook out
various symbols, and extract a simple list
of font filenames.

• chkfontpath – Red Hat, and others
once shipped this tool which dumps a list
of font paths; we try topopen and parse
the output.

• hard-coded paths – various direc-
tories such as/usr/X11R6/lib/X11/

fonts/truetype are known to be a
good bet, and are scanned for fonts, in-
cluding several language specific variants.

• X server query – the X server is
queried to see what it can do, and a load
of XLFDs are parsed.

• internal fonts – whatever internal
fonts, and font-metric files we distribute
are added to the mix.

Naturally, after doing all this work, we build a
OO.o specific cache of much of the informa-
tion, to accelerate subsequent startup.

This heavily engineered approach is not con-
strained to any one API-set, or technology—
so, e.g., OO.o will attempt to use either lpr or
cups for printing in a dynamic fashion.

Even glibc problems show up in Figure 1.

In addition, the cross-platform nature of OO.o
and the unpredictability of the Linux feature-
set (particularly the C++ ABI), leads to a
large number of software packages being in-
cluded inside the OO.o build itself. Thus, a
stock OOo would include it’s own compiles
of (at least): python , freetype , zlib ,
expat , libdb , NAS, neon , curl , sane ,
myspell , Xrender .

As is probably obvious, this level of old plat-
form support, and dependency aversion is hard
to get enthusiastic about.
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typedef struct {
struct { long status; int spinlock; } sem_lock;
int sem_value;
void *sem_waiting;

} glibc_21_sem_t;
/*

* XXX this a hack of course. since sizeof(sem_t) changed
* from glibc-2.0.7 to glibc-2.1.x, we have to allocate the
* larger of both XXX
*/

#ifdef LINUX
if (sizeof(glibc_21_sem_t) > sizeof(sem_t))

Semaphore = malloc(sizeof(glibc_21_sem_t));
else

#endif
Semaphore = malloc(sizeof(sem_t));

}

Figure 1: compatibility with oldglibc versions

3 Community Issues

In addition to these unusual constraints, the
OO.o project is encumbered by acute tooling
and collaboration inadequacies.

Perhaps the most serious problem, is that it ap-
pears CVS was not designed with 200+ MB of
source / binaries in mind. Thus, even basic op-
erations, such as acvs tag can take up to a
couple of hours, and are frequently blocked by
robots slowly traversing the repository.

Secondarily, the collab.net SourceCast system
adds a level of bureaucracy, and lack of re-
sponsiveness which when combined with be-
ing totally un-fixable makes for an unneces-
sarily painful experience. It seems likely that
SourceCast is ideal for the use of existing, es-
tablished Free software projects, or even newly
formed projects—but it stumbles with OO.o.
Furthermore, using closed software for Open
Source collaboration is an intrinsically inter-
esting decision.

4 The other side of the coin

4.1 http://ooo.ximian.com/

To make up for the existing inadequate web-
tools, and documentation we provide several
‘external’ tools of interest.

• hackers guide – a Linux focused,
hackers guide on how to build, iterate, and
some basics of the OO.o code structure.

• LXR/Bonsai – basic web tools without
which navigating the OO.o source is sub-
stantially more difficult.

• bug filing – a gateway that de-
mangles the curious user-focused issue fil-
ing process, and allows bug filing directly
against given code modules.

• Planet OO.o – the obligatory RSS ag-
gregator.

4.2 ooo-build

The process of productising OO.o into a Linux
package is filled with pain; so to amortise this
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a collaboration has coalesced between various
Linux vendors: Novell ne Ximian, Debian,
Red Hat, SuSE, Ark, and PLD Linux around
ooo-build.

ooo-build provides a growing set of useful
patches many of which may arrive in OO.o in
many months time; indeed all our work is in-
tended to go up-stream into OO.o. We also pro-
vide a simple patch sub-setting system, to al-
low vendors to select a suitable set of patches.

Many of the features associated with ooo-build
are desktop integration, system integration, and
GUI cleanup pieces; e.g.:

• attractive new icons

• native-widget rendering

• GNOME-VFS integration

• ergonomic & aesthetic fixes

• system library usage

The ooo-build wrapper is also intended to
make OO.o substantially easier to compile with
a familiar ./configure; ./download;
make; make install process.

5 Performance

Performance is an area ripe for substantial
improvement in OO.o, however, poor perfor-
mance is caused by many factors, and identify-
ing the most important of these is not always
easy.

5.1 Linking

The linker has a very hard time linking OO.o,
and while this can be reduced by pre-linking,
the architecture of OO.o—whereby the major-
ity of the code is in shared libraries required

not by the main binary—but by other shared
component libraries, linked at run-time.

Ulrich’s analysis of OO.o [1] shows that
20,000 relocations are performed during
startup, which combined with lookups across
multiple libraries gives 1,700,000 string com-
parisons to startup. The sheer size of the sym-
bol tables and the lack of locality of reference
in the linking process causes much of this work
to fall outside the processors’ cache—giving
abnormally poor performance.

5.2 C++ issues

Some features of C++ exacerbate the problems
of large symbol tables, and poor startup perfor-
mance. The stripping / re-working of static ini-
tialisers has helped accelerate performance—
these being replaced with a thread-safe late
instantiation based on accessor method local
static variables.

C++ is a very symbol-hungry language—
particularly with respect to virtual functions,
which create an unnecessary burden (Figure 2).
Virtual functions, despite resolving to a sim-
ple function pointer export a symbol, which is
referred to directly to chain to parent imple-
mentations. While of course this can often be
resolved away at link time, in a cross-library
situation it would perhaps be more efficient to
dereference a parent vtable function pointer.

Similarly, since in theory at least, a single class
can be implemented across multiple shared ob-
jects, even ‘private:’ methods export symbols.

In addition to these problems, a more pro-
active approach to pruning old, and redun-
dant code has been adopted in the development
branch, to reduce code footprint, and symbol
count.
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class Foo : public Baa {
virtual void VFunc();

private:
void ExportsSymbol();

};
...
void VFunc()
{

...
Baa::VFunc();

}

Figure 2:C++ virtual functions

5.3 Binary filter code

To shrink the OO.o footprint, a large chunk
of creaking binary format code has been ex-
tracted, along with compatible chunks of the
core. This code pre-dating the XML file
formats scattered the process of serialisation
across the code, and resulted in a complex,
hard-to-maintain and increasingly irrelevant
maintenance problem. In OO.o 2.0 it will be
used only on the rare occasions it is necessary
as a binary to XML filter.

5.4 system libraries

Shrinking the large number of internal li-
braries, on Linux systems, and increasing the
number of libraries shared with the system is
an important part of performance improvement
in 2.0. It clearly makes little sense to have an
internal gtk+ library when the system version
is ABI compatible, and better maintained.

Using system libraries—e.g., neon—also re-
duces the pain of handling security updates in
the built-in libraries.

5.5 mmap performance

Possibly the most significant speedup in the 1.0
to 1.1 transition was the process of forcing as

much of the OO.o code into memory before at-
tempting to run it. This gave a very noticeable
win; this was implemented in a simple fash-
ion with mmap, and a loop reading a byte from
each page. Ideally of course, the underling op-
erating system would be able to do better here.

6 Interoperability

In a world where a tiny fraction of people are
using Free software, the ability to share docu-
ments in a loss-less fashion with other people
is crucial to the adoption of OO.o.

Much work has been done in this area for 2.0,
of particular note the row-limit in calc has been
raised to that of Excel, and much work has
been done on form controls.

There are also exciting developments in VBA
interoperability. OO.o provides a VBA-like
language: StarBasic, and by devious means it
has been possible to extract VBA text from Of-
fice files for some while. Office for perfor-
mance reasons however stores VBA in 3 forms:
an SRPstream, a compiled form, and a com-
pressed text form. Since these are authorita-
tive in that order (the text providing only a fi-
nal fallback), it was thought that effective ex-
port would entail reverse engineering at least
the the compiled form.

However in recent time, yet more devious
means have been discovered to export macros
as text to Excel and have them run transpar-
ently to the user. This it turns out is the founda-
tion of macro interoperability between Office
versions 97 through XP. Thus work is ongoing
to improve the macro support so crucial for ef-
fective Excel interoperability.
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7 Desktop integration

Much of the work of ooo-build has been
adopted in one form or another up-stream for
2.0, giving the prospect of a highly desktop in-
tegrated OO.o experience out-of-the-box.

To achieve this, the lowest levels of OO.o’s
cross-platform abstraction: the Visual Class
Library (VCL) have been virtualised, and now
the main-loop, and top-level windows on a
GNOME system are handled by the gtk+
toolkit. In order to avoid a complete re-write of
the widget system—we use a simplified them-
ing system that virtualises only the rendering
of widgets, allowing basic widgets to match the
look of the rest of the desktop.

Similarly main-loop integration makes things
such as integrating the gtk+ file-selector and
other GNOME dialogs fairly simple. The
main-loop integration was made substantially
more painful by the mis-match between the
recursive OO.o toolkit lock, and the non-
recursive gtk+ lock. In order to reconcile these
and provide a single, comprehensible locking
pattern—after considerable thought we added
hooks to gtk+ to allow a shared (recursive) lock
to be used. This makes gtk+ use in OO.o virtu-
ally seamless.

8 UNO component model

OO.o provides a rich, and well documented
component model, which is exported for the
use of language bindings. The power of this,
and its flexibility have resulted in active bind-
ings for StarBasic, Java, and Python.

The UNO model is particularly interesting,
since it consumes little overhead beyond a
stock C++ virtual function call. In addition
each class has associated, small compiled IDL
type information. This can be used, to dynam-

ically (at run time) construct bridges to other
languages, and allow dynamic method invo-
cation. While this adds a compiler version /
ABI dependency to the OO.o core, it avoids the
problem of creating stub / skeleton code which
ended up consuming many MB before the dy-
namic approach was adopted.

9 Conclusions

OO.o provides an unusualm and particularly
pathalogical case of a gigantic C++ project.
This leads us to push the boundaries of the sys-
tem, showing up several areas for potential im-
provement.

The ooo-build infrastructure provides a solid
base for contributing work to OO.o in a famil-
iar and accessible manner, and seeing the de-
ployed results of your work quickly.

OpenOffice 2.0 will give substantial perfor-
mance, code-cleanliness and interoperability
improvements, in addition to many new fea-
tures.
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Abstract

In this paper I will describe the work I am
doing on the Linux networking infrastructure,
with emphasis on cleaning the code, but with
important “side effects” like reduction of core
structures already saving over 600 bytes on
UDP sockets all over the net in 2.5/2.6 (tcp,
etc.), elimination of data dependencies, reduc-
tion of the non-mainstream network families
maintenance cost by making them use code
that now is innet/ipv4 but can be moved
to net/core , leaving only the really ipv4-
specific code and making LLC use it as a proof
of concept (work done in my net-exp tree,
pending submission).

TCP code becomes used by the poor cousins,
they appreciate that!

1 How This Started

Making IPX uptodate with regards to advances
in the core networking infrastructure, to kill
deliver_to_old_ones , i.e., special cases
in the core kernel for protocols that hasn’t been
converted to shared skbs and multithreading.

In the process I noticed several areas where
code was replicated or used a different, older
framework, due to the evolution of the core net-
working infrastructure.

Also de experience of porting the NetBEUI
and LLC code released as GPL by Procom
Inc. from the 2.0 Linux kernel networking in-
frastructure to 2.4 and then to 2.5/6, working
on a BSD sockets API forPF_LLC, initially
contributed by Jay Schullist was instrumental
in realising the existing similarities in the in-
frastructure needs required by several protocol
families.

2 TCP/IP Evolves Faster

Most of the attention is given, of course,
to TCP/IP, and in the process new infras-
tructure is created, with TCP/IP using it at
first and sometimes leaving things like the
deliver_to_old_ones function to sim-
ulate the previously existing big networking
lock and theSOCKOPS_WRAPPEDmacro, to
allow the other protocol families to continue
working, hoping that their maintainers do the
necessary work, but this sometimes doesn’t
happen for a long time.

In other cases code is added to TCP/IP that,
upon further inspection, could be moved to
net/core and be useful for the other proto-
col families.

Doing this factorization will help make these
improvements to TCP/IP be taken advantage of
by the other protocol families and will help in
realising the ultimate goal of keep the proto-
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col families code with just what is completely
specific.

3 Trimming struct sock

In 2.4,struct sock has a big fat union that
has most of the private data for each protocol
family, so when any change had to be done to a
specific protocol family the layout ofstruct
sock would change, generating unnecessary
recompilation of most of the network related
code in the kernel.

In 2.6 this has changed andstruct sock
nowadays is mostly free of details specific to
network protocol families.

In the process two ways were devised to store
the network protocol private area, one for pro-
tocols that have stringent performance require-
ments, like TCP/IP, using per-protocol slab
caches and another one, simpler, that allows
protocol families to just allocate a chunk of
memory and store its pointer in thestruct
sock member sk_protinfo . As most
stacks now use helper macros to access its pri-
vate area, the eventual switch to the slab cache
approach is easily done.

With this in place the footprint of thestruct
sock , that was of about 1280 bytes on a UP
machine in 2.4 to 308 bytes for the generic
sock slabcache in 2.6, with thetcp_sock
slabcache using 1004 bytes,udp_sock slab-
cache using 484 bytes and finally theunix_
sock (PF_UNIX sockets) using just 356
bytes.

This changes also resulted in a performance
gain in the establishment of connections, as
was verified with thelmbench tool.

Another related change was to diminish the
data dependency amongstruct sock and
struct tcp_tw_bucket , that is a “mini

socket” used to represent TCP connections
in the TIME_WAIT state. To accomplish
this, struct sock_common was intro-
duced, that is the minimal required set of mem-
bers common to these structs. With this data
layout we will certainly avoid bugs introduced
when changing only one of the structs, like has
happened at least once to my knowledge.

4 Usinglist.h in the Networking
Code

With the advent of the hashed lists (struct
hlist_node) it turned out to be useful to
make the networking code follow the general
kernel trend of using thelinux/list.h
macros, replacing the ad-hoc lists present in the
networking code.

The work consisted of introducing a set of
helper macros to handlestruct sock list
handling, namelysk_add_node and sk_
del_node_init , and bind list variants.

These functions also bump the reference count
for the socket, something that was not being
done by some protocols, that have since been
converted to use this new set of helper macros,
thus fixing some bugs in the process.

It should also be noted thathlist started
using prefetch as part of the process of con-
vincing David Miller, the Linux Networking
maintainer, to accept such changes. Perfor-
mance gains are an important technique in get-
ting code-cleaning patches accepted.

5 Socket Timers Manipulation
Helpers

Another area that received attention was the
socket timers manipulation routines, that in
some protocols aren’t always bumping the ref-
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erence count as they should and do in the Blue-
tooth and TCP/IP code.

To abstract this handling thesk_reset_
timer andsk_stop_timer functions were
introduced recently to do thetimer_list
handling and deal withstruct sock refer-
ence counting.

6 Factorization of net/ipv4 Code

In the past Alan Cox worked on having data-
gram code that could be shared among several
network families shared at thenet/core/
datagram.c file, moving chunks of code out
of the UDP implementation.

Now with this work I’m trying to do the same
with the stream code, now moving chunks of
TCP code to the core infrastructure.

Initial steps are just moving code around,
like tcp_eat_skb , that becamesk_eat_
skb ; tcp_data_wait becamesk_wait_
data ; and here we see something interest-
ing, namely the fact that this function correctly
sets theSOCK_ASYNC_WAITDATAbits in the
struct socket flags member, something
that some protocols aren’t doing now but will
as soon as they start usingsk_wait_data .

In my net-experimental tree I have in-
troduced some new members to thestruct
sock membersk_prot , allowing both TCP
and LLC to use commonstream_sendmsg
and stream_sendpage functions, that are
generalizations oftcp_sendmsg and tcp_
sendpage . Further work is needed to fully
determine the performance implications of
such changes, but no noticeable performance
drop or stability problems have been verified in
using this patched kernel in my main machine
for over a month.

7 BSD Sockets Layer

There is some duplication of work at the BSD
sockets level among the network protocol fam-
ilies implementation. Trying to reduce the
code required to implement a protocol fam-
ily is being investigated, with some proofs-of-
concept already implemented, where the func-
tions now used for TCP/IP are being shared
with LLC.

The idea here is to to reduce the protocol-
specific implementation to just that, i.e., what
is absolutely specific to each protocol.

Perhaps this will make it easier to stack pro-
tocols, allowing combinations that are possible
in other kernels but not on Linux right now.

The extra function pointers insk->sk_prot
probably won’t be a problem because they
will make it possible to eliminatesock->
proto_ops by calling directly thesk->sk_
prot functions.

8 Future Developments

With this newly common infrastructure, it may
be possible to add features like network async
I/O to all protocols. More sharing will be in-
vestigated, trying to avoid pitfalls that appeared
in similar work done in other kernel subsys-
tems.

9 Conclusion

Looking every other year at how core infras-
tructures evolve and how the implementations
of subsystems attached to those infrastructure
evolve is something that should be done, pay-
ing off in terms of code clarity, reduction of the
cost of maintaining code that has come out of
mainstream but are still used in lots of legacy
setups.
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Another eventual benefit gained is the perfor-
mance one, as making the code clear and more
general is not incompatible with having fast
code.

Reuse the code, Luke.
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Abstract

USAGI Project [8] has improved Linux
IPv6 [1] stack. IPv6 IPsec is one of the prod-
ucts of our efforts. Linux IPsec [6] stack is im-
plemented based on XFRM architecture which
is introduced in linux-2.5. We design and im-
plement Mobile IPv6 (MIPv6) [4] Stack on the
architecture. MIPv6 uses IPsec for its secure
signaling. Accordingly IPv6 IPsec and MIPv6
closely cooperate each other. In this paper we
describe the architecture and how they work.

1 Introduction

IPv6 is the next version of an Internet Protocol.
The protocol was developed against IPv4 ad-
dress exhaustion. It was developed for not only
spreading address space but improving some
features such as plug and play, aggregatable
routing architecture, IPsec native support and
smooth transition.

IPsec provides security services which are in-
tegrity, authentication, anti-replay attacks and
confidentiality. Because IPsec is mandatory in
IPv6 specification, we must implement IPsec
to conform to it.

MIPv6 provides all IPv6 nodes with mobility
service which allows nodes to remain reach-
able while moving around IPv6 networks.
To support mobility, We need some signal-
ing architecture to notify movement and de-
liver mechanisms to assure reachability. Us-
ing MIPv6, we can keep routability to mobile
node’s home link address and deliver a packet
to mobile node wherever it is on the network.
Because IPv6 is able to process these extension
headers natively, we no longer need to arrange
foreign agents to all links where mobile node
may move to as Mobile IPv4 does, so that IP
mobility is easier to be introduce in IPv6 than
IPv4.

Linux supported IPsec at version 2.5.47. How-
ever it supporting only IPv4 IPsec, we imple-
mented IPsec stack for IPv6. Linux version 2.6
supports IPsec on both IPv6 and IPv4. XFRM
architecture and stackable destination were in-
troduced into the kernel for IPsec packet pro-
cessing [7]. They can be not only for IPsec
packet processing, but also general packet pro-
cessing such as MIPv6. USAGI Project de-
cided to expand the architecture to implement
MIPv6.

To develop Linux MIPv6, we cooperate with
GO/Core Project [2] which is proven in linux-



372 • Linux Symposium 2004 • Volume Two

2.4.

2 XFRM and stackable destination

XFRM architecture is mainly consist of three
structures which are xfrm_policy, xfrm_state
and xfrm_tmpl. xfrm_policy corresponds to
IPsec policy and xfrm_state to IPsec SA.
xfrm_tmpl is intermediate structure between
xfrm_policy and xfrm_state. Each IPsec pol-
icy and SA database are realized with list of
the structures which are also contained hash
database.

The kernel provides three interface to configure
xfrm structures about IPsec. One is PF_KEY
interface which is standard interface to manip-
ulate IPsec database. another is netlink socket
interface. The last is socket option interface.

Stackable destination is architecture for effi-
cient outbound packet processing. It is a link
list of dst_entry structure which is cached in
xfrm_policy. To create stackable destination,
the kernel linearly searches xfrm_policy with
flow information for a sending packet after
routing looking up. After finding xfrm_policy
corresponding to the flow information, the
kernel searches and gathers xfrm_state from
xfrm_state database by xfrm_tmpl in the
xfrm_policy. Gathering xfrm_states, the ker-
nel builds up stackable destination and sub-
stitutes it into its own member “bundles” to
cache it. Additionally xfrm_policy itself is
cache in flow_cache. Therefore the kernel only
needs to lookup xfrm_policy after second until
xfrm_state expired.

3 IPsec

IPsec functionality is consist of packet process-
ing and key exchanging for automatic keying.
In the implementation of Linux packet process-
ing runs in the kernel and key exchange is done

by a key exchange daemon in user space.

3.1 IPsec database and packet processing

IPsec packet processing is realized with XFRM
architecture and stackable destination. Out-
bound process is explained in previous sec-
tion. With searching XFRM database and
building stackable destination, the kernel gets
list of dst_entry structure. To process each
function which are ah6_output, esp6_output
and ipcomp6_output, the kernel searches inser-
tion point on a packet because a packet is cre-
ated including IPv6 header and other extension
headers before stackable destination process
(Figure 1). The insertion point is before up-
per layer payload, fragmentable destination op-
tions header, IPsec header or fragment header.
This is not efficient because the kernel searches
the insertion point every time when processing
one dst_entry.

Inbound process is simpler than outbound pro-
cess. When packet containing AH or ESP,
the kernel finds xfrm_state corresponding to
received packet and keep pointers of used
xfrm_state in sec_path of skb structure. Af-
ter process of IP layer, the kernel checks
the packet correctly processed with comparing
sec_path and xfrm_policy which is searched
with flow information of the packet (Figure 2).

3.2 Interface for user and IKEd

Current linux kernel provides users with
PF_KEY interface, which however is speci-
fied only for IPsec SA interface and it needs
some extension to configure IPsec policy. Be-
cause this extension is not standardized, there
are some different extensions and it prevents
compatibility of IKEd. Linux adopts the ex-
tension which is compatible with KAME [5]
so that racoon is the IKEd for linux. Racoon
is originally product of KAME project and
its could not compile on Linux. Fortunately
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ported racoon which is provided by ipsec-tools
project [3] is available.

4 Mobile IPv6

4.1 Mobile IPv6

In MIPv6, nodes are classified into 3 types.
One is a Mobile Node (MN) which moves in
the IPv6 Internet bringing its home address
(HoA) assigned in a home link which is a
base of mobility and in which there is a home
agent. Home agent (HA) is another type of
node which is a router and manages MN’s ad-
dresses and supports its signaling and ensures
reachability. The other is a correspondent node
(CN) which is a node communicating with a
MN. CN may be either mobile or stationary.

When MN in a foreign link, it uses a care-of ad-
dress (CoA) which is the address of a foreign
link. MIPv6 accordingly needs to manage rela-
tionship between CoA and HoA. A MN sends
a packet including HoA in an extension header
from CoA.

MIPv6 appends two extension headers and one
option for destination options header. Mobility
Header (MH) is an extension header for sig-
naling to manage binding cache which is a ad-
dress list for optimized routing. Type2 rout-
ing header (RT2) which is different from rout-
ing header in RFC2460 effects destination ad-
dress in IPv6 header and realizes direct rout-
ing according to binding cache. Home Address
Option (HAO) is an option carried by destina-
tion options header to contain HoA which is
an address of a MN in home link and swapped
with CoA. HAO effects source address in IPv6
header.

We describe an outline of the procedure tak-
ing as an example that MN making binding
cache on HA and communicating CN after MN
moving to a foreign link (Figure 3). This pro-

cedure is divided two steps. First is making
IPv6 over IPv6 tunnel between MN and HA
(1-4). After this step, HoA of MN becomes
routable and MN is able to communicate with
all nodes by using HoA via HA through the
tunnel. Second is route optimization between
MN and CN because MN always communicat-
ing via HA (5-8), a packet goes through a su-
perfluous route and communication uses more
network resource.

1. MN sends a Binding Update (BU) to HA.

2. HA updates a binding cache and returns
Binding Acknowledgment (BA) to MN.

3. MN updates a binding update list.

4. At this time, there is a tunnel between MN
and HA.

5. MN sends HoTI to CN through the tunnel
and CoTI to CN directly from CoA.

6. CN keeps contents of HoTI and CoTI. CN
returns HoT via HA and CoT to CoA.

7. When MN receives HoT and CoT, MN
sends BU to CN and updates its own bind-
ing list.

8. Then MN and CN have binding between
HoA and CoA. They communicate di-
rectly with appending HAO and RT2 to
packets. They have an optimized route.

4.2 Implementation

We design MIPv6 in Linux consisted with two
part. One is packet processing for RT2 and
HAO in the kernel and the other is MIPv6 dae-
mon (MIPd) to handle the signaling and man-
age binding cache and binding update list. It
is similar to separation of packet process and
IKEd in IPsec.
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Figure 3: MIPv6 procedure outline

Packet processing for MIPv6 is realized with
XFRM and stackable destination architecture,
because they are general way to process a
packet which matches some selector. Using
XFRM, we can avoid to implement duplicate
functionality in the kernel. MIPv6 needs to
manage a binding cache which specifies an MN
address on the network on CN and HA. It also
needs to manage a binding update list which
is list of sending binding update request for
CN on MN. We have two choices to implement
this functionality in the kernel or userland. Be-
cause we should implement functionalities in
userland if it is possible, we consider to basi-
cally implement it in userland. Implementing
in userland brings us advantages which are eas-
ier extension its functionality than implement-
ing in the kernel and reducing the kernel size.

Our MIPd’s roles are

• processing a signaling message including
an error message

• managing xfrm_policy and xfrm_state of
MIPv6 in the kernel through the netlink

• managing binding cache and binding up-
date list

• moving detection and changing CoA
when MIPd running on MN

4.3 XFRM operation

In this section, we describe MIPd XFRM op-
eration relating each nodes state with an exam-
ple which is a phase of binding update to HA
and making tunnel for routability. It is called
home registration. At first, we initialize MN
and HA to send and receive binding message.
On MN MIPd sets a xfrm_policy which allows
an outbound packet from HoA to HA, proto
MH, and type BU with appending HAO and a
xfrm_state which appends HOA with CoA to a
packet from HoA to HA and including MH of
BU. It also set xfrm_policy to receive BA, the
policy which allows an inbound packet from
HA to HoA including MH of BA with append-
ing RT2 and the inbound xfrm_state which pro-
cesses RT2. Because MIPd on HA can not ex-
pect the source address of BU from MN, it sets
a xfrm_policy which allows an inbound packet
from Any to HA with MH of BU if it has HAO.
It also set xfrm_state which processes HAO in-
cluded in a packet from ANY to HA with MH
of BU. See Figure 6:INITIALIZE.

MIPd on MN sends BU to HA, the packet
matches with the xfrm_policy and process with
the xfrm_state which appends HAO destina-
tion option and swap a source address in IPv6
header with a CoA. HA received the BU from
MN. In the kernel the packet matching the
xfrm_state, the kernel swaps addresses. Then



376 • Linux Symposium 2004 • Volume Two

MIPd on HA receives BU and updates a bind-
ing cache. MIPd configures xfrm_policy and
xfrm_state for route optimization with high
priority. See Figure 6:Routing Optimization.

At this moment, route optimization is available
for all packets between MN and HA. It also sets
up a tunnel between MN and HA. After some
xfrm_policy and xfrm_state configuration it re-
turns BA with RT2. The kernel of MN receives
BA with RT2 and processes it with the inbound
xfrm_state and throws up BA packet to MIPd.
MIPd on MN updates a binding update list and
sets up the tunnel. Each nodes has totally 6
policies at the end of registration.

5 Cooperation of IPsec and MIPv6

MIPv6 uses IPsec for its secure signaling be-
tween MN and HA. Our design uses XFRM
and stackable destination for both IPsec and
MIPv6. MIPv6 needs two kind of IPsec SA
one is a transport mode SA which is used for
signaling. The other is a tunnel mode SA
which is used instead of IPv6 over IPv6 tunnel.
We consider two steps to implement MIPv6
with IPsec about IPesc policy and SA manage-
ment. At first, we implement MIPd to not only
manage xfrm_policy and xfrm_state of MIPv6
but also IPsec and a xfrm_policy for MIPv6
holds both MIPv6 and IPsec xfrm_tmpl. This
implementation has a couple of issues. One is
separation of management of xfrm_policy and
xfrm_state of IPsec into MIPv6 and ordinary
IPsec. Another issue is interaction between the
kernel and IKE daemon. xfrm_policy includ-
ing a xfrm_tmpls of Mobile IPv6 and IPsec
sends a signal for only MIPd. The other is
the order of xfrm_policy. When some situa-
tion such as configuration done with wrong or-
der, a packet which would be originally applied
MIPv6 and IPsec not be applied only IPsec.

For improvement, we will let the kernel hold

two xfrm databases and mediate them be-
cause it is difficult to manage xfrm_tmpl in
a xfrm_policy via userland interface by two
management daemons and the xfrm_policies
have probably different granularity (Figure 7).
In current outbound process, the kernel looks
up single xfrm_ policy database and gets a
xfrm_policy which includes xfrm_tmpl for
IPsec and xfrm_tmpl for MIPv6. How-
ever we will change the kernel to separately
look up IPsec and MIPv6 xfrm databases
and create temporary xfrm_policy which holds
xfrm_tmpl gathered from each xfrm_policy.
The list of xfrm_tmpl must be serialized as
the order of packet processing. For instance,
the kernel must put xfrm_state for AH at the
end of the list. For inbound process, it is
not so difficult, the kernel processes a packet
by using xfrm_state which is searched and
needs to check sec_path in skb against each
xfrm_policy. To make it be efficient, the kernel
should use flow_cache for inbound process.

If we could merge two policies correctly, we
have another issue. MIPv6 needs two IPsec
SA between NM and HA. One is a transport
mode SA for signaling and the other is a tunnel
mode SA for other packet. Taking outbound
SA as an example, a transport mode SA is ap-
plied by the policy whose selector is from HoA
to HA and protocol MH. On the other hand a
tunnel mode SA is applied by the policy whose
selector is from HoA to ANY and protocol
ANY. The packet should be applied the trans-
port mode SA has possibility to be applied the
tunnel mode SA. We can avoid this mismatch
by using priority in xfrm_policy.

racoon has a couple of issues as IKE daemon
for MIPv6. One is that racoon can not han-
dle multiple peers which have address ANY as
peer’s address in its configuration. When it be-
haves as responder on HA, the issue occurs be-
cause despite multiple peers being, each con-
figuration has addresses from ANY to HA thus
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Figure 4: MIPv6 output process
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Figure 5: MIPv6 input process
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MN HA

xfrm_policy
 src:      ANY
 dst:      HA
 proto:   MH
 type:    BU
 priority:normal
 direct:  in

xfrm_tmpl
 src:     ANY
 dst:     HA
 proc    HAO

xfrm_tmpl
 src:     ANY
 dst:     HA
 proc    ESP
 mode  TR

xfrm_policy
 src:      HoA
 dst:      HA
 proto:   MH
 type:    BU
 priority:normal
 direct:  out

xfrm_tmpl
 src:     HoA
 dst:     HA
 proc    HAO

xfrm_tmpl
 src:     HoA
 dst:     HA
 proc    ESP
 mode  TR

BU

IPv6 HAO ESP MH

xfrm_policy
 src:      HoA
 dst:      HA
 proto:   ANY
 type:    none
 priority:high
 direct:  in

xfrm_tmpl
 src:     HoA
 dst:     HA
 proc    HAO
 addr    CoA   

xfrm_policy
 src:      HA
 dst:      HoA
 proto:   ANY
 type:    none
 priority:high
 direct:  out

xfrm_tmpl
 src:     HA
 dst:     HoA
 proc    RT2
 addr   CoA

xfrm_policy
 src:      HA
 dst:      ANY
 proto:   MH
 type:    BA
 priority:normal
 direct:  out

BA

IPv6 RT2 ESP MH

xfrm_tmpl
 src:     HA
 dst:     ANY
 proc    ESP
 mode   TR

xfrm_policy
 src:      HoA
 dst:      HA
 proto:   MH
 type:    BU
 priority:normal
 direct:  in

xfrm_tmpl
 src:     HoA
 dst:     HA
 proc    RT2

xfrm_tmpl
 src:     HoA
 dst:     HA
 proc    ESP
 mode  TR

*Type 2 routing header is added by MIPd.
*TR is IPsec transport mode.
*TNL is IPsec tunnel mode.

xfrm_policy
 src:      HoA
 dst:      HA
 proto:   ANY
 type:    none
 priority:high
 direct:  out

xfrm_tmpl
 src:     HoA
 dst:     HA
 proc    HAO
 level    use
 addr   CoA

xfrm_policy
 src:      HA
 dst:      HoA
 proto:   ANY
 type:    none
 priority:high
 direct:  in

xfrm_tmpl
 src:     HA
 dst:     HoA
 proc   RT2
addr    CoA

Routing Optimization

IPv6 HAO Payload

IPv6 RT2 Payload

xfrm_policy
 src:      HoA
 dst:      ANY
 proto:   MH
 type:    HoTI
 priority:low
 direct:  in

xfrm_policy
 src:      ANY
 dst:      HoA
 proto:   MH
 type:    HoT
 priority:low
 direct:  out

xfrm_policy
 src:      HoA
 dst:      ANY
 proto:   MH
 type:    HoTI
 priority:low
 direct:  out

xfrm_policy
 src:      ANY
 dst:      HoA
 proto:   MH
 type:    HoT
 priority:low
 direct:  in

Making a tunnel

IPv6 IPv6ESP Payload

xfrm_tmpl
 src:     HpA
 dst:     ANY
 proc    ESP
 mode  TNL

xfrm_tmpl
 src:     AMY
 dst:     HoA
 proc    ESP
 mode  TNL

xfrm_tmpl
 src:     HoA
 dst:     ANY
 proc    ESP
 mode  TNL

xfrm_tmpl
 src:     ANY
 dst:     HoA
 proc    ESP
 mode  TNL

IPv6 IPv6ESP Payload

INITALIZE

Figure 6: Binding update procedure to Home Agent
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Figure 7: MIPv6 and IPsec output process
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racoon can not distinct peer and fails to search
proper key. The other issue is update ISAKMP
SA end-point address. When MN moves, IKEs
on MN and HA need to detect movement in
some way and update its ISAKMP SAs be-
cause an address of those SAs is CoA. To
solve these issues, we will make racoon handle
the multiple peers listen netlink socket for the
detection and make the kernel notify address
changing via netlink socket.

6 Summary

USAGI Project implements IPv6 IPsec and
MIPv6 by using XFRM and stackable desti-
nation architecture. In this paper we describe
our design, implementation and issues. We
also describe future design of IPv6 IPsec and
MIPv6 which improves flexibility of xfrm con-
figuration.

7 future work

Our future works about MIPv6 are

• implement our new design

• make racoon support MIPv6

• NEMO

• Multihome

• vertical hand-over

Additionally we consider that we should im-
prove or change stackable destination itself be-
cause stackable destination runs after building
a packet. Thus, IPv6 packet processing is not
efficient itself because an IPv6 packet has some
extension header and the order of headers is not
always same as the order of process so that ev-
ery process searches correct point on a packet

from the head. We should improve its packet
processing with keeping xfrm architecture and
cache mechanism.
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Abstract

The X window system is generally imple-
mented by directly inserting hardware manip-
ulation code into the X server. Mode selection
and 2D acceleration code are often executed in
user mode and directly communicate with the
hardware. The current architecture provides
for separate 2D and 3D acceleration code, with
the 2D code executed within the X server and
the 3D code directly executed by the applica-
tion, partially in user space and partially in the
kernel. Video mode selection remains within
the X server, creating an artificial dependency
for 3D graphics on the correct operation of the
window system. This paper lays out an alterna-
tive structure for X within the Linux environ-
ment where the responsibility for acceleration
lies entirely within the existing 3D user/kernel
library, the mode selection is delegated to an
external library and the X server becomes a
simple application layered on top of both of
these. Various technical issues related to this
architecture along with a discussion of input
device handling will be discussed.

1 History

The X11[SG92] server architecture was de-
signed assuming significant operating assis-
tance for supporting input and output devices.
How that has changed over the years will in-
form the discussion of the design direction pro-

posed in this paper.

1.1 Original Architecture

One of the first 2D accelerated targets for X11
was the Digital QDSS (Dragon) board. The
Dragon included a 1024x768 frame buffer with
4 or 8 bits for each pixel. The frame buffer
was not addressable by the CPU, rather every
graphics operation was performed by the co-
processor. The Dragon board had only a sin-
gle video mode supporting the monitor sup-
plied with the machine. A primitive terminal
emulator in the kernel provided the text mode
necessary to boot the machine.

Graphics commands to the processor were
queued to a shared DMA buffer. The X server
would block in the kernel waiting for space in
the buffer when full. This is similar to the ar-
chitecture used by the DRI project for acceler-
ated 3D graphics today.

Keyboard and mouse support were provided
by another shared memory queue between the
kernel and X server. Abstract event struc-
tures were constructed by the kernel from the
raw device data, timestamped and placed in
the shared queue. A file descriptor would
be signalled when new data were inserted to
awaken the X server, and the X server could
also directly examine the queue indices which
were stored in the shared segment. This low-
overhead queue polling was used by the X
server to check for new input after every X re-
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quest was executed to reduce input latency.

The hardware sprite was handled in the ker-
nel; its movement was directly connected with
the mouse driver so that it could be moved at
interrupt time, leading to a responsive pointer
even in the face of high CPU load within the
X server and other applications. The keyboard
controller managed the transition from ASCII
console mode to key-transition X mode inter-
nally; abnormal termination of the X server
would leave the underlying console session
working normally.

1.2 The Slippery Slope

Early Sun workstations had unaccelerated
frame buffers. Like the QDSS above, they used
fixed monitors and had no need to support mul-
tiple video modes. As the hardware advanced,
they did actually gain programmable timing
hardware, but that was not configurable from
the user mode applications.

The X server simply mapped the frame buffer
into its address space and manipulated the pixel
values directly. Around 1990, Sun shipped the
cgsix frame buffer which included an acceler-
ator. Unlike the QDSS, the cgsix frame buffer
could be mapped by the CPU, and the acceler-
ator documentation was not published by Sun.
X11R4 included support for this card as a sim-
ple dumb frame buffer. As CPU access to the
frame buffer was slower than with Sun’s ear-
lier unaccelerated frame buffers, the result was
a much slower display.

By disassembling the provided SunWindows
driver, the author was able to construct an ac-
celerated X driver for X11R5 entirely in user
mode. This driver could not block waiting for
the accelerator to finish, rather it would spin,
polling the accelerator until it indicated it was
idle.

Keyboard and mouse support were provided by

the kernel as files from which events could be
read. The lack of any shared memory mech-
anism to signal available input meant that the
original driver would not notice input events
until the X server polled the kernel, something
which could take significant time. As there was
no kernel support for the pointer sprite, the X
server was responsible for updating it as well,
leading to poor mouse tracking when the CPU
was busy.

To ameliorate the poor mouse tracking, the
X server was modified to receive a signal
when input was present on the file descrip-
tors and immediately process the input. When
supported, the hardware sprite would also be
moved at this time, leading to dramatically im-
proved tracking performance. Still, the fact
that the X server itself was responsible for con-
necting the mouse motion to the sprite loca-
tion meant that under high CPU load, the sprite
would noticeably lag the mouse.

Kernel support for the keyboard consisted of
a special mode setting which would transform
the keyboard from an ASCII input device to
reporting raw key transition events. Because
the kernel didn’t track what state the keyboard
was in, the X server had to carefully reset the
keyboard on exit back to ASCII mode or the
user would no longer be able to interact with
the console.

Placing the entire graphics driver in user mode
eliminated the need to write a kernel driver,
but marginalized overall system performance
by forcing the CPU to busy-wait for the graph-
ics engine. Placing responsibility for manging
the sprite led to poor tracking, while requiring
the X server to always reset the keyboard mode
frequently resulted in an unusable system when
X terminated abnormally.

Fixing the kernel to address these problems
was never even considered; the problems didn’t
prevent the system from functioning, they only
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made it less than ideal.

1.3 The Dancing Bear

With widespread availability of commodity
386-based PC hardware, numerous vendors be-
gan shipping Unix (and Unix-like) operating
systems for them. These originally did not in-
clude the X window system. A disparate group
of users ported X to these systems without any
support from the operating system vendors.

That these users managed to get X running on
the early 386 hardware was an impressive feat,
but that they had to do everything without any
kernel support only increased the difficulty.

Early PC graphics cards were simple frame
buffers as far as graphics operations went, but
configuring them to generate correct video tim-
ings was far from simple. Because monitors
varied greatly, each graphics card could be pro-
grammed to generate many different video tim-
ings. Incorrect timings could destroy the mon-
itor.

Keyboard support in these early 386-based
Unix systems was very much like the Sun op-
erating system; the keyboard was essentially a
serial device and could be placed in a mode
which translated key transitions into ASCII or
placed a mode which would report the raw
bytes emitted from the keyboard.

The X server would read these raw bytes and
convert them to X events. Again, there was
latency here as the X server would not pro-
cess them except when polling for input across
all X clients and input devices. As with the
Sun driver, if the X server terminated with-
out switching the keyboard back to translated
mode, it would not be usable by the console.
This particular problem was eventually fixed in
some kernels by adding special key sequences
to reset the keyboard to translated mode.

Mouse support really was just a kernel serial
driver—PS/2 mice didn’t exist, and so bus and
serial mice were used. The X server itself
would open the device, configure the commu-
nication parameters and parse the stream of
bytes. As there was no hardware sprite sup-
port, the X server would also have to draw the
cursor on the screen; that operation had to be
synchronized with rendering and so would be
delayed until the server was idle.

Because the X server itself was managing
video mode configuration, an abnormal X
server termination would leave the video card
misconfigured and unusable as the console.
Similarly, the keyboard driver would be left in
untranslated mode, so the user couldn’t even
operate the computer blind to reboot.

This caused the X server to assume the same
reliability requirements as the operating sys-
tem kernel itself; bugs in the X server would
render the system just as unusable as bugs in
the kernel.

1.4 The Pit of Despair

With the addition of graphics acceleration to
the x86 environment, the X server extended its
user-mode operations to include manipulation
of the accelerator. As with the Sun GX driver
described above, these drivers included no ker-
nel support and were forced to busy-wait for
the hardware.

However, unlike the GX hardware, PC graph-
ics hardware would often tie down the PCI
bus while transferring data between the CPU
and the graphics card. Incorrect manipulation
of the hardware would result in the PCI bus
locking and the system not even responding
to network or disk activity. Unlike the simple
keyboard translation problem described above,
this cannot be be fixed in the operating system.

Because the graphics devices had no kernel
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driver support, there was no operating system
management of their address space mappings.
If the BIOS included with the system incor-
rectly mapped the graphics device, it fell to
the X server to repair the PCI mapping spaces.
Manipulating the PCI address configuration
from a user-mode application would work only
on systems without any dynamic management
within the kernel.

If the machine included multiple graphics de-
vices controlled through the standard VGA ad-
dresses, the X server would need to manipulate
these PCI mappings on the fly to address the
active card.

The overall goal was not to build the best sys-
tem possible, but rather to make the code as
portable as possible, even in the face of obvi-
ously incorrect system architecture.

1.5 A Glimmer of Hope

The Mesa project started as a software-only
rasterizer for the OpenGL API. By providing a
freely available implementation of this widely
accepted API, people could run 3D applica-
tions on every machine, even those without
custom 3D acceleration hardware. Of course,
performance was a significant problem, espe-
cially as the 3D world moved from simple col-
ored polygons to textures and complex lighting
environments.

The Mesa developers started adding hardware
support for the few cards for which documenta-
tion was available. At first, these were whole-
screen drivers, but eventually the DRI project
was started to support multiple 3D applica-
tions integrated into the X window system. Be-
cause of the desire to support secure direct
rendering from multiple unprivileged applica-
tions, the DRI project had to include a kernel
driver. That driver could manage device map-
pings, DMA and interrupt logic and even clean

up the hardware when applications terminated
abnormally.

The result is a system which is stable in the
face of broken applications, and provides high
performance and low CPU overhead.

However, the DRI environment remains reliant
on the X server to manage video mode selec-
tion and basic device input.

2 Forward to the Past

Given the dramatic changes in system architec-
ture and performance characteristics since the
original user-mode X server architecture was
promulgated, it makes sense to look at how the
system should be constructed from the ground
up. Questions about where support for each
operation should live will be addressed in turn,
first starting with graphics acceleration, then
video mode selection and finally (and most
briefly) input devices.

3 Graphics Acceleration

X has always directly accessed the lowest lev-
els of the system to accelerate 2D graphics.
Even on the QDSS, it constructed the register-
level instructions within the X server itself.
With the inclusion of OpenGL[SAe99] 3D
graphics in some systems, the system requires
two separate graphics drivers, one for the X
server operating strictly in 2D mode and the
other inside the GL library for 3D operations.
Improvements to the 3D support have no effect
on 2D performance.

As a demonstration of how effectively OpenGL
can implement the existing X server graphics
operations, Peter Nilsson and David Reveman
implemented the Glitz library[NR04] which
supports the Render[Pac01] API on top of the
OpenGL API. In a few months, they managed
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to provide dramatic acceleration for the Cairo
graphics library[WP03] on any hardware with
an OpenGL implementation. In contrast, the
Render implementation within the X sample
server using custom 2D drivers has never seen
significant acceleration, even three and a half
years after the extension was originally de-
signed. Only a few drivers include even half-
hearted attempts at acceleration.

The goal here is to have the X server use the
OpenGL API for all graphics operations. Elim-
inating the custom 2D acceleration code will
reduce the development burden. Using accel-
erated OpenGL drivers will provide dramatic
performance improvements for important oper-
ations now ill-supported in existing X drivers.
Work in this area will depend on the availabil-
ity of stand-alone OpenGL drivers that work in
the absence of an underlying window system.
Fortunately, the Mesa project is busy develop-
ing the necessary infrastructure. Meanwhile,
development can progress apace using the ex-
isting window-system dependent implementa-
tions, with the result that another X server is
run just to configure the graphics hardware and
set up the GL environment.

For cards without complete OpenGL acceler-
ation, the desired goal is to provide DRI-like
kernel functionality to support DMA and in-
terrupts to enable efficient implementation of
whatever useful operations the card does sup-
port. For 2D graphics, the operations need-
ing acceleration are those limited by memory
bandwidth—large area fills and copies. In par-
ticular acceleration of image composition re-
sults in dramatic performance improvements
with minimal amounts of code. The spectacu-
lar amounts of code written in the past that pro-
vide modest acceleration for corner cases in the
X protocol should be removed and those cases
left to software to minimize driver implemen-
tation effort.

This architecture has been implemented
by Eric Anholt in his kdrive-based Xati
server[Anh04]. Using the existing DRI driver
for the Radeon graphics card, he developed
a 2D X driver with reasonable acceleration
for common operations, including significant
portions of the X render API. The driver uses
only a small fraction of the Radeon DRI driver,
a significantly smaller kernel driver would
suffice for a ground-up implementation.

In summary, graphics cards should be sup-
ported in one of two ways:

1. With an OpenGL-based X server

2. With a 2D-only X server based on a sim-
ple loadable driver API.

3.1 Implications for Applications

None of the architectural decisions about the
internal X server architecture change the na-
ture of the existing X and Render APIs as the
fundamental 2D interface for applications. Ap-
plications using the existing APIs will simply
find them more efficient when the X server
provides a better implementation for them.
This means that applications needn’t migrate
to non-X APIs to gain access to reasonable ac-
celeration.

However, applications that wish to use
OpenGL should find a wider range of sup-
ported hardware as driver writers are given
the choice of writing either an OpenGL or 2D
driver, and aren’t faced with the necessity of
starting with a 2D driver just to support X.

In any case, use of the cairo graphics library
provides insulation from this decision as it sup-
ports X and GL requiring only modest changes
in initialization to select between them.
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4 Video Mode Configuration

The area of video mode selection involves
many different projects and interests; one sig-
nificant goal of this discussion is to identify
which areas are relevant to X and how those
can be separated from the larger project.

4.1 Overview of the Problem

Back in 1984 when X was designed, graphics
devices were fundamentally fixed in their rela-
tionship with the attached monitor. The hard-
ware would be carefully designed to emit video
timings compatible with the included monitor;
there was no provision for adjusting video tim-
ings to adapt to different monitors, each video
card had a single monitor connector.

Fast forward to 2004 when common video
cards have two or more monitor connectors
along with outputs for standard NTSC, SE-
CAM, or PAL video formats. The desire to
dynamically adjust the display environment to
accommodate different use modes is well sup-
ported within the Macintosh and Microsoft en-
vironments, but the X window system has re-
mained largely stuck with its 1984 legacy.

4.2 X Attempts to Fix Things

X servers for PC operating systems adapted to
simple video mode selection by creating a ‘vir-
tual’ desktop at least as large as the largest de-
sired mode and making the current mode view
a subset of that, panning the display around to
keep the mouse on the screen. For users able to
accept this metaphor, this provided usable, if
less than ideal support. Most of the time, how-
ever, having content off of the screen which
could only be reached by moving the mouse
was confusing. To help address this, the X Re-
size and Rotate extension (RandR)[GP01] was
designed to notify applications of changes in

the pixel size of the screen and allow program-
matic selection among available video modes.

The RandR extension solved the simple single
monitor case well enough, even permitting the
set of available modes to change on the fly as
monitors were switched. However, it failed to
address the wider problem of supporting mul-
tiple different video outputs and the dynamic
manipulation of content between them.

Statically, the X server can address each video
output correctly and even select between a
large display spanning a collection of out-
puts or separate displays on each video screen.
However, there is no capability to adjust these
configurations dynamically, nor even to auto-
matically adapt to detected changes in the en-
vironment.

4.3 X is Only Part of the Universe

With 2D performance no longer a signifi-
cant marketing tool, graphics hardware ven-
dors have been focusing instead on differenti-
ating their products based on video output (and
input) capabilities. This has dramatically ex-
tended the options available to the user, and in-
creased the support necessary within the oper-
ating system.

As the suite of possible video configuration op-
tions continues to expand, it seems impossi-
ble to construct a fixed, standard X extension
capable of addressing all present and future
needs. Therefore, a fully capable mechanism
must provide some “back door” through which
display drivers and user agents can communi-
cate information about the video environment
which is not directly relevant to the window
system or applications running within it.

One other problem with the current environ-
ment is that video mode selection is not a re-
quirement unique to the X window system.
Numerous other graphical systems exist which
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are all dependent on this code. Currently, that
is implemented separately for each video card
supported by each system. The MxN combina-
tion of graphics systems and video cards means
that only a few systems have support for a wide
range of video cards. Support for systems aside
from X is pretty sparse.

4.4 Who’s in Charge Here, Anyway?

X itself places relatively modest demands on
the system. The X server needs to be aware
of what video cards are available, what video
modes are available for each card and how to
select the current mode. Within that mode
there may be a wealth of information that is
not relevant to the X server; it really only
needs to know the pixel dimensions of each
frame buffer, the physical dimension of pixels
on each monitor and the geometric relationship
among monitors. Details about which video
port are in use, or how the various ports relate
to the frame buffer are not important. Infor-
mation about video input mechanisms are even
less relevant.

As the X server need have no way of inter-
preting the complexity of the video mode en-
vironment, it should have no role in managing
it. Rather, an external system should assume
complete control and let the X server interact
in its own simple way.

This external system could be implemented
partially in the kernel and partially in user-
mode. Doing this would allow the kernel to
share the same logic for video mode selection
during boot time for systems which don’t auto-
matically configure the video card suitably on
power-on. In addition, alternate graphics sys-
tems would be able to share the same API for
their own video mode configuration.

5 Input Device Support

In days of yore, the X environment supported
exactly one kind of mouse and one (perhaps of
an internationalized family) keyboard. Sadly,
this is no longer the case. The wealth of avail-
able input devices has caused no small trouble
in X configuration and management. Add to
that the relative failure of the X Input extension
to gain widespread acceptance in applications
and the current environment is relegated to em-
ulating that available in 1984.

5.1 Uniform Device Access

The first problem to attack is that of the cur-
rent hodgepodge device support where the X
server itself is responsible for parsing the raw
bytestreams coming from the disparate input
devices. Fortunately, the kernel has already
solved that problem—the new/dev/input -
based drivers provide a uniform description of
devices and standard interface to all. Con-
verting the X server over to those interfaces is
straightforward.

However, the/dev/input/mice interface
has a significant advantage in todays world; it
unifies all mouse devices into a single stream
so that the X server doesn’t have to deal with
devices that come and go. So, to switch input
mechanisms, the X server must first learn to
deal with that.

5.2 Hotplug and HAL

Mice (and even keyboards) can be easily at-
tached and detached from the machine. With
USB, the system is even automatically notified
about the coming and going of devices. What
is missing here is a way of getting that noti-
fication delivered to the X server, having the
X server connect to the new device (when ap-
propriate), notifying X applications about the
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availability of the new device and integrating
the devices events into the core pointer or key-
board event stream.

The Hardware Abstraction Layer (HAL)[Zeu]
project is designed to act as an intermediary
between the Linux Hotplug system and appli-
cations interested in following the state of de-
vices connected to the machine. By interposing
this mechanism, the complexity of discover-
ing and selecting input devices for the X server
can be moved into a separate system, leaving
the X server with only the code necessary to
read events from the devices specified by the
HAL. One open question is whether this should
be done by a direct connection between the X
server and the HAL daemon or whether an X
client could listen to HAL and transmit device
state changes through the X protocol to the X
server.

One additional change needed is to extend the
X Input Extension to include notification of
new and departed devices. That extension al-
ready permits the list of available devices to
change over time, all that it lacks is the mech-
anism to notify applications when that occurs.
Inside the X server implementation, the exten-
sion is in for some significantly more chal-
lenging changes as the current codebase as-
sumes that the set of available devices is fixed
at server initialization time.

6 Migrating Devices

With X was developed, each display consisted
of a single keyboard and mouse along with
a fixed set of monitors. That collection was
used for a single login session, and the in-
put devices never moved. All of that has now
changed; input devices come and go, comput-
ers get plugged into video projectors, multi-
ple users login to the same display. The dy-
namic nature of the modern environment re-

quires some changes to the X protocol in the
form of new or modified extensions.

6.1 Whose Mouse Is This?

Input devices are generally located in physical
proximity to the related output device. In a sys-
tem with multiple output devices and multiple
input devices, there is no existing mechanism
to identify which device is where. Perhaps
some future hardware advance will include ge-
ographic information along with the bus topol-
ogy.

The best we can probably do for now is to
provide a mechanism to encode in the HAL
database the logical grouping of input and out-
put devices. That way the X server would re-
ceive from the HAL the set of devices to use at
startup time and then accept ongoing changes
in that as the system was reconfigured.

One problem with this simplistic approach is
that it doesn’t permit the migration of input
devices from one grouping to another; one
can easily imagine the user holding a wireless
pointing device to attempt to interact with the
“wrong” display. Some mechanism for dynam-
ically reconfiguring the association database
will need to be included.

6.2 Hotplugging Video Hardware

While most systems have no ability to add or
remove graphics cards, it’s not unheard of—
many handheld computers support CF video
adapters. On the other hand, nearly all systems
do support “hotplugging” of the actual display
device or devices. Many can even detect the
presence or absence of a monitor enabling true
auto-detection and automatic reconfiguration.

When a new monitor is connected, the X server
needs to adapt its configuration to include it. In
the case where the set of physical screens are
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gathered together as a single logical screen, the
change can be reflected by resizing that single
screen as supported by the RandR extension.
However, if each physical screen is exposed to
applications as a separate logical screen, then
the X server must somehow adapt to the pres-
ence of a new screen and report that informa-
tion to applications. This will require an exten-
sion.

In terms of the existing X server implemen-
tation, the changes are rather more dramatic.
Again, it has some deep-seated assumptions
that the set of hardware under its control will
not change after startup. Fixing these will keep
developers entertained for some time.

6.3 Virtual Terminal Switching

One capability Linux has had for a long time
is the ability to rapidly switch among multi-
ple sessions with “virtual terminals.” The X
server itself uses this to preserve a system con-
sole, running on a separate terminal ensures
that the system console can be viewed by sim-
ply switching to the appropriate virtual termi-
nal. Given this, multiple X servers can be
started on the same hardware, each one on a
different virtual terminal and rapidly switched
among.

The virtual terminal mechanism manages only
the primary graphics device and the system
keyboard. Management of other graphics and
input devices is purely by convention. The re-
sult is that multiple simultaneous X sessions
are not easily supported by the standard build
of the X server. The X server targeted at a non-
primary graphics device needs to avoid config-
uring the virtual terminal. However, this also
eliminates the ability for that device to support
multiple sessions; there cannot be virtual ter-
minal switching on a device which is not asso-
ciated with any virtual terminals.

With the HAL providing some indication of
which devices should be affiliated into a sin-
gle session configuration, the X server can at
least select them appropriately. Similarly, the
X server should be able to detect which device
is the console keyboard and manage virtual ter-
minals from there. Whether the kernel needs to
add support for virtual terminals on the other
graphics/keyboard devices is not something X
needs to answer.

The final problem is that of other input devices;
when switching virtual terminals, the X server
conventionally drops its connection to the other
input devices, presuming that whatever other
program is about to run will want to use the
same ones. While that does work, it leaves
open the possibility that an error in the X server
will leave these devices connected and deny
other applications access to them. Perhaps it
would be better if the kernel was involved in
the process and directing input among multi-
ple consumers automatically as VT affiliation
changed.

7 Conclusion

Adapting the X window system to work ef-
fectively and competently in the modern envi-
ronment will take some significant changes in
architecture, however throughout this process
existing applications will continue to operate
largely unaffected. If this were not true, the
fundamental motivation for the ongoing exis-
tence of the window system would be in doubt.

Migrating responsibility for device manage-
ment out of the X server and back where it
belongs inside the kernel will allow for im-
provements in system stability, power manage-
ment and correct operation in a dynamic envi-
ronment. Performance of the resulting system
should improve as the kernel can take better ad-
vantage of the hardware than is possible in user
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mode.

Sharing graphics acceleration between 2D and
3D applications will reduce the effort needed
to support new graphics hardware. Migrating
the video mode selection will allow all graph-
ics systems to take advantage of it. This should
permit some interesting exploration in system
architecture.

Significant work remains in defining the pre-
cise architecture of the kernel video drivers;
these drivers need to support console opera-
tions, frame buffer device access and DRI (or
other) 3D acceleration. Common memory allo-
cation mechanism seem necessary, along with
figuring out a reasonable division of labor be-
tween kernel and user mode for video mode se-
lection.

Other work remains to resolve conflicts over
sharing devices among multiple sessions and
creating a mechanism for associating specific
input and output devices together.

The resulting system regains much of the fla-
vor of the original X11 server architecture.
The overall picture of a system which provides
hardware support at the right level in the archi-
tecture appears to have wide support among the
relevant projects making the future prospects
bright.
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Abstract

Readahead design is one of the crucial aspects
of filesystem performance. In this paper, we
analyze and identify the bottlenecks in the re-
designed Linux 2.6 readahead code. Through
various benchmarks we identify that 2.6 reada-
head design handles database workloads inef-
ficiently. We discuss various improvements
made to the 2.6 readahead design and their per-
formance implications. These modifications
resulted in impressive performance improve-
ments ranging from 25%–100% with various
benchmarks. We also take a closer look at our
modified 2.6 readahead algorithm and discuss
current issues and future improvements.

1 Introduction

Consider an application that reads data sequen-
tially in some fixed-size chunks. The kernel
reads data sufficiently enough to satisfy the re-
quest from the backing storage and hands it
over to the application. In the meantime the
application ends up waiting for the data to ar-
rive from the backing store. The next request
also takes the same amount of time. This is
quite inefficient. What if the kernel anticipated
the future requests and cached more data? If it
could do so, the next read request could be sat-
isfied much faster, decreasing the overall read
latency.

Like all other operating systems, Linux uses
this technique calledreadaheadto improve
read throughput. Although readahead is a great
mechanism for improving sequential reads, it
can hurt the system performance if used blindly
for random reads.

We studied the performance of the readahead
algorithm implemented in 2.6.0 and noticed the
following behavior for large random read re-
quests.

1. reads smaller chunks of data many times,
instead of reading the required size chunk
of data once.

2. reads more data than required and hence
wasted resources.

In Section 2, we discuss the readahead algo-
rithm implemented in 2.6 and identify and fix
the inefficient behavior. We explain the perfor-
mance benefits achieved through these fixes in
Section 3. Finally, we list the limitations of our
fixes in Section 4.

2 Readahead Algorithm in 2.6

2.1 Goal

Our initial investigation showed the perfor-
mance on Linux 2.6 of the Decision Support
System (DSS) benchmark on filesystem was
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about 58% of the same benchmark run on raw
devices. Note that the DSS workload is charac-
terized by large-size random reads. In general,
other micro-benchmarks like rawio-bench and
aio-stress showed degraded performance with
random workloads. The suboptimal readahead
behavior contributed significantly toward de-
graded performance. With these inputs, we set
the following goals.

1. Exceed the performance of 2.4 large ran-
dom workloads.

2. DSS workload on filesystem performs at
least 75% as well as the same on raw de-
vices.

3. Maintain or exceed sequential read perfor-
mance.

2.2 Introduction to the 2.6 readahead algo-
rithm

Figure 1 presents the behavior of 2.6.0
readahead. Thecurrent_window holds
pages that satisfy the current requests. The
readahead_window holds pages that sat-
isfy the anticipated future request. As more
page requests are satisfied by thecurrent_
window the estimated size of the next
readahead_window expands. And if
page requests miss thecurrent_window
the estimated size of thereadahead_
window shrinks. As soon as the read
request crosscurrent_window bound-
ary and steps into the first page of the
readahead_window , the readahead_
window becomes thecurrent_window
and thereadahead_window is reset. How-
ever, if the requested page misses any page
in the current_window and also the first
page in thereadahead_window , both the
current_window and the readahead_
window are reset and a new set of pages
are read into thecurrent_window . The

number of pages read in the current win-
dow depends upon the estimated size of the
readahead_window . If the estimated size
of the readahead_window drop down to
zero, the algorithm stops reading ahead, and
enters the slow-read mode till page request pat-
tern become sufficiently contiguous. Once the
request pattern become sufficiently contiguous
the algorithm re-enters into readahead-mode.

2.3 Optimization For Random Workload

We developed a user-level simulator program
that mimicked the behavior of the above reada-
head algorithm. Using this program we studied
the read patterns generated by the algorithm in
response to the application’s read request pat-
tern.

In the next few subsections we identify the bot-
tlenecks, provide fixes and then explain the re-
sults of the fix. As a running example we use a
read sequence consisting of 100 random read-
requests each of size 16 pages.

2.3.1 First Miss

Using the above read pattern, we noticed that
the readahead algorithm generated 1600 re-
quests of size one page. The algorithm penal-
ized the application by shutting down reada-
head immediately, for not reading from the be-
ginning of the file. It is sub-optimal to as-
sume that application’s read pattern is ran-
dom, just because it did not read the file from
the beginning. The offending code is at line
16 in Figure 1. Once shut down, the slow-
read mode made readahead to not resume since
the current_window never becomes large
enough. For the ext2/ext3 filesystem, the
current_window must become 32 pages
large, for readahead to resume. Since the ap-
plication’s requests were all 16 pages large,
thecurrent_window never opened. We re-
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1 for each page in the current request
2 do
3 if readahead is shutdown
4 then // read one page at a time (SLOW-READ MODE)
5 if requested page is next to the previously requested page
6 then
7 open the current_window by one more page
8 else
9 close the current_window entirely
10 fi

11 if the current_window opens up by maximum readahead_size
12 then
13 activate readahead // enter READAHEAD-MODE
14 fi
15 read in the requested page

else // read many pages at a time (READAHEAD MODE)
16 if this is the first read request and is for the first page

of this open file instance
17 set the estimated readahead_size to half the size of
18 maximum readahead_size
19 fi

20 if the requested page is within the current_window
21 increase the estimated readahead_size by 2
22 ensure that this size does not exceed maximum
23 readahead_size
24 else
25 decrease the estimated readahead_size by 2
26 if this estimate becomes zero, shutdown readahead
27 fi

28 if the requested page is the first page in the readahead_window
29 then
30 move the pages in the readahead_window to the
31 current_window and reset the readahead_window
32 continue
33 fi
34
35 if the requested page is not in the current_window
36 then
37 delete all the page in current_window and readahead_window
38 read the estimated number of readahead pages starting
39 from the requested page and place them into the current
40 window.
41 if all these pages already reside in the page cache
42 then
43 shrink the estimated readahead_size by 1 and

shutdown readahead if the estimate touches zero
44 fi
45 else if the readahead_window is reset
46 then
47 read the estimated number of readahead pages
48 starting from the page adjacent to the last page
49 in the current window and place them in the
50 readahead_window.
51 if all these pages already reside in the page cache
52 then
53 shrink the estimated readahead_size by 1 and

shutdown readahead if the estimate touches zero
54 fi
55 fi
56 fi
57 fi
58 done

Figure 1:Readahead algorithm in 2.6.0
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moved the check at line 16 to not expect read
access to start from the beginning.

For the same read pattern the simulator showed
99 32-page requests, 99 30-page requests, one
16-page request, and one 18-page request to
the block layer. This was a significant improve-
ment over 1600 1-page requests seen without
these changes.

However, the DSS workload did not show any
significant improvement.

2.3.2 First Hit

The reason why DSS workload did not show
significant improvement was that readahead
shut down because the accessed pages already
resided in the page-cache. This behavior is
partly correct by design, because there is no
advantage in reading ahead if all the required
pages are available in the cache. The corre-
sponding code is at line 43. But shutting down
readahead by just confirming that the initial
few pages are in the page-cache and assum-
ing that future pages will also be in the page
cache, leads to worse performance. We fixed
the behavior, to not close thereadahead_
window the first time, even if all the requested
pages were in the page-cache. The combina-
tion of the above two changes ensured contin-
uous large-size read activity.

The simulator showed the same results as the
First-Miss fix.

However, the DSS workload showed 6% im-
provement.

2.3.3 Extremely Slow Slow-read Mode

We also observed that the slow-read mode of
the algorithm expected 32 contiguous page ac-
cess to resume large size reads. This is not

a realistic expectation for random workload.
Hence, we changed the behavior at line 9 to
shrink thecurrent_window by one page if
it lost contiguity.

The simulator and DSS workload did not show
any better results because the combination
of First-Hit and First-Miss fixes ensured that
the algorithm did not switch to the slow-read
mode. However a request pattern comprising
of 10 single page random requests followed by
a continuous stream of 4-page random requests
can certainly see the benefits of this optimiza-
tion.

2.3.4 Upfront Readahead

Note that readahead is triggered as soon as
some page is accessed in thecurrent_
window . For random workloads, this is
not ideal because none of the pages in the
readahead_window are accessed. We
changed line 45, to ensure that the reada-
head is triggered only when the last page in
the current_window is accessed. Essen-
tially, the algorithm waits until the last page
in the current_window is accessed. This
increases the probability that the pages in the
readahead_window if brought in, will get
used.

With these changes, the simulator generated 99
30-page requests, one 32-page request, and one
16-page request.

There was a significant 16% increase in perfor-
mance with the DSS workload.

2.3.5 Largecurrent_window

Ideally, the readahead algorithm must gen-
erate around 100 16-page requests. Ob-
serve however that almost all the page re-
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quests are of size 30 pages. When the algo-
rithm observes that a page request has missed
the current_window , it scraps both the
current_window and the readahead_
window , if one exists. It ends up reading
in a newcurrent_window , whose size is
based on the estimatedreadahead_size .
Since all of the pages in a given applica-
tion’s read request are contiguous, the esti-
mated readahead size tends to reach the max-
imum readahead_size . Hence, the size of
the newcurrent_window is too large; most
of the pages in the window tend to be wasted.
We ensured that the newcurrent_window
is as large as the number of pages that were
used in the presentcurrent_window .

With this change, the simulator generated 100
16-page requests, and 100 32-page requests.
These results are awful because the last page
of the application’s request almost always co-
incides with the last page of thecurrent_
window . Hence, the readahead is triggered
when the last page of thecurrent_window
is accessed, only to be scrapped.

We further modified the design to read the new
current_window with one more page than
the number of pages accessed in the present
current_window .

With this change, the simulator for the same
read pattern generated 99 17-page requests,
one 32-page request, and one 16-page request
to the block layer, which is close to ideal!

The DSS workload showed another 4% better
performance.

The collective changes were:

1. Miss fix: Do not close readahead if the
first access to the file-instance does not
start from offset zero.

2. Hit fix: Do not close readahead if the first

access to the requested pages are already
found in the page cache.

3. Slow-read Fix: In the slow-read path,
reduce one page from thecurrent_
window if the request is not contiguous.

4. Lazy-read: Defer reading the
readahead_window until the last
page in the current_window is
accessed.

5. Largecurrent_window fix: Read one
page more than the number of pages ac-
cessed in the current window if the request
misses the current window.

These collective changes resulted in an impres-
sive 26% performance boost on DSS workload.

2.4 Sequential Workload

The previously described modifications were
not without side effects! The sequential work-
load was badly effected. Trond Myklebust
reported 10 times worse performance on se-
quential reads using the iozone benchmark on
an NFS based filesystem. The lazy read op-
timization broke the pipeline effect designed
for sequential workload. For sequential work-
load, readahead must be triggered as soon as
some page in the current window is accessed.
The application can crunch through pages in
the current_window as the new pages get
loaded in thereadahead_window .

The key observation is that upfront readahead
helps sequential workload and lazy readahead
helps random workload. We developed logic
that tracked the average size of the read re-
quests. If the average size is larger than the
maximum readahead size, we treat that work-
load as sequential and adapt the algorithm to
do upfront readahead. However, if the average
size is less than the maximumreadahead_
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1 for each page in the current request ; do
3 if readahead is shutdown
4 then // read one page at a time (SLOW-READ MODE)
5 if requested page is next to the previously requested page
6 then
7 open the current_window by one more page
8 else
9 shrink current_window by one page
10 fi
11 if the current_window opens up by maximum readahead_size
12 then
13 activate readahead // enter READAHEAD-MODE
14 fi
15 read in the requested page

else // read many pages at a time (READAHEAD MODE)
16-17 if this is the first read request for this open file-instance ; then
18 set the estimated readahead_size to half the size of maximum readahead_size
19 fi
20 if the requested page is within the current_window
21 increase the estimated readahead_size by 2
22 ensure that this size does not exceed maximum readahead_size
23 else
24 decrease the estimated readahead_size by 2
25 if this estimate becomes zero, shutdown readahead
26 fi
27 if requested page is contiguous to the previously requested page
28 then
29 Increase the size of the present read request by one more page.
30 else
31 Update the average size of the reads with the size of the previous request.
32 fi
33 if the requested page is the first page in the readahead_window
34 then
35 move the pages in current_window to the readahead_window
36 reset readahead_window
37 continue
38 fi
39-40 if the requested page is not in the current_window ; then
41 delete all pages in current_window and readahead_window
42 if this is not the first access to this file-instance
43 then
44 set the estimated number of readahead pages to the

average size of the read requests.
45 fi
46 read the estimated number of readahead pages starting from

the requested page and place them into the current window.
47 if this not the first access to this file instance and

all these pages already reside in the page cache
48 then
49 shrink the estimated readahead_size by 1 and

shutdown readahead if the estimate touches zero
50 fi
51 else if the readahead_window is reset and if the average

size of the reads is above the maximum readahead_size
52 then
53 read the readahead_window with the estimated
54 number of readahead pages starting from the
55 page adjacent to the last page in the current window.
56 if all these pages already reside in the page cache
57 then
58 shrink the estimated readahead_size by 1 and

shutdown readahead if the estimate touches zero
59 fi
60 fi
61 fi
62-63 fi ; done

Figure 2:Optimized Readahead algorithm
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size , we treat that workload as random and
adapt the algorithm to do lazy readahead.

This adaptive-readahead fixed the regression
seen with sequential workload while sustaining
the performance gains of random workload.

Also we ran a sequential read pattern through
the simulator and found that it generated large
size upfront readahead. For large random
workload it hardly read ahead.

2.4.1 Simplification

Andrew Morton rightly noted that reading an
extra page in thecurrent_window to avoid
lazy-readahead was not elegant. Why have
lazy-readahead and also try to avoid lazy-
readahead by reading one extra page? The
logic is convoluted. We simplified the logic
through the following modifications.

1. Read ahead only when the average size
of the read request exceeds the maximum
readahead_size . This helped the se-
quential workload.

2. When the requested page is not in
the current_window , replace
the current_window , with a new
current_window the size of which
is equal to the average size of the
application’s read request.

This simplification produced another percent
gain in DSS performance, by trimming down
thecurrent_window size by a page. More
significantly the sequential performance re-
turned back to initial levels. We ran the above
modified algorithm on the simulator with var-
ious kinds of workload and got close to ideal
request patterns submitted to the block layer.

To summarize, the new readahead algorithm
has the following modifications.

Figure 3: Progressive improvement in DSS
benchmark, normalized with respect to the per-
formance of DSS on raw devices.

1. Miss fix: Do not close readahead if the
first access to the file-instance does not
start from offset zero.

2. Hit fix: Do not close readahead if the first
access to the requested pages are already
found in the page cache.

3. Slow-read Fix: Decrement one page from
the current_window if the request is
not contiguous in the slow-read path.

4. Adaptive readahead: Keep a running
count of the average size of the applica-
tion’s read requests. If the average size
is above the maximumreadahead_
size , readahead up front. If the request
misses thecurrent_window , replace
it with a newcurrent_window whose
size is the average size of the application’s
read requests.

Figure 2 shows the new algorithm with all the
optimization incorporated.

Figure 3 illustrates the normalized steady in-
crease in the DSS workload performance with
each incremental optimization. The graph is
normalized with respect to the performance of
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DSS on raw devices. Column 1 is the base
performance on filesystem. Column 2 is the
performance on filesystem with the hit, miss
and slow-read optimization. Column 3 is the
performance on filesystem with first-hit, first-
miss, slow-read and lazy-read optimization.
Column 4 is the performance on filesystem
with first-hit, first-miss, slow-read, and large
current_window optimization. Column 5
is the performance on filesystem with first-hit,
first-miss, slow-read, and adaptive read simpli-
fication. Column 6 is the performance on raw
device.

3 Overall Performance Results

In this section we summarize the results col-
lected through simulator, DSS workload, and
iozone benchmark.

3.1 Results Seen Through Simulator

We generated different types of input read pat-
terns. There is no particular reason behind
these particular read pattern. However, we en-
sured that we get enough coverage. Overall
the read requests generated by our optimized
readahead algorithm outperformed the original
algorithm. The graphs refer to our optimized
algorithm as 2.6.7 because all these optimiza-
tions are merged in the 2.6.7 release candidate.

Figure 4 shows the output of readahead algo-
rithm with and without optimization for 30-
page read request followed by 2-page seek, re-
peated 984 times.

Figure 5 shows the output of readahead algo-
rithm with and without optimization for 16-
page read request followed by 117-page seek,
repeated 100 times.

Figure 6 shows the output of readahead algo-
rithm with and without optimization for 32-

2.6.0 2.6.7
Average Size 31 30
Pages Read 61010 29535

Wasted Pages 31490 15
No Of Read Requests 1970 987

Figure 4: Application generates 30-page read
request followed by 2-page seek, repeating 984
times. Totally 29520 pages requested.

2.6.0 2.6.7
Average Size 1 16
Pages Read 1600 1600

Wasted Pages 0 0
No Of Read Requests1600 100

Figure 5: Application generates 16-page read
request followed by 117-page seek, repeating
100 times. Totally 1600 pages requested.
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2.6.0 2.6.7
Average Size 1 31.95
Pages Read 32000 32009

Wasted Pages 0 9
No Of Read Requests32000 1002

Figure 6: Application generates 32-page read
request followed by 3-page seek, repeating
1000 times. Totally 32000 pages requested.

page read request followed by 3-page seek, re-
peated 1000 times.

Figure 7 shows the output of readahead algo-
rithm with and without optimization for 32-
page read request followed by 68-page seek,
repeated 1000 times.

Figure 8 shows the output of readahead algo-
rithm with and without optimization for 40-
page read request followed by 5-page seek, re-
peated 1000 times.

Figure 9 shows the output of readahead al-
gorithm with and without optimization for 4-
page read request followed by 96-page seek,
repeated 1000 times.

Figure 10 shows the output of readahead al-
gorithm with and without optimization for 16-
page read request followed by 0-page seek, re-
peated 1000 times.

2.6.0 2.6.7
Average Size 31.31 31.91
Pages Read 93970 32099

Wasted Pages 61970 99
No Of Read Requests 3001 1006

Figure 7: Application generates 32-page read
request followed by 68-page seek, repeating
1000 times. Totally 32000 pages requested.

2.6.0 2.6.7
Average Size 31.13 31.91
Pages Read 50810 51176

Wasted Pages 10801 11176
No Of Read Requests 1631 1601

Figure 8: Application generates 40-page read
request followed by 5-page seek, repeating
1000 times. Totally 40000 pages requested.
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2.6.0 2.6.7
Average Size 30.94 4.02
Pages Read 61914 4023

Wasted Pages 57914 23
No Of Read Requests 2001 1001

Figure 9: Application generates 4-page read
request followed by 96-page seek, repeating
1000 times. Totally 4000 pages requested.

2.6.0 2.6.7
Average Size 30.08 31.85
Pages Read 16031 16050

Wasted Pages 31 50
No Of Read Requests 533 504

Figure 10:Application generates 16-page read
request with no seek, repeating 1000 times. To-
tally 16000 pages requested.

3.2 DSS Workload

The configuration of our setup is as follows:

• 8-way Pentium III machine.

• 4GB RAM

• 5 fiber-channel controllers connected to
50 disks.

• 250 partitions in total each containing a
ext2 filesystem.

• 30GB Database is striped across all these
filesystems. No filesystem contains more
than one table.

• Workload is mostly read intensive, gener-
ating mostly large 256KB random reads.

With this setup we saw an impressive 26% in-
crease in performance. The DSS workload on
filesystems is roughly about 75% to DSS work-
load on raw disks. There is more work to do,
although the bottlenecks may not necessarily
be in the readahead algorithm.

3.3 Iozone Results

The iozone benchmark was run a NFS based
filesystem. The command used wasiozone

-c -t1 -s 4096m -r 128k . This com-
mand creates one thread that reads a file of
size 4194304 KB, generating reads of size 128
KB. The results in Table 1 show an impres-
sive 100% improvement on random read work-
loads. However we do see 0.5% degradation
with sequential read workload.

4 Future Work

There are a couple of concerns with the above
optimizations. Firstly, we see a small 0.5%
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Read Pattern 2.4.20 2.6.0
2.6.0 +

optimization
Sequential Read 10846.87 14464.20 13614.49

Sequential Re-read 10865.39 14591.19 13715.94
Reverse Read 10340.34 10125.13 20138.83
Stride Read 10193.87 7210.96 14461.63

Random Read 10839.57 10056.49 19968.79
Random Mix Read 10779.17 10053.37 21565.43

Pread 10863.56 11703.76 13668.21

Table 1:Iozone benchmark Throughput in KB/sec for different workloads.

degradation with the sequential workload using
the iozone benchmark. The optimized code as-
sumes the given workload to be random to be-
gin with, and then adapts to the workload de-
pending on the read patterns. This behavior can
slightly affect the sequential workload, since it
takes a few initial sequential reads before the
algorithm adapts and does upfront readahead.

The optimizations introduce a subtle change
in behavior. The modified algorithm does
not correctly handle inherently-sequential clus-
tered read patterns. It wrongly thinks that
such read patterns seek after every page-read.
The original 2.6 algorithm did accommodate
such patterns to some extent. Assume an
application with 16 threads reading 16 con-
tiguous pages in parallel, one per thread.
Based on how the threads are scheduled, the
read patterns could be some combination of
those 16 pages. An example pattern could
be 1,15,8,12,9,6,2,14,10,7,5,3,4,11,12,13. The
original 2.6.0 readahead algorithm did not care
which order the page requests came in as long
as the pages were in the current-window. With
the adaptive readahead, we expect the pages to
be read exactly in sequential order.

Issues have been raised regularly that the
readahead algorithm should consider the size
of the current read request to make intelligent
decisions. Currently, the readahead logic bases
its readahead decision on the read patterns seen
in the past, including the request for the cur-

rent page without considering the size of the
current request. This idea has merit and needs
investigation. We probably can ensure that we
at least read the requested number of pages if
readahead has been shutdown because of page-
misses.

5 Conclusion

This work has significantly improved random
workloads, but we have not yet reached our
goal. We believe we have squeezed as much as
possible performance from the readahead algo-
rithm, though there is some work to be done to
improve some special case workloads, as men-
tioned in Section 4. There may be other sub-
systems that need to be profiled to identify bot-
tlenecks. There is a lot more to do!

6 Legal Statement

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM is a registered trademark of International Busi-
ness Machines, Incorporated in the United States,
other countries, or both.

Other company, product, and service names may be
trademark or service marks of others.



402 • Linux Symposium 2004 • Volume Two



I would hate user space locking if it weren’t that
sexy. . .

(fusyn+RTNPTL: The making of a real-time synchronization infrastructure for Linux)

http://developer.osdl.org/dev/robustmutexes/

Iñaky Pérez-González
inaky.perez-gonzalez@intel.com

Boris Hu
boris.hu@intel.com

Salwan Searty
salwan.searty@intel.com

Adam Li
adam.li@intel.com

David P. Howell
david.p.howell@intel.com

Linux OS & Technology Team, Intel Corporation

Abstract

Linux has seen a lot of new features and de-
velopments in the last years in order to ac-
commodate better scalability, interactivity, re-
sponse time and POSIX compliance. With
these changes, Telecom developers began to
get serious about using Linux and started port-
ing their systems to it. By doing that they
brought new usage models and needs to the
community; and among those needs was sup-
port for threads, mutual exclusion, priority in-
version protection and robust synchronization
for mission critical and fault-proof systems on
both timesharing and soft real-time environ-
ments. This paper describes our experiences
trying to meet this need, the current state and
where are we headed. We will detail how orig-
inally we tried to modify the futex code, but
later found we had to abandon that in favor of
a similar design based on a layered implemen-
tation. This implementation accommodates a

kernel and user space locking and synchroniza-
tion infrastructure that will meet the require-
ments of those applications needing to use and
port complex multithreaded real-time code.

1 A look at the requirements

The Carrier Grade Working group, or CGL,
was created under the auspices of the OSDL;
it provides a meeting point for all parties who
share an interest on Linux use for Telecom:
network equipment vendors, Linux distributors
and developers, carriers, etc.

It was in this forum where missing features
were identified. Carrier Grade Linux needed
good soft real-time1 features, specially with
multi-threaded programs. As well, it needed a
common feature provided by Solaris’ mutexes

1For short, we’ll use real-time to refer tosoft real-
time.
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that was not present in Linux:robustness.

This project was started to provide a kernel
synchronization infrastructure (fusyn) with the
indicated characteristics, as well as the proper
modifications to the NPTL user space library
(RTNPTL) for it to use the new infrastructure
and provide the new features.

The basic immediate requirements could be
summarized in:

• The infrastructure should provide the
primitives needed by NPTL to support the
following POSIX tags:

– TPS: thread priority scheduling

– TPI: priority inheritance in mutexes

– TPP: priority protection in mutexes

Or simply: anything that is needed for
soft-real time support.

• The implementation should support ro-
bust mutexes similar to those of Solaris.

• The implementation should provide
equivalent features at the kernel level for
use by drivers and subsystems.

With this in mind, we aimed to satisfy the fol-
lowing detailed requirements:

1. mutexes and conditional variables must
work according to real-time expectancies

(a) All operations (lock, unlock, prior-
ity promotion and demotion, etc.)
should be deterministic in time,
and O(1) when possible (except of
course, for waits).

(b) The order of lock acquisition by
waiters (in mutexes) and wake up (in
conditional variables) has to be de-
termined by the scheduling proper-
ties of each blocked task/thread.

(c) Minimization of priority inversion
(given the importance of this item, it
will be treated in its own section):

i. lock stealing: in SMP systems,
during on the acquisition of the
lock a lower priority thread can
steal the lock from a higher pri-
ority thread.

ii. when a high priority thread A
is waiting for a lower priority
owner B to relinquish the mu-
tex and B is preempted by a
medium priority thread C.

A. priority protection

B. priority inheritance

2. Robustness: when a mutex owner dies, the
mutex switches to adead-ownerstate and
the first waiter gets ownership with a spe-
cial error code.

3. Uncontested locks/unlocks must happen
without kernel intervention.

4. Deadlock detection

As well, in order to provide the benefits of this
infrastructure to all the levels of a Linux sys-
tem, it must be possible to use it not only by the
user space code, but also by the kernel code.

1.1 The real time expectancies

Real-time is all about beingdeterministic, so
all algorithm execution times need to be as pre-
dictable or bounded as possible. UsingO(1)
algorithms helps with this2.

2It is possible to be deterministic with aO(f(N))
operation, as long asf(N) is known; however, in most,
if not all, of the cases involving mutex operation, it
is highly impractical or plainly impossible to find out
f(N), and thus a possibly simpler implementation has
to be replaced with one potentially more complex, but
O(1).
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POSIX dictates that upon unlock of a mutex,
the scheduling policy shall determine who is
the next owner. An obvious way of doing this
would be to wake up all of the waiters and
let them compete for the lock–the scheduler
would determine that the highest priority task
would get there first.

However, this causes scheduling storms, un-
necessary context switches and general avoid-
able overhead. It is easier and more effective to
determine which is the highest priority waiter
and only wake that one up. To implement this
task in anO(1) way, we need to queue the wait-
ers in a sorted list that provides constant time
queuing and unqueuing. On unlock or wake up
time, the first waiter in the list will be the high-
est priority one.

1.2 Priority inversion

This condition happens when a lower prior-
ity thread blocks a higher priority one. The
most general case (Figure 1) is the lower prior-
ity thread that holds a resource needed by the
higher priority one–a situation that has to be
avoided–as much as possible. As indicated be-
fore, we aim to solve three different flavors.

The first islock stealing. For performance rea-
sons, to avoid the convoy phenomenon3 [1], the
unlockoperation is done by unlocking the mu-
tex and then waking up the first waiter (eg: A).
The waiter claims the mutex and then becomes
owner. On a single CPU system it can be pre-
empted only by higher priority tasks4, so lock
stealing is not a problem; however, on multi-
CPU systems, a lower priority task C running
on another CPU could claim the lock just be-

3Summarizing: if task A (high priority) unlocks by
transferring ownership to the first waiter B (lower prior-
ity), it forces a context switch to B, and if then A recon-
tends for the lock it will create a convoy of waiters that
is difficult to dissolve.

4We will use the terms tasks or threads indistinctly to
refer to any entity that can acquire a mutex.

Figure 1: A case of priority inversion: high-
priority task B misses its deadline because
lower-priority task A holds for too long a re-
source it needs, as mid-priority task C pre-
empted it. A lower priority task C blocks a
high-priority task B.

fore B had the chance to do it and it would cre-
ate a priority inversion scenario (see Figure 2).

The solution to this problem is simple: do
not unlock the mutex, just transfer the owner-
ship without unlocking it. We call thisserial-
izedunlock (versusparallel, wake and claim).
This method severely limits performance in
many cases, because it forces a context switch
(causing the already mentioned convoy phe-
nomenon). There has to be a compromise be-
tween protection and performance and by of-
fering the option to unlock a mutex in either
way, a developer can dynamically adapt ac-
cording to her needs.

The other two cases (of priority inversion) are
more complex. They solve the scenario de-
picted in Figure 1 where task B is waiting for
a mutex owned by task A and task C preempts
task A. When the priorities arep(B) > p(C) >
p(A), we have a priority inversion; task B will
miss its deadline because C is blocking A from
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Figure 2: Low priority task C running on CPU0
steals the lock from higher priority task B run-
ning on CPU1.

completing its mutex-protected critical section.

There are different ways to deal with this prob-
lem, but the most common involve bumping up
the priority of the owner of the lock to a certain
value.

In priority protection (or PP), apriority ceil-
ing is determined as part of the design cycle.
This is normally the highest of all the priori-
ties among the threads that will share a given
mutex; as soon as it is locked, the priority of
the owner is raised to match that of the pri-
ority ceiling (see Figure 3. When a thread
owns many priority-protected mutexes, its pri-
ority is that of the highest ceilings. This ap-
proach is simple and guaranteed to be trouble
free. However, it is laborious; determining the
priority ceiling might not be an easy task at all
in a moderately complex system where mod-
ules from different parties need to interact.

Enterpriority inheritance (PI): in this case we

Figure 3: Priority protection: task A locks and
its priority is promoted to the prioceiling; task
C cannot preempt it and it finishes its critical
section (and is demoted) in time for B to meet
its deadline.

have a similar situation, but there is no prior-
ity ceiling. What happens in this case is that
the priority of the owner is boosted up to that
of the highest priority waiter, the first one (see
Figure 4). Similarly to the previous case, if a
task owns many PI-mutexes, its priority will be
the highest of them all. There is no need now
to do design-time analysis; the system solves it
automatically. Of course, there are drawbacks–
it does not come for free. This operation is
more expensive, especially in the presence of
owner/wait chains5. The propagation of the
priority boost can be long (and will beO(N)
on the depth of the chain) and this can lead to
unexpected surprises if the interaction across
different threads and mutexes in the system is
not kept on a tight leash (see [2] and [3]).

5Task A waits for mutex M that is owned by task B
that is waiting for mutex N that is owned by task C that
is waiting for mutex O. . .
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Figure 4: Priority inheritance: Task A (lock
owner) is promoted to task B’s priority when
B waits for the lock; as soon as A unlocks, it
gets demoted and B gets the lock. C never has
a chance to preempt A.

Priority inheritance needs to be used with care–
it is not a straight solution for a system with
deadlock problems to make a mutex PI. What
if that mutex is being shared with some low pri-
ority timesharing task that is not aware of the
fact? In these cases, if a task does some kind
of CPU spinning, the system is dead. The con-
cept of priority inheritance and the simplicity
it gives to designs provides enough rope as to
hang oneself, as the effects can propagate way
far more than expected.

1.3 Robustness

Mutex robustness is a key feature for imple-
menting systems tolerant to certain kind of fail-
ures. A certain task A is holding a normal,
non-robustmutex M with one or more wait-
ersWn blocked in the kernel. If it receives a
fatal signal and is killed, the mutex will still
be locked and the waiters will be never wo-
ken up. There are different ways to detect and
recover from this situation, but they usually
involve painful and complicated designs with
watchdogs, timeouts, etc.

Robustness embeds all these in the mutex
mechanism. When a task owns a mutex, the
mutex knows who is its owner, and asks to be
notified if the owner dies. If and when this
happens, the mutex will be moved to an spe-
cial consistency state, dead-ownerand effec-
tively unlocked; this will give control to the
first waiter (or remain unlocked asdead-owner
until somebody else claims it).

Threads claiming a dead mutex will re-
ceive ownership with a special error code,
-EOWNERDEAD. This serves as a warning:the
data protected by this mutex might be inconsis-
tent, it should be fixed. The new locker can do
different things at this point:

• it can ignore it (scary choice!)

• it might be unqualified for the job and pass
the responsibility on to somebody else (by
unlocking).

• it can try to fix the data and succeed–then
it will heal the mutex, setting its consis-
tency state back to normal and proceed.

• or it can fail and pass it on. . .

• or it can fail and deem the state com-
pletely broken; to notify about this sit-
uation, it can mark the mutexnot-
recoverable, so all waiters and future
claimers will get a-ENOTRECOVERABLE

error code so other recovery strategies can
kick in.

The most important aspect to take into account
is that the user of the mutex has means to detect
this situation instantly without having to rely
on timeouts or other overheads.

1.4 Deadlock detection

A situation of deadlock happens when a task
A that owns a mutex M tries to lock it again.
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This is the simplest case, of course. The gen-
eral case is:

• taskT1 owns mutexM1 and tries to lock
mutexM2

• taskT2 owns mutexM2 and is waiting to
lock mutexM3

• taskT3 owns mutexM3 and is waiting to
lock mutexM4

• . . .

• taskTN owns mutexMN and is waiting to
lock mutexM1

Construct like these are calledownership-wait
chains. And it is obvious that in this particular
case, this chain would deadlock, asM1 would
never be released ifT1 is allowed to block wait-
ing for M2.

The only way to detect this situation is, upon
lock time, to walk the chain and verify if the
task that is about to lock owns any lock on the
chain.

By definition this is a linear operation that is
going to take time to execute. The best way to
avoid this expensive check is to make sure our
design uses proper locking techniques (like for
example, acquire and release multiple locks in
LIFO order).

2 The first try: rtfutex

Once the requirements were laid out, we first
tried modifying the futex code inkernel/

futex.c , adding functionality while main-
taining the original futex interface.

In a glimpse, the locking mode used with fu-
texes works like this (see [4]): there is a word
in user space that represents the mutex. The

fast lock operation is performed entirely in user
space; if the word is unlocked, then it becomes
locked and work proceeds. If it is locked, the
program sets a different value in the user space
word and then goes down to the kernel and
waits.

When the unlock operation is performed, the
unlocker will check the value of the word; if
it indicates that only a fast-lock was performed
(and thus there are no waiters in the kernel), it
will be simply unlocked in user space; other-
wise, it will ask the kernel to wake up one or
more waiters. These waiters will come back
to user space and reclaim the lock; only one
will get it, the rest will go back to the kernel to
sleep6.

With this in mind, we performed the following
modifications:

• To allow wake-the-highest-priority waiter
behavior on a bound time, the hash table
model had to be modified.

One node per waiter was replaced by one
node per futex, and each node would have
its own priority-ordered list of waiters.
Although the lookup of the futex-node in
the hash table isO(N), at least the manip-
ulation of the waiter-list (or wait list) can
be madeO(1).

This introduced the need of having to al-
locate the futex-node, as it could not live
in the stack of some waiter7.

• In order to support robustness, dead-
lock detection and priority inheritance, the

6note this means that the lock is actually unlocked
for an unspecified amount of time in an unlock to lock
transition.

7This raises extra issues; allocation can fail and is
not time-predictable; it can be slow, so it is needed
to cache the nodes (as normally they are frequently
reused); caching means a strategy is needed to purge
them (garbage collection).
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concept ofownershiphad to be added to
the futex. This would savewhich task
owns the futex on each moment. It also
required to note in the task struct which
futex was being waited for, as well as a
list of owned futexes.

• A different method had to be used for
locking in user space, the fast lock and un-
lock paths.

The user space word representing the fu-
tex would store the PID of the locker
while on the fast path and indicate with
a bit the presence of waiters in the ker-
nel. This way if a locker died after having
done a fast-lock operation in user space
(and thus the kernel not having any notion
of it), a potential waiter could check if the
lock was stale8. When a futex went into
the dead-owneror not-recoverablestate,
the kernel would modify the user space
word with special values to mark these
states.

As well, the unlock operation had to al-
ways be serialized, with the kernel as-
signing ownership and modifying the user
space word, ensuring robustness9 and that
no lock stealing happened.

This design (and its implementation) was bro-
ken: the futexes are designed to be queues, and
they cannot be stretched to become mutexes–
it is simply not the same. The result was a
bloated implementation.

As well, the code itself missed many fine (and
not so fine) details:

8This is a very simple method that cannot guarantee
conflicts when PIDs are reused; we implemented a naive
task-signature system to try to avoid this case. We didn’t
realize how broken it was until later.

9If waiters coming up from the kernel died before
locking again and there were still some others waiting,
the kernel would never know about it and the remaining
tasks would wait for ever.

• it suffered from race conditions: the mod-
ification of the different back pointers in
the task struct was being done without
protection.

• the priority inheritance engine was very
limited (to the most simple cases of in-
heritance) and it didn’t supportSCHED_

NORMALtasks.

• serialized unlocking is slow, it causes the
convoy phenomenon, and the code did not
provide flexibility to allow the user to bal-
ance performance vs. robustness or prior-
ity inversion protection depending on the
situation.

• it didn’t provide the functionality at the
kernel level, for usage by kernel code.

• it didn’t support changing the priority of a
task while it was waiting for a futex while
at the same time properly repositioning it
on the wait list according to its new prior-
ity.

While broken, it was perfect as a prototype–
it gave an indication of what was wrong, how
things should not be done and hinted which
methods were a good idea. It was time to re-
think all over again.

3 Trying again: fusyn

With rtfutexes we found that stretched designs
are not a good idea, however, experience tells
layered designs are a better idea.

The fusyn design follows the same basic prin-
ciples of the futexes, providing the same ser-
vice in kernel and user space. Enforcing a strict
modularity among the different units that com-
prise it, it is possible to accomplish much more
with less bloat and complexity.
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The four main blocks that comprise the fusyn
architecture are:

• fuqueuesare the wait queues (very similar
to the Linux kernel’s waitqueues) and are
the basic building block.

• fulocksprovide the mutex functionality by
adding the concept of ownership on top of
fuqueues and dealing with all the priority
promotion.

• vlocators serve as the link between
user space words and the kernel ob-
jects (fuqueues and fulocks) associated to
them.

• vfulock syncmaintains synchronization
between the fulocks and thevfulocks, the
user space word associated to them. It
also is responsible for identifying owners
from the cookies stored in the vfulocks.

fuqueues

We start with a simple queue struc-
ture, struct fuqueue , declared in
linux/fuqueue.h . It merely contains a
priority-sorted list where to register the waiters
for the queue, a spinlock and an operations
pointer. The operations are for managing a
reference count (used when associated to user
space), for canceling a task’s wait on a fuqueue
and notifying the fuqueue of a priority change
on a waiter (most functions are defined in
kernel/fuqueue.c ).

A fuqueue can be initialized, waited on with
fuqueue_wait() or a number of waiters for
it can be woken up withfuqueue_wake() .
All the functions for doing that are conve-
niently broken up so they can be used by other
layers.

Whenever a task waits on a fuqueue, it
registers itself by filling up a struct

Figure 5: A fuqueue with three waiters,
p(A) > p(B) > p(C), showing the different
pointers on each structure.

fuqueue_waiter ; that structure and the
fuqueue being waited for are linked to from
the task struct (struct fuqueue_waiter

*fuqueue_waiter and struct fuqueue

fuqueue_wait ), so that the signal delivery
code (throughfuqueue_waiter_cancel() )
and the scheduler priority changing functions
(through fuqueue_waiter_chprio() ) can
properly locate which fuqueue to act upon.
A spinlock protects these pointers in the task
structure.

This satisfies the real-time requirements of
wake-up order by priority. As well, the addi-
tion to the waiters list is bounded in time to the
maximum number of different priority levels
used–being this 140 for the Linux kernel, that
makes the addition operationO(140) ≡ O(1).

Note the fuqueue structure has to be protected,
similarly to waitqueues with an IRQ-safe spin-
lock, as they will be accessed for wake-up from
atomic contexts.

fulocks

Once we have a queue structure that is real-
time friendly, we can build mutexes on top of
them. Adding the concept of ownership, we
create astruct fulock in linux/fulock.

h that contains a fuqueue (for the waiters), a
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pointer to a task struct (the owner), some flags
and a node for a priority-sorted ownership list
(to register all the fulocks owned by a task).

Let’s ignore for a while the secondary effects
of priority inheritance and protection. Come
lock time, fulock_lock() : if the fulock is
unlocked, the current task is assigned owner-
ship by setting the owner pointer in the fu-
lock to point to the task, the fulock is added
to the task->fulock_olist ownership list
through itsolist_node .

If the fulock is locked (unless just try-locking)
the task waits on the fulock’s fuqueue; when
woken up, depending on the result code of the
wake up, it will own the lock (and thus pro-
ceed) or try again (serialized vs. parallelized
unlocks).

The unlock operation,fulock_unlock() is
quite simple: if the unlocker desires to per-
form a serialized wakeup, it just changes the
owner to be the first waiter, removes it from
the wait list and wakes him up with a 0 re-
sult code. If the unlock has to be parallelized,
it unlocks the fulock and unqueues and wakes
up the first waiter (or the firstN waiters) with
a -EAGAIN code–that will lead the sleeping
__fulock_lock() call to retry. The unlock
mode can be automatically determined based
on the policy of the first waiting task: serialized
for real-timers, parallelized for timesharers.

All this code is defined inkernel/fulock.c .

Robustness

Robustness comes into play with a hook in
kernel/exit.c:do_exit() . When a pro-
cess dies,exit_fulocks() goes over the
list of fulocks owned by the exiting task; for
each of them, the operation registered for task
exit is executed, and that leads to setting the
dead flag (FULOCK_FL_DEAD) and serially un-
locking the fulock to the next waiter with the

-EOWNERDEADerror code10.

This introduces the need to have a way for the
user to switch the fulock from one state to the
other. fulock_ctl() provides this capabil-
ity.

Deadlock detection

The process of checking for deadlocks is done
via a hook in the__fulock_lock() function
that calls__fulock_check_deadlock() .

This function will query the owner of the fu-
lock the current task wants to wait for and in-
quire which fulock this owner is waiting for.
If not waiting for anyone, there is no possible
deadlock, so all resources are dropped and suc-
cess is returned.

If it is waiting, the fulock is safely acquired
(the ugliest part is to get the spinlocks properly
as well as the reference counts); if the owner
is the current task, then that is a deadlock; if
not, then the operation repeats with the owner
of the new fulock.

Priority inheritance and protection

Now let’s take priority inheritance and protec-
tion into consideration. The key here is that in
the priority-sorted list (plist), every node, in-
cluding the list head, has a priority field, and
that in a consistent plist, the priority of the list
is that of the head, that in turn is that of the
highest priority node queued.

Thus, by virtue of the priority-sorted list, each
fuqueue has apriority. Fulocks inherit this
property and when doingpriority inheritance ,
they set that priority on the node for the
priority-based ownership list.Priority pro-
tectedfulocks set as priority that of the priority

10as well, a warning is issued if the fulock wasn’t de-
clared robust.
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Figure 6: A task that owns four contested fulocks (two PI, one PP and one normal) showing the
priority propagation flow. Note how fulock I, not being priority inheriting or protecting, has the
minimal priority, -1 (which effectively disables all side effects).

ceiling of the fulock.

This way, each task has a list of the fulocks it
owns sorted by priority. The ordering of the
list means that the first fulock in the list has the
minimum priority the task should have to meet
the priority protection and/or priority inheri-
tance criteria–and thus, the scheduler just has
to select as effective task priority the highest
between the task’s final dynamic priority and
that of the first fulock on its ownership list11.
See Figure 6.

The process then becomes extremely simple:
when a task queues waiting for a fulock (in__

fuqueue_waiter_queue() ), it might mod-
ify the plist priority because it sets a new
higher priority–the function returns!0 in this
case. This is propagated, with__fulock_

11This is accomplished with a simple mechanism (im-
provement required to reduce invasiveness) that adds the
concept of boost priority to the task struct (boost_
prio ), and modified through__prio_boost() .

prio_update() to the fulock’s ownership list
node,fulock->olist_node , that as we said
above, is inserted in the ownership list of the
fulock owner. The propagation could mean
that a new maximum might be set in the own-
ership list, case in which the boost priority is
updated for the scheduler to pick it up.

On top of that, the change might need to be
propagated further on if the fulock owner is
waiting for another fuqueue or fulock.__

fuqueue_waiter_chprio() will take care
of propagating that change until a task is
reached that is higher priority or is not waiting
for a priority-inheriting fulock.

Linking to user space

So far, the infrastructure presented is accessi-
ble only from kernel space. We have to al-
low user space programs to take advantage of
these features, and for that, we copy the futex’s
method: associate a virtual address (word) to
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more. At almost40s, TB is down prioritized and that deboosts TL, allowing TP to progress again.

an object in memory (struct vlocator ).

The API exposed inlinux/vlocator.h pro-
vides a generic method for doing this by just
embedding a vlocator; as well, this vlocator
provides a reference-counting interface to sim-
plify the object’s life cycle management. And
when it’s use count is zero, it will be automati-
cally disposed of12.

This also improves scalability a little bit as the
only global lock in the vlocator hash table is
taken just to do the look up; once found, the
vlocator is referenced before dropping the lock.

12Here is where the caching kicks in; the hash table
is cleaned up of zero ref-counted items every certain
amount of time, allowing for reuse.

ufuqueues and vfuqueues: imitating futexes

We need to create an interface equal to that
of futexes for implementing conditional vari-
ables with real-time friendly functionality (for
the wake up ordering).

We create astruct ufuqueue where we em-
bed a vlocator and a fuqueue. A thin adap-
tation layer (sys_ufuqueue_wait() and
sys_ufuqueue_wake() ) will get the system
call from user space, do the look up using the
vlocator API, verify that the user space word
(vfuqueue ) hasn’t changed and pass it down
to the fuqueue layer.

The rest of the code inkernel/ufuqueue.c

deals with creating the operation functions for
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the vlocator structure.

Exposing the fulocks to user space

The same mechanism is used for exposing the
fulocks to user space; in a similar fashion to
fuqueues, we wrap together a vlocator and a
fulock to create astruct ufulock .

However, more aspects have to be taken into
consideration:

• If the fulock is not contested, the lock and
unlock operations must happen entirely in
user space (and thus the kernel will not
know about it; this is thefast-path)

• When a lock has been locked through the
fast path, the kernel has to be able to iden-
tify who locked it as well as its consis-
tency status; this operation is called syn-
chronization.

• When a lock becomes contested, the ker-
nel has to update the user space word to
indicate that future operations need to pro-
ceed in the kernel–as well, when it is eli-
gible to be a fast-path only fulock again,
the kernel must undo this, put the fulock
structure in the cache tagged as requir-
ing synchronization from user space and
make sure the user space word has the
consistency state of the fulock.

• The fulock structure in the kernel will
be disposed if no task goes to the kernel
querying about or operating on it for a
while; as in the previous case, the infor-
mation will be kept in user space word to
enable proper synchronization.

For this we need some more information than
the one used by the same futex mechanism for
the fast path. A locker needs to identify itself
in the user space word (that we callvfulock) by

storing a cookie that can directly map to a task
struct in the kernel space. The most obvious
choice for the cookie would be the PID13.

However, this operation must be atomic–this
means that we need an atomic compare-and-
exchange operation, and thus, the lock oper-
ation becomes the following: compare-and-
exchange the cookie against 0 (meaning un-
locked); if it succeeds, then the vfulock is
locked, if not, dive into the kernel. The ker-
nel will map the address to a fulock (pos-
sibly creating a new ufulock) get the value
of the vfulock (sys_ufulock_lock() and
ufulock_lock() ) and map it to a task (in
__vfulock_sync() . If the kernel is able to
find the task, that task is made the owner and
the caller is put to wait. As well, the vfulock
is updated to a special valueVFULOCK_WP,
meaning waiters are present in the kernel.

If the kernel cannot find it, that will mean the
task that fast-locked it in user space has died,
the fulock will be declareddead-ownerand the
caller will get ownership. In this process, the
vfulock will be set to another special value,
VFULOCK_DEADthat indicates it as dead even
across the kernel forgetting about its existence.

Unlocks are equally simple: atomically
compare-and-exchange 0 (VFULOCK_

UNLOCKED) against the cookie of the lock
owner; if it succeeds, the job is done; else,
the kernel does it. After mapping the vfulock
to a ufulock, ufulock_unlock() is used
to do the job and the vfulock is updated to
reflect the new state:VFULOCK_UNLOCKED

if unlocked, if there will be no waiters the
new owner’s cookie–enabling fast-path,
VFULOCK_WPif waiters are still in the kernel,
or VFULOCK_DEADif the fulock is dead.

If parallelized unlocks are desired, the pro-

13This would break unique identification as PIDs are
reused; a solution could be crypting the PID with the
task creation date, but it needs to be tested.
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cess is a little bit different. In the kernel,
__ufulock_unlock() will unlock the vfu-
lock and then wake up the first waiter, who then
will contend (in the kernel) for the vfulock and
possibly wait, as described above14.

Note the two key moments in switching from
fast-path enabled or not: the fulock becomes
fast-path when it has no waiters in the kernel
or when it is healed15 without waiters. It looses
the fast-path conditions as soon as a single
waiter is queued. This means that to maintain
proper semantics during the lifetime of a pro-
gram that uses many locks, once a fulock has
gone through the slow path, it needs to be de-
stroyed in the kernel using thesys_ufulock_

ctl() system call once it is not needed any-
more. If not, there could be inconsistencies if a
new lock is created in the same address where
a previous one lived before.

KCO: When the fast-[un]lock path is not an op-
tion

The fast path, as we have seen, requires an
atomic compare-and-exchange operation. Not
all architectures provide this capability, so dif-
ferent strategies need to be considered here.

If robustness, and priority inversion protec-
tion16 can be spared, the mutexes and condi-
tional variables can be implemented as with fu-
texes using fuqueues; the rest of the real-time
featurettes are there (priority-based wake-ups
and priority change semantics). If that can also
be spared, futexes are still an option.

However, when that is not the case, the only
possible choice is to use KCO mutexes, by OR-

14Not going back to user space to retry the operation
has advantages: speed and maintaining the conditions
for robustness.

15Moved fromdead-ownerconsistency state back to
normal (or healthy)

16Lock stealing avoidance, priority inheritance and
priority protection.

ing FULOCK_FL_KCOin the flags. That is an
acronym for Kernel Controlled Ownership, or
basically, the kernel takes care of everything.
It needs to be called for locking and unlocking,
there is no fast path (strictly speaking there is
still a choice for fast path on some operations,
as the vfulock is used to cache the consistency
state of the fulock and any user space operation
can check it before deciding if it should go to
the kernel).

This feature also provides the highest level
of protection for robustness. The per-thread
cookie for the vfulock, be it the PID or any
other, is not required, and the kernel deals di-
rectly with the task struct, so there is no possi-
ble collision conflict.

It has to be noted that priority-protected ufu-
locks always work in KCO mode. Even on un-
contended acquisition or release the priority of
the thread has to be changed to that of the pri-
oceiling, and that task can only be done by the
kernel.

4 Using it in the kernel

The fulock is a simple type like any other
struct. To use it, we just need to do the fol-
lowing declarations:

...
#include <linux/fulock.h>
...

struct mystruct {
struct fulock lock;
...
my shared data;

};

It needs to be properly initialized before use,
and of course, after releasing it (or more prop-
erly, telling all waiters to bail out) it shall not
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be used. Note some flag combinations are not
allowed (for example, querying for priority in-
heritance and protection at the same time is il-
legal) and will trigger aBUG() 17.

In this example we ask for a robust fulock with
priority inheritance. It must be noted that fu-
locks are always robust–but clearly telling the
kernel that we handle robust situations will
suppress a kernel warning if the owner dies and
it goes intodead-ownermode.

my_driver_probe(...)
{

struct mystruct *my;
...
my = kmalloc (...);
if (my == NULL)

goto err_alloc;
fulock_init (&my->lock,

FULOCK_FL_ROBUST
| FULOCK_FL_PI);

...
};

As we see in the following snippet, the basic
usage is the same as for every lock. However,
in this case we add some recovery code for
the case when some owner died18. Note also
that the only fulock operation that is guaran-
teed to be safe in an atomic context isfulock_

unlock() .

void my_something(
struct mystruct *my) {
...
result = fulock_lock(&my->lock,

0);
if (result == -EOWNERDEAD

&& my_try_recover (my))
goto notrecoverable;

17For user space code, they will simply fail with
-EINVAL .

18This is kind of an useless exercise, correct kernel
code doesn’t crash.

...
/* do our thing */
...
fulock_unlock (&my->lock,

FULOCK_FL_AUTO);
...
return 0;

notrecoverable:
/* Put it out of its misery,

* release waiters, clean up,
* user has to reload the
* driver. */

fulock_ctl (&my->lock,
FULOCK_CTL_NR);

my_put (my);
return -ENOTRECOVERABLE;

};

int my_try_recover (struct
*mystruct my) {

int result, mode;
... try to recover *my ...
if (successful) {

result = 0;
mode = FULOCK_CTL_HEAL;

}
else {

result = !0;
mode = FULOCK_CTL_NR);

}
fulock_ctl (&my->lock, mode);
return result;

}

Finally, when we are done, we release all re-
sources associated to the fulock to clean up. As
indicated above, this merely makes sure that
any waiter queued is woken up with an error
condition and nobody can acquire it or queue
again.

void my_cleanup (
struct mystruct *my)

{
...
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fulock_release (&my->fulock);
...

}

The benefits that a fulock gives over a
semaphore are the real-time characteristics,
priority inheritance and protection and dead-
lock detection. The decision to use one or the
other depends on the user needs, as it has to be
taken into account that fulocks are somehow
more heavyweight than semaphores.

5 Usage from user space

The main intention of the user space code is
to do as little as possible in the fast path and
delegate the rest to the slow path that will, in
most cases, end up in the kernel.

Note these code snippets have been slightly
simplified; for the authoritative reference, see
the file src/include/kernel-lock.h in
the test packagefusyn-package available
from the web site.

Locking

As mentioned, the fast lock operation needs an
atomic compare and swap operation; for exam-
ple, on i386:

unsigned acas (
volatile unsigned *value,
unsigned old_value,
unsigned new_value)

{
unsigned result;
asm __volatile__ (

"lock cmpxchg %3, %1"
: "=a"(result),"+m"((*value))
: "a"(old_value),"r"(new_value)
: "memory");

return result == old_value;
}

To simplify the code, this function returns true
if it was successful in performing the swap op-
eration. With this, we can create a generic,
fast-path, user space lock operation:

int vfulock_timedlock (
volatile unsigned *vfulock,
unsigned flags, int pid,
struct timespec *rel)

{
if (acas(vfulock,

VFULOCK_UNLOCKED,pid))
return 0;

return SYSCALL (ufulock_lock,
vfulock, flags,
rel);

}

We are using the thread’s PID as the cookie for
the vfulock, the user space memory word asso-
ciated to the lock. Note the special syntax for
timeouts understood by the kernel:

• PassingNULL means we don’t want to
wait, and this operation effectively be-
comes a trylock in the kernel.

• A (void *)-1 timeout means block
forever–no timeout.

• Any other specifies a pointer to a valid
timeout structure.

From user space we have to always pass the
same flags to the kernel for an specific vfulock,
as it will check we are consistent during the
lifetime of the fulock–when it dissapears from
the cache, it is up to us to use still the same
flags to maintain consistency in our program.

With a few additions, we can have a lock func-
tion that also works in KCO mode and that im-
itates the behavior of non-robust mutexes when
owners die (ie: block forever):
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int vfulock_timedlock (
*vfulock, flags, pid, *rel)

{
int result;
if (!(flags & FULOCK_FL_KCO) &&

acas(vfulock,
VFULOCK_UNLOCKED,pid))

return 0;
result = SYSCALL (ufulock_lock,

vfulock, flags,
rel);

if (!(flags & FULOCK_FL_RM) &&
(result == -EOWNERDEAD
|result == -ENOTRECOVERABLE))

waiting_on_dead_fulock(vfulock);
return result;

}

There are only two simple differences. First
is to avoid the fast-path if we want to use
KCO mode (and thus dive directly into the
kernel). The second one takes care of non-
robust mutexes returning indead-ownerstate;
in that case we block inwaiting_on_dead_

fulock() , a dummy function that blocks for-
ever whose only purpose is to show up in pro-
gram traces to indicate us the reason of a thread
blocking.

Unlocking

The unlock operation is somehow more hairy.
Although we could just make it simpler calling
the kernel and letting it do all of the operations
for us (as if it were in KCO mode), we want to
have the fast-unlock path available:

int __vfulock_unlock (
*vfulock, flags, unlock_type)

{
unsigned old_value = *vfulock;

if (flags & FULOCK_FL_KCO)
goto straight;

retry:

if (old_value < VFULOCK_WP) {
if (acas (vfulock, old_value,

VFULOCK_UNLOCKED))
return 0;

old_value = *vfulock;
goto retry;

}
straight:

return old_value == VFULOCK_NR?
-ENOTRECOVERABLE
: SYSCALL (ufulock_unlock,

vfulock, flags,
unlock_type);

}

As with the lock() operation, we first check if
the fulock is KCO; if so jump straight into the
kernel (except if it is markednot-recoverable,
in which case we fail).

In the case of the fast-path, we read the value
of the vfulock; if it is looks like a cookie19 then
we try the fast-unlock, returning if successful.
If it failed we retry from the beginning. When
the value of the vfulock doesn’t look like a
cookie, we dive into the kernel, as it means that
it is either dead or there are waiters (and thus
the kernel handles it).

Note this unlock operation allows any thread
to unlock the fulock, it doesn’t need to be the
owner.

Other operations

A trylock() operation is implemented in
similar terms (please refer to the sample li-
brary code in thefusyn-test package, file
src/include/kernel-lock.h ; this pack-
age is available for download from the project’s
website).

Operations for manipulating or querying the

19The three valuesVFULOCK_WP, VFULOCK_
DEADandVFULOCK_NRare purposely chosen to be
the last three values of theunsigned domain.
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state of the fulock are implemented by calling
theufulock_ctl() system call directly, pro-
viding the vfulock and flags.

6 Integration with NPTL

The patches for integration with NPTL (that we
call RTNPTL for short) allow any POSIX pro-
gram to use these features, via a certain set of
standard calls and ways to customize the op-
eration mode of the fulock under the mutex’s
hood with other non-POSIX extensions.

RTNPTL uses the same or very similar user
mode integration code than the one explained
above, sitting down at thelll_ layer in glibc.
This code provides all the intended functional-
ity only to the POSIX mutexes and conditional
variables. Locks used internally by the library
still need work (see thefuture directionssec-
tion).

By default, RTNPTL provides non-robust fast-
path enabled mutexes that unlock in automatic
mode20, without any priority inheritance and
protection. However, by modifying the mu-
tex attributes with thepthread_mutexattr_

set*() calls, different parameters can be set:

• Manipulating the priority inversion pro-
tections:

pthread_mutexattr_
setprotocol() takes a mutex
attribute and a protection protocol,
PTHREAD_PRIO_INHERITor
PTHREAD_PRIO_PROTECT.

pthread_mutex_setprioceiling()

can be used to query and change the
priority ceiling of a mutex.

20serialized or parallelized depending on the policy
priority of the first waiter

pthread_mutexattr_setserial_

np() and
pthread_mutex_setserial_np()

allows setting the unlock method to use
for lock-stealing avoidance out of
PTHREAD_MUTEX_SERIAL_NP,
PTHREAD_MUTEX_PARALLEL_NP, or
PTHREAD_MUTEX_AUTO_NP(this one
can be switched during the lifetime of the
mutex).

• pthread_mutexattr_setrobust_

np() enables robustness in the mutex to
be.pthread_mutex_

setconsistency_np() is used to heal
or makenot-recoverableadead-owner
mutex. The consistency state can be
queried withpthread_mutex_

getconsistency_np() .

• pthread_mutexattr_setfast_np()

is used to select the use of a KCO fulock
or not, effectively enabling/disabling
fast-path operation.

The non-standard interfaces are still subject to
some unlikely flux.

7 Current status and future direc-
tion

At the time of writing, the project has met most
of the requirements that were set as targets,
reaching stability and meeting performance
goals of sub-millisecond latencies. The added
overhead does not seem to affect too much
compared to NPTL, being generally slightly
slower.

Compatibility

We routinely test RTNPTL+fusyn by running:
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• Miscellaneous multi-threaded applica-
tions (e.g.: Mozilla)

• SUN jdk-1.42_03 with SPECjbb200021.

• MySQL 2.23.58 withsuper-smack and
sql-bench .

This has helped us to catch some bugs (with
some pending for certain combinations) and to
test the compatibility of our approach. Perfor-
mance wise, no obvious differences have been
found with plain NPTL running on futexes.

This set of macro benchmarks is incomplete
and will be expanded in the future, time and
resource availability permitting.

Latency

The current code performs fairly well latency
wise (given the extra overhead). In an un-
loaded system22, the latency of the serialized
ownership change operation23 is in the range of
60± 10µs. Adding some network load (ten si-
multaneous downloads of 40 MiB files) bumps
it up to 110 ± 10µs. Simultaneous reading of
1 GiB from /dev/hda to /dev/null raises it
up to130± 10µs.

The code exposes a strange behavior when test-
ing the ownership change latency in an un-
loaded system while increasing the number of
waiters. The average latency stays stable for
the first ten-to-fifteen waiters (threads of a sin-
gle program) at around18 ± 10µs (see Fig-
ure 8).

However, when the number of queued waiters
goes up to 2000 threads, the latency climbs up
to 50±10µs, stabilizing from there on, as seen

21SPEC Java Business Benchmark 2000.
22as measured in a 2xP3 850 MHz 2.5 GiB RAM run-

ning version 2.3 of the code
23time since a serialized unlock is done until the first

waiter gets the lock and executes.
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Figure 8: Scalability of the ownership-change
latencyvs. the number of waiters stays stable
up until ten waiting threads.

.

on Figure 9. Of course this is an extremely un-
realistic scenario, but it helps to test the scala-
bility of the code, and nevertheless, we are try-
ing to proof the root cause, being cache issues
the most likely ones.

Note: these numbers have been produced with
a home-grown swiss-knife test program (to be
published on the web site) calledownership_

change_latency . Most of our timing efforts
have concentrated in this particular case, al-
though we have some other micro benchmarks
planned.

Jitter

At this point, we haven’t done yet any formal
jitter studies.

Informally speaking, using the ownership
change latency benchmark in unloaded sys-
tems, we have seen jitter increases over NPTL
of about1µs, 0.3µs on a system fairly loaded
with IDE and network traffic. However, bear in



Linux Symposium 2004 • Volume Two • 421

 0

 1e−05

 2e−05

 3e−05

 4e−05

 5e−05

 6e−05

 7e−05

 8e−05

 0  1000  2000  3000  4000  5000  6000  7000  8000

O
w

ne
rs

hi
p 

ch
an

ge
 la

te
nc

y 
(s

)

Number of waiters

"r8"

 0

 1e−05

 2e−05

 3e−05

 4e−05

 5e−05

 6e−05

 7e−05

 8e−05

 0  1000  2000  3000  4000  5000  6000  7000  8000

O
w

ne
rs

hi
p 

ch
an

ge
 la

te
nc

y 
(s

)

Number of waiters

"r8"

Figure 9: Scalability of the ownership-change latencyvs. the number of waiters only stabilizes
after two thousand waiters.

.

mind that these numbers are completely mean-
ingless because the finest dependable clock
resolution we can get (using the High Resolu-
tion Timers patch) is well higher,10µs. We can
use them only to provide a hint.

Future direction

The project has reached an important milestone
of maturity with the 2.2 release during the
spring of 2004–nonetheless there is still much
work to do. These some of the areas where we
plan to target our future efforts:

• Some parties have asked for all these
concepts (real-time, robustness, priority-
protection) applied to read-write mutexes,
much more complex than simple mutexes.
We are still evaluation how worth is this.

• Some elusive bugs are still present.

• Accessing user space memory from the
kernel bykmapping it poses some issues
on architectures withstrangecache con-
sistency designs, such as some ARM and
PA-RISC 8000. It is still not clear how to
proceed for them and we would welcome
any help.

• The kernel hash table for location of ob-
jects is a potential bottleneck in a system
populated with many active user-space
fusyn objects. We want to implement a
proof of concept where a cookie identify-
ing the object is placed in user space along
the vfulock/vfuqueue. This cookie would
consist of a two pointers crypted with
two different keys by the kernel. In or-
der to map a vfulock/vfuqueue to it’s cor-
responding fusyn object, the kernel just
has to decrypt the pointers. Having two
crypted with different keys is used to en-
force validity against garbage being writ-
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ten by user space by mistake or to com-
promise the system.

• Providing a robust mutex infrastructure
is OK, as long as it is used. Internally,
glibc uses locks to protect many of its data
structures—in order to be able to provide
true robustness, we need to add robustness
to those internal locks, as well as recovery
strategies.

• Extend the coverage of our macro and mi-
cro benchmarks.

8 Downloading

The project maintains a website at:

http://developer.osdl.org/dev/

robustmutexes/

from where all the current and older snapshots
of the code can be obtained. As well, it offers
pointers to the mailing list, bugzilla and CVS
repositories.

We want to thank the Open Source Develop-
ment Lab for making these resources available
to us.

9 Conclusion

We have presented an infrastructure for provid-
ing real-time and robust synchronization ser-
vices in the Linux kernel. We have been able to
accomplish this with a minimum overhead im-
pact over the current futex-based infrastructure
and expect that it will be sufficient to satisfy
the needs of multi-threaded, fault-proof and/or
soft-real time designs.
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Abstract

The 2.6 release introduced the option to select
a particular I/O scheduler at boot time. The
2.4 Linus elevator was retired, incorporated are
now the anticipatory (AS), the deadline, the
noop, as well as the completely fair queuing
(CFQ) I/O schedulers. Each scheduler has its
strengths and weaknesses. The question is un-
der what workload scenarios does a particular
I/O scheduler excel, as well as what is the per-
formance gain that is possible by utilizing the
available tuning options.

This study quantifies the performance of the 4
I/O schedulers under various workload scenar-
ios (such as mail, web, and file server based
conditions). The hardware is being varied from
a single-CPU single-disk setup to machines
with many CPUs that are utilizing large RAID
arrays. In addition to characterizing the per-
formance behavior and making actual recom-
mendations on which scheduler to utilize un-
der certain workload scenarios, the study looks
into ways to actually improve the performance
through either the existing tuning options or
any potential code changes/enhancements.

Introduction

This study was initiated to quantify I/O perfor-
mance in a Linux 2.6 environment. The I/O
stack in general has become considerably more

complex over the last few years. Contempo-
rary I/O solutions include hardware, firmware,
as well as software support for features such
as request coalescing, adaptive prefetching,
automated invocation of direct I/O, or asyn-
chronous write-behind polices. From a hard-
ware perspective, incorporating large cache
subsystems on a memory, RAID controller, and
physical disk layer allows for a very aggres-
sive utilization of these I/O optimization tech-
niques. The interaction of the different opti-
mization methods that are incorporated in the
different layers of the I/O stack is neither well
understood nor been quantified to an extent
necessary to make a rational statement on I/O
performance. A rather interesting feature of
the Linux operating system is the I/O sched-
uler [6]. Unlike the CPU scheduler, an I/O
scheduler is not a necessary component of any
operating system per se, and therefore is not
an actual building block in some of the com-
mercial UNIX® systems. This study elabo-
rates how the I/O scheduler is embedded into
the Linux I/O framework, and discusses the
4 (rather distinct) implementations and perfor-
mance behaviors of the I/O schedulers that are
available in Linux 2.6. Section 1 introduces
the BIO layer, whereas Section 2 elaborates on
the anticipatory (AS), the deadline, the noop,
as well as the completely fair queuing (CFQ)
I/O schedulers. Section 2 further highlights
some of the performance issues that may sur-
face based on which I/O scheduler is being
utilized. Section 3 discusses some additional
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hardware and software components that im-
pact I/O performance. Section 4 introduces the
workload generator used in this study and out-
lines the methodology that was utilized to con-
duct the analysis. Section 5 discusses the re-
sults of the project. Section 6 provides some
additional recommendations and discusses fu-
ture work items.

1 I/O Scheduling and the BIO
Layer

The I/O scheduler in Linux forms the interface
between the generic block layer and the low-
level device drivers [2],[7]. The block layer
provides functions that are utilized by the file
systems and the virtual memory manager to
submit I/O requests to block devices. These
requests are transformed by the I/O sched-
uler and made available to the low-level device
drivers. The device drivers consume the trans-
formed requests and forward them (by using
device specific protocols) to the actual device
controllers that perform the I/O operations. As
prioritized resource management seeks to reg-
ulate the use of a disk subsystem by an applica-
tion, the I/O scheduler is considered an imper-
ative kernel component in the Linux I/O path.
It is further possible to regulate the disk usage
in the kernel layers above and below the I/O
scheduler. Adjusting the I/O pattern generated
by the file system or the virtual memory man-
ager (VMM) is considered as an option. An-
other option is to adjust the way specific de-
vice drivers or device controllers consume and
manipulate the I/O requests.

The various Linux 2.6 I/O schedulers can be
abstracted into a rather generic I/O model.
The I/O requests are generated by the block
layer on behalf of threads that are access-
ing various file systems, threads that are per-
forming raw I/O, or are generated by virtual
memory management (VMM) components of

the kernel such as the kswapd or the pdflush
threads. The producers of I/O requests ini-
tiate a call to__make_request() , which
invokes various I/O scheduler functions such
aselevator_merge_fn() . The enqueue
functions in the I/O framework intend to merge
the newly submitted block I/O unit (a bio in
2.6 or abuffer_head in the older 2.4 ker-
nel) with previously submitted requests, and
to sort (or sometimes just insert) the request
into one or more internal I/O queues. As a
unit, the internal queues form a single logi-
cal queue that is associated with each block
device. At a later stage, the low-level device
driver calls the generic kernel functionelv_
next_request() to obtain the next request
from the logical queue. Theelv_next_
request() call interacts with the I/O sched-
uler’s dequeue functionelevator_next_
req_fn() , and the latter has an opportunity
to select the appropriate request from one of
the internal queues. The device driver pro-
cesses the request by converting the I/O sub-
mission into (potential) scatter-gather lists and
protocol-specific commands that are submitted
to the device controller. From an I/O scheduler
perspective, the block layer is considered as the
producer of I/O requests and the device drivers
are labeled as the actual consumers.

From a generic perspective, every read or write
request launched by an application results in ei-
ther utilizing the respective I/O system calls or
in memory mapping (mmap) the file into a pro-
cess’s address space [14]. I/O operations nor-
mally result in allocating PAGE_SIZE units of
physical memory. These pages are being in-
dexed, as this enables the system to later on
locate the page in the buffer cache [10]. A
cache subsystem only improves performance
if the data in the cache is being reused. Fur-
ther, the read cache abstraction allows the sys-
tem to implement (file system dependent) read-
ahead functionalities, as well as to construct
large contiguous (SCSI) I/O commands that
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can be served via a single direct memory access
(DMA) operation. In circumstances where the
cache represents pure (memory bus) overhead,
I/O features such as direct I/O should be ex-
plored (especially in situations where the sys-
tem is CPU bound).

In a general write scenario, the system is not
necessarily concerned with the previous con-
tent of a file, as awrite() operation nor-
mally results in overwriting the contents in the
first place. Therefore, the write cache empha-
sizes other aspects such as asynchronous up-
dates, as well as the possibility of omitting
some write requests in the case where multiple
write() operations into the cache subsystem
result in a single I/O operation to a physical
disk. Such a scenario may occur in an envi-
ronment where updates to the same (or a sim-
ilar) inode offset are being processed within
a rather short time-span. The block layer in
Linux 2.4 is organized around thebuffer_
head data structure [7]. The culprit of that
implementation was that it is a daunting task
to create a truly effective block I/O subsys-
tem if the underlyingbuffer_head struc-
tures force each I/O request to be decomposed
into 4KB chunks. The new representation of
the block I/O layer in Linux 2.6 encourages
large I/O operations. The block I/O layer now
tracks data buffers by using struct page point-
ers. Linux 2.4 systems were prone to loose
sight of the logical form of the writeback cache
when flushing the cache subsystem. Linux 2.6
utilizes logical pages attached to inodes to flush
dirty data, which allows multiple pages that be-
long to the same inode to be coalesced into
a single bio that can be submitted to the I/O
layer [2]. This approach represents a process
that works well if the file is not fragmented on
disk.

2 The 2.6 Deadline I/O Scheduler

The deadline I/O scheduler incorporates a per-
request expiration-based approach and oper-
ates on 5 I/O queues [4]. The basic idea behind
the implementation is to aggressively reorder
requests to improve I/O performance while si-
multaneously ensuring that no I/O request is
being starved. More specifically, the scheduler
introduces the notion of a per-request deadline,
which is used to assign a higher preference to
read than write requests. The scheduler main-
tains 5 I/O queues. During the enqueue phase,
each I/O request gets associated with a dead-
line, and is being inserted in I/O queues that are
either organized by the starting logical block
number (a sorted list) or by the deadline fac-
tor (a FIFO list). The scheduler incorporates
separate sort and FIFO lists for read and write
requests, respectively. The 5th I/O queue con-
tains the requests that are to be handed off to
the device driver. During a dequeue operation,
in the case where the dispatch queue is empty,
requests are moved from one of the 4 (sort or
FIFO) I/O lists in batches. The next step con-
sists of passing the head request on the dispatch
queue to the device driver (this scenario also
holds true in the case that the dispatch-queue is
not empty). The logic behind moving the I/O
requests from either the sort or the FIFO lists
is based on the scheduler’s goal to ensure that
each read request is processed by its effective
deadline, without starving the queued-up write
requests. In this design, the goal of economiz-
ing the disk seek time is accomplished by mov-
ing a larger batch of requests from the sort list
(logical block number sorted), and balancing
it with a controlled number of requests from
the FIFO list. Hence, the ramification is that
the deadline I/O scheduler effectively empha-
sizes average read request response time over
disk utilization and total average I/O request
response time.

To reiterate, the basic idea behind the deadline
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scheduler is that all read requests are satisfied
within a specified time period. On the other
hand, write requests do not have any specific
deadlines associated with them. As the block
device driver is ready to launch another disk
I/O request, the core algorithm of the dead-
line scheduler is invoked. In a simplified form,
the fist action being taken is to identify if there
are I/O requests waiting in the dispatch queue,
and if yes, there is no additional decision to
be made what to execute next. Otherwise it is
necessary to move a new set of I/O requests to
the dispatch queue. The scheduler searches for
work in the following places, BUT will only
migrate requests from the first source that re-
sults in a hit. (1) If there are pending write I/O
requests, and the scheduler has not selected any
write requests for a certain amount of time, a
set of write requests is selected (see tunables
in Appendix A). (2) If there are expired read
requests in theread_fifo list, the system
will move a set of these requests to the dis-
patch queue. (3) If there are pending read re-
quests in the sort list, the system will migrate
some of these requests to the dispatch queue.
(4) As a last resource, if there are any pend-
ing write I/O operations, the dispatch queue is
being populated with requests from the sorted
write list. In general, the definition of a cer-
tain amount of time for write request starva-
tion is normally 2 iterations of the scheduler
algorithm (see Appendix A). After two sets of
read requests have been moved to the dispatch
queue, the scheduler will migrate some write
requests to the dispatch queue. A set or batch
of requests can be (as an example) 64 contigu-
ous requests, but a request that requires a disk
seek operation counts the same as 16 contigu-
ous requests.

2.1 The 2.6 Anticipatory I/O scheduler

The anticipatory (AS) I/O scheduler’s design
attempts to reduce the per thread read response

time. It introduces a controlled delay compo-
nent into the dispatching equation [5],[9],[11].
The delay is being invoked on any new read
request to the device driver, thereby allowing
a thread that just finished its read I/O request
to submit a new read request, basically en-
hancing the chances (based on locality) that
this scheduling behavior will result in smaller
seek operations. The tradeoff between reduced
seeks and decreased disk utilization (due to
the additional delay factor in dispatching a re-
quest) is managed by utilizing an actual cost-
benefit analysis [9].

The next few paragraphs discuss the general
design of an anticipatory I/O scheduler, outlin-
ing the different components that comprise the
I/O framework. Basically, as a read I/O request
completes, the I/O framework stalls for a brief
amount of time, awaiting additional requests
to arrive, before dispatching a new request to
the disk subsystem. The focus of this design
is on applications threads that rapidly gener-
ate another I/O request that could potentially be
serviced before the scheduler chooses another
task, and by doing so, deceptive idleness may
be avoided [9]. Deceptive idleness is defined as
a condition that forces the scheduler into mak-
ing a decision too early, basically by assuming
that the thread issuing the last request has mo-
mentarily no further disk request lined up, and
hence the scheduler selects an I/O request from
another task. The design discussed here argues
that the fact that the disk remains idle during
the short stall period is not necessarily detri-
mental to I/O performance. The question of
whether (and for how long) to wait at any given
decision point is key to the effectiveness and
performance of the implementation. In prac-
tice, the framework waits for the shortest pos-
sible period of time for which the scheduler ex-
pects (with a high probability) the benefits of
actively waiting to outweigh the costs of keep-
ing the disk subsystem in an idle state. An as-
sessment of the costs and benefits is only pos-
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sible relative to a particular scheduling policy
[11]. To elaborate, a seek reducing scheduler
may wish to wait for contiguous or proximal
requests, whereas a proportional-share sched-
uler may prefer weighted fairness as one of its
primary criteria. To allow for such a high de-
gree of flexibility, while trying to minimize the
burden on the development efforts for any par-
ticular disk scheduler, the anticipatory schedul-
ing framework consists of 3 components [9].
(1) The original disk scheduler, which imple-
ments the scheduling policy and is unaware of
any anticipatory scheduling techniques. (2) An
actual scheduler independent anticipation core.
(3) An adaptive scheduler-specific anticipation
heuristic for seek reducing (such as SPTF or C-
SCAN) as well as any potential proportional-
share (CFQ or YFQ) scheduler. The antici-
pation core implements the generic logic and
timing mechanisms for waiting, and relies on
the anticipation heuristic to decide if and for
how long to wait. The actual heuristic is im-
plemented separately for each disk scheduler,
and has access to the internal state of the sched-
uler. To apply anticipatory scheduling to a new
scheduling policy, it is merely necessary to im-
plement an appropriate anticipation heuristic.

Any traditional work-conserving I/O sched-
uler operates in two states (known as idle and
busy). Applications may issue I/O requests
at any time, and these requests are normally
being placed into the scheduler’s pool of re-
quests. If the disk subsystem is idle at this
point, or whenever another request completes,
a new request is being scheduled, the sched-
uler’s select function is called, whereupon a re-
quest is chosen from the pool and dispatched
to the disk device driver. The anticipation core
forms a wrapper around this traditional sched-
uler scheme. Whenever the disk becomes idle,
it invokes the scheduler to select a candidate re-
quest (still basically following the same philos-
ophy as always). However, instead of dequeu-
ing and dispatching a request immediately, the

framework first passes the request to the an-
ticipation heuristic for evaluation. A return
value (result) of zero indicates that the heuris-
tic has deemed it pointless to wait and the core
therefore proceeds to dispatch the candidate
request. However, a positive integer as a re-
turn value represents the waiting period in mi-
croseconds that the heuristic deems suitable.
The core initiates a timeout for that particu-
lar time period, and basically enters a new wait
state. Though the disk is inactive, this state is
considered different from idling (while having
pending requests and an active timeout). If the
timeout expires before the arrival of any new
request, the previously chosen request is dis-
patched without any further delay. However,
new requests may arrive during the wait pe-
riod and these requests are added to the pool of
I/O requests. The anticipation core then imme-
diately requests the scheduler to select a new
candidate request from the pool, and initiates
communication with the heuristic to evaluate
this new candidate. This scenario may lead to
an immediate dispatch of the new candidate re-
quest, or it may cause the core to remain in the
wait state, depending on the scheduler’s selec-
tion and the anticipation heuristic’s evaluation.
In the latter case, the original timeout remains
in effect, thus preventing unbounded waiting
situations by repeatedly re-triggering the time-
out.

As the heuristic being used is disk scheduler
dependent, the discussion here only general-
izes on the actual implementation techniques
that may be utilized. Therefore, the next few
paragraphs discuss a shortest positioning time
first (SPTF) based implementation, where the
disk scheduler determines the positioning time
for each available request based on the cur-
rent head position, and basically chooses the
request that results into the shortest seek dis-
tance. In general, the heuristic has to evalu-
ate the candidate request that was chosen by
the scheduling policy. The intuition is that if
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the candidate I/O request is located close to the
current head position, there is no need to wait
on any other requests. Assuming synchronous
I/O requests initiated by a single thread, the
task that issued the last request is likely to sub-
mit the next request soon, and if this request is
expected to be close to the current request, the
heuristic decides to wait for this request [11].
The waiting period is chosen as the expected
YZ percentile (normally around 95%) think-
time, within which there is a XZ probability
(again normally 95%) that a request will ar-
rive. This simple approach is transformed and
generalized into a succinct cost-benefit equa-
tion that is intended to cover the entire range
of values for the head positioning, as well as
the think-times. To simplify the discussion, the
adaptive component of the heuristic consists of
collecting online statistics on all the disk re-
quests to estimate the different time variables
that are being used in the decision making pro-
cess. The expected positioning time for each
process represents a weighted-average over the
time of the positing time for requests from that
process (as measured upon request comple-
tion). Expected median and percentile think-
times are estimated by maintaining a decayed
frequency table of request think-times for each
process.

The Linux 2.6 implementation of the anticipa-
tory I/O scheduler follows the basic idea that if
the disk drive just operated on a read request,
the assumption can be made that there is an-
other read request in the pipeline, and hence it
is worth while to wait [5]. As discussed, the
I/O scheduler starts a timer, and at this point
there are no more I/O requests passed down
to the device driver. If a (close) read request
arrives during the wait time, it is serviced im-
mediately and in the process, the actual dis-
tance that the kernel considers as close grows
as time passes (the adaptive part of the heuris-
tic). Eventually the close requests will dry out
and the scheduler will decide to submit some

of the write requests (see Appendix A).

2.2 The 2.6 CFQ Scheduler

The Completely Fair Queuing (CFQ) I/O
scheduler can be considered to represent an
extension to the better known Stochastic Fair
Queuing (SFQ) implementation [12]. The fo-
cus of both implementations is on the concept
of fair allocation of I/O bandwidth among all
the initiators of I/O requests. An SFQ-based
scheduler design was initially proposed (and
ultimately being implemented) for some net-
work scheduling related subsystems. The goal
to accomplish is to distribute the available I/O
bandwidth as equally as possible among the
I/O requests. The implementation utilizes n
(normally 64) internal I/O queues, as well as
a single I/O dispatch queue. During an en-
queue operation, the PID of the currently run-
ning process (the actual I/O request producer)
is utilized to select one of the internal queues
(normally hash based) and hence, the request
is basically inserted into one of the queues (in
FIFO order). During dequeue, the SFQ design
calls for a round robin based scan through the
non-empty I/O queues, and basically selects re-
quests from the head of the queues. To avoid
encountering too many seek operations, an en-
tire round of requests is collected, sorted, and
ultimately merged into the dispatch queue. In
a next step, the head request in the dispatch
queue is passed to the device driver. Concep-
tually, a CFQ implementation does not utilize
a hash function. Therefore, each I/O process
gets an internal queue assigned (which implies
that the number of I/O processes determines
the number of internal queues). In Linux 2.6.5,
the CFQ I/O scheduler utilizes a hash func-
tion (and a certain amount of request queues)
and therefore resembles an SFQ implementa-
tion. The CFQ, as well as the SFQ implemen-
tations strives to manage per-process I/O band-
width, and provide fairness at the level of pro-
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cess granularity.

2.3 The 2.6 noop I/O scheduler

The Linux 2.6 noop I/O scheduler can be
considered as a rather minimal overhead I/O
scheduler that performs and provides basic
merging and sorting functionalities. The main
usage of the noop scheduler revolves around
non disk-based block devices (such as mem-
ory devices), as well as specialized software or
hardware environments that incorporate their
own I/O scheduling and (large) caching func-
tionality, and therefore require only minimal
assistance from the kernel. Therefore, in large
I/O subsystems that incorporate RAID con-
trollers and a vast number of contemporary
physical disk drives (TCQ drives), the noop
scheduler has the potential to outperform the
other 3 I/O schedulers as the workload in-
creases.

2.4 I/O Scheduler—Performance Implications

The next few paragraphs augment on the I/O
scheduler discussion, and introduce some addi-
tional performance issues that have to be taken
into consideration while conducting an I/O per-
formance analysis. The current AS implemen-
tation consists of several different heuristics
and policies that basically determine when and
how I/O requests are dispatched to the I/O con-
troller(s). The elevator algorithm that is being
utilized in AS is similar to the one used for
the deadline scheduler. The main difference
is that the AS implementation allows limited
backward movements (in other words supports
backward seek operations) [1]. A backward
seek operation may occur while choosing be-
tween two I/O requests, where one request is
located behind the elevator’s current head po-
sition while the other request is ahead of the
elevator’s current position.

The AS scheduler utilizes the lowest logical

block information as the yardstick for sorting,
as well as determining the seek distance. In the
case that the seek distance to the request behind
the elevator is less than half the seek distance to
the request in front of the elevator, the request
behind the elevator is chosen. The backward
seek operations are limited to a maximum of
MAXBACK (1024 * 1024) blocks. This ap-
proach favors the forward movement progress
of the elevator, while still allowing short back-
ward seek operations. The expiration time for
the requests held on the FIFO lists is tune-
able via the parameter’sread_expire and
write_expire (see Appendix A). When a
read or a write operation expires, the AS I/O
scheduler will interrupt either the current ele-
vator sweep or the read anticipation process to
service the expired request(s).

2.5 Read and Write Request Batches

An actual I/O batch is described as a set of
read or write requests. The AS scheduler alter-
nates between dispatching either read or write
batches to the device driver. In a read sce-
nario, the scheduler submits read requests to
the device driver, as long as there are read
requests to be submitted, and the read batch
time limit (read_batch_expire ) has not
been exceeded. The clock onread_batch_
expire only starts in the case that there are
write requests pending. In a write scenario, the
scheduler submits write requests to the device
driver as long as there are pending write re-
quests, and the write batch time limitwrite_
batch_expire has not been exceeded. The
heuristic used insures that the length of the
write batches will gradually be shortened if
there are read batches that frequently exceed
their time limit.

When switching between read and write re-
quests, the scheduler waits until all the re-
quests from the previous batch are completed
before scheduling any new requests. The read
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and write FIFO expiration time is only being
checked when scheduling I/O for a batch of
the corresponding (read or write) operation.
To illustrate, the read FIFO timeout values are
only analyzed while operating on read batches.
Along the same lines, the write FIFO timeout
values are only consulted while operating on
write batches. Based on the used heuristics and
policies, it is generally not recommended to set
the read batch time to a higher value than the
write expiration time, or to set the write batch
time to a greater value than the read expiration
time. As the IO scheduler switches from a read
to a write batch, the I/O framework launches
the elevator with the head request on the write
expired FIFO list. Likewise, when switching
from a write to a read batch, the I/O sched-
uler starts the elevator with the first entry on
the read expired FIFO list.

2.6 Read Anticipation Heuristic

The process of read anticipation solely occurs
when scheduling a batch of read requests. The
AS implementation only allows one read re-
quest at a time to be dispatched to the con-
troller. This has to be compared to either
the many write request scenario or the many
read request case if read anticipation is deacti-
vated. In the case that read anticipation is en-
abled (antic_expire = 0 ), read requests
are dispatched to the (disk or RAID) controller
one at a time. At the end of each read request,
the I/O scheduler examines the next read re-
quest from the sorted read list (an actual rb-
tree) [1]. If the next read request belongs to
the same process as the request that just com-
pleted, or if the next request in the queue is
close (data block wise) to the just completed
request, the request is being dispatched im-
mediately. Otherwise, the statistics (average
think-time and seek distance) available for the
process that just completed are being exam-
ined (cost-benefit analysis). The statistics are

associated with each process, but these statis-
tics are not associated with a specific I/O de-
vice per se. To illustrate, the approach works
more efficiently if there is a one-to-one corre-
lation between a process and a disk. In the case
that a process is actively working I/O requests
on separate devices, the actual statistics reflect
a combination of the I/O behavior across all
the devices, skewing the statistics and therefore
distorting the facts. If the AS scheduler guesses
right, very expensive seek operations can be
omitted, and hence the overall I/O through-
put will benefit tremendously. In the case that
the AS scheduler guesses wrong, theantic_
expire time is wasted. In an environment
that consists of larger (HW striped) RAID sys-
tems and tag command queuing (TCQ) capable
disk drives, it is more beneficial to dispatch an
entire batch of read requests and let the con-
trollers and disk do their magic.

From a physical disk perspective, to locate
specific data, the disk drive’s logic requires
the cylinder, the head, and the sector infor-
mation [17]. The cylinder specifies the track
on which the data resides. Based on the lay-
ering technique used, the tracks underneath
each other form a cylinder. The head infor-
mation identifies the specific read/write head
(and therefore the exact platter). The search
is now narrowed down to a single track on a
single platter. Ultimately, the sector value re-
flects the sector on the track, and the search
is completed. Contemporary disk subsys-
tems do not communicate in terms of cylin-
ders, heads and sectors. Instead, modern disk
drives map a unique block number over each
cylinder/head/sector construct. Therefore, that
(unique) reference number identifies a specific
cylinder/head/sector combination. Operating
systems address the disk drives by utilizing
these block numbers (logical block address-
ing), and hence the disk drive is responsible for
translating the block number into the appropri-
ate cylinder/head/sector value. The culprit is



Linux Symposium 2004 • Volume Two • 433

that it is not guaranteed that the physical map-
ping is actually sequential. But the statement
can be made that there is a rather high probabil-
ity that a logical blockn is physically adjacent
to a logical blockn+1. The existence of the
discussed sequential layout is paramount to the
I/O scheduler performing as advertised. Based
on how the read anticipatory heuristic is imple-
mented in AS, I/O environments that consist of
RAID systems (operating in a hardware stripe
setup) may experience a rather erratic perfor-
mance behavior. This is due to the current
AS implementation that is based on the notion
that an I/O device has only one physical (seek)
head, ignoring the fact that in a RAID environ-
ment, each physical disk has its own physical
seek head construct. As this is not recognized
by the AS scheduler, the data being used for
the statistics analysis is skewed. Further, disk
drives that support TCQ perform best when
being able to operate onn (and not 1) pend-
ing I/O requests. The read anticipatory heuris-
tic basically disables TCQ. Therefore, envi-
ronments that support TCQ and/or consist of
RAID systems may benefit from either choos-
ing an alternate I/O scheduler or from setting
theantic_expire parameter to 0. The tun-
ing allows the AS scheduler to behave similarly
to the deadline I/O scheduler (the emphasis is
on behave and not performance).

3 I/O Components that Affect Per-
formance

In any computer system, between the disk
drives and the actual memory subsystem is
a hierarchy of additional controllers, host
adapters, bus converters, and data paths that all
impact I/O performance in one way or another
[17]. Linux file systems submit I/O requests by
utilizing submit_bio() . This function sub-
mits requests by utilizing the request function
as specified during queue creation. Techni-
cally, device drivers do not have to use the I/O

scheduler, however all SCSI devices in Linux
utilize the scheduler by virtue of the SCSI
mid-layer [1]. Thescsi_alloc_queue()
function callsblk_init_queue() , which
sets the request function toscsi_request_
fn() . Thescsi_request_fn() function
takes requests from the I/O scheduler (on de-
queue), and passes them down to the device
driver.

3.1 SCSI Operations

In the case of a simple SCSI disk access, the
request has to be processed by the server, the
SCSI host adapter, the embedded disk con-
troller, and ultimately by the disk mechanism
itself. As the OS receives the I/O request,
it converts the request into a SCSI command
packet. In the case of a synchronous request,
the calling thread surrenders the CPU and tran-
sitions into a sleep state until the I/O operation
is completed. In a next step, the SCSI com-
mand is transferred across the server’s I/O bus
to the SCSI host adapter. The host adapter is
responsible for interacting with the target con-
troller and the respective devices. In a first step,
the host adapter selects the target by asserting
its control line onto the SCSI-bus (as the bus
becomes available). This phase is known as
the SCSI selection period. As soon as the tar-
get responds to the selection process, the host
adapter transfers the SCSI command to the tar-
get. This section of the I/O process is labeled
as the command phase. If the target is capa-
ble of processing the command immediately, it
either returns the requested data or the status
information.

In most circumstances, the request can only be
processed immediately if the data is available
in the target controller’s cache. In the case of
a read() request, the data is normally not
available. This results into the target discon-
necting from the SCSI bus to allow other SCSI
operations to be processed. If the I/O opera-
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tion consists of awrite() request, the data
phase is followed immediately by a command
phase on the bus, as the data is transferred into
the target’s cache. At that stage, the target dis-
connects from the bus. After disconnecting
from the bus, the target resumes its own pro-
cessing while the bus can be utilized by other
SCSI requests. After the physical I/O opera-
tion is completed on the target disk, the target
controller competes again for the bus, and re-
connects as soon as the bus is available. The
reconnect phase is followed by a data phase (in
the case ofread() operation) where the data
is actually being moved. The data phase is fol-
lowed by another status phase to describe the
results of the I/O operation. As soon as the
SCSI host adapter receives the status update,
it verifies the proper completion of the request
and notifies the OS to interrupt the requesting
worker thread. Overall, the simple SCSI I/O
request causes 7 phase changes consisting of a
select, a command, a disconnect, a reconnect,
a data, a status, and a disconnect operation.
Each phase consumes time and contributes to
the overall I/O processing latency on the sys-
tem.

3.2 SCSI Disk Fence

When discussing SCSI disks, it is imperative
to understand the performance impact of a rel-
atively obscure disk control parameter that is
labeled as the fence. When a SCSI disk recog-
nizes a significant delay (such as a seek oper-
ation) in aread() request, the disk will sur-
render the bus. At the point where the disk is
ready to transfer the data, the drive will again
contend for the bus so that theread() request
can be completed. The fence parameter deter-
mines the time at which the disk will begin to
contend for the SCSI bus. If the fence is set to
0 (the minimum), the disk will contend for the
SCSI bus after the first sector has been trans-
ferred into the disk controller’s memory. In the

case where the fence is set to 255 (the maxi-
mum), the disk will wait until almost all the re-
quested data has been accumulated in the con-
troller’s memory before contending for the bus.

The performance implication of setting the
fence to a low value is a reduced response
time, but results in a data transfer that hap-
pens basically at disk speed. On the other
hand, a high fence value will delay the start
of the data transfer, but results in a data trans-
fer that occurs at near burst speed. Therefore,
in systems with multiple disks per adapter, a
high fence value potentially increases overall
throughput for I/O intensive workloads. A
study by Shriver [15] observed fairness in ser-
vicing sufficiently large I/O requests (in the
16KB to 128KB range), despite the fact that
the SCSI disks have different priorities when
contending for the bus. Although each pro-
cess attempts to progress through its requests
without any coordination with other processes,
a convoy behavior among all the processes was
observed. Namely, all disk drives received a
request and transmitted the data back to the
host adapter before any disk received another
request from the adapter (a behavior labeled
as rounds). The study revealed that the host
adapter does not arbitrate for the bus, despite
having the highest priority, as long as any disk
is arbitrating.

3.3 Zone Bit Recording (ZBR)

Contemporary disk drives utilize a technology
called Zone Bit Recording to increase capacity
[17]. Incorporating the technology, cylinders
are grouped into zones, based on their distance
from the center of the disk. Each zone is as-
signed a number of sectors per track. The outer
zones contain more sectors per track compared
to the inner zones that are located closer to the
spindle. With ZBR disks, the actual data trans-
fer rate varies depending on the physical sector
location.
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Figure 1: ZBR Throughput Performance

Given the fact that a disk drive spins at a con-
stant rate, the outer zones that contain more
sectors will transfer data at a higher rate than
the inner zones that contain fewer sectors. In
this study, evaluating I/O performance on an
18.4 GB Seagate ST318417W disk drive out-
lined the throughput degradation for sequen-
tial read() operations based on physical sec-
tor location. The ZCAV program used in this
experiment is part of the Bonnie++ bench-
mark suite. Figure 1 outlines the average zone
read() throughput performance. It has to be
pointed out that the performance degradation is
not gradual, as the benchmark results revealed
14 clear distinct performance steps along the
throughput curve. Another observation derived
from the experiment was that for this particu-
lar ZBR disk, the outer zones revealed to be
wider than the inner zones. The Seagate speci-
fications for this particular disk cite an internal
transfer rate of 28.1 to 50.7 MB/second. The
measured minimum and maximum through-
put read() values of 25.99 MB/second and
40.84 MB/second, respectively are approxi-
mately 8.1% and 19.5% (13.8% on average)
lower, and represent actual throughput rates.
Benchmarks conducted on 4 other ZBR drives

revealed a similar picture. On average, the ac-
tual system throughput rates were 13% to 15%
lower than what was cited in the vendor specifi-
cations. Based on the conducted research, this
text proposes a first-order ZBR approximation
nominal disk transfer rate model (for a partic-
ular request sizereq and a disk capacitycap)
that is defined in Equation 1 as:

ntrzbr
(req) = 0.85 trmax( )⋅

req trmax trmin−( )⋅

cap
− 1( )

trmax
= maximum disk specific internal transfer speed

trmin
= minimum disk specific internal transfer speed

The suggested throughput regulation factor of
0.85 was derived from the earlier observation
that throughput rates adjusted for factors such
as sector overhead, error correction, or track
and cylinder skewing issues resulted in a drop
of approximately 15% compared to the man-
ufacturer reported transfer rates. This study
argues that the manufacturer reported transfer
rates could be more accurately defined as in-
stantaneous bit rates at the read-write heads.
It has to be emphasized that the calculated
throughput rates derived from the presented
model will have to be adjusted onto the target
system’s ability to sustain the I/O rate.

The theories of progressive chaos imply that
anything that evolves out of a perfect order
will over time become disordered due to out-
side forces. The progressive chaos concept can
certainly be applied to I/O performance. The
dynamic allocation (as well as de-allocation)
of file system resources contributes to the pro-
gressive chaos scenario encountered in virtu-
ally any file system designs. Form a device
driver and physical disk drive perspective, the
results of disk access optimization strategies
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are first, that the number of transactions per
second is maximized and second, that the or-
der in which the requests are being received is
not necessarily the order the requests are get-
ting processed. Thus, the response time of any
particular request can not be guaranteed. A
request queue may increase spatial locality by
selecting requests in an order to minimize the
physical arm movement (a workload transfor-
mation), but may also increase the perceived
response time because of queuing delays (a be-
havior transformation). The argument made in
this study is that the interrelationship of some
the discussed I/O components has to be taken
into consideration while evaluating and quanti-
fying performance

4 I/O Schedulers and Performance

The main goal of this study was to quantify
I/O performance (focusing on the Linux 2.6
I/O schedulers) under varying workload sce-
narios and hardware configurations. Therefore,
the benchmarks were conducted on a single-
CPU single-disk system, a midrange 8-way
NUMA RAID-5 system, and a 16-way SMP
system that utilized a 28-disk RAID-0 config-
uration. The reader is referred to Appendix
B for a more detailed description of the dif-
ferent benchmark environments. As a work-
load generator, the study utilized the flexible
file system benchmark (FFSB) infrastructure
[8]. FFSB represents a benchmarking envi-
ronment that allows analyzing I/O performance
by simulating basically any I/O pattern imag-
inable. The benchmarks can be executed on
multiple individual file systems, utilizing an
adjustable number of worker threads, where
each thread may either operate out of a com-
bined or a thread-based I/O profile. Aging the
file systems, as well as collecting systems uti-
lization and throughput statistics is part of the
benchmarking framework. Next to the more
traditional sequential read and sequential write

benchmarks, the study used a filer server, a web
server, a mail server, as well as a metadata in-
tensive I/O profile (see Appendix B). The file,
as well as the mail server workloads (the actual
transaction mix) was based on Intel’s Iome-
ter benchmark [18], whereas the mail server
transaction mix was loosely derived from the
SPECmail2001 I/O profile [19]. The I/O anal-
ysis in this study was composed of two distinct
focal points. One emphasis of the study was
on aggregate I/O performance achieved across
the 4 benchmarked workload profiles, whereas
a second emphasis was on the sequential read
and write performance behavior. The emphasis
on aggregate performance across the 4 distinct
workload profiles is based on the claim made
that an I/O scheduler has to provide adequate
performance in a variety of workload scenar-
ios and hardware configurations, respectively.
All the conducted benchmarks were executed
with the default tuning values (if not specified
otherwise) in an ext3 as well as an xfs file sys-
tem environment. In this paper, the term re-
sponse time represents the total run time of the
actual FFSB benchmark, incorporating all the
I/O operations that are executed by the worker
threads.

5 Single-CPU Single-Disk Setup

The normalized results across the 4 workload
profiles revealed that the deadline, the noop, as
well as the CFQ schedulers performed within
2% and 1% percent on ext3 and xfs (see Fig-
ure 2). On ext3, the CFQ scheduler had a slight
advantage, whereas on xfs the deadline sched-
uler provided the best aggregate (normalized)
response time. On both file systems, the AS
scheduler represented the least efficient solu-
tion, trailing the other I/O schedulers by 4.6%
and 13% on ext3 and xfs, respectively. Not
surprisingly, among the 4 workloads bench-
marked in a single disk system, AS trailed the
other 3 I/O schedulers by a rather significant
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margin in the Web Server scenario (which re-
flects 100% random read operations). On se-
quential read operations, the AS scheduler out-
performed the other 3 implementations by an
average of 130% and 127% on ext3 and xfs.
The sequential read results clearly support the
discussion in this paper on where the design fo-
cus for AS was directed. In the case of sequen-
tial write operations, AS revealed the most effi-
cient solution on ext3, whereas the noop sched-
uler provided the best throughput on xfs. The
performance delta (for the sequential write sce-
narios) among the I/O schedulers was 8% on
ext3 and 2% on xfs (see Appendix C).
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Figure 2: Aggregate Response Time (Normal-
ized)

5.1 8-Way RAID-5 Setup

In the RAID-5 environment, the normalized re-
sponse time values (across the 4 profiles) dis-
closed that the deadline scheduler provided the
most efficient solution on ext3 as well as xfs
(see Figure 3 and Figure 4). While executing in
an ext3 environment, all 4 I/O schedulers were
within 4.5%, with the AS I/O scheduler trail-
ing noop and CFQ by approximately 2.5%. On

xfs, the study clearly disclosed a profound AS
I/O inefficiency while executing the metadata
benchmark. The delta among the schedulers
on xfs was much larger than on ext3, as the
CFQ, noop, and AS implementations trailed
the deadline scheduler by 1%, 6%, and 145%,
respectively (see Appendix C). As in the single
disk setup, the AS scheduler provided the most
efficient sequential read performance. The gap
between AS and the other 3 implementations
shrunk though rather significantly compared to
the single disk scenarios. The average sequen-
tial read throughput (for the other 3 schedulers)
was approximately 20% less on both ext3 and
xfs, respectively. The sequential write perfor-
mance was dominated by the CFQ scheduler’s
response time that outperformed the other 3 so-
lutions. The delta between the most (CFQ)
and the least efficient implementation was 22%
(AS) and 15% (noop) on ext3 and xfs, respec-
tively (see Appendix C).
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Figure 3: EXT3 Aggregate Response Time
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In a second phase, all the I/O scheduler setups
were tuned by adjusting the (per block device)
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tunablenr_requests (I/O operations in fly)
from its default value of 128 to 2,560. The re-
sults revealed that the CFQ scheduler reacted
in a rather positive way to the adjustment, and
ergo was capable to provide on ext3 as well
as on xfs the most efficient solution. The tun-
ing resulted into decreasing the response time
for CFQ in all the conducted (workload profile
based) benchmarks on both file systems (see
Appendix C). While CFQ benefited from the
tuning, the results for the other 3 implemen-
tations were inconclusive. Based on the pro-
file, the tuning either resulted in a gain or a
loss in performance. As CFQ is designed to
operate on larger sets of I/O requests, the re-
sults basically reflect the design goals of the
scheduler [1]. This is in contrast to the AS im-
plementation, where by design, any read inten-
sive workload can not directly benefit from the
change. On the other hand, in the case sequen-
tial write operations are being executed, AS
was capable of taking advantage of the tuning

as the response time decreased by 7% and 8%
on ext3 and xfs, respectively. The conducted
benchmarks revealed another significant inef-
ficiency behavior in the I/O subsystem, as the
write performance (for all the schedulers) on
ext3 was significantly lower (by a factor of ap-
proximately 2.1) than on xfs. The culprit here
is the ext3 reservation code. Ext3 patches to
resolve the issue are available from kernel.org.

5.2 16-Way RAID-0 Setup

Utilizing the 28 disk RAID-0 configuration
as the benchmark environment revealed that
across the 4 workload profiles, the deadline
implementation was able to outperform the
other 3 schedulers (see Appendix C). It has to
be pointed out though that the CFQ, as well
as the noop scheduler, slightly outperformed
the deadline implementation in 3 out of the 4
benchmarks. Overall, the deadline scheduler
gained a substantial lead processing the Web
server profile (100% random read requests),
outperforming the other 3 implementations by
up to 62%. On ext3, the noop scheduler re-
flected the most efficient solution while op-
erating on sequential read and write requests,
whereas on xfs, CFQ and deadline dominated
the sequential read and write benchmarks. The
performance delta among the schedulers (for
the 4 profiles) was much more noticeable on
xfs (38%) than on ext3 (6%), which reflects a
similar behavior as encountered on the RAID-
5 setup. Increasing nr_requests to 2,560 on the
RAID-0 system led to inconclusive results (for
all the I/O schedulers) on ext3 as well as xfs.
The erratic behavior encountered in the tuned,
large RAID-0 environment is currently being
investigated.

5.3 AS Sequential Read Performance

To further illustrate and basically back up the
claim made in Section 2 that the AS scheduler
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design views the I/O subsystem based on a no-
tion that an I/O device has only one physical
(seek) head, this study analyzed the sequen-
tial read performance in different hardware se-
tups. The results were being compared to the
CFQ scheduler. In the single disk setup, the
AS implementation is capable of approaching
the capacity of the hardware, and therefore pro-
vides optimal throughput performance. Under
the same workload conditions, the CFQ sched-
uler substantially hampers throughput perfor-
mance, and does not allow the system to fully
utilize the capacity of the I/O subsystem. The
described behavior holds true for the ext3 as
well as the xfs file system. Hence, the state-
ment can be made that in the case of sequen-
tial read operations and CFQ, the I/O sched-
uler (and not the file system per se) reflects the
actual I/O bottleneck. This picture is being re-
versed as the capacity of the I/O subsystem is
being increased.

HW Setup AS CFQ

1 Disk 52 MB/sec 23 MB/sec
RAID-5 46 MB/sec 39 MB/sec
RAID-0 31 MB/sec 158 MB/sec

Table 1: AS vs. CFQ Sequential Read Perfor-
mance

As depicted in Table 1, the CFQ scheduler ap-
proaches first, the throughput of the AS imple-
mentation in the benchmarked RAID-5 envi-
ronment and second, is capable of approaching
the capacity of the hardware in the large RAID-
0 setup. In the RAID-0 environment, the AS
scheduler only approaches approximately 17%
of the hardware capacity (180 MB/sec). To re-
iterate, the discussed I/O behavior is reflected
in the ext3 as well as the xfs benchmark results.
From any file system perspective, performance
should not degrade if the size of the file system,
the number of files stored in the file system,
or the size of the individual files stored in the
file system increases. Further, the performance

of a file system is supposed to approach the
capacity of the hardware (workload dependent
of course). This study clearly outlines that in
the discussed workload scenario, the 2 bench-
marked file systems are capable of achieving
these goals, but only in the case the I/O sched-
ulers are exchanged depending on the physical
hardware setup. The fact that the read-ahead
code in Linux 2.6 has to operate as efficiently
as possible (in conjunction with the I/O sched-
uler and the file system) has to be considered
here as well.

5.4 AS verses deadline Performance

Based on the benchmarked profiles and hard-
ware setups, the AS scheduler provided in
most circumstances the least efficient I/O so-
lution. As the AS framework represents
an extension to the deadline implementation,
this study explored the possibility of tun-
ing AS to approach deadline behavior. The
tuning consisted of settingnr_requests
to 2,560, antic_expire to 0, read_
batch_expire to 1,000, read_expire
to 500, write_batch_expire to 250,
and write_expire to 5,000. Setting the
antic_expire value to 0 (by design) ba-
sically disables the anticipatory portion of the
scheduler. The benchmarks were executed uti-
lizing the RAID-5 environment, and the re-
sults were compared to the deadline perfor-
mance results reported this study. On ext3,
the non-tuned AS version trailed the non-tuned
deadline setup by approximately 4.5% (across
the 4 profiles). Tuning the AS scheduler re-
sulted into a substantial performance boost, as
the benchmark results revealed that the tuned
AS implementation outperformed the default
deadline setup by approximately 6.5% (see Ap-
pendix C). The performance advantage was
squandered though while comparing the tuned
AS solution against the deadline environment
with nr_requests set to 2,560. Across
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the 4 workload profiles, deadline again out-
performed the AS implementation by approxi-
mately 17%. As anticipated, settingantic_
expire to 0 resulted into lower sequential
read performance, stabilizing the response time
at deadline performance (see Appendix C). On
xfs, the results were (based on the rather er-
ratic metadata performance behavior of AS)
inconclusive. One of the conclusions is that
based on the current implementation of the AS
code that collects the statistical data, the im-
plemented heuristic is not flexible enough to
detect any prolonged random I/O behavior, a
scenario where it would be necessary to deac-
tivate the active wait behavior. Further, setting
antic_expire to 0 should force the sched-
uler into deadline behavior, a claim that is not
backed up by the empirical data collected for
this study. One explanation for the discrep-
ancy is that the short backward seek operations
supported in AS are not part of the deadline
framework. Therefore, depending on the actual
physical disk scheduling policy, the AS back-
ward seek operations may be counterproduc-
tive from a performance perspective.

5.5 CFQ Performance

The benchmarks conducted revealed that the
tuned CFQ setup provided the most efficient
solution for the RAID-5 environment (see Sec-
tion 5.1). Therefore, the study further explored
varies ways to improve the performance of the
CFQ framework. The CFQ I/O scheduler in
Linux 2.6.5 resembles a SFQ implementation,
which operates on a certain number or inter-
nal I/O queues and hashes on a per process
granularity to determine where to place an I/O
request. More specifically, the CFQ sched-
uler in 2.6.5 hashes on the thread group id
(tgid), which represents the process PID as in
POSIX.1 [1]. The approach chosen was to al-
ter the CFQ code to hash on the Linux PID.
This code change introduces fairness on a per

thread (instead of per process) granularity, and
therefore alters the distribution of the I/O re-
quests in the internal queues. In addition, the
cfq_quantum and cfq_queued parame-
ters of the CFQ framework were exported into
user space.

In a first step, the default tgid based CFQ ver-
sion with cfq_quantum set to 32 (default
equals to 8) was compared to the PID based
implementation that used the same tuning con-
figuration. Across the 4 profiles, the PID based
implementation reflected the more efficient so-
lution, processing the I/O workloads approxi-
mately 4.5% and 2% faster on ext3 and xfs, re-
spectively. To further quantify the performance
impact of the different hash methods (tgid
verses PID based), in a second step, the study
compared the default Linux 2.6.5 CFQ setup
to the PID based code that was configured
with cfq_quantum adjusted to 32 (see Ap-
pendix C). Across the 4 profiles benchmarked
on ext3, the new CFQ scheduler that hashed on
a PID granularity outperformed the status quo
by approximately 10%. With the new method,
the sequential read and write performance im-
proved by 3% and 4%, respectively. On xfs
(across the 4 profiles), the tgid based CFQ im-
plementation proved to be the more efficient
solution, outperforming the PID based setup
by approximately 9%. On the other hand, the
PID based solution was slightly more efficient
while operating on the sequential read (2%)
and write (1%) profiles. The ramification is
that based on the conducted benchmarks and
file system configurations, certain workload
scenarios can be processed more efficiently in
a tuned, PID hash based configuration setup.

To further substantiate the potential of the pro-
posed PID based hashing approach, a mixed
I/O workload (consisting of 32 concurrent
threads) was benchmarked. The environment
used reflected the RAID-5 setup. The I/O pro-
file was decomposed in 4 subsets of 8 worker
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Figure 5: Mixed Workload Behavior

threads, each subset executing either 64KB se-
quential read, 4KB random read, 4KB random
write, or 256KB sequential write operations
(see Figure 5). The benchmark results revealed
that in this mixed I/O scenario, the PID based
CFQ solution (tuned withcfq_quantum =
32) outperformed the other I/O schedulers by
at least 5% and 2% on ext3 and xfs, respec-
tively (see Figure 5 and Appendix C). The
performance delta among the schedulers was
greater on ext3 (15%) than on xfs (6%).

6 Conclusions and Future Work

The benchmarks conducted on varying hard-
ware configurations revealed a strong (setup
based) correlation among the I/O scheduler,
the workload profile, the file system, and ul-
timately I/O performance. The empirical data
disclosed that most tuning efforts resulted in
reshuffling the scheduler performance rank-
ing. The ramification is that the choice of an
I/O scheduler has to be based on the work-

load pattern, the hardware setup, as well as the
file system used. To reemphasize the impor-
tance of the discussed approach, an additional
benchmark was conducted utilizing a Linux 2.6
SMP system, the jfs file system, and a large
RAID-0 configuration, consisting of 84 RAID-
0 systems (5 disks each). The SPECsfs [20]
benchmark was used as the workload genera-
tor. The focus was on determining the high-
est throughput achievable in the RAID-0 setup
by only substituting the I/O scheduler between
SPECsfs runs. The results revealed that the
noop scheduler was able to outperform the
CFQ, as well as the AS scheduler. The result
reverses the order, and basically contradicts the
ranking established for the RAID-5 and RAID-
0 environments benchmarked in this study. On
the smaller RAID systems, the noop scheduler
was not able to outperform the CFQ imple-
mentation in any random I/O test. In the large
RAID-0 environment, the 84 rb-tree data struc-
tures that have to be maintained (from a mem-
ory as well as a CPU perspective) in CFQ rep-
resent a substantial, noticeable overhead factor.

The ramification is that there is no silver bullet
(a.k.a. I/O scheduler) that consistently provides
the best possible I/O performance. While the
AS scheduler excels on small configurations in
a sequential read scenario, the non-tuned dead-
line solution provides acceptable performance
on smaller RAID systems. The CFQ sched-
uler revealed the most potential from a tun-
ing perspective on smaller RAID-5 systems, as
increasing thenr_requests parameter pro-
vided the lowest response time. As the noop
scheduler represents a rather light-way solu-
tion, large RAID systems that consist of many
individual logical devices may benefit from the
reduced memory, as well as CPU overhead en-
countered by this solution. On large RAID sys-
tems that consist of many logical devices, the
other 3 implementations have to maintain (by
design) rather complex data structures as part
of the operating framework. Further, the study
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revealed that the proposed PID based and tun-
able CFQ implementation reflects a valuable
alternative to the standard CFQ implementa-
tion. The empirical data collected on a RAID-5
system supports that claim, as true fairness on
a per thread basis is being introduced.

Future work items include analyzing the rather
erratic performance behavior encountered by
the AS scheduler on xfs while processing a
metadata intensive workload profile. Another
focal point is an in-depth analysis of the in-
consistentnr_requests behavior observed
on large RAID-0 systems. Different hardware
setups will be used to aid this study. The an-
ticipatory heuristics of the AS code used in
Linux 2.6.5 is the target of another study, aim-
ing at enhancing the adaptiveness of the (status
quo) implementation based on certain work-
load conditions. Additional research in the area
of the proposed PID based CFQ implementa-
tion, as well as branching the I/O performance
study out into even larger I/O subsystems rep-
resent other work items that will be addressed
in the near future.
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Appendix A: Scheduler Tunables

Deadline Tunables

Theread_expire parameter (which is spec-
ified in milliseconds) is part of the actual dead-
line equation. As already discussed, the goal
of the scheduler is to insure (basically guaran-
tee) a start service time for a given I/O request.
As the design focuses manly on read requests,
each actual read I/O that enters the scheduler is
assigned a deadline factor that consists of the
current time plus theread_expire value (in
milliseconds).

The fifo_batch parameter governs the
number of request that are being moved to the

dispatch queue. In this design, as a read request
expires, it becomes necessary to move some
I/O requests from the sorted I/O scheduler list
into the block device’s actual dispatch queue.
Hence thefifo_batch parameter controls
the batch size based on the cost of each I/O re-
quest. A request is qualified by the scheduler as
either a seek or a stream request. For additional
information, please see the discussion on the
seek_cost as well as thestream_unit
parameters.

Theseek_cost parameter quantifies the cost
of a seek operation compared to astream_
unit (expressed in Kbytes). Thestream_
unit parameter dictates how man Kbytes are
used to describe a single stream unit. A stream
unit has an associated cost of 1, hence if a re-
quest consists of XY Kbytes, the actual cost
can be determined ascost = (XY + stream_unit
- 1)/ stream_unit. To reemphasize, the combi-
nation of thestream_unit , seek_cost ,
and fifo_batch parameters, respectively,
determine how many requests are potentially
being moved as an I/O request expires.

The write_starved parameter (expressed
in number of dispatches) indicates how many
times the I/O scheduler assigns preference to
read over write requests. As already dis-
cussed, when the I/O scheduler has to move
requests to the dispatch queue, the preference
scheme in the design favors read over write
requests. However, the write requests can
not be staved indefinitely, hence after the read
requests were favored forwrite_starved
number of times, write requests are being dis-
patched.

The front_merges parameter controls the
request merge technique used by the scheduler.
In some circumstances, a request may enter the
scheduler that is contiguous to a request that is
already in the I/O queue. It is feasible to as-
sume that the new request may have a correla-
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tion to either the front or the back of the already
queued request. Hence, the new request is la-
beled as either a front or a back merge candi-
date. Based on the way files are laid out, back
merge operations are more common than front
merges. For some workloads, it is unnecessary
to even consider front merge operations, ergo
setting thefront_merges flag to 0 disables
that functionality. It has to be pointed out that
despite setting the flag to 0, front merges may
still happen due to the cachedmerge_last
hint component. But as this feature represents
an almost 0 cost factor, this is not considered
as an I/O performance issue.

AS Tunables

The parameterread_expire governs the
timeframe until a read request is labeled as
expired. The parameter further controls to
a certain extent the interval in-between ex-
pired requests are serviced. This approach
basically equates to determining the timeslice
a single reader request is allowed to use in
the general presence of other I/O requests.
The approximation100 * ((seek time
/ read_expire) + 1) describes the per-
centile of streaming read efficiency a physical
disk should receive in a environment that con-
sists of multiple concurrent read requests.

The parameterread_batch_expire gov-
erns the time assigned to a batch (or set)
of read requests prior to serving any (poten-
tially) pending write requests. Obviously, a
higher value increases the priority allotted to
read requests. Setting the value to less than
read_expire would reverse the scenario, as
at this point the write requests would be fa-
vored over the read requests. The literature
suggests setting the parameter to a multiple
of the read_expire value. The parame-
ters write_expire and write_batch_
expire , respectively, describe and govern the
above-discussed behavior for any (potential)

write requests.

The antic_expire parameter controls the
maximum amount of time the AS scheduler
will idle before moving on to another request.
The literature suggests initializing the parame-
ter slightly higher for large seek time devices.

Appendix B: Benchmark Environ-
ment

The benchmarking was performed in a Linux
2.6.4 environment. For this study, the CFQ I/O
scheduler was back-ported from Linux 2.6.5 to
2.6.4.

1.16-way 1.7Ghz Power4+™ IBM p690 SMP
system configured with 4GB memory. 28
15,000-RPM SCSI disk drives configured in
a single RAID-0 setup that used Emulex
LP9802-2G Fiber controllers (1 in use for the
actual testing). System was configured with the
Linux 2.6.4 operating system.

2.8-way NUMA system. IBM x440 with
Pentium™ IV Xeon 2.0GHz processors and
512KB L2 cache subsystem. Configured with
4 qla2300 fiber-cards (only one was used in
this study). The I/O subsystem consisted of 2
FAStT700 I/O controllers and utilized 15,000-
RPM SCSI 18GB disk drives. The system was
configured with 1GB of memory, setup as a
RAID-5 (5 disks) configuration, and used the
Linux 2.6.4 operating system.

3.Single CPU system. IBM x440 (8-way, only
one CPU was used in this study) with Pen-
tium™ IV Xeon 1.5GHz processor, and 512k
L2 cache subsystem. The system was config-
ured with a Adaptec aic7899 Ultra160 SCSI
adapter and a single 10,000 RPM 18GB disk.
The system used the Linux 2.6.4 operating sys-
tem and was configured with 1GB of memory.
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Workload Profiles

1. Web Server Benchmark. The benchmark
utilized 4 worker threads per available CPU.
In a first phase, the benchmark created sev-
eral hundred thousand files ranging from 4KB
to 64KB. The files were distributed across 100
directories, The goal of the create phase was to
exceed the size of the memory subsystem by
creating more files than what can be cached by
the system in RAM. Each worker thread ex-
ecuted 1,000 random read operations on ran-
domly chosen files. The workload distribu-
tion in this benchmark was derived from Intel’s
Iometer benchmark.

2. File Server Benchmark. The benchmark
utilized 4 worker threads per available CPU.
In a first phase, the benchmark created several
hundred thousand files ranging from 4KB to
64KB. The files were distributed across 100 di-
rectories. The goal of the create phase was to
exceed the size of the memory subsystem by
creating more files than what can be cached by
the system in RAM. Each worker thread ex-
ecuted 1,000 random read or write operations
on randomly chosen files. The ratio of read to
write operations on a per thread basis was spec-
ified as 80% to 20%, respectively. The work-
load distribution in this benchmark was derived
from Intel’s Iometer benchmark.

3. Mail Server Benchmark. The benchmark
utilized 4 worker threads per available CPU.
In a first phase, the benchmark created several
hundred thousand files ranging from 4KB to
64KB. The files were distributed across 100 di-
rectories. The goal of the create phase was to
exceed the size of the memory subsystem by
creating more files than what can be cached by
the system in RAM. Each worker thread exe-
cuted 1,000 random read, create, or delete op-
erations on randomly chosen files. The ratio
of read to create to delete operations on a per
thread basis was specified as 40% to 40% to

20%, respectively. The workload distribution
in this benchmark was (loosely) derived from
the SPECmail2001 benchmark.

4. MetaData Benchmark. The benchmark uti-
lized 4 worker threads per available CPU. In
a first phase, the benchmark created several
hundred thousand files ranging from 4KB to
64KB. The files were distributed across 100 di-
rectories. The goal of the create phase was to
exceed the size of the memory subsystem by
creating more files than what can be cached by
the system in RAM. Each worker thread ex-
ecuted 1,000 random create, write (append),
or delete operations on randomly chosen files.
The ratio of create to write to delete operations
on a per thread basis was specified as 40% to
40% to 20%.

(i) Sequential Read Benchmark. The bench-
mark utilized 4 worker threads per available
CPU. In a first phase, the benchmark created
several hundred 50MB files in a single direc-
tory structure. The goal of the create phase was
to exceed the size of the memory subsystem by
creating more files than what can be cached by
the system in RAM. Each worker thread exe-
cuted 64KB sequential read operations, start-
ing at offset 0 reading the entire file up to off-
set 5GB. This process was repeated on a per
worker thread basis 20 times on randomly cho-
sen files.

(ii) Sequential Write (Create) Benchmark. The
benchmark utilized 4 worker threads per avail-
able CPU. Each worker thread executed 64KB
sequential write operations up to a target file
size of 50MB. This process was repeated on a
per worker-thread basis 20 times on newly cre-
ated files.
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Appendix C: Raw Data Sheets (Mean Response Time in Seconds over 3 Test
Runs)

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
File Server 610.9 574.6 567.7 579.1 613.5 572.9 571.3 569.9

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
MetaData 621 634.1 623.6 597.5 883.8 781.8 773.3 771.7

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Web Server 531.4 502.1 498.3 486.8 559 462.7 461.6 462.9

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Mail Server 508.9 485.3 522.5 505.5 709.3 633 648.5 650.4

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Read 405 953.2 939.4 945.4 385.2 872.8 881.3 872.4

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Write 261.3 276.5 269.1 282.6 225.7 222.6 220.9 222.4

Table 2: Single Disk Single CPU – Mean Response Time in Seconds

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
File Server 77.2 81.2 86.5 82.7 83.8 90.3 96.6 90.7

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
MetaData 147.8 148.4 133 145.3 205.8 90.8 101.6 100.8

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Web Server 70.2 58.4 66.2 59.2 82.1 81.3 78.8 75.2

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Mail Server 119.2 114.8 115.3 119.3 153.9 92.1 100.7 92.2

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Read 517.5 631.1 654.1 583.5 515.8 624.4 628.7 604.5

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Write 1033.2 843.7 969.5 840.5 426.6 422.3 462.6 400.4

Table 3: RAID-5 8-Way Setup – Mean Response Time in Seconds
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AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
File Server 78.3 72.1 87.1 70.7 94.1 75 89.2 76

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
MetaData 127.1 133 137.3 124.9 189.1 101.1 104.6 99.3

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Web Server 62.4 58.8 75.3 57.5 79.4 72.83 80.6 71.7

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Mail Server 110.2 92.9 118.8 99.6 152.5 100.2 95.1 81

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Read 523.8 586.2 585.3 618.7 518.5 594.8 580.7 594.4

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Write 968.2 782.9 1757.8 813.2 394.3 395.6 549.9 436.4

Table 4: RAID-5 8-Way Setup –nr_requests = 2,560 – Mean Response Time in Seconds

AS - ext3 DL - ext3 AS Tuned - ext3 AS - xfs DL - xfs AS Tuned - xfs
File Server 77.2 81.2 72.1 83.8 90.3 84.5

AS Default DL Default AS Tuned AS Default DL Default AS Tuned
MetaData 147.8 148.4 133.7 205.8 90.8 187.4

AS Default DL Default AS Tuned AS Default DL Default AS Tuned
Web Server 70.2 58.4 62 82.1 81.3 75.9

AS Default DL Default AS Tuned AS Default DL Default AS Tuned
Mail Server 119.2 114.8 103.5 153.9 92.1 140.2

AS Default DL Default AS Tuned AS Default DL Default AS Tuned
Seq. Read 517.5 631.1 634.5 515.8 624.4 614.1

AS Default DL Default AS Tuned AS Default DL Default AS Tuned
Seq. Write 1033.2 843.7 923.4 426.6 422.3 389.1

Table 5: RAID-5 8-Way - Default AS, Default deadline, and Tuned AS Comparison - Mean
Response Time in Seconds

CFQ-ext3 PID-Tuned-ext3 CFQ Tuned-ext3 CFQ-xfs PID-Tuned-xfs CFQ Tuned-xfs
File Server 70.7 71.1 70.6 76 75.9 74.3

CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned
MetaData 124.9 122 125.1 99.3 92.9 97.4

CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned
Web Server 57.5 55.8 58 71.7 73 72.5

CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned
Mail Server 99.6 94.5 93.3 81 93.6 93.3

CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned
Seq. Read 618.7 599.5 595.4 594.4 583.7 604.1

CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned
Seq. Write 813.2 781.1 758.4 436.4 432.1 414.6

Table 6: RAID-5 8-Way- Default CFQ, PID Hashed CFQ &cfq_quantum=32 , Default CFQ
& cfq_quantum=32 – Mean Response Time in Seconds



448 • Linux Symposium 2004 • Volume Two

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
File Server 44.5 40 41.9 40.8 42.5 43 45.9 42.5

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
MetaData 66.7 64.6 66.2 64 101.8 71.7 72.4 66.7

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Web Server 43.4 38.2 37.9 42.9 68.3 42.8 69.3 64.5

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Mail Server 60.3 58.5 58.7 58.1 100.3 66.2 65.8 65.1

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Read 2582.1 470.4 460.2 510.9 2601.2 541 576.1 511.2

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Write 1313.8 1439.3 1171.1 1433.5 508.5 506.2 508.5 509.8

Table 7: RAID-0 16 – Default I/O Schedulers, No Tuning, Mean Response Time in Seconds

CFQ CFQ-T AS DL NO
Mixed ext3 334.1 288.1 371.2 301.2 333.5

CFQ CFQ-T AS DL NO
Mixed xfs 295 291 308.4 296 302.8

Table 8: RAID-5 8-Way Mixed Workload Behavior, Mean Response Time in Seconds
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Abstract

Typical OSS packages make assumptions
about their build environment that are not nec-
essarily true when attempting to cross compile
the software. There are two significant con-
tributors to cross compile problems: platform
specific code, and build/host confusion. Sev-
eral examples of problems existing in current
OSS packages are presented for each of these
root causes, along with explanations of how
they can be identified, how they can have been
avoided, and how they can be resolved.

1 Why Cross Compile?

Cross compiling is the process of building soft-
ware on a particular platform (architecture and
operating system), with the intent of producing
executables that will run on an entirely differ-
ent platform. Generally, the platform the soft-
ware is built on is referred to as the “build” sys-
tem, while the platform the executables are run
on is referred to as the “host” system.1

The process of cross compiling software is
somewhat related to, but distinct from, the pro-
cess of porting software to run on a differ-
ent platform. The critical distinction is in the
difference between the build and host system

1Unfortunately, not everyone chooses the same ter-
minology. For example, the Scratchbox documentation
(http://www.scratchbox.org/ ) uses the terms
“host” and “target” where this paper uses “build” and
“host” to refer to the same concepts.

characteristics. Often times, software that can
be built natively on different platforms will ex-
hibit problems when cross compiling. These
problems arise because the software fails to
distinguish between the build system and the
host system during one or more of the four dis-
tinct stages in the process of cross compiling
software: configuration, compilation, installa-
tion, and verification.

Cross compiling is an absolute necessity for a
very small number of software packages. In
the OSS world, there are several software pack-
ages that are specifically designed with cross
compiling in mind (binutils, gcc, busybox, the
Linux kernel itself, etc.) These packages are
often used to bootstrap a new system, provid-
ing a high-quality, low-cost way of obtaining a
minimal working system with a small amount
of effort. Once a minimal OS and related util-
ities are present on a system, a developer can
then build additional software for the system
as required.

As Linux becomes more prevalent in the em-
bedded market space, there is an increased de-
sire among embedded systems developers for
more cross compile friendly software pack-
ages. While modern embedded systems are of-
ten resource rich in terms of processing power,
I/O capabilities, memory, and disk space when
compared to embedded systems of only a few
years ago, compiling software natively on such
a system still poses problems for an embedded
developer. In extreme cases, compiling a mod-
erately complex software package on an em-
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bedded system natively may take hours instead
of minutes.

Embedded developers therefore prefer cross
compiling. Most significantly, it gives the
embedded developer the advantage of work-
ing in a more comfortable, resource-rich
environment—typically on a high-end work-
station or desktop system—where they can
take advantage of superior hardware to reduce
their compile/link/debug cycles. Also impor-
tantly, cross compiling makes it easier to set up
a system by which an entire system can easily
be built from scratch in a reproducible manner.

2 Terminology and Assumptions

Cross compiling is a specialized subset of the
software development world, and as such, em-
ploys its own terminology in an attempt un-
ambiguously identify certain concepts. The
following terms are definitions based on those
provided by the GNU autoconf documentation
2, and used commonly in OSS projects such as
binutils, gcc, etc.

platform - an architecture and OS combina-
tion

build system - the platform that a software
package will beconfiguredandcompiled
on

host system- the platform that a software
package willrun on

target system - the platform that the software
package willproduceoutput for

toolchain - the collection of tools (compiler,
linker, etc.) along with the headers, li-
braries, etc. needed to build software for
a platform

2Available athttp://www.gnu.org/manual/

cross compiler - a toolchain that runs on a
host system, but produces output for a
target system

Typically, the target system is really only of in-
terest to those working on compilers and re-
lated tools, where that extra degree of precision
is needed in order to specify the final binary
format those tools are intended to produce. In
the OSS world, aside from binutils, gcc, and
similar software packages, one can usually ig-
nore the additional possibilities and complica-
tions introduced by variations in the target sys-
tem.

The remainder of this paper will assume the ex-
istence of a cross compiler3 that runs on an un-
specified build system, and is capable of pro-
ducing executables that will run on a different
unspecified host system. The paper ignores the
process of porting software to run on a new
platform, in order to concentrate solely on is-
sues that arise from the process of cross com-
piling the software.

3 Configuration Issues

All but the most simple software packages gen-
erally require some means of configuration.
This is a process by which the software deter-
mines how it should be built—which libraries
it should reference, which headers it may in-
clude, any particular quirks or workarounds in
system calls it needs to deal with, etc.

Configuration is an area ripe for introducing
cross compile problems. It provides software
packages with the unique opportunity to com-
pletely confuse a build by assuming that the
build system and the host system are one and
the same. All cross compile configuration

3Those interested in building their own cross com-
piler may wish to consult the ’Resources’ section at the
end of this paper.
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problems are some reflection of this confusion
between the identity of the build and host sys-
tems.

3.1 Avoid using the wrong tools

This particular problem is caused by misiden-
tifying which tools are to be used as part of the
build process. Some software packages expect
to be able to build and execute utility programs
as part of their build process; a good example
of this is the Linux kernel configuration utility.
While the final output of the software package
will need to run on the host system, these util-
ity programs will need to be run on the build
system.

Figure 1 shows an example of this problem. In
this case,CC_FOR_BUILDis set to the same
value asCC, which would be appropriate if it
wasn’t for the fact that earlier in the configura-
tion process,CCwas explicitly set to reference
the cross compiler being used for the build.

# compilers to use to create programs
# which must be run in the build environment.

-CC_FOR_BUILD = $(CC)
-CXX_FOR_BUILD = $(CXX)
+CC_FOR_BUILD = gcc
+CXX_FOR_BUILD = g++

SUBDIRS = "this is set via configure, \
don’t edit this"

OTHERS =

Figure 1: Using the wrong tools

In this particular instance, there are several
solutions. The most correct, and most ex-
pensive, is to update the makefile templates
to use the proper variables (CC_FOR_BUILD
andCC) in their proper context. Another pos-
sible solution is to override the definition of
CC_FOR_BUILDandCCprior to invoking the
makefile. The solution presented in Figure 1
is a simple, straightforward, get-it-working ap-
proach whereCC_FOR_BUILDis simply set
to an appropriate value for the majority of build

systems.

3.2 Be cautious when executing code on the
build system

As part of the configuration process, many
software packages—particularly those built on
top of autoconf —will try to compile, link,
or even execute code on the host system.

For autoconf based projects, most of the
standard autoconf macros (AC_CHECK_
LIB , AC_CHECK_HEADER, etc.) do a good
job of dealing with cross compile issues. In
some instances, though, these standard macros
fail when trying to test for the presence of an
uncommon header file or library. Developers
typically deal with these case by writing cus-
tom autoconf macros.

If the developer is not cautious, s/he may
produce a custom macro that ends up per-
forming a more extensive check than what
is really needed. Often times, a developer
will create a custom macro that makes use of
the autoconf AC_TRY_RUN macro. This
macro attempts to compile, link, and execute
an arbitrary code fragment. The problem here
is that the conditions being tested for may not
actually require that the resulting binary be ex-
ecuted.

When cross compiling a package that uses cus-
tom macros, this leads to a situation where test
code will compile and link properly (thanks to
the cross compiler), but will then fail to run,
or will run and produce incorrect output. In
either case, it is highly unlikely that the con-
figure script will reach the proper conclusion
about whether or not the header file or library
is actually available.

A simple solution to this problem is to check
and see if the output from the test program
is ever actually used. If not, then the call to
AC_TRY_RUNin the test macro can be re-
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placed with a call toAC_TRY_COMPILEor
AC_TRY_LINK, as shown in Figure 2. These
two macros implement checks for the ability to
compile and link the provided code fragment,
respectively.

SKEY_MSG="yes"

AC_MSG_CHECKING([for s/key support])
- AC_TRY_RUN(
+ AC_TRY_LINK(

[
#include <stdio.h>
#include <skey.h>

Figure 2: Avoiding execution when linking
will suffice

3.3 Allow the user to override a ‘detected’ con-
figuration value

In some cases, use ofAC_TRY_RUNis ab-
solutely essential; the automatic configuration
process may need to be able to compile, link,
and execute code in order to determine the
characteristics of the host system. This is a def-
inite stumbling block when trying to configure
a software package for cross compiling.

A good configuration script allows the user
to explicitly identify or override what would
otherwise be an automatically detected value.
For autoconf based projects, this typically
means addingAC_ARG_ENABLEmacros to
your configure.in file that allow the user
to explicitly set the value of questionable
autoconf variables.

In the case of existing software packages, there
may not be an explicit method for setting a
questionable variable. In this case, it may be
possible to set the appropriate variable by hand
before configuring the software package, in or-
der to force the desired outcome. This may
still fail under some circumstances; for exam-
ple, some configuration scripts do not bother to
check to see if the a configuration variable has

been set before attempting to automatically de-
duce its value.

In those cases, the configuration script may
be modified4 to guard the detection code by
checking to see if the variable has already been
assigned a value. If a value has already been
assigned, the configuration script can use the
specified value, and skip executing the detec-
tion code. In other cases, it may be more ap-
propriate to fix the detection code itself so that
it sets the variable to the proper value.

4 Compilation Issues

For the majority of portable software pack-
ages, attempting to cross compile will gener-
ally not uncover any issues with the code it-
self.5 Even though individual source files may
compile when pushed through the cross com-
piler, though, the overall way in which the soft-
ware is built can still exhibit problems.

4.1 Avoid hard-coded tool names

Figure 4 shows a makefile fragment that origi-
nally made an explicit call toar . In a package
that is otherwise cross compile friendly, this is
a particularly annoying occurrence. Depending
on the specifics of the cross compiler, the call
to ar may succeed, but produce an unusable
static library.

Correcting this kind of problem is
straightforward—replace the hard-coded
tool name with a reference to a make variable

4For autoconf based software packages, keep in
mind that theconfigure script is generated by pro-
cessing configure.in . Editing theconfigure
script direclty can be helpful for testing fixes, but
changes will have to be made toconfigure.in as
well to ensure they persist if theconfigure script is
regenerated.

5Provided, of course, that the software has already
been ported to the host platform.
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that names the appropriate tool for the system
the binary is intended to run on.

4.2 Avoid decorated tool names

Occaisionally, project makefiles will avoid
hardcoded tool names by defining a variable,
but then attempt to eliminate the an "unneeded"
variable by combining a tool reference with the
default flags that should be passed along to the
tool, as shown in Figure 3.

While the intent was noble, this type of def-
inition makes it difficult for a user to sup-
ply a different definition for a tool. In-
stead of simply setting the value of of the
tool when invoking the makefile (ex,make
AR=ppc7xx-linux-ar ), a user now has
to know to define AR in a way that in-
cludes the default arguments (ex,make
AR=’ppc7xx-linux-ar cr’ ).

Again, correcting this type of problem is
straightforward—split the definition of the tool
reference into a reference to the simple tool
name and a variable that indicates the default
flags that should be passed to the tool.

-AR = @AR@ cq
+AR = @AR@
+ARFLAGS = cq

all: $(OBJS)
-rm -f libsupport.a

- $(AR) libsupport.a $(OBJS)
+ $(AR) $(ARFLAGS) libsupport.a $(OBJS)

@RANLIB@ libsupport.a

Figure 3: Avoiding execution when linking
will suffice

4.3 Avoid hard-coded paths

It is very easy for an otherwise cross compile
friendly software package to mistakenly set up
an absolute include path that looks reasonable.
In many situations, the added include path may

in fact be harmless, particularly if the build sys-
tem and host system have roughly the same OS
version, library versions, etc. However, even
slight differences in structure definitions, enu-
merated constants, etc. between build system
and host system headers can very easily re-
sult in either compilation errors, or in the cross
compiler producing an unusable binary.

Figures 5 and 6 shows a simple and straightfor-
ward solution—remove the hard-coded include
path. If the include path is required, then you
will need to alter it so that it can be specified
relative to the location of the include files ap-
propriate for the host system.

4.4 Avoid assumptions about the build system

While this is nominally a porting issue, some-
times a software package will make what
seems to be a reasonable assumption about the
build system. In particular, software pack-
ages that are intended to run only on a partic-
ular class of operating systems (Linux, POSIX
complaint systems, etc.) may assume that even
if they are cross compiled, they will at least be
cross compiled on a build system that has char-
acteristics similar to the host system.

Figure 7 illustrates this problem. This make-
file fragment assumes that the build system will
have a case-sensitive file system, and that the
file patterns ’*.os ’ and ’*.oS ’ will therefore
refer to a distinct set of files—in this case, files
for inclusion in a static library and files for in-
clusion in a shared library, respectively.

This particular assumption breaks down when
compiling on a case-insensitive file system
like VFAT, NTFS, or HPFS.6 When encoun-
tering this type of problem, there is no easy
workaround—the build logic for the software

6While these file systems are case-insensitive, they
are case preserving, which sometimes helps mask po-
tential case-sensitivity issues.
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will need to be altered in order to adjust to the
conditions of the unexpected build system.

In this case, the solution was to replace ’*.oS ’
with ’*.on ’, a file pattern that is distinct from
’*.os ’ on either a case-insensitive or a case-
sensitive file system.

5 Installation Issues

Software installation is sometimes seen as a
simple problem. After all, how hard can it be
to just copy files around and make sure they
all end up in the right place? As with con-
figuration and compilation, though, cross com-
piling software introduces additional complex-
ities when installing software.

5.1 Avoid install -s

Figure 8 shows a makefile fragment that at first
glance looks reasonable; as originally written,
it attempted to install a binary using the de-
tected version of theinstall program avail-
able on the build system.

The problem here is that the originalinstall
command specified the-s option, which in-
structsinstall to strip the binary after in-
stalling it. Because the command uses the build
system’s version ofinstall , this means that
the stripping will be accomplished using the
build system’s version ofstrip . Depending
on the version ofstrip installed on the build
system, this command may appear to succeed,
yet result in a useless binary being installed.

The solution here is to avoid the use of
install -s , and instead explicitly strip
the binary after installation using the version
of strip provided with the cross compile
toolchain that built the binary.

5.2 Avoid hard-coded installation paths

When cross compiling software, it is often con-
venient to treat a directory on the build sys-
tem as the logical root of the host system’s file
system.7 This allows a developer to “install”
the software into this logical root file system
(RFS); often times, the RFS is made available
to the host system via NFS.

Autoconf packages typically use variables to
specify the prefix for installation paths, which
makes installing them into an RFS a simple
matter. As Figure 9 shows, non-autoconf
makefiles may need to be modified to make the
same sort of adjustments to installation paths.

Even if the software package already makes
use ofprefix or a similar variable, it may
overload the meaning of that variable. This
can happen in any type of software package,
autoconf based or not. For example, a
package may use theprefix variable to both
control the installation path, and also generate
#define statements that specify paths to con-
figuration files or other important data. In this
case, it may still be necessary to modify the
makefile to introduce the idea of an installation
prefix, as shown in Figure 10.

5.3 Create the required directory structure

Often times, software packages assume that
they are being installed on an existing, full-
featured system—which implies the existence
of a certain directory structure. A cross com-
piled software package may be installed on the
build system into a location that is lacking part
or all of a normal directory structure. In this
case, the install steps of the software package
must be pessimistic, and assume that it will al-
ways be necessary to create whatever directory

7See the Scratchbox website (http://www.
scratchbox.org ) for more information on the hows
and whys of build sandboxing.
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structure it requires for the installation to suc-
ceed.

Figure 11 shows a patch for a makefile frag-
ment that originally assumed the pre-existence
of a particular directory structure. Appropriate
calls tomkdir -p are enough to ensure that
the existing directory structure is in place prior
to the install.

6 Verification Issues

There are a number of OSS packages that
very conveniently provide self-test capabilities.
Along with the usual targets in their makefiles,
they include targets that allow the user to build
and run a test suite against the software after it
is built, but before it is installed.

The main problem here is that these test tar-
gets generally run each individual test in the
suite using a “compile, execute, analyze” cy-
cle. Even if the compilation and result analy-
sis steps succeed on the build system, test ex-
ecution will most likely fail if the package has
been cross compiled, since the tests were built
with the host system in mind. If you are for-
tunate, these tests will simply fail; otherwise,
you will not be able to gauge the accuracy of
the tests, as they may be picking up informa-
tion or artifacts from the build system.

A simple solution is to rewrite test targets to
separate test compilation from test execution
and result analysis. Providing a distinct install
or packaging target for the test suite so that it
can be easily moved over to a host system for
execution is an added bonus.

Don’t assume that you can execute self-tests as
part of the normal build cycle (see Figure 12).
If you do include a test target as part of your
default target dependencies, at least make sure
that it is only enabled or run if it knows that it
can execute the tests on the build system.

7 Conclusions

By now, it should be apparent that while there
are any number of subtle ways that cross com-
piling software can fail, they are for the most
part simple problems with simple solutions.

Developers interested in supporting cross com-
piling of software packages they maintain can
use these problems as a guideline of potential
problem areas in their own projects. Detecting
potential cross compile issues is often a sim-
ple matter of examining project source code
and identifying the potential for confusing the
meaning of build and host systems.

Finally—the best possible way to examine a
software package to see if (or how well) it
supports cross compiling is to actually try and
cross compile it. While the truly adventurous
may wish to try and build their own cross com-
piler, there are any number of locations on the
web where an interested developer can obtain
a pre-built toolchain for this purpose. Those
working primarily on an x86 Linux host may
wish to consider using one of the available pre-
built cross compilers that can be found through
the rpmfind (http://www.rpmfind.net )
service. For those interested in building their
own cross compiler, or in researching other
cross compile issues, are a number of resources
(see Table 8) on the net that deal specifically
with cross compile issues. The emphasis of
these resources is generally on embedded sys-
tem development, though much of the infor-
mation available is still applicable when dis-
cussing cross compiling in general.
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8 Appendix—Code Examples

The following figures are referred to in the pa-
per, and are collected here (instead of presented
inline) for the sake of providing clarity in the
text. Each figure represents a patch (or a par-
tial patch) for a common OSS package that was
used at TimeSys to work around cross compile
problems. These selections were chosen to il-
lustrate, in a compact fashion, both the prob-
lems described in the text and some possible
solutions.

decompress.o \
bzlib.o

-all: libbz2.a bzip2 bzip2recover test
+all: libbz2.a bzip2 bzip2recover #test

bzip2: libbz2.so bzip2.c
$(CC) $(CFLAGS) -o bzip2 $\^

Figure 12: Avoid making tests part of the de-
fault build target
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The CrossGCC Mailing List
http://sources.redhat.com/ml/crossgcc/
A list for discussing embedded (‘cross’) programming using the GNU
tools.

The CrossGCC FAQ http://www.sthoward.com/CrossGCC/

crosstool
http://www.kegel.com/crosstool/
A set of scripts to build gcc and glibc for most architectures supported
by glibc.

Linux from Scratch
http://www.linuxfromscratch.org/
A project that provides you with the steps necessary to build your own
custom Linux system.

Scratchbox
http://www.scratchbox.org/ A cross-compile toolkit for
embedded Linux application development.

Embedded Gentoo

http://www.gentoo.org/proj/en/base/embedded/
index.xml
Gentoo project concerned with cross compiling and embedded
systems.

The GNU configure and build
system

http://www.airs.com/ian/configure/
Document describing the GNU configure and build systems. A bit out
of date (circa 1998), but still very useful.

GNU Autoconf, Automake, and
Libtool

http://sources.redhat.com/autobook/
Online version of the classic book covering GNU autotools.

Table 1: Selected internet resources on cross compiling
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libbz2.a: $(OBJS)
rm -f libbz2.a

- ar cq libbz2.a $(OBJS)
- @if ( test -f /usr/bin/ranlib -o -f /bin/ranlib -o \
- -f /usr/ccs/bin/ranlib ) ; then \
- echo ranlib libbz2.a ; \
- ranlib libbz2.a ; \
- fi
+ $(AR) cq libbz2.a $(OBJS)
+ $(RANLIB) libbz2.a
+ #@if ( test -f /usr/bin/ranlib -o -f /bin/ranlib -o \
+ # -f /usr/ccs/bin/ranlib ) ; then \
+ # echo ranlib libbz2.a ; \
+ # ranlib libbz2.a ; \
+ #fi

libbz2.so: libbz2.so.$(somajor)

Figure 4: Avoiding hard-coded tool references

export GCC_WARN = -Wall -W -Wstrict-prototypes -Wshadow $(ANAL_WARN)
-export INCDIRS = -I/usr/include/ncurses
-export CC = gcc
+#export INCDIRS = -I/usr/include/ncurses
+#export CC = gcc

export OPT = -O2
export CFLAGS = -D_GNU_SOURCE $(OPT) $(GCC_WARN) -I$(shell pwd) $(INCDIRS)

Figure 5: Avoiding hard-coded include paths

INSTALL = install -o $(BIN_OWNER) -g $(BIN_GROUP)

# Additional libs for Gnu Libc
-ifneq ($(wildcard /usr/lib/libcrypt.a),)

LCRYPT = -lcrypt
-endif

all: $(PROGS)

Figure 6: Avoiding tests for hard-coded path names

# Bounded pointer thunks are only built for *.ob
elide-bp-thunks = $(addprefix $(bppfx),$(bp-thunks))

-elide-routines.oS += $(filter-out $(static-only-routines),\
+elide-routines.on += $(filter-out $(static-only-routines),\

$(routines) $(aux) $(sysdep_routines)) \
$(elide-bp-thunks)

elide-routines.os += $(static-only-routines) $(elide-bp-thunks)

Figure 7: Avoiding assumptions about the build system
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- $(INSTALL) -m 0755 -s ssh $(DESTDIR)$(bindir)/ssh
+ $(INSTALL) -m 0755 ssh $(DESTDIR)$(bindir)/ssh
+ $(STRIP) $(DESTDIR)$(bindir)/ssh

Figure 8: Replacing install -s with an explicit call to strip

NAME = proc

# INSTALLATION OPTIONS
-TOPDIR = /usr
+TOPDIR = $(DESTDIR)/usr

HDRDIR = $(TOPDIR)/include/$(NAME)# where to put .h files
LIBDIR = $(TOPDIR)/lib# where to put library files

-SHLIBDIR = /lib# where to put shared library files
+SHLIBDIR = $(DESTDIR)/lib# where to put shared library files

HDROWN = $(OWNERGROUP) # owner of header files
LIBOWN = $(OWNERGROUP) # owner of library files
INSTALL = install

Figure 9: Avoiding hard-coded install paths

# Where is include and dir located?
prefix=/

+installdir=/

.c.o:
$(CC) $(CFLAGS) -c $<

@@ -47,28 +48,32 @@
-if [ ! -d pic ]; then mkdir pic; fi

install: lib install-dirs install-data
- -if [ -f $(prefix)/lib/$(SHARED_LIB) ]; then \
- mkdir -p $(prefix)/lib/backup; \
- mv $(prefix)/lib/$(SHARED_LIB) \
- $(prefix)/lib/backup/$(SHARED_LIB).$$$$; \
+ -if [ -f $(installdir)/$(prefix)/lib/$(SHARED_LIB) ]; then \
+ mkdir -p $(installdir)/$(prefix)/lib/backup; \
+ mv $(installdir)/$(prefix)/lib/$(SHARED_LIB) \
+ $(installdir)/$(prefix)/lib/backup/$(SHARED_LIB).$$$$; \

fi
- cp $(SHARED_LIB) $(prefix)/lib
- chown $(OWNER) $(prefix)/lib/$(SHARED_LIB)
+ cp $(SHARED_LIB) $(installdir)/$(prefix)/lib
+ chown $(OWNER) $(installdir)/$(prefix)/lib/$(SHARED_LIB)

if [ -x /sbin/ldconfig -o -x /etc/ldconfig ]; then \
ldconfig; \

Figure 10: Working around the use of an overloaded prefix variable
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install-only:
n=‘echo gdbserver | sed ’$(program_transform_name)’‘; \
if [ x$$n = x ]; then n=gdbserver; else true; fi; \

+ mkdir -p $(bindir); \
+ mkdir -p $(man1dir); \

$(INSTALL_PROGRAM) gdbserver $(bindir)/$$n; \
$(INSTALL_DATA) $(srcdir)/gdbserver.1 $(man1dir)/$$n.1

Figure 11: Creating required directories at install time
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Abstract

Today’s received network data is copied from
kernel-space to user-space once the protocol
headers have been processed. What is needed
is to provide ahardware (NIC) to user-space
zero-copy path. This paper discusses a page-
flip technique where a page isflipped from
kernel memory into user-space via page-table
manipulation. Gigabit Ethernet was used to
produce this zero-copy receive path within the
Linux stack which can then be extrapolated to
10 Gigabit Ethernet environments where the
need is more critical. Prior experience in the
industry with page-flip methodologies is cited.

The performance of the stack and the over-
all system is presented along with the testing
methodology and tools used to generate the
performance data. All data was collected us-
ing a modified TCP/IP stack in a 2.6.x kernel.
The stack modifications are described in detail.
Also discussed is what hardware and software
features are required to achieve page-flipping.

The issues involving page-flipping are de-
scribed in detail. Also discussed are problems
related to this technology concerning the Vir-
tual Memory Manager (VMM) and processor
cache. Another issue that is discussed is what

would be needed in an API or code changes to
enable user-space applications.

The consequences and possible benefits of this
technology are called out within the conclu-
sions of this study. Also described are the pos-
sible next steps needed to make this technology
viable for general use. As faster networks like
10 Gigabit Ethernet become more common-
place for servers and desktops, understanding
and developing zero-copy receive mechanisms
within the Linux kernel and networking stack
is becoming more critical.

Introduction

Data arriving at a network port undergoes two
copy operations (a) from the device memory
to kernel memory as a DMA by the device
into host memory and (b) from kernel memory
to application memory, copied by the proces-
sor. Techniques that avoid the second copy are
designated zero-copy; no additional copy op-
erations are involved once the data is copied
into host memory. Avoiding the second copy
can potentially improve throughput and reduce
CPU utilization. This has been demonstrated
in [Hurd] [Duke] and [Gallatin]. Several tech-
niques have been discussed in the literature for
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avoiding the second copy namely page flip-
ping, direct data placement (DDP) and remote
DMA (RDMA).

Significant performance benefits were demon-
strated with the zero copy implementation in
the transmit path. We investigate the effective-
ness of the page flipping on newer platforms
(faster processor(s) and faster memory). Ad-
ditional motivation for this experiment and pa-
per came from a discussion on the netdev (and
linux-kernel) mailing list where David Miller
mentioned his idea of

On receive side, clever RX buffer
flipping tricks are the way to go
and require no protocol changes
and nothing gross like TOE or
weird buffer ownership protocols
like RDMA requires.1

Approaches

Our initial approach consisted of attempting to
modify the 2.4 kernel to support direct modifi-
cation of PTE’s in user and kernel space. This
method was based on the assumption that any
PTE could represent any location in memory
which we later found out not to be true. Our
findings indicated that we needed to rely more
upon the OS abstraction layers to complete our
page-flip implementation. This had the side
benefit of making our changes less x86 spe-
cific as well. Eventually we settled upon a 2.6
based kernel and effectively implemented our
original idea but instead just install a new page
into the application space in much the same
way as the swapper does. The biggest hurdles
came from understanding how the Linux mem-
ory manager and its various kernel structures
work and relate to each other.

1http://marc.theaimsgroup.com/
?l=linux-netdev&w=2&r=1&s=TCP+
offloading+interface&q=b

For our final experiments we used 2.6.4 or
newer kernels with what eventually amounted
to small changes to the kernel to support page
flipped PAGE_SIZE data.

The kernel code consisted of these changes
(see patch at the end of this document):

1. Driver modifications to support header
and data portions of a packet in separate
buffers, where the data buffer is always
aligned to a PAGE_SIZE boundary.

2. Add a flag to the skb structure to indi-
cate to the stack that the hardware and
driver prepared a zero copy capable re-
ceive structure.

3. Modifications to the skb_copy_
datagram_iovec() function to
support calling the newflip_page_
mapping() function when zero copy
capable skbs are received.

4. A newflip_page_mapping() func-
tion that executes the installation of the
driver page into the user’s receive data
space. This routine handles fixing up per-
missions.

5. A modification was made to the skb free
routines to handle a frags[i] where the
.page member was zero after that page had
changed ownership to user space.

Experiment

Our test platform consisted of a pre-release
system with a dual 2.4 GHz Intel® Pentium® 4
processor supporting Hyper-Threading Tech-
nology, and 512 megabytes of RAM. This ma-
chine had a network card that supported split-
ting the header and data portions of a packet
into different buffers, and validating the IP,
TCP and Ethernet checksums.
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Assumptions

For this experiment we made some assump-
tions to simplify and to work with the hardware
that we had available.

• Our application had to allocate a re-
ceive data area in multiples of 4K bytes,
and that memory had to be PAGE_SIZE
aligned.

• We modified the freely available nttcp-
1.47 to use valloc instead of malloc, re-
sulting in PAGE_SIZE aligned memory
starting addresses.

• Our network used Maximum Transmis-
sion Units (MTU) to allow for 4KB or
8KB of data to be packaged in every
packet.

• Upon splitting of the packet into header
and data portions, this resulted in an
aligned data block

• The 2.6.4 kernel was configured for stan-
dard 4KB PAGE_SIZE and debugging op-
tions were turned off.

Methodologies

After making the required code changes and
debugging, we measured the performance of
the new “page flip” code against the “copy
once” method of receiving data.

These measurements consisted of two major
test runs, one where the application never
touched the data (notouch) being received, and
the other where the application did a compar-
ison of the data to an expected result (touch),
effectively forcing the data into the cache and
also validating that data was not corrupted in
any way through this process.

Figure 1: 1.8 GHz comparison

For every instance of the test, three runs were
done and the results were averaged for each
data point.

Oprofile was used to record the hot-spots for
each run.

CPU utilization and network utilization were
measured with sar from the sysstat package.
NOTE: Our initial results were skewed by a
version of sar that incorrectly measured CPU
and network utilization (showing more than
1Gb/s transferred in a single direction), be
aware that some versions of sar that shipped
with your distribution may need to be updated.

Results of Performance Analysis

It is apparent from the touch graphs in Fig-
ure 1 that the page flip slightly reduces CPU
on slower processors. However, the touch
throughput decreases as well, with a decrease
in efficiency (Mbits/CPU = eff) for the 4148
MTU from 6.52 (original) to 6.48 (page-flip).
The decrease in efficiency is even smaller for
8244 MTUs, where the efficiency went from
6.86 to 6.85. The difference in CPU from the
8244 to the 4148 MTU case is most likely due
to header processing as the data throughput is
very similar.

The difference between Figure 1 and Figure 2
is simply the processor’s speed being adjusted
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Figure 2: 2.4 GHz comparison

in the bios using a multiplier change. The re-
sults from Figure 2 show that the faster pro-
cessor is more efficient overall, but that even if
there is a slight increase in throughput for the
page-flip case, the efficiency is still less than
if the copy was being done. The efficiency
for the 4148 MTU touch data case went from
8.59 to 8.45. For the 8244 byte MTU the effi-
ciency goes from 9.02 to 8.93, even though the
throughput goes up.

Surprises and Unexpected Results

We expected that the copy may actually have
some beneficial side effects, and our data
shows that it does. Especially as processor
clock rate increases, the copy becomes less
costly in CPU-utilization, while the page flip
maintains a constant load which is heavier than
the copy was initially.

Oprofile analysis indicated that the locks asso-
ciated with the page-flip code cause the major-
ity of the stalls in this code path.

Oprofile also showed that the stall associated
with the TLB (translation look-aside buffer)
flush was very painful.

Conclusions

We had several surprises along the way, but
feel confident that at least with our current code
base, we can conclude that using a page-flip
methodology to receive network data is less ef-
ficient than simply doing a copy. The major
contributors to this counterintuitive result seem
to be cache issues (especially obvious in the
“touched data” tests), and a heavier cost asso-
ciated with the work necessary to prepare and
complete the page-flip.

There may be environments such as embedded
systems and slower processors where page-
flipping will help significantly in decreasing
CPU utilization or increasing performance.

Our feeling is that page flipping will not scale
in CPU utilization as well as a plain copy does.

There is much room however for optimization
of the page-flip code path, which will be fol-
lowed up with the community. Our expecta-
tion is that this optimization will be fighting an
uphill battle just to achieve parity with a copy,
and then will mostly likely not be able to keep
up with speed advances in the processor.

Also, we had to remind ourselves that the cache
warming cost must be paid somewhere along
all receive paths. Using page-flip methods only
moves the cost of the cache miss to the applica-
tion instead of taking the cost of the miss in the
kernel. If the application is waiting impatiently
for data, its likely that the cache will be seeded
with the data and the application will get all of
its data out of cache and have very fast access
at that point.

Current issues

The current patch has several outstanding is-
sues that we worked around.
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1. There isn’t much (if any) commercially
available hardware that supports header
split receives.

2. Ideally hardware (as mentioned by David
Miller) would be able to have flow identi-
fication and fillPAGE_SIZEbuckets with
data. This would eliminate the require-
ment for specific MTU sizes.

3. The current code has a bug when a net-
work data consumer causes aclone_
skb() to occur. If a page-flipped page
pointer nr_frags[].page is refer-
enced in the skb being cloned, then a zero
pointer is read and the system faults. This
is due to the ownership of the page chang-
ing from kernel space to user space before
the clone is completed. It is not immedi-
ately clear if this is an easily surmount-
able problem, but is easy to work around
for our tests.

4. The assumptions we made to enable test-
ing this new code path, like specifying
MTU, recompiling the application, etc,
create such strict requirements that the
usefulness of this code outside of an aca-
demic environment is severely limited.

Future directions possible

It is likely that on a system with lots of context
switching going on (high load) that the page-
flip would be more beneficial. Testing in these
environments would provide useful results.

If tested on other architectures besides x86,
such as x86-64, IA64 and PPC this code may
yield significantly different results.

We did create a driver patch (Appendix B) for
the currently available e1000 driver and hard-
ware that prepares packets (using a copy) for
processing through the page-flip modified net-
work stack to the user application. We saw that

the copy necessary in the driver to do this made
the differences between “driver with copy fol-
lowed by a flip in the stack” and a “driver with
a copy followed by another copy in the stack”
almost nonexistent. We believe this is because
of the cache warming done by the Appendix B
driver as it prepares the flip capable structure.
Making this code behave more like the flip ca-
pable hardware (possibly with a cache flush)
would be very useful to increase the amount
of experimentation that could be done with the
non-hardware specific kernel patches.
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Abstract

During the 2.5 development series, many peo-
ple collaborated on the infrastructure to add
(easy) and remove (hard) CPUs under Linux.
This paper will cover the approaches we used,
tracing back to the initial PowerPC hack with
Anton Blanchard in February 2001, through
the multiple rewrites to inclusion in 2.6.5.

After the brief history lesson, we will de-
scribe the approach we now use, and then the
authors of the various platform-specific code
will describe their implementations in detail:
Zwane Mwaikambo (i386) Srivatsa Vaddagiri
(i386, ppc64), Joel Schopp (ppc64), Ashok Raj
(ia64). We expect an audience of kernel pro-
grammers and people interested in dynamic
cpu configuration in other architectures.

1 The Need for CPU Hotplug

Linux is growing steadily in the mission crit-
ical data-center type installations. Such in-
stallations requires Reliability, Availability and
Serviceability (RAS) features. Modern proces-

sor architectures are providing advanced error
correction and detection techiniques. CPU hot-
plug provides a way to realize these features
in mission critical applications. CPU hotplug
feature adds the following ability to Linux to
compete in the high end applications.

• Dynamic Partitioning

Within a single system multiple Linux
partitions can be running. As workloads
change CPUs can be moved between par-
titions without rebooting and without in-
terrupting the workloads.

• Capacity Upgrade on Demand

Machines can be purchaced with extra
CPUs, without paying for those CPUs
until they are needed. Customers can
at a later date purchase activiation codes
that enable these extra CPUs to match in-
creases in demand, without interrupting
service. These activiation codes can either
be for temporary activation or permanant
activation depending on customer needs.
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• Preventive CPU Isolation

Advanced features such as CPU Guard in
PPC64 architectures, and Machine Check
Abort (MCA) features in Itanium® Prod-
uct Family (IPF) permit the hardware to
catch recoverable failures that are symp-
tomatic of a failing CPU and remove that
CPU before an unrecoverable failure oc-
curs. An unused CPU can later be brought
online to replace the failed CPU.

2 The Initial Implementation

In February 2001, Anton Blanchard and
Rusty Russell spent a weekend modifying
the ppc32 kernel to switch CPUs on and
off. Stress tests on a 4-way PPC crash box
showed it to be reasonably stable. The
resulting 60k patch to 2.4.1 was posted
to the linux-kernel on February the 4th:
http://www.uwsg.iu.edu/hypermail

/linux/kernel/0102.0/0751.html .

Now we know that the problem could be
solved, we got distracted by other things. Upon
joining IBM, Rusty had an employer who ac-
tually had a use for hotplugging CPUs, and in
2002 the development started up again.

The 2.4 kernels usedcpu_number_map()
to map from the CPU number given by
smp_processor_id() (between 0 and
NUM_CPUS) to a unique number between
0 and smp_num_cpus . This allows sim-
ple iteration between 0 andsmp_num_cpus
to cover all the CPUs, but this cannot
be maintained easily in the case where
CPU are coming and going. Given my
experience thatcpu_number_map() and
cpu_logical_map() (which are noops on
x86) are a frequent source of errors, Rusty
chose to eliminate them, and introduce a
cpu_online() function which would indi-

cate if the CPU was actually online. Much
of the original patch consisted of removing the
number remapping, and rewriting loops appro-
priately.

This change went into Linus’ tree in 2.5.24,
June 2002, which made the rest of the work
much less intrusive.

In the next month, as we were trying to get
thecpu_up() function used for booting, Li-
nus insisted that we also change the boot order
so that we boot as if we were uni-processor,
and then bring the CPUs up. Unfortunately,
this patch broke Linus’ machine, and he par-
tially reverted it, leaving us with the current
situation where a little initialization is done be-
fore secondary CPUs come online, and nor-
mal __initcall functions are done with all
CPUs enabled. This change also introduced
thecpu_possible() macro, which can be
used to detect whether a CPU could ever be on-
line in the future.

The old boot sequence for architectures was:

1. smp_boot_cpus() was called to ini-
tialize the CPUs, then

2. smp_commence() was called to bring
them online.

In addition, each arch optionally implemented
a “maxcpus” boot argument. This was made
into an arch-independent boot argument, and
the boot sequence became:

1. smp_prepare_cpus(maxcpus)
was called to probe for cpus and set up
cpu_present(cpu) 1, then

1On arch’s that dont fill incpu_present(cpu)
the function fixup_cpu_present_map just uses
whatcpu_possible_map was set during probe. See
the section in IA64 for more details.
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2. __cpu_up(cpu) was called for each
CPU wherecpu_present(cpu) was
true, then

3. smp_cpus_done(maxcpus) was
called after every CPU has been brought
up.

At this stage, the CPU notifier chain and the
cpu_up() function existed, but CPU removal
was not in the mainstream kernel. Indeed, sig-
nificant scheduler changes occurred, preemp-
tion went into the kernel, and Rusty was dis-
tracted by the module reworking. The result:
hotplug CPU development floundered outside
the main tree for over a year.

3 The Problem of CPU Removal

The initial CPU removal patch was very sim-
ple: the process scheduled on the dying CPU,
moved interrupts away, setcpu_online()
to false, and then scheduled on every other
CPU to ensure that noone was looking
at the old CPU values. The scheduler’s
can_schedule() macro was changed to re-
turn false if the CPU was offline, so the CPU
would always run the idle task during this time.
Finally, the arch-specificcpu_die() func-
tion actually killed the CPU.

Three things made this approach harder as the
2.5 kernel developed:

1. Ingo Molnar’s O(1) scheduler was in-
cluded. Rather than checking if the
CPU was offline every time we ran
schedule() , we wanted to avoid
touching the highly-optimized code paths.

2. The kernel became preemptible. This
means that scheduling on every CPU is
not sufficient to ensure that noone is us-
ing the old online CPU information.

3. Workqueue and other infrastructure was
introduced which used per-cpu threads,
which had to be cleanly added and re-
moved.

4. More per-CPU statistics were used in
the kernel, which sometimes need to be
merged when a CPU went offline (or each
sum must be for every possible CPU, not
just currently online ones)

5. Sysfs was included, meaning that the in-
terface should be there, instead of in proc,
along with structure for other CPU fea-
tures

Various approaches were discussed and tried:
some architectures (like i386) merely simu-
late CPUs going away, by looping in the idle
thread. This is useful for testing. Others
(like PPC64 and IA64) actually need to re-start
CPUs.

The following were the major design points
which were tested and debated, and the reso-
lution of each:

• How should we handle userspace tasks
bound to a single CPU?

Our original code sent a SIGPWR to tasks
which were bound such that we couldn’t
move them to another CPU. This has
the default behaviour of killing the task,
which is unfortunate if the task merely in-
herited the binding from its parent. The
ideal would be a new signal which would
also be delivered on other reconfiguration
events (like addition of CPUs, memory),
but the Linux ABI does not allow the ad-
dition of new signals.

The final result was to rely on the hotplug
scripts to handle this information, and rely
on userspace to ensure that removing a
CPU was OK before telling the kernel to
switch it off.
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• How should we handle kernel threads
bound to a single CPU?

Unlike userspace, kernel threads often
have a correctness requirement that they
run on a particular CPU. Our original
approach used a notifier between mark-
ing the CPU offline, and actually tak-
ing it down; these threads would then
shut themselves down. This two-stage ap-
proach caused other complications, and
the legendary Ingo Molnar recommended
a single-stage takedown, and that the ker-
nel threads could be cleaned up later.
While that simplified things in general,
it involved some new considerations for
such kernel threads.

• Issues Creating And Shutting Down Ker-
nel Threads

In general, the amount of code required
to stop kernel threads proved to be sig-
nificant: barriers and completions at the
very least. The other issue is that most
kernel threads assume they are started at
boot: they don’t expect to be started from
whatever random process which brought
up the CPU.

This lead Rusty to develop the “kthread”
infrastructure, which encapsulated the
logic of starting and stopping threads in
one place. In particular, it uses keventd
(which is always started at boot) to create
the new thread, ensuring that there is no
contamination by forking the userspace
process. Thedaemonize() function at-
tempts to do this, but it’s more certain to
start from a clean slate than to try to fix a
existing one.

• Issues Using keventd for CPU Hotplug

keventd is used as a general purpose
kernel thread for performing some de-
ferred work in a thread context. The

“kthread” infrastructure uses this frame-
work to start and stop threads. In addition
when various kernel code attempts to
call user-space scripts and agents use
call_usermode_helper() . This
function used the keventd thread to spawn
the user space program. This approach
caused a dead lock situation when the
call_usermode_helper() is called
as part of the_cpu_disable() , since
keventd threads are per-CPU threads.
This results in queueing work to keventd
thread via schedule_work() , then
waiting for completion. This results in
blocking the keventd thread. Unless the
work queued gets to run, this keventd
thread would never be woken again. To
avoid this scenario, Rusty introduced the
create_singlethread_workqueue
which now provides a separate thread that
is not bound to any particular CPU.

• How to Avoid Having To Lock Around
Every Access to Online Map

Naturally, we wanted to avoid
locking around every access
to cpu_online_map (via
cpu_online() for example). The
method was one Rusty invented for the
module code: the so-called “bogolock”.
To make a change, we schedule a thread
on every CPU and have them all si-
multaneously disabled interrupts, then
make the change. This code was gener-
alized from the module code, and called
stop_machine_run() . This means
that we only need to disable preemption
to accesscpu_online_map reliably.
If you need to sleep, thecpu_control
semaphore also protects the CPU hotplug
code, so there is a slow-path alternative.

• How to Avoid Doing Too Much Work
With the Machine Stopped

While all CPUs are not taking interrupts,
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we don’t want to take too long. The ini-
tial code walked the task list while the ma-
chine was frozen, moving any tasks away
from the dying CPU. Nick Piggin came
up with an improvement which only mi-
grated the tasks on the CPU’s runqueue,
and then ensured no other tasks were mi-
grated to the CPU, which reduced the hold
time by an order of magnitude. Finally
Srivatsa Vaddagiri went one better: by
simply raising the priority of the idle task
with a specialsched_idle_next()
function, we ensure that nothing else runs
on the dying CPU.

The process by which the CPU actually goes
offline is as follows:

1. Takecpu_control semaphore,

2. Check more than one CPU is online (a bug
Anton discovered in the first implementa-
tion!),

3. Check that the CPU which they are taking
down is actually online,

4. Take the target CPU out of the CPU mask
of this process. When the other steps are
finished, they will wake us up, and we
must not migrate back onto the dead CPU!

5. Usestop_machine_run() to freeze
the machine and run the following steps
on the target CPU

6. Take the CPU out ofcpu_online_map
(easier for arch code to do this first).

7. Call the arch-specific __cpu_
disable() which must ensure that
no more hardware interrupts are received
by this CPU (by reprogramming interrupt
controllers, or whatever),

8. If that call fails, we restore thecpu_
online_map . Otherwise we call
sched_idle_next() to ensure that
when we exit the CPU will be idle.

9. At this point, back in the caller, we wait
for the CPU to become idle, then call the
arch-specific__cpu_die() which ac-
tually kills the offline CPU, by setting a
flag which the idle task polls for, or using
an IPI, or some other method.

10. Finally, theCPU_DEADnotifier is called,
which the scheduler uses to migrate tasks
off the dead CPU, the workqueues use to
remove the unneeded thread, etc.

The implementation specifics of each architec-
ture can be found in the following sections.

4 Remaining Issues

The main remaining issue is the interaction
of the NUMA topology and addition of new
CPUs. An architecture can choose a static
NUMA topology which covers all the possible
CPUs, but for logical partitioning this might
not be possible (we might not know in ad-
vance).

• Per-CPU variables are allocated using
__alloc_bootmem_node() at boot,
for performance reasons. Unknown CPUs
are usually assumed to be in the boot
node, which will impact performance.

• sysfs node topology entries need to be up-
dated when a CPU comes online, if the
node association is not known at boot.

• The NUMA topology itself should be up-
dated if it is only known when a CPU
comes online. This is now possible, using
the stop_machine_run() function,
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but no architectures, other than PPC64,
currently do this.

• There are likely some tools in use today
that would require minor changes as well.
One such tool identified is the top(1) util-
ity, which has trouble dealing with the
fact that CPU’s available in the system are
not logically contiguous. For e.g in a 4-
way system, if logical cpu2 was offlined,
when cpu0, cpu1, cpu3 were still func-
tional, top would display some error in-
formation. Also the tool does not update
the CPU information and not able to dy-
namically update them when new CPU’s
are added, or removed from the system.

5 i386 Implementation

Commercial i386 hardware available today of-
fer very limited support for CPU Hotplug.
Hence the i386 implementation, as it exists,
is more of a toy for fun and experimentation.
Nevertheless, it was used intensively during
development for exercising various code paths
and, needless to say, it exposed numerous bugs.
Most of these bugs were in arch-independent
code.

Since the hardware does not support physical
hotplugging of CPUs, only logical removal of
a CPU is possible. Once removed from the sys-
tem, a dead CPU does not participate in any
OS activity. Instead, it keeps spinning, wait-
ing for a online command, in the context of
its idle thread. Once it gets the online com-
mand, it breaks out of the spin loop, puts it-
self in cpu_online_map , flushes TLB and
comes alive!

Some important i386 specific issues faced dur-
ing development are described below:

• Boot processor
There are a few interrupt controller con-

figurations, which necessitate that we not
offline the boot processor. Systems may
be running with the I/O APIC disabled
in which case all interrupts are being
serviced by the boot processor via the
i8259A, which cannot be programmed to
direct interrupts to other processors. An-
other being interrupts which may be con-
figured to go via the boot processor’s LVT
(Local Vector Table) such as various timer
interrupt setups.

• smp_call_function
smp_call_function is one tricky function
which haunted us a long time. Since it
deals with sending IPIs to online CPUs
and waiting for acknowledgement, num-
ber of races was found in this function wrt
CPUs coming and going while this func-
tion runs on some CPU. Fortunately, when
CPU offline was made atomic, most of
these race conditions went away. CPU on-
line operation, being still non-atomic, ex-
poses a race wherein an IPI can be sent
to a CPU coming online and the sender
will not wait for it to acknowledge the IPI.
The race was fixed by taking a spinlock
(call_lock ) before putting CPU in the
online_map.

• Interrupt redirection
If I/O APIC is enabled, then its redirec-
tion table entries (RTEs) need to be re-
programmed every time a CPU comes and
goes. This is so that interrupts are deliv-
ered to only online CPUs.

According to Ashok Raj, a safe time to re-
program I/O APIC RTE for any interrupt
is when that interrupt is pending, or when
the interrupt is masked in RTE.

Going by the first option, we would have
to wait for each interrupt to become pend-
ing before reprogramming its RTE. Wait-
ing like this for all interrupts to become
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pending may not be a viable solution dur-
ing CPU Hotplug. Hence the method
followed currently is to reprogram RTEs
from the dying CPU and wait for a small
period ( 20 microseconds) with interrupts
enabled to flush out any pending inter-
rupts. This, in practice, has been enough
to avoid lost interrupts.

The right alternative however would be to
mask the interrupt in RTE before repro-
gramming it, but also accounting for the
case where the interrupt might have been
lost during the interval the entry was left
masked. A detailed description of this
method is provided in IA64 implementa-
tion section.

• Disabling Local Timer Ticks
Local timer ticks are local to each CPU
and are not affected by I/O APIC repro-
gramming. Hence when a CPU is brought
down, we have to stop local timer ticks
from hitting the dying CPU. This feature
is not implemented in the current code.
As a consequence, local timer ticks keep
hitting and are discarded in software by
a cpu_is_offline check in its inter-
rupt handler. There are a few solutions un-
der consideration in order to avoid adding
a conditional in the timer interrupt path.
One method was setting up an offline pro-
cessor IDT (Interrupt Descriptor Table)
which would be loaded when the proces-
sor was in the final offline state. The of-
fline IDT would be populated with an en-
try stub which simply returns from the
interrupt. This method would mean that
any interrupts hitting the offline proces-
sor would be blindly discarded, something
which may cause problems if an ACK was
required. So what may be safer and suffi-
cient is simply masking the timer LVT for
that specific cpu and unmasking it again
on the way out of the offline loop.

6 IA64 Implementation

6.1 What is Required to Support CPU Hotplug
in IA64?

IA64 CPU hotplug code was developed once
Rusty had the base infrastructure support
ready. Some of the work that was done to bring
the code to stable state include:

• Remove section identifiers marked with
__init that are required after complet-
ing SMP boot. for e.gcpu_init() ,
do_boot_cpu() used to wakeup a
CPU from SAL_BOOT_RENDEZ mode,
fork_by_hand() used to fork idle
threads for newly added CPUs on the fly.

• Perform a safe interrupt migration from
the CPU being removed to another CPU
without loss of interrupts.

• Handing off the CPU being removed
to SAL_BOOT_RENDEZ mode back to
SAL.

• Handling platform level dependencies
that trigger physical CPU hotplug in a
platform capable of performing it.

6.2 Handling IA64 CPU removal

The arch-specific call_cpu_disable() im-
plements the necessary functionality to offline
a CPU. The different steps taken are:

1. Check if the platform has any restrictions
on this CPU being removed. Returning
an error from _cpu_disable() en-
sures that this CPU is still part of the
cpu_online_map .

2. Turn of local timer interrupt. In IA64
there is a timer interrupt per CPU and not
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an external interrupt as in i386 case. It
is required that thetimer_interrupt
does not happen any further. It is possible
there is one pending, hence check if this
interrupt is from an this is an offline CPU,
and ignore the interrupt, but just return
IRQ_HANDLED, so that the local SAPIC
can honour other interrupt vectors now.

3. Ensure that all IRQs bound to this CPU
are now targeted to a different CPU by
programming the RTEs for a new CPU
destination. On return from this step,
there must be no more interrupts sent to
this CPU being removed from any IOS-
APIC.

4. Now the idle thread gets scheduled last,
and waits until the CPU state indicates
that this CPU must be taken down. Then
it hands the CPU to SAL.

6.3 Managing IA64 Interrupts

6.3.1 When Is It Safe to Reprogram an
IOSAPIC?

IOSAPIC RTE entries should not be pro-
grammed when its actively receiving inter-
rupt signals. The recommended method is to
mask the RTE, reprogram for new destination,
and then re-enable the RTE. The/proc/irq
write handlers were calling the set affinity
handlers immediately which can cause loss
of interrupts, including IOAPIC lockups. In
i386 the introduction of IRQ_BALANCE
did this the right way, which is to per-
form the reprograming operation when an in-
terrupt is pending by storing the intend to
change interrupt destinations in a deferred ar-
raypending_irq_balance .

The same concept was extended toia64 as
well for the proc write handlers. With the CPU

hotplug patches, the write to/proc/irq en-
tries are stored in an array and performed when
the interrupt is serviced, rather than calling it
potentially when an interrupt can also be fired.
Due to the delayed nature of these updates,
with CPU hotplug, the new destination CPU
may be offlined before an interrupt fired and
the RTE can be re-programmed. Hence before
setting IRQ destination CPU for an RTE, the
code should check if the new destination pro-
cessor is in thecpu_online_map .

6.3.2 Why Turn Off Interrupt Redirection
Hint With CPU Hotplug?

Interrupt destination in any IOSAPIC RTE
must be re-programmed to a different CPU if
the CPU being removed is a possible interrupt
destination. Since we cannot wait for the in-
terrupt to fire to do the reprogramming, we
must force the interrupt destination in safe way.
IA64 interrupt architecture permits a platform
chipset to perform redirection based on lowest
priority based on a hint in the interrupt vec-
tor (bit 31) provided by the operating system.
If platform interrupt redirection is enabled, it
would imply that we need to reprogram all the
interrupt destinations, because hotplug code in
OS cannot be sure which CPU the chipset is
going to direct this interrupt to. Hence if CON-
FIG_HOTPLUG_CPU is enabled, then we dis-
able platform redirection hint at boot time.

6.3.3 Safely Migrating Interrupt Destina-
tions

The function fixup_irqs() performs all
the necessary tasks for safely migrating in-
terrupts, and reprogramming interrupt destina-
tions for which this CPU being removed was a
destination. The handling of IRQ is managed
in 3 distinct phases.
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• migrate_irqs() performs the job of
identifying all IRQs with this CPU as
the interrupt destination. This iteration
also keeps track of IRQs identified in
vectors_in_migration[] for later
processing to cover cases of missed inter-
rupts, since we mask RTEs during repro-
gramming, if the device asserted an inter-
rupt during that time, they get lost.

Clear pending
IRQ cpumask

Pending IRQ
migration not

empty?

Is IRQ on
CPU#?

Next IRQ

Migrate_IRQ
(CPU#)

To
Phase

2

Reprogram RTE

Select new target from
this map if applicable

Irqs_in_migration[irq] = 1

Select new target from
cpu_online_map

Interrupts are
targeted to new

cpu after
reprogramming RTE

Yes

Yes

Yes

No No

Figure 1: Phase1: Migrate IRQ

• ia64_process_pending_intr()
Does normal interrupt style process-
ing. During this phase, we look at the
local APIC interrupt vector register
ivr and process all pending interrupts
on this CPU. For each processed in-
terrupt, we also clear the bits set in
vectors_in_migration[] .

• Phase 3 accounts for cases where a de-
vice possibly attempted to assert an in-
terrupt, but got lost during the window
the RTE was also being re-programmed.
This phase looks at entries not accounted

Ia_64_get_ivr()

Ack Isapic eoi

do_IRQ()

Clear irqs_in_migration[irq]

Valid Vector? To Phase 3No

Yes

Figure 2: Phase2: Processing Pending intr

for in phase 2, and issues interrupt han-
dler callbacks as if an interrupt happened.
It is likely there were no interrupts as-
serted. We rely on the fact that most de-
vice drivers can tolerate calls even if there
was no work to perform due to the fact
that IRQs may be shared.

6.3.4 Managing Platform Interrupt
Sources

IA64 architecture specifies platform interrupt
sources to report corrected platform errors to
the OS. ACPI specifies these sources via the
Platform Interrupt Source Structures. These
are communicated to the OS with data such as
the following.

• Interrupt Type, indicating if the interrupt
is Platform Management Interrupt (PMI),
INIT, or CPEI.

• IOSAPIC vector the OS should program.

• The processor that should receive this in-
terrupt, by specifying the APIC id.
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For each IRQ

Irqs_in_migration[irq] set?

Clear irqs_in_migration[irq]

do_IRQ()

Return

No

Yes

Complete

Figure 3: Phase3: Account for Lost Interrupts

• The interrupt line used to signal the inter-
rupts by specifying the global system in-
terrupt.

Some platforms do not support an interrupt
model for retrieving platform errors via CPEI.
Such platforms provide support via specifying
polling tables that list all processors that can
poll for Correctable Platform Errors by using
the Correctable Platform Error Polling (CPEP)
tables.

The issue with both above schemes is that
CPEI specifies just one entry for a destina-
tion processor. This automatically restricts the
target CPU that handles CPEI not removable.
On the other hand with CPEP polling tables,
although the scheme permits specifying more
than one processor, the tables are static and
cannot be expanded dynamically as new pro-
cessors capable of handling polling to be up-
dated.

The motivation for restricting certain proces-
sors was that for some platforms that are asym-
metric, not all CPUs can retrieve the platform
error registers. Hence it is required that only
certain processors are permitted. Most plat-
forms that support interruptible model are sym-
metric in nature. Hence any CPU is capable of
accepting the interrupt for CPEI.

We are working with the ACPI specification
team to try and address this capability to sup-
port platforms supporting CPU hotplug. In the
interim before a specification change permits
either specifying any CPU as a target, or a
method to dynamically update the processors
before a CPU gets removed, the code would
fail removal of a CPU that is a target of CPEI.
In the case of polling, the last processor in the
list would be made non-removable.

6.4 Why Should the CPU be handed off to
SAL?

The Itanium® processor architecture provides
a machine check abort mechanism for report-
ing and recovering from a variety of errors that
can be detected by the processor or chipset.
In the event of global MCA, it is required
that the slave processors perform checkin with
the monarch processor, before which the mas-
ter could call the recovery to resume exe-
cution. SAL would exclude processors in
SAL_BOOT_RENDEZ mode. Hence it is im-
portant that we return the offlined processors to
SAL to avoid processing MCA events on the
offlined processor, as the OS would not have it
in the active map of CPUs.

6.5 Handling Boot CPU Removal

IA64 architecture does not have any direct de-
pendency that would preclude the boot CPU
being removable. There may be some platform
level issues such as the boot CPU is usually the
target of CPEI or some such dependency that
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would make the boot CPU from being remov-
able. In the existing IA64 code base, there is
one dependency, that the boot CPU (CPU0) is
the master time keeper. This dependency can
be easily removed by electing a new CPU as
the master timekeeper.

6.6 Recovering the Idle Thread After CPU Re-
moval

Idle threads are created on demand when a new
CPU is added to the OS image. These threads
are special, since when we return the processor
back to SAL, this is done from the context of
the idle thread. These calls don’t return, and
don’t have a natural exit path as other threads.
The simplest thing to do would be to keep these
free idle threads, and just reuse them the next
time we need to create a new idle thread for a
new CPU.

6.7 Why Was cpu_present_map Intro-
duced?

There are several pieces of kernel code that size
resources upfront. Before the advent of CPU
hotplug, the variablecpu_possible_map
also indicated the CPUs physically available in
the system and would eventually be booted via
smp_init() . It is very intrusive to make
all these callers behave dynamically to CPU
hotplug code. There are some issues around
this is use of boot_mem_allocator .
In order to simplify these issues the map
cpu_possible_map was set to all bits indi-
catingNR_CPUS. In order to start only CPUs
that are physically present in the system, the
new map cpu_present_map was added.
On platforms capable of supporting CPU hot-
plug, this map would dynamically change de-
pending on a new CPU being added or re-
moved from the system. In order to accommo-
date systems that don’t directly populatecpu_
present_map the function fixup_cpu_
present_map was introduced to just copy

the bits fromcpu_possible_map to cpu_
present_map .

6.8 ACPI and Platform Issues With CPU hot-
plug

Any platform capable of supporting hot-
pluggable CPUs must provide a mechanism
to initiate hotplug. Platforms supporting
ACPI aware OSs could use ACPI mecha-
nisms to initiate hotplug activity which I
would call Physical CPU hotplug. The CON-
FIG_HOTPLUG_CPU provides the kernel ca-
pability and could still be useful if a CPU can
be taken offline based on say, the number of
correctable error rate.

A typical sequence of operations on a plat-
form supporting a physical CPU is described
below. Each specific platform may have ad-
ditional steps, the following is only a possible
sequence and applies to the ACPI based imple-
mentations as well.

1. Insert the CPU or the module that contains
the CPU into the platform.

2. Platform BIOS does some preparation,
and notifies the OS. The kernel platform
component such as ACPI that registered
to receive the notification, processes this
event.

3. Platform dependent OS component pre-
pares necessary information required to
bring this CPU to the OS image. For ex-
ample, in IA64, the code would initialise
the following data structures before call-
ing thecpu_up() :

• ia64_cpu_to_sapicid[] , in
the case of NUMA also pop-
ulate node_to_cpu_mask and
cpu_to_node_map necessary for
NUMA kernels.
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• Populatecpu_present_map so
that kernel now knows about this
new CPU is present in the system.

4. Create the necessary entries such as
/sys/devices/system/cpu/cpu# .

5. Launch the/sbin/hotplug script that
will now invoke the CPU hotplug agent,
which in turn would use the sysfs entry
just created to bring up the new CPU.

7 PPC64 Implementation

7.1 What PPC64 Specific Tasks Occur During
a CPU Removal?

The architecure specific kernel pieces of
a CPU removal focus on three functions
mentioned previously:__cpu_disable() ,
cpu_down() , and__cpu_die() .

In __cpu_disable() all interrupts are dis-
abled and migrated, with the exception of inter-
processor interrupts (IPIs).

1. The process of disabling interrupts starts
off by writing 0 into the processor’s cur-
rent processor priority register (CPPR) to
reject any possible queued interrupts.

2. With the CPPR set to 0 it is safe to remove
ourselves from the global interrupt queue
server, which is done via a Run-Time
Abstraction Service (RTAS) set-indicator
call that is provided by the firmware. This
has the effect of refusing new interrupts
from being added to the processor.

3. After new interrupts are refused the next
step is to set the CPPR back to default
priority, which allows us to recieve IPIs
again.

4. All interrupts are iterated through, check-
ing via an RTAS “get-xive” call if any of
the interrupts are specific to the target pro-
cessor.

5. If an interrupt is specific to the target pro-
cessor it is migrated via an RTAS “set-
xive” call.

6. With the processor removed from the
global interrupt queue server and all inter-
rupts migrated it would be safe to remove
the target processor without affecting the
delivery of interrupts. Success is returned.

During __stopmachine_run() the on-
line attribute of a CPU is set to to 0. On
PPC64 we stop the CPU at this point by call-
ing cpu_die() (not to be confused with
__cpu_die() )

1. Depending on the machine model and
kernel configuration, the idle func-
tion will be default_idle() ,
dedicated_idle() , or
shared_idle() . All three idle
functions checkcpu_is_offline()
and if it is true callcpu_die() .

2. cpu_die first disables IRQs.

3. After disabling IRQs it clears the CPPR.

4. Finally rtas_stop_self() is called,
stopping the processor.

Most architectures use__cpu_die() to stop
the processor. Because on PPC64 we poll for
offline CPUs we only need to wait and confirm
the CPU has been stopped while in this func-
tion.

1. We confirm the CPU has been stopped
by using the RTAS query-cpu-
stopped-state call.
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2. Because this call can return busy, and be-
cause the CPU may not yet be stopped we
loop and schedule timeouts.

3. After confirming the CPU is stopped
we do a little extra cleanup by clear-
ing the corresponding entry in the
cpu_callin_map and xProcStart
in the PACA.

7.2 What About Adding CPUs?

The initial structure of PPC64 CPU
bringup required a lot of modification to
be able to add CPUs after the system was
already running. Most of the changes are
trivial and straightforward, but one bears
mentioning.

PPC64 used to number CPUs based on
their physical id. With CPU hotplug it
would have been necessary to reserve a
CPU entry and corresponding structures
for each possible physical CPU. It was
quite possible that the machine could have
more CPUs than the kernel was com-
piled to work with, as many CPUs would
be assigned to other partitions. Further-
more, the number of CPUs in the ma-
chine was not necessarily a static number.
Also, from a usability point of view there
were going to be far too many entries in
/sys/devices/system/cpu/ com-
pared to how many CPUs were actually
online.

The CPU numbering was logically ab-
stracted so that for kernel use there was
a logical number, and when interfacing
to the hardware there was a correspond-
ing physical number. The kernel is able
to read at boot time the maximum num-
ber of CPUs the partition is configured to
be able to grow to. Thus it reserves less
space in structures that must be allocated
at boot time, allows reuse of logical CPUs

for different physical CPUs, and presents
a cleaner directory structure.

7.3 Other Software

While outside the scope of this paper it is
worth mentioning that there is other soft-
ware running on PPC64 platforms to en-
able customers halfway around the world
from the machines they administer to use
their mouse and move CPUs. This soft-
ware is downloadable from IBM, and
should be available on the bonus CD
shipped with new machines.
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Abstract

The 2.6 Linux™ kernel has a number of fea-
tures that improve performance on high-end
SMP and NUMA systems. Finer-grain lock-
ing is used in the scheduler, the block I/O
layer, hardware and software interrupts, mem-
ory management, and the VFS layer. In ad-
dition, 2.6 brings new primitives such as RCU
and per-cpu data, lock-free algorithms for route
cache and directory entry cache as well as scal-
able user-level APIs likesys_epoll() and
futexes. With the widespread testing of these
features of the 2.6 kernel, a number of new is-
sues have come to light that needs careful anal-
ysis. Some of these issues encountered thus
far are: overhead of multilple lock acquisitions
and atomic operations in critical paths, possi-
bility of denial-of-service attack on subsystems
that use RCU-based deferred free algorithms
and degradation of realtime response due to in-
creased softirq load.

In this paper, we analyse a select set of these
issues, present the results, workaround patches
and future courses of action. We also discuss
applicability of some these issues in new fea-

tures being planned for 2.7 kernel.

1 Introduction

Support for symmetric multi-processing
(SMP) in the Linux kernel was first introduced
in 2.0 kernel. The 2.0 kernel had a single
kernel_flag lock AKA Big Kernel Lock
(BKL) which essentially single threaded
almost all of the kernel [Love04a]. The 2.2
kernel saw the introduction of finer-grain lock-
ing in several areas including signal handling,
interrupts and part of I/O subsystem. This
trend continued in 2.4 kernel.

A number of significant changes were in-
troduced in during the development of the
2.6 kernel that helped boost performance of
many workloads. Some of the key com-
ponents of the kernel were changed to have
finer-grain locking. For example, the global
runqueue_lock lock was replaced by the
locks on the new per-cpu runqueues. Gone
was io_request_lock with the introduc-
tion of the new scalablebio -based block I/O
subsystem. BKL was peeled off from ad-
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ditional commonly used paths. Use of data
locking instead of code locking became more
widespread. In addition, Read-Copy Up-
date(RCU) [McK98a, McK01a] allowed fur-
ther optimization of critical sections by avoid-
ing locking while reading data structures which
are updated less often. RCU enabled lock-
free lookup of the directory-entry cache and
route cache, which provided considerable per-
formance benefits [Linder02a, Blanchard02a,
McK02a]. While these improvements targeted
high-end SMP and NUMA systems, the vast
majority of the Linux-based systems in the
computing world are small uniprocessor or
low-end SMP systems that remain the main
focus of the Linux kernel. Therefore, scala-
bility enhancements must not cause any per-
formance regressions in these smaller sys-
tems, and appropriate regression testing is re-
quired [Sarma02a]. This effort continues and
has since thrown light on interesting issues
which we discuss here.

Also, since the release of the 2.6 kernel, its
adoption in many different types of systems
has called attention to some interesting issues.
Section 2 describes the 2.6 kernel’s use of fine-
grained locking and identifies opportunities in
this area for the 2.7 kernel development ef-
fort. Section 3 discusses one such important is-
sue that surfaced during Robert Olsson’s router
DoS testing. Section 4 discusses another is-
sue important for real-time systems or systems
that run interactive applications. Section 5
explores the impact of such issues and their
workarounds on new experiments planned dur-
ing the development of 2.7 kernel.

2 Use of Fine-Grain Locking

Since the support for SMP was introduced in
the 2.0 Linux kernel, granularity of locking
has gradually changed toward finer critical sec-
tions. In 2.4 and subsequently 2.6 kernel, many

of the global locks were broken up to improve
scalability of the kernel. Another scalability
improvement was the use of reference count-
ing in protecting kernel objects. This allowed
us to avoid long critical sections. While these
features benefit large SMP and NUMA sys-
tems, on smaller systems, benefit due to re-
duction of lock contention is minimal. There,
the cost of locking due to atomic operations in-
volved needs to be carefully evaluated. Table 1
shows cost of atomic operations on a 700MHz
Pentium™ III Xeon™ processor. The cost of
atomic increment is more than 4 times the cost
of an L2 hit. In this section, we discuss some
side effects of such finer-grain locking and pos-
sible remedies.

Operation Cost (ns)

Instruction 0.7
Clock Cycle 1.4
L2 Cache Hit 12.9
Atomic Increment 58.2
cmpxchg Atomic Increment 107.3
Atomic Incr. Cache Transfer 113.2
Main Memory 162.4
CPU-Local Lock 163.7
cmpxchg Blind Cache Transfer 170.4
cmpxchg Cache Transfer and Invalidate 360.9

Table 1: 700 MHz P-III Operation Costs

2.1 Multiple Lock Acquisitions in Hot Path

Since many layers in the kernel use their own
locks to protect their data structures, we did a
simple instrumentation (Figure 1) to see how
many locks we acquire on common paths. This
counted locks in all variations of spinlock and
rwlock. We used a running counter which we
can read using a system callget_lcount() .
This counts only locks acquired by the task in
non-interrupt context.

With this instrumented kernel, we measured
writing 4096 byte buffers to a file on ext3
filesystem. Figure 2 shows the test code
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+ s t a t i c i n l i n e void _ c o u n t _ l o c k ( void )
+{
+ i f ( ( p r e e m p t _ c o u n t ( ) & 0 x 0 0 f f f f 0 0 ) == 0) {
+ c u r r e n t _ t h r e a d _ i n f o () � > l c o u n t ++;
+ }
+}

. . . .

# d e f i n e s p i n _ l o c k ( l o c k ) \
do { \

+ _ c o u n t _ l o c k ( ) ; \
p r e e m p t _ d i s a b l e ( ) ; \
_ r a w _ s p i n _ l o c k ( l o c k ) ; \

} whi le ( 0 )

Figure 1: Lock Counting Code

i f ( g e t _ l c o u n t (& l c o u n t 1 ) != 0) {
p e r r o r ( " g e t _ l c o u n t 1 f a i l e d \ n " ) ;
e x i t ( � 1) ;

}
w r i t e ( fd , buf , 4 0 9 6 ) ;
i f ( g e t _ l c o u n t (& l c o u n t 2 ) != 0) {

p e r r o r ( " g e t _ l c o u n t 2 f a i l e d \ n " ) ;
e x i t ( � 1) ;

}

Figure 2: Lock Counting Test Code

that reads the lock count before and after the
write() system call.

4K Buffer Locks Acquired
0 19
1 11
2 10
3 11
4 10
5 10
6 10
7 10
8 16
9 10

Average 11.7

Table 2: Locks acquired during 4K writes

Table 2 shows the number of locks acquired
during each 4K write measured on a 2-way
Pentinum IV HT system running 2.6.0 kernel.
The first write has a lock acquisition count of
19 and an average of 11.7 lock round-trips per
4K write. This does not count locks associ-
ated with I/O completion handling which is
done from interrupt context. While this indi-
cates scalability of the code, we still need to

1 s t r u c t f i l e * f g e t ( unsigned i n t fd )
2 {
3 s t r u c t f i l e * f i l e ;
4 s t r u c t f i l e s _ s t r u c t * f i l e s =
5 c u r r e n t � > f i l e s ;
6
7 r e a d _ l o c k (& f i l e s � > f i l e _ l o c k ) ;
8 f i l e = f c h e c k ( fd ) ;
9 i f ( f i l e )
10 g e t _ f i l e ( f i l e ) ;
11 r e a d _ u n l o c k (& f i l e s � > f i l e _ l o c k ) ;
12 re turn f i l e ;
13 }

Figure 3: fget() Implementation

analyze this to see which locks are acquired in
such hot path and check if very small adjacent
critical sections can be collapsed into one. The
modular nature of some the kernel layers may
however make that impossible without affect-
ing readability of code.

2.2 Refcounting in Hot Path

As described in Section 2.1, atomic opera-
tions can be costly. In this section, we dis-
cuss such an issue that was addressed dur-
ing the development of the 2.6 kernel. An-
drew Morton [Morton03a] pointed out that in
2.5.65-mm4 kernel, CPU cost of writing a
large amount of small chunks of data to an ext2
file is quite high on uniprocessor systems and
takes nearly twice again as long on SMP. It also
showed that a large amount of overheads there
were coming fromfget() andfput() rou-
tines. A further look at Figure 3 shows how
fget() was implemented in 2.5.65 kernel.

Both read_lock() andread_unlock()
involve expensive atomic operations. So,
even if there is no contention for->file_
lock , the atomic operations hurt perfor-
mance [McKenney03a]. Since most programs
do not share their file-descriptor tables, the
reader-writer lock is usually not really neces-
sary. The lock need only be acquired when the
reference count of thefile structure indicates
sharing. We optimized this as shown in Fig-
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1 s t r u c t f i l e * f g e t _ l i g h t ( unsigned i n t fd ,
2 i n t * f p u t _ n e e d e d )
3 {
4 s t r u c t f i l e * f i l e ;
5 s t r u c t f i l e s _ s t r u c t * f i l e s = c u r r e n t � > f i l e s ;
6
7 * f p u t _ n e e d e d = 0 ;
8 i f ( l i k e l y ( ( a t o m i c _ r e a d (& f i l e s � >c o u n t )
9 == 1 ) ) ) {

10 f i l e = f c h e c k ( fd ) ;
11 } e l s e {
12 r e a d _ l o c k (& f i l e s � > f i l e _ l o c k ) ;
13 f i l e = f c h e c k ( fd ) ;
14 i f ( f i l e ) {
15 g e t _ f i l e ( f i l e ) ;
16 * f p u t _ n e e d e d = 1 ;
17 }
18 r e a d _ u n l o c k (& f i l e s � > f i l e _ l o c k ) ;
19 }
20 re turn f i l e ;
21 }

Figure 4: fget_light() Implementation

ure 4.

By optimizing the fast path to avoid atomic
operation, we reduced the system time use
by 11.2% in a UP kernel while running
Andrew Morton’s micro-benchmark with the
commanddd if=/dev/zero of=foo bs=

1 count=1M . The complete results measured
in a 4-CPU 700MHz Pentium III Xeon sys-
tem with 1MB L2 cache and 512MB RAM is
shown in Table 3

Kernel sys time Std Dev

2.5.66 UP 2.104 0.028
2.5.66-file UP 1.867 0.023
2.5.66 SMP 2.976 0.019
2.5.66-file SMP 2.719 0.026

Table 3: fget_light() results

However, the reader-writer lock must still be
acquired infget_light() fast path when
the file descriptor table is shared. This is now
being further optimized using RCU to make
the file descriptor lookup fast path completely
lock-free. Optimizing file descriptor look-up in
shared file descriptor table will improve perfor-
mance of multi-threaded applications that do
a lot of I/Os. Techniques such as this are ex-
tremely useful for improving performance in

1 s t a t i c _ _ i n l i n e _ _ void r t _ f r e e (
2 s t r u c t r t a b l e * r t )
3 {
4 c a l l _ r c u (& r t � >u . d s t . rcu_head ,
5 ( void ( * ) ( void * ) ) d s t _ f r e e ,
6 &r t � >u . d s t ) ;
7 }
8
9 s t a t i c _ _ i n l i n e _ _ void r t _ d r o p (

10 s t r u c t r t a b l e * r t )
11 {
12 i p _ r t _ p u t ( r t ) ;
13 c a l l _ r c u (& r t � >u . d s t . rcu_head ,
14 ( void ( * ) ( void * ) ) d s t _ f r e e ,
15 &r t � >u . d s t ) ;
16 }

Figure 5:dst_free() Modifications

both low-end and high-end SMP systems.

3 Denial-of-Service Attacks on De-
ferred Freeing

[McK02a] describes how RCU is used in
the IPV4 route cache to void acquiring the
per-bucket reader-writer lock during lookup
and the corresponding speed-up of route cache
lookup. This was included in the 2.5.53 ker-
nel. Later, Robert Olsson subjected a 2.5
kernel based router to DoS stress tests using
pktgen and discovered problems including
starvation of user-space execution and out-of-
memory conditions. In this section, we de-
scribe our analysis of those problems and po-
tential remedies that were experimented with.

3.1 Potential Out-of-Memory Situation

Starting with the 2.5.53 kernel, the IPv4 route
cache uses RCU to enable lock-free lookup of
the route hash table.

The code in Figure 5 shows how route cache
entries are freed. Because each route cache en-
try’s freeing is deferred bycall_rcu() , it is
not returned to its slab immediately. However



Linux Symposium 2004 • Volume Two • 485

CLONE_SKB=" c l o n e _ s k b 1 "
PKT_SIZE=" p k t _ s i z e 60 "
COUNT=" c o u n t 10000000 "
IPG=" i p g 0 "
PGDEV=/ proc / n e t / pk tgen / e t h 0
echo " C o n f i g u r i n g $PGDEV"
p g s e t "$COUNT"
p g s e t "$CLONE_SKB"
p g s e t " $PKT_SIZE "
p g s e t " $IPG "
p g s e t " f l a g IPDST_RND"
p g s e t " ds t_min 5 . 0 . 0 . 0 "
p g s e t " dst_max 5 . 2 5 5 . 2 5 5 . 2 5 5 "
p g s e t " f l o w s 32768 "
p g s e t " f l o w l e n 10 "

Figure 6: pktgen parameters

the route cache imposes a limit of total number
of in-flight entries atip_rt_max_size . If
this limit is exceeded, subsequent allocation of
route cache entries are failed. We reproduced
Robert’s experiment in a setup where we send
100,000 packets/sec to a 2.4GHz Pentium IV
Xeon 2-CPU HT system with 256MB RAM
running 2.6.0 kernel set up as a router. Fig-
ure 6 shows the parameters used inpktgen
testing. This script sends 10000000 packets to
the router with random destination addresses in
the range 5.0.0.0 to 5.255.255.255. The router
has an outgoing route set up to sink these pack-
ets. This results in a very large number of route
cache entries along with pruning of the cache
due to aging and garbage collection.

We then instrumented RCU infrastructure to
collect lengths of RCU callback batches in-
voked after grace periods and corresponding
grace period lengths. As indicated by the
graph plotted based on this instrumentation
(Figure 7), it is evident that every spike in RCU
batch length as an associated spike in RCU
grace period. This indicates that prolonged
grace periods are resulting in very large num-
bers of pending callbacks.
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Figure 7: Effect of pktgen testing on RCU

Next we used the same instrumentation to un-
derstand what causes long grace periods. We
measured total number of softirqs received
by each cpu during consecutive periods of 4
jiffies (approximately 4 milliseconds) and
plotted it along with the corresponding max-
imum RCU grace period length seen during
that period. Figure 8 shows this relationship.
It clearly shows that all peaks in RCU grace
period had corresponding peaks in number of
softirqs received during that period. This con-
clusively proves that large floods of softirqs
holds up progress in RCU. An RCU grace
period of 300 milliseconds during a 100,000
packets/sec DoS flood means that we may have
up to 30,000 route cache entries pending in
RCU subsystem waiting to be freed. This
causes us to quickly reach the route cache size
limits and overflow.

In order to avoid reaching the route cache en-
try limits, we needed to reduce the length of
RCU grace periods. We then introduced a
new mechanism namedrcu-softirq[Sarma04a]
that considers completion of a softirq handler
a quiescentstate. It introduces a new inter-
face call_rcu_bh() , which is to be used
when the RCU protected data is mostly used
from softirq handlers. The update function
will be invoked as soon as all CPUs have per-
formed a context switch or been seen in the
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Figure 8: Softirqs during pktgen testing

idle loop or in a user process or or has ex-
ited a softirq handler that it may have been
executing. The reader side of critical sec-
tion that use call_rcu_bh() for updating must
be protected byrcu_read_lock_bh() and
rcu_read_unlock_bh() . The IPv4 route
cache code was then modified to use these in-
terfaces instead. With this in place, we were
able to avoid route cache overflows at the rate
of 100,000 packets/second. At higher packet
rates, route cache overflows have been re-
ported. Further analysis is being done to de-
termine if at higher packet rates, current softirq
implementation doesn’t allow route cache up-
dates to keep up with new route entries getting
created. If this is the case, it may be neces-
sary to limit softirq execution in order to permit
user-mode execution to continue even in face
of DoS attacks.

3.2 CPU Starvation Due to softirq Load

During thepktgen testing, there was another
issue that came to light. At high softirq load,
user-space programs get starved of CPU. Fig-
ure 9 is a simple piece of code that can be used
to test this under severepktgen stress. In our
test router, it indicated user-space starvation for
periods longer that 5 seconds. Application of
the rcu-softirq patch reduced it by a few sec-
onds. In other words, introduction of quicker

g e t t i m e o f d a y (& p r e v _ t v , NULL ) ;

f o r ( ; ; ) {
g e t t i m e o f d a y (& tv , NULL ) ;
d i f f = ( t v . t v _ s e c � p r e v _ t v . t v _ s e c ) *

1000000 +
( t v . t v _ u s e c � p r e v _ t v . t v _ u s e c ) ;
i f ( d i f f > 1000000)

p r i n t f ( "%d \ n " , d i f f ) ;
p r e v _ t v = t v ;

}

Figure 9: user-space starvation test

RCU grace periods helped by reducing size of
pending RCU batches. But the overall softirq
rate remained high enough to starve user-space
programs.

4 Realtime Response

Linux has been use in realtime and embed-
ded applications for many years. These ap-
plications have either directly used Linux for
soft realtime use, or have used special envi-
ronments to provide hard realtime, while run-
ning the soft-realtime or non-realtime portions
of the application under Linux.

4.1 Hard and Soft Realtime

Realtime applications require latency guaran-
tees. For example, such an application might
require that a realtime task start running within
one millisecond of its becoming runnable. An-
drew Morton’samlat program may be used to
measure an operating system’s ability to meet
this requirement. Other applications might re-
quire that a realtime task start running within
500 microseconds of an interrupt being as-
serted.

Soft realtime applications require that these
guarantees be metalmostall the time. For ex-
ample, a building control application might re-
quire that lights be turned on within 250 mil-
liseconds of motion being detected within a
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given room. However, if this application oc-
casionally responds only within 500 millisec-
onds, no harm is likely to be done. Such an
application might require that the 250 millisec-
ond deadline be met 99.9% of the time.

In contrast, hard realtime applications require
that guaranteesalwaysbe met. Such applica-
tions may be found in avionics and other sit-
uations where lives are at stake. For example,
Stealth aircraft are aerodynamically unstable in
all three axes, and require frequent computer-
controlled attitude adjustments. If the aircraft
fails to receive such adjustments over a period
of two seconds, it will spin out of control and
crash [Rich94]. These sorts of applications
have traditionally run on “bare metal” or on a
specialized realtime OS (RTOS).

Therefore, while one can validate a soft-
realtime OS by testing it, a hard-realtime OS
must be validated by inspection and testing
of all non-preemptible code paths. Any non-
preemptible code path, no matter how obscure,
can destroy an OS’s hard-realtime capabilities.

4.2 Realtime Design Principles

This section will discuss how preemption,
locking, RCU, and system size affect realtime
response.

4.2.1 Preemption

In theory, neither hard nor soft realtime re-
quire preemption. In fact, the realtime systems
that one of the authors (McKenney) worked on
in the 1980s were all non-preemptible. How-
ever, in practice, preemption can greatly re-
duce the amount of work required to design
and validate a hard realtime system, because
while one must validateall code paths in a non-
preemptible system, one need only validate all
non-preemptiblecode paths in a preemptible

system.

4.2.2 Locking

The benefits of preemption are diluted by
locking, since preemption must be suppressed
across any code path that holds a spinlock, even
in UP kernels. Since most long-running oper-
ations are carried out under the protection of
at least one spinlock, the ability of preemption
to reduce the Linux kernel’s hard realtime re-
sponse is limited.

That said, the fact that spinlock critical sec-
tions degrade realtime response means that the
needs of the hard realtime Linux community
are aligned with those of the SMP-scalability
Linux community.

Traditionally, hard-realtime systems have run
on uniprocessor hardware. The advent of hy-
perthreading and multicore dies have provided
cheap SMP, which is likely to start finding its
way into realtime and embedded systems. It is
therefore reasonable to look at SMP locking’s
effects on realtime response.

Obviously, a system suffering from heavy lock
contention need not apply for the job of a re-
altime OS. However, if lock contention is suf-
ficiently low, SMP locking need not preclude
hard-realtime response. This is shown in Fig-
ure 10, where the maximum “train wreck” lock
spin time is limited to:

Smax = (NCPU − 1)Cmax (1)

whereNCPU is the number of CPUs on the
system andCmax is the maximum critical sec-
tion length for the lock in question. This maxi-
mum lock spin time holds as long as each CPU
spends at leastSmax time outside of the critical
section.

It is not yet clear whether Linux’s lock con-
tention can be reduced sufficiently to make this
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Figure 10: SMP Locking and Realtime Re-
sponse

level of hard realtime guarantee, however, this
is another example of a case where improved
realtime response benefits SMP scalability and
vice versa.

4.2.3 RCU

Towards the end of 2003, Robert Love and
Andrew Morton noted that the Linux 2.6 ker-
nel’s RCU implementation could degrade re-
altime response. This degradation is due to the
fact that, when under heavy load, literally thou-
sands of RCU callbacks will be invoked at the
end of a grace period, as shown in Figure 11.

The following three approaches can each elim-
inate this RCU-induced degradation:

1. If the batch of RCU callbacks is too
large, hand the excess callbacks to a pre-
emptible per-CPU kernel daemon for in-
vocation. The fact that these daemons are
preemptible eliminates the degradation.

2. On uniprocessors, in cases where pointers
to RCU-protected elements are not held
across calls to functions that remove those
elements, directly invoke the RCU call-
back from within thecall_rcu_rt()
primitive, which is identical to thecall_
rcu() primtive in SMP kernels. The
separatecall_rcu_rt() primitive is
necessary because direct invocation is not
safe in all cases.

3. Throttling RCU callback invocation so
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Figure 11: RCU and Realtime Response

that only a limited number are invoked at
a given time, with the remainder being in-
voked later, after there has been an oppor-
tunity for realtime tasks to run.

The throttling approach seems most attrac-
tive currently, but additional testing will be
needed after other realtime degradations are re-
solved. The implementation of each approach
and performance results are presented else-
where [Sarma04b].

4.2.4 System Size

The realtime response of the Linux 2.6 ker-
nel depends on the hardware and software con-
figuration. For example, the current VGA
driver degrades realtime response, with multi-
millisecond scheduling delays due to screen
blanking.

In addition, if there are any non-O(1) oper-
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ations in the kernel, then increased configu-
ration sizes will result in increased realtime
scheduling degradations. For example, in SMP
systems, the duration of the worst-case lock-
ing “train wreck” increases with the number of
CPUs. Once this train-wreck duration exceeds
the minimum time between release and later
acquisition of the lock in question, the worst-
case scheduling delay becomes unbounded.
Other examples include the number of tasks
and the duration of the tasklist walk result-
ing from ls /proc , the number of processes
mapping a given file and the time required to
truncate that file, and so on.

In the near term, it seems likely that realtime-
scheduling guarantees would only apply to a
restricted configuration of the Linux kernel,
running a restricted workload.

4.3 Linux Realtime Options

The Linux community can choose from the
following options when charting its course
through the world of realtime computing:

1. “Just say no” to realtime. It may well
be advisable for Linux to limit how much
realtime support will be provided, but
given recent measurements showing soft-
realtime scheduling latencies of a few
hundredmicroseconds, it seems clear that
Linux has a bright future in the world of
realtime computing.

2. Realtime applications run only on UP
kernels. In the past, realtime systems
have overwhelmingly been single-CPU
systems, it is much easier to provide re-
altime scheduling guarantees on UP sys-
tems. However, the advent of cheap SMP
hardware in the form of hyperthreading
and multi-CPU cores makes it quite likely
that the realtime community will choose
to support SMP sooner rather than later.

One possibility would be to provide
tighter guarantees on UP systems, and,
should Linux provide hard realtime sup-
port, to provide this support only on UP
systems. Another possibility would be to
dedicate a single CPU of an SMP system
to hard realtime.

3. Realtime applications run only on small
hardware configurations with small num-
bers of tasks, mappings, open files, and so
on. This seems to be an eminently reason-
able position, especially given that dirt-
cheap communications hardware is avail-
able, allowing a small system (perhaps on
a PCI card) to handle the realtime pro-
cessing, with a large system doing non-
realtime tasks requiring larger configura-
tions.

4. Realtime applications use only those de-
vices whose drivers are set up to provide
realtime response. This also seems to
be an eminently reasonable restriction, as
open-source drivers can be rewritten to of-
fer realtime response, if desired.

5. Realtime applications use only those ser-
vices able to provide the needed response-
time guarantees. For example, an appli-
cation that needs to respond in 500 mi-
croseconds is not going to be doing any
disk I/O, since disks cannot respond this
quickly. Any data needed by such an
application must be obtained from much
faster devices or must be preloaded into
main memory.

It is not clear that Linux will be able to address
each and every realtime requirement, nor is it
clear that this would even be desirable. How-
ever, it was not all that long ago that common
wisdom held that it was not feasible to address
both desktop and high-end server requirements
with a single kernel source base. Linux is well
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on its way to proving this common wisdom to
be quite wrong.

It will therefore be quite interesting to see what
realtime common wisdom can be overturned in
the next few years.

5 Future Plans

With the 2.6 kernel behind us, a number of new
scalability issues are currently being investi-
gated. In this section, we outline a few of them
and the implications they might have.

5.1 Parallel Directory Entry Cache Updates

In the 2.4 kernel, the directory entry cache was
protected by a single global lockdcache_
lock . In the 2.6 kernel, the look-ups
into the cache were made lock-free by us-
ing RCU [Linder02a]. We also showed in
[Linder02a] that for several benchmarks, only
25% of acquisitions ofdcache_lock is for
updating the cache. This allowed us to achieve
significant performance improve by avoiding
the lock during look-up while keeping the up-
dates serialized usingdcache_lock . How-
ever recent benchmarking on large SMP sys-
tems have shown thatdcache_lock acqui-
sitions are proving to be costly. Profile for a
mutli-user benchmark on a 16-CPU Pentium
IV Xeon with HT indicates this:

Function Profile Counts
.text.lock.dec_and_lock 34375.8333
atomic_dec_and_lock 1543.3333
.text.lock.libfs 800.7429
.text.lock.dcache 611.7809
__down 138.4956
__d_lookup 93.2842
dcache_readdir 70.0990
do_page_fault 45.0411
link_path_walk 9.4866

On further investigation, it is clear that.text.

lock.dec_and_lock cost is due to frequent

dput() which uses atomic_dec_and_

test() to acquiredcache_lock . With the
multi-user benchmark creating and destroying
large number of files in/proc filesystem, the
cost of corresponding updates to the directory
entry cache is hurting us. During the 2.7 kernel
development, we need to look at allowing par-
allel updates to the directory entry cache. We
attempted this [Linder02a], but it was far too
complex and too late in the 2.5 kernel develop-
ment effort to permit such a high-risk change.

5.2 Lock-free TCP/UDP Hash Tables

In the Linux kernel, INET family sockets
use hash tables to maintain the corresponding
struct sock s. When an incoming packet
arrives, this allows efficient lookup of these
per-bucket locks. On a large SMP system with
tens of thousands on tcp and ip header in-
formation. TCP usestcp_ehash for con-
nected sockets,tcp_listening_hash for
listening sockets andtcp_bhash for bound
sockets. On a webserver serving large num-
ber of simultaneous connections, lookups into
tcp_ehash table are very frequent. Cur-
rently we use a per-bucket reader-writer lock
to protect the hash tables andtcp_ehash
lookups are protected by acquiring the reader
side of these per-bucket locks. The hash table
makes CPU-CPU collisions on hash chains un-
likely and prevents the reader-writer lock from
providing any possible performance benefit.
Also, on a large SMP system with tens of thou-
sands of simultaneous connection, the cost of
atomic operation duringread_lock() and
read_unlock() as well as the bouncing of
cache line containing the lock becomes a fac-
tor. By using RCU to protect the hash tables,
the lookups can be done without acquiring the
per-bucket lock. This will benefit bot low-end
and high-end SMP systems. That said, issues
similar to the ones discussed in Section 3 will
need to be addressed. RCU can be stressed us-
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ing a DoS flood that opens and closes a lot of
connections. If the DoS flood prevents user-
mode execution, it can also prevent RCU grace
periods from happening frequently, in which
case, a large number ofsock structures can
be pending in RCU waiting to be free lead-
ing to potential out-of-memory situations. The
rcu-softirqpatch discussed in Section 3 will be
helpful in this case too.

5.3 Balancing Interrupt and Non-Interrupt
Loads

In Section 3.2, we discussed user programs
getting starved of CPU time under very high
network load. In 2001, Ingo Molnar attempted
limiting hardware interrupts based on num-
ber of such interrupts serviced during one
jiffy [Molnar01a]. Around the same time, Ja-
mal Hadi et al. demonstrated the usefulness
of limiting interrupts throughNAPI infrastruc-
ture [Jamal01a]. NAPI is now a part of 2.6
kernel and it is supported by a number of net-
work drivers. WhileNAPI limits hardware in-
terrupts, it continues to raise softirqs for pro-
cessing of incoming packets while polling. So,
under high network load, we see user processes
starved of CPU. This has been seen withNAPI
(Robert Olsson’s lab) as well as withoutNAPI
(in our lab). With extremely high network load
like DoS stress, softirqs completely starve user
processes. Under such situation, a system ad-
ministrator may find it difficult to take log into
a router and take necessary steps to counter
the DoS attack. Another potential problem
is that network I/O intensive benchmarks like
SPECWeb99™ can have user processes stalled
due to high softirq load. We need to look for a
new framework that allows us to balance CPU
usage between softirqs and process context too.
One potential idea being considered is to mea-
sure softirq processing time and mitigate it for
later if it exceeds its tunable quota. Variations
of this need to be evaluated during the devel-
opment of 2.7 kernel.

5.4 Miscellaneous

1. Lock-free dcache Path Walk: Given a file
name, the Linux kernel uses a path walk-
ing algorithm to look-up thedentry
corresponding to each component of the
file name and traverse down thedentry
tree to eventually arrive at thedentry
of the specified file name. In 2.6 ker-
nel, we implemented a mechanism to
look-up each path component in dcache
without holding the globaldcache_
lock [Linder02a]. However this requires
acquiring a per-dentry lock when we
have a successful look-up in dcache. The
common case of paths starting at the root
directory results in contention on the root
dentry on large SMP systems. Also,
the per-dentry lock acquisition happens
in the fast path (__d_lookup() ) and
avoiding this will likely provide nice per-
formance benefits.

2. Lock-free Tasklist Walk: The system-
wide list of tasks in the Linux ker-
nel is protected by a reader-writer lock
tasklist_lock . There are a number
of occasions when the list of tasks need
to be traversed while holding the reader
side of tasklist_lock . In systems
with very large number of tasks, the read-
ers traversing the task list can starve out
writers. One approach to solving this is
to use RCU to allow lock-free walking of
the task list under limited circumstances.
[McKenney03a] describes one such ex-
periment.

3. Cache Thrashing Measurements and Min-
imization: As we run Linux on larger
SMP and NUMA systems, the effect of
cache thrashing becomes more prominent.
It would prudent to analyze cache behav-
ior of performance critical code in the
Linux kernel using various performance
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monitoring tools. Once we identify code
showing non-optimal cache behavior, re-
designing some of it would help improve
performance.

4. Real-time Work—Fix Excessively Long
Code Paths: With Linux increasingly
becoming preferred OS for many soft-
realtime systems, we can further improve
its usefulness by identifying excessively
long code paths and fixing them.

6 Conclusions

In 2.6 kernel, we have solved a number of scal-
ability problems without significantly sacrific-
ing performance in small systems. A single
code base supporting so many different work-
loads and architectures is an important advan-
tages of the Linux kernel has over many other
operating systems. Through this analysis, we
have continued the process of evaluating scal-
ability enhancements from many possible an-
gles. This will allow us to run Linux better on
many different types of system—large SMP to
small TCP/IP routers.

We are continuing to work on some of the core
issues discussed in the paper including lock-
ing overheads, RCU DoS attack prevention and
softirq balancing. We expect to do some of this
work in the 2.7 kernel timeframe.
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Abstract

As far as we know, no Open Source program
has been certified for security—until now. Al-
though some people believed that it was not
possible for an Open Source program to re-
ceive a security certification, we have proven
otherwise by obtaining a Common Criteria se-
curity certification for SuSE SLES 8 SP3. With
the increasing use of Open Source in general
and Linux in particular within government and
commercial environments, security of Open
Source products is of increasing importance
and as a result the demand for the security eval-
uation of Linux is evident. It is also generally
believed that security certifications are time
consuming and can take years to accomplish.
We were able to obtain the Common Criteria
certification of Linux in a few months. The
presentation will cover our experience and the
technical challenges associated with this Linux
evaluation. In particular, we will discuss the
enhancements we made to SLES 8 SP3 includ-
ing the Linux kernel to support CAPP audit
requirements. In addition the business advan-
tages of the evaluation for Open Source soft-
ware will be covered.

1 Introduction

In promoting Linux to IBM’s enterprise and
government customers, the requirement for
Common Criteria certification emerged as a
barrier to entry. All of Linux’s commercial
competitors have the required level of certifica-
tion. As Linux continues to be adopted by the
enterprise market, many customers, especially
those from the government sector, have raised
concerns regarding Linux security and ques-
tioned whether Linux was capable of achiev-
ing certification. These customers view se-
curity certification as table stakes for proving
a minimal level of operating system security.
In order to increase Linux adoption by these
customers, certification is required. The ex-
pense of achieving certification makes certi-
fication unobtainable by community projects
without corporate or government sponsorship.
For these reasons, and after a careful analy-
sis, IBM decided to sponsor a Common Crite-
ria (CC) security certification for Linux. SUSE
agreed to partner with IBM to evaluate SUSE
LINUX Enterprise Server 8 (SLES 8).

In this paper, we will begin with a brief
overview of the Common Criteria standard.
We will then describe our approach and expe-
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rience during this certification effort. We will
describe in detail the additional functionality
that was needed in kernel and user space to ful-
fill the requirements of the certification. We
will also describe the level of documentation
and test needed to obtain the certification.

Throughout the paper, we use the pronoun
‘we.’ By ‘we,’ we mean individuals or sub-
teams from the large team of people who con-
tributed time and effort in achieving this evalu-
ation, including:

• IBM, the evaluation sponsor

• SUSE, the developer

• atsec information security GmbH, the
evaluator

• BSI, the German agency for information
security, the evaluation body

2 Common Criteria Overview

Common Criteria (CC) is documented in the
ISO standard 15408 for the security analysis of
IT products. The governments of 18 nations
have officially adopted the Common Criteria,
including the United States, Canada, Germany,
France, and the UK. The U.S. government has
required a Common Criteria evaluation for all
IT-products used for the processing of security-
critical data since July 1, 2002.1

Common Criteria splits the requirements into
two sets: functional and assurance. Func-
tional requirements describe the security at-
tributes of the product under evaluation. Assur-
ance requirements describe the activities that
must take place to increase the evaluator’s con-
fidence that the security attributes are present,
effective, and are designed and implemented

1The requirement is codified by NSTISSP No. 11.

correctly. Examples of assurance activities in-
clude documentation of the developer’s search
for vulnerabilities and testing.

2.1 Functional Requirements

The functional requirements desired by the
customer are described in the Protection Pro-
file (PP). Protection Profiles are targeted at spe-
cific types of systems. For example, there are
unique protection profiles for operating sys-
tems, firewalls, databases and other complex
or security sensitive products. Protection Pro-
files are often created by the product devel-
oper, standards bodies, or government agen-
cies, rather than by the customer. To be offi-
cially recognized, the Protection Profile must
itself be evaluated. Protection Profiles are in-
tended to be reusable and thus typically define
standard sets of security attributes that can be
used to compare different implementations of a
product type. The name of the Protection Pro-
file is therefore often used as shorthand to de-
scribe the functional level of the evaluation.

The product being evaluated is known as the
Target of Evaluation (TOE). The security pol-
icy used by the TOE is known as the TOE Se-
curity Policy (TSP) and the functionality that
enforces the TSP is known as the TOE Se-
curity Functions (TSF). The TSP may be en-
forced by software, hardware or firmware, but
no matter what the enforcement mechanism is,
the enforcement functionality is included in the
TSF. The TOE does not exist in a vacuum; ex-
ternal forces that act on the TOE are known
as the TOE (security) environment. The TOE
environment may consist of elements such as
non-privileged processes running in an operat-
ing system and the network to which a system
is attached. The main purpose of an evaluation
is to determine whether or not the TSP is cor-
rectly enforced.
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2.2 Assurance Requirements

Evaluated Assurance Levels (EALs) are de-
fined on a scale of increasingly rigorous devel-
opment methodologies. The Common Criteria
defines multiple classes of assurance compo-
nents with multiple levels of difficulty for each
component. The assurance levels are then com-
posed from these components. These compo-
nents include items such as level of documen-
tation and testing. The assurance components
used for this evaluation are described in more
detail in the EAL3 Overview Section. Each
higher assurance level requires more proof that
security was a fundamental element of the de-
velopment process; therefore, each higher level
is more difficult to achieve than the previous
level. There are seven ordered EALs2:

• EAL1 – Functionally Tested

• EAL2 – Structurally Tested

• EAL3 – Methodically tested and checked

• EAL4 – Methodically designed, tested
and reviewed

• EAL5 – Semiformally designed and
tested

• EAL6 – Semiformally verified, designed
and tested

• EAL7 – Formally verified, designed and
tested

EAL1 is the entry level assurance level. EAL4
is the highest assurance level that any product
is expected to be able to achieve without sig-
nificant expense and rework if it had not been
specifically developed with Common Criteria
evaluation in mind.

2Common Criteria Part 3 available from
http://csrc.nist.gov/cc/Documents/
CC%20v2.1%20-%20HTML/CCCOVER.HTM

2.3 Evaluation Approach

When the developer has decided on a Target
of Evaluation and a Protection Profile, the first
step towards evaluation is writing a Security
Target (ST) which describes the security ob-
jectives of the TOE and how they meet the se-
curity requirements defined in the chosen PP.
It is possible for an ST to claim conformance
to multiple PPs or no PP at all. The claims in
the security target determine the scope of the
evaluation. Every facet of the evaluation is di-
rectly impacted by what is claimed in the Secu-
rity Target. After the evaluation is completed,
the Security Target is always made available
for customer scrutiny so that the customer can
understand exactly what was evaluated.

3 Description of the Evaluated
TOE

Our target of evaluation (TOE) was the SUSE
LINUX Enterprise Server 8 operating system
with Service Pack 3 and the certification-sles-
eal3.rpm package.

The SLES evaluation covers a distributed,
but isolated, network of IBM® xSeries®,
pSeries®, iSeries®, and zSeries® servers run-
ning the evaluated version of SLES. The hard-
ware platforms selected for the evaluation
consisted of commercially available machines
from across the IBM product line.

The TOE Security Functions (TSF) consist
of Linux kernel functions plus some trusted
processes. These functions enforce the secu-
rity policy as defined in the Security Target.
The TOE includes standard networking appli-
cations, such as ftp, ssh, ssl, and xinetd. Sys-
tem administration tools include standard ad-
min commands. Yast2 and several yast2 mod-
ules were also included in the package list that
formed the TOE. The X Window System was
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not included in the evaluated configuration.

The hardware and the system firmware are not
considered to be part of the TOE but rather are
a part of the TOE environment. The TOE envi-
ronment also includes applications that are not
evaluated, but are used as unprivileged tools to
access public system services. For example, an
HTTP server using a port above 1024 (e.g., on
port 8080) can be used as a normal applica-
tion running without root privileges on top of
the TOE. The Security Guide provides guid-
ance on how to set up a http server on the TOE
without violating the evaluated configuration.

4 ST Description

The Security Target specifies that the evalua-
tion covers the Controlled Access Protection
Profile (CAPP) functionality at the EAL3 aug-
mented assurance level.3 The primary secu-
rity features and assurance documentation are
described below, along with how the require-
ments were satisfied. The key features are sup-
ported by domain separation and reference me-
diation, which ensure that the features are al-
ways invoked and cannot be bypassed. Most
of the security and assurance features are in-
cluded in the vanilla kernel (e.g., object reuse)
or are standard to most Linux distributions
(e.g., PAM, OpenSSH, OpenSSL) and were
thus already present in SLES 8. A few, most
notably audit, had to be added for the evalua-
tion.

4.1 EAL3 Overview

EAL3 provides assurance by an analysis of
the security functions, using its functional and
interface specifications, guidance documenta-
tion, and the high-level design of the TOE to
understand the security behavior. The EAL3

3The augmentation is the flaw remediation proce-
dure.

assurance requirements fall into the following
seven categories:

• Configuration Management

• Delivery and Operations

• Development

• Guidance Documents

• Life Cycle Support

• Security Testing

• Vulnerability Assessment.

Many of the documents created to sup-
port the assurance requirements can be re-
viewed athttp://oss.software.ibm.
com/linux/pubs/?topic_id=5

4.1.1 Configuration Management

The Configuration Management assurance
class specifies the means for establishing that
the integrity of the TOE is preserved during
development. The Configuration Management
process must provide a mechanism for track-
ing changes and ensuring that all the changes
are authorized.

Configuration management procedures within
SUSE are highly automated using a process
supported by the AutoBuild tool. Source code,
generated binaries, documentation, test plan,
test cases and test results are maintained under
configuration management. Because of this,
SUSE already exceeded the requirements for
this evaluation, so we just had to document ex-
isting procedures to fulfill this requirement.

This assurance requirement is the one that was
commonly expected to be the source of diffi-
culty in achieving certification of code devel-
oped via the open source methodology. The
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key to meeting this assurance requirement is
that every line of new code that comes into the
SUSE AutoBuild environment is assigned to an
owner within SUSE who becomes responsible
for its integrity.

4.1.2 Delivery and Operations

The Delivery and Operations class provides re-
quirements for the assurance that the TOE is
not corrupted between the time the developer
releases it and the customer fires it up.

SLES is delivered on CD/DVD in shrink-
wrapped package to the customer. SUSE
verifies the integrity of the production CDs
and DVDs by checking a production sample.
Service Pack 3, the certification-sles-eal3.rpm
package, as well as other packages that con-
tain fixes must be downloaded from the SUSE
maintenance Web site. Because those packages
are digitally signed, the user is both able to and
required to verify the integrity and authentic-
ity of those packages. Guidance for installation
and system configuration is provided in the Se-
curity Guide.

Again, existing SUSE processes met the re-
quirements for the EAL3 assurance level, so
documenting existing procedures was suffi-
cient for this evaluation.

4.1.3 Development

The Development class encompasses require-
ments for documenting the TSF at various lev-
els of abstraction, from the functional inter-
face to the implementation representation. For
EAL3, we needed a functional specification
and a high-level design. In addition, the corre-
spondence between the security functionality,
the functional specification, and the high level
design had to be documented.

The functional specification for SLES con-
sists of the man pages that describe the sys-
tem calls, the trusted commands, and a descrip-
tion of the security-relevant configuration files.
A spreadsheet tracks all system calls, trusted
commands, and security-relevant configuration
files with a mapping (correspondence) to their
description in the high-level design and man
page(s). The high-level design of the secu-
rity functions of SLES provides an overview
of the implementation of the security functions
within the subsystems of SLES, and points
to other existing documents for further details
where appropriate.

To fulfill this requirement, the functional
specification spreadsheet, correspondence, and
high-level design were written. Additionally,
several new man pages were created for un-
documented system calls, PAM modules and
utilities, and many man pages required minor
corrections.

4.1.4 Guidance Documents

The Guidance Documents class provides the
requirements for user and administrator guid-
ance documentation. A security guide is also
necessary to fulfill the requirements of this
class at EAL3.

SLES 8 already shipped with User and Ad-
ministrator Guides. The Security Guide and a
special README file were created that con-
tain the specifics for the secure administration
and usage of the evaluated configuration. The
Security Guide explicitly documents setting up
and maintaining the system in an evaluated
configuration.



500 • Linux Symposium 2004 • Volume Two

4.1.5 Life Cycle Support

The Life Cycle Support assurance requirement
includes requirements for processes that deal
with vulnerabilities found after release of the
product, as well as the physical security of the
developer’s lab.

The SUSE security procedures are defined and
described in documents in the SUSE intranet.
The defect handling procedure SUSE has in
place for the development of SLES requires the
description of the defect with its effects, secu-
rity implications, fixes and required verifica-
tion steps.

Again, existing (and previously planned up-
dates to) SUSE procedures met the require-
ments for this class and were merely required
to be documented to fulfill the assurance re-
quirements.

4.1.6 Security Testing

The emphasis of the Security Testing class is
on the confirmation that the TSF operates ac-
cording to its specification. This testing pro-
vides assurance that the TOE satisfies the se-
curity functionality requirements. Coverage
(completeness) and depth (level of detail) are
separated for flexibility.

A detailed test plan was produced to test the
functions of SLES on each evaluated platform.
The test plan includes an analysis of the test
coverage, an analysis of the functional inter-
faces tested, and an analysis of the testing
against the high level design. Test coverage of
internal interfaces was defined and described
in the test plan documents and the test case de-
scriptions. The tests were executed on every
platform. The test results are documented so
that the tests can be repeated and the results in-
dependently confirmed.

Although, SUSE has an excellent test infras-
tructure for regression testing already in place,
additional tests were required to test new func-
tionality, such as audit, and ensure cover-
age of security relevant events. The Linux
Test Project provided an excellent base for the
test suite needed for EAL3. It already con-
tained almost all of the necessary test cases
for every system call. In some cases, we had
to add tests of expected failure cases to en-
sure that the security was being correctly en-
forced. We added some test cases for security-
relevant programs, such as su, cron, at, and
ssh. We created tests to ensure that the sys-
tem was configured in the evaluated man-
ner. We also created many tests for correct
ACL behavior. Many of the system call and
security-relevant program test cases were cre-
ated during the course of the EAL2 evaluation
and then reused during the EAL3 evaluation.
The largest class of new test cases for EAL3
was tests of the new audit system. Testing
the audit subsystem required showing that all
security-relevant system calls are logged cor-
rectly, all trusted programs (including PAM)
correctly logged security-relevant events, the
audit userspace tools contained correct func-
tionality, and that audit exhibits Controlled Ac-
cess Protection File (CAPP)-compliant behav-
ior during threshold and failure events (for ex-
ample, low disk space). Gcov was used to show
test coverage of the kernel internal interfaces.
Writing, documenting, and running these test
cases on all of the evaluated platforms was a
significant portion of the evaluation effort.

4.1.7 Vulnerability Assessment

The Vulnerability Assessment class defines re-
quirements for evidence that the developer
looked for vulnerabilities that might arise dur-
ing development and use of the TOE.

Our search for vulnerabilities was documented
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in the Vulnerability Assessment document.
This assessment included TOE misuse analy-
sis and a password strength of function anal-
ysis. The analysis also describes the approach
used to identify vulnerabilities of SLES and the
results of the findings.

The Vulnerability Assessment was performed
and written as part of this evaluation.

4.2 CAPP Overview

The Controlled Access Protection Profile
(CAPP) is based on the C2 class of the
“Department of Defense Trusted Computer
Systems Evaluation Criteria” (DoD 5200.28
– STD) colloquially known as the “Orange
Book.” CAPP requires that the operating sys-
tem implement the Discretionary Access Con-
trol (DAC) security policy. DAC allows the in-
formation owner to control who is allowed to
access the information.

The CAPP functional requirements fall in the
following five broad categories:

• Identification and Authentication

• User Data Protection

• Security Management

• Protection of the TSF

• Security Audit.

4.2.1 Identification and Authentication

Identification and Authentication include the
functionality required to uniquely identify the
user.

SLES provides identification and authentica-
tion using pluggable authentication modules

(PAM) based upon user passwords. Other au-
thentication methods (e.g., Kerberos authen-
tication, token based authentication) that are
supported by SLES as pluggable authentication
modules are not part of the evaluated configu-
ration. PAM was configured to ensure medium
password strength, to ensure password quality
to limit the use of the su command, and to re-
strict root login to specific terminals.

Meeting the CAPP requirements for Identifica-
tion and Authentication involved changing the
default PAM configuration for SLES 8. The
new configuration is documented by the Secu-
rity Guide.

4.2.2 User Data Protection

User Data Protection specifies the functional-
ity that protects data from unauthorized access
and modification—the enforcement of the Dis-
cretionary Access Control policy. In addition,
deleted information must not be accessible and
newly created objects must not contain residual
information.

The Discretionary Access Control policy re-
stricts access to file system objects based on
Access Control Lists (ACLs) that include the
standard UNIX® permissions for user, group,
and others. Access control mechanisms also
protect IPC objects from unauthorized access.

The evaluated configuration used the ACL sup-
port in the ext3 file system. The vanilla kernel
already clears file system, memory and IPC ob-
jects before they can be reused by a process be-
longing to a different user. Thus, the User Data
Protection functionality requirements were al-
ready being met by SLES 8.
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4.2.3 Security Management

The Security Management class specifies how
security attributes, security data and security
functions are managed by the TOE. Security
Management includes management of groups
and roles, separation of capability, and man-
agement of audit data.

Management of the security critical parame-
ters of the TOE is performed by administra-
tive users. Commands that require root privi-
leges, such as useradd and groupdel, are used
for system management. Security parame-
ters are stored in specific files that are pro-
tected by the access control mechanisms of
the TOE against unauthorized access by non-
administrative users.

Other than the audit data management com-
mands (which are described in the Security
Audit section below) all security management
functionality was provided by standard func-
tionality already included in SLES 8.

4.2.4 TSF Protection

Protection of the TSF specifies the require-
ments for maintaining the integrity of the TSF
and its data, particularly the protection of con-
figuration data. The TSF will need to perform
the appropriate testing to demonstrate the secu-
rity assumptions about the underlying abstract
machine upon which the TSF relies. In addi-
tion, the TSF must be demonstrated to be com-
plete and tamperproof.

While in operation, the kernel software and
data are protected by the hardware memory
protection mechanisms. The memory and pro-
cess management components of the kernel en-
sure that user processes cannot access kernel
storage or storage belonging to other processes.

Non-kernel TSF software and data are pro-
tected by DAC and process isolation mecha-
nisms. In the evaluated configuration, the root
user owns the directories and files that define
the TSF configuration. Files and directories
containing internal TSF data (e.g., configura-
tion files, batch job queues) are also protected
by DAC permissions.

The TOE and the hardware and firmware com-
ponents are required to be physically protected
from unauthorized access. The system ker-
nel mediates all access to the hardware mech-
anisms themselves, other than program visible
CPU instruction functions.

4.2.5 Abstract Machine Test Utility
(AMTU)

To completely fulfill the TSF Protection re-
quirement, we had to produce a tool to test the
underlying abstract machine: “The TSF shall
run a suite of tests [selection: during initial
start-up, periodically during normal operation,
or at the request of an authorized administra-
tor] to demonstrate the correct operation of the
security assumptions provided by the abstract
machine that underlies the TSF.”4 This require-
ment is sometimes fulfilled by Power-On Self
Test (POST) procedures, but given the diver-
sity of platforms that were included in the cer-
tification, we decided that a userspace admin-
istrative tool, AMTU, would be the simpler ap-
proach. AMTU can be run by an administrator
at any time and ensures that the hardware en-
forced security protection is still in effect. To
this end, the tool runs a simple check for mem-
ory errors, checks for enforcement of mem-
ory separation, checks the correct operation of
network and disk I/O controllers, and verifies

4Controlled Access Protection Profile available
from http://www.radium.csc.mil/tpep/
library/protection_profiles/CAPP-1.d.
pdf
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that privileged instructions cannot be executed
when the hardware is in user mode.

The source code for AMTU is avail-
able at http://www-124.ibm.com/
developerworks/projects/amtu .

4.2.6 Security Audit

Auditing systems collect information about
events related to security-relevant activities.
Security-relevant activities are defined as those
events that are governed by the security pol-
icy. The resulting audit records can be exam-
ined to determine which security-relevant ac-
tivity took place and which user is responsible
for them. No fully CAPP-compliant audit sub-
system was available for Linux, so we imple-
mented this feature to achieve the certification.
The audit subsystem developed for the evalua-
tion is called Linux Audit System or LAuS.5

LAuS Conceptual Overview The Linux
Audit System (LAuS) consists of three primary
components: a kernel module responsible for
intercepting system calls and recording rele-
vant events, an audit daemon (auditd) that re-
trieves the records generated by the kernel and
writes them to disk, and a number of com-
mand line utilities for displaying, querying and
archiving the audit trail. See Figure 1.

The interface between kernel and user space
uses a character device named /dev/audit. The
audit daemon uses I/O Control operations
(ioctls) on this device to configure the audit
module, and it retrieves audit records from it
using the read() system call.

To improve performance, filtering of audit

5The LAuS Design Document is available at
ftp://ftp.suse.com/pub/projects/
security/laus/doc/LAuS-Design.pdf

events is performed at the kernel level. Unlike
some existing implementations, the audit dae-
mon does not perform any filtering itself. This
eliminates a serious performance bottleneck.

The set of filter primitives provided by LAuS is
fairly rich, and primitives can be combined us-
ing boolean operations. For instance, it is pos-
sible to audit open(2) calls made by a setuid
application, while ignoring all other open(2)
calls, or to restrict auditing to certain files. The
eal3-certification RPM contains the evaluated
audit configuration files.

At startup, auditd reads its configuration and
the set of filter expressions from one or more
files, loads the filters to the kernel, and starts
auditing.

Auditd then proceeds to listen for audit events
generated by the kernel. It retrieves and writes
all records directly to disk. Because of the
CAPP requirement that audit records must
never be lost, this process is more complex than
it might seem. auditd constantly monitors disk
usage and can be configured to respond in dif-
ferent ways if free disk space drops below cer-
tain thresholds. Possible reactions to low disk
space include notifying the administrator, sus-
pending all audited processes, or shutting down
the system immediately. Both the thresholds
and auditd’s reactions can be configured by the
administrator.

LAuS supports different output modes to pro-
vide a flexible way to configure data collection.
The simplest approach simply writes the audit
trail to a single file in append mode, similar to
the way syslogd works.

In “bin mode,” audit writes data to a number of
fixed sized files (bins), switches to the next file
when the current one fills up, and invokes an
external command to archive the full bin. Fi-
nally, there is a so-called “stream mode” that
lets you pipe the audit trail directly into an ex-
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Figure 1: LAuS Conceptual Overview

ternal command; this can be useful if you want
to forward the trail to a central storage server.

Auditing can be enabled globally or on a per-
process basis; in the latter case, all the child
processes are audited as well. The only pro-
cesses always exempt from auditing are init
and the audit daemon itself.

User land utilities were created to parse and
read the audit log files. aucat ’cats’ the file,
transforming all of the audit records to a hu-
man readable format. augrep ’greps’ the audit
records and allows the administrator to selec-
tively review the records. augrep allows the
administrator to select audit records based on
type, time (range), user, syscall, program (by
name or PID) that generated the event, or any
combination of these attributes.

Even though the user land utilities are far from
trivial, the kernel portion of LAuS proved far
more complex; in fact, the kernel portion of the
LAuS is a lot more complex than we had ini-

tially anticipated. The rest of this section deals
with the questions surrounding the audit kernel
module.

Additional Design Constraints In addition
to making our audit implementation compliant
with the CAPP requirements, we had to deal
with several constraints which are worth not-
ing.

One was to minimize performance overhead.
In the case where auditing was compiled into
the kernel, but not configured by the adminis-
trator, we wanted it to have zero performance
impact if possible. Our kernel developers spent
quite a lot of time on additional kernel tuning,
making sure the kernel performed and scaled
well. Breaking this was not an option.

We also wanted to have a performance over-
head as small as possible for the audited case,
even though this wasn’t as high on our agenda.
This definitely took second place to correctness
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and CAPP compliance.

A third objective was entirely non-technical,
but played a crucial role in choosing an ap-
proach to intercepting system calls. We wanted
our modifications to the core kernel as small as
possible; most of the code should be inside a
loadable module.

The rationale behind this was to minimize
the probability of introducing bugs (except, of
course, bugs in the audit code itself), and to
ease maintenance.

The latter point was a fairly important item in
the context of the SLES 8 kernel, which in-
cludes well above 1,500 additional patches ap-
plied on top of the mainline kernel. Updating
SLES 8 to a new mainline kernel version was
a bit of an adventure, so we wanted to avoid
adding audit patches to the kernel that changed
lots of files all over the place.

Where to intercept system calls There are
basically three ways to intercept system calls
on a 2.4 Linux kernel.

The first approach is to create wrappers for
those system calls you wish to track, and re-
place the original function pointers in the sys-
tem call table with those of the new wrapper
functions. This sounds simple enough, and
would also satisfy our requirements for zero
performance impact in the non-audit case, and
a minimally intrusive kernel patch. Unfortu-
nately, this approach doesn’t work on all archi-
tectures.

The next approach is to add hooks to all ker-
nel functions that must be audited. The ma-
jor drawback to this approach is that the kernel
patch would touch lots of files in the kernel,
which we wanted to avoid.

The third approach, which we chose, was to
hook into the code path that intercepts sys-

tem calls for ptrace. This intercept happens
very early in the platform-specific assembler
code, before the system-call function itself is
invoked. The assembly code retrieves a set of
flags associated with the calling process, and
checks thePT_TRACESYSbit . If that bit is set,
it jumps to a separate code branch dealing with
ptracing. The same test is performed when re-
turning from a system call.

In our audit implementation, we simply
defined an additional task flag named
PT AUDITED, and extended the bit test
in the system-call entry and exit code to test
for both bits at the same time. This gave us
system-call intercept with zero performance
overhead in the normal, non-audited code path.

See Figure 2 for a picture showing the flow of
control when auditing a system call.

Defining which system calls to audit By
far, the most important part of auditing con-
cerns system calls. As mentioned above, CAPP
requires auditing all security-relevant system
calls. We needed to determine which system
calls are security relevant and which aren’t.

The obvious ones are those that change the
state of a process, the file system, or other sys-
tem resources. These includes calls such as se-
tuid, open, close, and setting the system’s host
name or clock. An audit implementation also
needs to cover less obvious operations, such
as binding a socket to a port, attaching shared
memory segments, and performing ioctls.

Most system calls are fairly straightforward to
handle, and much of the information on sys-
tem calls and the arguments they take can be
encoded statically in tables. Some calls, such
as msgrcv, which comes in two versions on the
i386 platform for historical reasons, were diffi-
cult to handle. 64-bit platforms usually require
an additional table as they support a 32-bit sys-
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Figure 2: Auditing a System Call

tem call interface in addition to their native 64-
bit interface.

However, some of the operations we wanted to
audit proved a little more elusive; these were
the ioctl system call and network configuration
changes.

Auditing ioctls The ioctl system call is the
dirty little back alley of UNIX-like operating
systems. If a driver for a piece of hardware,
a network protocol or a file system needs to
expose some driver-specific mechanism or tun-
able parameters to user-space applications, the
most common method for doing so is to define
one or more ioctls.

The ioctl system call takes an open file descrip-
tor, which must refer to something controlled
by the driver (for example, a terminal, a device
file, or a socket), an integer number specify-
ing the request, and an opaque pointer to some
chunk of memory. Exactly what to do with this
piece of memory depends on the driver that is
being talked to, and the integer passed as the
request ID.

Unfortunately for us, the Linux kernel supports
well over a thousand ioctls, and while many
of them are rather obscure, they do change the
system’s state and are thus subject to auditing.
It is obvious that compiling and maintaining a
list of 1000 ioctls and their arguments was not
an option.
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Most ioctl numbers nowadays encode suffi-
cient information on whether the operation
passes data into the kernel, retrieves data, or
both, and the size of the argument. Therefore,
writing audit records for these is straightfor-
ward. However, there is still a fair number of
ioctls that do not follow this convention.

What is far worse is that ioctl numbers are not
unique—frequent users of strace will proba-
bly know that the TCGETS ioctl uses the same
number as some obscure sound card operation.
But this is not the only conflict.

However, the most difficult aspect of auditing
ioctls is that it isn’t sufficient to simply gener-
ate audit records for these calls; you must also
be able to display the information of each audit
record to the user.

The way we solved this problem was entirely
non-technical. Our target of evaluation clearly
stated that the super user account remains spe-
cial. The super user can do everything, from
loading unsupported modules not covered by
the certification, to disabling the audit subsys-
tem altogether.

Instead of trying to handle each and every ioctl
in the audit module, we went through all ioctls
available in our to-be-certified configuration
and categorized them. The ones we needed to
audit were those that were security relevant in
some way, but did not require administrative
privilege; the list we came up with this way was
much smaller than the original list and more
manageable.

Auditing network configuration Another
aspect that proved to be a challenge was track-
ing network configuration changes, because
only a fraction of those are done through ioctl
calls. Most network configuration changes
are performed by passing data to a netlink
socket. These changes can be audited by sim-

ply recording all sendmsg and recvmsg calls
on netlink sockets, but that is far from optimal.
On the one hand, a send or receive operation
on a netlink socket can include more than one
request. On the other hand, the outcome of a
netlink call is not returned through the system-
call return value, but in a separate netlink mes-
sage generated by the kernel and queued to that
socket. Simply logging the raw netlink data
sent and received would require quite a bit of
built-in intelligence on the part of the user land
applications that are supposed to display this
data.

So instead, we decided to tap into the netlink
layer directly, where a data blob sent to a
netlink socket is broken up into separate re-
quests, and each request is processed in return.
This allowed us to record each netlink request
separately, and place the outcome of the oper-
ation into the same audit record as the original
request.

The Login User ID An aspect of auditing
that is worth mentioning is how to deal with
the CAPP requirement that each record identi-
fies the user performing the operation.

The obvious solution (which would be to use
the real user ID associated with the calling pro-
cess) is not sufficient, as setuid applications
can change these IDs at will. Tracking all
uid changes, and thereby allowing the audit
utilities to piece together the original user ID
from this mosaic, is not practical either. It is
not uncommon for some processes on a dedi-
cated server to run for hundreds of days, so the
amount of data to look at would be prohibitive.

The only viable solution in this case is to at-
tach a “login uid” to each process. The login
uid remained constant across all other changes
of real, effective, and saved user IDs, and was
inherited by all child processes. Of course, this
required changes to PAM so that this uid would
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be set on login.

Nightmare on Audit Street There is one
major problem with the approach to system
call intercept that we chose and which in hind-
sight made it a less than optimal choice. The
problem is that our approach requires data to
be copied twice. To understand why this is a
problem, let’s look at the open(2) system call,
which takes a path name as an argument. This
path name is passed into the kernel function
as a pointer to a string (essentially a chunk of
memory) in the address space of the user pro-
cess. In order to operate on this string, the ker-
nel must copy it to a buffer in the kernel address
space, possibly paging in memory as it goes.

When entering the kernel, the audit module re-
trieves the path name from user space, and de-
cides whether to create an audit record for this
call. If it does decide to create an audit record,
it sets up an audit record containing the sys-
tem call number and a copy of all arguments,
including the path.

The system call proceeds as normal, and the
kernel functionsys_open retrieves the path
name from user space a second time, and car-
ries out the requested operation based on this
data.

The problem is that the memory in user space
may have changed in the meantime, so that the
record written by the audit module does not
correspond to what was actually performed by
the operating system.

There are several ways this can happen. Of
course, the calling process itself cannot mod-
ify this memory, as it is currently executing
the system call. However, memory can be
shared between processes in a variety of ways.
Threads can share the entire address space;
processes can attach to the same shared mem-
ory segment; memory can be mapped from a

file, which can be mapped by other processes
as well.

Such an attack on the audit module is not re-
ally practical, because proper timing is proba-
bly quite hard, and any attempt to perform this
attack would most likely leave a trail in the au-
dit file. But even the theoretical possibility of
circumventing the audit subsystem is unaccept-
able in terms of CAPP compliance.

The cases described above can be detected
and dealt with by the audit module. Deal-
ing with these problems, however, incurs ad-
ditional complexity and performance loss (es-
pecially in the case of multithreaded applica-
tions). Needless to say, the added complex-
ity engendered a considerable number of bugs.
For this reason, these additional checks can be
turned off by the administrator. These checks
are turned off in the evaluated configuration of
audit and the associated risk, considered min-
imal, is documented in the Vulnerability As-
sessment.

SUSE Linux Server 9 SUSE Linux Server
9 will include an updated version of the LAuS
kernel patches. In many respects, the updated
LAuS module will work in the same way as the
SLES 8 version did, with the major exception
being the way system calls are intercepted.

When planning audit for SUSE Linux Server 9,
we considered two options.

The first option was a solution we had already
looked at for SLES 8 and abandoned, namely
adding hooks to all system call functions rele-
vant for CAPP. This is the approach we chose
for SUSE Linux Server 9, mainly in order to
avoid having to jump through all those extra
hoops in an attempt to prevent the race con-
ditions described in the previous section. One
pleasant side effect of this approach is that it
also eliminated a lot of platform-specific code.
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The second option we considered was to add
audit support as an LSM module, or extend-
ing an existing LSM module such as SELinux.
The security framework in the 2.6 kernel goes
a long way toward intercepting all security-
relevant operations. Adding audit hooks in
this place is appealing, because it would mean
no additional performance cost (the security
hooks do come with a certain performance
penalty already) and no additional maintenance
problems (because the audit patch would not
have to touch multiple kernel files).

The main reason why we did not choose this
approach was that the security hooks provide a
more abstracted view than we had chosen for
LAuS in SLES 8. Security hooks do not cor-
respond directly to system calls, but rather rep-
resent the security check necessary to validate
whether an operation is permitted. There is a
fine distinction between “user X attempted to
perform operation Y, and the outcome was Z”
and “user X attempted an operation on object
A that caused us to perform security check B,
and the outcome of this check was C.” In par-
ticular, we are neither aware of the operation
that triggered the security check, nor of its fi-
nal outcome, because the operation can still fail
even if security clearance is given.

Moreover, a single system call may require
several security checks, such as renaming a
file, where we need permission to remove the
file from the source directory and permission
to add it to the destination directory.

Changing LAuS to use the security hooks
would have meant rewriting much more code
than we wanted to, including the filtering code
and much of the user-land applications. We
also would have had to modify considerable
parts of the documentation required for recerti-
fication.

Future Directions This is not to say that it is
not possible to write an audit implementation
leveraging some features of the LSM frame-
work. In fact, we hope to have a common audit
implementation in the mainstream kernel one
day. It would greatly help acceptance by the
kernel community if that solution did not add
another set of hooks into many performance-
critical functions.

5 Evaluation Roadmap

Performing a security evaluation should never
be a one-time accomplishment. To maintain
the security level achieved, the security cer-
tificate must be maintained. In the case of
Linux, the intent is to go a step further: to
increase, step-by-step, the assurance level and
the security functionality until Linux achieves
the highest assurance level of any commer-
cial operating system product, while offering
the richest set of security functions. The first
step was accomplished in July 2003, when
we obtained an EAL2+ evaluation for SUSE
SLES 8 as-is. This paper documented the re-
sults of the second step, where we obtained a
CAPP/EAL3+ certification for SLES 8 SP3 in
January 2004. Linux, like its commercial com-
petitors, has now been successfully evaluated
for compliance with the requirements of the US
government-defined CAPP. As a further step,
Linux is currently in evaluation for compliance
with the requirements of the EAL4 level. This
includes the development of a low-level de-
sign of the Linux kernel (the evaluation will be
based on the 2.6 version of the kernel) as well
as a more sophisticated vulnerability analysis
being performed. The experience gathered in
the EAL2 and the EAL3 evaluations have given
us the confidence that compliance with EAL4
can be achieved in fairly short order.
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6 Value of Certification

The value of certification can be considered
from two perspectives: business and technical.

In order for Linux to be adopted by the com-
mercial and government markets, it faces stiff
competition from entrenched incumbents. All
of the incumbent products have been evaluated
using the Common Criteria. In addition, the
U.S government instituted a national security
community policy against procuring unevalu-
ated products (NSTISSP No. 11). There is
a high probability that other governments and
commercial entities will do the same.

While there is much skepticism surrounding
the technical value of certification, certification
is very much in line with the “many eyes” phi-
losophy. For commercial products, certifica-
tion is often the only time the code is reviewed
by people outside of the development team.
The assurance requirements of Common Crite-
ria add to the number of trained eyes looking at
the design and source of a project using defined
and rigorous procedures. During the course of
the EAL3 evaluation, we found and fixed sev-
eral bugs, created lots of documentation, and
shipped an integrated CAPP-compliant audit
system. We noticed an anomaly on the iSeries
platform while testing the Abstract Machine
Testing Utility. Analysis of this anomaly by
the ppc64 development team led to the discov-
ery of a memory separation bug on the iSeries
platform.6 Many PAM module bugs were iden-
tified and fixed in SLES 8, including a double
free bug inpam_pwcheck .7 Man pages were
created for several undocumented system calls,

6Paul Mackerras fix to “Make kernel RAM user-
inaccessible on iSeries”http://www.kernel.
org/diff/diffview.cgi?file=/pub/
linux/kernel/v2.4/patch-2.4.23.bz2;z=
290

7http://www.atsec.com/01/index.php?
id=03-0002-01&news=28 Patches are available
from klaus@atsec.com

PAM modules and admin utilities, including
io_setup , readahead , set_thread_
area , pam_wheel , pam_securetty , and
others.

7 Conclusion

Achieving the EAL2 and EAL3/CAPP certifi-
cations was significant because it proved that
Linux is indeed certifiable. The certification
opened the market up to include U.S. govern-
ment agencies and commercial entities that re-
quire certification. Future evaluations of Linux
distributions can be made easier by Linux
adoption of a CAPP-compliant audit subsys-
tem.
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Abstract

One of the next challenges faced in Linux ker-
nel development is providing support for work-
load management. Workloads with diverse and
dynamically changing resource demands are
being consolidated on larger symmetric mul-
tiprocessors. At the same time, it is desir-
able to reduce the complexity and manual in-
volvement in workload management. We argue
that the goal-oriented workload managers that
can satisfy these conflicting objectives require
the Linux kernel to provide class-based dif-
ferentiated service for all the resources that it
manages. We discuss an extensible framework
for class-based kernel resource management
(CKRM) that provides policy-driven classifica-
tion and differentiated service of CPU, mem-
ory, I/O and network bandwidth. The pa-
per describes the design and implementation
of the framework in the Linux 2.6 kernel. It
shows how CKRM is useful in various scenar-
ios including the desktop. It also presents pre-
liminary performance evaluation results that
demonstrate the viability of the approach.

1 Introduction

Workload management is an increasingly im-
portant requirement of modern enterprise com-
puting systems. There are two trends driving
the development of enterprise workload man-
agement middleware. One is the consolida-
tion of multiple workloads onto large symmet-
ric multiprocessors (SMPs) and mainframes.
Their diverse and dynamic resource demands
require workload managers (WLMs) to pro-
vide efficient differentiated service at finer time
scales to maintain high utilization of expensive
hardware. The second trend is the move to-
wards specification of workload performance
in terms of the business importance of the
workload rather than in terms of low-level sys-
tem resource usage. This has led to the increas-
ing use of goal-oriented workload managers,
described shortly, which are more tightly inte-
grated into the business processes of an enter-
prise.

Traditional system administration tools have
been built with two layers. The lower, OS spe-
cific layer deals with modifying and monitor-
ing operating system parameters. The upper
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layer(s) provide an OS independent API, gen-
erally through a graphical user interface, allow-
ing a multi-tier or clustered system to be man-
aged through a unified API despite containing
heterogenous operating systems. While such
tools provide a convenient administrative inter-
face to heterogeneous operating systems they
do little to address the complexity of managing
workloads that span multiple tiers. The burden
of translating business goals into workload re-
source requirements and the latter into OS spe-
cific tuning parameters remains on the system
administrators. Increasing workload consoli-
dation only adds more complexity to an already
onerous problem.

As described in [7], the first stage in improving
workload management areentitlement-based
workload managers (WLMs) such as [9, 5,
11] which enforce entitlements or shares on
resources consumed by groups of processes,
users, etc. This allows the more important
groupings to see improved response times and
higher bandwidth due to preferential access to
the server hardware. As importantly, it allows
expensive SMP servers to have higher utiliza-
tions since system administrators can afford to
load them more without fear of penalizing the
important groupings.

However, the complexity of determining the
right entitlements (henceforth called shares)
for a grouping remains on the human system
administrator. Not only does s/he need to map
the importance of a workload to its entitle-
ments, s/he also needs to adjust these shares
dynamically when the demand and/or impor-
tance ofanyworkload changes. Such dynamic
share changes have become increasingly diffi-
cult to compute in a timely manner when man-
ual involvement is part of the adaptive feed-
back loop.

To address the complexity of share specifica-
tions, goal-oriented workload managershave

been developed [1, 10] which allow a system
to be more self-managed. Such WLMs allow
the human system administrator to specify high
level performance objectives in the form of
policies, closely aligned with the business im-
portance of the workload. The WLM middle-
ware then uses adaptive feedback control over
OS tuning parameters to realize the given ob-
jectives.

In mainstream operating systems, including
Linux, the control of key resources such as
memory, CPU time, disk I/O bandwidth and
network bandwidth is typically strongly tied
to processes, tasks and address spaces and are
highly tuned to maximize system utilization.
This introduces additional complexity to the
WLM which needs to translate the QoS re-
quirements into these low level per task re-
quirements, tough typically QoS is enforced at
work class level. Hence, in order to isolate the
autonomic goal oriented layers of the system
management from the intricacies of the operat-
ing system, we introduce the class concept into
the operating system kernel and require the OS
to provide differentiated service for all major
resources at a class granularity defined by the
WLM.

In this paper, we discuss a framework
called class-based kernel resource manage-
ment (CKRM) that implements this support
under Linux. In CKRM, a class is defined as
a dynamic grouping of OS objects of a particu-
lar type (classtype) and defined through poli-
cies provided by the WLM. Each class has
an associated share of each of its resources.
For instance, CKRM tasks classes provides re-
source management for four principal physi-
cal resources managed by the kernel namely
CPU time, physical memory pages, disk I/O
and bandwidth. Sockets classes provide in-
bound network bandwidth resource control.
The Linux resource schedulers are modified to
provide differentiated service at a class granu-
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larity based on the assigned shares. The WLM
can dynamically modify the composition of a
class and its share in order to meet higher level
business goals. We evaluate the performance
of the CKRM using simple benchmarks that
demonstrate the efficacy of its approach.

This work makes several contributions that dis-
tinguish it from previous related work such
as resource containers [2] and cluster reserves
[4]. First, it describes the design of a flexi-
ble kernel framework for class-based manage-
ment that can be used to manage both phys-
ical and virtual resources (such as number of
open files). The framework allows the vari-
ous resource schedulers and classification en-
gine to be developed and deployed indepen-
dent of each other. Second, it shows how in-
cremental modifications to existing Linux re-
source schedulers can make them provide dif-
ferentiated service effectively at a class granu-
larity. To our knowledge, this is the first open-
source resource management package that at-
tempts to provide control over all the major
physical resources—i.e., CPU, memory, I/O,
and network. Third, it provides a policy-driven
classification engine that eases the develop-
ment of new higher level WLMs and enables
better coordination between multiple WLMs
through policy exchange. Thirdly, through the
resource class filesystem the WLM goals can
be manipulated by normal users, making it use-
ful on the desktop. Finally, it develops a tag-
ging mechanism that allows server applications
to participate in their resource management in
conjunction with the WLM.

The rest of the paper is organized as follows.
Section 2 gives an overview of CKRM and
its core bits. Sections 3 briefly describes the
classification engine. Section 4 presents the
facilities provided by CKRM for monitoring.
The inbound network controller, the first ma-
jor controller ported to CKRM’s new interface,
is described in Section 5. Section 6 describes

the filesystem interface which replaces the sys-
tem call interface used in CKRM’s earlier de-
sign presented in OLS 2003 [13]. Section 7
describes how CKRM might be used, both on a
desktop system and on some server workloads.
Section 8 concludes with directions for future
work in the project.

2 Framework

A typical WLM defines a workload to be any
system work with a distinct business goal.
From a Linux operating system’s viewpoint,
a workload is a set of kernel tasks executing
over some duration. Some of these tasks are
dedicated to this workload. Other tasks, run-
ning server applications such as database or
web servers, perform work for multiple work-
loads. Such tasks can be viewed as executing in
phases with each phase dedicated to one work-
load. Server tasks can explicitly inform the
WLM of its phase by setting an application tag.
A WLM can also infer the phase by monitoring
significant system events such as forks, execs,
setuid, etc. and classifying the server task as
best as possible.

In this scenario, a WLM translates a high
level business goal of a workload (say response
time) into system goals for the set of tasks ex-
ecuting the workload. The system goals are
a set of delays seen by the workload in wait-
ing for individual resources such as CPU ticks,
memory pages, etc. The WLM monitors the
business goals, possibly using application as-
sistance, and the system usage of its resources.
If the business goal is not being met, it identi-
fies the system resource(s) which form a per-
formance bottleneck for the workload and ad-
justs the workload’s share of the resource ap-
propriately. The CKRM framework enables a
WLM to regulate workloads through a number
of components, as shown in Fig. 1:
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Figure 1: CKRM lifecycle

Core: The core defines the basic entities used
by CKRM and serves as the link between all
the other components. A class is a group of
kernel objects with an associated set of con-
traints for resource controllers operating on
those kernel objects—e.g., a class could con-
sist of a group of tasks which have a joint share
of cpu time and resident page frames. Each
class has an associated classtype which identi-
fies the kernel object being grouped. CKRM
currently defines two classtypes calledtask_
class and socket_class for grouping
tasks and sockets. For brevity, the term
taskclass and socketclass will be used to de-
note a class of classytpetask_class and
socket_class respectively. Classtypes can
be enabled selectively and independent of each
other. A user not interested in network reg-
ulation could choose to disablesocket_
class es. Classes in CKRM are hierarchical.
Children classes can be defined to subdivide
the resources allocated to the parent.

Classification engine (CE): This optional
components assists in the association of kernel
objects to classes of its associated classtype.
Each kernel object managed by CKRM is al-

ways associated with some class. If no classes
are defined by the user, all objects belong to
the default class for the classtype. At sig-
nificant kernel events such as fork, exec, se-
tuid, listen, when the attributes of a kernel
object are changed, the Core queries the CE,
if one is present, to get the class into which
the object should be placed. CE’s are free
to use any logic to return the classification.
CKRM provides a rule-based classification en-
gine (RBCE) which allows privileged users to
define rules which use attribute matching to
return the class. RBCE is expected to meet
the needs of most users though they can define
their own CE’s or choose not to have any and
rely upon manual classification of each kernel
object through CKRM’s rcfs user interface (de-
scribed later).

Resource Controllers: Each classtype has a
set of associated resource controllers, typi-
cally one for each resource associated with the
classtype—e.g., taskclasses have cpu, memory,
and I/O controllers to regulate the cpu ticks,
resident page frames and per-disk I/O band-
width consumed by it while socketclasses have
an accept queue controller to regulate the num-
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ber of TCP connections accepted by member
sockets. Resource requests by a kernel ob-
ject in a class are regulated by the correspond-
ing resource controller, if one exists and is en-
abled. The resource controllers are deployed
independent of each other so a user interested
only in controlling CPU time for taskclasses
could choose to disable the memory and I/O
controllers (as well as the socketclass classtype
and all its resource controllers).

Resource Control File System (RCFS): It
forms the main user-kernel interface for
CKRM. Once RCFS is mounted, it provides
a hierarchy of directories and files which can
be manipulated using well-known file opera-
tions such as open, close, read, write, mkdir,
rmdir and unlink. Directories of rcfs corre-
spond to classes. User-kernel communication
of commands and responses is done through
reads/writes to virtual files in the directories.
Writes to the virtual files trigger CKRM Core
functions and responses are available through
reads of the same virtual file.

The CKRM architecture outlined above
achieves three major objectives:

• Efficient, class-based differentiation of re-
source allocation and monitoring for dy-
namic workloads: Regulate and moni-
tor kernel resource allocation by classes
which are defined by the privileged user
and not only in terms of tasks. The differ-
entiation should work in the face of rela-
tively rapid changes in class membership
and over roughly the same time intervals
at which process-centric regulation cur-
rently works.

• Low overhead for non-users: Users disin-
terested in CKRM’s functionality should
see minimum overhead even if CKRM
support is compiled into the kernel. Signs
of user disinterest include omitting to

mount rcfs or not defining any classes.
Even for users, CKRM tries to keep over-
heads proportional to the features used.

• Flexibility and extensibility through min-
imization of cross-component dependen-
cies: Classification engines should be
independent of classtypes and optional,
classtypes should be independent of each
other and so should resource controllers,
even within the same classtype. This goal
is achieved through object-oriented inter-
faces between components. Minimizing
dependencies allows kernel developers to
selectively include components based on
their perception of its utility, performance
and stability. It also permits alternative
versions of the components to be used de-
pending on the target environment—e.g.,
embedded Linux distributions could have
a different set of taskclass resource con-
trollers (or even classtypes) than server-
oriented distributions.

3 Classification

The Classification Engine (CE) is an optional
component that enables CKRM to automati-
cally classify kernel objects within the con-
text of its classtype. Since the CE is optional
and since we want to main flexibility in its
implementation, functionality and deployment,
it is supplied as a dynamically loadable mod-
ule. The CE interacts with CKRM core as fol-
lows. The CKRM core defines a set of ckrm
events that constitute a point during execution
where a kernel object could potentially change
its class. A classtype can register a callback at
any of these events. As an example, the task
class hooks the fork, exec, exit, setuid, set-
gid calls where as the socket class hooks the
listen and accept calls. In these callbacks the
classtypes typically invoke the optional CE to
obtain a new class. If no CE is registered or the



516 • Linux Symposium 2004 • Volume Two

CE does not determine a class, the object re-
mains in its current class, otherwise the object
is moved to the new class and the correspond-
ing resource managers of that class’s type are
informed about the switch.

For every classtype the CE wants to provide au-
tomatic classification for, it registers a classifi-
cation callback with the classtype and the set of
events to which the callback is limited to. The
task of CE is then to provide a target class for
the kernel objects passed in the context of the
classtype. For instance, task classes pass only
the task, while socket classes pass the socket
kernel object as well as the task object. Though
the implementation of the classification en-
gine is completely independent of CKRM, the
CKRM project provides a default classifica-
tion, called RBCE, that is based on classifica-
tion rules. Rules consist of a set of rule terms
and a target class. A rule term specifies one
particular kernel object attribute, a compari-
sion operator (=,<,>,!) and a value expression.
To speed up the classification process we main-
tain state with tasks about which rules and rule
terms have been examined for a particular task
and only reexamine those terms that are indi-
cated by the event. RBCE provides rules based
on task parameters ((pid, gid, uid, executable)
and socket information (IP info). The rules in
conjunction with the defined classes constitute
a site policy for workload managment and is
dynamically changable (See user interface sec-
tion) into the RBCE. Hence, this approach en-
sures the separation of policy and enforcement.

To facilitate the interaction with WLMs to pro-
vide event monitoring and tracing, the CE can
also register a notification callback with any
classtype, that is called when a kernel object is
assigned to a new class. Similar so the classi-
fication callback, the notification callback can
be limited to a set of ckrm events. This facil-
ity is utilized in resource monitoring, described
next.

4 Monitoring

We now describe the monitoring infrastruc-
ture. Strictly speaking, the per-class monitor-
ing components are part of CKRM while the
per-process components are not. However, we
shall describe them together as they both can
be utilized by goal-based WLMs. Furthermore,
they are bundled with the classification engine
and utilize the CE’s notification callback to ob-
tain classification events. The monitoring in-
frastructure illustrated in Fig. 2 is based on the
following design principles:

1. Event-driven: Every significant event in
the kernel that affectsthe state of a task is
recorded and reported back to the state-
agent. The events of importance are aperi-
odic such as process fork, exit and reclas-
sification as well as periodic events such
as sampling. Commands sent by the state-
agent are also treated as events by the ker-
nel module.

2. Communication Channel: A single logi-
cal communication channel is maintained
between the state-agent and the kernel
module and is used for transferring all
commands and data. Most of the data flow
is from the kernel to user space in the form
of records resulting from events.

3. Minimal Kernel State: The design mini-
mizes the additional per-process state that
needs to be maintained within the kernel.
Most of the state needed for high level
control purposes is kept within the state
agent and updated through the records
sent by the kernel.

The state-agent, which can also be integrated
within a WLM, maintains state on each exist-
ing and exited task in the system and provides
it to the WLM. Since the operating system
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does not retain the state of exited processes, the
stateagent must maintain it for future consump-
tion by the WLM. The state-agent communi-
cates with a kernel module through a single
bidirectional communication chan-nel, receiv-
ing updates to the process state in the form of
records and occasionally sending com-mands.
Events in the kernel such as process fork, exit,
reclassify (resulting from change in any pro-
cess attribute such as gid, pid) cause records to
be generated through functions provided by the
kernel module.

Server tasks can assist the WLM by inform-
ing it about the phase in which they are oper-
ating (each phase corresponds to a workload).
Such tasks invoke CKRM to set a tag associ-
ated with theirtask_struct in the kernel.
CKRM uses this event to reclassify the task
and also records the event (to be transmitted
to the WLM through the state-agent). Other
kernel events that might cause a task to be re-
classified (such as the exec and setuid system
calls, etc.) are also noted by CKRM and passed
to the WLM through the state-agent. In ad-
dition, CKRM performs periodic sampling of
each task’s state in the kernel to determine the
resource it is waiting on (if any), its resource
consumption so far and the class to which it be-
longs. The sample information is transmitted
to the state-agent. The WLM can correlate the
information with the tag setting to statistically
determine the resource consumption and de-
lays of both server and dedicated processes ex-
ecuting a workload. Sampling is done through
a kernel module function that is invoked by a
selfrestarting kernel timer. Commands sent by
the state-agent cause appropriate functions in
the kernel module to execute and also return
data in the form of records. The kernel com-
ponents are kept simple and only minimal ad-
ditional state has to be maintained in the ker-
nel. In particular, the kernel does not have
to maintain extra state about exited processes
which introduces problems with PID reusage,

memory management to name a few. Instead,
relevant task information is replicated in user
space, is by definition received in the correct
time order (see below) and can be kept around
until the WLM has consumed the information.
Furthermore, the semantics of a reclassification
in the kernel, which identifies a new phase in a
server process, does not have to be introduced
into the kernel space.

The following small changes are required
to the linux kernel to track system delays.
The struct delay_info is added to the
task_struct . Delay_info contains 32-bit
variables to store cpu delay, cpu using, io de-
lay and memory io delay. The counters pro-
vide micro second accuracy. The current cpu
scheduler records timestamps whenever i) a
task becomes runnable and is entered into a
runqueue and ii) when a context switch occurs
from one task to another. We use these same
timestamps to get per-task cpu wait and cpu
using times recorded respectively. I/O delays
are measured by the difference of timestamps
taken when a task blocks waiting for I/O to
complete and when it returns. All I/O is nor-
mally attributed to the blocking task. Page-
fault delays, however, are treated as special
I/O delays. On entrance to and exit from the
page fault handler the task is marked or un-
marked as being in a memory path using flags
in task_struct . If during the I/O delay,
this flag is set, the I/O delay is counted as
a memory delay instead of as a pure I/O de-
lay. The per-task delay information is accessi-
ble through the file/proc/<pid>/delay .
Similarly, each class contains adelay_info
structure.

In contrast to the precise accounting of delays,
sampling examines the state of tasks at fixed
interval. In particular, we sample at fixed inter-
vals (~1sec) the entire set of tasks in the system
and increment per task counters that are inte-
grated into the task private structure attached
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Figure 2: CKRM lifecycle

by the classification engine that builds the core
of the kernel module. We increment counters
if a task is running, waiting to run, performing
I/O or handles a pagefault I/O. Task data (sam-
pled and/or precise) is requested by and sent
to the state-agent in coarser intervals. We can
send data in continuous aggregate mode or in
delta mode, i.e. only if task data has changed
do we send a new data record and then reset
the local counters. The task transition events
are sent at the time they occur. We distinguish
the fork, exit, and reclassification events as
records. At each reclassification (which could
potentially be the end of a phase) we transmit
the sample and delay data and reset them lo-
cally.

As a communication channel we utilize the
linux relayfs pseudo filesystem, a highly effi-
cient mechanism to share data between kernel
and user space. The user accesses the shared
buffers, called channels, as files, while the ker-
nel writes to them using buffer reservations and
memory read/write operations. The content
and structure of the buffer is determined by the
kernel and user client. Currently the communi-
cation channel is self pacing. The underlying

relayfs channel buffer will dynamically resize
upto a maximum size. If for any reason the re-
layfs buffer overflows, record sending will au-
tomatically stop, an indication is sent and the
state-agent will have to drain the channel and
request a full state dump from the kernel.

We have measured the data rate during a stan-
dard kernel build, which creates a significant
amount of task events (fork,exec,exits). For a
2-CPU system with 2 seconds sample collec-
tion we observed a data rate of 8KB/second and
a total of 190 records/sec, well within a limit
that can be processed without creating signifi-
cant overhead in the system.

5 Inbound Network

Various OS implementations offer well estab-
lished QoS infrastructure for outbound band-
width management, policy-based routing and
Diffserv [3]. Linux in particular, has an elab-
orate infrastructure for traffic control [8] that
consists of queuing disciplines(qdisc) and fil-
ters. A qdisc consists of one or more queues
and a packet scheduler. It makes traffic con-
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form to a certain profile by shaping or polic-
ing. A hierarchy of qdiscs can be constructed
jointly with a class hierarchy to make dif-
ferent traffic classes governed by proper traf-
fic profiles. Traffic can be attributed to dif-
ferent classes by the filters that match the
packet header fields. The filter matching can
be stopped to police traffic above a certain
rate limit. A wide range of qdiscs ranging
from a simple FIFO to classful CBQ or HTB
are provided for outbound bandwidth manage-
ment, while only one ingress qdisc is provided
for inbound traffic filtering and policing. The
traffic control mechanims can be used invari-
ous places where bandwidth is the primary re-
source to control.

Due to the above features, Linux is widely used
for routers, gateways, edge servers; in other
words, in situtations where network bandwidth
is the primary resource to differentiate among
classes. When it comes to endservers network-
ing, QoS has not received as much attention
since QoS is primarily governed by the systems
resources such as memory, CPU and I/O and
less by network bandwidth. When we consider
end-to-end service quality, we should require
networking QoS in the end servers as exempli-
fied in the fair share admission control mecha-
nism proposed in this section.

We present a simple change to the existing
TCP accept mechanism to provide differenti-
ated service across priority classes. Recent
work in this area has introduced the concept of
prioritized accept queues [6] and accept queue
schedulers using adaptive proportional shares
to self-managed web [14]. In a typical TCP
connection, the client initiates a request to con-
nect to a server. This connection request is
queued in a global accept queue belonging to
the socket associated with the server’s port.
The server process picks up the next queued
connection request and services it. In effect,
the incoming connections to a particular TCP

socket are serialized and handled in FIFO or-
der. When the incoming connection request
load is higher than the level that can be han-
dled by the server requests have to wait in the
accept queue until the next can be picked up.

We replace the existing single accept queue per
socket with multiple accept queues, one for
each priority class. Incoming traffic is mapped
into one of the priority classes and queued on
the accept queue for that priority. The accept
queue implements a weighted fair scheduler
such that the rate of acceptance from a partic-
ular accept queue is proportional to the weight
of the queue. In the first version of the priority
accept queue design initially proposed by the
CKRM project [13], starvation of certain pri-
ority classes was a possibility as the accepting
process picked up connection requests in the
order of descending priority.

The efficacy of the proportional accept queue
mechanism is demonstrated by an experiment.
We used Netfilter [12] to MARK options to
characterize traffic into two priority classes
with respective weights of 3:1. The server pro-
cess utilises a configurable number of threads
to service the requests. The results are shown
in Figure 3. When the load is low and there
are service threads available no differentiation
takes place and all requests are processed as
they arrive. Under higher load, requests are
queued in the accept queue with class 1 receiv-
ing a proportionally higher service rate than
class 2. The expriment was repeated, main-
taining a constant inbound connection request
rate. The proportions of the two classes were
then switched to see the service rate for the two
classes reverse as seen in Figure 4

6 Resource Control Filesystem

In the Linux kernel development community,
filesystems have become very popular as user
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Figure 3: Proportional Accept Queue: Results
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Figure 4: Proportional Accept Queue: Results under change

interfaces to kernel functionality, going well
beyond the traditional use for disk-based per-
sistent storage. The Linux kernel’s objecto-
riented Virtual File System (VFS) makes it
easy to implement a custom filesystem. Com-
mon file operations like open, close, read and
write map naturally to initalization, shutdown,
kernel-to-user and user-to-kernel communica-
tion. For CKRM, the tree structured names-

pace of a filesystem offers the additional bene-
fit of an intuitive representation of the class hi-
erarchy. Hence CKRM uses the Resource Con-
trol Filesystem (RCFS) as its user interface.

The first-level directories in RCFS contain the
roots of subtrees associated with classtypes
build or loaded into the kernel (socket_
class and taskclass currently) and the clas-
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sification engine (ce). Within the classtype
subtrees, directories represent classes. Users
can create new classes by creating a direc-
tory as long as they have the proper access
rights. Within the task_class directory,
each directory represents a task class./rcfs/
taskclass , the root of thetask_class
classtype, represents the default taskclass
which is always present when CKRM is en-
abled in the kernel. Eachtask_class direc-
tory contains a set of virtual files that are cre-
ated automatically when the directory is cre-
ated. Each virtual file has a specific function as
follows:

1. members: Reading it gives the names of
the tasks in the taskclass.

2. config: To get/set any configuration pa-
rameters specific to the taskclass.

3. target: Writing a task’s pid to this file
causes the task to be moved to the
taskclass, overriding any automatic clas-
sification that may have been done by a
classification engine.

4. shares: Writing to this file sets new lower
and upper bounds of the resource shares
for the taskclass for each resource con-
troller. Reading the file returns the current
shares. The controller name is specified
on a write which makes it possible to set
the values for controllers independent of
each other.

5. stats: Reading the file returns the statis-
tics maintained for the taskclass by each
resource controller in the system. Writing
to the file (specifying the controller) resets
the stats for that controller.

The socket_class directory is somewhat
similar. Directories under/rcfs/socket_
class/ represent listen classes and have the

same magic files as task_classes. Whereas
task_classes use the pid to identify the class
member, socket_classes, which group listening
sockets, use ip address + port name to iden-
tify their members. Within each listen class,
there are automatically created directories, one
for each accept queue class. The accept queue
directories, numbered 1 through 7, have their
own shares and stats virtual files similar to
those fortask_classes .

The /rcfs/ce directory is the user interface
to the optional classification engine. It contains
the following virtual files and directory:

1. reclassify: writing a pid or ipadress+port
to the file causes the corresponding task or
listen socket to be put back under the con-
trol of the classification engine. On sub-
sequent significant kernel events, the ce
will attempt to reclassify the task/socket
to a new taskclass/socketclass if the
task/sockets attributes have changed.

2. state: to set/get the state (active or inac-
tive) of the classification engine. To allow
a new policy to be loaded atomically, CE’s
can be set to inactive before loading a set
of rules and activated thereafter.

3. Rules: The directory allows privileged
users to create files with each file repre-
senting one rule. Reading the files, per-
mitted for all, gives the classiication pol-
icy which is currently active. The ordering
of rules in a policy is determined either
by creation time of the corresponding file
or by an explicitly specified order number
within the file. The rule files contain rule
terms consisting of attribute-value pairs
and a target class. E.g., the rulegid=10,
cmd = bash, target = /rcfs/taskclass/Ain-
dicates that tasks with gid 10 and running
the bash program (shell) should get reclas-
sified to task_class A.
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7 Example uses

In this section we will describe a number of
uses for CKRM, ranging from the traditional
large server workload consolidation, to a uni-
versity shell server, to the desktop—a novel use
of workload management systems, made possi-
ble through the resource class filesystem.

7.1 Workload Consolidation

The classical use of a workload management
system is workload consolidation, whether it’s
multiple departmental database servers on one
large server, or one small server balancing re-
sources between apache, ftpd, postfix and the
interactive users. In either scenario the main
objective is to make sure that none of the
workloads can, through excessive resource use,
cause the machine to become unusable for any
of the others.

The simple solution is to start each of the ser-
vices up in their own resource class and guar-
anteeing a certain amount of resources (say,
10% of the CPU and 20% of memory) for
each of the services. Simultaneously the ser-
vices can also have resource limits (say, 50%
of memory). This combination of guarantees
and limits gives the system a certain amount
of freedom to balance the actual amount of re-
sources each workload gets, while still putting
effective guarantees and limits in place.

7.2 Shell Server

A shell server at a university faces a number of
challenges. For example, the staff and postdocs
should be protected from the load the students
put on the machine and the students should
be protected from each other. Similarly, batch
jobs will usually have larger resource use lim-
its (e.g. max cpu time used, max memory al-
located), but a lower resource priority, as com-
pared to any of the interactive programs. These

problems can be solved by starting each class
of process in the right process class.

On the other hand, if a staff member sends
email to a student, the resources used by
the student’s mail filter should be accounted
against that student’s limits. This problem can-
not be solved by having programs start out in a
certain resource class, since the MTA process
needs to transition between resource classes
automatically. This can be solved by setting up
a classification engine to automatically trans-
fer a process to theemail resource class when
it execs/usr/sbin/sendmail . Similarly,
when /usr/bin/procmail is being ex-
eced with a certain UID, the classification en-
gine can move the process to the resource class
where that user’s interactive processes would
normally run.

7.3 Desktop

With the right file and directory ownerships in
the resource class filesystem, CKRM can be
used in an area where traditional resource man-
agement systems tend to be cumbersome: on
the desktop. A typical desktop configuration
would have as its main goals that the system
remains responsive to the user, no matter the
background load, and would look something
like the following.

The X server would get a good resource guar-
antee, e.g. 20% of CPU time and 20% of RAM.
This makes sure that no matter what other pro-
cesses run on the system, X can run smoothly
and react to the console user with acceptably
low latency.

At login time a PAM module would make sure
that the rest of the user’s processes get a good
resource guarantee, too. An acceptable guar-
antee would be 50% of CPU time and 50%
of RAM. This leaves enough resources free so
that other things in the system can run (e.g. dis-
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tro updates, updatedb, mail delivery), yet keeps
most of the system dedicated to the user. The
resource class created for the console user, e.g.
/rcfs/taskclass/console , is set up to
be writable for the console user. This way the
user’s processes can set resource guarantees
and limits to certain classes of applications.

The user’s GUI menu would take care of this
subdividing of the resources guaranteed to the
user. For example, the web browser could
be restricted to 40% of RAM, so as to not
put much pressure on the user’s other pro-
cesses. Multimedia processes could get part of
the user’s resource guarantees, e.g. 30% of the
CPU and 10% of RAM guaranteed for the mul-
timedia applications. This way the playback of
multimedia should remain smooth, regardless
of what the user’s web browser and office suite
are doing.

No superuser privileges are needed to config-
ure these resource classes, or to move the user’s
processes between them. Any GUI framework
or individual application will be able to de-
termine the resources allocated to it, leading
to more flexibility than possible with resource
management systems that can only be config-
ured by the super user. Note that since the
user cannot raise the resource limits or guar-
anteed allocated to his main class, there should
be no security risks involved with letting the
user processes manipulate their own resource
guarantees and limits.

8 Conclusion and Future Work

The consolidation of increasingly dynamic
workloads on large server platforms has con-
siderably increased the complexity of systems
management. To address this, goal-oriented
workload managers are being proposed which
seek to automate low-level system adminis-
tration requiring human intervention only for

defining high level policies that reflect business
goals.

In an earlier paper [13], we had argued that
goal-oriented WLMs require support from the
operating system kernel for class-based dif-
ferentiated service where a class is a dy-
namic policy-driven grouping of OS processes.
We had introduced a framework, called class-
based kernel resource management, for classi-
fying tasks and incoming network packets into
classes, monitoring their usage of physical re-
sources and controlling the allocation of these
resources by the kernel schedulers based on the
shares assigned to each class.

In this paper, we have described more details
of the evolving design. In particular, CKRM
has become more generic and supports groups
of any kernel object involved in resource man-
agement, not just tasks. It has a new filesystem-
based user API. Finally, the design introduces
hierarchies into classes which permits greater
flexibility for resource managers but also in-
troduces challenges for CKRM controllers. A
working prototype which includes an inbound
network controller has been developed and
made available through [15].

Future work in the project will involve rede-
veloping controllers for CPU, memory and I/O
that are not only class-aware but can handle hi-
erarchies of classes while keeping overheads
low. Another important direction is the interac-
tions of the resource schedulers and the impact
of these interactions on the shares specified.
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Abstract

The RDC-i700 is one of high specs digital
camera of Ricoh. Its relatively big size, large
amount of different interfaces, input methods
(buttons, or touch panel), have made it a good
candidate for prototyping the world first Linux
embedded digital camera. This paper presents
our experiences of porting the 2.4 linux ker-
nel to an existing digital camera. (the RDC-
i700 is originally build on top of VxWorks).
Eventhough embedded systems running on
Linux are getting more and more popular, the
digital camera field remains to be unexplored.
The paper introduces how digital cameras dif-
fer from any other PC-like devices (PDA, HDD
recorder. . . ) and what problems, such as tim-
ing or software design issues, have to be (have
been) solved in order to get the world first linux
digital camera running on the linux 2.4 kernel.

1 The hardware

Ricoh’s RDC-i7001 is a relatively old digital
camera (released late 2000 in japan) running
on VxWorks, a famous Real-Time OS (RTOS).
Some might be asking the reason why we de-
cided to port Linux OS to the camera. The
reason is to make it become aprogrammable
camera. Once it becomes a programmable de-
vice, many VARs or individual programmers

1http://www.ricohzone.com/product_rdci700.html

Figure 1: The RDC-i700 digital camera

may write a lot of useful software for it. Then
it will be a good platform for business imaging
use.

The RDC-i700 is one of high specs digital
camera of Ricoh. It integrates all peripher-
als traditional digital camera has, but also sev-
eral different interfaces, allowing wide range
of application to run on it. The VxWorks ver-
sion allows user to perform various tasks such
as taking picture or movie, recording voice
memo, browse the Internet, send email or up-
load picture to a remote server. Its relatively
big size, large amount of different interfaces,
input methods (buttons, or touch panel), makes
it a good candidate for prototyping the world
first Linux embedded digital camera.

The RDC-i700 is a 3.2 million pixels dig-
ital camera equipped with a Hitachi SH3
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(SH7709A) CPU. The SH7709A is a 32 bit
RISC CPU which include MMU and several
other peripherals such as serial communica-
tion interfaces (SCIs), D/A - A/D converters.
Around this CPU, traditional digital camera pe-
ripherals (CCD, LCD, buttons, Image Proces-
sor) but also 1 PCMCIA and 1 CF socket, touch
panel, audio input/output interface, USB de-
vice controller and a serial port are available.
Figure 2 shows a block diagram of the RDC-
i700.

2 Digital camera is not “PDA com-
bined with camera function”

Nowadays, embedded Linux has become a
very hot topic in the Linux community. More
and more Linux gadget are becoming available
and the share of embedded related paper pub-
lished has literally exploded in the last 3 years.
Linux seems to be everywhere, lots of devices
that were running on RTOS in the past are now
running on Linux. However, one field seems
to be still unexplored: digital camera. Some
might say that a digital camera is just a PDA
combined with a CCD (this kind of combina-
tion is actually already available, for example
the Zaurus CF Digital Camera option), but this
is not that simple.

The quality point of view: PDA combined
with a digital camera option can take pictures
or even movies and in that sense can be com-
pared to a digital camera. But digital cameras
still have some advantages that make them irre-
placeable. Indeed optical zoom, but also auto-
focus or strobe are all precious elements that
are currently not available on Linux PDA. For
example, the Zaurus camera has a focus but
this one is manual. Auto-exposure is also an-
other very important part when taking picture;
for that, Zaurus PDA has some-kind of gain
control but this cannot have same quality as
a traditional digital camera auto-exposure sys-

tem.

The technical point of view: We will see that
having digital camera specific peripherals is a
very good plus in term of quality, but it also
creates lots of problem that traditional Linux
PDA doesn’t face. Keeping the Zaurus PDA
as an example, only few parameters are con-
figurable and the CPU doesn’t actually have to
perform much work in order to get an image.
On the contrary, in case of a fully configurable
digital camera, the OS must orchestrate all de-
vices in order to get a picture.

2.1 Zoom and Focus

Several motors are used inside the camera.
Two of them are used for zoom and focus in
order to adjust the lens position. Due to high
precision requirements, those two motors are
stepping motors. As the name says, this kind of
motors are controlled step by step (at the differ-
ence with traditional motors which only have
start/stop command). The CPU has to set ports
of the motor at a quite fast frequency in order
to make the motor turn. In that case the period
between two steps is only few milli-seconds.

2.2 Strobe

In case of strobe, the problem is not doing thing
at very high speed, but making perfect synchro-
nization between the moment the strobe is go-
ing to flash and the moment the CCD sensor
will acquire the picture.(see figure 3) For that
purpose, we will need precision of only very
few milli-seconds.

2.3 Auto-Exposure / White Balance

So called Auto-Exposure is the algorithm in
charge of adjusting the exposure time (that is
to say the time period while the CCD is ex-
posed to light) in order to have a good image
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Figure 3: CCD Frame sequence



528 • Linux Symposium 2004 • Volume Two

in both dark and bright conditions. White bal-
ance algorithm needs to analyze data coming
from the CCD sensor and adjusts the Image
Processing Peripheral (IPP) settings in order to
have good color matching between the gener-
ated image and the reality. Several implemen-
tations of those two algorithms can exist (some
needs very heavy calculations while others can
be very simple), but the main issue is that those
algorithms have to be performed very often (in
the worst case, every frame of the CCD, that is
to say every 33 milli-seconds).

This second part introduced particularity of
digital cameras. The next part will discuss how
those functions have been implemented into
the Linux RDC-i700.

3 Current Support

As the name “Linux on a digital camera” sug-
gests, the RDC-i700 can now run using Linux
OS. Although some work remains in some ar-
eas, kernel support now exists for most of the
hardware and features of the camera. This part
explains current status for important features
(digital camera related) of the kernel.

3.1 SH-Linux

The RDC-i700 linux kernel is originally based
on the work of the SH-Linux [1] team. First
tested with the kernel version 2.4.2, the cam-
era is now using the version 2.4.19 of the ker-
nel. SH-Linux kernel already had support for
almost all parts of the SH3 7709, but since
the RDC-i700 is using the CPU in big endian
mode, some modifications were necessary in
that field. Source code necessary to run the ker-
nel on this new platform has also been added
into /arch/sh/kernel .

3.2 RDC-i700 device drivers

RDC-i700 drivers can be separated into two
kinds (or two layers). (See figure 4) The lower
layer contains so-calledLow level drivers, or
drivers providing control to a specific device
(such as focus sensor, IPP . . . ). All those
drivers doesn’t have any algorithm included
and only provide basic access to the device ca-
pabilities. For example in case of the driver
controlling motors (MECH driver), only func-
tions provided are to set or get the position
of the motor (motors have some predefined
positions). RDC-i700 currently has 5 device
drivers controlling imaging related devices (we
will avoid non-imaging specific drivers here):

• The CCD F/E (Front End) which per-
mits to control the CCD parameters (such
as exposure time, gain . . . )

• The IPP (Image Processing Peripheral)
which is actually the heart of the camera
(almost everything goes through the IPP)

• The Strobedriver which allows to charge
or flash the strobe

• The Focus Sensorwhich permits to eval-
uate the distance between the camera and
the target

• Mech driver which controls all mechani-
cal parts of the camera, that is to say, iris,
shutter, zoom and focus.

All those drivers are very system dependent
and might change from one camera to another.

On the top of those 5 drivers is what we could
called the “Algorithms” layer. This layer con-
tains “intelligent” drivers such as auto focus
driver, or auto exposure driver. One more
driver, simply called CCD driver, is actually
the driver which performs actions such as tak-
ing a picture or switching to monitoring mode.
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Note:
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Figure 4: RDC-i700 device drivers

This driver has to access both low level drivers
and algorithms drivers. Drivers of the up-
per layer are “virtually” platform independent.
However since the current system lacks of
a well defined abstraction layer, upper layer
drivers are currently directly accessing lower
layer driver which make them unable to work
with any other lower driver without having to
slightly change the source code. (see Future
Work section). Currently device drivers com-
municate with each others by accessing EX-
PORTED functions.

All 8 drivers are registered to the kernel as
characters drivers and can be accessed from
user-level using each device file. Some of those
drivers don’t actually need to be accessed from
user space and in that case device file is only
used for debugging purpose. In user space, li-
braries provide easy access to camera function-
alities, avoiding an intensive usage of IOCTL
commands.

Forward Backward

FM2

FM1

FM2

FM1

Figure 5: Motors step sequence

3.3 Motors

As the name says, stepping motors are going
step by step; the CPU sets 2 I/O ports in order
to specify the position of the rotor. Figure 5
shows motor ports state sequence when going
forward and backward. Rotation speed is deter-
mined by the time between 2 states. Each mo-
tor has already predetermined positions, 19 for
zoom and 18 for focus; however, if positions
for the zoom are fixed, focus position varies
depending on the current zoom position. All
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those things are handled by the MECH driver
and are accessible via IOCTL command such
as “Get/Set position.” The MECH driver is
timer based, that is to say, the delay between 2
steps is performed using a timer (2.8 ms in case
of focus, and 1.4 ms in case of zoom); we will
see in part 4 the current problems when using
this implementation. The driver provides both
SYNC and NOSYNC mode; that is to say, in
the first one, the ioctl command will hold un-
til the command finish, but in NOSYNC mode,
the ioctl will immediately return, allowing to
call another ioctl command, even if the mo-
tor is still running. This is useful in the case
of user’s adjustment of the zoom. Since motor
needs time to start and stop, it would be inef-
ficient to request each time 1 position change.
Instead of this, when the user uses the zoom
lever, the first IOCTL command request the
motor to go to max position and then when the
user release the button, the ioctl STOP com-
mand will be requested. In other cases, such as
when controlling the FOCUS motor from the
auto focus driver, the SYNC mode should be
used.

3.4 Auto Exposure

In order to control exposure, the auto exposure
driver is accessing 3 different device drivers
(IPP, MECH and the CCD front end). The
IPP has the ability to divide a CCD image into
several block and inform about each block lu-
minance. By looking at those luminance val-
ues, the auto exposure algorithm decide how
parameters should be modified; it can decide
to change iris diameter (MECH driver), or use
the strobe (STROBE driver), and in most of
the case change parameters of the CCD front
end (electronic shutter speed. . . ). The digi-
tal camera can work in 2 different modes: the
monitoring mode which permits to see in real
time what the CCD sensor is targeting, and the
still image mode which is used when the user

pushes the shutter button to take a still image.
The behaviour of the auto exposure module de-
pends on the camera mode:

• monitoring mode

in that mode, we adjust CCD F/E parameters
every 2 CCD frames. The auto exposure driver
starts a kernel thread which needs to be syn-
chronized with the CCD frame (an hardware
interrupt is generated by the CCD F/E at every
start of frame). Synchronization is achieved
by using wait queues.2 The function which
needs to get synchronized creates a wait queue
(as follows):

struct task_struct *tsk = current;
DECLARE_WAITQUEUE(wait, tsk);
add_wait_queue(&ccd_vd_wq,&wait);
set_current_state(TASK_INTERRUPTIBLE);
schedule();
set_current_state(TASK_RUNNING);
remove_wait_queue(&ccd_vd_wq,&wait);

and the wait queue is woken up by the interrupt
handler (as follow):

wake_up(&ccd_vd_wq);

The CCD F/E is controlled using the SCI port
of the SH3 which use is shared with some other
devices. In some case, it might be necessary to
wait for the SCI port availability and, for that
reason, the kernel thread implementation has
been preferred to some other solutions such as
bottom halves (it is not possible to schedule
from a bottom halves while kernel thread al-
lows that).

• still image mode

in that mode, exposure parameters are only ad-
justed once before taking the picture. The CCD

2This synchronization method is also heavily used by
the CCD driver
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driver requests information to the auto expo-
sure module which will calculate parameters
used to take the picture. After that, the CCD
driver will directly control lower driver to set
those parameters. Synchronization between all
devices is very important and for that reason
it is easier to perform everything sequentially
from a unique driver. No thread is used and
the CCD driver get synchronized with the CCD
frame using the same wait queue method as in
monitoring mode.

Currently only a very simple algorithm is avail-
able for both monitoring and still mode. This
algorithm doesn’t make use of neither iris nor
strobe and the exposure is only controlled us-
ing CCD FE’s parameters and the mechanical
shutter.

3.5 Auto Focus

Compared to the auto exposure, the auto focus
driver is quite an easy one. The IPP driver has
the ability to determine the “focus level” (the
more the focus is correct, the more the value
returned by the IPP will be high). In normal
mode, the auto-focus driver should get an ap-
proximation of the distance to the target by us-
ing the focus sensor, then first adjust the focus
to this approximation. This permits to perform
the “fine focus” (using the IPP capability) to
a smaller range. However, the current imple-
mentation doesn’t use the focus sensor approx-
imation which means that the “fine focus” is
performed to the full range of the focus (this
is actually the mode which is used in case of
MACRO mode). The consequence is that the
auto-focus process is much slower than in nor-
mal mode. Currently the driver performs the
following things:

• check zoom status to calculate focus posi-
tions

• retrieve focus level for all focus positions

• go back to the position with the highest
focus level

3.6 CCD - IPP

The IPP driver is some kind of library which,
except performing initialization of the device,
mainly provides a lot of functions, accessible
from other drivers and permitting to control the
hardware. The driver is quite big since the IPP
performs very various things such as

• JPEG compression/decompression

• YUV-RGB conversion

• video output (for the LCD and TV)

• image scaler

The CCD driver is considered as the main
driver since almost everything starts from it. It
is in charge of coordination between all other
drivers. The driver can be controlled using a
user land library permitting to control the mon-
itoring mode or to take still image. The driver
mainly uses other drivers functions (CCD F/E,
IPP, MECH) and performs synchronization us-
ing the waitqueue method introduced previ-
ously.

3.7 LCD

The RDC-i700 LCD has a fixed resolution of
640x480 pixels. What we could call video card
is actually a part of the IPP chip and can con-
trol 4 layers of display (1 layer for image/video
data, and 3 On Screen Display or OSDs). In
the current design the first layer is controlled
by the IPP driver and doesn’t have direct in-
terface to the user land. Even if 3 OSDs are
available, only one is currently used as a frame-
buffer device. The OSD uses a 8 bit YUV
palette (maintained by the IPP device) which
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means that_setcolreg and_getcolreg
entry points are used to perform conversion be-
tween RGB and YUV color space. This solu-
tion allows to use the camera LCD as any tradi-
tional Linux console and run any software that
usually works on the top of a Linux Frame-
buffer. One reason why only 1 OSD level is
supported is because all OSDs share the same
palette which means that it cannot be simply
designed as 3 different framebuffer devices.
However there is also currently no real need
for 3 OSDs so this is not actually a big issue.

3.8 Filesystem

The RDC-i700 has 8 MB of NAND Flash in-
ternal memory. The Linux kernel now pro-
vides support for this kind of memory by us-
ing the Memory Technology Devices (MTD)
[2] support. Only a very small layer needs to
be written in order to get the camera’s NAND
work. [3] JFFS2 [4] is usually used on the top
of a NAND device, however we will see that
in case of digital camera, it might not be the
best solution. In our case, internal flash mem-
ory is usually exclusively used for storage of
compressed data such as JPEG or MPEG. In
that case, using JFFS2, which is a compressed
filesystem, makes the CPU spend lots of time
compressing data which anyway will almost
not get compressed more than they are. In such
case, YAFFS [5] should be preferred to JFFS2
since it is not a compressed filesystem.(see ta-
ble 1 for details of tests performed on the RDC-
i700)

4 Issues

Several problems have been encountered while
developing the Linux RDC-i700. Some have
been solved but some are still under progress.

Time consumption for 1 transaction (secs)
YAFFS JFFS2

JPG (80k) 0.37 0.54
JPG (193k) 0.79 1.32
JPG (547k) 2.21 3.63

MJPG (1463k) 5.6 9.51
*1 transaction = NAND to NAND file copy

Table 1: YAFFS / JFFS2 tests on RDC-i700

Video SDRAM
16bits-16MB

0x000000

0x7FFFFF

0x3F0000
0x3F4000

SH3 memory map

0xa8000000
0xa8008000

IPP video
offset

register:
0x3F0000

Figure 6: Accessing the video SDRAM

4.1 Framebuffer with non-linear memory

The purpose of a framebuffer device is to pro-
vide a standard way to accesslinearly video
memory from the user space. This is the case
of almost (or probably all) video card running
on linux. Usually the kernel CPU can directly
access any part of the video memory, linearly.
However, in case of the RDC-i700, this is not
the case. As figure 6 shows, the video SDRAM
is not directly accessible from the CPU but is
seen through the IPP chip. The IPP provides
a 8KB window of memory directly accessible
from the SH CPU. By setting a register of the
IPP it becomes possible to define which “page”
of the SDRAM becomes visible to the CPU.
This makes problem with the framebuffer since
the video memory is supposed to be linearly
accessible, so no method is provided for such
kind of system.
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Inside a framebuffer device driver, two mem-
ory access methods exist:

linux console access modeis performed via
function call. 6 functions (read and write for
byte, word and long type) are provided. In case
of the RDC-i700, the trick is just to overwrite
those function in order to set the IPP register to
the page needed to be accessed.

mmap access modeis necessary to allow
user land application to access the framebuffer
memory. The problem in case of mmap access
is that the driver doesn’t know which part of the
memory is being accessed and so it becomes
impossible to correctly set the page selector.

To solve this problem, the framebuffer uses
a NOPAGE memory handler, combined with
the remap_page_range function. By al-
ways leaving only 1 page mapped at a time,
we ensure that the NOPAGE handler will be
called everytime the application is trying to ac-
cess a page which is not mapped. The han-
dler will then unmap the previous page and
map the page corresponding to the address to
be accessed. One problem remains, which
is, if remap_page_range allows to map
page, it seems there is no function to “un-
map” a previously mapped page. The func-
tion zap_page_range seems to do similar
thing and by implementing the nopage handler
as follows, the trick seems to work.

nopage_handler(...)
{

calculate pointed addr in SDRAM;
calculate physical addr;
if(already_mapped){

zap_page_range(...);
flush_tlb_range(...);

}
remap_page_range(...);
already_mapped=1;

}

However, some errors occurs time to time

when using mmap on the framebuffer and
those errors might come from this implemen-
tation.

4.2 Timers

We have seen in previous section that several
timers are used in various drivers. Some must
be very short and for that reason, timer is a very
hot topic in our case. Several implementations
are possible to perform delay.

busy wait: this solution should be avoided
since it would for example almost stop the
camera everytime the zoom is adjusted.

kernel timers: kernel timers should be used in
order to avoid problems introduced by the busy
wait solution. However, in order to achieve
such implementation we need first to solve one
big problem. While we need about 1ms or less
resolution timer, a vanilla 2.4.19 kernel only
permits to use timers with resolution of 10ms.
In case of stepping motors, this doesn’t re-
ally make big problem except that motors will
just run about 10 times slower than their nom-
inal speed. However, the low accuracy of ker-
nel timers makes problem when used to con-
trol other devices such as mechanical shutter,
strobe or iris since it can result in low qual-
ity image or, even worse, wrong operation per-
formed (narrow instead of large for the iris). In
order to solve this problem, several possibili-
ties exist:

• High Resolution Timer: [7] is a project
hosted on sourceforge in order to add high
resolution (nano seconds) capable timer to
the Linux kernel. However currently only
the i386 architecture is supported, which
means that some work is needed in order
to get it work on the SH architecture.

• Hardware Timer: if such short delay
cannot be achieved using software timer,
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it still remains the possibility to use hard-
ware timers of the SH3. However, this
would make drivers very architecture de-
pendent which should be avoided if pos-
sible. Moreover, even if the hardware
timer can generate very short period, we
need to ensure that the time between the
hardware interrupt is generated and the in-
terrupt handler get called is not too long
otherwise using hardware timer wouldn’t
have any meaning. In order to achieve
such requirement, it might be necessary to
use preemptive kernel.

• Vanilla kernel with HZ=1000: changing
tick period from 10ms to 1ms allows to
use 1ms timer. However, if this solution
works fine in some case, we need further
experimentation in order to check the ac-
curacy under heavy load condition.

5 Future works

5.1 Design of device driver architecture and
user access

Kernel driver layering: the goal is to create
a proper abstraction layer permitting to have
upper kernel drivers (algorithms) totally inde-
pendent from the hardware. Currently EX-
PORTED functions are used to allow function
calls between drivers, however it means that
upper drivers must understand the behavior of
hardware drivers. The abstraction layer needs
to define both function prototypes and struc-
tures used to access lower driver functionali-
ties. Such interface would permit to easily cus-
tomize any upper drivers, for example auto ex-
posure algorithm or auto white balance.

Exporting functionalities to user space:cur-
rently small libraries are available, permitting
to control camera functionalities. However, it
doesn’t seem reasonable to write new libraries
specifically for the camera. Modifying device

drivers to make them compatible with some ex-
isting standard should be the solution to take
advantage of the large amount of existing soft-
ware. In the camera field, Video For Linux
would probably be a good candidate, and espe-
cially the second release which is currently un-
der development. The idea would be to provide
access to the CCD as a standard video input in-
terface, similar to any USB camera for exam-
ple. Other functionalities, such as JPEG com-
pression, decompression could be accessed as
a CODEC.

5.2 Remaining tasks

Some features still need to be implemented on
the camera such as:

Power Management: currently no power
management is performed while running Linux
on the RDC-i700. This makes the battery life
as short as about 25 minutes when using PCM-
CIA cards. This part should be the next big
issue for the linux RDC-i700.

USB controller: the RDC-i700 includes a
PDIUSBD12 USB device (slave) controller3.
The Linux-USB Gadget API [8] allows to eas-
ily implement USB device class on the top
of controller drivers, however this device con-
troller is currently not supported yet.

6 Conclusion

The linux RDC-i700 has now enough support
in order to be used as a digital camera. Most
of the constrains due to the architecture and
specific hardware have been solved but we still
need some more performance testing in order
to ensure that everything can run well. But
remaining issues are not only technical one.
Since we are now preparing for distributing the

3http://www.semiconductors.philips.com
/pip/PDIUSBD12.html
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source codes, we still needs some more coordi-
nation in our company. We also have to think
of how to make and support a developing com-
munity.
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Abstract

With traditional, stateless firewalling (such as
ipfwadm, ipchains) there is no need for spe-
cial HA support in the firewalling subsystem.
As long as all packet filtering rules and rout-
ing table entries are configured in exactly the
same way, one can use any available tool for
IP-Address takeover to accomplish the goal of
failing over from one node to the other.

With Linux 2.4/2.6 netfilter/iptables, the Linux
firewalling code moves beyond traditional
packet filtering. Netfilter provides a modular
connection tracking susbsystem which can be
employed for stateful firewalling. The con-
nection tracking subsystem gathers informa-
tion about the state of all current network flows
(connections). Packet filtering decisions and
NAT information is associated with this state
information.

In a high availability scenario, this connection
tracking state needs to be replicated from the
currently active firewall node to all standby
slave firewall nodes. Only when all connection
tracking state is replicated, the slave node will
have all necessary state information at the time
a failover event occurs.

Due to funding by Astaro AG, the netfil-
ter/iptables project now offers act_sync ker-
nel module for replicating connection tracking
state accross multiple nodes. The presentation
will cover the architectural design and imple-
mentation of the connection tracking failover

sytem.

1 Failover of stateless firewalls

There are no special precautions when in-
stalling a highly available stateless packet fil-
ter. Since there is no state kept, all information
needed for filtering is the ruleset and the indi-
vidual, separate packets.

Building a set of highly available stateless
packet filters can thus be achieved by using any
traditional means of IP-address takeover, such
as Heartbeat or VRRPd.

The only remaining issue is to make sure the
firewalling ruleset is exactly the same on both
machines. This should be ensured by the fire-
wall administrator every time he updates the
ruleset and can be optionally managed by some
scripts utilizing scp or rsync.

If this is not applicable, because a very dy-
namic ruleset is employed, one can build a
very easy solution using iptables-supplied tools
iptables-save and iptables-restore. The out-
put of iptables-save can be piped over ssh to
iptables-restore on a different host.

Limitations

• no state tracking

• not possible in combination with iptables
stateful NAT
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• no counter consistency of per-rule
packet/byte counters

2 Failover of stateful firewalls

Modern firewalls implement state tracking
(a.k.a. connection tracking) in order to keep
some state about the currently active sessions.
The amount of per-connection state kept at the
firewall depends on the particular configuration
and networking protocols used.

As soon asany state is kept at the packet fil-
ter, this state information needs to be replicated
to the slave/backup nodes within the failover
setup.

Since Linux 2.4.x, all relevant state is kept
within the connection tracking subsystem. In
order to understand how this state could pos-
sibly be replicated, we need to understand the
architecture of this conntrack subsystem.

2.1 Architecture of the Linux Connection
Tracking Subsystem

Connection tracking within Linux is im-
plemented as a netfilter module, called
ip_conntrack.o (ip_conntrack.ko
in 2.6.x kernels).

Before describing the connection tracking sub-
system, we need to describe a couple of defini-
tions and primitives used throughout the con-
ntrack code.

A connection is represented within the
conntrack subsystem usingstruct ip_
conntrack , also calledconnection tracking
entry.

Connection tracking is utilizingconntrack tu-
ples, which are tuples consisting of

• source IP address

• source port (or icmp type/code, gre key,
...)

• destination IP address

• destination port

• layer 4 protocol number

A connection is uniquely identified by two tu-
ples: The tuple in the original direction (IP_

CT_DIR_ORIGINAL) and the tuple for the re-
ply direction (IP_CT_DIR_REPLY).

Connection tracking itself does not drop pack-
ets1 or impose any policy. It just associates
every packet with a connection tracking entry,
which in turn has a particular state. All other
kernel code can use this state information2.

2.1.1 Integration of conntrack with netfil-
ter

If the ip_conntrack.[k]o module is reg-
istered with netfilter, it attaches to theNF_

IP_PRE_ROUTING, NF_IP_POST_ROUTING,
NF_IP_LOCAL_IN , and NF_IP_LOCAL_OUT

hooks.

Because forwarded packets are the most com-
mon case on firewalls, I will only describe how
connection tracking works for forwarded pack-
ets. The two relevant hooks for forwarded
packets areNF_IP_PRE_ROUTING and NF_

IP_POST_ROUTING.

Every time a packet arrives at theNF_IP_

PRE_ROUTINGhook, connection tracking cre-
ates a conntrack tuple from the packet. It
then compares this tuple to the original and re-

1well, in some rare cases in combination with NAT it
needs to drop. But don’t tell anyone, this is secret.

2State information is referenced via thestruct
sk_buff.nfct structure member of a packet.
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ply tuples of all already-seen connections3 to
find out if this just-arrived packet belongs to
any existing connection. If there is no match,
a new conntrack table entry (struct ip_
conntrack ) is created.

Let’s assume the case where we have al-
ready existing connections but are starting
from scratch.

The first packet comes in, we derive the tu-
ple from the packet headers, look up the
conntrack hash table, don’t find any match-
ing entry. As a result, we create a new
struct ip_conntrack . This struct
ip_conntrack is filled with all necessarry
data, like the original and reply tuple of the
connection. How do we know the reply tuple?
By inverting the source and destination parts
of the original tuple.4 Please note that this new
struct ip_conntrack is not yet placed
into the conntrack hash table.

The packet is now passed on to other callback
functions which have registered with a lower
priority atNF_IP_PRE_ROUTING. It then con-
tinues traversal of the network stack as usual,
including all respective netfilter hooks.

If the packet survives (i.e., is not dropped
by the routing code, network stack, firewall
ruleset, . . . ), it re-appears atNF_IP_POST_

ROUTING. In this case, we can now safely as-
sume that this packet will be sent off on the
outgoing interface, and thus put the connec-
tion tracking entry which we created atNF_

IP_PRE_ROUTINGinto the conntrack hash ta-
ble. This process is calledconfirming the con-
ntrack.

The connection tracking code itself is not
monolithic, but consists of a couple of separate

3Of course this is not implemented as a linear search
over all existing connections.

4So why do we need two tuples, if they can be de-
rived from each other? Wait until we discuss NAT.

modules5. Besides the conntrack core, there
are two important kind of modules: Protocol
helpers and application helpers.

Protocol helpers implement the layer-4-
protocol specific parts. They currently exist
for TCP, UDP, and ICMP (an experimental
helper for GRE exists).

2.1.2 TCP connection tracking

As TCP is a connection oriented protocol, it is
not very difficult to imagine how conntection
tracking for this protocol could work. There
are well-defined state transitions possible, and
conntrack can decide which state transitions
are valid within the TCP specification. In re-
ality it’s not all that easy, since we cannot as-
sume that all packets that pass the packet filter
actually arrive at the receiving end. . .

It is noteworthy that the standard connection
tracking code doesnot do TCP sequence num-
ber and window tracking. A well-maintained
patch to add this feature has existed for almost
as long as connection tracking itself. It will
be integrated with the 2.5.x kernel. The prob-
lem with window tracking is its bad interaction
with connection pickup. The TCP conntrack
code is able to pick up already existing connec-
tions, e.g. in case your firewall was rebooted.
However, connection pickup is conflicting with
TCP window tracking: The TCP window scal-
ing option is only transferred at connection
setup time, and we don’t know about it in case
of pickup. . .

5They don’t actually have to be separate kernel mod-
ules; e.g. TCP, UDP, and ICMP tracking modules are all
part of the linux kernel moduleip_conntrack.o .
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2.1.3 ICMP tracking

ICMP is not really a connection oriented pro-
tocol. So how is it possible to do connection
tracking for ICMP?

The ICMP protocol can be split in two groups
of messages:

• ICMP error messages, which sort-
of belong to a different connection
ICMP error messages are associ-
ated RELATED to a different con-
nection. (ICMP_DEST_UNREACH,
ICMP_SOURCE_QUENCH, ICMP_TIME_

EXCEEDED, ICMP_PARAMETERPROB,
ICMP_REDIRECT).

• ICMP queries, which have a
request-reply character. So
what the conntrack code does, is let
the request have a state ofNEW, and
the reply ESTABLISHED. The reply
closes the connection immediately.
(ICMP_ECHO, ICMP_TIMESTAMP,
ICMP_INFO_REQUEST, ICMP_ADDRESS)

2.1.4 UDP connection tracking

UDP is designed as a connectionless datagram
protocol. But most common protocols using
UDP as layer 4 protocol have bi-directional
UDP communication. Imagine a DNS query,
where the client sends an UDP frame to port 53
of the nameserver, and the nameserver sends
back a DNS reply packet from its UDP port 53
to the client.

Netfilter treats this as a connection. The first
packet (the DNS request) is assigned a state of
NEW, because the packet is expected to create
a new ‘connection.’ The DNS server’s reply
packet is marked asESTABLISHED.

2.1.5 conntrack application helpers

More complex application protocols involving
multiple connections need special support by
a so-called “conntrack application helper mod-
ule.” Modules in the stock kernel come for
FTP, IRC (DCC), TFTP, and Amanda. Netfil-
ter CVS currently contains patches for PPTP,
H.323, Eggdrop botnet, mms, DirectX, RTSP,
and talk/ntalk. We’re still lacking a lot of pro-
tocols (e.g. SIP, SMB/CIFS)—but they are un-
likely to appear until somebody really needs
them and either develops them on his own or
funds development.

2.1.6 Integration of connection tracking
with iptables

As stated earlier, conntrack doesn’t impose any
policy on packets. It just determines the re-
lation of a packet to already existing connec-
tions. To base packet filtering decision on this
state information, the iptablesstatematch can
be used. Every packet is within one of the fol-
lowing categories:

• NEW: packet would create a new connec-
tion, if it survives

• ESTABLISHED : packet is part of an al-
ready established connection (either di-
rection)

• RELATED : packet is in some way related
to an already established connection, e.g.
ICMP errors or FTP data sessions

• INVALID : conntrack is unable to derive
conntrack information from this packet.
Please note that all multicast or broadcast
packets fall in this category.
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2.2 Poor man’s conntrack failover

When thinking about failover of stateful fire-
walls, one usually thinks about replication of
state. This presumes that the state is gathered
at one firewalling node (the currently active
node), and replicated to several other passive
standby nodes. There is, however, a very dif-
ferent approach to replication: concurrent state
tracking on all firewalling nodes.

While this scheme has not been implemented
within ct_sync , the author still thinks it is
worth an explanation in this paper.

The basic assumption of this approach is: In
a setup where all firewalling nodes receive ex-
actly the same traffic, all nodes will deduct the
same state information.

The implementability of this approach is to-
tally dependent on fulfillment of this assump-
tion.

• All packets need to be seen by all nodes.
This is not always true, but can be
achieved by using shared media like tra-
ditional ethernet (no switches!!) and
promiscuous mode on all ethernet inter-
faces.

• All nodes need to be able to process
all packets. This cannot be univer-
sally guaranteed. Even if the hardware
(CPU, RAM, Chipset, NICs) and software
(Linux kernel) are exactly the same, they
might behave different, especially under
high load. To avoid those effects, the
hardware should be able to deal with way
more traffic than seen during operation.
Also, there should be no userspace pro-
cesses (like proxies, etc.) running on the
firewalling nodes at all. WARNING: No-
body guarantees this behaviour. However,
the poor man is usually not interested in

scientific proof but in usability in his par-
ticular practical setup.

However, even if those conditions are fulfilled,
there are remaining issues:

• No resynchronization after reboot. If a
node is rebooted (because of a hardware
fault, software bug, software update, etc.)
it will lose all state information until the
event of the reboot. This means, the state
information of this node after reboot will
not contain any old state, gathered before
the reboot. The effects depend on the
traffic. Generally, it is only assured that
state information about all connections
initiated after the reboot will be present.
If there are short-lived connections (like
http), the state information on the just re-
booted node will approximate the state in-
formation of an older node. Only after
all sessions active at the time of reboot
have terminated, state information is guar-
anteed to be resynchronized.

• Only possible with shared medium. The
practical implication is that no switched
ethernet (and thus no full duplex) can be
used.

The major advantage of the poor man’s ap-
proach is implementation simplicity. No state
transfer mechanism needs to be developed.
Only very little changes to the existing con-
ntrack code would be needed in order to be able
to do tracking based on packets received from
promiscuous interfaces. The active node would
have packet forwarding turned on, the passive
nodes, off.

I’m not proposing this as a real solution to
the failover problem. It’s hackish, buggy, and
likely to break very easily. But considering it
can be implemented in very little programming
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time, it could be an option for very small instal-
lations with low reliability criteria.

2.3 Conntrack state replication

The preferred solution to the failover problem
is, without any doubt, replication of the con-
nection tracking state.

The proposed conntrack state replication
soltution consists of several parts:

• A connection tracking state replication
protocol

• An event interface generating event mes-
sages as soon as state information changes
on the active node

• An interface for explicit generation of
connection tracking table entries on the
standby slaves

• Some code (preferrably a kernel thread)
running on the active node, receiving state
updates by the event interface and gener-
ating conntrack state replication protocol
messages

• Some code (preferrably a kernel thread)
running on the slave node(s), receiving
conntrack state replication protocol mes-
sages and updating the local conntrack ta-
ble accordingly

Flow of events in chronological order:

• on active node, inside the network RX
softirq

– ip_conntrack analyzes a for-
warded packet

– ip_conntrack gathers some new
state information

– ip_conntrack updates con-
ntrack hash table

– ip_conntrack calls event API

– function registered to event API
builds and enqueues message to send
ring

• on active node, inside the conntrack-sync
sender kernel thread

– ct_sync_send aggregates multi-
ple messages into one packet

– ct_sync_send dequeues packet
from ring

– ct_sync_send sends packet via
in-kernel sockets API

• on slave node(s), inside network RX
softirq

– ip_conntrack ignores packets
coming from thect_sync inter-
face via NOTRACK mechanism

– UDP stack appends packet to socket
receive queue ofct_sync_recv
kernel thread

• on slave node(s), inside conntrack-sync
receive kernel thread

– ct_sync_recv thread receives
state replication packet

– ct_sync_recv thread parses
packet into individual messages

– ct_sync_recv thread cre-
ates/updates localip_conntrack
entry

2.3.1 Connection tracking state replication
protocol

In order to be able to replicate the state be-
tween two or more firewalls, a state replica-
tion protocol is needed. This protocol is used
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over a private network segment shared by all
nodes for state replication. It is designed to
work over IP unicast and IP multicast trans-
port. IP unicast will be used for direct point-to-
point communication between one active fire-
wall and one standby firewall. IP multicast will
be used when the state needs to be replicated to
more than one standby firewall.

The principal design criteria of this protocol
are:

• reliable against data loss, as the under-
lying UDP layer only provides checksum-
ming against data corruption, but doesn’t
employ any means against data loss

• lightweight, since generating the state up-
date messages is already a very expensive
process for the sender, eating additional
CPU, memory, and IO bandwith.

• easy to parse, to minimize overhead at
the receiver(s)

The protocol does not employ any security
mechanism like encryption, authentication, or
reliability against spoofing attacks. It is as-
sumed that the private conntrack sync network
is a secure communications channel, not acces-
sible to any malicious third party.

To achieve the reliability against data loss, an
easy sequence numbering scheme is used. All
protocol messages are prefixed by a sequence
number, determined by the sender. If the slave
detects packet loss by discontinuous sequence
numbers, it can request the retransmission of
the missing packets by stating the missing se-
quence number(s). Since there is no acknowl-
edgement for sucessfully received packets, the
sender has to keep a reasonably-sized6 backlog
of recently-sent packets in order to be able to
fulfill retransmission requests.

6reasonable sizemust be large enough for the round-
trip time between master and slowest slave.

The different state replication protocol packet
types are:

• CT_SYNC_PKT_MASTER_ANNOUNCE:
A new master announces itself. Any still
existing master will downgrade itself to
slave upon reception of this packet.

• CT_SYNC_PKT_SLAVE_INITSYNC:
A slave requests initial synchronization
from the master (after reboot or loss of
sync).

• CT_SYNC_PKT_SYNC: A packet con-
taining synchronization data from master
to slaves

• CT_SYNC_PKT_NACK: A slave indi-
cates packet loss of a particular sequence
number

The messages within aCT_SYNC_PKT_SYNC

packet always refer to a particularre-
source(currentlyCT_SYNC_RES_CONNTRACK

andCT_SYNC_RES_EXPECT, although support
for the latter has not been fully implemented
yet).

For every resource, there are several message
types. So far, onlyCT_SYNC_MSG_UPDATE

andCT_SYNC_MSG_DELETEhave been imple-
mented. This means a new connection as well
as state changes to an existing connection will
always be encapsulated in aCT_SYNC_MSG_

UDPATEmessage and therefore contain the full
conntrack entry.

To uniquely identify (and later reference) a
conntrack entry, the only unique criteria is
used:ip_conntrack_tuple .

2.3.2 ct_sync sender thread

Maximum care needs to be taken for the imple-
mentation of the ctsyncd sender.
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The normal workload of the active firewall
node is likely to be already very high, so gen-
erating and sending the conntrack state replica-
tion messages needs to be highly efficient.

It was therefore decided to use a pre-allocated
ringbuffer for outboundct_sync packets.
New messages are appended to individual
buffers in this ring, and pointers into this ring
are passed to the in-kernel sockets API to en-
sure a minimum number of copies and memory
allocations.

2.3.3 ct_sync initsync sender thread

In order to facilitate ongoing state synchroniza-
tion at the same time as responding to initial
sync requests of an individual slave, the sender
has a separate kernel thread for initial state syn-
chronization (andct_sync_initsync ).

At the moment it iterates over the state ta-
ble and transmits packets with a fixed rate of
about 1000 packets per second, resulting in
about 4000 connections per second, averaging
to about 1.5 Mbps of bandwith consumed.

The speed of this initial sync should be config-
urable by the system administrator, especially
since there is no flow control mechanism, and
the slave node(s) will have to deal with the
packets or otherwise lose sync again.

This is certainly an area of future improvement
and development—but first we want to see
practical problems with this primitive scheme.

2.3.4 ct_sync receiver thread

Implementation of the receiver is very straight-
forward.

For performance reasons, and to facilitate
code-reuse, the receiver uses the same pre-

allocated ring buffer structure as the sender. In-
coming packets are written into ring members
and then successively parsed into their individ-
ual messages.

Apart from dealing with lost packets, it
just needs to call the respective conntrack
add/modify/delete functions.

2.3.5 Necessary changes within netfilter
conntrack core

To be able to achieve the described con-
ntrack state replication mechanism, the follow-
ing changes to the conntrack core were imple-
mented:

• Ability to exclude certain packets from
being tracked. This was a long-wanted
feature on the TODO list of the netfilter
project and is implemented by having a
“raw” table in combination with a “NO-
TRACK” target.

• Ability to register callback functions to
be called every time a new conntrack en-
try is created or an existing entry modi-
fied. This is part of the nfnetlink-ctnetlink
patch, since the ctnetlink event interface
also uses this API.

• Export an API to externally add, modify,
and remove conntrack entries.

Since the number of changes is very low, their
inclusion into the mainline kernel is not a prob-
lem and can happen during the 2.6.x stable ker-
nel series.

2.3.6 Layer 2 dropping andct_sync

In most cases, netfilter/iptables-based firewalls
will not only function as packet filter but also
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run local processes such as proxies, dns relays,
smtp relays, etc.

In order to minimize failover time, it is helpful
if the full startup and configuration of all net-
work interfaces and all of those userspace pro-
cesses can happen at system bootup time rather
then in the instance of a failover.

l2drop provides a convenient way for this goal:
It hooks into layer 2 netfilter hooks (imme-
diately attached tonetif_rx() and dev_
queue_xmit ) and blocks all incoming and
outgoing network packets at this very low
layer. Even kernel-generated messages such as
ARP replies, IPv6 neighbour discovery, IGMP,
. . . are blocked this way.

Of course there has to be an exemption for the
state synchronization messages themselves. In
order to still facilitate remote administration
via SSH and other communication between the
cluster nodes, the whole network interface used
for synchronization is subject to this exemption
from l2drop.

As soon as a node is propagated to master state,
l2drop is disabled and the system becomes vis-
ible to the network.

2.3.7 Configuration

All configuration happens via module parame-
ters.

• syncdev : Name of the multicast-
capable network device used for state syn-
chronization among the nodes

• state : Initial state of the node (0=slave,
1=master)

• id : Unique Node ID (0..255)

• l2drop : Enable (1) or disable (0) the
l2drop functionality

2.3.8 Interfacing with the cluster manager

As indicated in the beginning of this paper,
ct_sync itself does not provide any mech-
anism to determine outage of the master node
within a cluster. This job is left to a cluster
manager software running in userspace.

Once an outage of the master is detected, the
cluster manager needs to elect one of the re-
maining (slave) nodes to become new mas-
ter. On this elected node, the cluster man-
ager will write the ascii character1 into the
/proc/net/ct_sync file. Reading from
this file will return the current state of the lo-
cal node.

3 Acknowledgements

The author would like to thank his fellow net-
filter developers for their help. Particularly
important toct_sync is Krisztian KOVACS
<hidden@balabit.hu> , who did a proof-
of-concept implementation based on my first
paper onct_sync at OLS2002.

Without the financial support of Astaro AG, I
would not have been able to spend any time on
ct_sync at all.



546 • Linux Symposium 2004 • Volume Two



Increasing the Appeal of Open Source Projects
Experiences from the LSB Project

Mats Wichmann
Intel Corporation / LSB Project
mats.d.wichmann@intel.com

Abstract

It is often said that open source projects will
"win" or "lose" based purely on technical
merit. Experiences from the LSB Project’s
interface standardization efforts indicate there
are some concrete steps an open-source project
producing interface libraries for general use
can take to make the project more usable for
a wider audience, leading to greater chance
of widespread acceptance. Such projects have
a reasonable chance of becoming standards,
whether de-facto or by inclusion in formal
specifications such as the LSB.

The evidence is that projects ready for large-
scale use typically meet most of a set of criteria
that include: demand; stable, well-documented
interfaces; comprehensive interface and regres-
sion tests; an easily-deployed (portable) work-
ing implementation; and an appropriate choice
of license. With the exception of demand, most
of these criteria can be consciously worked to-
wards. The paper will present some case stud-
ies of libraries that have successfully been in-
corporated into the LSB specification. It will
also discuss some tools the LSB has developed
that may help in describing public interfaces
and developing tests, and discuss some ways
in which portability of the code base can be im-
proved.

1 Introduction

The Free Software and Open Source Software
models present some unique concepts which
seem to work best when the software is widely
used and there’s an active feedback loop to de-
bug and improve the software. In order for this
to be possible, it’s important that some core
requirements that apply to all software are at-
tended to in this space as well: consistency and
compatibility, documentation, and ease of use.
If the software is to hard to deploy or make
use of, the user base will remain small and the
synergy which is so important to these projects
will be harder to achieve.

While ease of use is a concept that is hard to
measure for the developer as it means different
things to different users, for an individual user
it’s pretty easy to tell when an application or
library is not easy enough to use—it’s painful
to install, get running, or program to, making
it hard to use it to solve the problem at hand.
Where money did not change hands to obtain
the software, the likely response will be to give
up and look for a different solution, while what
we as developers would rather have is feed-
back about the problems and suggestions for
improvement. Often lacking a “marketing de-
partment” to drive requirements (whatever one
may think of such a situation), this feedback is
crucial to the open source process.

The Linux Standard Base (LSB) project
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(http://www.linuxbase.org ) aims to
drive the creation of a consistent runtime en-
vironment for applications. Drawing from the
experiences of the LSB project, we will ex-
amine a pair of issues, one on either side of
the “runtime environment” boundary: building
better libraries, and making applications (and
libraries) easier to deploy.

2 Building Better Libraries

Libraries are an effective mechanism to pro-
vide for code reuse.

In Linux, libraries are normally provided as
shared objects, although they may also be pro-
vided as static archives. Some libraries are
foundational in that they are expected to be
used by a broad variety of applications, such
as the GNU C library, which is used by all
programs; or the GNOME glib, which is used
(directly or indirectly) by all graphical applica-
tions written to GNOME. Other libraries may
export a programming interface specific to one
application family such as libMagick for Im-
ageMagick.

If a project produces libraries which are to be
usable by others there are some particular is-
sues that apply.

2.1 Stable Interfaces

A library provides certain programming inter-
faces which are available to programs to use
(external), and probably also contains inter-
faces which are not intended to be used out-
side the library (internal). The set of external
interfaces provides the Application Program-
ming Interface (API). As programmers become
familiar with the library, they will want the API
to provide some stability so that they don’t al-
ways have to recode their programs when the
library is revised.

When a program is linked with a shared library,
it will contain references to library interfaces
which are resolved at runtime by the dynamic
linker. The runtime instantiation of the library
interface set provides the Application Binary
Interface (ABI), and programmers will want
the ABI to remain stable as well, or their pro-
grams may work incorrectly run against a dif-
ferent version of the shared library then it was
originally linked against.

The dilemma for the library developer is that
it’s hard to get it (completely) right the first
time. Bugs will be found, often the design will
be found to be limiting or even incorrect, or the
library may simply need to evolve to meet new
needs. It would be terribly limiting to never be
able to evolve the library just because users and
developers demand stability. Fortunately, there
are some techniques that can be used to make
life a little easier.

A useful step is to identify the intended API
and make sure that is all the library exports to
programmers. If the API is designed as an ab-
straction layer distinct from the internal imple-
mentation, considerable freedom will be avail-
able to modify the library “under the covers”
while still keeping the ABI stable. It’s worth
taking the time to design the API in this man-
ner. It is also very useful if programmers can-
not reach the internal routines which may need
to change—experience has shown that if an in-
terface can be found, someone will find a way
to use it. A linker script can be used to export
the desired symbols, hiding the others:

{
global:

lsbfoo;
local:

foo*;
};

A linker script is used when build-
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ing a shared library by including the
-version-script= scriptname direc-
tive in the gcc link line.

It’s quite possible, however, that some interface
in the ABI will need to change in an incompat-
ible way. To provide for this, the symbols mak-
ing up the ABI can be assigned versions, leav-
ing the possibility of changing the version. The
following example shows the use of a linker
script which exports two routines and assigns
them versionLSBLIB_1.0 :

LSBLIB_1.0 {
global:

lsbfoo;
lsbbar;

local:
foo*;

};

If the symbol version is changed, old binaries
won’t run against the new library as the sym-
bol version in those binaries will not be found;
while binaries compiled against the new library
will pick up the new symbol version. It is
also possible—and may be desirable—to pro-
vide both the old and the new version of the
interface in the newer library, this way old bi-
naries can continue to run, while new binaries
will be linked against the newer version of the
interface by default, but could also be explicitly
linked against the old version. The following
example shows creating a new symbol version
set which is inclusive of the previous one, only
the lsbfoo interface will get the version tag
LSBLIB_1.1 .

LSBLIB_1.0 {
lsbfoo;
lsbbar;

};
LSBLIB_1.1 {

lsbfoo;

} LSBLIB_1.0;

To make this work, the GNU linker is
needed, and some special directives
(__asm__(".symver realname,
alias, version"); are needed in the
code, so that the old routine can be bound to
the old version and the new code to the new
version. The GNU linker documentation has
more details on this.

If a lot of interfaces need to change incompat-
ibly, it is better to change the major version of
the library. The library version will be bound
into binaries compiled against it. With major
changes, multiple versions of the library can be
provided, giving compatibility for old and new
code.

In the LSB project, symbol versioning is used
for those libraries which are already normally
built that way, essentially the GNU libc set.
Adding symbol versioning is a nice way to
avoid breaking compatibility if a small num-
ber of interfaces have to be changed in incom-
patible ways. The LSB specification calls out
specific library versions which must be pro-
vided by a conforming runtime, and where
the symbols are versioned, the specific symbol
versions. As conforming runtimes may have
evolved the interfaces in the manner described,
a trick is used for linking LSB conforming ap-
plications: a set of stub libraries has been con-
structed which contains only the LSB inter-
faces, with the versions required by the spec,
and these are used for link-time symbol resolu-
tion.

2.2 API Documentation

A factor in how useful a library is is the qual-
ity of api documentation The documentation
must describe in detail the programming inter-
faces available, with function calling and re-
turn conventions, boundaries, and error con-



550 • Linux Symposium 2004 • Volume Two

ditions. This is the kind of information tra-
ditionally captured in the “manpage.” The
best measure of the quality of API documenta-
tion seems to be whether assertion-based tests
(see next section) can be developed completely
from the documentation, or whether the source
code must be referred to fill in the details.

It is especially useful to use a tool to au-
tomate a part of this process. There are a
number of tools that understand how to pro-
duce documentation from commented source
code, one example would bedoxygen(http:
//www.doxygen.org ) although documen-
tation generators seem to be more commonly
used with higher-level languages (e.g. Javadoc
for Java, Pydoc for Python, etc.)

The advantages of a generator approach is that
the interface descriptions in the documenta-
tion don’t depend on human transcription to
get them right in the first place, and then don’t
go out of skew if the interfaces in the code
ever change. It’s particularly galling to try to
code to an interface that does not work as doc-
umented.

The LSB specification has to date included
mostly libraries which are already standard-
ized at the API level—for example, the GNU
C library is designed to be compatible with
POSIX specification, so the LSB specification
for the C library is able to reference this ex-
isting specification for almost all of the func-
tional descriptions. As the LSB seeks to ex-
pand the base to other important libraries found
on Linux systems, the API documentation will
have to be imported by copy or by reference
into the specification, so the existence of such
documentation has become an LSB selection
criteria.

The LSB itself has a slightly different doc-
umentation problem, as it has to capture an
ABI description to describe the binary inter-
face programs will see. A single API proto-

type or structure definition has been captured
the way it will be seen on each of the (cur-
rently seven) architectures the LSB supports,
based on things like data model (sizes of inte-
gers and pointers, for example). The symbol
versions matching the interfaces must also be
captured. All of this information is represented
in a MySQL database which is browsable on
the web (http://www.linuxbase.org/
dbadmin ) but which is also used to generate
LSB header files, the stub libraries mentioned
in the previous section, and the portion of the
LSB specification that contains library listings,
interface listings, and data definitions.

The database is also used to generate test code.
Of particular note, the LSB generates two test
programs, one to test the presence of the li-
braries and interfaces on a runtime, and another
to test that an application uses only the libraries
and interfaces in the specification. The data for
these two programs is generated directly out of
the specification database.

The LSB database schema and tools to extract
data and build code (essentially a set of Perl
scripts) are freely available for use by other
projects, although they are probably mostly ap-
plicable to projects that support a large number
of libraries and want to build similar test tools.
They can be browsed from the LSB CVS tree
(cvs.gforge.freestandards.org ).

The summary is that while there’s no magic to
producing good documentation, it’s important
in producing a stable library that can be widely
used. It’s worth the time to see if some level of
automation can help with the tasks, particularly
if there are several areas that need to be kept in
sync.

2.3 Interface Tests

Another area for consideration is detailed in-
terface testing. Good tests allow checking
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that interfaces perform as intended. The
POSIX testing standard calls for such tests
to be assertion-based, which means a writ-
ten description of an intended behavior is
produced, this is then used to develop the
test case. The following example of an
assertion is taken from the Open POSIX
Test Suite (http://sourceforge.net/
projects/posixtest :

mmap assertion 9 When MAP_FIXED is set
in the flags argument, the implementation is in-
formed that the value of pa shall be addr, ex-
actly. If MAP_FIXED is set, mmap( ) may re-
turn MAP_FAILED and set errno to [EINVAL].
If a MAP_FIXED request is successful, the map-
ping established by mmap( ) replaces any previ-
ous mappings for the process’ pages in the range
[pa,pa+len].

Tests intended to operate at the source code
level can be built and executed as part of the
product build and are an effective way to catch
regressions introduced during regular mainte-
nance and development activity.

Binary level tests operate against an already
built library, and are a way to test that a partic-
ular library is compatible with a particular API
definition. Such tests increase the confidence
of developers in the stability of the library.

In the LSB project, interface testing is the most
important way of measuring a runtime against
the LSB specification. However, the process of
writing assertions and developing tests is not
easy. It depends on a quality interface specifi-
cation, good choice of testing methodologies,
etc. There is little doubt that the most effec-
tive place for this work to take place is within
the project itself. The source code file de-
scribing an interface can contain the interface,
documentation, test assertions, and test code.
All can be developed together without the kind
of extra overhead incurred if each of the four
items is developed separately by separate per-

sons. The author is not aware of an existing
toolkit which could automatically generate all
of the necessary pieces from a single source file
so endowed, but this would certainly make an
interesting open source project of its own!

2.4 License Choice

The choice of license under which to release
a library makes a considerable difference in
who can use the libraries and how. This paper
does not attempt a license recommendation as
only the developer can know their own targets,
needs and desires, which will guide the choice
of license.

A Free Software license along the lines of
the well-known GPL effectively restricts us-
age to programs under the same or compat-
ible licenses. Such code cannot be used in
closed source programs, even through dynamic
linking, and also cannot be used by code un-
der certain open source licenses that are not
considered compatible, perhaps because they
place some restriction on the user (one exam-
ple might be a license that restricts usage to
academic or personal use and disallows com-
mercial use). The related LGPL license al-
lows the use of the library by code of any sort
through dynamic linking, but makes no similar
provision for static linking. There are a variety
of other licenses which grant greater or lesser
freedoms in the ways the code may be used.

Some applications release code under dual li-
censes, for example a GPL-like license for
those who can use it, and a separate license
with commercial terms for those who cannot.
It is also possible to release a package consist-
ing of program code and library code with sep-
arate licenses for each.

As noted above, some licenses have compat-
ibility clauses relating to how to code may be
mingled with code under certain other licenses.
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Various potential users of the code may have
their own selection criteria that includes license
choice. For example, the Debian project has
a particular definition of “free” and consigns
code which does not meet these criteria to the
“nonfree” area.

Continuing with the use of LSB project expe-
riences to illustrate, the LSB is concerned with
functional interface descriptions, not with spe-
cific implementations. So the license of an
implementationis not crucial—unless it’s ef-
fectively the only implementation available, in
which case it becomes a determining factor in
practical use of the interface set.

An example may help clarify: the popular Qt
toolkit was for a while the subject of some con-
troversy in the open source community over its
license terms, and a project was started to cre-
ate an open source reimplementation of the Qt
interface specification. When Qt licensing was
changed to a dual license (one GPL-like, with
a separate license for commercial developers)
the open source reimplementation project was
dropped as the problem people had with the
previous license was resolved. However, the
LSB project favors a “no strings attached” se-
lection policy which suggestsagainst the in-
clusion of a library where the only implemen-
tation doesn’t allow a certain class of develop-
ers to just make use of the library in their code
without arranging a commercial license.

The upshot is that choice of license needs to be
considered very carefully.

3 Software Packaging and Deploy-
ment

The other major consideration this paper will
examine is improving the accessibility of the
software through producing a package that is
easy to put into use. This discussion applies to

both libraries and to complete applications.

The most common way to install software on
Linux must be to install a distribution-specific
package that has already been prepared. This
has many advantages, as it’s configured, com-
piled, and tested for that distribution, and the
package will be tagged with dependencies so
the user can determine what else needs to be
installed to make it work. It will normally have
security update patches made available should
such become necessary.

Of course, not every package can be chosen for
distribution packaging, and it’s quite possible
that an interested user for your software may
find that a package is not available at all, or
just not available for her distribution of choice.
This should pose no problem since by defini-
tion the source code is available, and the soft-
ware can simply be built from source. Unfortu-
nately, in many cases thesimplyis a misnomer
since there may be dependencies on other soft-
ware, toolchain versions, etc. that may prove
to be impediments.

3.1 How Not to Install Software

Although probably everyone reading this paper
has had some negative experiences of their own
with software installation, by way of example
here is a condensed version of a situation that
befell the author, and indirectly provided the
motivation for recording these thoughts here:

At one point, I became interested in doing
some transpositions on a piece of music, and
I thought there must be a piece of software that
would help with this. There are certainly com-
mercial PC-centric applications that do this
very well but there must be something open
source as well. Some searching turned up a
promising application namednoteedit. Sur-
prisingly, rpmfind told me that the one distri-
bution for which a current version was pack-
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aged was Mandrake, luckily my distribution
of choice. The package did indicate Cooker,
which is Mandrake’s early-access build tree,
but since it was only a couple of weeks after
that last release, I assumed the Cooker could
not have migrated too far and it would proba-
bly work.

After obtaining and installing the package, plus
an attendant library package as well as another
library (libtse) also needed, I installed and tried
to run the package. Alas, it had been linked
against a different C++ library version and so
had references to some symbols that were not
in my C++ library and thus was not runnable.

My next effort was to download the noteedit
and tse library tarballs and attempt to build
them from source. This was not a great success
either, as the configuration scripts kept report-
ing fatal problems due to missing build headers
and libraries, of course I had to correlate these
back to the packages they would be installed by
and install those. After several cycles I aban-
doned this approach and went to the third try,
going back to rpmfind and pulling down the
source, rather than binary, rpms and trying to
build from source that way. This ultimately
yielded a runnable binary although not without
some further pain which involved tweaking the
rpm specfiles. And this success still came be-
cause some Mandrake user contributed a build
to the Cooker, which although it was for the
wrong version (from my point of view) could
be adjusted at the source level to work. What
if I were running something different?

3.2 Binary Software Distribution

A project can certainly make their software
easier to check out if there’s a binary package
available. Even if packaged by some distri-
butions (and for many projects even this does
not happen, especially early on), there’s still
the question of reaching users of other distri-

butions.

The difficulty with a project building binary
packages is deciding what to build for: there
are an endless number of combinations of dis-
tributions and versions, and only a small frac-
tion could be targeted. Further, this potentially
puts the project into a “distro support” mode,
that is worrying about oddities on the particu-
lar distro/version they have chosen to build for.
A better solution seems to be to build a portable
(distro-neutral) version.

Producing a portable binary package as an ex-
ample has many advantages for a project:

• One package works on multiple kinds of
systems

• Users interested in the software can get it
running quickly

• Bugreports don’t have to worry about the
user’s build environment

• Bugreports will be against a known set of
configure and build options

There’s still plenty of use for users building
from source as well, including trying out com-
binations the developers have not tried, but the
opportunity to come up quickly should broaden
the base of potential users since not everybody
wants to go through building from source.

Of course a really good build procedure
from source—which clearly identifies depen-
dencies, is also very valuable. Configure
scripts have the unfortunate habit of quit-
ting on the first “fatal error,” which means
after you satisfy that build dependency you
try again and occasionally run into another,
and then another. In frustration, the author
once coded a configure script which issues
warnings (AC_MSG_WARN) instead of er-
rors (AC_MSG_FAIL), setting a flag which
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is used to signal a fatal error at the end of the
script. The author is not sure this hack is a “re-
ally good build procedure” however!

3.3 Using the LSB to Build Binary Packages

If a portable binary package is a target, the LSB
provides a good model. The LSB specifica-
tion describes a runtime platform, and also de-
scribes some things about how the package is
delivered.

To build a portable binary, a relatively short set
of rules needs to be followed:

• Link with the LSB runtime linker

• Use only LSB-specified libraries with the
correct version

• Use only LSB-specified interfaces and
symbol versions from those libraries

• All other interfaces must be supplied with
the application

The runtime linker has a distinct name for
LSB programs. For example, on the IA32 ar-
chitecture,ld-lsb.so.1 is used instead of
ld-linux.so.2 . This allows an implemen-
tation to do something different for LSB pro-
grams, such as resolving against libraries in
a different directory. This capability is rarely
used: most runtimes simply make the LSB
linker name a symbolic link to the regular
linker.

An application may only count on LSB li-
braries to be present on a conforming run-
time, thus the restriction to link only with
those libraries. If other libraries are needed,
they can be statically linked, or provided
in an application-supplied shared library. It
is also possible to depend onanother LSB-
conforming package which supplies a shared

library. Any such libraries must be constructed
LSB conforming, which in practice means they
need to watch their own dependencies on other
libraries.

Some libraries may have more public inter-
faces than are described in the LSB specifica-
tion. The most notable example is GNU libc.
Even though these interfaces are likely to be
present on every conforming system’s version
of those libraries, this is not required by the
specification, and thus a conforming runtime
may not count on them. For libraries which are
symbol versioned, the binary must be linked
against the symbol versions described in the
specification.

While these rules are not terribly complex, it
would be painful to modify build trees with
many makefiles to apply them, so the LSB
project supplies a compiler wrapper program
lsbcc (as well as lsbc++ for C++ pro-
grams) which applies the rules by fiddling with
the compiler line before handing it off to the
regular compiler, usuallygcc .

If we get lucky, an LSB build can be as simple
as:

CC=lsbcc ./configure
make

Of course it’s not always this easy, and usually
the problem is the use of libraries which are
not in the LSB. The wrapper will actually turn
references to non-LSB libraries into static links
(the tool can be told to warn about this behavior
as it’s often useful to know what’s happening
behind your back). Sometimes static linking is
a reasonable solution, sometimes packaging up
the missing library in LSB mode is workable,
and sometimes nothing will help but to lobby
the LSB project to add the library—which will
undoubtedly result in a polite request for help!
The LSB still has quite a bit of evolving to do
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and it’s hoped that exposing it here will help
identify the features which need to be added to
future versions.

The other helpful aspect the LSB covers has to
do with delivery of the software. Again, there
are several areas:

• Portable format for the package

• Rules for where the package may place
files

• Rules about names of packages to avoid
clashes

• Special features such an an installer for
startup scripts

The package format called out in the LSB
specification is that used by the rpm package
manager. This is a relatively portable for-
mat in that tools such asalien can convert
these packages into other formats which can
be handled by a system’s package manager.
There’s no requirement that a runtime be rpm-
based itself, and the only thing a package needs
to (or is allowed to) depend on are provides
for LSB modules (currentlylsb-core and
lsb-graphics ) or other LSB packages.

It’s also possible to deliver a package in other
formats; in this case the rule is that the installer
must be an LSB-conforming binary or an LSB-
required command. A combination of a shell
script and a tarball actually meet this require-
ment as both commands are required by the
LSB specification. The use of other than the
LSB package format is discouraged, however,
as it makes it hard for system administrators
to keep a view of what has been installed as
would be the case if all software used the same
package manager.

The File Hierarchy Standard (FHS) is im-
ported into the LSB by reference and de-
scribes where an application may place files.

To state these rules imprecisely, the pack-
age name serves as a tag, and it may in-
stall files into /opt/ tag, /etc/opt/ tag,
and /var/opt/ tag. This avoids clashes
with distribution-provided packages and lo-
cally added software.

The naming of the package is also described
by the LSB; essentially the rule is to register
either a single package name, or a provider
name, with the Linux Assigned Names and
Numbers Authority or LANANA (http://
www.lanana.org ).

Finally, there are some provisions for things
which don’t fit into the above picture. For
example, startup (“init”) scripts and cron en-
tries have to go in specific places. The LSB
describes a special installer which may be in-
voked to create the links in the/etc/rcX.d
directories.

With the specified behavior and tools, the LSB
makes possible the creation of portable binary
packages.

4 Summary

There are many considerations towards making
software projects more popular. This paper has
concentrated on only a small portion of those.

We have examined some issues towards mak-
ing shared libraries useful. The assertion is that
as a library becomes more Standard, whether
that be a self-published standard or one pro-
moted by a larger group or even a standards
organization, it becomes easier for a wider
audience to depend on it, software that uses
it can be free of compatibility fears, and the
larger community will lead to more and better
feedback to continue to improve. Some steps
that could help move a project towards such a
state include developing solid interface speci-
fications; stabilizing the interfaces as seen by
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software through versioning, which leaves the
freedom to continue to innovate while provide
backward compatibility; and through compre-
hensive interface tests. We also looked at how
choice of license plays into the usability of a
library.

Another consideration towards usable software
is lending the ability for potential users to get
“on the air” with the software quickly, so they
can evaluate it and see if it suits their needs
without going through a lot of trouble. To that
end, we looked at some benefits of projects de-
livering binary package in addition to source
packages. The components of the LSB project
which help in producing portable binary pack-
ages were also covered, to show how a project
might be able to build a single binary package
which helps the software become more acces-
sible.

5 Disclaimer

The opinions expressed in this paper are those of
the author and do not necessarily represent the po-
sition of Intel Corporation.

Linux is a registered trademark of Linus Torvalds.
Intel is a registered trademark of Intel Corporation.
All other trademarks mentioned herein are the prop-
erty of their respective owners.
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Abstract

There have been few advances in software
packaging systems since the creation of dpkg
and RPM. Conary is being developed to pro-
vide a fresh approach to Open Source Software
management and provisioning, one that applies
new ideas from distributed software version
control tools such as GNU arch and Monotone.
Rather than concentrating on package files,
Conary provides an architecture built around
distributed repositories and change sets, and
includes features designed to make branching
and tracking Linux distributions simple opera-
tions.

The rise of distributions such as Fedora and
Gentoo has moved the development of Linux
distributions from small, tightly-connected
groups to widely-dispersed groups of infor-
mal collaborators. These changes have brought
to light many shortcomings of the dominant
packaging metaphor. By providing version
trees distributed across Internet-based software
repositories, Conary allows these casual group-
ings of contributors to work together much
more effectively than they can today.

1 Packaging Limitations

Traditional package management systems
(such as RPM and dpkg) provided a major
improvement over the previous regime of

installing from source or binary tar archives.
However, they suffer from a few shortcomings,
and some of these shortcomings are felt more
acutely as the Internet and the Open Source
communities have developed and expanded.
The authors’ experience with the shortcomings
of current package management systems
strongly motivated Conary’s design.

1.1 Branching

Traditional package management systems use
simple version numbers to allow the differ-
ent package versions to be sorted into “older”
and “newer” packages, adding concepts such
asepochsto work around version numbers that
do not follow the packaging system’s ideas of
how they are ordered. While the concepts of
“newer” and “older” seem simple, they break
down when multiple streams of development
are maintained simultaneously using the pack-
age model. For example, a single version of a
set of sources can yield different binary pack-
ages for different versions of a Linux distribu-
tion. A simple linear sorting of version num-
bers cannot represent this situation, as neither
of those binary packages is newer than the
other; the packages simply apply to different
contexts.
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1.2 Package Repository Limitations

Traditional package management systems pro-
vide no facilities for coordinating work be-
tween independent repositories.

• Repositories have version clashes; the
same version-release string means differ-
ent things in different repositories. Repos-
itories can even have name clashes—the
same name in two different repositories
might not mean the same thing.

• There is no way to identify which distri-
bution, let alone which version of the dis-
tribution, a package is intended and built
for.

For example, is theaalib-1.4.0-5.
1fc2.fr package newer than theaalib-1.
4.0-0-fdr.0.8.rc5.2 package? One is
from the freshrpms repository, and the other is
from the fedora.us repository. Which package
should users apply to their systems? Does it
depend on which version of which distribution
they have? How are the two packages related?
Are they related at all?

This is not really a problem in a disconnected
world. However, when you install packages
from multiple sources, it can be hard to tell how
to update them—or even what it means to up-
date a package. You have to rely on your mem-
ory of where you fetched a package from in
order even to look in the right repository. Once
you look there, it is not necessarily obvious
which packages are intended for the particular
version of the distribution you have installed.
Automated tools for fetching packages from
multiple repositories have increased the num-
ber of independent package repositories over
the past few years, making the confusion more
and more evident.

The automated tools helped exacerbate this
problem (although they did not create it); they

have not been able to solve it because the pack-
ages do not carry enough information to allow
the automated tools to do so.

1.3 Source Disconnected from Binaries

Traditional package management does not
closely associate source code with the pack-
ages created from it. The binary package may
include a hint about a filename to search for to
find the source code that was used to build the
package, but there is no formal link contained
in the packages to the actual code used to build
the packages.

Many repositories carry only the most recent
versions of packages. Therefore, even if you
know which repository you got a package
from, you may not be able to access the source
for the binary packages you have downloaded
because it may have been removed when the
repository was upgraded to a new version.
(Some tools help ameliorate this problem by
offering to download the source code with bi-
naries from repositories that carry the source
code in a related directory, but this is only a
convention and is limited.)

1.4 Namespace Arbitrary and Unmanaged

Traditional package management does not pro-
vide a globally unique mechanism for avoid-
ing package name, version, and release num-
ber collisions; all collision-avoidance is done
by convention and is generally successful only
when the scope is sufficiently limited. Package
dependencies (as opposed to file dependencies)
suffer from this; they are generally valid only
within the closed scope of a single distribution;
they generally have no global validity.

It can also be difficult for users to find the right
packages for their systems. Both SUSE and
Fedora provide RPMs for version 1.2.8 of the
iptables utility; if a user found release 101 from
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SUSE and thought it was a good idea to apply it
to Fedora Core 2, they would quite likely break
their systems.

1.5 Build Configuration

Traditional packaging systems have a granu-
lar definition of architecture, not reflecting the
true variety of architectures available. They
try to reduce the possibilities to common cases
(i386 , i486 , i586 , i686 , x86_64 , etc.)
when, in reality, there are many more vari-
ables. But to build packages for many combi-
nations means storing a new version of the en-
tire package for every combination built, and
then requires the ability to differentiate be-
tween the packages and choose the right one.
While some conventions have been loosely es-
tablished in some user communities, most of
the time customization has required individual
users to rebuild from source code, whether they
want to or not.

In addition, most packaging systems build their
source code in an inflexible way; it is not easy
to keep local modifications to the source code
while still tracking changes made to the distri-
bution (Gentoo is the most prominent excep-
tion to this rule).

1.6 Fragile Scripts

Traditional package management systems al-
low the packager to attach arbitrary shell
scripts to packages as metadata. These scripts
are run in response to package actions such as
installation and removal. This approach creates
several problems.

• Bugs in scripts are often catastrophic
and require complicated workarounds in
newer versions of packages. This can ar-
bitrarily limit the ability to revert to old
versions of packages.

• Most of the scripts are boilerplate that is
copied from package to package. This in-
creases the potential for error, both from
faulty transcription (introducing new er-
rors while copying) and from transcrip-
tion of faults (preserving old errors while
copying).

• Triggers (scripts contained in one pack-
age but run in response to an action done
to a different package) introduce levels of
complexity that defy reasonable QA ef-
forts.

• Scripts cannot be customized to handle lo-
cal system needs.

• Scripts embedded in traditional packages
often fail when a package written for one
distribution is installed on another distri-
bution.

2 Introduction to Conary

Conary provides a fresh approach to open
source software management and provision-
ing, one that applies new ideas from distributed
configuration management tools such as GNU
arch and monotone. Rather than concentrating
on separate package files as RPM and dpkg do,
Conary uses networked repositories containing
a structured version hierarchy of all the files
and organized sets of files in a distribution.

This new approach gives us exciting new fea-
tures:

• Conary allows you to maintain and pub-
lish changes, both by allowing you to cre-
ate new branches of development, and by
helping track changes to existing branches
of development while maintaining local
changes.

• Conary intelligently preserves local
changes on installed systems. An update
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will not blindly obliterate changes that
you have made on your local system.

• Conary can duplicate local changes made
on one machine, installing those changes
systematically on other machines, thereby
easing provisioning of large sets of similar
or identical systems.

3 Distributed Version Tree

Conary keeps track of versions in a tree struc-
ture, much like a source code control sys-
tem. The difference between Conary and many
source code control systems is that Conary
does not need all the branches of a tree to be
kept in a single place. For example, if Specifix
maintains a kernel atspecifixinc.com ,
and you, working forexample.com , want
to maintain a branch from that kernel, your
branch could be stored on your machines, with
the root of that branch connected to the tree
stored on Specifix’s machines.
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3.1 Repository

Conary stores everything in adistributed
repository, instead of in package files. The
repository is a network-accessible database
that contains files for multiple packages, and

multiple versions of these packages, on mul-
tiple development branches. Nothing is ever
removed from the repository once it has been
added. In simple terms, Conary is like a source
control system married to a package system.

3.2 Files

When Conary stores a file in the repository, it
tracks it by a unique file identifier rather than
by name. Among other things, this allows
Conary to track changes to file names—the file
name is merely one piece of metadata associ-
ated with the file, just like the ownership, per-
mission, timestamp, and contents. If you think
of the repository as a filesystem, the file identi-
fier is like an inode number.

3.3 Troves, Packages, and Components

When you build software with Conary, it col-
lects the files intocomponents, and then col-
lects the components into one or morepack-
ages. Components and packages are both
called troves. A trove is (generically) a col-
lection of files or other troves.

A package does not directly contain files; a
package references components, and the com-
ponents reference files. Every component’s
name is constructed from the name of its con-
tainer package, a: character, and a suffix
describing the component. Conary has sev-
eral standard component suffixes::source ,
:runtime , :devel , :docs , and so forth.
Conary automatically assigns files to compo-
nents during the build process, but you can
overrule its assignments and create arbitrary
component suffixes as appropriate.
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package gzip

component gzip:runtime component gzip:doc

file /bin/gunzip file ...info/gzip.info.gz

file /bin/gunzip file ...info/gzip.info.gz

file /bin/gunzip file ...info/gzip.info.gz

file /bin/gunzip file ...info/gzip.info.gz

file /bin/gunzip file ...info/gzip.info.gz

file /bin/gunzip file ...info/gzip.info.gz

One component, with the suffix:source ,
holds all source files (archives, patches, and
build instructions); the other components hold
files to be installed. The:source compo-
nent is not included in any package, since
several different packages can be built from
the same source component. For example,
the mozilla:source component builds
the packagesmozilla , mozilla-mail ,
mozilla-chat , and so forth. The version
structure in Conary’s repositories always tells
exactly which source component was used to
build any other component.

3.4 Labels and Versions

Conary uses strongly descriptive strings to
compose the version and branch structure.
The amount of description makes them quite
long, so Conary hides as much of the
string as possible for normal use. Conary
version strings act somewhat like domain
names, in that for normal use you need
only a short portion. For example, the ver-
sion/conary.specifixinc.com@spx:
trunk/2.2.3-4-2 can usually be referred
to and displayed as2.2.3-4-2 . The en-
tire version string uniquely identifies both the
source of a package and its intended context.
These longer names are globally unique, pre-
venting any confusion.

Let’s dissect the version string
/conary.specifixinc.com@spx:

trunk/2.2.3-4-2 . The first part,
conary.specifixinc.com@spx:trunk ,
is a label. It holds three pieces of information:

• The repository host name:
conary.specifixinc.com

• Namespace: spx A high-level context
specifier that allows branch names to be
reused by independent groups. Speci-
fix will maintain a registry of names-
pace identifiers to prevent conflicts. Use
local for branches that will never need
to be shared with other organizations.

• Branch name: trunk This is the only
portion of the label that is essentially arbi-
trary; and will be defined by the owner of
the namespace it is part of.

The next part,2.2.3-4-2 , contains the more
traditional version information.

• Upstream version string: 2.2.3 This
is the version number or string assigned
by the upstream maintainer: Conary never
interprets this string in any way; the only
check it does is whether it is the same or
different. It is there primarily to present
useful information to the user. Conary
never tries to determine whether one up-
stream version is “newer” or “older” than
another. It makes these decisions based on
the ordering specified by the repository’s
version tree.

• Conary revision: 4-2 This pair is com-
posed from:

– Source build serial number: 4 In-
cremented each time a version of the
sources with the same upstream ver-
sion string is checked in. It is similar
to the release number used by tradi-
tional packaging systems.

– Binary build serial number: 2
How many times this particular
source package has been built. This
number is not provided for source
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packages, because it is meaningless
in that context.

Conary describes branch structure by append-
ing version strings, separated by a/ charac-
ter. The first step to make a release is to cre-
ate a branch that specifies what is in the re-
lease. Let’s create therelease-1 branch off
the trunk: /conary.specifixinc.com@
spx:trunk/2.2.3-4/release-1 (note
that because we are branching the source, there
is no binary build number).

In this branch,release-1 is a label. The
label inherits the repository and namespace of
the node it branches from; in this case, the
full label is conary.specifixinc.com@
spx:release-1

The first change that is committed to
this branch can be specified in some-
what shortened form as /conary.
specifixinc.com@spx:trunk/
2.2.3-4/release-1/5 Because the
upstream version is the same as the node
from which the branch descends, the upstream
version may be omitted, and only the Conary
version provided. Users will normally see this
version expressed as2.2.3-5 , so this string,
still long even when it has been shortened by
elision, will not degrade the user experience.

/conary.specifixinc.com@spx:trunk

2.2.2-2

release-12.2.3-4

2.2.3-3

2.2.2-1

/conary.specifixinc.com@spx:trunk/2.2.3-4/release-1/5
(normally seen as 2.2.3-5)

2.2.3-5

release-1/2.3.4-1

release-1/2.3.4-2
2.2.4-1

Labels also have an unusual property: a sin-
gle label can referencemultiple branches. To
demonstrate why this is useful, let’s look at
the glib library. Like many other libraries, glib
is designed to allow more than one version to
be installed on the system at once. Older pro-
grams require glib 1.2; newer programs require
glib 2. All new releases of glib 1.2 are compat-
ible with programs written and compiled for
older versions of glib 1.2; all new releases of
glib 2 are compatible with programs written
and compiled for older versions of glib 2. They
are not, however, compatible with each other;
a program compiled for glib 1.2 will certainly
not run with glib 2. Therefore, a complete sys-
tem requires that glib 1.2 and glib 2 both be
installed.

Packaging systems often solve this problem by
naming the packages differently, putting part of
the version number into the name of the pack-
age (i.e.glib andglib2 ). This works, but it
dilutes the revision history that the repository
model provides.

By contrast, Conary solves this problem by
allowing labels to apply to more than one
branch. To see how, we will start by “go-
ing back in time” and looking at the version
string for glib on the trunk with only glib
1.2 packaged: /conary.specifixinc.
com@spx:trunk/1.2.10-19-3

Now, we want to add glib 2 to the repository.
We want to have a branch for continuing main-
tenance of maintain glib 1.2, though, so let’s
create that first:/conary.specifixinc.
com@spx:trunk/1.2.10-19-3/
glib1.2

Now, we upgrade the trunk to glib 2:
/conary.specifixinc.com@spx:
trunk/2.2.3-1-1

Having maintained both glib 1.2 and glib 2
for a while, we decide that we want to make
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our first release. We will label every package
in the release, including two versions of glib:
/conary.specifixinc.com@spx:
trunk/2.2.3-4-2/release-1/4-2
and /conary.specifixinc.com@spx:
trunk/1.2.10-19-3/glib1.2/23-2/
release-1/23-2

The label conary.specifixinc.com@
spx:release-1 now specifiesboth ver-
sions of glib. Therefore, if you in-
stallglib conary.specifixinc.com@
spx:release-1 , you will get both versions
of glib.

Normally, the label to install will be set by
installation scripts, and Conary will automat-
ically install both versions of glib. Of course,
updates will be applied only when there is a
change; an update to glib 1.2 does not affect
glib 2. In other words, it “just works” without
you having to worry about it.

release-1
2.2.3-4-2

/conary.specifixinc.com@spx:trunk

1.2.10-19-3
glib1.2

1.2.10-23-2

release-1

3.5 Shadows

The most powerful way to manage local
changes is (of course) to build changes from
source code. Conary makes this possible in
two ways. One way is a simple branch, just

like you would do with any source code con-
trol software. Unfortunately, this is not always
the best solution.

Imagine a stock 2.6 Linux kernel packaged in
Conary, being maintained on the/linux26
branch (we have omitted the repository host
name and namespace identifier from the label
for brevity) of the kernel:source pack-
age, currently at version2.6.5-1 (note that
because it is a source package, there is no
binary build number). You have one patch
that you want to add relative to that version,
and then you wish to track that maintenance
branch, keeping your own change up to date
with the maintenance branch, and building new
versions as you go.

If you create a new branch from/linux26/
2.6.5-1 , say /linux26/2.6.5-1/
mybranch , all the work you do is relative
to that one version. Creating a new branch
does not help you, because the new branch
goes off in its own direction from one point
in development, rather than tracking changes.
Therefore, when the new version/linux26/
2.6.6-1 is committed to the repository, the
only way to represent that version in your
branch would be to manually compare the
changes and apply them all, bring your patch
up to date, and commit your changes to your
branch. This is time-consuming, and the
branch structure does not represent what is
really happening in that case.

Conary introduces a new concept: ashadow.
A shadow acts primarily as a repository for lo-
cal changes to a tree. A shadow tracks changes
relative to a particular upstream version string
and source build serial number. Therefore,
you cannot change the upstream version of
the package—though you can apply any patch
you like. (In order to change the upstream
version of the package, you would need to
create a branch rather than a shadow.) The
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name of a shadow is the name of the branch
with // shadowname appended; for exam-
ple, /branch//shadow . The whole branch
is shadowed, so if/branch/1.2.3-3 and
/branch//shadow exist, then so does
/branch//shadow/1.2.3-3 , regardless
of whether /branch/1.2.3-3 existed at
the time the shadow was created. Similarly, if
/branch/1.2.3-3/rel1/1.2.3-3 ex-
ists, then so does/branch//shadow/
1.2.3-3/rel1/1.2.3-3 .

Both /branch/1.2.3-3 and/branch//
shadow/1.2.3-3 refer to exactly the same
contents. Changes are represented with a
dotted source build serial number, so the
first change to /branch/1.2.3-3 that
you check in on the/branch//shadow
shadow will be called/branch//shadow/
1.2.3-3.1 .

So, to track changes to the/linux26 branch
of thekernel:source package, you create
the mypatch shadow of the /linux26
branch, /linux26//mypatch , and there-
fore /linux26//mypatch/2.6.5-1
now exists. Commit a patch to the shadow,
and /linux26//mypatch/2.6.5-1.1
exists. Later, when thelinux26 branch is
updated to version2.6.6-1 , you merely
need to update your shadow, modify the
patch to apply to the new kernel source
code if necessary, and commit the your
new changes to the shadow, where they
will be named /linux26//mypatch/
2.6.6-1.1 . You can use the shadow branch
name /linux26//mypatch just like you
can use the branch name/linux26 ; you can
install that branch, andconary update
will use the same rules to find the latest version
on the shadow that it uses to find the latest
version on the branch.

3.6 Flavors

Conary has a unified approach to handling mul-
tiple architectures and modified configurations.
It has a very fine-grained view of architecture
and configuration. Architectures are viewed
as an instruction set, including settings for op-
tional capabilities. Configuration is set with
system-wide flags. Each separate architec-
ture/configuration combination built is called a
flavor.

Using flavors, the same source package can
be built multiple times with different architec-
ture and configuration settings. For example,
it could be built once forx86 with i686 and
SSE2 enabled, and once forx86 with i686
enabled butSSE2 disabled. Each of those ar-
chitecture builds could be done twice, once
with PAMenabled, and once withPAMdis-
abled. All these versions, built from exactly the
same sources, are stored together in the repos-
itory.

At install time, Conary picks the most appro-
priate flavor of a component to install for the
local machine and configuration (unless you
override Conary’s choice, of course). Further-
more, if two flavors of a component do not
have overlapping files, and both are compati-
ble with the local machine and configuration,
both can be installed. For example, library
files for the i386 family are kept in/lib
and/usr/lib , but forx86_64 they are kept
in /lib64 and/usr/lib64 , so there is no
reason that they should not both be installed,
and since the AMD64 platform can run both, it
is convenient to have them both installed.

4 Changesets

Just as source code control systems use patch
files to describe the differences between two
versions of a file, Conary useschangesetsto
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describe the differences between versions of
troves and files. These changesets include in-
formation on how files have changed, as well
as how the troves that reference those files have
changed.

These changesets are often transient objects;
they are created as part of an operation and
disappear when that operation has completed.
They can also be stored in files, however,
which allows them to be distributed like the
packages produced by a classical package
management system.

Applying changesets rather than installing new
versions of packages allows Conary to update
only the parts of a package that have changed,
rather than blindly reinstalling every file in the
package.

Besides saving space and bandwidth, repre-
senting updates as changes has another advan-
tage: it allows merging. Conary intelligently
merges changes not only to file contents, but
also to file metadata such as permissions.

This capability is very useful if you wish to
maintain a branch or shadow of a package—for
example, keeping current with vendor mainte-
nance of a package, while adding a couple of
patches to meet local needs.

Conary also keeps track of local changes in
essentially the same way, preserving them.
When, for example, you add a few lines to a
configuration file on an installed system, and
then a new version of a package is released
with changes to that configuration file, Conary
can merge the two unless there is a direct con-
flict (unusual but possible). If you change a
file’s permission bits, those changes will be
preserved across upgrades.

Conary supports two types of change sets:

• The differences between two versions in a

repository

• The complete contents of a version in a
repository (logically, this is the difference
between nothing at all and that version)

In the first case, where Conary is calculating
the differences between two different versions,
the result is arelative changeset. In the sec-
ond case, where Conary is encoding the entire
content of the version, the result is anabsolute
changeset. (If you use an absolute changeset
to upgrade to the version provided in the abso-
lute changeset, Conary internally converts the
changeset to a relative changeset, thereby pre-
serving your local changes.) Absolute change-
sets are convenient ways of distributing ver-
sions of troves and files to users who have var-
ious versions of those items already installed
on their systems. In practice, they can be dis-
tributed just like package files created by tradi-
tional package management systems.

Conary can do two things with one of these
changesets. It can update a system, either di-
rectly from a changeset file, or by asking the
repository to provide a changeset and then ap-
plying that changeset. It can also store existing
changesets in a repository. This capability will
be used in the future to provide repository mir-
roring, and it can also be used to move changes
from one repository to a branch in a different
repository.

4.1 Representing Local Changes

Conary can also generate alocal changeset
that is a relative changeset showing the differ-
ence between the repository and the local sys-
tem for the version of a trove that is installed.
You can distribute a local changeset to another
machine in two ways:

• You can distribute it to other machines
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with the same version of the trove in ques-
tion installed.

• You can commit the local changeset to a
branch of a repository, and then update to
that branch on target machines.

There is an important distinction between the
two cases. In the first case, the machine that ap-
plies the changeset will act as if those changes
had been made by the system’s administrator;
since those changes are not in a repository they
are not versioned. In the second case, however,
the machine gets those changes by updating the
trove to the branch that contains those changes,
and it can continue to track changes from that
branch.

For example, assume that you have machines
with troves from branches labeledconary.
specifixinc.com@spx:rel1 installed,
and you have some local changes that you want
to distribute to a group of machines. Let’s
say that after updating to version2.9.0-1-2
of tmpwatch , you want to change the per-
missions of the /usr/sbin/tmpwatch binary
because you are paranoid:chmod 100
/usr/sbin/tmpwatch Now, you record
that change in a local changeset; that changeset
is relative to2.9.0-1-2 , and describes your
local changes.

You then commit your local changeset to
the conary.example.com@local:
paranoid branch in your local repository.
Now, on all the machines in the group, you can
update tmpwatch conary.example.
com@local:paranoid . Each machine will
now look in the conary.example.com
repository on theparanoid branch if you
simply run conary update tmpwatch .
This means that if you make further changes
to the tmpwatch package, you can commit
those changes to theparanoid branch on
the conary.example.com repository, and
each of the machines will update to the latest

version you have committed to that branch.
Every time a new version oftmpwatch is
released on theconary.specifixinc.
com@spx:rel1 branch, you will have
to apply the changeset to theconary.
example.com@local:paranoid branch
before the machines with yourparanoid
branch installed will update their copies of
tmpwatch .

 c
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If rather than maintaining a branch, you merely
want to distribute some changes that are lo-
cal to the group of machines, you do not
want to commit the local changeset to the
repository. Instead, you want to copy the
changeset file (let’s call it paranoid.ccs) to each
machine and runconary localcommit
paranoid.ccs on each machine. Now, your
change to permissions applies to each sys-
tem, butconary update tmpwatch will
still look at conary.specifixinc.com@
spx:rel1 and Conary will apply updates to
tmpwatch from conary.specifixinc.
com@spx:rel1 without additional work
required on your part, and it will pre-
serve the change to the permissions of the
/usr/sbin/tmpwatch binary on each machine.

Both ways of managing local change are use-
ful. Committing local changesets to a repos-
itory is best for systems with entirely cen-
tralized management policy, where all sys-
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tem changes must be cleared by some cen-
tral agency, whereas distributing local change-
sets is best when individual systems are ex-
pected to autonomously update themselves
asynchronously.

4.2 Merging

When Conary updates a system, it does not
blindly obliterate all changes that have been
made on the local system. Instead, it does
a three-way merge between the currently in-
stalled version of a a file as originally installed,
that file on the local system, and the version of
the file being installed. If an attribute of the
file was not changed on the local system, that
attribute’s value is set from the new version
of the package. Similarly, if the attribute did
not change between versions of the package,
the attribute from the local system is preserved.
The only time conflicts occur is if both the new
value and the local value of the attribute have
changed; in that case a warning is given and the
administrator needs to resolve the conflict.

For configuration files, Conary creates and ap-
plies context diffs. This preserves changes us-
ing the the widely-understood diff/patch pro-
cess.

4.3 Efficiency

Conary is more efficient than traditional pack-
aging systems in several ways.

• By utilizing relative changesets whenever
possible, Conary uses less bandwidth.

• By modifying only changed files on up-
dates, Conary uses less time to do updates,
particularly for large packages with small
changes.

• By using a versioned repository, Conary
saves space because unchanged files are

stored once for the whole repository, in-
stead of once in each version of each
package.

• By enabling distributed repositories,
Conary

– saves the time it takes to maintain
a modified copy of an entire repos-
itory, and

– saves the space it takes to store com-
plete copies of an entire repository.

4.4 Rollbacks

Because Conary updates systems by applying
changesets, and because it is able to follow
changes on the local system intrinsically, it eas-
ily supportsrollbacks. If requested, Conary
can store an inverse changeset that represents
eachtransaction (a set of trove updates that
maintains system consistency, including any
dependencies) that it commits to the local sys-
tem. If the update creates or causes problems,
the administrator can ask Conary to install the
changeset that represents the rollback.

Because rollbacks can affect each other, they
are strictly stacked; you can (in effect) go back-
ward through time, but you cannot browse.
You have to apply the most recent rollback be-
fore you apply the next most recent rollback,
and so forth.

This might seem like a great inconvenience,
but it is not. Because Conary maintains
local changes vigorously, including merging
changes to configuration files, and because all
the old versions you might have installed be-
fore are still in the repositories they came from,
you can “update” to older versions of troves
and get practically the same effect as rolling
back your upgrade from that older version.

Applying rollbacks can be more convenient
when you know that you want to roll back the
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previous few transactions and restore the sys-
tem to the state it was in, say, two hours ago.
However, if you want to be selective, “upgrad-
ing” to an older version is actually more conve-
nient than it would be to try to select a rollback
transaction that contains the change you have
in mind.

5 Other Concepts

5.1 Dynamic Tags

In place of the fragile script metadata provided
by traditional package management systems,
Conary introduces a concept calleddynamic
tags. Files managed by Conary can have sets of
arbitrary text tags that describe them. Some of
these tags are defined by Conary (for example,
shlib is reserved to describe shared library
files that cause Conary to update /etc/ld.so.conf
and runldconfig ), and others can be more
arbitrary. (In order to allow tag semantics to
be shared between repositories, it is likely that
Specifix will host a global tag registry in the
future.)

By convention, a tag is a noun or noun phrase
describing the file; it is not a description of
what to do to the file. That is,file is-a tag.
For example, a shared library is tagged as
shlib instead of asldconfig . Similarly,
an info file is tagged asinfo-file , not as
install-info .

Conary can be explicitly directed to apply a tag
to a file, and it can also automatically apply
tags to files based on atag description file.
A tag description file provides the name of the
tag, a set of regular expressions that determine
which files the tag applies to, the path of the
tag handler program that Conary runs to pro-
cess changes involving tagged files, and a list
of actions that the handler cares about. Conary
then calls the handler at appropriate times to

handle the changes involving the tagged files.

Actions include changes involving either the
tagged files or the tag handlers. Conary will
pass in lists of affected files whenever it makes
sense, and will coalesce actions rather than
running all possible actions once for every file
or component installed.

The current list of possible actions is:

• Tagged files have been installed or up-
dated; Conary provides a list of all in-
stalled or updated tagged files.

• Tagged files are going to be removed;
Conary provides a list of all tagged files
to be removed.

• Tagged files have been removed; Conary
provides a list of filenames that were re-
moved.

• The tag handler itself has been installed
or updated; Conary provides a list of all
tagged files already installed on the sys-
tem.

• The tag handler itself will be removed;
Conary provides a list of all the tagged
files already installed on the system to fa-
cilitate cleanup.

Because the tag description files list the ac-
tions they handle, the tag handler API can be
expanded easily while maintaining backward
compatibility with old handlers.

Avoiding duplication between packages by
writing scripts once instead of many times
avoids bugs in scripts. Practically speaking,
it avoids whole classes of common bugs that
cause package upgrades to break installed soft-
ware, and even more importantly from a provi-
sioning standpoint, bugs that would cause roll-
backs to fail. It makes it much easier to fix
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bugs when they do occur, without any need
for “trigger” scripts that are often needed to
work around script bugs in traditional package
management. It also allows components to be
installed across distributions—as long as they
agree on the semantics for the tags, the actions
taken for any particular tag will be correct for
the distribution on which the package is being
installed.

Calling tag handlers when they have been up-
dated makes recovery from bugs in older ver-
sions of tag handlers relatively benign; Conary
needs to install only a single new tag handler
with the capability to recover from the effects
of the bug. Older versions of packages with
tagged files will use the new, fixed tag han-
dler, which allows you to revert those pack-
ages to older versions as desired, without fear
of re-introducing bugs created by old versions
of scripts.

Furthermore, storing the scripts as files in the
filesystem instead of as metadata in a package
database means:

• they can be modified to suit local system
peculiarities, and those modifications will
be tracked just like other configuration file
modifications;

• they are easier for system administrators
to inspect; and

• they are more readily available for system
administrators to use for custom tasks.

5.2 Groups and Filesets

There are two other kinds of troves that we did
not discuss when we introduced the trove con-
cept: groups and filesets.

Filesetsare troves that contain only files, but
those files come from components in the repos-
itory. They allow custom re-arrangements

of any set of files in the repository. (They
have no analog at all in the classical package
model.) Each fileset’s name is prefixed with
fileset- , and that prefix is reserved for file-
sets only.

Filesets are useful primarily for creating small
embedded systems. With traditional packag-
ing systems, you are essentially limited to in-
stalling a system, then creating an archive con-
taining only the files you want; this limits
the options for upgrading the system. With
Conary, you can instead create a fileset that ref-
erences the files, and you can update that fileset
whenever the components on which it is based
are updated, and use Conary to update even
very thin embedded images.

The desire to be able to create working filesets
was a large motive for using file-specific meta-
data instead of trove-specific metadata wher-
ever possible. For example, files in filesets
maintain their tags, which means that exactly
the right actions will be taken for the fileset.
If Conary had package scripts like traditional
package managers, it would be impossible to
automatically determine which parts (if any) of
the script should be included in the fileset. (As
already discussed, scripts have other problems
that tags solve; this is just another one of the
architectural reasons that tags are preferable to
scripts.)

Groups are troves that contain any other kind
of trove, and the troves are found in the repos-
itory. (The task lists used by apt are similar
to groups, as are the components used by ana-
conda, the Red Hat installation program.) Each
group’s name is prefixed withgroup- , and
that prefix is reserved for groups only.

Groups are useful for any situation in which
you want to create a group of components
that should be versioned and managed together.
Groups are versioned like any trove, including
packages and components. Also, a group ref-
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erences only specific versions of troves. There-
fore, if you install a precise version of a group,
you know exactly which versions of the in-
cluded components are installed; if you update
a group, you know exactly which versions of
the included components have been updated.

If you have a group installed and you then
erase a component of the group without chang-
ing the group itself, the local changeset for the
group will show the removal of that component
from the group. This makes groups a power-
ful mechanism administrators can use to easily
browse the state of installed systems.

The relationship between all four kinds of
troves is illustrated as follows:

built from
Troves

source repository

co
nt

ai
n files component fileset

troves package* group

*packages contain only components

Groups and filesets are built from:source
components just like packages. The contents
of a group or fileset is specified as plain text in
a source file; then the group or fileset is built
just like a package.

This means that groups and filesets can be
branched and shadowed just like packages can.
So if you have a local branch with only one
modified package on it, and then you want
to create a branch of the whole distribution
containing your package, you can branch the
group that represents the whole distribution,
changing only one line to point to your locally
changed file. You do not have to have a full
local branch of any of the other packages or
components.

Furthermore, when the distribution from which

you have branched is updated, your modifica-
tion to the group can easily follow the updates,
so you can keep your distribution in sync with-
out having to copy all the packages and com-
ponents.

6 Further Work

An alpha release of Conary is now avail-
able from http://www.specifixinc.
com, along with a Linux distribution built with
Conary. While these releases allow users and
developers to begin making use of Conary’s
features, there is significant work remaining.

The shadow design discussed in this paper has
not yet been implemented.

Conary does not yet resolve dependencies. Al-
though some dependency information is al-
ready generated and tracked on a per-file ba-
sis, no effort is made to ensure that those de-
pendencies are resolved when components are
installed.

As Conary and Conary-based distributions be-
come more popular, there will be a need for
both repository caches and repository mirrors.
While some preliminary design work has been
done for each of these, no implementation
work has begun.

The implementation of flavors is preliminary,
especially in regards to configuration settings.
While limited testing has been done with troves
built for varying architectures and Specifix’s
build scripts implement some configuration
settings, Conary does not yet properly select
the flavor to install on a system.

Conclusion

Conary was designed to address many of
the limitations of the traditional packaging
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metaphor. The enormous growth in the Linux
developer base over the past decade has shown
that packaging systems do not scale well to
multiple repositories with conflicting content,
and can make it difficult for large numbers of
developers to coordinate package releases.

Conary provides flexible branching, which en-
ables it to find both binaries and sources any-
where on the Internet, and allows the local ad-
ministrator to preserve local changes and cre-
ate local development branches of those pack-
ages. By providing a name space separator as
part of the branch names, Conary allows many
groups to use the same tool while building a
single distributed version tree, without any for-
mal collaboration between the groups.

Innovations such as shadows and versioning
groups of packages and files (allowing those
container objects themselves to be branched
and shadowed) significantly reduce the diffi-
culty of maintaining customized Linux distri-
butions. Instead of being forced to accept com-
plete responsibility for all aspects of the dis-
tribution, developers can now concentrate on
maintaining just their changes. Those changes
are represented in a concise way that can track
upstream changes to the entire distribution.

Conary is designed to enable a loosely-
coupled, Internet-based collaborative approach
to building Linux distributions. By making
branching and shadowing inexpensive opera-
tions that can change almost any aspect of a
Linux system, we hope members of the Linux
community will be able to build the Linux dis-
tribution they want, rather than use one that is
merely close enough.
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Abstract

We introduce a distributed sensor architecture
which enables high-performance 32-bit Linux
capabilities to be embedded in a sensor which
operates at the average power overhead of a
small microcontroller. Adapting Linux to this
architecture places increased emphasis on the
performance of the Linux power-up/shutdown
and suspend/resume cycles.

Our reference hardware implementation is de-
scribed in detail. An acoustic beamforming
application demonstrates a 4X power improve-
ment over a centralized architecture.

1 Introduction

Traditional sensor platform architectures are
based on a hub-and-spoke model with periph-
erals clustered around a central processor as
shown in Figure 1(a). In this model, the lower-
bound of total system power is set by the low-
est active mode of the central processor which
must be continually active to broker peripheral
operations.

System power is typically reduced by using
less-capable processors or microcontrollers in
place of the central processor. Although sensor
activity is mostly infrequent and bursty with
low average computational requirements, peak
processing requirements can still be quite high.

Processor

RadioSensor

Input/Output

(a) Hub-and-spoke

Sensor

Radio

Processor

Input/Output

(b) Distributed

Figure 1: Alternate sensor node architectures

Within a system design, this creates tension be-
tween the desire for the high-performance pro-
cessing capability of a larger processor and the
low-power operation of a smaller one.

This tension is further complicated by the ob-
servation that while many large processors re-
quire significantly more power than small ones
when inactive, they also often provide signifi-
cantly more power-efficient computation when
active. Another tradeoff in this design space
weighs the strength of development and de-
bugging tools, such as Linux, available for
larger processors versus the constrained pro-
gramming environments available for small
ones.

Replacing the hub-and-spoke architecture with
a distributed model as shown in Figure 1(b)
can decouple processing from peripheral op-
eration and create a system that combines the
strengths of both large and small processors.
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In this model, processor and peripherals be-
come autonomous modules that are each pow-
ered independently. High-performance pro-
cessing can be made available when needed,
but without increasing the lower-bound of to-
tal system power. Low average system power
can be achieved by operating for a majority of
the time in extremely low-power modes with
only essential modules active.

This distributed architecture places Linux in an
unconventional role as a peer module rather
than as a central processor. This emphasizes
the performance of the power-up/shutdown and
suspend/resume cycles as keys for achieving
low average system power.

The remainder of this paper is organized as fol-
lows. Section 2 describes several popular re-
search and commercial sensor platforms. Sec-
tion 3 recounts the design challenges we faced
as we built a reference sensor node with au-
tonomous modules. As usual, real-world issues
forced difficult engineering decisions. Sec-
tion 4 details the modules we have built so far.

Our hardware is in a more complete state than
our software. We have identified some aspects
of the behavior of Linux that we need to inves-
tigate more fully. These issues are discussed
in Section 5. Section 6 contains power results
we have obtained with a vehicle tracking algo-
rithm. Finally, Section 7 draws conclusion and
Section 8 describes areas for future work.

2 Related Work

Applied research in wireless sensor networks
has made use of a variety of platforms with
varying processing capabilities and power re-
quirements, but almost always with a hub-and-
spoke model. Several platforms are described
below in order from more-capable, higher-
power platforms to less-capable, lower-power
platforms.

2.1 PC/104

PC/104 [3] is a well-supported specification for
PC-compatible, embedded systems consisting
of stacking modules. Cerpa et al [2] chose
PC/104 systems for their “high end” sensors
in a tiered deployment for habitat monitoring.
Their cited reasons for choosing PC/104 in-
clude the ability to run PC-compatible software
(i.e. Linux) and the wide spectrum of available
PC/104 modules.

PC/104 provides great flexibility and the power
requirements are lower than that of desktop
PCs. However, at 1-2 Watts per module[3], and
with most sensors requiring at least two mod-
ules, this platform requires too much power for
many sensor applications.

2.2 Embedded StrongARM devices/PDAs

Off-the-shelf devices based on low-power, em-
bedded processors such as the Intel SA-1110
or PXA25x offer another convenient platform
for sensor network research. Compared to x86-
class processors, these processors offer a sig-
nificant power savings along with a reduction
in maximum clock rate and the absence of a
hardware floating-point unit.

Representative devices of this class include the
HP iPAQ, the CerfCube[4], and the Crossbow
Stargate[14]. These devices are extensible via
Compact Flash, Bluetooth, etc. but have less
flexibility than PC/104. And while the power
requirements of these systems can be less than
a comparable PC/104 stack, Mainwaring et
al[9] found that at 2.5W active power, the
power usage of the CerfCube was excessive for
long-term use in a sensor network.

Several research sensors have been developed
with architectures similar to these off-the-shelf
platforms. These include theµAMPS[10] and
WINS[1] nodes. For example, the WINS node
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Figure 2: Power-aware sensor concept

has a central 133MHz StrongARM SA-1100
processor along with radio and sensor periph-
erals. As measured by Raghunathan et al[12]
the WINS node operates in the range of 360-
1080 mW and can also be placed into a 64 mW
sleep mode.

2.3 Motes

An example of a very low-power sensor ar-
chitecture is that of the Berkeley Motes[6, 7,
8]. Current Motes are based around a central
microcontroller (MCU) such as the ATmega
90LS8535, an 8-bit MCU with 128KB Flash
and 8KB SRAM. The Mote includes a radio
and has serial connections and 10-bit analog
ADC ports to various sensors on expansion
modules. Typical power consumption for this
sensor when active is in the 10-100 mW range.
Sleep power is about 60µW.

Mote-class sensors demonstrate that a wide
variety of low-bandwidth sensing applications
can be accomplished with very small proces-
sors and with very little memory. The limita-
tion of these systems is encountered when an

application doesn’t fit within the memory and
processing footprint of the MCU. High band-
width sensor processing is beyond the capabil-
ities of these small-scale sensors and there is
little room for expansion.

3 Implementation

Our primary system design goal was to con-
struct a family of interchangeable processor,
sensor, and communication modules that can
be mixed and matched according to the appli-
cation requirements. Ideally, our architecture
would be able scale from simple sensors as
shown in Figure 2(a) and Figure 2(b), to com-
plex sensors as shown in Figure 2(c) without
having to learn and port to a new platform at
every scale.

Other goals were driven by practical experi-
ences of using other platforms in the field.
Rapid prototyping is an important concern.
The ability to create testbeds using COTS pe-
ripherals is a strength of platforms such as
PC/104. Availability of Linux device drivers
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and a friendly programming environment were
strong motivators in our implementation deci-
sions. Data collection is an important step in
sensor network algorithm development. We
wanted lots of data storage and data network-
ing options in our new platform.

Primary constraints on the system design in-
clude size and power. We targeted the size
of the Berkeley Mote, while still supporting a
Linux-capable processor in the stack. In the
end, the size was dictated by the minimum
footprint of a Compact Flash socket and our
chosen stack connector. Power in our system
needs to be able to scale from 1 mW to a few
Watts. The low power target limited many of
our implementation choices.

An early design decision was how the au-
tonomous modules would communicate. Inter-
faces such as ethernet were quickly dismissed
due to power requirements. In small embedded
devices, the most power-efficient communica-
tion is available with hardware-supported inter-
faces such as Serial Peripheral Interface (SPI),
Controller Area Network (CAN), Universal
Asynchronous Receiver Transmitter (UART),
and Inter-Integrated Circuit (IIC or I2C). Each
of these interfaces has strengths and weak-
nesses. I2C supports multi-master operation,
but has a limit of 100kbps on most devices. SPI
has faster transfers, (up to a few megabits per
second), but has limited multi-master support
in most devices and little flow control. UART
is widely supported, but requires clock agree-
ment on both interfaces. CAN is multi-master,
but the bus drivers in the supporting devices are
relatively high power, (since CAN is designed
for long cables).

We decided to support the three major interface
standards (I2C, SPI, and UART). We allocated
six 8-bit channels on our connector and spec-
ified two preferred channels for each standard
interface. In order to prevent bus contention

and power leakage when modules are off, all
modules have bus isolation switches between
themselves and the connector. We also intro-
duced a separate I2C control network for mod-
ule discovery and coordination of the switches.

A small microcontroller (MCU) is standard
on most modules to control the bus isolation
switches, a power switch, and any module-
specific functions. The MCUs are intended to
be always on when the node is operating, (with
a power overhead as low as .05 mW). They
network with each other over I2C to facilitate
module discovery and coordinate access to the
channels using a common messaging protocol.

Figure 3 contains a diagram of the features
common to each module, as well as an optional
processor expansion bus so that high-speed,
high-power peripherals, (USB, Compact Flash,
LCD, and AC97 audio), can be used in the
stack or removed for low-power operation.

Figure 3: Power-aware module diagram

4 Available Modules

Our hardware modules are small boards ap-
proximately 6.5×4.5cm (2.5×1.75"), with a
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180-pin connector on either side. So far, we
have designed, built, and tested 4 modules, 3
of which are shown in Figures 4 and 5.

PXA A module including an Intel PXA255
XScale processor, 64MB of SDRAM and
32MB of Flash. This board supports dy-
namic voltage scaling, an active clock rate
range of 100-400MHz, and a 33MHz idle
mode. An SA-1111 coprocessor provides
support for USB master and two Compact
Flash cards. All interface lines are routed
to the stack connector.

ADC A four-channel, 12-bit analog-to-digital
converter module. The MCU has suffi-
cient memory for a dedicated 7kB sam-
ple buffer. Basic signal processing can
be performed by the local MCU or sam-
ples can be efficiently transmitted over an
SPI interface to the PXA module for ad-
vanced processing. An important point is
that the PXA255 processor can be off or
suspended during data sampling.

IOB The power & I/O board is the only re-
quired module in the stack. It provides the
primary power supply and contains most
of the digital I/O connectors, (USB mas-
ter and slave, SPI, I2C, and UART).

FPGA This module was developed as an em-
ulation board for a low-power DSP be-
ing developed at MIT[15], but is interest-
ing for other high-performance applica-
tions. It contains a Xilinx Virtex-II 3000
FPGA, 2MB of synchronous SRAM, and
32MB of SDRAM. This module operates
as a coprocessor on the memory bus of the
PXA255 and supports the two SPI chan-
nels on the stack.

We also have a Compact Flash (CF) board,
two of which can be placed into the stack.
This board connects to the processor expansion

Figure 4: PXA, ADC, and IOB modules at ac-
tual size

Figure 5: Stacked modules
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bus so that it acts as a daughter-board of the
PXA module rather than an independent mod-
ule. Figure 6 shows a stack consisting of IOB
and PXA modules along with a CF board pop-
ulated with a CF ethernet adapter.

Figure 6: Stack including CF board

Table 1 shows design-time estimates of the
power consumed by each module for various
operational modes. In the “off” mode every-
thing on the module is powered off except for
the power-control MCU. The PXA module has
the widest operational power range due to the
the range of processor clock rates and various
possibilities in processor and memory utiliza-
tion. Figure 7 provides more details of the
how the PXA module power can scale from
0.05 mW to 1.5 W. The innermost portion of
this diagram includes figures for the overhead
of power conversion and the 32kHz MCU on
the IOB module.

Module Mode Power
PXA off 0.05 mW
PXA suspended 2.5 - 7.5 mW
PXA active 150 - 1530 mW
IOB active 0.1 mW
ADC off 0.05 mW
ADC active 40 mW

Table 1: Power modes for various modules

5 Impact on Linux

In a conventional hub-and-spoke model, Linux
runs on a central processor and manages some
number of peripheral devices. In contrast, our
distributed architecture places Linux on an au-
tonomous module which is a peer to other
modules. Any other module might request a
power transition of the Linux module, from off
to powered, from suspended to active, etc.

The efficiency of these power transitions is
a critical component of the average system
power. The distributed platform is designed
to achieve low average system power through
aggressive duty-cycling of high-powered com-
ponents. The time and energy spent during
power-mode transitions is overhead that must
be amortized, imposing limits on practical duty
cycles that can be used.

We are currently using Linux version 2.4.21
with the standard ARM and PXA patches as
well as customizations for our PXA module.
The user-level software distribution is derived
primarily from the handhelds.org[11] Famil-
iar distribution. Our reference sensor appli-
cation (see Section 6) does not turn the PXA
module off, but does suspend/resume the pro-
cessor aggressively to achieve active operation
for a few milliseconds once per second. The
time spent during suspend/resume is divided
between time spent in driver callbacks and time
spent in the kernel proper. Table 2 shows the
times we have measured for these transitions
on our PXA module.

Transition Time
Suspend drivers 507 ms
Suspend kernel 13 ms
Resume kernel 78µs
Resume drivers 25 ms

Table 2: Linux transitions with driver callbacks
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Figure 7: PXA module power states

We expect the suspend/resume transitions of
the Linux kernel itself to behave in a symmetric
fashion. However, we measured a very respon-
sive resume time of 78µs and a much slower
suspend time of 13 ms. We do not yet have a
complete explanation for why the suspend pro-
cess is so much slower, although we have ac-
counted for a 1 ms delay that is caused by the
MCU on our PXA board, and therefore not a
feature of the standard Linux kernel.

A much more significant problem is the time
spent in the power management callbacks of
various subsystems and drivers. A suspend
time of 520ms spells disaster for an application
such as the one described in Section 6.

We quickly tracked down the source of this
long suspend time to the USB OHCI driver
(hcd). An ill-fated decision in our design was
the choice of the SA-1111 coprocessor. One
difficulty we encountered was that we had to
provide our own suspend/resume callbacks as
they do not exist for the SA-1111-based hcd in

the standard kernel. To simplify the task, we
have ported the PCI-based OHCI code which
contains a call tomdelay (500) along with
the comment, “Suspend chip and let things set-
tle down a bit.” This single 500ms delay ac-
counts for over 98% of the time required to
suspend drivers. We suspect that this constant
can be safely reduced so that much of the time
lost during suspend can be recovered. Even so,
USB-related timeouts, etc. are on the order of
milliseconds—orders of magnitude more than
the time required by the kernel.

Clearly, this poses a serious problem for ap-
plications with a high duty cycling require-
ment. We are currently working around the
long driver suspend times by simply remov-
ing drivers for non-essential devices and sub-
systems, (such as SA-1111), prior to running
an application with a restricted power budget.
This allows the convenience of things such as
using a USB 802.11 adapter during develop-
ment and debugging without the long suspend
times of the USB drivers during execution.
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6 Results

We implemented a vehicle tracking algorithm
using 4-channel acoustic beamforming. In this
application, data is continually sampled at a
rate of 1kHz, but signal processing only needs
to be performed at a maximum rate of 1Hz.

In previous work[13], this algorithm was im-
plemented on a successor to the WINS node,
(a hub-and-spoke platform with an Intel SA-
1110 processor). Although efficient signal pro-
cessing software was developed, system power
savings were modest since the processor had
to remain active (yet mostly idle) at all times
simply to drive data collection.

We have ported the algorithm to the distributed
platform described in this paper. On this plat-
form, the signal processing for one second’s
worth of data can be completed in 3 ms by
the PXA255 processor running at 100MHz.
Since this is a newer processor than the SA-
1110 of the WINS platform, direct compari-
son of power numbers between the two plat-
forms would be unfair. Instead, we estimate
the power needed for two implementations of
the algorithm on the distributed node.

The first version is intended to behave as if in a
hub-and-spoke system. The processor remains
active at all times to store samples into main
memory. The second version takes advantage
of the distributed nature of the platform. Linux
on the PXA module is suspended as much as
possible while the ADC module continues to
sample and buffer data. This approach adds
the overhead needed to suspend/resume Linux
and to transfer data from the ADC module to
the PXA module over the SPI channel. The
amount of data to be transferred is 8192 bytes,
(4 channels∗ 1024 samples/s∗ 2 bytes/sample
∗ 1 s). The SPI transfer rate is 1.8 Mbps yield-
ing a total transfer time of 36.4 ms.

We measured the power consumed by the PXA

module at two different stages in the algo-
rithm. During active computation the PXA
module consumes 528 mW. When mostly idle,
(e.g. when transferring 1kHz data from the
ADC module), it consumes 370 mW. We have
not yet measured the average power consumed
during the suspend or resume transitions, but
we use an estimate of 370 mW. This estimate
should be conservative as the actual power us-
age should ramp down to less than 10 mW dur-
ing the transition.

Combining these measurements with estimates
from Table 1 and the time measurements from
Table 2, we compute the total energy spent to
compute one result per second. From this we
can determine the average power necessary for
the complete algorithm. These results are given
for both versions of the algorithm in Tables 3
and 4.

Module/Mode Power Time Energy
IOB active 0.1 mW 1 s 0.1 mJ

ADC active 40 mW 1 s 40.0 mJ
PXA active 528 mW 3 ms 1.6 mJ
PXA idle 370 mW 997 ms 368.9 mJ

Estimated energy per second410.6 mJ
Estimated system power: 411 mW

Table 3: Hub-and-spoke power requirements
for beamforming

Module/Mode Power Time Energy
IOB active 0.1 mW 1.0 s 0.1 mJ

ADC active 40 mW 1.0 s 40.0 mJ
PXA suspended 7.5 mW 948 ms 7.1 mJ
PXA resuming 370 mW 78µs 28.9µJ
PXA transferring 370 mW 36.4 ms 13.5 mJ
PXA processing 528 mW 3 ms 1.6 mJ
PXA suspending 370 mW 13 ms 4.8 mJ

Estimated energy per second95.9 mJ
Estimated system power: 96 mW

Table 4: Distributed power requirements for
beamforming
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7 Conclusion

The 96 mW beamforming result marks a suc-
cess for the distributed sensor platform—a 4X
power reduction over the 411 mW required for
the hub-and-spoke platform. This shows that it
is possible to take advantage of 32-bit, Linux
processing without average power exceeding
the 10-100 mW range of a less-capable sensor
based on a 8-bit microcontroller, (i.e. a Mote).

8 Future Work

The field of power-aware sensing is rich, and
we have only just begun to explore the possibil-
ities, even within our own platform. Many ap-
plications require a much smaller power budget
than the 96 mW result we have demonstrated.
Our long-term goal is to design sensors capa-
ble of operating entirely from scavenged en-
ergy, (e.g. solar), which requires operation in
the range of 1 mW[5].

We are currently building a low-power “trip-
wire” module which will implement single-
channel acoustic vehicle detection. This will
allow the PXA module to be completely off
when a vehicle is not present. We antici-
pate that this will allow beamforming within
a power budget as low as 10 mW.

As mentioned in Section 5, there remains a fair
amount of engineering and research with re-
gards to the role of Linux within a distributed
sensor. This includes reducing the time re-
quired in the power management callbacks of
all relevant drivers as much as possible. An
additional task is to move from Linux version
2.4 to 2.6. The dynamic nature of the new uni-
fied device model in 2.6 should make a natural
fit with a platform consisting of autonomous
modules that can be powered on and off at any
point.

Additionally, new power-scheduling research
could better take advantage of the wide range
of power modes in this platform. For exam-
ple, Linux could monitor the frequency and
duty cycles of the power-up/shutdown and sus-
pend/resume cycles. It would then be possi-
ble to provide intelligent feedback into these
cycles based on the relative overhead of each
transition. This work would complement cur-
rent efforts that dynamically adjust voltage and
clock rate based on system load.

9 Availability

This work has been developed as part of the
Power-Aware Sensing Tracking and Analysis
(PASTA)project, but we hope that it will be
useful to researchers and hobbyists with a wide
range of applications. To that end we are
working toward making the hardware mod-
ules available at cost. Further details will be
made available at the PASTA website,http:
//pasta.east.isi.edu . All of the soft-
ware developed under PASTA is also available
there under the terms of the GNU General Pub-
lic License (GPL).
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Abstract

Virtualization provides an abstraction layer
mapping a virtual resource to a real resource.
Such an abstraction allows one machine to be
carved into many virtual machines as well as
allowing a cluster of machines to be viewed
as one. Linux provides a wealth of virtual-
ization offerings. The technologies range in
the problems they solve, the models they are
useful in, and their respective maturity. This
paper surveys some of the current virtualiza-
tion techniques available to Linux users, and
it reviews ways to leverage these technologies.
Virtualization can be used to provide things
such as quality of service resource allocation,
resource isolation for security or sandboxing,
transparent resource redirection for availability
and throughput, and simulation environments
for testing and debugging.

1 Introduction

Virtualization has many manifestations in com-
puter science. At the simplest level it can be
viewed as a layer of abstraction which helps
delegate functionality—typically handling re-
source utilization. This abstraction layer of-
ten helps map avirtual resource to aphysi-
cal or real resource. The virtual resource is
then presented directly to the resource con-
sumer obscuring the existence of the real re-
source. This can be implemented through hard-

ware1 or software [16, 21, 19], may include
any subset of a machine’s resources, and has
a wide variety of applications. Such usages
include machine emulation, hardware consol-
idation, resource isolation, quality of service
resource allocation, and transparent resource
redirection. Applications of these usage mod-
els include virtual hosting, security, high avail-
ability, high throughput, testing, and ease of
administration.

It is interesting to note that differing virtual-
ization models may have inversely correlated
proportions of virtual to physical resources.
For example, the method of carving up a sin-
gle machine into multiple machines—useful
in hardware consolidation or virtual hosting—
looks quite different from a single system im-
age (SSI) [15]—useful in clustering. This pa-
per primarily focuses on providing multiple
virtual instances of a single physical resource,
however, it does cover some examples of a sin-
gle virtual resource mapping to multiple phys-
ical resources.

Modern processors are sufficiently powerful to
provide ample resources to more than one op-
erating environment at a time. Of course, time-
sharing systems have always allowed for con-
current application execution. However, there
are many ways in which these concurrent ap-
plications may effect one another. Because the

1For example, an MMU helps with translation of vir-
tual to physical memory addresses.
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operating system provides access to shared re-
sources such as the CPU, memory, I/O devices,
file system, network, etc., one application’s use
of the system’s resources may effect another’s.
This can have negative effects on both quality
of service and security. Carving a single ma-
chine into a series of independent virtual ma-
chines can eliminate the quality of service and
security issues.

At the same time, modern computing systems,
inclusive of both hardware and software, are
subject to failures and scalability problems.
The application of virtualization can hide these
shortcomings by distributing computing loads
across a cluster of physical systems which may
present a singlevirtual interface to an applica-
tion.

The remainder of this paper is organized as
follows. Section 2 presents a variety of vir-
tualization techniques. Section 3 gives a de-
tailed comparison of some of these techniques.
Section 4 presents conclusions drawn from the
comparisons.

2 Virtualization Techniques

The term “virtual” is one of those horribly
overloaded terms in computing. For the pur-
pose of this paper, we will define virtualization
as a technique for mapping virtual resources to
real resources. These virtual resources are then
used by the resource consumer, fully decou-
pled from any real resources that may or may
not exist. As discussed in Section 1 the virtual
resource may be some or all of a system’s re-
sources.

There are many virtualization techniques avail-
able to Linux users, and these techniques can
be leveraged through a variety of applications.
The techniques reviewed in this paper fall
roughly into two categories:completevirtu-
alization, Section 2.1, which provides all or

nearly all of a system’s resources; andpar-
tial virtualization, Section 2.2, which provides
only a specialized subset of resources. Under-
standing the different techniques helps identify
which technique is the best given a specific set
of requirements.

2.1 Complete Virtualization

Complete virtualization techniques involve
creating a fully functional and isolated virtual
system which can support an OS. This instance
of the OS may have no indication that it is
not being run natively on real hardware, and
it is often referred to as theguest. Host-based
virtual systems run atop an existinghost OS.
Others run atop a thin supervisor which just
helps multiplex resources to the virtual sys-
tems. Typically the host machine is capable
of supporting many concurrent virtual systems,
each with its own guest OS instance. These
virtual systems can be created by simple soft-
ware emulation or by more complicated meth-
ods. These types of complete virtualization
techniques differ in terms of efficiency and per-
formance, portability for either the host or the
guest OS, and functional goals.

The rest of this section is organized at follows.
Section 2.1.1 is a look at pure software proces-
sor emulation techniques. Section 2.1.2 looks
at the virtual OS approach taken by User-mode
Linux. Finally, Section 2.1.3 reviews tech-
niques using virtual machines and virtual ma-
chine monitors.

2.1.1 Processor Emulation

Processor emulation is one technique used to
provide complete virtualization. In this case,
the CPU is emulated entirely in software. Ad-
ditionally, it is typical to find peripheral de-
vices such as keyboard, mouse, VGA, network,
timer chips, etc. supported by the emulator.
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The emulation is done in user-space software,
which makes it a rich environment for debug-
ging system level software running in the em-
ulator. Also, this technique has great advan-
tages for portability at the cost of runtime per-
formance. The emulator may easily run on var-
ious hardware architectures, as all emulation is
done in software. Further, because these are
hardware emulators, there is often little to no
restriction on what OS software can be exe-
cuted. However, the dynamic translation re-
quired to translate hardware instructions from
the emulated processor to the native processor
is pure overhead, and thus can be hundreds of
times slower than native instructions [22].

An exhaustive survey of processor emulators is
beyond the scope of this paper. Here we take
a brief look at a few of the prevalent emulators
often used to host virtual Linux instances:

• QEMU CPU emulator
• Bochs
• PearPC
• Valgrind.

QEMU [21] is a CPU emulator that does dy-
namic instruction translation. It maintains a
translation cache for efficiency. It can be used
as a user-mode emulator which will run Linux
binaries compiled for the CPU that QEMU
is emulating regardless of the host platform.
Also, QEMU can do full system emulation,
which allows one to boot an OS on the QEMU
emulated CPU. While the QEMU user-mode
is available for many architectures, the com-
plete system emulation mode is only available
for x86 and is in testing for PowerPC. The x86
emulator provides all the PC peripheral devices
needed to boot an OS, and can easily run an
unmodified Linux kernel. It also features de-
bugger support which can be quite useful for
debugging a Linux kernel.

Bochs [2] is an IA-322 CPU emulator. It does
dynamic compilation and is often cited as be-
ing rather slow [3]. Similar to QEMU, Bochs
provides full platform emulation sufficient for
running an OS, and it can boot an unmodified
Linux kernel. While Bochs is highly portable,
it targets only the IA-32 processor.

PearPC [17] is a PowerPC CPU emulator. The
generic PearPC CPU emulator can be ported
and is slow. PearPC also provides a Pow-
erPC CPU emulator that is specific to x86
hosts. This version uses dynamic instruc-
tion translation and caching techniques (simi-
lar to QEMU) which improve the speed sub-
stantially.

Valgrind [14] is worthy of mentioning as it is
both a very useful tool and contains an x86-
to-x86 just-in-time (JIT) compiler, thus emu-
lating the x86 CPU. However, this tool has
been historically used like Purify [10] as a
memory checker, and not typically used for
bringing up a virtual instance of Linux on the
emulated CPU3. It handles user-space emula-
tion, but not full system emulation. Valgrind
is developed as an instrumentation framework
around the JIT, so it can been expanded to be a
general purpose “meta-tool for program super-
vision.” [14]

2.1.2 Virtual OS

The virtual OS is rather specific to User-mode
Linux (UML) [6]. In this case, the physical
machine is controlled by a normal Linux ker-
nel. The host kernel provides hardware re-
sources to each UML instance. The UML ker-
nel provides virtual hardware resources to all
the processes within a UML instance. The pro-
cesses on a UML instance can run native code

2IA-32 and x86 are used interchangeably in this pa-
per.

3Efforts have been made to run UML under Valgrind.
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on the processor, avoiding pure emulation, and
UML kernel traps all privileged needs. The
UML kernel is, in fact, just an architectural
port—ARCH=um—of the normal Linux ker-
nel. The architecture specific code in UML is
actually user-space code which uses the host
Linux kernel system call interface. In other
words, it is a port of the Linux kernel to the
Linux kernel. This form of virtualization can
be used for security4, debugging, or virtual
hosting.

2.1.3 Virtual Machine

The virtual machine (VM) has been studied for
well over thirty years [8, 9]. It is a power-
ful abstraction that gives the illusion of run-
ning on dedicated real hardware without such
physical requirements. In its early incarna-
tions it provided a safe and convenient way
to share expensive hardware resources. The
well-known IBM VM/370 [5] simulated the
System/390 hardware, presenting multiple in-
dependent VM’s to the user. The VM/370
was aided by the System/370 hardware design,
a luxury which is often not available to the
modern world of low-priced, powerful com-
modity processors based on the x86 architec-
ture [23]. However, it is precisely this type
of environment which can benefit from con-
solidating multiple hardware servers to a single
amply powered machine.

The typical architecture includes a physical
platform which runs a virtual machine moni-
tor (VMM). This monitor carves up the physi-
cal resources and makes them available to each
virtual machine. In some cases, the VMM
is host-basedrequiring a host OS, host spe-
cific drivers and user-space code to launch a
VM [13, 7]. As with processor emulation in

4To be secure, UML must run inskas mode which
requires a small patch to the host kernel

Section 2.1.1, it is beyond the scope of this pa-
per to give an exhaustive survey of virtual ma-
chine technologies. Here we take a brief look
at a few of the prevalent projects which can be
used to run Linux in a virtual machine:

• Plex86
• VMware5

• Xen

Plex86 [18] is one project that provides an x86
virtual machine. This project provides a hosted
virtual machine monitor, requiring a host OS
to run the plex86 VMM. Plex86 is quite spe-
cific to Linux. The host OS may be Linux (al-
though other host kernels are supported) and
requires a kernel module to help implement the
VMM. It also makes some key assumptions re-
garding usage of the virtual x86 hardware and
patches the guest Linux kernel to conform to
these assumptions. Plex86 does very little to
virtualize hardware I/O. Instead, Plex86 uses a
Hardware Abstraction Layer (HAL) to handle
virtual I/O to the hardware devices. This elim-
inates the need to provide any kind of virtual
devices in the VM, and being host-based elim-
inates the need for the VMM to understand all
the possible hardware on the host. I/O which
is started in the guest OS is passed through the
HAL using fairly simple guest kernel drivers
which issue anint $0xff —which must not
be used for other purposes on the host OS. The
host VMM traps that software interrupt and
handles the request accordingly. As noted by
the project’s author, Plex86 is still in a proto-
type state, and not really ready for meaningful
benchmarking yet.

VMware [7] is worthy of mention, despite the
fact that it is a commercial product. VMware™
Workstation [12] provides an x86 virtual ma-
chine and is in some ways similar to Plex86. It
is a hosted virtual machine monitor, however,

5VMware is a commercial product.
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the goals of VMware Workstation include the
ability to run a complete x86 OS without mak-
ing any modifications. Therefore, it makes no
assumptions about the guest OS. By emulating
very standard hardware such as the PS/2 key-
board and mouse, the AMD PCnet™ network
interface card or the Soundblaster 16 sound
card the VM provides virtual hardware devices
that can be run by standard guest OS drivers.
Another x86 virtual machine from VMware is
the ESX Server [26]—a pure virtual machine
monitor that is not host-based. This method
eliminates some of the overhead involved with
running atop a host OS at the cost of requiring
more hardware support in the VMM itself. As
with Workstation, ESX requires no modifica-
tions to the guest OS. The lower overhead of
ESX makes it a contender for a data center vir-
tual hosting environment, where it could easily
run multiple VM’s on a single physical system.

Xen [16] is an x86 virtual machine monitor that
provides a virtual hardware interface to the vir-
tual machine. Typically, the virtual machine
provides a hardware interface which is identi-
cal to the underlying hardware. However, the
Xen VM hardware abstraction is similar but
not identical to the underlying x86 hardware.
This allows the VMM to overcome some of
the shortcomings of the x86 architecture which
make it difficult to virtualize [23]. A similar
method was used for the Denali [1] isolation
kernel. However, unlike Denali, the Xen VM
supports a notion of a virtual address space.
So the guest OS and applications may share
resources just like a normal OS environment.
In addition, guest kernels running in a Xen
VM preserve the ABI to their applications. So,
while there is a need to port the guest OS kernel
to the Xen VM virtual hardware abstraction,
the porting effort ends there. Further, given the
similarity to the x86 architecture, the effort to
port to Xen results in a very small amount of
new OS code—well below 2% of the OS code
base [16]. This method has proven to be quite

effective when considering the minimal porting
effort coupled with the impressive performance
benchmarks [16].

2.2 Partial Virtualization

Partial virtualization techniques create virtu-
alized resources that are a specialized subset
of a complete system’s resources rather than a
complete virtual machine. These methods are
typically used to present a virtual interface to
clients or applications when limited isolation
or virtualization is sufficient. Partial virtual-
ization can have very different applications de-
pending on the resource which is being virtual-
ized. These techniques vary widely in the prob-
lems they solve, and in some cases can be used
with alongside of complete virtualization. The
remainder of this Section reviews these tech-
niques.

2.2.1 Linux-Vserver

The Linux-Vserver [20] project takes some
of the basic ideas of isolation from a vir-
tual machine and implements them in a sin-
gle host OS. The Linux kernel is patched to al-
low for multiple concurrent execution contexts,
often called Virtual Private Servers6 (VPS).
This method eliminates any overhead associ-
ated with running multiple operating systems,
multiple VM’s and the supervisor VMM. Each
context can have its own file system, its own
network addresses, its own set of Linux Capa-
bilities [25], and its own set of resource limits.
With this level of software isolation, it is pos-
sible to run two concurrent contexts that are
unable to interact with each other directly. It
may still be possible to generate some indirect
QoS degradation fromcrosstalk[24], however
these effects should be largely mitigated by

6This is also the name given to Ensim’s commercial
product [4].
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proper setting of each context’s resource limits.
While this solution does require a reasonably
large kernel patch (a 337K patch against Linux
2.6.6), it is a very thin virtualization layer that
efficiently isolates execution contexts.

2.2.2 Linux Virtual Server

The Linux Virtual Server Project [11] takes
a very different view of server virtualization
from Linux-Vserver, Section 2.2.1. Rather
than creating a virtual operating environment
for each server, it behaves as a network load
balancer. The Linux Virtual Server, also re-
ferred to as IP Virtual Server (IPVS), presents a
single network address for the network service
and distributes client requests transparently to
a hardware cluster of network servers. With
IPVS, the client can be redirected to the next
available resource using a variety of algorithms
such as round robin and least connected. This
is an example of virtualization used to provide
enhanced availability throughput, or scalabil-
ity. Further, this project in contrast with Linux-
Vserver helps illustrate the difficulty in defin-
ing a “Virtual Server.”

2.2.3 File system and Disks

The UNIX file system provides the basic
namespace that applications use to interact
with significant portions of the system. The
root of a file system can be relocated in Linux
using chroot() . This may be a stretch of
the definition of virtualization, but this tech-
nique does allow a single server to give dif-
ferent views into the system global names-
pace. Tools likechroot() or the BSD
jail() system7 allow multiple applications
to have completely private file system names-

7An implementation of BSD jail has been ported to
Linux.

paces, which becomes an effective tool towards
system virtualization. In fact, Linux-Vserver,
Section 2.2.1, makes use ofchroot() as key
to its file system isolation. Linux has native
support for per process private namespaces.
This gives each process its own virtual or log-
ical view of the system’s global namespace, in
a more powerful, flexible and secure manner
thanchroot() . Linux-Vserver is consider-
ing moving to namespaces as a replacement for
chroot() isolation [20]. It would not be sur-
prising to find other virtualization systems us-
ing the same technique for file system isola-
tion.

Another layer of virtualization can be found in
the disk or block device layer of the Linux ker-
nel. The device-mapper allows administrators
to create a virtual block device which is backed
by one or more physical block devices. This
type of virtualization is typically used for ease
of administration.

3 Comparisons

Having reviewed a variety of virtualization
techniques in Section 2, it is now useful to pick
a representative subset and see how they com-
pare with one another. For the sake of com-
parison, this paper will focus on QEMU, User-
mode Linux, Xen, and Linux-Vserver. All four
of these technologies can provide a virtual exe-
cution environment comprehensive enough to
run either a complete OS, or at a minimum
user-space applications.

3.1 QEMU

Pros:

• Portable to numerous architectures.
• Can be used to cross platforms.
• Can run guest OS unmodified.
• Can run on unmodified host OS.
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• Flexible, can run a full system or just iso-
lated user-space programs.

• Very easy to debug system software.
• Security through isolation.

Cons:

• Processor emulation is much slower than
virtualization.

3.2 User-mode Linux

Pros:

• Portable to numerous architectures.
• Can run on unmodified host OS.
• Efficient enough to run multiple instances

on single host in virtual hosting environ-
ment.

• Very easy to debug system software.
• Security through isolation.

Cons:

• Still slower than a virtual machine.
• The guest OS kernel is not the same as a

native one.

3.3 Xen

Pros:

• True virtual machine monitor for best per-
formance.

• The guest OS user-space applications are
binary compatible.

• No host OS, very clean virtual machine
separation.

• Security through isolation.
• Ideal for virtual hosting environment, can

scale up to 100 virtual machines.

Cons:

• The guest OS kernel must be ported to
Xen virtual hardware architecture.

3.4 Linux-Vserver

Pros:

• Highly efficient way to isolate resources.
• Can conserve on disk and memory by

sharing basic resources like shared li-
braries.

• Security through context separation.

Cons:

• Only one kernel instance, so quality of
service may be hard to guarantee.

4 Conclusions

Virtualization is an old yet resurging technol-
ogy. Virtual machine research is alive and well,
and Linux provides a great testbed for new
virtualization technologies. With a wealth of
choices, Linux users are sure to find a virtual-
ization technique that suits their requirements.
From running as a guest OS on a virtual ma-
chine, to providing thin isolation environments
for applications, to single system image clus-
ters, Linux is thriving in this virtual reality.
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