
Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Contents

UML Simulator 8

Werner Almesberger

SCSI Mid-Level Multipath 23

Mike S. Anderson

IPv4/IPv6 Translation 34

William Atwood

Building Enterprise Grade VPNs 44

Ken S. Bantoft

Linux memory management on larger machines 50

Martin J. Bligh

Integrating DMA into the Generic Device Model 63

James Bottomley

Linux Scalability for Large NUMA Systems 76

Ray Bryant

An Implementation of HIP for Linux 89

Catharina L. Candolin

Improving enterprise database performance 98

Ken W. Chen

High Availability Data Replication 109

Paul R. Clements

Porting NSA Security Enhanced Linux to Hand-held devices 117

Russell Coker

Strong Cryptography in the Linux Kernel 128

Jean-Luc R. Cooke

Porting Drivers to the 2.5 Kernel 134

Jonathan M. Corbet

Class-based Prioritized Resource Control in Linux 150

Hubertus Franke

Linux Support for NUMA Hardware 169

Patricia A. Gaughen

Kernel configuration and building in Linux 2.5 185

Kai Germaschewski

Device discovery and power management in embedded systems 201

David W. Gibson

Gnumeric – Using GNOME to go up against MS Office 213

Jody E. Goldberg

DMA Hints on IA64/PARISC 219

Grant Grundler

A 2.5 Page Clustering Implementation 233

William L. Irwin

Ugly Ducklings – Resurrecting unmaintained code 242

Dave Jones

udev – A Userspace Implementation of devfs 249

Greg Kroah-Hartman

Reliable NAS from Dirt Cheap Commodity Hardware 258

Benjamin C.R. LaHaise

Improving the Linux Test Project with Kernel Code Coverage Analysis 260

Paul W. Larson

Effective HPC Hardware Management and Failure Prediction Strategy Using IPMI 275

Richard Libby

Interactive Kernel Performance 285

Robert M. Love

Machine Check Recovery for Linux on Itanium Processors 297

Tony Luck

Low-level optimizations in the PowerPC Linux Kernels 304

Paul Mackerras

Sharing Page Tables in the Linux Kernel 315

Dave McCracken

Kernel Janitors: State of the Project 321

Arnaldo Melo

Linux Kernel Power Management 325

Patrick Mochel

Bringing PowerPC Book E Processors to Linux 340

Matthew D. Porter

Asynchronous IO Support in Linux 2.5 351

Badari Pulavarty

Towards an O(1) VM 367

Rik van Riel

Developing Mobile Devices based on Linux 373

Tim Riker

Lustre: Building a File System for 1,000-node Clusters 380

Phil Schwan

OSCAR Clusters 387

Stephen L. Scott

Porting Linux to the M32R processor 398

Hirokazu Takata

Linux in a Brave New Firmware Environment 410

Matthew E. Tolentino

Implementing the SMIL Specification 424

Malcolm Tredinnick

Benchmarks that Model Enterprise Workloads 434

Theodore Y. Ts’o

Large Free Software Projects and Bugzilla 447

Luis Villa

Performance Testing the Linux Kernel 457

Cliff White

Stressing Linux with Real-world Workloads 470

Mark A. Wong

Xr: Cross-device Rendering for Vector Graphics 480

Carl D. Worth

relayfs: An efficient unified approach for trasmitting data from kernel to user space 494

Karim Yaghmour

Linux IPv6 Networking 507

Hideaki Yoshifuji

Fault Injection Test Harness 524

Louis lz Zhuang

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

UML Simulator

Werner Almesberger∗

werner@almesberger.net

Abstract

umlsim extends user-mode Linux (UML) with
an event-driven simulation engine and other
instrumentation needed for deterministically
controlling the flow of time as seen by the
UML kernel and applications running under it.

umlsim will be useful for a wide range of ap-
plications in research and kernel development,
including simulations involving the network-
ing code, regression tests, proof of race con-
ditions, validation of configuration scripts, and
also performance analysis.

This paper describes the design and implemen-
tation of umlsim, gives a brief overview of the
scripting language, and shows a real-life usage
example.

1 Introduction

Simulation is an effective means for examining
properties of systems that are too complex, too
volatile, too expensive, or simply too large to
build and test in real life.

In the development of the Linux kernel, simu-
lations only play a niche role, and are rarely
used for more than helping in the design of
individual components. Also for performance
evaluation, there is broad reliance on bench-
mark suites, but little is done with simulations

∗The work presented in this paper is
conducted as part of the FAST project
at the California Institute of Technology,
http://netlab.caltech.edu/FAST/

that would allow to pinpoint bottlenecks and
regressions with much more accuracy.

umlsim provides an environment that allows
the use of regular Linux kernel or application
code in event-driven simulations. It consists of
an extension of user-mode Linux (UML, [1])
to control the flow of time as seen by the UML
kernel and applications running under it, and a
simulation control system that acts like a de-
bugger, and that is programmed in a C and
Perl-like scripting language.

The key feature of umlsim is that—unlike most
other simulators, which implement an abstract
model of the system being simulated—it uses
the original Linux kernel code, with only mi-
nor changes. This reduces the risk of creating
simulations that differ in some important de-
tails from the original, avoids code forking, and
generally shortens the process of designing and
building a simulation.

The simulation environment is deterministic,
i.e. running a simulation multiple times will
produce exactly the same results, although one
can of course also introduce real or pseudo ran-
domness. This makes umlsim suitable for re-
gression tests, and for exercising specific exe-
cution patterns that exhibit problems.

The project’s home page is athttp://
umlsim.sourceforge.net/

One of the first uses of umlsim is to exam-
ine the behaviour of Linux TCP in gigabit net-
works [2], but it will also be useful for many
other applications in research and kernel de-

Linux Symposium 9

velopment, including regression tests, exami-
nation of race conditions and other kernel bugs,
validation of configuration scripts, and perfor-
mance analysis.

This paper is intended for two different au-
diences: first, it aims to introduce the capa-
bilities and concepts of umlsim to prospective
users. Second, it gives other kernel develop-
ers an overview of the kernel changes, and de-
scribes mechanisms that could also be useful in
other projects.

This introduction continues with the historical
background and related work. Section 2 dis-
cusses overall design and implementation as-
pects, and section 3 describes the most impor-
tant elements of the scripting language. A real-
life simulation example is given in section 4.
We conclude with a discussion of future uses
and improvements.

1.1 History

The basic concept behind umlsim, namely to
use original kernel and user space code in sim-
ulations, was already explored in the earlier
tcng (“Traffic Control Next Generation” [3])
project.

The main component of tcng is a compiler that
translates traffic control configurations from a
high-level language to the low-level commands
understood by the tc command-line utility. In
that project, a simulator called tcsim is used
to validate that these commands are formally
correct, and that they also yield the desired
behaviour. In particular, since the configu-
ration process involves many inter-related pa-
rameters with poorly documented semantics, it
happened quite frequently that the use of some
parameters or constructs was mis-interpreted.

Simulators usually implement an abstracted
model of the system they simulate. In the case
of tcng, this approach could lead to a simulator

that contains the same mis-interpretations as
the program being tested, so both would hap-
pily agree on incorrect results.

To avoid this problem, tcsim reduces the
amount of abstraction needed by building the
simulation environment from portions of the
original traffic control code of the kernel, and
the tc configuration utility. The structure of
tcsim is depicted on the left-hand side of Fig-
ure 1.

This approach also allows the use of powerful
user-space debugging tools like ElectricFence
[4] and valgrind [5] to find bugs in the original
code.

Kernel

net

tcsim

tcsim merges
code from
kernel and
user space

tc

space
User

control
Simulation

Kernel

UML

Simulation
control

space
User

support
Simulation

user space
unchanged
umlsim uses

UML

Simulator
controls a
slightly extended UML kernel

any
prog.

extracted

Figure 1: tcsim uses a monolithic approach,
with many dependencies on kernel and user
space internals. umlsim is modular, and re-
quires only very minor changes.

The difficult part in writing tcsim was to extract
precisely the right amount of kernel code, and
to make it fit in the simulation environment.
In many cases, some small code modifications
are needed to eliminate unwanted references to
structure elements, variables, and functions not
available in the simulator. All this makes the
extraction procedure very sensitive to even the

Linux Symposium 10

smallest changes.

tcsim was written for 2.4 kernels. Early in 2.5
development, it became clear that the network-
ing code had changed sufficiently to require a
major rewrite of the extraction process.

Another limitation of tcsim is that it only cov-
ers a very small part of the networking stack.
For instance, it would be interesting to use TCP
as a reactive traffic source.

The bottom line of the experience with tcsim is
that, while using the original source also for the
simulator works well, the process of extracting
it causes problems and confines the simulator
to only a small part of the system. So, why
not avoid the extraction step at all, and use the
entire kernel?

This is the approach chosen for umlsim, as
shown on the right-hand side of Figure 1: in-
stead of extracting the interesting bits from the
kernel, it builds on UML, where all the work of
making the Linux kernel run in user space has
already been done, and adds a few functions
for simulation control to it. User space is left
completely unchanged.

1.2 Other simulators

Particularly in the area of networking, simula-
tors are rather common tools. In many cases,
they focus only on a very limited set of func-
tions, such as a specific protocol. Among the
more general simulators, the network simula-
tor ns-2 [6] is certainly the one most widely
known.

ns-2 consists of a modular simulation core
written in C++, which is configured through
scripts written in an extended version of the Tcl
scripting language. The core provides network
elements, protocol engines, and traffic genera-
tors.

umlsim also has a “core,” but this core provides
only very low-level primitives, and higher level
functions are implemented by scripts. On the
other hand, large subsystems, such as TCP,
are simply reused without needing any special
treatment in the simulator, and they behave in
every detail like in a real system.

ns-2 is much faster than umlsim, and will prob-
ably always be, while umlsim is more general
and can also be used for simulations involving
other subsystems, instead of or in addition to
networking.

2 Simulator design

umlsim consists of a simulation control process
(we shall call it simply “the simulator”), and
the UML systems that are being studied in the
simulation. Besides UML systems, a simula-
tion can also include other processes, e.g. to
implement communication services. The gen-
eral structure of a simulation system is shown
in Figure 2.

The simulator executes a script in a C/Perl-like
language. Scripts serve two purposes: (1) they
define the simulation and control its execution,
and (2) they provide the “glue” between the ac-
tual simulation and the processes used in it, and
also between elements in these processes.

A simulation can choose how closely the sim-
ulator and the UML systems interact, i.e. the
simulator may just watch a few variables and
perform basic synchronization, but exercise no
further control over execution, but it may as
well intercept even the slightest activity, ma-
nipulate variables in the UML kernel, and even
alter the flow of execution. Typically, umlsim
controls UML at a very low level, but hides
most of these interactions inside the simula-
tor and behind library functions that provide a
higher level of abstraction.

Linux Symposium 11

Idle task

Idle task

Script

umlsim
"Simulator"

UML systemsIdle messages

Process controls other process(es)

Direct communication through pipes

Applications

Standalone
processes

thread
Tracing

thread
Tracing

idle
umlsim

Applications

umlsim
idle

Figure 2: The simulator controls UML systems
and other processes. Each UML system in turn
consists of several processes.

The simulator basically acts like a debugger,
and places breakpoints into the UML kernel.
When the kernel is stopped, the simulator can
read and change variables. The simulator can
also call functions, make them return, etc.

In addition to this, the simulator exchanges
time updates with the umlsim idle thread de-
scribed in the next section directly through a
pair of pipes.

Figure 3 shows the current structure of li-
braries. Work in this area of umlsim is still very
much in progress.

2.1 Virtual time

It is frequently desirable to run simulations in a
deterministic virtual time instead of real time.
umlsim can accomplish this by adding code to
the kernel that intercepts all functions reporting

Simulation scripts

High−level subsystem interface

General helper Subsystem−specific
helper functions

Core primitives (scripting language)

functions

exten−
Language

sions

register,
(string,

run, ...) (kernel, queue, ...)

(netsim)

(tcp−peek, tcp−quarter, ping−peek, ...)

(nettap, skbuff, ...)

Processes, breakpoints, time control, ...

Figure 3: Organization of libraries in umlsim.

or advancing time, and puts them under its own
control. This code also introduces a umlsim-
specific idle thread that yields to all other tasks,
except the kernel’s regular idle task.

Whenever the kernel is idle (i.e. no process is
scheduled to run), the umlsim code in the ker-
nel does one of the following:

• if a soft-interrupt is pending: it generates a
timer interrupt, but does not advance time

• if a timer will expire within the next jiffy:1

it generates a timer interrupt, and allows
do_timer to advance time by one jiffy

• if the next timer will expire in the future:
the UML kernel reports this back to the
simulator, and waits for further instruc-
tions

Since the kernel always runs some timers
(such as neigh_periodic_timer and
rt_check_expire), umlsim does not need
to handle the case of a timeout without further
activity.

1The “jiffy” is the basic time unit in the kernel. One
jiffy typically equals 1–10 ms.

Linux Symposium 12

The kernel can also become active when a de-
vice interrupt arrives. umlsim currently only
handles network events. Instead of using sig-
nals (which correspond to interrupts in UML),
it calls the functions invoked by interrupt han-
dlers directly.

When all kernels in a simulation report that
they are waiting for a timer, the simulator picks
the earliest expiration time among these timers
(or a timeout specified in thewait command,
if it is earlier), sets the global simulation time
to that value, and updates the local time in all
kernels.

2.2 Running UML under a debugger

When running UML under a debugger or a
similar program (such as strace), the tracing
thread watches the debugger withptrace , in-
tercepts calls to functions likeptrace and
waitpid , and emulates them or redirects
them to the process currently executing the ker-
nel. This part of UML is called the “ptrace
proxy.”

Unfortunately, this design allows only a single
UML system per debugger, because a process
can be watched withptrace by at most one
process at any given time.

In order to control multiple UML systems,
umlsim forks a forwarder process for each such
system. This process communicates with the
main simulator through pipes, and executes the
ptrace calls on its behalf. This is shown in
Figure 4.

As an example, Figure 5 shows a simplified
flow of control when the simulator performs a
ptrace call on a UML system.

2.3 Debugging the kernel

There are several idiosyncrasies of kernel code
and of the way gcc compiles it that need spe-

umlsim

Forwarder

Message exchange over pipes

ptrace calls from
forwarder are redirected
to process executing the
kernel

UML ptraces the forwarder to
intercept calls to ptrace,

waitpid, etc.

Tracing
thread

Processes

Figure 4: umlsim uses an intermediate for-
warder process to “debug” the UML system.

cial attention in umlsim. This section describes
some of them.

Because thejiffies variable is defined in
the linker, the debugging information gener-
ated by the compiler only contains its decla-
ration, but not its location. umlsim therefore
retrieves this information from the symbol ta-
ble of the kernel executable, and augments the
declaration with it.

Some functions use registers instead of the
stack to pass arguments (e.g. those declared
with FASTCALL). umlsim currently does not
support or even recognize this.

The kernel makes heavy use of inline func-
tions. One peculiarity of inline functions is that
breakpoints in an inline function need to be re-
peated for each instance of this function. Fur-
thermore, gcc rearranges and sometimes even
removes labels (the ones used as targets for
goto statements) when optimizing. umlsim
introduces a mechanism called “reliable mark-
ers” that includes an explicit label in the func-
tion, which can then be used for breakpoints.
Reliable markers also work in functions that

Linux Symposium 13

umlsim Forwarder

SIGCHLD for intercepted ptrace system call

ptrace call(s) to retrieve ptrace arguments

ptrace call(s) to return the result

Resume execution (PTRACE_SYSCALL)

Message requesting a ptrace call

Message returning the result

ptrace call to process executing the kernel

Tracing thread Process

Figure 5: Simplified control flow when the
simulator performs aptrace call on a UML
system.

are not inlined, and are used as follows:

void some_function(int a)
{

int b = 10;

MARKER(label_name,a,b);
...

Variables that may be accessed by the simula-
tor when stopped at the location of the marker
are listed after the label name. This makes sure
that the variables in question have a memory
location, that they are not cached in registers
when passing the marker, and that no code ac-
cessing these variables gets moved across the
marker. (E.g. in the example above, the com-
piler might otherwise try to move the initializa-
tion of b after the marker.)

Also, since many low-level service functions
are declaredstatic inline , they cannot
be called directly. umlsim generates callable
instances of the most common inline functions
by including their definitions in a file compiled
with -fkeep-inline-functions .

2.4 Kernel changes

The kernel changes required for umlsim are
comparably minor, and most of them are in the
area specific to the UML architecture.

umlsim requires the following changes in
generic kernel code:

• calibrate_delay explicitly waits for
a timer interrupt, which would never hap-
pen under umlsim, because at that time,
the umlsim idle thread does not yet ex-
ist. Therefore, umlsim simply skips
calibrate_delay when using virtual
time, and setsloops_per_jiffy to
one.

• functions are added totimer.c to re-
trieve the expiration time of the next timer.

umlsim replaces the following functions using
the linker’s--wrap mechanism:

• do_gettimeofday and
gettimeofday return the simula-
tion time instead of the system’s real
time.

• setitimer becomes a no-op, because
umlsim generates all timer interrupts un-
der its own control.

• a switch is added to control whether a
timer interrupt invokesdo_timer . This
way, timer interrupts can be used to
run soft-interrupts without advancing the
jiffies count.

• idle_sleep leads to the timeout han-
dling code of umlsim.

The timeout handling code decides which ac-
tions to take (e.g. to raise a timer interrupt

Linux Symposium 14

if there are pending soft-interrupts), commu-
nicates with the simulator, and maintains the
various “current time” variables.

The umlsim patches also add the reliable mark-
ers, and callable definitions of common inline
functions, which are both described in the pre-
vious section.

2.5 Network simulation

When simulating network elements, uml-
sim builds on the infrastructure used by
uml_switch, but the script intercepts the trans-
mit function and replaces most of the UML-
specific part of the stack. Figure 6 shows the
key functions invoked when sending and re-
ceiving packets.

dev_queue_xmit uml_net_interrupt

Packet flow in unchanged UML

qdisc_run

qdisc_restart

qdisc_dequeue

uml_net_start_xmit

netif_stop_queue

daemon_user_write

daemon_write

net_sendto

sendto

netif_wake_queue

dev_kfree_skb

dev_alloc_skb

daemon_read

ether_adjust_skb

net_recvfrom

recvfrom

eth_protocol

eth_type_trans

netif_rx

uml_net_rx

um
l_

sw
itc

h

Packet flow with umlsim

UML−specific function

Script handles flow control,
queuing, transport, etc.

Figure 6: Call sequence and packet flow with
and without umlsim (simplified).

With umlsim, the UML-specific networking
part is only used for device setup, but all the
transport and low-level packet manipulation
functionality is provided directly by the sim-
ulation script.

umlsim currently only provides a single-link
model, which will be extended and general-
ized in the near future. Figure 7 shows how
the device interface and link are implemented.
This code can be found in the filesinclude/
netsim.umlsim andinclude/nettap.
umlsim of the umlsim distribution.

$__netsim_outbound_handler

$grab_outgoing_packet

$enqueue

netif_stop_queue

$__netsim_buffer_handler

$dequeue

$enqueue

netif_wake_queue

$__netsim_link_handler

$dequeue

Timeout

Timeout

Breakpoint

$deliver_packet

dev_alloc_skb

ether_adjust_skb

eth_type_trans

netif_rx

Device
buffer

Link queue

Stack

A
ll

ha
nd

le
rs

 a
re

 d
is

p
a

tc
he

d
 th

ro
ug

h
$n

e
ts

im
_l

o
o

p

Stack

Figure 7: Control flow in script implementing
network device and link.

When reaching the breakpointuml_net_
start_xmit , umlsim retrieves the packet,
calculates the queuing delay, and stores it in an
internal queue. If the device queue is full, the
script calls the flow-control functionnetif_
stop_queue .

When the packet is due for sending, it is de-
queued and put into the link queue, from which
it emerges after the transfer delay. umlsim
then invokes basically the same functions as
the original code, and finally pushes the packet
to the stack by callingnetif_rx .

Linux Symposium 15

3 The scripting language

The scripting language is mainly based on C
and Perl, but it also borrows concepts from the
Bourne shell, Pascal, and LISP. This section
gives a brief overview of the most important
concepts, and differences to similar languages.

umlsim passes scripts through the C preproces-
sor, so the usual comment handling, macro ca-
pabilities, and include files are available.

3.1 Variables and functions in the simulator

The names of variables in the simulator always
begin with a dollar sign, like in Perl. Also like
in Perl, variables can be used without prior dec-
laration, their value can be of any type, and the
type can be change.

An uninitialized variable has the so-calledun-
defined value. The undefined value can also be
used explicitly, with the constructundef , and
one can test whether an expression yields the
undefined value withdefined expression.

The scripting language, like C, uses lexical
scoping, i.e. the visibility of a variable is de-
termined by its location in the program, but not
by the sequence of function calls that leads to
a specific access.

By default, variables are visible within the en-
closing function, but not in other functions.
This can be changed by either declaring them
local , which creates a new, uninitialized in-
stance that is visible in the current block and
any blocks inside it, or by declaring them
global , which creates a new instance in the
current function, which is visible also in func-
tions defined inside this function. Example:

$a = 5;
{

local $a = 0;

$a++;
{

$a++;
printf("inner %d\n",$a);

}
printf("middle %d\n",$a);

}
printf("outer %d\n",$a);

yields

inner 2
middle 2
outer 5

The goal of these slightly unusual scoping rules
is to avoid explicit declarations as much as pos-
sible, but also to avoid the problem of functions
accidentally altering global variables, which is
common in other scripting languages.2

Functions are anonymous, similar to lambda
expressions in LISP. In order to reference a
function by name, the function has to be stored
in a variable. Example:

global $gcd = function ($a,$b)
{

if ($a == $b) return $a;
return $a > $b ?

$gcd($a-$b,$b) : $gcd($a,$b-$a);
};

print $gcd(300,90);

The scripting language also supports associa-
tive arrays. Indices can be integers, pointers,
strings, processes, or breakpoints. Elements
can be of any type, including arrays. Exam-
ples:

2Only time—and users—will tell whether this is
indeed an improvement over more traditional scoping
rules. Users preferring to declare all their variables
can set the-Wundeclared option to enable warnings
when trying to access undeclared variables.

Linux Symposium 16

$a[0] = 3;
$a["string"] = $a;
print $a["string"][0];

3.2 Printing and files

The scripting language has two output state-
ments: the C-likeprintf , and the “smart”
and somewhat Perl-likeprint .

print accepts a list of items to print, appends
a newline after the last item, and it pretty-prints
structured types. Example:

$proc = uml("linux");
print "xtime = ",xtime;

yields

xtime = {
tv_sec = 0 (0x0)
tv_nsec = 0 (0x0)

}

print outputs integers as decimal and as hex-
adecimal numbers, enumeration type members
by name, strings and signed character arrays as
text strings, and arrays of unsigned characters
as a hexdump. Like in Perl, a separator be-
tween printed arguments can be introduced by
setting the special variable$, .

To send output to a file, the file first has to be
opened with theopen function, which has a
file name argument like Perl’sopen , but re-
turns a file handle. Then, the file handle can
be used as the first argument ofprint or
printf . Example:

$file = open(">tmp");
print $file,"example data";
printf($file,"answer = %d\n",42);
close($file);

Data can be read from files with theread
function, but this is rarely used.

3.3 Control statements

if -else , while (with break and
continue), and for work exactly like
in C. There is nodo-while loop, because
while can be used in its stead.3

switch -case is similar to C, with the differ-
ence that variable expressions can be used for
case labels.

There is nogoto .

3.4 Processes

Simple programs are started with the function
run , and UML systems are started with the
function uml . Both functions return a handle
that identifies the process. They also set the
“magic” variable$$ to this value.$$ always
identifies thecurrent process, i.e. the process
that has most recently been created or stopped,
and that is currently being manipulated.$$ can
be changed by the simulator (when a different
process becomes current) and by the script (if
one wants another process to be current).

run and uml also support some basic
IO-redirection, e.g. run("/bin/date",
">/tmp/xyz")

After run or uml , the process is in thestarting
state, but not yet running. A starting orstopped
process is run with thecontinue statement.4

Thewait statement is used to make the sim-
ulator wait for the next event (process termina-
tion, breakpoint, timeout, etc.). If the event is
related to a process,wait sets$$ to this pro-
cess. Example:

3. . . and because the way programs are represented
internally makesdo-while somewhat difficult to ex-
press. It may be added at a later time.

4This continue has the process handle as argu-
ment, in parentheses, and therefore differs syntactically
from the continue control statement. If continuing
the current process, the parentheses can be left empty.

Linux Symposium 17

$proc =
run("/bin/echo","hello world");

continue();
wait();
print $$ == $proc;

yields5

hello world
1 (0x1)

3.5 Breakpoints, functions, and timeouts

Breakpoints can be placed at function entry, at
the point to which the current function returns,
at labels, and at the reliable markers described
in section 2.3. Breakpoints are set with the
break function, which returns a handle that
identifies the breakpoint.

In the example below, we set breakpoint$b1
at the entry of themain function in the cur-
rent process, breakpoint$b2 at the label or re-
liable markerlabel inside the main function,
and breakpoint$b3 at the location to which the
current function returns.

$b1 = break(main);
$b2 = break(main.label);
$b3 = break(return);

When reaching a breakpoint, umlsim sets$$ to
the process in which the breakpoint is located,
and$! to the breakpoint handle.

When calling a function in the process, also
a breakpoint is generated. This breakpoint is
triggered when the function returns. The re-
turn value of the function is stored in the spe-
cial variable$? . Example:

5After warning that/bin/echo has neither sym-
bols nor debugging information, so there is very little
umlsim can do with this process.

$b = call fn(1,2,3);
continue();
...
wait();
if ($! == $b)

printf("result = %d\n",$?);

This example shows anasynchronouscall, be-
cause other breakpoints, timeouts, or events in
other processes can be handled before the func-
tion returns. If this flexibility is not needed,
one can use the simplersynchronousform,
which does not change$! or $? . Example:

printf("result = %d\n",fn(1,2,3));

Breakpoints can be removed implicitly, by de-
stroying all references to them, or explicitly
with delete(breakpoint);

A script can not only call functions in
a process, but it can also make a func-
tion return. For example,$__netsim_
outbound_handler in Figure 7 forces
uml_net_start_xmit to return, without
executing any code of that function, with
$$.return 0; .

Besides terminating or reaching a breakpoint,
a process may also stop with a timeout. Time-
outs are specified with a time argument to
wait . When the specified absolute time is
reached,wait sets$$ to the undefined value,
and the “current time” variable$@to the time-
out, rounded up to the next nanosecond. Ex-
ample:

wait(10.2);
/* wait until t = 10.2 seconds */

if (!defined $$) print $@;

If more than one timeout can occur at a given
time (e.g. packets arriving within the same

Linux Symposium 18

nanosecond at different points in the simula-
tion), wait($@) must be called after han-
dling each event, so that breakpoints reached
when handling a timeout can be processed
before handling further timeouts. An exam-
ple for usingwait($@) can be found in the
event loop at the end ofinclude/netsim.
umlsim in the umlsim distribution.

Starting
$$ = process
$! = undef

Running

Terminated

after function return

exit or signal

$? = exit status
$$ = process

Stopped Timeout

function return
breakpoint or

umlsim_idle

continue() or wait() wait()

$! = breakpoint
$$ = process

$$ = undef
$? = return value

(if function)

continue()
function call

Figure 8: User-visible process states. “Func-
tion call’ and “return” refer to asynchronous
function calls.

Figure 8 summarizes the process states de-
scribed in this section. States shown in grey
allow manipulations of the process, such as
the creation of new breakpoints, access to vari-
ables, or function calls. A function call from
timeoutputs the process in a state equivalent to
stopped, but it does not affect any of the special
variables.

3.6 Data in a process

umlsim scripts can directly read and write vari-
ables in a process, follow pointers, select struct
or union members, and so on.

The basic operation is to access a variable. In
many cases, simply specifying the variable’s
name is enough, e.g. given the example pro-
gram below,foo retrieves the value 42.

static int foo = 42;

int main(void)
{

static int bar = 5;

MARKER(stop_here,bar);
return bar;

}

Accessingbar is more complicated. If the
program has not been started yet, umlsim looks
for variables only in the global scope. To
access a variable local to a function, it has
to be qualified with the function name, i.e.
main.bar .

If the program is stopped at the label
main.stop_here , umlsim searches the lo-
cal scope first, so justbar is sufficient.

Variables, functions, and labels can also be
qualified with the process and the compilation
unit. Compilation units are in double quotes.
Examples:

$b1 = break($proc.main);
$b2 = break("fs/ext2/super.c".

parse_options);
"drivers/net/tun.c".debug = 1;
"tun.c".debug = 0;

Since distinct processes may use the same
name for different types, also struct or
union tags can be qualified, e.g.struct
$proc_a.sk_buff .

Type definitions withtypedef differ from C
in that umlsim cannot usefully distinguish at
parse time between typedef names and other
identifiers. Therefore, typedef names are al-
ways prefixed with the keywordtypedef ,

Linux Symposium 19

e.g. typedef pte_addr_t . Like all other
names, they can be qualified. For convenience,
the C99 standard integer typesuint32_t ,
int8_t , etc. are predefined.

Conflicts between C identifiers and keywords
of the scripting language (e.g.printf) can be
resolved by escaping the word with a backslash
when the C identifier is meant, e.g.\printf .

A peculiarity in the way umlsim handles data
are array copies: when accessing an object of
array type, the entire array is copied. To obtain
a pointer to the array, the& operator must be
used. Example:

C program fragment:

int a[10];
int b[10];

umlsim script:

$array = a;
b = a; /* memcpy equivalent */
$ptr = &a;

This can also be used in type casts. E.g. the
following construct copies the content of a net-
work packet:

$pkt = (unsigned char [skb->len])
skb->data;

4 Simulation example

In this section, we use umlsim to demonstrate
a bug in Linux TCP, and to show the effect of a
possible fix. The problem in question, which
was first observed on a simulator by Cheng
Jin, is that Linux TCP6 decreases the conges-
tion window (cwnd, TCP’s estimate of how

6Most if not all 2.4 and 2.5 kernels are affected. At
the time of writing, this bug still exists in the mainstream
kernel. The entire discussion can be found at [7].

many packets can be “in flight” for a given con-
nection) too much if there are multiple packet
losses in a single round-trip time.

When a packet is lost, TCP assumes that this
was due to congestion, and reducescwnd by
half. However, if multiple losses occur within
a single round-trip time, they should be treated
only like a single loss. Linux TCP does not
do this, and may reducecwnd to as low as a
quarter of the original value. This causes TCP
to send data a little slower than it would be al-
lowed to.

Sender Receiver

20 packets/s

500 ms one−way delay

5 packets

560 kbps
1500 bytes MTU

packet rate)
Policer (limits

Figure 9: Network setup used in the simula-
tion.

Figure 9 shows the network configuration used
in the simulation: the TCP sender and receiver
are connected by a single link with a round-trip
time of one second. The maximum through-
put is rate-limited to twenty packets per sec-
ond. We simulate the transfer of a 1 MB file.

The left-hand side of Figure 10 shows the
transfer with an unchanged 2.5.66 kernel.
snd_cwnd is the congestion window, in seg-
ments. snd_ssthresh marks the point
where TCP switches between “slow start” and
“congestion avoidance” mode.snd_cwnd
should not fall below snd_ssthresh .
snd_una is the number of bytes that have
been acknowledged by the receiver.packets
lost is the cumulative number of packets
dropped by the rate limiter.

For the second simulation, we use the same

Linux Symposium 20

0
5

10
15
20
25
30
35
40

0 20 40 60 80 100
0

200kB

400kB

600kB

800kB

1MB

S
eg

m
en

ts
 (c

w
nd

, s
st

hr
es

h)

B
yt

es
 (s

eq
ue

nc
e)

t (sec)

With cwnd quarter bug

snd_cwnd
snd_ssthresh

snd_una
packets lost

0
5

10
15
20
25
30
35
40

0 20 40 60 80 100
0

200kB

400kB

600kB

800kB

1MB

S
eg

m
en

ts
 (c

w
nd

, s
st

hr
es

h)

B
yt

es
 (s

eq
ue

nc
e)

t (sec)

Work-around for cwnd quarter bug

snd_cwnd
snd_ssthresh

snd_una
packets lost

Figure 10: Simulated transfer with and without the “cwnd quarter” bug.

kernel, but set a breakpoint at the beginning
of tcp_cwnd_down , and execute a replace-
ment in the script instead of the original func-
tion. This replacement implements a fix that
keepscwndfrom being lowered too far.

With this work-around in place,snd_cwnd
never falls belowsnd_ssthresh , and the
transfer finishes considerably earlier than in the
buggy version.

5 Future work

As a complex but relatively young project,
umlsim still has shortcomings in many areas.
This section discusses some of the problems,
and outlines approaches for solving them.

Future work on umlsim will primarily focus on
the needs of network simulations, and in par-
ticular the analysis of TCP performance.

5.1 Functionality

Networking simulations are essentially limited
to a single-link scenario at the time of writ-
ing. Work is under way for providing building
blocks that allow the construction of arbitrary
network topologies.

Another issue all but ignored so far is porta-
bility to architectures with other byte order or
word size than ia32. Also support for multipro-
cessing is absent so far.

The simulator has currently no direct control
over processes running in the user space under
a UML kernel. It would be useful if simula-
tions could treat such processes like ordinary
processes, i.e. by launching them with a sim-
ple command, by placing breakpoints, etc.

It would be interesting to explore the possi-
bility of using umlsim to reconstruct the in-
ternal state of the kernel, based on traces ob-
tained from “live” systems. For example, this
could be used to explain anomalies in network
activity captured with tcpdump. The open is-
sue here is how quickly unavoidable time dif-
ferences and events not recorded in the trace
(such as soft-interrupt execution after a hard-
ware interrupt) will cause the simulation to di-
verge from the original system, and how such
errors can be compensated.

5.2 Usability

umlsim today is clearly a hacker’s toy. Most
users will want high-level components when
implementing their simulations, and the script-

Linux Symposium 21

ing language could also use some minor
cleanup.

Dark corners of the language include the
cast operator, pointers to data in the simula-
tor, inconsistencies in the syntax (e.g. nor-
mally, $$. thing is equivalent to justthing, but
return is very different from$$.return),
and subtle differences in the semantics of array
indices andcase expressions.

To be useful outside the kernel hacker commu-
nity, umlsim needs libraries with application-
oriented building blocks that provide a conve-
nient level of abstraction. At the time of writ-
ing, such a library is slowly emerging for net-
working, with the main focus on TCP.

Beyond libraries, also preprocessors that trans-
late simpler application-oriented languages,
like the one used by tcsim, to umlsim may be
useful.

One of the most important aspects of simula-
tions is the visualization of results. While it
is desirable to retain a maximum of flexibil-
ity, examples for data formats, and visualiza-
tion packages for common tasks will help users
to obtain results more rapidly.

Also, as befits a hacker’s toy, documentation is
incoherent and spotty.

5.3 Performance

At the time of writing, umlsim is rather slow.
While some optimization work has been done
to reduce startup time and to accelerate some
lookup operations, and more recently also
to accelerate the communication between the
simulator and the UML processes, several ar-
eas remain where major speed improvement
are possible.

ptrace is a rather inefficient means for ac-
cessing process memory. It would be better

if the simulator entirely bypassed the tracing
thread when reading or changing variables, and
accessed the address space of the UML pro-
cesses directly.

Also the performance of UML itself is the
object of on-going work [8]. In particular,
the so-called “skas mode” (“skas” stands for
“Separate Kernel Address Space”) has been
added recently, to accelerate context switches
of processes under UML [9]. By following
these changes, umlsim will permit UML to run
faster, which in turn will benefit overall system
performance, and may perhaps also itself be
able to access UML systems more efficiently.

Last but not least, several algorithms and data
structures inside the simulator are rather ineffi-
cient, and will have to be improved for larger
simulations. For example, associative arrays
just store their elements in a linear list. Also,
results of identifier lookups could be cached.

6 Conclusion

umlsim provides the infrastructure for turning
the (UML) Linux kernel into a versatile event-
driven simulator, that can be customized using
a scripting language most programmers will
find easy to learn.

The next challenges in the project will be to
bring performance closer to that of compara-
ble simulators, to improve overall usability, to
apply umlsim to concrete problems, and to use
experience gained from such real-life applica-
tions to further improve the simulator.

References

[1] Dike, Jeffet al. The User-mode Linux Kernel
Home Page,
http://user-mode-linux.
sourceforge.net/

Linux Symposium 22

[2] C. Jin, D. Wei, S.H. Low, G. Buhrmaster, J.
Bunn, D.H. Choe, R.L.A. Cottrell, J.C. Doyle,
W. Feng, O. Martin, H. Newman, F. Paganini,
S. Ravot, S. Singh.FAST TCP: From Theory
to Experiments, Submitted for publication in
IEEE Communications Magazine, Internet
Technology Series, April 1, 2003.
http://netlab.caltech.edu/pub/
papers/fast-030401.pdf

[3] Almesberger, Werner.Linux Traffic
Control—Next Generation, Proceedings of the
9th International Linux System Technology
Conference (Linux-Kongress 2002), pp.
95–103, September 2002.http:
//www.linux-kongress.org/2002/
papers/lk2002-almesberger.html

[4] Perens, Bruce.Electric Fence, ftp://ftp.
perens.com/pub/ElectricFence/

[5] Seward, Julian; Nethercote, Nick.Valgrind, an
open-source memory debugger for
x86-GNU/Linux, http:
//developer.kde.org/~sewardj/

[6] The Network Simulator – ns-2,
http://www.isi.edu/nsnam/ns/

[7] Almesberger, Werner; Jin, Cheng; Kuznetsov,
Alexey.snd_cwnd drawn and quartered,
Discussion thread on the netdev mailing list,
December 25, 2002.
http://marc.theaimsgroup.com/
?t=104078129500001

[8] Dike, Jeff.Making Linux Safe for Virtual
Machines, Proceedings of Ottawa Linux
Symposium 2002, pp. 107–116, June 2002.
http://www.linux.org.uk/~ajh/
ols2002_proceedings.pdf.gz

[9] Dike, Jeff. skas mode, http:

//user-mode-linux.sourceforge.

net/skas.html

SCSI Mid-Level Multipath

Michael Anderson, Patrick Mansfield
IBM Linux Technology Center

andmike@us.ibm.com, patmans@us.ibm.com

Abstract

Multipath IO is the ability to address the same
storage device over multiple connections, pro-
viding improved reliability and availability.
This concept is not new to Linux®. Multi-
path capabilities exist in the volume manage-
ment layer, SCSI upper level, and in the SCSI
lower level device driver. This paper examines
an approach to providing multipath support in
the Linux 2.5+ SCSI mid-level. An implemen-
tation at this level gives the reduced resource
usage and better performance of lower level
implementations, along with the device inde-
pendent capabilities of upper level implemen-
tations.

The target audience is developers knowledge-
able about SCSI or Linux SCSI internals that
are also interested in multipath storage support.

1 Introduction

This section provides an overview of the char-
acteristics of the multiple paths and multiple
ports presented to the Linux kernel by the stor-
age IO transport and by the storage device it-
self.

A path is the connection between the host sys-
tem and the storage device. Multiple paths to
a device result from the storage device having
more than one port (multi-port storage device)
or the host system having multiple connections
into a given bus or fabric that connects to a stor-

Interconnect

Multi-Port

Multi-Initiated

Host

HA-AHA-B

Figure 1: Multi-Initiated and Multi-ported
multipath configuration

age device port (multi-initiated interconnect).

Utilization of a multipath device can increase
the availability of the storage device presented
to the operating system by reducing the loss
of access due to a single transport problem.
Multipath device support may also provide an
increase in performance due to load balanc-
ing if the performance attributes of the stor-
age device are greater than a single transport
can deliver. When a system architecture like
NUMA exhibits increased latency between lo-
cal memory and non-local adapters multipath
with NUMA aware routing can be used to route
IO to adapters with the lowest latency.

Although the necessity for multipath in enter-
prise systems is clear, the selection of where to

Linux Symposium 24

implement it has lead to several different ap-
proaches in the Linux kernel. This SCSI mid-
level multipath solution was created to address
the following:

• Implementation at a level higher in the
stack than vendor unique lower level
driver solutions, while not exposing de-
vice specific knowledge to layers above
SCSI.

• Reduction of kernel resources while still
utilizing the existing IO scheduler and in-
terfaces of the block layer.

• Binding paths to devices without obtain-
ing information from the devices media,
allowing support for both block and char-
acter devices.

• The ability to distinguish between path
and device errors.

• Selection of the optimal path for IO based
on Lower Level Device Driver (LLDD)
attributes, NUMA topology, and device
attributes.

1.1 Multi-Initiated Interconnect

A multi-initiated interconnect results from at-
taching multiple host adapters to a single inter-
connect. For example, a multi-initiated SCSI
bus or multi-initiated Fibre Channel.

Multi-initiated paths to a single storage device
normally present equal characteristics. Some
hardware platforms can create performance in-
equalities down separate paths to a storage
device port when different latencies exist be-
tween a host adapter and the memory it is ref-
erencing. A NUMA architecture based plat-
form can present such latencies; depending on
the magnitude of the latency, platform spe-
cific routing policies can increase performance.
Path selection will be discussed in detail later
in the document.

1.2 Multi-Port Storage Device

A storage device can present multiple proto-
col communication ports to an IO intercon-
nect. These ports can be accessed from the
host through a single host bus adapter (single
initiator) or multiple host bus adapters (multi-
initiated).

While the performance characteristics of IO
down multiple paths to a single port of a de-
vice are nominally equal (excluding NUMA),
the performance to different ports of the device
can vary greatly due to the architecture of the
storage device.

These different storage device architectures
can be grouped into three behavior models
based on the device’s differing response to IO
sent to more than one port. A device may ex-
hibit differing port behavior only on ports that
cross logical unit ownership boundaries. Some
storage devices can be configured to operate in
more than one behavior mode.

• Failover – When a device is operating
with Failover behavior, IO to a secondary
port must be preceded by control com-
mands indicating a redirection of all IO to
an alternate port. Once the storage device
has transitioned, “Failed over” IO may be
directed to an alternate port. This be-
havior model is exhibited in devices with
some performance penalty in the tran-
sition of logical unit ownership. Clus-
tered shared storage systems may use this
model to keep port thrashing from degrad-
ing performance.

• Transparent Failover – IO to a single
volume should only be sent to a single
port until an availability condition arises
to cause IO to be redirected to a secondary
port. The storage device will transition
transparently to using the secondary port

Linux Symposium 25

on the receipt of the first IO to this port.
The storage device transition delta for this
first IO is significant when compared to
subsequent IOs, such that performance
would degrade noticeably if port transi-
tions occurred frequently (i.e., if round
robin routing policy were used).

• Active Load Balancing – IO to a single
storage device volume can be sent down
any path without degrading performance
(note: some cache warmth benefits may
be achieved by using more sophisticated
path selection algorithms, but this is ven-
dor unique). These storage devices usu-
ally have a cache that can be symmetri-
cally accessed from any input port or a
single cache that all input ports feed into.

1.3 Linux Multipath Implementations

Multipath support to a storage device can be
implemented at different levels in the Linux
operating system’s IO stack. This support can
be provided by storage vendors, adapter ven-
dors, and the base kernel.

• Volume Management– Multipath at this
level is usually implemented as a modified
case of existing RAID support. Multiple
block devices exposed by the operating
system point to the same storage device
and are configured to be failover paths for
IO. The “md” driver [3] and LVM multi-
path patch [2] are examples of support at
this level.

• Upper Level – Support at this level in-
volves chaining or linking the multiple
block devices exposed by the operating
system as failover paths. An example of
this type of implementation is the T3 Mul-
tipath failover driver written by Linuxcare
Inc. [5].

• Mid-Level – This is the level of imple-
mentation described in this document.

• Lower Level – An implementation at
this level involves a binding of common
vendor adapters exposing only one de-
vice to the operating system. On fail-
ure, the adapter driver re-drives the IO
through another adapter previously paired
as a failover adapter. An example of this
type of implementation is the Qlogic Fi-
bre Channel failover driver.

2 Data Model

2.1 Current Linux SCSI Device Data Model

This section provides a high level overview of
the Linux 2.5 SCSI subsystem data structures
with a focus on providing a background for
later discussion on multipath support. Gen-
eral Linux SCSI information can be obtained
by viewing the "The Linux 2.4 SCSI subsys-
tem HOWTO" [1] and [4] listed in the Refer-
ence section.

Each LLDD that wishes to register with the
Linux SCSI sub-system provides a SCSI host
template (Scsi_Host_Template) data
structure that describes the capabilities of the
driver and interface functions.

The LLDD can register with the SCSI subsys-
tem in two ways. One method is a Legacy
interface, which is driven from the SCSI mid-
level code and calls into the LLDD detect rou-
tine, which causesscsi_register() to be
called for each adapter card detected by the
driver. The other method allows the LLDD
to callscsi_register() directly and then
call scsi_add_host() when it is initial-
ized and ready to be scanned. These two meth-
ods result in aScsi_Host data structure be-
ing allocated for each instance of an adapter
card.

Linux Symposium 26

If an adapter contains multiple busses or chan-
nels (not a PCI bridge of two cards), there will
be only one SCSI host structure (Scsi_Host)
created.

After a kernel boot, a insmod of a LLDD, or
hotplug event, a list (scsi_hostlist) will
contain a SCSI host structure representing each
adapter detected.

During device scanning a SCSI device data
structure (scsi_device) will be allocated
for each logical unit discovered. Each SCSI
device structure will be added to a linked list
member of its SCSI host parent.

See figure 2 for a diagram of the data struc-
tures and their relationships.

scsi_host
 list_head

scsi_device
 request_queue

scsi_hostlist scsi_host
 list_head

scsi_device
 request_queue

scsi_device
 request_queue

scsi_device
 request_queue

Figure 2: Linux SCSI Data Structures

Once the scanning phase is complete a
struct scsi_device will be associated
to only onestruct Scsi_Host .

2.2 Mid-Level Multipath Data Model

When no multipath capabilities are enabled in
the Linux SCSI subsystem, multiple paths re-
sult in a SCSI device structure being created
and eventually exposed through the block or
character layer for each path. This redundancy
wastes system resources and creates a non-
optimal presentation of structures to the block
layer and user level.

The mid-level multipath implementation coa-
lesces these extraneous SCSI device structures
while still maintaining the information relating
to the paths.

The child relationship of the SCSI device struc-
ture to the SCSI host structure is removed and
a new relationship is created using the mid-
level multipath structures. The SCSI multi-
path structure (struct scsi_mpath) is a
container for all the paths to the storage de-
vice. The SCSI mpath structure also contains
information on the path routing policy, a count
of active paths, and a reference to where the
last IO was routed. Thescsi_mpath struc-
ture is associated with the SCSI device struc-
ture through a new member,sdev_paths .

Each path is represented by a SCSI path
structure (struct scsi_path). This path
structure contains a fast reference to the next
sibling path, the state of the path, and a SCSI
nexus structure (struct scsi_nexus).

The nexus object contains the transport spe-
cific knowledge to communicate with the stor-
age device. In an ideal world, this nexus would
be an opaque object (i.e., a handle) that was
handed to the SCSI mid-level during the device
scanning process.

See figure 3 for a diagram of the multipath data
structures and their relationships.

2.2.1 Multipath Data Model General Ap-
plicability

The data model presented for multipath has ad-
vantages even in non-multipath cases.

Because the mid-level model has separated the
request queue presented to the block layer from
the nexus object that is associated with the
SCSI hosts, paths containing nexus objects can
be added to or removed from a SCSI device

Linux Symposium 27

scsi_device
 request_queue
 sdev_paths

scsi_mpath
 list_head

scsi_sdev_list

scsi_path
 nexus

scsi_path
 nexus

scsi_nexus
 host

scsi_nexus
 host

scsi_host scsi_host

scsi_hostlist

scsi_device
 request_queue
 sdev_paths

Figure 3: Mid-Level Multipath Data Structures

structure.

When all paths have failed or there are no paths
to a device, a policy could be created to allow
the SCSI device structure to remain in place,
but suspend SCSI IO request processing. This
would allow block and file system level at-
tachments to remain established while trans-
port connectivity is in flux.

If UUID authentication can be ensured (this
would be the case for multipath devices sup-
ported by this implementation) new paths
could bind to the SCSI device and IO request
processing would resume. If authentication
cannot be ensured, lower level resources can
be released in less time than current structures
allow.

Depending on the future direction of the SCSI
mid layer, this separation could be used to add
or remove SCSI subsystem components while

IO is active.

3 Mid-Level Multipath

3.1 Linux SCSI Scanning Overview

Following is an overview of the SCSI scan
algorithm for a given logical unit within
scsi_scan.c as pertains to modifications
for use with multipath (per code in linux ver-
sion 2.5.68).

A call to scsi_alloc_sdev allocates and
initializes ascsi_device (sdev). Note that
a sdev , logical unit, and I_T_L nexus are all
equivalent in the current linux SCSI code. The
LLDD slave_alloc() function is called
for thesdev [4].

The sdev is sent an INQUIRY. Device
attributes settings are obtained by calling
scsi_get_device_flags() .

If the logical unit responds, and it has a logi-
cal unit configured, thesdev is left in place,
otherwise it is removed.

scsi_load_identifier() function is
called to get a UUID (universal unique iden-
tifier) via SCSI INQUIRY VPD pages [6], and
the result is stored insdev->name .

scsi_device_register() is called,
generating a hotplug event.

Last of all, the LLDD slave
_configure() function is called for
thesdev .

Upper level attaches are done after all scan-
ning (on insmod or initialization of a LLDD)
or the upper level attach is done after a single
logical unit is scanned via /proc/scsi/scsi (in
scsi_add_device()). These in turn can
generate their own set of hotplug events as the
upper level drivers (sd, st, sr, and sg) attach to

Linux Symposium 28

eachsdev .

This means that a series of hotplug events oc-
curs for many scsi_devices, followed by a se-
ries of hotplug events for each upper level de-
vice (such as a block device).

3.2 Scan Modifications for Multipath

The scanning code is changed as follows for
mid-level multipath support.

The allocation of ansdev is modified to not
only allocate the actualscsi_device ,
but to also allocate and add a single
path (struct scsi_path , including
a struct scsi_nexus) to the sdev .
slave_alloc() is modified to take both
an sdev andscsi_nexus as an argument,
such that it can access both logical unit data
(in thesdev) and nexus specific data.

Future plans are to supply a set of parallel
slave_nnn interfaces for use with multipath, so
that existing drivers not supporting the new in-
terfaces will behave as if the multipath patch
were not applied (each path to a storage device
will generate a newscsi_device).

After a UUID is retrieved, all existingsdev ’s
are searched for a match.

If no match is found, this is the first path to the
device, and it is handled the same way as the
current non-multipath code.

If a match is found, the new path is added to
the matchingsdev (the paths are coalesced),
and the currentsdev is freed.

slave_configure() is also modified to
take both ansdev and ascsi_nexus as ar-
guments.

3.3 UUID

The immutability of the UUID is key to deter-
mining if more than one nexus can access the
same storage device. This is not a simple prob-
lem to deal with, as some devices return no
UUID, some return a UUID that is not unique,
and others require device specific methods to
retrieve a truly unique UUID. Future changes
(such as a UUID white list) are required to
properly handle the UUID in all cases; user
level scanning would simplify the problem.

Discussions were actively in progress at the
time this paper was written on whether or not
to keep the existing UUID retrieval code in
the kernel. Depending on the outcome, and
amount of time available, the multipath patch
might have to carry the UUID retrieval.

The primary problem with moving UUID re-
trieval to user level (for use with multipath, as-
suming full user level scanning is beyond the
scope of the current implementation) is that the
current scan and upper level attach are initi-
ated without the ability for user level interven-
tion - all upper level devices are attached to
all scsi_devices with no synchronization
from user space.

Without the coalescing of paths as described
above devices can show up multiple times,
leading to potential resource shortages (mem-
ory as well as major/minor numbers), and po-
tential problems for applications dependent on
the hiding of duplicate paths.

Further investigation is needed to determine if
it is practical to modify the scan and upper
level attach to be user initiated (versus the more
difficult problem of complete user level scan-
ning). Such that all devices are scanned in ker-
nel code, and then from user level: UUID’s
retrieved, coalesced, and then upper level at-
taches triggered.

Linux Symposium 29

3.4 Current SCSI I/O Request Flow Overview

Following is an overview of the current IO re-
quest flow as it pertains to functions modified
for use with SCSI mid-level multipath IO.

A SCSI device structure request queue mem-
ber (request_queue) is registered with the
block layer at SCSI scan time for en-queuing
requests. Both SCSI character and block de-
vices utilize this queue, as do the commands
issued during SCSI scan and by upper level at-
tachment.

For block IO devices, an IO request
is sent to the block layer via the
__make_request() function. In turn
it eventually calls the SCSI block request
function,scsi_request_fn() .

For SCSI character devices, scanning, and
commands sent during upper level attaches,
scsi_do_req() or scsi_wait_req()
are used to send SCSI commands to
the scsi_device . These functions
setup the sr_done function pointer, in-
sert a request, and trigger a call to the
scsi_request_fn() via a call to the
block queueblk_insert_request() .

The scsi_request_fn() func-
tion retrieves a request and calls the
scsi_prep_fn() via a call to the
elv_next_request() .

scsi_prep_fn() allocates and initial-
izes the scsi_cmnd . The scsi_cmnd
done function is set in upper level drivers
via calls to their init_command func-
tions. For users ofscsi_wait_req() or
scsi_wait_req() , the done function is
set to thesr_done .

Thescsi_cmnd is the key data structure used
to issue a request to a LLDD.

Control continues in scsi_request

_fn() , where resource limitations and hard-
ware limits (such as queue depth) are checked
via calls to scsi_dev_queue_ready()
andscsi_host_queue_ready() .

If resources are available, scsi
_dispatch_cmd() is called, it adds a
timeout, and transfers control to the LLDD
by calling thescsi_host queuecommand
function, passing thescsi_cmnd , and
scsi_done() .

The LLDD is responsible for sending the com-
mand to the actual logical unit. After the re-
quest is submitted,queuecommand returns.

Upon completion of the IO request, the LLDD
calls thescsi_cmnd scsi_done() func-
tion.

scsi_done() puts the completed com-
mand onto a per-CPU queue, and raises the
SCSI_SOFTIRQ.

scsi_softirq() determines the comple-
tion status of eachscsi_cmnd via calls to
scsi_decide_disposition() .

scsi_decide_disposition() clas-
sifies the completion status of the IO (the
scsi_cmnd) and returns the following values to
scsi_done() , that lead to further actions:

SUCCESS: the IO has completed without er-
ror, the command is completed by calling
scsi_finish_command() . This includes
an IO completion with failures (for example,
an IO went to a disk, but had media errors).

ADD_TO_MLQUEUE: the IO completed
with a SCSI QUEUE FULL status. The
command is re-queued for a retry via
scsi_queue_insert() , effectively
resending the command.

NEEDS_RETRY: the IO had a temporary or
other condition such that it can be immediately

Linux Symposium 30

resent, resend the IO (without re-queuing it) by
callingscsi_retry_command() .

FAILURE or any other value: a de-
vice or transport error occurred. Call
scsi_eh_scmd_add() to queue the failed
command for error handling; when the host
adapter has no more IO outstanding (when the
active_count equals thehost_failed
count) the error handler wakes up and handles
all failed commands.

scsi_finish_command() is the
main path for IO completion, it calls
the scsi_cmnd done function, ei-
ther the upper level completion function
(for sd, sd_rw_intr) or the func-
tion specified in scsi_wait_req() or
scsi_wait_done() .

3.5 Modifications for IO Path Selection and
Path Failures

The SCSI code is modified as follows for mid-
level multipath.

A path (including nexus) is selected via
a call to scsi_get_best_path() from
scsi_request_fn() .

Path selection is affected by the number of
paths, path state, path policy, and NUMA
topology.

A list of all available paths and all active paths
to a device are kept. In addition, for NUMA
systems, there is a list of paths local to a given
node.

If no active paths are available, the
scsi_request_fn() function fails
the IO request.

Currently, path selection policy is
controlled via the global variable
scsi_path_dflt_path_policy . This
is set via the kernel config and can be modified

at boot time, with future plans to allow setting
this both per device and via sysfs.

Settingscsi_path_dflt_path_policy
to SCSI_PATH_POLICY_LPU (1) sets the
path selection policy to last path used. This
means that another path will only be used on
failure.

Settingscsi_path_dflt_path_policy
to SCSI_PATH_POLICY_ROUND_ROBIN
(2) sets the path selection policy to round
robin. This means that paths will be rotated
across all available paths on every request sent
to the device.

A last-path used policy is safest for general
purpose use (for example with a device using
a transparent failover model). Future plans are
to add device specific attribute hooks and code
to fully support a transparent failover model,
so that round-robin path selection can be done
across a subset (lowest path weight) of all
paths, not just a single path.

NUMA path selection where possible picks a
path local to the node containing the memory
to be used for the IO operation. If no local
path is available, all paths are valid for selec-
tion. So, for round-robin path selection, path
selection is either round-robin with respect to
all paths local to a given node, or for all paths
to a device.

Current NUMA multipath support is limited to
a one-to-one mapping of path to node. Future
plans are to support multiple nodes connected
to the same path (the same bus). Changes are
required in the current kernel NUMA topology
in order to support topologies that have varied
or unequal distances (that is, where the inter-
node distances can vary), or for cases where a
node contains no CPU’s.

For multipath, thescsi_cmnd device is
changed from astruct scsi_device

Linux Symposium 31

pointer to astruct scsi_nexus pointer;
the scsi_nexus retains the same fields as
those used by the LLDD in order to deter-
mine the nexus (that is, thescsi_nexus con-
tains ascsi_host pointer, channel , id
andlun).

Then as part of the path selection, the
scsi_cmnd device pointer is set to point
to the selected path’s nexus. (Renaming the
scsi_cmnd device tonexus would be ap-
propriate.)

The LLDD queuecommand function is called,
passing the scsi_cmnd that includes a
pointer to ascsi_nexus . Existing LLDD
code can then be used, with no changes re-
quired to the core of the LLDD.

Upon IO completion,scsi_path_decide
_disposition() categorizes failures as
transport (path failure) or device specific (de-
vice failure). Path specific failures cause a path
to fail, and the IO can be retried on any remain-
ing paths. Device specific failures generally of-
fline the device, and do not allow an IO to be
retried.

scsi_check_paths() is then called with
an indication as to whether a path failure has
occurred or not, it updates the path state, and
returns a result specifying the action to take:
the standardSUCCESS(meaning the IO has
completed, not that it has completed success-
fully), FAILURE, or a newREQUEUEvalue
signaling that the IO should be re-queued.
NEEDS_RETRYis no longer returned.

In scsi_softirq() , when a
REQUEUE result is returned from
scsi_decide_disposition() , the IO
is re-queued viascsi_queue_insert() .

So, on a path failure, the IO is re-queued, and
in scsi_request_fn() the IO can be re-
tried on any of the remaining paths.

3.6 User Space Interface

3.6.1 Procfs

The mid-level multipath code provides a procfs
interface for viewing and setting attributes re-
lated to paths. The path to the procfs file
is /proc/scsi/scsi_path/paths . The
file supports both read and write operations,
and displays attributes about the paths. The ta-
ble below provides a description of each of the
columns in the output.

Column Description
1 UUID
2 Host Number
3 Host Channel
4 Target ID
5 Lun
6 State
7 Failures
8 Weight

Table 1: Procfs Columns

An edited output to show only one device of a
read is shown as follows:

#cat /proc/scsi/scsi_path/paths
...
2000002037171f24 3 0 1 0 1 0 0
2000002037171f24 4 0 1 0 1 0 0
...

Writing to the file allows path attributes to be
modified. Currently the only meaningful write
operation is to modify path state. A path state
may be modified from dead to good or good to
dead. A good path state has a value of "1" and
a dead path has a value of "3".

An example of failing a path is shown as fol-
lows:

echo ‘2000002037171f24 3 0 1 0 3 0 0‘

Linux Symposium 32

> /proc/scsi/scsi_path/paths

In the near term the procfs interface will be re-
placed with a sysfs interface. At the time of this
writing, the interface was not complete and is
discussed in the Future Work section.

4 Future Work

4.1 Multipath Device Personality

The use of device-neutral information through
standard SCSI interfaces limits the set of mul-
tipath capabilities that can be supported on a
given device to a minimal set known to be safe
for all devices. To utilize the extended capa-
bilities of some storage device’s, the device at-
tributes or a device’s “personality” needs to be
exposed.

The interfaces provided for obtaining this per-
sonality knowledge will not be restricted to
kernel space. Some data can be set from user
space, but other operations will need to be ker-
nel resident to avoid deadlock. Further direc-
tion toward user level scanning will affect these
interfaces.

The single kernel config time path policy can
be enhanced with device attribute information
allowing support for device specific path poli-
cies.

Path weighting values related to a device’s at-
tributes would allow proper primary and sec-
ondary paths to be determined. The ability to
determine preferred paths to assist in the bal-
ancing of load across a storage device’s port
can also be determined.

4.2 SCSI Reservations

The support of SCSI Reserve/Release affects
the type of path selection policy that can be se-
lected for a storage device restricting it to the

last path used. Support of SCSI persistent re-
serve requires an interface to accept a reserva-
tion key and special IO operations before paths
can used for normal IO. Future work is trying
to meet the requirements of SCSI reservation
with a general purpose path preparation capa-
bility.

4.3 Sysfs Interface

As mentioned in a previous section, the procfs
interface to mid-level multipath is being mi-
grated to a sysfs-based interface. The migra-
tion to a sysfs interface allows for the linkage
to the device tree for increased path topology
information and the utilization of common ker-
nel code infrastructure, reducing code duplica-
tion.

5 Availability

The SCSI Mid-Level Multipath project page is
located at:

http://www-124.ibm.com/storageio/multipath/
scsi-multipath/

Legal Statement

This work represents the view of the author and
does not necessarily represent the view of IBM.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

References

[1] Douglas Gilbert, “The Linux 2.4 SCSI
subsystem HOWTO”
http://www.linuxdoc.org/HOWTO/

SCSI-2.4-HOWTO/index.html

Linux Symposium 33

[2] “LVM multipath support”,
http://oss.software.ibm.com/

linux390/useful_add-ons_lvm.shtml

[3] “MD Multiple Devices driver”,
drivers/md/*

[4] “SCSI mid_level - lower_level driver
interface”,
Documentation/scsi/

scsi_mid_low_api.txt

[5] “Linux T3 Driver”,
http://open-projects.linuxcare.com/t3/

[6] “SCSI Primary Commands - 3 (SPC-3)”,
ftp://ftp.t10.org/t10/drafts/

sam3/sam3r06.pdf

[7] “SCSI Architecture Model - 3 (SAM-3)”,
ftp://ftp.t10.org/t10/drafts/

sam3/sam3r06.pdf

IPv4/IPv6 Translation
Allowing IPv4 hosts to communicate with IPv6 hosts without modifying the software on the

IPv4 or IPv6 hosts

J. William Atwood∗

Kedar C. Das
Xing (Scott) Jiang

Concordia University
Department of Computer Science

Montréal, Québec H3G 1M8

bill@cs.concordia.ca, http://www.cs.concordia.ca/˜faculty/bill

Abstract

As the Internet makes the transition from IP
version 4 to IP version 6, it will be nec-
essary to allow IPv4-based clients to access
IPv6-based servers, and IPv6-based clients
to access legacy services. Network Ad-
dress Translation–Protocol Translation (NAT-
PT) can provide network protocol transla-
tion, and Application Layer Gateways (ALGs)
can handle the cases where peer addresses
are embedded in application-layer messages.
We describe an implementation on a Linux
router/translation server, the necessary config-
uration of the IPv4 and IPv6 environments, and
the operation of ALGs for the File Transfer
Protocol and for the Session Initiation Proto-
col. We will present a demonstration of ba-
sic communication (web client to web server),
and of multimedia communication (based on
the open-source VOCAL project).

∗On leave at Ericsson Research Canada, Open Sys-
tems Research Laboratory, Montréal, Québec, Canada

1 Introduction

IPv6 is the next generation protocol designed
by the IETF to replace the current version
of the Internet Protocol, IPv4. During the
last decade, IP has conquered the world’s net-
works. Most of today’s Internet uses IPv4,
which has been remarkably resilient in spite of
its age, but it is beginning to have problems.

One motivation for developing IPv6 was the
anticipated exhaustion of addresses for indi-
vidual hosts. While the rate of depletion has
been slowed through the use of Network Ad-
dress Translation (NAT) [1], it does continue,
and the other virtues of IPv6 (routing and net-
work autoconfiguration, and enhanced support
for IP Security (IPsec) and IP Mobility (Mobile
IPv6)), will encourage its deployment much
more widely in coming years.

Although a significant percentage of the clients
and servers will bedual stack(i.e., capable of
using either IPv4 or IPv6), there will be a large
number of existing clients and servers (legacy
systems) that will only be capable of using
IPv4, and there will be a growing number of

Linux Symposium 35

clients and servers that will only be capable of
using IPv6. For example, the Third Generation
Partnership Project (3GPP) has mandated that
third generation cellular networks will be “All-
IP,” and that the “IP” will be IP version 6only.

In the same way as NAT has been used to
connect hosts on private networks [2] with
hosts on the public network, Network Address
Translation–Protocol Translation (NAT-PT) [3]
has been standardized as a way of connecting
hosts in the IPv4 address space and hosts in the
IPv6 address space. NAT and NAT-PT work by
altering the IP headers. For NAT, only the ad-
dress fields are replaced; for NAT-PT, the entire
header is changed. This use of NAT-PT solves
the network-layer problem for the IPv4/IPv6
transition, but it requires some auxilliary ser-
vices to operate properly, and it does not solve
a number of application-layer problems associ-
ated with crossing the IPv4/IPv6 boundary.

In this paper, we discuss the auxilliary services
needed, report an experimental validation of
the requirements, outline the solution to some
of the application-layer problems, and specu-
late on the solution to the rest.

2 System Architecture

Figure 1 identifies the typical components that
will be used to support communication be-
tween IPv4 hosts and IPv6 hosts. The IPv4
region represents the entire IPv4-based Inter-
net of today. The IPv6 stub region contains the
hosts that are to be granted the privilege of ac-
cessing legacy (IPv4-based) services. The IPv6
region represents the rest of the IPv6 address
space. The v4/v6 Border Router provides the
connection between the IPv6 stub hosts and the
IPv4 hosts. The v6/v6 Border Router provides
the connection between the IPv6 stub region
hosts and the rest of the IPv6 address space. In
some systems, the v4/v6 Border Router and the

v6/v6 Border Router will be co-located. How-
ever, we leave them separate in the following,
to make the explanations clearer.

DNS6
Server

IPv6 Region

local
DNS Server

IPv6 Host

IPv6 Host

IPv6 Stub Region

v6/v6 Border Router

IPv4 region

DNS4
Server

IPv4 Host

IPv4 Host

v4/v6 Border Router

Figure 1: System Architecture

Each host has ahost nameand ahost address.
The host name is a (globally unique) character
string that is intended to be human-readable.
The host address is a (globally unique) 32-bit
(IPv4) or 128-bit (IPv6) number. A particular
host may have more than one name, and more
than one address, especially if it has multiple
interfaces.

Two address pools are associated with the
v4/v6 Border Router. TheIPv4 address pool
is a sequence of addresses that are associated
(temporarily) with the IPv6 hosts that are com-
municating with IPv4 hosts. Given the scarcity
of IPv4 addresses, this pool will be sized to
correspond to the number of IPv6 hosts (in the
IPv6 stub region) that areactively communi-
cating with IPv4 hosts at a particular time. The
IPv6 address pool is a sequence of addresses
that represent hosts in the IPv4 region. Given
the large size of the IPv6 address space, this

Linux Symposium 36

pool is structured as a 96-bit prefix, catenated
with a 32-bit IPv4 address. A motivation for
this will be presented later, in Section 3.6.

2.1 Translation Requirements

As packets move between the IPv4 region and
the IPv6 region, it is necessary to rebuild their
headers, since the IPv4 and IPv6 packet head-
ers have different formats. This process is
stateless—the necessary mapping information
is determined by tables in the v4/v6 Border
Router (for packets travelling from the IPv4 re-
gion to the IPv6 stub region) or by information
carried in the packet address (for packets trav-
elling from the IPv6 stub region to the IPv4 re-
gion). For NAT-PT, the mapping between an
IPv4 pool address and the corresponding IPv6
host address is one-to-one. When there are in-
sufficient IPv4 pool addresses available, then
NAPT-PT can be used, with a mapping from
(IPv4 address, IPv4 port) to (IPv6 address).
This allows about 65,000 IPv6 hosts to be ser-
viced using a single IPv4 address, as long as
the IPv4 application does not care about the
port that is being used to access it.

Certain packets require special treatment. In
general, these packets contain application data
that have embedded IPv4 or IPv6 addresses.
They are identified when their headers are pro-
cessed (usually by noting which port they are
using), and they are handled by application-
specific code called anApplication Layer
Gateway(ALG). The ALGs are application-
specific, because they need to be able to parse
the packets being exchanged by the application
end-points. The specific ALG then modifies
the contents of the packet, to reflect the address
translation that has just taken place in the head-
ers.

2.2 Centralized Architecture

One approach to handling the entire require-
ment is to co-locate the NAT-PT software and
the set of ALGs needed to support the desired
applications. In this case the interaction be-
tween the ALG and the translation tables in the
NAT-PT software is simplified. However, the
v4/v6 Border Router must provide processing
power for all functions, which could overload
it.

2.3 Distributed Architecture

An alternate approach is to separate the ALGs
from the NAT-PT software. This lowers the
processing requirements for the v4/v6 Border
Router, but it introduces a requirement to de-
fine a protocol for interaction between the ALG
and the NAT-PT. This approach is favoured
when the application makes use of some form
of “proxy” server, because the proxy functions
and the ALG functions can often be advanta-
geously combined in a single host, and sepa-
rated from the v4/v6 Border Router. Commer-
cial systems will need to adopt this approach,
to handle the large number of IPv6 hosts that
will be in a typical IPv6 stub region. However,
our project was concerned with exploring is-
sues relating to establishing the right environ-
ment, and we did not require high performance
at this time.

3 NAT-PT Tool

The experimental system was based on a user-
space NAT-PT implementation developed at
ETRI [4]. The original implementation was
based on a Linux 2.4.0 kernel, and required
modification to make it work on the more re-
cent (2.4.20) Linux kernel.

Linux Symposium 37

3.1 General Flow

To establish communication between IPv4 and
IPv6 using NAT-PT we need interactions of at
least 3 modules. These are-NAT, PT, ALG.

3.2 Network Address Translation (NAT)

The NAT module implements the trans-
port/network layer translation mechanism. It
uses a pool of IPv4 addresses for assigning to
IPv6 nodes dynamically, and this assignment
is done when sessions are initiated across the
v4/v6 boundary.

3.3 Protocol Translation (PT)

As all the fields of IPv6 headers are not the
same as that of the IPv4 header, the PT mod-
ule translates IP/ICMP headers to make end-
to-end communication possible. Due to the ad-
dress translation function and because of pos-
sible port multiplexing, PT also makes appro-
priate adjustments to the upper layer protocol
(TCP/UDP) headers, e.g., the checksum.

The IPv4-to-IPv6 translator replaces the IPv4
header of IPv4 packet with an IPv6 header to
send it to the IPv6 host. Except for ICMP pack-
ets, the transport layer header and data portion
of the packet are left unchanged. In IPv6, path
MTU discovery is mandatory but it is optional
in IPv4. This implies that IPv6 routers will
never fragment a packet—only the sender can
do fragmentation. Path MTU discovery is im-
plemented by sending an ICMP error message
to the packet-sender stating that the packet is
too big. When an IPv6 router sends an ICMP
error message, it will pass through a translator,
which will translate the ICMP error to a form
that the IPv4 sender can understand. In this
case an IPv6 fragment header is only included
if the IPv4 packet is already fragmented. The
presence of df flag in the IPv4 header is the in-
dication of Path MTU discovery.

However, if the IPv4 sender does not perform
path MTU discovery, the translator has to en-
sure that the packet does not exceed the path
MTU on the IPv6 side. The translator frag-
ments the IPv4 packet so that it fits in a 1280
byte IPv6 packet, since IPv6 guarantees that
1280 byte packets never need to be fragmented.
Also, when the IPv4 sender does not perform
path MTU discovery the translator must always
include an IPv6 fragment header to indicate
that the sender allows fragmentation.

3.4 Application Layer Gateway (ALG)

Several applications send IP addresses and host
names within the payload of the IP packet.
Because NAT-PT does not snoop the payload,
it requires some Application Level Gateways
(ALG) to extract that address to replace it ei-
ther by IPv4 or IPv6. That is, ALG could work
in conjunction with NAT-PT to provide support
for many such applications. Two examples are
the FTP-ALG and the SIP-ALG. These are dis-
cussed in Section 3.8 and Section 4.

While the FTP-ALG and the SIP-ALG are op-
tional (provision of a specific ALG depends
on the desire to support that particular appli-
cation), the DNS-ALG is essential, because it
is the trapping of the DNS queries that allows
NAT-PT to discover the need for mapping be-
tween IPv4 addresses and IPv6 addresses.

In the DNS, “A” records represent IPv4 ad-
dresses and “AAAA” or “A6” records represent
IPv6 addresses.

3.5 Communication from V4 to V6

Any packet originating on the IPv4 side des-
tined to the IPv6 stub network should cross the
v4/v6 Border Router, which is the NAT-PT de-
vice. When any packet is received on the IPv4
side, NAT-PT will check the destination ad-
dress. If it is an IPv4 pool address, and if a

Linux Symposium 38

mapping exists to an IPv6 host, then the IPv4
packet header is converted to an IPv6 packet
header, otherwise the packet is dropped. The
IPv6 source address will be the PREFIX cate-
nated with the IPv4 source address; the IPv6
destination address will be the mapped IPv6
host address.

If the packet is a DNS query, then the DNS-
ALG will change the query type from “A” to
“AAAA”, and alter the format of strings end-
ing in “IN-ARPA.ARPA” to the IPv6 format
ending in “IP6.INT”. When the response is re-
turned, then the DNS-ALG will change the
“AAAA” record to an “A” record (if the resolu-
tion was successful), and change the resolved
IPv6 address to the corresponding IPv4 (pool)
address.

When any other response packet is returned to
the NAT-PT, the IPv4 destination address will
be found by removing the PREFIX from the
IPv6 destination address. The source address
to be used in the generated IPv4 packet is the
IPv4 pool address corresponding to the IPv6
host.

3.6 Communication from V6 to V4

When a packet is received from the IPv6 side,
its destination address will consist of the PRE-
FIX catenated with the actual IPv4 destination,
so the IPv4 packet can be created using this
address as the destination, and the IPv4 pool
address corresponding to the IPv6 host as the
source address.

The key to the creation of the mapping is the
DNS queries. If a DNS query is received from
an IPv6 host, it is not knowna priori whether
the target host is a v4 host or a v6 host. The
DNS-ALG will therefore split the query into an
“A” query sent to the v4 DNS, and an “AAAA”
query sent to the v6 DNS. If a v6 response is re-
ceived, then any v4 response is discarded (the

v6 path is preferred). Otherwise, a received v4
response triggers creation of a mapping entry,
and then an “AAAA” response is generated us-
ing PREFIX catenated with the v4 address.

Returning traffic on the IPv4 side will arrive
at a pool address. This is used to determine
the correct IPv6 destination address, so that the
packet can be forwarded. The IPv6 source ad-
dress will be the PREFIX catenated with the
original IPv4 source address.

3.7 TCP/UDP/ICMP Checksum Update

NAT-PT retains the mapping between a spe-
cific IPv6 host address and an IPv4 address
from the pool of IPv4 addresses available.
The mapping between IPv6 address and an
IPv4 from the pool of IPv4 addresses is used
in the translation of packets passing through
NAT-PT. With the translation of IP header,
TCP/UDP/ICMP checksum is also updated in
NAT-PT according to specific algorithm.

3.8 FTP Application Layer Gateway (FTP-
ALG)

Existing FTP works with IPv4 addresses. Two
important FTP commands PORT and PASV
will no longer exist in IPv6. The PORT com-
mand is used to specify a port different from
the default one, and it contains the IPv6 ad-
dress information. So it can’t be used with-
out translation. The PASV command is used to
put the server into passive mode, which means
the server listens on a specific data port rather
than initiating the transfer. This command in-
cludes the host name and address of the FTP
server and therefore does not work over IPv6
without modification. The PORT command is
replaced by the EPRT command, which allows
the specification of an extended address for the
connection. The extended address specifies the
network protocol (IPv6 or IPv4), as well as the
IP address and the port to be used. The EPSV

Linux Symposium 39

command replaces the PASV command. The
EPSV command has an optional argument that
allows it to specify the network protocol, if
necessary. The server reply contains only the
port number on which it listens, but the for-
mat of the answer is similar to the one used for
the EPRT command and has a placeholder for
the network protocol and address information
might be used in the future to provide flexibil-
ity in using FTP through firewalls and NATs.
An FTP control session carries the IP address
and TCP port information for the data session
in its payload; an FTP-ALG provides applica-
tion level transparency.

If a V4 host originates the FTP session and
uses PORT or PASV command, the FTP-ALG
will translate these commands into EPRT and
EPSV commands respectively prior to for-
warding to the V6 node. Likewise, EPSV
response from V6 nodes will be translated
into PASV response prior to forwarding to V4
nodes.

If a V4 host originated the FTP session and
was using EPRT and EPSV commands, the
FTP-ALG will simply translate the parameters
to these commands, without altering the com-
mands themselves.

3.9 Payload Modifications for V6 originated
FTP sessions

If a V6 host originates the FTP session the
FTP-ALG has two approaches:

In the first approach, the FTP-ALG will leave
the command strings “EPRT” and “EPSV”
unaltered and simply translate the <net-prt>,
<net-addr> and <tcp-port> arguments from V6
to its NAT-PT (or NAPT-PT) assigned V4 in-
formation. <tcp-port> is translated only in the
case of NAPT-PT. The same goes for the EPSV
response from V4 node. With this approach,
the V4 hosts must have their FTP application
upgraded to support EPRT and EPSV exten-

sions to allow access from V6 hosts.

In the second approach, the FTP-ALG will
translate the command strings “EPRT” and
“EPSV” and their parameters from the V6 node
into their equivalent NAT-PT assigned V4 node
info and attach to “PORT” and “PASV” com-
mands prior to forwarding to the V4 node.
However, the FTP-ALG would be unable to
translate the command “EPSVALL” issued by
V6 nodes. In such a case, the V4 host, which
receives the command, may return an error
code indicating unsupported function, and this
error response may cause FTP applications to
simply fail. The benefit of this approach is that
is does not impose any FTP upgrade require-
ments on V4 hosts.

3.10 Header updates for FTP control packets

All the payload translations considered in the
previous sections are based on ASCII encoded
data. As a result, these translations may result
in a change in the size of packet. If the new
size is the same as the previous, only the TCP
checksum needs adjustment as a result of the
payload translation. If the new size is differ-
ent from the previous, TCP sequence numbers
should also be changed to reflect the change in
the length of the FTP control session payload.
The IP packet length field in the V4 header or
the IP payload length field in the V6 header
should also be changed to reflect the new pay-
load size. A table is used by the FTP-ALG
to correct the TCP sequence and acknowledge-
ment numbers in the TCP header for control
packets in both directions.

The table entries should have the source ad-
dress, source data port, destination address and
destination data port for V4 and V6 portions
of the session, sequence number delta for out-
bound control packets and sequence number
delta for inbound control packets.

Linux Symposium 40

4 SIP-ALG Operation

Many communication applications on the In-
ternet require a session protocol to negotiate
and maintain the data exchange between end-
points in a session.

Moreover, as the evolution of the mobile com-
puting and wireless networks, a session is re-
quired to handle user mobility, different me-
dia type, and media addition and removal in
an existing session. Upon these requirements,
the Internet Engineering Task Force (IETF) is-
sued the Session Initiation Protocol (SIP) to en-
able the Internet endpoints (called user agents
in SIP) to discover one another and to agree on
the parameters of a session.

4.1 SIP overview

“SIP is an application-layer control protocol
that can establish, modify, and terminate mul-
timedia sessions (conferences) such as Inter-
net telephony calls” [5]. SIP is specified as an
agile and general-purpose tool that works in-
dependently of underlying transport protocols
and without dependency on the various media
types.

SIP establishes sessions by its invitations in
which session descriptions are used to negoti-
ate a set of compatible media types to be shared
among participants. In addition, SIP can in-
vite participants to join in an already existing
session. SIP transparently supports name map-
ping and redirect services. SIP proxy severs
could be used to facilitate routing SIP requests
to the user’s current location. SIP also provides
a registration function that stores users’ current
locations that could be used by proxy servers to
redirect requests.

The characteristics of SIP are simplicity and
flexibility. SIP is not a complete communica-
tion system. SIP is rather a component that can

cooperate with other IETF protocols to provide
complete services to the users. Typically, the
Real-time Transport Protocol (RTP) [6] could
be combined with SIP to support real-time
data transfer and provide QoS feedback; the
Session Description Protocol (SDP) [7] could
be used for describing multimedia sessions;
the Real-Time Streaming Protocol (RSTP) [8]
could be used to control delivery of streaming
media; and the Media Gateway Control Pro-
tocol (MEGACO) [9] could be used for con-
trolling gateways to the Public Switched Tele-
phone Network (PSTN).

It should be noted that SIP does not depend
on any of the protocols above that provide ser-
vices. Rather, SIP provides basic functional-
ities and operations that can be used to im-
plement different services. Furthermore, “SIP
provides a suite of security services, which in-
clude denial-of-service prevention, authentica-
tion (both user to user and proxy to user), in-
tegrity protection, and encryption and privacy
services” [5].

4.2 SIP Messages

SIP defines two distinct types of messages: re-
quests and responses. “A SIP message is either
a request from a client to a server, or a response
from a server to a client. ... Both types of mes-
sages consist of a start-line, one or more header
fields, an empty line indicating the end of the
header fields, and an optional message-body”
[5].

4.3 SIP Behavior

SIP requests can be sent directly from a user
agent client to a user agent server, or they can
traverse one or more proxy servers along the
way. User agents send requests either directly
to the address indicated in the SIP URI or to a
designated proxy (outbound proxy), indepen-
dent of the destination address. The current

Linux Symposium 41

destination address is carried in the Request-
URI. Each proxy can forward the request based
on local policy and information contained in
the SIP request. The proxy may rewrite the re-
quest URI.

4.4 SIP-ALG Behavior

There exists an increasing need of IP address
translation because the networks based on IPv6
addresses have being extended and because the
supply of IPv4 addresses is inadequate.

SIP is an application layer control protocol
for establishing media sessions. It encounters
problems with NAT-like devices, because the
payloads of SIP packets carry the addresses
for the sessions to be established. However,
the NAT function in NAT-PT is application un-
aware and does not snoop the payloads. Along
with NAT-PT and DNS-ALG, a SIP-ALG is
needed on the boundary between IPv4 and
IPv6.

This section describes a simple implementa-
tion of a SIP ALG to enable simple SIP ses-
sions to pass through a NAT-PT box based on
the Vocal system (an open source SIP imple-
mentation created by Vovida.org [10]). Rather
than attempt to make a full specification for
SIP-ALG, we have implemented a subset of the
functionalities that is sufficient for typical use.

An IP packet carrying a SIP message is identi-
fied by NAT-PT box by the characteristic of the
SIP protocol, using the port 5060 as the desti-
nation.

Whenever a Vocal user agent (UA) initiates a
SIP session by the host name of a callee, it
looks up the IP address from DNS services.
DNS servers transparently provide the address
as normal except that the DNS-ALG will setup
an address mapping once the DNS query is
traversing a boundary of IPv4 and IPv6, which
has been described in the previous sections. If

a mapping occurs, the SIP message is sent to
the NAT box. The SIP-ALG in the NAT box
will build a table storing two pairs of the source
address and the corresponding destination ad-
dress for both IPv4 and IPv6 domains. Accord-
ing to the table, the various fields in the SIP
message will be modified. If the Content-Type
is SDP, the SDP message and the Content-
Length will also be adjusted. After that, the
modified message is forwarded to another IP
version of the network. Similarly, the response
messages will be modified back to the original
messages correspondingly when they return to
the NAT box. Thus, it seems as if the IPv4 UA
and the IPv6 UA are communicating with the
NAT-PT box respectively.

5 DNS Considerations

The IPv4 region has a DNS server, which re-
turns Address (A) records when queried about
a host name that exists in the IPv4 region.
The IPv6 stub region has a local DNS server,
which returns IPv6 address (AAAA) records
when queried about a hostname that exists in
the IPv6 stub region. In addition, there is a
“global” IPv6 DNS server.

If any IPv6 hosts in the IPv6 stub region are
to provide services to IPv4 clients (initiated
by the IPv4 clients), the NAT-PT must perma-
nently associate an IPv4 (pool) address to the
IPv6 address of the serving host. In addition,
one of the following must be true:

1. The IPv4 DNS server must map a host
name (probably different from its IPv6
host name) to the associated IPv4 (pool)
address,or

2. The IPv4 DNS server must refer the DNS
request for the associated host name to a
DNS server located at a specific IPv4 pool
address. Queries sent to this address are

Linux Symposium 42

processed by the DNS-ALG at the Bor-
der Router, and sent to the local IPv6 DNS
(in the stub region). The returned reply is
processed by the DNS-ALG, and sent to
the original requesting host as a DNS “A”
record. This record will contain the IPv4
pool address that was assigned to the IPv6
server.

We had to install and configure alocal IPv4
DNS server to filter the requests for resolution
of host names associated with the IPv6 stub do-
main. This was done on the host that would
serve as the client, to minimize the impact on
the rest of the system. Queries about names
ending in “.ip6.lmc.ericsson.se” were sent to
the statically assigned IPv4 pool address that
was associated with the IPv6 DNS server. All
other queries were forwarded to the regular
IPv4 DNS server. (Note: this “extra” DNS
server would be unnecessary in a production
environment. The problem would be addressed
by putting the necessary directives in the IPv4
DNS server itself.)

6 Conclusion and Future Work

We have demonstrated that it is possible to
protect the investment in past hardware and
systems, by installing a NAT-PT on the Bor-
der Router that provides access to IPv6-based
equipment. To do so requires that special care
be taken in configuring the Domain Name Sys-
tem servers (for both IPv4 and IPv6), the NAT-
PT itself, and the IPv6 hosts (so that their DNS
requests are sent to the NAT-PT).

The NAT-PT solution requires one IPv4 pool
address for each IPv6 host that is concurrently
accessing the IPv4 address space. This could
clearly result in exhaustion of the IPv4 address
pool. A potential solution is to use NAPT-PT
[3], where host/port number pairs on the IPv6
side are mapped to a single IPv4 pool address

and multiple port numbers on the IPv4 side.
NAPT-PT bears the same relationship to NAPT
that NAT-PT bears to NAT; the implementation
details are more complex, but the use of NAPT-
PT will be necessary when large IPv6 stub re-
gions are able to use only a small pool of IPv4
addresses to provide the desired services.

7 Acknowledgments

The authors acknowledge the support of Erics-
son Research Canada through the use of its lab-
oratory. The first author acknowledges the sup-
port of the Natural Sciences and Engineering
Research council of Canada, through its Dis-
covery Grants program.

8 Availability

A link to the developed implementation is on
the web site

http:
//www.linux.ericsson.ca/ipv6

References

[1] K. Egevang and P. Francis. The IP
network address translator (NAT).
Request for Comments 1631, Internet
Engineering Task Force, May 1994.

[2] Y. Rekhter, B. Moskowitz,
D. Karrenberg, G. J. De, and E. Lear.
Address allocation for private internets.
Request for Comments 1918, Internet
Engineering Task Force, February 1996.

[3] G. Tsirtsis and P. Srisuresh. Network
address translation - protocol translation
(NAT-PT). RFC 2766, Internet
Engineering Task Force, February 2000.

Linux Symposium 43

[4] ETRI-PEC. User space NAT-PT
implementation. http://www.ipv6.or.kr/
english/natpt-overview.htm.

[5] J. Rosenberg, H. Schulzrinne,
G. Camarillo, A. R. Johnston,
J. Peterson, R. Sparks, M. Handley, and
E. Schooler. SIP: Session Initiation
Protocol. RFC 3261, Internet
Engineering Task Force, June 2002.

[6] Henning Schulzrinne, S. Casner,
R. Frederick, and V. Jacobson. RTP: a
transport protocol for real-time
applications. Request for Comments
1889, Internet Engineering Task Force,
January 1996.

[7] M. Handley and V. Jacobson. SDP:
Session Description Protocol. Request
for Comments 2327, Internet
Engineering Task Force, April 1998.

[8] H. Schulzrinne, A. Rao, and R. Lanphier.
Real Time Streaming Protocol (RTSP).
Request for Comments 2326, Internet
Engineering Task Force, April 1998.

[9] F. Cuervo, N. Greene, A. Rayhan,
C. Huitema, B. Rosen, and J. Segers.
Megaco protocol version 1.0. Request
for Comments 3015, Internet
Engineering Task Force, November
2000.

[10] VOVIDA. VOCAL home page.
http://www.vovida.org.

Building Enterprise Grade VPNs
A Practical Approach

Ken S. Bantoft
freeswan.ca / MDS Proteomics

ken@freeswan.ca, http://www.freeswan.ca

Abstract

As Linux scales its way into the enterprise,
things like high availabilty and redundancy be-
come more and more important.

As is the case with many Open Source appli-
cations, you can integrate several applications
together to build in as much redundancy and
failover as you need for your network.

By combining several Open Source applica-
tions, including Linux [1], FreeS/WAN [2],
GNU/Zebra [3] and Heartbeat [4] we are able
to build a very reliable, robust VPN solution.

1 Building an Enterprise VPN

FreeS/WAN has been used for several years by
many Linux system administrators to build Vir-
tual Private Networks (VPNs) between sites,
end-users, and business partners. It is very con-
figurable, inter-operates well with other IPSec
implementations and is generally quite stable.
It has few limits, however two of the more
common limits sysadmins run into are:

1. IPSec doesn’t tunnel all IP traffic—it does
not handle Multicast or Broadcast traffic.
This means if we wanted to do Multicas-
ting over our VPN, or run OSPF from
Zebra on ipsec0 for dynamic routing, we
can’t. While it’s possible to run OSPF in

NMBA mode, we ran into problems with
this as well.

2. You need one tunnel per network combi-
nation pair—thus if you have 4 IP subnets
behind Secure Gateway #1, and 2 behind
Secure Gateway #2, you will need to con-
figure 8 separate tunnels (unless you can
aggregate your IP network space to /23s,
/16s or other CIDR compatible blocks).

Point 1 isn’t too much of a limit, since many
networks don’t need multicast and broadcast
traffic to be routed between sites. In large net-
works, point 2 quickly becomes an adminitra-
tive nightmare to deal with.

This can quickly get out of hand for large net-
works, especially when more than two sites are
involved. The ideal solution is to setup a sin-
gle tunnel between each site, and then route
all traffic from site 1 destined for site 2 over
the VPN, and hope the other side accept it.
The problem here is that IPSec policies (which
FreeS/WAN enforces) prevents this—if there is
no explcit tunnel defined for the Source + Des-
tination pair, the packet is dropped.

The solution here is to use GRE—Generic
Routing Encapsultion. This has been part of
the Linux kernel for quite some time, and
allows us to solve both problems identified
above. By setting up a GRE tunnel over one
of our IPSec tunnels, we can then route any-

Linux Symposium 45

thing we want over the GRE tunnel, including
Multicast traffic.

Once we are using GRE, we need some way to
dynamically inform the other side of the tun-
nel which networks we know about, and how
to get to them. GNU/Zebra can provide this
functionality, using either OSPF or BGPv4.

2 Challenges & Solutions

Integration of all of the applications used pre-
sented several challenges, since none of them
were designed to work together. Some had
to be extended, and others had to be scripted
around in order for them to notify each other
of various different sorts of failures.

Luckily, with source in hand, this was much
easier than expected.

2.1 Zebra

Zebra was the easiest to integrate, as no di-
rect code changes were required. There were
initially some problems with using OSPF on
aliased interfaces (eg: eth0:0) but those were
solved by an upgrade to the latest version
(0.91a or 0.93 are known to work).

2.2 Heartbeat

Heartbeat needed some modifications so it was
aware of the status of the physical interfaces,
and then just needed a basic configuration and
a lot of scripting.

One of the most significant differences be-
tween commercial grade routers and Linux is
that if an interface is physically unplugged, or
the switch/hub on the other side goes down, a
commercial router drops the interface, and all
routes that travel over it are removed. Linux
desperatly needs this capability, but until re-

cently many network cards were unable to re-
port the link status.

Donald Becker[5] wrote a handy toolset for
this—mii-tool/mii-diag. During my tenure at
IBM Canada, one of the developers I worked
with took this and turned it into a patch against
Heartbeat. If Heartbeat detects a physical
problem with the network card/cable/switch,
Heartbeat initates a failover event. This code
supported the Intel 10/100 (eepro.o|e100.o) as
well as the Intel Gigabit Ethernet adapters
(e1000.o).

The bulk of the time went into the rewriting
of many scripts to properly bring interfaces up
and down, to restart Zebra’s bgpd correctly,
and to cleanly restart FreeS/WAN.

2.3 FreeS/WAN

FreeS/WAN required no code changes, only
configuration and some scripting to keep the
configuration syncronised between each set of
Secure Gateways. We used SSH for this.

3 Gluing it all Together

The complicated part is making all of these ap-
plications and protocols work together seam-
lessly. Our basic network layout is below:

Linux Symposium 46

We have two Secure Gateways, each with a
connection to the internet. Ideally, each would
have its own link to the Internet, preferably re-
dundant, but you could share the link if needed.
Each gateway also has a connection to the local
lan, which Heartbeat sends keep-alives over.
If possible, use a Null-modem cable between
each pair of gateways for out of band keep
alives. If this isn’t possible, Heartbeat also sup-
ports UDP keep-alives over any network inter-
face.

Ensure each gateway has all of the applications
installed, and the GRE and FreeS/WAN con-
figurations should be syncronised. Heartbeat
and GNU/Zebra configurations differ slightly,
so they should not be shared.

A diagram showing the key interactions be-
tween the applications:

Heartbeat is the control center in this setup,
as it monitors each node in the group for fail-
ure, and checks its own Ethernet devices via
MII calls. Heartbeat also starts and stops
various scripts (from /etc/rc.d/init.d) which
bring up FreeS/WAN, the GRE tunnels, and
GNU/Zebra.

3.1 Dealing with Startup Scripts

FreeS/WAN and GNU/Zebra both provide
scripts suitable for use in /etc/rc.d/init.d, so we
used those. We also needed to add a GRE tun-
nel, so we wrote our own startup scripts for
that. A quick example:

#!/bin/sh
chkconfig: 2345 50 64
description: Set up a GRE tunnel from

Linux Symposium 47

here to somewhere else

case "$1" in
start)

ip tunnel add MYTunnel mode gre \
remote 216.1.1.1 local 116.1.1.1 ttl 255
ip link set MYTunnel up
ip addr add 172.16.0.1 dev MYTunnel
ip route add 172.16.0.2/32 dev MYTunnel
;;

stop)
ip route del 172.16.0.2/32 dev MYTunnel
ip addr del 172.16.0.1 dev MYTunnel
ip link set MYTunnel down
;;

restart)
$0 stop
$0 start
;;

*)
echo "Usage: $0 {start|stop|restart}" >&2
exit 2

esac

exit 0

}

Our script supports the traditional arguments
start, stop, and restart, and will bring the GRE
tunnel up and down when called from Heart-
beat.

3.2 Heartbeat Configuration

Full details on configuring Heartbeat are avail-
able from the package itself [7], so I will cover
only the /etc/ha.d/haresources config file here.
From Heartbeat, we need to control the IP ad-
dress takeover, and the services (/etc/rc.d/init.d
scripts) we start and stop when a node fails.
This can be done with a simple, single line en-
try in /etc/ha.d/haresources:

cluster1 116.1.1.1/28 192.168.0.1/24 \
ipsec gre zebra bgpd
}

The above line tells Heartbeat to do IP ad-
dress takeover on 159.18.124.254 (our Exter-
nal IP address) 192.168.0.1 (our Internal IP ad-
dress). It also lists the scripts (in order) to
run when a takeover happens. It passes each

of these scripts a parameter—either “start”
or “stop” determined by what is occurring—
taking over the IP, or releasing it. (I.e.,
/etc/rc.d/init.d/ipsec start .)

3.3 FreeS/WAN Configuration

FreeS/WAN configuration was straightfor-
ward. PSK (pre shared secrets) use is not rec-
ommended, as recent bugtraq postings have
shown some potential security flaws. We rec-
ommend RSASig’s, however X.509 Digital
certificates can also be used. The following ex-
ample uses PSK authentication for one remote
site:

config setup
interfaces="ipsec0=eth0:0"
klipsdebug=none
plutodebug=none
plutoload=%search
plutostart=%search
uniqueids=yes

conn %default
keyingtries=0

conn site1tosite2
authby=rsasig

left=116.1.1.1
leftnexthop=116.1.1.30
leftrsasigkey=0xA0S8PIPI...
leftid=@site1.company.com
right=216.1.1.1
rightnexthop=216.1.1.30
rightrsasigkey=0xA0QKJ986...
rightid=@site2.company.com
auto=start

}

The critical line of the config isinterfaces=

"ipsec0=eth0:0" , as by default Free-
S/WAN won’t bind to an aliased interface.
Since Heartbeat brings up the service IP ad-
dresses on aliases, we need to bind our ipsec
interface to the alias.

Linux Symposium 48

3.4 GNU/Zebra Configuration

From GNU/Zebra, we use the BGPv4 daemon
to handle our dynamic routing. This gives us
much more control over which routes we share
than OSPF would, as well as makes configura-
tion simple.

Sample bgpd.conf file:

!
hostname torcofw1
password a_secure_password
enable password a_more_secure_password
log file bgpd.log
log stdout

router bgp 65432
bgp router-id 172.16.0.1
network 172.16.0.0/30
redistribute kernel
redistribute connected
redistribute static
neighbor 172.16.0.2 remote-as 65432
neighbor 172.16.0.2 next-hop-self

!
}

We use a reserved AS number (65432) in
case we ever need to do BGP with peers
from another company, or the Internet. All
of the network and neighbour statements refer
to our GRE tunnel IP addressing, as we wish
to communicate with our BGP peer over the
GRE tunnel—not the IPSec tunnel. neighbour
172.16.0.2 next-hop-self is critical—we need
our BGP peer to send any traffic destined for
our local networks through us directly, since
we have an established tunnel.

4 Conclusions

It took a few weeks to get this setup sta-
ble, during which we changed from OSPF to
BGPv4, which cleared up several problems
we encountered with neighbours failing to ex-
change routes consistantly. The current design
has been running in production at 4 sites for

over 2 years now, and we have had several suc-
cessful failovers (several faulty network cards,
a bad switch port, and the more common sys-
tem administrator error).

Connections that do not pass though netfil-
ter connection tracking (i.e., NAT/MASQ) are
usually unaffected—with a keepalive time of
2 seconds, and a deadtime of 10 seconds,
dead peer detection is fairly quick. This
can be optimized down to about 5 seconds if
needed. Changing over the IP addresses, start-
ing FreeS/WAN, GRE tunnels and GNU/Zebra
takes less than 10 seconds on modern hard-
ware, so our total time between failover is less
than 20 seconds.

5 Future Improvements

There are more improvements to be made that
could bring detection and failover down into
the 1–3 second range.

Heartbeat seems currently limited to 1-second
keepalives—this could be brought down to 1/4
second over the serial interface, meaning a
deadtime of 1 second would be reasonable (3
missed polls).

FreeS/WAN has a routing limitation whereby
you can’t have two tunnels for the same source
+ destination pair going to two different remote
gateways. Hopefully, this limitation will not be
present in either kernel 2.6’s IPSec implemen-
tation, or future versions of FreeS/WAN that
implement the MAST [8] device.

Connections that do utilize the netfilter con-
nection tracking are currently cut off, since
the secondary firewall is not aware of the cur-
rent state of the conntrack table on the primary
firewall. There was some discussion at the
OLS 2002 Netfilter BOF, and on the Netfilter
Failover list [9] on how to handle syncroniza-
tion of the conntrack table, however no code

Linux Symposium 49

has emerged.

6 Acknowledgments

I would like to acknowledge the FreeS/WAN
team, and extra thanks to Michael Richardson
and JuanJo Ciarlante who helped me setup a
UML environment setup so I could demon-
strate much of this. I’d also to acknowledge
IBM Canada, who employed me during the ini-
tial development of this solution, and my cur-
rent employer, MDS Proteomics who allows
me to continue to refine it. Also, thanks to As-
taro Corporation for funding some of my de-
velopment of Super FreeS/WAN, and covering
my hosting costs for freeswan.ca.

7 Availability

Software:

http://www.freeswan.ca
http://www.zebra.org
http://www.linux-ha.org

Documentation:

http://www.freeswan.ca/docs/HA

References

[1] Linux, http://www.linux.org

[2] The FreeS/WAN Project,
http://www.freeswan.org
http://www.freeswan.ca

[3] The GNU Zebra Project,
http://www.zebra.org

[4] The Linux-HA Project,
http://www.linux-ha.org

[5] Donald Becker, Scyld Computing
Corporation,http://www.scyld.
com/diag#mii-diag

[6] Ken S. Bantoft,Building HA VPNS with
FreeS/WAN, http:
//www.freeswan.ca/docs/HA/

[7] Getting Started with Heartbeat,
http://www.linux-ha.org/
download/GettingStarted.
html

[8] John S. Denker,Next-Generation IPsec
Packet Handling, http:
//www.quintillion.com/moat/
ipsec+routing/mast.html

[9] Netfilter Failover Archives,
http://lists.netfilter.org/
pipermail/
netfilter-failover/

Linux memory management
on larger machines

Martin J. Bligh
mbligh@aracnet.com

David Hansen
haveblue@us.ibm.com

Abstract

A large amount of work has gone into the
memory management subsystem during the 2.5
series of Linux® kernels, and it is more sta-
ble under a wide variety of workloads than the
2.4 VM (virtual memory subsystem). Many
scalability problems have been solved, mak-
ing memory managment perform much better
on larger machines (meaning either with more
than 1GB of RAM, or more than one processor,
or both). Some of these changes also benefit
smaller machines.

During the 2.4 series of kernels, the main
Linux distributions diverged massively from
the mainline kernel, particularly in the area of
VM. This causes ongoing maintainance prob-
lems, and wasted duplicated effort in problem
solving and feature implementation. Many of
the enhancements made by the distributions
have been brought back into the mainline ker-
nel during the 2.5 series, under the leadership
of Andrew Morton, providing a solid base for
future development, and a greater potential for
co-operative work.

This paper discusses the changes made to the
Linux VM system during 2.5 that will signif-
icantly impact larger machines. It also covers
changes that are proposed for the future, most
of which are currently available as separate
patches. Larger machines also have to cope
with a larger number of simultaneous tasks—
I have focused on up to 5000.

For the sake of simplicity, clarity, and
brevity, we assume an IA32 machine with
PAE mode (3 level pagetables) and normal
memory layout settings throughout the pa-
per. Unless otherwise specified, measurements
were taken on a 16-CPU NUMA-Q® system
(PIII/700MHz/2MB L2 cache) with 16GB of
RAM.

1 Introduction

Market economics dictate the prevalance of
large 32 bit systems, despite the software com-
plexity involved. Though cheap 64 bit chips
are beginning to appear, they are still not avail-
able as large systems. However, the techniques
and discoveries described in this paper are by
no means only applicable to such machines.

2 The global kernel virtual area

The fundamental problem with 32 bit machines
is the lack of virtual address space for both user
processes and the kernel—32 bits limits us to
4GB total. Each user processes’ address space
is local to that process, but the kernel address
space is global. In order to ensure efficient op-
eration, the user address space is shared with
the global kernel address space (see Figure 1).

The default address space split for Linux 2.4
and 2.5 is 3GB user: 1GB kernel. It is
possible to change this split, but it is of-
ten not desirable—some applications (such as

Linux Symposium 51

Figure 1: The process address space

databases) want as much address space for the
process as possible for the application, whilst
the kernel also wants as much space as possi-
ble for its data structures.

The first 896MB of physical memory is
mapped 1:1 into the shared global kernel ad-
dress space. This memory range is known as
low memory (ZONE_NORMAL), and mem-
ory above the 896MB boundary is known as
high memory (ZONE_HIGHMEM). The more
physical memory we add to the machine, the
bigger the kernel control structures need to be,
but the control area is fixed size by the virtual
space limitation.

Thus the more RAM we add to the machine,
the more pressure there is on the global kernel
area. The standard Linux 2.4 kernel copes very
badly with large amounts of memory, perhaps
limited to 4GB at best. The Linux 2.4 enter-
prise distributions will work with 16–32GB of
memory, depending on the distribution. Linux
2.5 will cope with approximately 32GB of
memory.

Unfortunately, most of the data that is put into
the kernel address space is not swapable, and
the Linux kernel often does not shrink the data
gracefully under memory pressure. Thus, the
failure condition is often difficult to diagnose;
kswapd goes into a flat spin, all kernel mem-
ory allocations stop, and the system appears to
have hung. Monitoring the “lowfree” field of
/proc/meminfo in the runup to the system hang
will often help to detect this condition.

The main space consumers for the kernel space
are:

• mem_map (physical page control struc-
tures)

• Slab caches, particularly:

– buffer_head

– dentry_cache

– inode_cache

• Pagetables

mem_map is an array of page control struc-
tures, one for each physical page of RAM on
the system. On a 16GB machine, that takes
19% of the kernel’s address space. For 64GB,
it takes 78% of all the space we have, leaving
insufficient space for the normal kernel text and
data. Whilst the machine may boot, it will not
be usable.

William Irwin and Hugh Dickins are imple-
menting a technology called “page clustering,”
that makes one page control structure govern
a group of pages, thus dramatically reducing
the space taken (e.g. 8 page groups reduces us
from 78% of space to 9%).

3 kmap

The kernel has permanent direct access to low
memory, but needs to perform special opera-

Linux Symposium 52

tions to map high memory (however, note that
user space can directly map high memory).
High memory is usually mapped one 4K page
at a time, via two main mechanisms: persistent
kmap, and atomic kmap.

Persistent kmap uses a pool of 512 entries. All
entries start out as clean; each entry is used in
turn, and has a usage count associated with it.
As entries are freed (usage count falls to 0) they
are marked as dirty. When we reach the end
of the pool, all dirty entries with 0 usage are
marked as clean, a system-wide tlbflush is in-
voked, and now the buffers may be reused. All
of these operations are global, and done under
a global lock (kmap_lock).

Atomic kmap has a small number of entries
per CPU—one for each of a few specific op-
erations (that may need to be done in conjunc-
tion, so one entry is not sufficient). To reuse
an atomic kmap slot, a single TLB entry needs
to be flushed, and only on 1 CPU. This allows
lockless operation, and CPU local data man-
agement (i.e., no cacheline bouncing). How-
ever, due to the CPU-local nature of the map-
ping, it is not possible to sleep, or reschedule
onto another CPU whilst holding the mapping.

The problem comes in that persistent kmap
turns out to be heavily used and rather slow.
Not only is the data & locking global, but the
global TLB flushes are very expensive (par-
ticular on machines without tlb_flush_range,
such as IA32). Persistent kmap scales as O(N2)
where N is the number of CPUs in the sys-
tem (N times the frequency that the pool is
exhausted * N times the impact from the tlb
flushes). As CPU:memory speed ratios con-
tinue to grow, the caches become ever more
important, and such algorithms are not suitable
for heavy use.

The heaviest users were copy_to/from_user
and related functions (copying data between
kernel and userspace). It is possible that

these operations would take a pagefault on the
userspace page, and thus sleep (and thus cannot
directly use atomic kmap). Other heavy users
included one implementation of putting user
pagetables into highmem—workloads with
heavy pagetable manipulation (e.g. kernel
compiles) were observed to spend more than
half of their time just mapping and unmapping
pte pages.

After much discussion on the subject dur-
ing 2002, the following solution was agreed
upon, and Andrew Morton implemented it. In
essence, we now use atomic kmap for opera-
tions such as copy_to/from_user, but touch the
page first to ensure it is faulted in, making it ex-
tremely unlikely that we will take a pagefault.
In the unlikely event that a pagefault does oc-
cur, we handle the fault, then retry the copy
operation using persistent kmap (in practice,
this was never found to occur). Truly persistent
global operations (typically for the lifetime of
the OS instance) where performance it is not a
concern can still use persistent kmap.

4 Pagetables

The pagetables map the process’ virtual ad-
dresses to the physical addresses of the ma-
chine. For an IA32 machine with PAE, each
PTE entry controlling a 4K page consumes 8
bytes of space, resulting in a fully populated
3GB process address space consuming 6MB of
PTE entries. In other words, the overhead of
PTEs is 0.2% of physical RAM if we have no
sharing going on.

In most workloads, however, there is signif-
icant amounts of space shared between pro-
cesses, either in shared libraries, or as shared
memory segments. In particular, database
workloads often use large shared segments
(e.g. 2GB) shared between large numbers of
processes. Whilst the memory itself is shared

Linux Symposium 53

between processes, the pagetables are dupli-
cated; one copy for each process. Thus for
5000 processes sharing a 2GB shmem seg-
ment, the PTE overhead for that segment is
now 20GB of RAM (i.e. the overhead is
1000% of the consumed space).

These levels of heavy sharing are for real work-
loads analysed, not a theoretical projection,
and for a machine that might otherwise run
happily with 8GB of RAM.There are two ob-
vious ways to reduce the overhead: either we
share the pagetables, or we reduce the size of
each copy substantially.

Sharing the PTE level of the pagetables
has been implemented by Dave McCracken.
This enables us to share identical mappings
over large areas between different processes,
thereby reducing the mapping overhead for the
case under consideration from 20GB to 4MB.
It is totally transparent to applications, but is
not currently in the 2.5 kernel as of 2.5.68.

The locking required for shared pagetables
makes the patch slightly complex, and sharing
can only occur on a pte-page sized basis (2MB
of memory). Due to the mechanisms of shared
libraries writing to certain areas of the shlib
(and thus causing a copy-on-write split for the
2MB area) and the alignment requirements, it
is not generally useful as a mechanism for re-
ducing the overhead of shared libraries. It is,
however, extremely effective on large shared
memory segments, and reduces the overhead
of fork+exec for large processes.

Support for large hardware pagesizes (aka
hugetlbfs) can dramatically reduce the over-
head of each process’ pagetables. On IA32
PAE, there is only 1 large page size available
(2MB), and this reduces the overhead by a fac-
tor of approximately 512. Memory consump-
tion for the case under consideration is reduced
for this case from 20GB to about 60MB. This is
in the Linux 2.5 kernel, but requires small mod-

ifications to applications in order to use this fa-
cility.

A static pool of memory reserved for large
pages is established at boot time, and handed
out to applications that request it via a flag to
shared memory create calls. Future work is
planned to make a more flexible mechanism,
whereby it is not necessary to reserve a static
number of pages, and the kernel automatically
uses large pages where appropriate.

In order to accomodate the large numbers of
pagetables that are potentially needed on larger
systems, it is possible to put the third level of
the pagetables (PTEs) into the high memory
area, rather than the main global kernel space.
While this can greatly alleviate the space con-
sumption problem, it comes at a price in terms
of time.

Though modern implementations of highmem
pagetables use atomic kmap, the cost of setting
up the mappings for access, and the subsequent
TLB flush is still expensive for such heavy us-
age, especially for workloads that create and
destroy processes frequently. For kernel com-
piliation, the overhead of highpte was an in-
crease of approximately 8% of system time.

5 UKVA

The shortage of virtual space on IA32 keeps
the kernel from directly mapping everything
that it might like to, especially things which
are in high memory. We have mecha-
nisms to do this temporarily with kmap() and
kmap_atomic(), but both of these mechanisms
impose significant overhead in data manage-
ment and tlb flushing.

For workloads with large numbers of pro-
cesses, one of the largest consumers of virtual
space is page tables, specifically the bottom-
level PTE pages. There is an option (high-

Linux Symposium 54

pte) in the kernel to put these pages in high
memory and map them via kmap_atomic() as
needed, but this incurs an 8% increase in sys-
tem overhead. It would be much more efficient
to permanently map the PTE pages, but into a
per-process area instead of a global one, thus
giving efficient operation without wasting large
amounts of virtual space.

UKVA (User-kernel virtual addressing) pro-
vides a per-process kernel memory area. The
same virtual space in each process is mapped to
different physical pages, just like the userspace
addresses (thus the “U”), but with the protec-
tions of kernel space (hence the “K”). A previ-
ous implementation actually located this area
in the current user area. However, that imple-
mentation would have made it difficult to lo-
cate things other than user PTEs in the area.
The implementation described here will locate
the area inside the current kernel virtual area,
and concentrate on locating PTEs in the area.

The first question is, “How big does it need to
be?” An IA32 machine with PAE enabled has
4k pages, each controlled by a 8-byte pte en-
try. Each process will only need enough UKVA
space to map in its own page tables.

4GB / (4K / page) = 1M pages

1M pages * 8 bytes/pte = 8MB of virtual space
for ptes

For the purpose of this example, this space will
be from 4G–8MB through 4GB; however, it
does not really matterwherethis area is. It does
notneedto be aligned in a certain way, but this
does make it easier to work with. First, the area
should be aligned on a PTE page/PMD entry
boundary (2MB with PAE). This will make it
certain that the whole area can itself be mapped
with only 4 PTE pages (more on this below).
Secondly, the area should not straddle a PMD
boundary, to avoid the initial setup being re-
quired to map more than 1 page, which makes

it more expensive.

To map the required 8MB of virtual space, we
require 2048 4K page table entries. We can fit
512 pte entries per 4K page, thus we require 4
UKVA PTE pages. Each time a pte page needs
to be mapped in to the UKVA area, one of these
2048 pte entries contained in the 4 UKVA PTE
pages will need to be set.

5.1 Initialization

Since the UKVA area will be the primary
means for access to all PTE pages, it must
be available for the entire life of the process’s
pagetables. For this reason, the initialization
will occur in pgd_alloc(), at the same time as
the top level pagetable entry is created.

On IA32, a pmd entry and a pte entry are the
same size and PTRS_PER_PMD (the count
of pmd entries per pmd page) is the same as
PTRS_PER_PTE (the count of pte entries per
pte page). Also, every time a pte page is al-
located, a pmd entry is pointed to it. Each
time you want to map an allocated PTE page,
a pte entry is made, somewhere (highpte uses
kmap() to do this). Instead of setting kmap()
ptes, we will use UKVA ptes. This means
there will be a 1:1 relationship between PMD
pages/entries and UKVA PTE pages/entries.

During pgd_alloc(), the 4 UKVA PTE pages
are allocated as soon as the PMD page which
will point to them is allocated. The 4 pmd en-
tries are made for the 4 pte pages, as are the
corresponding 4 pte entries. However, mak-
ing the PTE entries is slightly complex. One
of the goals of UKVA is to replace HIGHPTE,
which means that all of the PTE pages will be
allocated in highmem, including the special 4
UKVA PTE pages. This means that the pte
page that contains the 4 pte entries will need
to be mapped via atomic kmap to make the en-
tries. However, after this is done, they may

Linux Symposium 55

be accessed directly, without ever using kmap
again.

This is the time where keeping the 8MB area
from crossing a PMD boundary is important.
Because of the 1:1 relationship, if the 4 pages
are covered by more than 1 PMD page, they
will also be covered by more than 1 PTE page,
possibly doubling the amount of number of
kmap calls which must occur.

5.2 Runtime

The bulk of the UKVA work is done in pte_
alloc_map(). In keeping with the 1:1 relation-
ship, each time a pmd_populate() is done, a
UKVA PTE is also set. However, there are 2
possible ways to set a PTE with UKVA.

The first method is to simply index into the
UKVA area, and set the PTE directly. Since
the UKVA area is virtually contiguous, it can
be accessed just like an array of every PTE in
the system. The PTE contolling the first page
of memory is at the start of the UKVA PTE
space, just as the last PTE in the space con-
trols the last page of RAM. It will always be
known where the PTE for any given virtual ad-
dress will be mapped. This also means the the 4
UKVA PTE pages themselves will be mapped
to constant, known places.

The second method is used when pte_alloc_
map() is asked to allocate a PTE for another
process. Since the UKVA only contains the
current process’s pagetables, the pagetables of
the other process must be walked, and appro-
priate entries made. During the walking pro-
cess, the UKVE PTE pages must be mapped
via kmap_atomic() so that they can be altered.

6 Hot & Cold pages

As the ratio of CPU speed to memory speed
grows over time and CPU architectures change

in ways such as pipelining, the efficient utilisa-
tion of processor caches becomes increasingly
important. The hot and cold pages mechanism
in Linux 2.5 (and its predecessors such as per-
cpu pages) provide an important way to help
increase the efficiency of the data cache. This
is important for UP systems, but provides even
greater benefit on SMP.

For each CPU in the system, for each zone
of memory, we provide two queues for data
pages: a hot queue, and a cold queue. The gen-
eral precept is that pages in the hot queue are
cache hot on that CPU, and pages on the cold
queue are cache cold. Only 0-order pages (sin-
gle page groups) are kept in these queues, the
higher order allocations (multipage groups) are
managed directly by the buddy allocator.

Both the hot and cold page lists allocate pages
and free pages en masse from the buddy allo-
cator for greater efficiency. This allows us to
take multiple pages under one holding of the
lock, whilst those codepaths and data manage-
ment elements are cache hot. The lists have
low watermarks, below which they will be re-
filled, and high watermarks, above which they
will be emptied. Default batch size for allo-
cations is 16 pages at a time; watermarks are
32–96 pages for the hotlists, and 0–32 pages
for the cold lists.

The hot queue is managed as a LIFO stack—
pages freed via the normal free_pages() route
are pushed onto the hot stack (i.e. assumed
to be cache warm). Further tuning in this area
may be needed—the caller has better informa-
tion about the cache warmth of the pages they
are freeing than the generic routines. By de-
fault, page allocations come out of the hot list,
unless __GFP_COLD is specified.

The cold list basically just functions as a batch-
ing mechanism for page allocations. It is used
for pages that will not be first touched by the
CPU in question (e.g. pagecache pages that

Linux Symposium 56

will be filled by DMA before they are read).
This preserves the valuable cache hot pages for
other uses, and saves cacheline invalidates for
the CPU’s cache. shrink_list(), shrink_cache(),
and refill_inactive_zone() all free pages back
into the cold list via the pagevec mechanism.

Below is a comparison of the kernel profiles of
an equivalent workload (kernel compile) with
and without the hot & cold pages mechanism,
measuring how many ticks are spent in each
routine, and which routines see the greatest
change. Those labelled ’+’ get more expen-
sive with hot & cold pages, those labelled ’- ’
get cheaper. The 17.5% overall reduction in the
total number of ticks spent is evident.

Ticks Percent Routine
+243 0.0% buffered_rmqueue
+197 6.6% page_remove_rmap
+131 0.0% handle_mm_fault
+116 0.0% fget

...
-77 -15.7% release_pages
-78 -34.4% atomic_dec_and_lock
-89 -18.5% d_lookup
-97 -16.2% __get_page_state

-155 -35.6% link_path_walk
-155 -23.8% copy_page_range
-178 -27.8% shmem_getpage
-193 -24.6% do_no_page
-209 -100.0% pte_alloc_one
-210 -26.0% zap_pte_range
-303 -100.0% pgd_alloc
-365 -100.0% __free_pages_ok
-532 -28.0% do_anonymous_page
-650 -37.0% do_wp_page
-700 -100.0% rmqueue

-4595 -17.5% total

The cost of rmqueue, pgd_alloc, pte_alloc_
one, and __free_pages_ok has shifted into
buffered_rmqueue, but it takes much less time
to execute. The main cost for do_anonymous_
page was in zeroing newly allocated pages, and
the cost of do_wp_page is in copying pages
from one to the other. Both obviously bene-
fit greatly from the better cache warmth of the

system. The profiles only show kernel time—
userspace is actually the biggest beneficiary
from this mechanism.

7 Page reclaim

In 2.5, the LRU lists were converted from
global to per-zone. This makes it easier
to free up one particular type of memory
(e.g. ZONE_NORMAL) without affecting
other types. It also breaks up the global locks
and reduces cross-node cacheline traffic for
NUMA machines. Following is the most sig-
nificant elements from kernel profile data from
a 2.4.18 kernel + NUMA patches doing a ker-
nel compile on a 16-way NUMA-Q:

2763 _text_lock_dcache
2499 _text_lock_swap
1199 do_anonymous_page

763 d_lookup
651 lru_cache_add
646 __free_pages_ok
612 do_generic_file_read
573 lru_cache_del

...

The _text_lock_swap entry is the pagemap_
lru_lock

The page-reclaim daemon (kswapd) must
touch large amounts of data, both the user
pages being manipulated, and their control
structures (e.g. the LRU lists). However, on
NUMA systems this is extremely problematic,
as it causes a lot of cross-node memory traffic.
Hence the global daemon was replaced with
a per-node daemon, each of which only scans
its own nodes pages, which is much more effi-
cient.

One of the last major global locks in the
VM was pagemap_lru_lock. Andrew Morton’s
pagevec implementation reduced contention on
it by 98% by batching page operations together

Linux Symposium 57

into ‘pagevecs’—vectors of pages that could
be manipulated together as groups more effi-
ciently.

8 rmap

Whilst the pagetables of each process provide
a mapping from that virtual address space to
the physical addresses backing it, in Linux 2.4,
there is no easy way to map back from a phys-
ical address to a virtual address. This is what
rmap provides—a “reverse” mapping from the
physical address back to the set of virtual ad-
dresses mapping it.

To reclaim memory, 2.4 used a “virtual
scan”—walk each process, and see if we can
unmap the physical pages it is using. 2.5 uses
“physical scan”—walk each page of RAM, and
see if it can be freed (this requires the rmap
mechanism). This new mechanism has sev-
eral advantages, perhaps the most important
of which is stability. It has proven signifi-
cantly more robust under pressure than the vir-
tual scan in 2.4 code.

Whilst the usage of the rmap mechanism has
remained fairly stable, the method of keeping
the data for the reverse mapping has been a
source of more contention and trouble. The
current 2.5 code as of 2.5.68 uses a mecha-
nism called “pte-chains” which keeps (for each
physical page) a simple linked list of pointers
back to the pte entries of the processes map-
ping each page.

These pte-chains have several problems:

• Locking

• Space consumption

• Time consumtion

The locking was at first implemented as a
global lock, which was actually shared with

the worst existing global VM lock (pagemap_
lru_lock). This caused massive lock contention
(data from a 12-way NUMA-Q), as seen in Ta-
ble 1.

Therefore, the locking was changed to a per-
chain lock, which was subsequently compacted
into a 1 bit lock embedded in the flags field of
the struct page to avoid more space consump-
tion problems. This reduced kernel compile
times by more than half on 16-way NUMA-Q
(from 85s to 40s).

The next problem with pte-chains is the space
consumption. A simple singly linked list will
consume 4 bytes per entry for the pointer to the
PTE and 4 bytes per entry for the pointer to the
next entry. Two methods were used to alleviate
this:

1. Pages with only a single mapping can use
the “page-direct” optimisation—instead
of storing the pointer to the linked list in
the struct page, we use the same space to
point directly to the only PTE by using the
pte union introduced into struct page:

union {
struct pte_chain *chain;
pte_addr_t direct;

} pte;

And this switch is governed by the
PG_direct flag from the flags field in the
struct page.

2. The lists are grouped by cacheline, allow-
ing multiple PTE pointers per ‘list next’
pointer. Not only does this reduce the size
of the linked list by almost half (assum-
ing sufficient grouping), but it also greatly
increase the data locality and cache effi-
ciency for walking the chain.

Moreover, this space consumption all comes
from low memory, an extremely precious re-
source on large 32-bit machines. To take

Linux Symposium 58

SPINLOCKS HOLD WAIT

UTIL CON MEAN MAX MEAN MAX % CPU TOTAL NOWAIT SPIN NAME

45.5% 72.0% 8.5us 341us 138us 11ms 44.3% 3067414 28.0% 72.0% pagemap_lru_lock
0.03% 31.7% 5.2us 30us 139us 3473us 0.02% 3204 68.3% 31.7% deactivate_page+0xc
6.0% 78.3% 6.8us 87us 162us 9847us 9.4% 510349 21.7% 78.3% lru_cache_add+0x2c
6.7% 73.2% 7.6us 180us 120us 8138us 6.4% 506534 26.8% 73.2% lru_cache_del+0xc

12.7% 64.2% 7.1us 151us 140us 10ms 13.4% 1023578 35.8% 64.2% page_add_rmap+0x2c
20.1% 76.0% 11us 341us 133us 11ms 15.0% 1023749 24.0% 76.0% page_remove_rmap+0x3c

Table 1: Massive lock contention on 12-way NUMA-Q

Pointer to PTE

chain->next

mem_map pte_chains

PG_direct!

Figure 2: pte-chain based rmap

our example of 5000 processes sharing a
2GB memory segment again, not only do we
now have 20GB of pagetables, but 10GB of
pte_chains. Whilst the 20GB of pagetables can
at least be moved off into high memory, this
is not easy to do for pte chains. In order to
move the chains into high memory, the “next
element” pointers would need to become phys-
ical addresses, instead of virtual ones. Not only
are these larger (36 bits instead of 32), they also
need to be mapped into virtual addresses be-
fore use, an incredibly expensive procedure for
walking the linked lists.

Last, but not least, of the problems is the time
consumption. For every page used, and for ev-
ery process that uses it, we must take a lock
(using an expensive atomic operation) and cre-
ate a page entry. Worse still, when we tear
down the mapping, we must take that same
lock, and then walk the pte-chain looking for
the element to free. This takes approximately a
linear amount of time, depending on the num-
ber of elements sharing that page. Even for
just a load of 128 on SDET, the kernel profile
shows the rmap functions massively dominat-
ing:

86159 page_remove_rmap
38690 page_add_rmap
17976 zap_pte_range
14431 copy_page_range
10953 __d_lookup

9978 release_pages
9369 find_get_page
7483 atomic_dec_and_lock
6924 __copy_to_user_ll
6830 kmem_cache_free

The problem is especially acute under a work-
load such as SDET that does significant
amounts of fork/exec/exit traffic, where map-
pings must be continually built up and then
torn down again. I see this problem as fun-
damental with a page based approach; though
it may be alleviated somewhat by tuning, it is
still a per-page operation, and thus too expen-
sive. Even for a simple kernel compile, the
page_remove_rmap is still the most expensive
function in the whole kernel:

Linux Symposium 59

23222 page_remove_rmap
14034 do_anonymous_page

7638 __d_lookup
6406 page_add_rmap
5188 __copy_to_user_ll
3656 find_get_page
3429 __copy_from_user_ll
3126 zap_pte_range
2108 do_page_fault
1925 atomic_dec_and_lock
1852 path_lookup

8.1 rmap shadow pages

Ingo Molnar has proposed a new rmap method
which I shall call “rmap shadow pages,” which
alleviates some of the problems with pte-
chains, but is still page based. At the time of
writing, there is no implementation available,
but some of its properties may be determined
by analysis.

Instead of the chains being allocated as needed
on a cacheline sized block, it is proposed to al-
locate two “shadow pages” for each pte-page
(page filled with PTE entries). These would
form a doubly-linked list with other shadow
pages. To retrieve the list of PTE entries for
a particular page, one would consult the pte-
chain pointer in the relevant struct page, and
walk the list (similarly to PTE-chains).

The PTE entry itself need not be stored in-
side the rmap shadow page, but the rmap pages
are implicitly “linked” to the pte page in some
fashion (e.g. being placed together in some
contiguous group of two pages). However, the
cacheline locality characteristics seem to be
against this method for scanning, as it involves
touching a separate cacheline for every element
in the list.

To add a page to the linked list, we would take
the pte_chain lock, and add ourselves to the
head of the list (one modification to the shadow
page, plus one to the struct page). To remove
a page from the list would not require walking

PTE pages

rmap shadow pages

prev next prev next

Page B

Page A
Page B

Page A

A prev A next

B prev B next

A prev A next

B prev B next

Figure 3: rmap shadow pages

the list (as for pte_chains), but we would tra-
verse from the PTE page to the corresponding
shadow page, map both its prev and next ele-
ment pages, and perform a regular unlink for a
doubly-linked list.

One of the major advantages of the rmap
shadow pages method is that the rmap data can
be more easily moved into the highmem area.
However, this is not without cost—each page
accessed must be mapped via kmap, which has
proven expensive for PTE pages in the highpte
implementation.

Whilst rmap shadow pages may fix some of the
problems of pte-chains, it is still page-based,
and thus requires a large amount of data ma-
nipulation. It is therefore unlikely to solve the
fundmantal time and space problem, though
moving the chains into high memory may be
worthwhile.

Linux Symposium 60

8.2 Object based rmap

Other operating systems have taken a differ-
ent approach to the physical to virtual address
mapping problem. K42 has taken an approach
based on file objects (akin to the Linux ad-
dress_space structure), which seemed to be
promising after initial discussions with Orran
Krieger and other K42 engineers.

Instead of keeping a reverse mapping for each
page in the system, we can discover the list
of virtual addresses by going from the struct
page to the address_space object. From the
address_space object, we can walk a list of
vmas—areas of process virtual memory which
map that object. By adding the offset within
the file (stored in struct page as “index”) to the
base virtual address of each vma, we can derive
the virtual address within each process. From
there, we can walk the pagetables to find the
appropriate PTE.

The key advantage of this method is that there
is no overhead at all for the setup and tear-
down of each page. This comes at the cost of
higher overhead to find the PTEs at scanning
time (the list of VMAs and the pagetables for
each process must be walked). However, many
workloads will run without memory pressure,
or only have pressure on the caches, which are
easily freed, so the approach seems promising.

However, there are a few fundamental prob-
lems with an object-based approach within
Linux. For one, there is not a backing file ob-
ject for every page in the system, some pages
(e.g. private process data allocated via mal-
loc/sbrk) are anonymous, i.e. not associated
with any file. Whilst it would be possible to
create a file object for anonymous pages, this
would not be a simple change.

Another problem is that the calculation of
adding the offset to the base virtual address
within the process assumes that the vma is lin-

ear. Whilst this used to be true, the 2.5 kernel
contains a new mechanism called “sys_remap_
file_pages” that allows for non-linear VMAs.

Bearing in mind that pte_chains are most ex-
pensive under heavy sharing (the linked list
must be walked for page_remove_rmap), some
analysis was taken of the length of the pte-
chains for both file-backed and anonymous ob-
jects. This showed that the anonymous objects
were only mapped once for nearly all pages,
and the shared mappings were nearly all file-
backed.

Based on these observations, and the simplicity
of implementation, a “partially object-based”
scheme was proposed. This used the object-
based mappings for file-backed pages, and
the pte-chains method for anonymous mem-
ory (and for nonlinear mappings). Dave Mc-
Cracken implemented this scheme, and it was
very effective in reducing both the space and
time taken by pte-chains.

Kernbench-16: (make -j 256 vmlinux)
Elapsed User System CPU

pte-chains 47.21 569.17 139.55 1500.67
partial objrmap 46.09 568.19 121.83 1496.67

Note the 12% drop in total system time.

SDET 64 (see disclaimer)
Throughput Std. Dev

2.5.68 100.0% 0.2%
2.5.68-objrmap 121.2% 0.3%

Again, kernel profiles clearly show the reduc-
tion:

-30518 -78.9% page_add_rmap
-72197 -83.8% page_remove_rmap

Partial objrmap also drastically reduced the
number of pte_chain objects in the slab cache,
graphically demonstrating that file_backed
chains are predomininant. For amake
-j256 vmlinux :

Linux Symposium 61

pte-chains 24116 pte_chain objects in slab cache
objrmap 716 pte_chain objects in slab cache

(a 97% reduction).

However, at the time of writing, there are still
a couple of remaining objections to partial ob-
jrmap:

1. The interaction with sys_remap_file_
page’s nonlinear vmas is complex and
convoluted due to the conversion to and
from pte_chains which may be necessary.
However, it is generally recongnised that
sys_remap_file_pages is a special case.
If those vmas are pre-declared as non-
linear, most of the problems disappear.
Furthermore, for the intended use of sys_
remap_file_pages (windowing onto large
database shared segments), it is accept-
able to lock those pages into memory (this
is normally done in any case), in which
case none of this information will ever be
needed, so it is not necessary to keep it.

2. If 100 processes each map 100 vmas onto
the same address space, then objrmap
would have to scan 10,000 regions, not
simply the 100 mappings that the page-
based methods might have had for their
chains. Whether this corner case is im-
portant or not is a matter of debate, as
it was exactly the case that sys_remap_
file_pages was designed to fix, and callers
should be using that method for such an
unusual situation. However, a simple opti-
misation is proposed that should alleviate
the problem in any case:

For each distinct range of addresses mapped by
a vma inside the address_space, we define an
address_range. This takes advantage of the fact
that we are likely to remap the same range re-
peatedly (e.g. for shared libraries). From each

shared range, we attatch a list of vmas that map
that range. Furthermore, we sort the list of ad-
dress ranges by start address.

address
space

R RRR

V

V

V

V V

V

V

V

R = address_range

V = vma V

Figure 4: list of lists

struct address_range {
unsigned long start;
unsigned long end;
struct list_head ranges;
struct list_head vmas;

};

9 NUMA support

On NUMA systems, it is more efficient to ac-
cess node-local memory than remote memory.
Thus Linux tries to allocate memory to a pro-
cess from the node it is currently running on,
providing for more efficient performance. This
also allows for locality of memory and control
structures, reducing cross-node cacheline traf-
fic.

By default, we allocate memory from the lo-
cal node (if some is free), then round robin
amongst the remaining nodes by node number,
starting at the local node, and progressing up-
wards. Kernel code can also request memory
on specific nodes via alloc_pages_node().

Matt Dobson has created a simple NUMA
binding interface for userspace, allowing pro-
cesses to request memory from a specific node,

Linux Symposium 62

or group of nodes. This is very useful for large
database applications, which wish to bind “par-
titions” of the database to certain nodes.

Several critical control structures (e.g. the
mem_map array—the control structures for the
physical RAM pages, and the pgdat—the node
control structure) are now allocated on the
nodes own memory, providing for better per-
formance on NUMA systems. More items (e.g.
the scheduler data, and per-cpu data) should be
migrated into node-local memory in the future.

Of the three main memory allocators (al-
loc_pages, vmalloc, slab cache), only the slab
cache is not NUMA aware. Manfred Spraul
has created patches to do this, but we have not
seen observeable performance benefits from
this method yet. Part of the problem is the in-
herently global nature of many of the caches
(eg the directory cache), which will need to be
attacked first.

Some of the kernel architectures (ones with
hardware assistance from the CPU) have kernel
text replication functioning. This makes a copy
of the kernel data to each node, and processes
will use their own node’s local copy of the
data, reducing backplane traffic, and intercon-
nect cache pollution. Replicating the read-only
portion of shared libraries also seems promis-
ing, though this has not yet been implemented
in Linux. Replicating any data that is not read-
only is likely to be too complex to be benefi-
cial.

10 Legal

This work represents the view of the authors and
does not necessarily represent the view of IBM.

SPEC is a registered trademark and the benchmark
name SDET is a trademark of the Standard Perfor-
mance Evaluation Corporation. This benchmarking
was performed for research purposes only and the

run results are non-complaint and not-comparable
with any published results.

NUMA-Q is a registered trademark of Interna-
tional Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

Integrating DMA Into the Generic Device Model

James E.J. Bottomley
SteelEye Technology, Inc.

http://www.steeleye.com

James.Bottomley@steeleye.com

Abstract

This paper will introduce the new DMA API
for the generic device model, illustrating how
it works and explaining the enhancements over
the previous DMA Mapping API. In a later sec-
tion we will explain (using illustrations from
the PA-RISC platform) how conversion to the
new API may be achieved hand in hand with a
complete implementation of the generic device
API for that platform.

1 Introduction

Back in 2001, a group of people working on
non-x86 architectures first began discussing
radical changes to the way device drivers make
use of DMA. The essence of the proposal
was to mandate a new DMA Mapping API[1]
which would be portable to all architectures
then supported by Linux. One of the forces
driving the adoption of this new API was the
fact that the PCI bus had expanded beyond the
x86 architecture and being embraced by non-
x86 hardware manufacturers. Thus, one of the
goals was that any driver using the DMA Map-
ping API should work onany PCI bus inde-
pendent of the underlying microprocessor ar-
chitecture. Therefore, the API was phrased en-
tirely in terms of the PCI bus, since PCI driver
compatibility across architectures was viewed
as a desirable end result.

1.1 Legacy Issues

One of the issues left unaddressed by the DMA
Mapping API was that of legacy buses: Most
non-x86 architectures had developed other bus
types prior to the adoption of PCI (e.g. sbus
for the sparc; lasi and gsc bus for PA-RISC)
which were usually still present in PCI based
machines. Further, there were other buses
that migrated across architectures prior to PCI,
the most prominent being EISA. Finally, some
manufacturers of I/O chips designed them not
to be bus based (the LSI 53c7xx series of SCSI
chips being a good example). These chips
made an appearance in an astonishing variety
of cards with an equal variety of bus intercon-
nects.

The major headache for people who write
drivers for non-PCI or multiple bus devices is
that there was no standard for non-PCI based
DMA, even though many of the problems en-
countered were addressed by the DMA Map-
ping API. This gave rise to a whole hotch-
potch of solutions that differed from architec-
ture to architecture: On Sparc, the DMA Map-
ping API has a completely equivalent SBUS
API; on PA-RISC, one may obtain a “fake”
PCI object for a device residing on a non-PCI
bus which may be passed straight into the PCI
based DMA API.

Linux Symposium 64

1.2 The Solution

The solution was to re-implement the DMA
Mapping API to be non bus specific. This goal
was vastly facilitated by the new generic de-
vice architecture[5] which was also being im-
plemented in the 2.5 Linux kernel and which fi-
nally permitted the complete description of de-
vice and bus interconnections using a generic
template.

1.3 Why A New API

After all, apart from legacy buses, PCI is the
one bus to replace all others, right? so an API
based on it must be universally applicable?

This is incorrect on two counts. Firstly, support
for legacy devices and buses is important to
Linux, since being able to boot on older hard-
ware that may have no further use encourages
others who would not otherwise try Linux to
play with it, and secondly there are other new
non-PCI buses support for which is currently
being implemented (like USB and firewire).

1.4 Layout

This paper will describe the problems caused
by CPU caches in section 2, move on to intro-
ducing new struct device based DMA API[2]
in section 3 and describe how it solves the
problems, and finally in section 4 describe how
the new API may be implemented by platform
maintainers giving specific examples from the
PA-RISC conversion to the new API.

2 Problems Caused By DMA

The definition of DMA: Direct Memory Ac-
cess means exactly that: direct access to mem-
ory (without the aid of the CPU) by a device
transferring data. Although the concept sounds

simple, it is fraught with problems induced by
the way a CPU interacts with memory.

2.1 Virtual Address Translation

Almost every complex CPU designed for mod-
ern Operating Systems does some form of Vir-
tual Address Translation. This translation,
which is usually done inside the CPU, means
that every task running on that CPU may utilise
memory as though it were the only such task.
The CPU transparently assigns each task over-
lapping memory in virtual space, but quietly
maps it to unique locations in the physical ad-
dress space (the memory address appearing on
the bus) using an integral component called a
MMU (Memory Management Unit).

Unfortunately for driver writers, since DMA
transfers occur without CPU intervention,
when a device transfers data directly to or from
memory, it must use the physical memory ad-
dress (because the CPU isn’t available to trans-
late any virtual addresses). This problem isn’t
new, and was solved on the x86 by using func-
tions which performed the same lookups as
the CPU’s MMU and could translate virtual to
physical addresses and vice versa so that the
driver could give the correct addresses physical
addresses to the hardware and interpret any ad-
dresses returned by the hardware device back
into the CPU’s virtual space.

However, the problems don’t end there. With
the advent of 64 bit chips it became apparent
that they would still have to provide support for
the older 32 bit (and even 24 bit) I/O buses for
a while. Rather than cause inconvenience to
driver writers by arbitrarily limiting the physi-
cal memory addresses to which DMA transfers
could be done, some of the platform manufac-
turers came up with another solution: Add an
additional MMU between the I/O buses and the
processor buses (This MMU is usually called
the IOMMU). Now the physical address lim-

Linux Symposium 65

itation of the older 32 bit buses can be hid-
den because the IOMMU can be programmed
to map the physical address space of the bus
to anywhere in thephysical (not virtual)
memory of the platform. The disadvantage
to this approach is that now this bus physical
to memory physical address mapping must be
programmed into the IOMMU and must also
be managed by the device driver.

There may even be multiple IOMMUs in the
system, so a physical address (mapped by a
particular IOMMU) given to a device might
not even be unique (another device may use the
same bus address via a different IOMMU).

2.2 Caching

On most modern architectures, the speed of the
processor vastly exceeds the speed of the avail-
able memory (or, rather, it would be phenom-
enally expensive to use memory matched to
the speed of the CPU). Thus, almost all CPUs
come equipped with a cache (called the Level
1 [L1] cache). In addition, they usually expose
logic to drive a larger external cache (called the
Level 2 [L2] cache).

In order to simplify cache management, most
caches operate at a minimum size called the
cache width.1 All reads and writes from main
memory to the cache must occur in integer
multiples of the cache width. A common value
for the cache width is sixteen bytes; however,
higher (and sometimes for embedded proces-
sors, lower) values are also known.

The effect of the processor cache on DMA can
be extremely subtle. For example, consider a
hypothetical processor with a cache width of
sixteen bytes. Referring to Figure 1, suppos-
ing I read a byte of data at address0x18 . Be-
cause of the cache burst requirement, this will

1also called the “cache line size” in the PCI specifi-
cation

Cache Line Width

0x00

0x20

0x10 dataDMA
data

DMA

0x00

0x20

0x10 dataDMA
data

DMA

0x00

0x20

0x10 data
data

new DMA
new DMA

CPU Cache DMA

CPU Cache DMA

Tim
e Line

Device does DMA to main memory

CPU Reads data at 0x18

data

data

Read from 0x11 satisfied from cached data

Figure 1: Incorrect data read because of cache
effects

bring the address range0x10 to 0x1f into the
cache. Thus, any subsequent read of say0x11
will be satisfied from the cache without any ref-
erence to main memory. Unfortunately, If I am
reading from0x11 because I programmed a
device to deposit data there via DMA, the value
that I read will not be the value that the device
placed in main memory because the CPU be-
lieves the data in the cache to be still current.
Thus I read incorrect data.

Worse, referring to Figure 2, supposing I have
designated the region0x00 to 0x17 for DMA
from a device, but then I write a byte of data
to 0x19 . The CPU will probably modify the
data in cache and mark the cache line0x10
to 0x1f dirty, but not write its contents to
main memory. Now, supposing the device
writes data into0x00 to 0x17 by DMA (the
cache still is not aware of this). However, sub-
sequently the CPU decides to flush the dirty
cache line from0x10 to 0x1f . This flush will
overwrite (and thus destroy) part of the the data

Linux Symposium 66

Cache Line Width

0x00

0x20

0x10 dataDMA
data

DMA

0x00

0x20

0x10 dataDMA
data

DMA

0x00

0x20

0x10 data
data

new DMA
new DMA

0x00

0x20

0x10 DMA
data

new DMA

CPU Cache DMA

CPU Cache DMA new data

new data

new data

Tim
e Line

CPU Writes data at 0x18

Device does DMA to main memory

CPU flushes the dirty cache line

Figure 2: Data destruction by interfering de-
vice and cache line writes

that was placed at0x10 to 0x17 by the DMA
from the device.

The above is only illustrative of some of the
problems. There are obviously many other sce-
narios where cache interference effects may
corrupt DMA data transfers.

2.3 Cache Coherency

In order to avoid the catastrophic consequences
of caching on DMA data, certain processors
exhibit a property called “coherency.” This
means that they take action to ensure that data
in the CPU cache and data in main memory
is identical (usually this is done by snooping
DMA transactions on the memory bus and tak-
ing corrective cache action before a problem is
caused).

Even if a CPU isn’t fully coherent, it can usu-

ally designate ranges of memory to be coherent
(in the simplest case by marking the memory as
uncacheable by the CPU). Such architectures
are called “partially coherent.”

Finally there is a tiny subset of CPUs that can-
not be made coherent by any means, and thus
the driver itself must manage the cache so as
to avoid the unfortunate problems described in
section 2.2.

2.4 Cache Management Instructions

Every CPU that is not fully coherent includes
cache management instructions in its reper-
toire. Although the actual instruction format
varies, they usually operate at the level of the
cache line and they usually perform one of
three operations:

1. Writeback (or flush): causes the cache
line to be synced back to main memory
(however, the data in the cache remains
valid).

2. Invalidate: causes the cache line to be
eliminated from the cache (often for a
dirty cache line this will cause the con-
tents to be erased). When the cpu next
references data in that cache line it will
be brought in fresh from main memory.

3. Writeback and Invalidate: causes an
atomic sequence of Writeback followed
by Invalidate (on some architectures, this
is the only form of cache manipulation in-
struction implemented).

When DMA is done to or from memory that
is not coherent, the above instructions must be
used to avoid problems with the CPU cache.
The DMA API contains an abstraction which
facilitates this.

Linux Symposium 67

2.5 Other Caches

Although the DMA APIs (both the PCI and
generic device ones) are concernedexclusively
with the CPU cache, there may be other caches
in the I/O system which a driver may need
to manage. The most obvious one is on the
I/O bus: Buses, like PCI, may possess a cache
which they use to consolidate incoming writes.
Such behaviour is termed “posting.” Since
there are no cache management instructions
that can be used to control the PCI cache (the
cache management instructions only work with
the CPU cache), the PCI cache employs special
posting rules to allow driver writers to control
its behaviour. The rules are essentially:

1. Caching will not occur on I/O mapped
spaces.

2. The sequence of reads and writes to the
memory mapped space will be preserved
(although the cache may consolidate write
operations).

One important point to note is that there is no
defined time limit to hold writes in the bus
cache, so if you want a write to be seen by the
device it must be followed by a read.

Suffice it to say that the DMA API does not
address PCI posting in any form. The basic
reason is that in order to flush a write from
the cache, a read of somewhere in the device’s
memory space would have to be done, but only
the device (and its driver) know what areas are
safe to read.

3 The New DMA API for Driver
Writers

By “driver writer”, we mean any person who
wishes to use the API to manage DMA co-
herency without wanting to worry about the

underlying bus (and architecture) implementa-
tion.

This part of the API and its relation to the PCI
DMA Mapping API is fairly well described
in [2] and also in other published articles [3].

3.1 DMA Masks, Bouncing and IOMMUs

Every device has a particular attachment to a
bus. For most, this manifests itself in the num-
ber of address lines on the bus that the device
is connected to. For example, old ISA type
buses were only connected (directly) to the first
twenty four address lines. Thus they could only
directly access the first sixteen megabytes of
memory. If you needed to do I/O to an ad-
dress greater than this, the transfer had to go
via a bounce buffer: e.g. data was received
into a buffer guaranteed to be lower than six-
teen megabytes and then copied into the correct
place. This distinction is the reason why Linux
reserves a special memory zone for legacy (24
bit) DMA which may be accessed using flag
(GFP_DMA) or’d into the allocation flags.

Similarly, a 32 bit PCI bus can only access up
to the first four gigabytes of main memory (and
even on a 64 bit PCI bus, the device may be
only physically connected to the first 32 or 24
address lines).

Thus, the concept of adma maskis used to con-
vey this information. The API for setting the
dma mask is:

int dma_set_mask(struct
device *dev, u64 mask)

• dev —a pointer to the generic device.

• mask—a representation of the bus con-
nection. It is a bitmap where a 1 means
the line is connected and a zero means
it isn’t. Thus, if the device is only con-

Linux Symposium 68

nected to the first 24 lines, themask will
be0xffffff .

• returns true if the bus accepted the mask.

Note also that if you are driving a device capa-
ble of addressing up to 64 bits, you must also
be aware that the bus it is attached to may not
support this (i.e. you may be a 64 bit PCI card
in a 32 bit slot). So when setting the DMA
mask, you must start with the value you want
but be prepared that you may get a failure be-
cause it isn’t supported by the bus. For 64 bit
devices, the convention is to try 64 bits first but
if that fails set the mask to 32 bits.

Once you have set the DMA mask, the trou-
bles aren’t ended. If you need transfers to or
from memory outside of your DMA mask to
be bounced, you must tell the block2 layer us-
ing the

void blk_queue_bounce_limit
(request_queue_t *q, u64
mask)

• q—the request queue your driver is con-
nected to.

• mask—the mask (again 1s for con-
nected addresses) that an I/O transfer will
be bounced if it falls outside of (i.e.
address & mask != address)

function that it should take care of the bounc-
ing. Note, however, that bouncingonly needs
to occur for buses without an IOMMU. For
buses with an IOMMU, the mask serves only
as an indication to the IOMMU of what the
range of physical addresses available to the de-
vice is. The IOMMU is assumed to be able

2Character and Network devices have their own ways
of doing bouncing, but we will consider only the block
layer in the following

to address the full width of the memory bus
and therefore transfers to the device need not
be bounced by the block layer.

Thus, the driver writer must know whether the
bus is mapped through an IOMMU or not.
The means for doing this is to test the global
PCI_DMA_BUS_IS_PHYSmacro. If it is
true, the system generally has no IOMMU3

and you should feed the mask into the block
bounce limit. If it is false, then you should sup-
ply BLK_BOUNCE_ANY(informing the block
layer that no bouncing is required).

3.2 Managing block layer DMA transfers

It is the responsibility of the device driver
writer to manage the coherency problems in the
CPU cache when transferring data to or from
a device and also mapping between the CPU
virtual address and the device physical address
(including programming the IOMMU if such is
required).

By and large, most block devices are simply
transports: they move data from user applica-
tions to and from storage without much con-
cern for the actual contents of the data. Thus
they can generally rely on the CPU cache man-
agement implicit in the APIs for DMA setup
and tear-down. They only need to use explicit
cache management operations if they actually
wish to access the data they are transferring.
The use of device private areas for status and
messaging is covered in sections 3.5 and 3.6.

For setup of a singlephysically contiguous4

3This is an inherent weakness of the macro. Obvi-
ously, it is possible to build a system where some buses
go via an IOMMU and some do not. In a future revision
of the DMA API, this may be made a device specific
macro

4physically contiguous regions of memory for DMA
can be obtained fromkmalloc() and __get_
free_pages() . They may specificallynot be allo-
cated on the stack (because data destruction may be

Linux Symposium 69

DMA region, the function is

dma_addr_t dma_map_single
(struct device *dev,
void *ptr, size_t size,
enum dma_data_direction
direction)

• ptr —pointer to the physically contigu-
ous data (virtual address)

• size –the size of the physically contigu-
ous region

• direction —the direction, either to the
device, from the device or bidirectional
(see section 3.4 for a complete descrip-
tion)

• returns a bus physical address which may
be passed to the device as the location for
the transfer

and the corresponding tear-down after the
transfer is complete is achieved via

void dma_unmap_single
(struct device *dev,
dma_addr_t dma_addr,
size_t size, enum
dma_data_direction
direction)

• dma_addr —the physical address re-
turned by the mapping setup function

• size , direction —the exact values
passed into the corresponding mapping
setup function

The setup and tear-down functions also take
care of all the necessary cache flushes associ-
ated with the DMA transaction.5

caused by overlapping cache lines, see section 2.2) or
vmalloc()

5they use thedirection parameter to get this

3.3 Scatter-Gather Transfers

By and large, almost any transfer that crosses a
page boundary will not be contiguous in phys-
ical memory space (because each contiguous
page in virtual memory may be mapped to a
non-contiguous page in physical memory) and
thus may not be mapped using the API of sec-
tion 3.2. However, the block layer can con-
struct a list of each separate page and length
in the transfer. Such a list is called a Scatter-
Gather (SG) list. The device driver writer must
map each element of the block layer’s SG list
into a device physical address.

The API to set up a SG transfer for a given
struct request *req is

int blk_rq_map_sg
(request_queue_t *q,
struct request *req, struct
scatterlist *sg)

• q—the queue the request belongs to

• sg —a pointer to a pre allocated phys-
ical scatterlist which must be at least
req->nr_phys_segments in size.

• returns the number of entries insg which
were actually used

Once this is done, the SG list may be mapped
for use by the device:

int dma_map_sg(struct
device *dev, struct
scatterlist *sg, int nents,
enum dma_data_direction
direction)

• sg —a pointer to a physical scatterlist
which was filled in by

right, so be careful when assigning directions to ensure
that they are correct.

Linux Symposium 70

• nents —the allocated size of the SG list.

• direction —as per the API in sec-
tion 3.2

• returns the number of entries of thesg
list actually used. This value must be
less than or equal tonents but is oth-
erwise not constrained (if the system has
an IOMMU, it may chose to do all SG in-
side the IOMMU mappings and thus al-
ways return just a single entry).

• returns zero if the mapping failed.

Once you have mapped the SG list, you may
loop over the number of entries using the fol-
lowing macros to extract the busy physical ad-
dresses and lengths

dma_addr_t sg_dma_address
(struct scatterlist *sge)

• sge –pointer to the desired entry in the SG
list

• returns the busy physical DMA address
for the given SG entry

unsigned int sg_dma_len
(struct scatterlist *sge)

• returns the length of the given SG entry

and program them into the device’s SG hard-
ware controller. Once the SG transfer has com-
pleted, it may be torn down with

void dma_unmap_sg (struct
device *dev, struct
scatterlist *sg, int nents,
enum dma_data_direction
direction)

• nents should be the number of entries
passed in todma_map_sg() not the
number of entries returned.

3.4 Accessing the Data Between Mapping and
Unmapping

Since the cache coherency is normally man-
aged by the mapping and unmapping API, you
may not access the data between the map and
unmap without first synchronizing the CPU
caches. This is done using the DMA synchro-
nization API. The first

void dma_sync_single(struct
device *dev, dma_addr_t
dma_handle, size_t size,
enum dma_data_direction
direction)

• dma_handle —the physical address of
the region obtained by the mapping func-
tion.

• size —The size of the region passed into
the mapping function.

synchronizes only areas mapped by the
dma_map_single API, and thus only works
for physically contiguous areas of memory.
The other

void dma_sync_sg
(struct device *dev,
struct scatterlist
*sg, int nelems, enum
dma_data_direction
direction)

• The parameters should be identical to
those passed in todma_map_sg

synchronizes completely a given SG list (and
is, therefore, rather an expensive operation).
The correct point in the driver code to invoke
these APIs depends on thedirection pa-
rameter:

Linux Symposium 71

• DMA_TO_DEVICE—Usually flushes the
CPU cache. Must be calledafter you last
modify the data andbeforethe device be-
gins using it.

• DMA_FROM_DEVICE—Usually invali-
dates the CPU cache. Must be calledafter
the device has finished transferring the
data andbeforeyou first try to read it.

• DMA_BIDIRECTIONAL—Usually does
a writeback/invalidate of the CPU cache.
Must be calledbothafter you finish writ-
ing it but before you hand the data to the
deviceandafter the device finishes with it
but before you read it.

3.5 API for coherent and partially coherent ar-
chitectures

Most devices require a control structure (or a
set of control structures), to facilitate commu-
nication between the device and its driver. For
the driver and its device to operate correctly on
an arbitrary platform, the driver would have to
insert the correct cache flushing and invalidate
instructions when exchanging data using this.

However, almost every modern platform has
the ability to designate an area of memory as
coherent between the processor and the I/O de-
vice. Using such a coherent area, the driver
writer doesn’t have to worry about synchronis-
ing the memory. The API for obtaining such
an area is

void * dma_alloc_coherent
(struct device *dev,
size_t size, dma_addr_t
*dma_handle, int flag)

• dev —a pointer to the generic device

• size —requested size of the area

• dma_handle —a pointer to the area the
physically usable address will be placed
(i.e. this should be the address given to
the device for the area)

• flag —a memory allocation flag. Either
GFP_KERNELif the allocation may sleep
while finding memory orGFP_ATOMIC
if the allocation may not sleep

• returns the virtual address of the area or
NULL if no coherent memory could be al-
located

Note that coherent memory may be a con-
strained system resource and thusNULL may
be returned even forGFP_KERNELalloca-
tions.

It should also be noted that the tricks platforms
use to obtain coherent memory may be quite
expensive, so it is better to minimize the allo-
cation and freeing of these areas where possi-
ble.

Usually, device drivers allocate coherent mem-
ory at start of day, both for the above reason
and so an in-flight transaction will not run into
difficulties because the system is out of coher-
ent memory.

The corresponding API for releasing the coher-
ent memory is

void dma_free_coherent
(struct device *dev,
size_t size, void *vaddr,
dma_addr_t dma_handle)

• vaddr —the virtual address returned by
dma_alloc_coherent

• dma_handle —the device physical ad-
dress filled in at allocation time

Linux Symposium 72

3.6 API for fully incoherent architectures

This part of the API has no correspondance
with any piece of the old DMA Mapping API.
Some platforms (fortunately usually only older
ones) are incapable of producing any coher-
ent memory at all. Even worse, drivers which
may be required to operate on these platforms
usually tend to have to also operate on plat-
forms which can produce coherent memory
(and which may operate more efficiently if it
were used). In the old API, this meant it was
necessary to try to allocate coherent memory,
and if that failed allocate and map ordinary
memory. If ordinary memory is used, the driver
must remember that it also needs to enforce the
sync points. This leads to driver code which
looks like

memory = pci_alloc_coherent(...);
if (!memory) {

dev->memory_is_not_coherent = 1;
memory = kmalloc(...);
if (!memory)

goto fail;
pci_map_single(...);

}

....

if (dev->memory_is_not_coherent)
pci_dma_sync_single(...);

Which cannot be optimized away. The non-
coherent allocation additions are designed to
make this code more efficient, and to be opti-
mized away at compile time on platforms that
can allocate coherent memory.

void *dma_alloc_noncoherent
(struct device *dev,
size_t size, dma_addr_t
*dma_handle, int flag)

• the parameters are identical to those of
dma_alloc_coherent in section 3.5.

The difference here is that the drivermustuse
a special synchronization API,6 to synchronize
this area between data transfers

dma_cache_sync (void
*vaddr, size_t size,
enum dma_data_direction
direction)

• vaddr —the virtual address of the mem-
ory to sync (this need not be at the begin-
ning of the allocated region)

• size —the size of the region to sync
(again, this may be less than the allocated
size)

• direction —see section 3.4 for a dis-
cussion of how to use this.

Note that the placement of these synchroniza-
tion points should be exactly as described in
section 3.4. The platform implementation will
choose whether coherent memory is actually
returned. However, if coherent memory is re-
turned, the implementation will take care of
making sure the synchronizations become nops
(on a fully coherent platform, the synchroniza-
tions will compile away to nothing).

Using this API, the above driver example be-
comes

memory = dma_alloc_noncoherent(...);
if (!memory)

goto fail;

...

dma_cache_sync(...);

The (possibly) non-coherent memory area is
freed using

6The driver could also use the API of section 3.4 but
the point of having a separate one is that it may be opti-
mized away on platforms that are partially non-coherent

Linux Symposium 73

void dma_free_noncoherent
(struct device *dev,
size_t size, void *vaddr,
dma_addr_t dma_handle)

• The parameters are identical to those of
dma_free_coherent in section 3.4

Since there are very few drivers that need to
function on fully non-coherent platforms, this
API is of little use in modern systems.

3.7 Other Extensions in the New API

There are two other extensions over the old
DMA Mapping API. They are

int dma_get_cache_alignment
(void)

• returns the cache alignment width of the
platform (see section 2.2). Note, the value
returned guarantees only to be a power of
two and greater than or equal to the cur-
rent processor cache width. Thus its value
may be relied on to separate data variables
where I/O caching effects would destroy
data.

int dma_is_consistent
(dma_addr_t dma_handle)

• returns true if the physical memory area at
dma_handle is coherent

And

void dma_sync_single_range
(struct device *dev,
dma_addr_t dma_handle,
unsigned long offset,
size_t size, enum
dma_data_direction
direction)

• offset —the offset from the
dma_handle

• size —the size of the region to be syn-
chronized

which allows a partial synchronization of a
mapped region. This is useful because on most
CPUs, the cost of doing a synchronization is
directly proportional to the size of the region.
Using this API allows the synchronization to
be restricted only to the necessary parts of the
data.

4 Implementing the DMA API for
a Platform

In this section we will explore how the DMA
API should be implemented from a platform
maintainer’s point of view. Since implementa-
tion is highly platform specific, we will con-
centrate on how the implementation was done
for the HP PA-RISC[4] platform.

4.1 Brief Overview of PA-RISC

CPU

U2/Uturn
IOMMU

Cujo

PCI64

Dino Wax Lasi

EISA LASIPCI32

IOMMU
U2/Uturn

Memory

GSC/10 GSC/8

Runway

Figure 3: An abridged example of PA-RISC
architecture

An abridged version of a specific PA-RISC ar-
chitecture7 is given in Figure 3. It is particu-

7The illustration is actually from a C360 machine,
and does not show every bus in the machine

Linux Symposium 74

larly instructive to note that the actual chips in-
volved (Cujo, U2/Uturn, Wax etc.) vary from
machine to machine, as do the physical bus
connections, so the first step that was required
for PA-RISC was to build a complete model of
the device layout from the runway bus on down
in the generic device model[5].

4.2 Converting to the Device Model

Since PA-RISC already had its own device type
(struct parisc_device), it was fairly
simple to embed a generic device in this, as-
sign it to a newparisc_bus_type and
build up the correct device structure. For
brevity, instead of giving all the PA-RISC spe-
cific buses (like Lasi, GSC, etc) their own
bus type, they were all simply assigned to the
parisc_bus_type .

The next problem was that of attaching the PCI
bus. Previously, PCI buses could only have
other PCI buses as parents, so a new API8 was
introduced to allow parenting a PCI bus to an
arbitrary generic device. At the same time, oth-
ers were working on bringing the EISA bus un-
der the generic device umbrella [6].

With all these core and architecture specific
changes, PA-RISC now has a complete generic
device model layout of all of its I/O compo-
nents and is ready for full conversion to the
new DMA API.

4.3 Converting to the DMA API

Previously for PA-RISC, the U2/Uturn
(IOMMU) information was cached in the
PCI devicesysdata field and was placed
there at bus scan time. Since the bus scan-
ning was done from the PA-RISC specific
code, it knew which IOMMU the bus was
connected to. Unfortunately, this scheme

8pci_scan_bus_parented()

doesn’t work for any other bus type, so an
API9 was introduced to obtain a fake PCI
device for a givenparisc_device and
place the correct IOMMU in thesysdata
field. PA-RISC actually has an architecture
switch (see struct hppa_dma_ops in
asm-parisc/dma-mapping.h) for the
DMA functions. All the DMA functions really
need to know is which IOMMU the device
is connected to and the device’sdma_mask,
making conversion quite easy since the only
PCI specific piece was extracting the IOMMU
data.

Obviously, in the generic device model, the
field platform_data is the one that we
can use for caching the IOMMU informa-
tion. Unfortunately there is no code in any
of the scanned buses to allow this to be pop-
ulated at scan time. The alternative scheme
we implemented was to take the generic de-
vice passed into the DMA operations switch
and, if platform_data was NULL, walk
up theparent fields until the IOMMU was
found, at which point it was cached in the
platform_data field. Since this will now
work for every device that has a generic device
(which is now every device in the PA-RISC
system), the fake PCI device scheme can be
eliminated, and we have a fully implemented
DMA API.

4.4 The Last Wrinkle—Non-Coherency

There are particular PA-RISC chips (the PCX-
S and PCX-T) which are incapable of allo-
cating any coherent memory at all. Fortu-
nately, none of these chips was placed into a
modern system,or indeed into a system with
an IOMMU, so all the buses are directly con-
nected.

Thus, an extra pair of functions was added
to the DMA API switch for this platform

9ccio_get_fake()

Linux Symposium 75

which implemented noncoherent allocations as
akmalloc() followed by a map, and also for
the dma_cache_sync() API. On the plat-
forms that are able to allocate coherent mem-
ory, the noncoherent allocator is simply the co-
herent one, and the cache sync API is a nop.

5 Future Directions

The new DMA API has been successful on
platforms that need to unify the DMA view of
disparate buses. However, the API as designed
is really driver writer direct to platform. There
are buses (USB being a prime example) which
would like to place hooks to intercept the DMA
transactions for programming DMA bridging
devices that are bus specific rather than plat-
form specific. Work still needs doing to inte-
grate this need into the current framework.

Acknowledgements

I would like to thank Grant Grundler and
Matthew Wilcox from the PA-RISC linux port-
ing team for their help and support transition-
ing PA-Linux to the generic device model and
subsequently the new DMA API. I would also
like to thank HP for their donation of a PA-
RISC C360 machine and the many people who
contributed to the email thread[7] that began all
of this.

References

[1] David S. Miller, Richard Henderson, and
Jakub JelinekDynamic DMA Mapping
Linux Kernel 2.5
Documentation/DMA-mapping.txt

[2] James E.J. BottomleyDynamic DMA
mapping using the generic deviceLinux
Kernel 2.5.
Documentation/DMA-API.txt

[3] Jonathan CorbetDriver Porting: DMA
ChangesLinux Weekly News,http:
//lwn.net/Articles/28092

[4] The PA-RISC linux team
http://www.parisc-linux.org

[5] Patrick MochelThe (New) Linux Kernel
Driver ModelLinux Kernel 2.5
Documentation/driver-model/*.txt

[6] Marc Zyngiersysfs stuff for EISA bus
http://marc.theaimsgroup.
com/?t=103696564400002

[7] James Bottomley[RFC] generic device
DMA implementation
http://marc.theaimsgroup.
com/?t=103902433500007

Linux® Scalability for Large NUMA Systems

Ray Bryant and John Hawkes
Silicon Graphics, Inc.

raybry@sgi.com hawkes@sgi.com

Abstract

The SGI® Altix™ 3000 family of servers
and superclusters are nonuniform memory ac-
cess systems that support up to 64 Intel® Ita-
nium® 2 processors and 512GB of main mem-
ory in a single Linux image. Altix is targeted
to the high-performance computing (HPC) ap-
plication domain. While this simplifies cer-
tain aspects of Linux scalability to such large
processor counts, some unique problems have
been overcome to reach the target of near-
linear scalability of this system for HPC appli-
cations. In this paper we discuss the changes
that were made to Linux® 2.4.19 during the
porting process and the scalability issues that
were encountered. In addition, we discuss our
approach to scaling Linux to more than 64 pro-
cessors and we describe the challenges that re-
main in that arena.

1 Introduction

Over the past three years, SGI has been work-
ing on a series of new high-performance com-
puting systems based on its NUMAflex™ in-
terconnection architecture. However, un-
like the SGI® Origin® family of machines,
which used a MIPS® processor and ran the
SGI® IRIX® operating system, the new se-
ries of machines is based on the Intel® Ita-
nium® Processor Family and runs an Itanium
version of Linux.

In January 2003, SGI announced this series of

machines, now known as the SGI Altix 3000
family of servers and superclusters. As an-
nounced, Altix supports up to 64 Intel Itanium
2 processors and 512GB of main memory in
a single Linux image. The NUMAflex archi-
tecture actually supports up to 512 Itanium 2
processors in a single coherency domain; sys-
tems larger than 64 processors comprise multi-
ple single-system image Linux systems (each
with 64 processors or less) coupled via NU-
MAflex into a "supercluster." The resulting
system can be programmed using a message-
passing model; however, interactions between
nodes of the supercluster occur at shared mem-
ory access times and latencies.

In this paper, we provide a brief overview
of the Altix hardware and discuss the Linux
changes that were necessary to support this
system and to achieve good (near-linear) scal-
ability for high-performance computing (HPC)
applications on this system. We also discuss
changes that improved scalability for more
general workloads, including changes for high-
performance I/O. Plans for submitting these
changes to the Linux community for incorpo-
ration in standard Linux kernels will be dis-
cussed. While single-system-image Linux sys-
tems larger than 64 processors are not a config-
uration shipped by SGI, we have experimented
with such systems inside SGI, and we will dis-
cuss the kernel changes necessary to port Linux
to such large systems. Finally, we present
benchmark results demonstrating the results of
these changes.

Linux Symposium 77

2 The SGI Altix Hardware

An Altix system consists of a configurable
number of rack-mounted units, each of which
SGI refers to as a brick. Depending on con-
figuration, a system may contain one or more
of the following brick types: a compute brick
(C-brick), a memory brick (M-brick), a router
brick (R-brick), or an I/O brick (P-brick or PX-
brick).

The basic building block of the Altix system is
the C-brick (see Figure 1). A fully configured
C-brick consists of two separate dual-processor
systems, each of which is a bus-connected mul-
tiprocessor or node. The bus (referred to here
as a Front Side Bus or FSB) connects the pro-
cessors and the SHUB chip. Since HPC ap-
plications are often memory-bandwidth bound,
SGI chose to package only two processors per
FSB in order to keep FSB bandwitdh from be-
ing a bottleneck in the system.

The SHUB is a proprietary ASIC that imple-
ments the following functions:

• It acts a memory controller for the local
memory on the node

• It provides an interface to the interconnec-
tion network

• It provides an interface to the I/O subsys-
tem

• It manages the global cache coherency
protocol

• It supports global TLB shoot-down and
inter-processor interrupts (IPIs)

• It provides a globally synchronized high-
resolution clock

The memory modules of the C-brick consist
of standard PC2100 or PC2700 DIMMS. With

Figure 1:Altix C-Brick

1GB DIMMS, up to 16GB of memory can be
installed on a node. For those applications re-
quiring even more memory, an M-brick (a C-
brick without processors) can be used.

Memory accesses in an Altix system are either
local (i.e., the reference is to memory in the
same node as the processor) or remote. Local
memory references have lower latency; the Al-
tix system is thus a NUMA (nonuniform mem-
ory access) system. The ratio of remote to lo-
cal memory access times on an Altix system
varies from 1.9 to 3.5 depending on the size
of the system and the relative locations of the
processor and memory module involved in the
transfer.

As shown in Figure 1, each SHUB chip pro-
vides three external interfaces: two NUMA-
link™ interfaces (labeled NL in the figure) to
other nodes or the network and an I/O interface
to the I/O bricks in the system. The SHUB chip
uses the NUMAlink interfaces to send remote
memory references to the appropriate node in
the system. Depending on configuration the
NUMAlink interfaces provide up to 3.2GB/sec
of bandwidth in each direction.

I/O bricks implement the I/O interface in the
Altix system. (These can be either an IX-brick
or a PX-brick. Here we will use the generic
term I/O brick.) The bandwidth of the I/O

Linux Symposium 78

channel is 1.2GB/sec in each direction. Each
I/O brick can contain a number of standard
PCI cards; depending on configuration a small
number of devices may be installed directly in
the I/O brick as well.

Shared memory references to the I/O brick can
be generated on any processor in the system.
These memory references are forwarded across
the network to the appropriate node’s SHUB
chip and then they are routed to the appropri-
ate I/O brick. This is done in such a way that
standard Linux device drivers will work against
the PCI cards in an I/O brick, and these device
drivers can run on any node in the system.

The cache-coherency policy in the Altix sys-
tem can be divided into two levels: local
and global. The local cache-coherency pro-
tocol is defined by the processors on the FSB
and is used to maintain cache-coherency be-
tween the Itanium processors on the FSB.
The global cache-coherency protocol is imple-
mented by the SHUB chip. The global proto-
col is directory-based and is a refinement of the
protocol originally developed for DASH [11]
(Some of these refinements are discussed in
[10]).

The Altix system interconnection network uses
routing bricks (R-bricks) to provide connectiv-
ity in system sizes larger than 16 processors.
(Smaller systems can be built without routers
by directly connecting the NUMAlink chan-
nels in a ring configuration.) For example, a
64-processor system is connected as shown in
Figure 2.

One measure of the bandwidth capacity of the
interconnection network is the bisection band-
width. This bandwidth is defined as follows:
draw an imaginary line through the center of
the system. Suppose that each processor on
one side of this line is referencing memory
on a corresponding node on the other side
of this line. The bisection bandwidth is the

total amount of data that can be transferred
across this line with all processors driven as
hard as possible. In the Altix system, the
bisection bandwidth of the system is at least
400MB/sec/processor for all system sizes.

R R

RR

R R

RR

C
−bricks

Figure 2: 64-CPU Altix System (R’s represent
router bricks)

3 Benchmarks

Three kinds of benchmarks have been used in
studying Altix performance and scalability:

• HPC benchmarks and applications

• AIM7

• Other open-source benchmarks

HPC benchmarks, such as STREAM [12],
SPEC® CPU2000, or SPECrate® [22] are sim-
ple, usermode, memory-intensive benchmarks

Linux Symposium 79

to verify that the hardware architectural design
goals were achieved in terms of memory and
I/O bandwidths and latencies. Such bench-
marks typically execute one thread per CPU
with each thread being autonomous and inde-
pendent of the other threads so as to avoid in-
terprocess communication bottlenecks. These
benchmarks typically do not spend a signifi-
cant amount of time using kernel services.

Nonetheless, such benchmarks do test the vir-
tual memory subsystem of the Linux kernel.
For example, virtual storage for dynamically
allocated arrays in Fortran is allocated via
mmap. When the arrays are touched during
initialization, the page fault handler is invoked
and zero-filled pages are allocated for the ap-
plication. Poor scalability in the page-fault
handling code will result in a startup bottleneck
for these applications.

Once these benchmark tests had been passed,
we then ran similar tests for specific HPC ap-
plications. These applications were selected
based on a mixture of input from SGI market-
ing and an assessment of how difficult it would
be to get the application working in a bench-
mark environment. Some of these benchmark
results are presented in section 7 on page 85.

The AIM Benchmark Suite VII (AIM7) is
a benchmark that simulates a more general
workload than that of a single HPC applica-
tion. AIM7 is a C-language program that
forks multiple processes (called tasks), each of
which concurrently executes similar, randomly
ordered set of 53 different kinds of subtests
(called jobs). Each subtest exercises a par-
ticular facet of system functionality, such as
disk-file operations, process creation, user vir-
tual memory operations, pipe I/O, or compute-
bound arithmetic loops.

As the number of AIM7 tasks increases, ag-
gregated throughput increases to a peak value.
Thereafter, additional tasks produce increasing

contention for kernel services, they encounter
increasing bottlenecks, and the throughput de-
clines. AIM7 has been an important bench-
mark to improve Altix scalability under gen-
eral workloads that consist of a mixture of
throughput-oriented runs or of programs that
are I/O bound.

Other open-source benchmarks have also been
employed. pgmeter[6] is a general file sys-
tem I/O benchmark that we have used to eval-
uate file system performance[5].Kernbench
is a parallel make of the Linux kernel, (e.g.,
/usr/bin/time make -j 64 vmlinux). Hackbench
is a set of communicating threads that stresses
the CPU scheduler. Erich Focht’srandupdt
stresses the scheduler’s load-balancing algo-
rithms and ability to keep threads executing
near their local memory and has been used to
help tune the NUMA scheduler for Altix.

4 Measurement and Analysis Tools

A number of measurement tools and bench-
marks have been used in our optimization
of Linux kernel performance for Altix 3000.
Among these are:

• Lockmeter [4, 17], a tool for measuring
spinlock contention

• Kernprof [18], a kernel profiling tool that
supports hierarchical profiling

• VTune™ [20], a profiling tool available
from Intel.

• pfmon [13, 15], a tool written by Stephane
Eranian that uses theperfmonsystem calls
of the Linux kernel for Itanium to inter-
face with the Itanium processor perfor-
mance measurement unit

Linux Symposium 80

5 Scaling and the Linux Kernel on
Altix

“Perfect scaling”—a linear one-to-one rela-
tionship between CPU count and throughput
for all CPU counts—is rarely achieved because
one or more bottlenecks (software or hard-
ware) introduce serial constraints into the oth-
erwise independently parallel CPU execution
streams. The common Linux bottlenecks -
lock contention and cache-line contention - are
true for uniform-memory-access multiproces-
sor systems as well as for NUMA multiproces-
sor systems and Altix 3000. However, the per-
formance impact of these bottlenecks on Al-
tix can be exaggerated (potentially in a nonlin-
ear way) by the high processor counts and the
directory-based global cache-coherency policy.

Analysis of lock contention has therefore been
a key part of improving scalability of the Linux
kernel for Altix. We have found and removed
a number of different lock-contention bottle-
necks whose impacts are significantly worse
on Altix than they are on smaller, non-NUMA
platforms. Specific examples of these changes
are discussed below, in sections 5.2 through
5.8.

Cache-line contention is usually more subtle
than lock contention, but cache-line contention
can still be a significant impediment to scal-
ing large configurations. These effects can
be broadly classified as either “false cache-
line sharing” or cache-line “ping-ponging.”
“False cache-line sharing” is the unintended
co-residency of unrelated variables in the same
cache-line. Cache-line “ping-ponging” is the
change in exclusive ownership of a cache-line
as different CPUs write to it.

An example of “false cache-line sharing” is
when a single L3 cache-line contains a loca-
tion that is frequently written and another loca-
tion that is only being read. In this case, a read

will commonly trigger an expensive cache-
coherency operation to demote the cache-line
from exclusive to shared state in the directory,
when all that would otherwise be necessary
would be adding the processor to the list of
sharing nodes in the cache-line directory en-
try. Once identified, “false cache-line sharing”
can often be remedied by isolating a frequently
dirtied variable into its own cache-line.

The performance measurement unit of the Ita-
nium 2 processor includes events that allow
one to sample cache misses and record pre-
cisely the data and instruction addresses asso-
ciated with these sampled misses. We have
used tools based on these events to find and re-
move false sharing in user applications, and we
plan to repeat such experiments to find and re-
move false sharing in the Linux kernel.

Some cache-line contention and ping-ponging
can be difficult to avoid. For example,
a multiple-reader single-writerrwlock_t con-
tains an contending variable: the read-lock
count. Eachread_lock() and read_unlock()
request changes the count and dirties the
cache-line containing the lock. Thus, an ac-
tively usedrwlock_t is continually being ping-
ponged from CPU to CPU in the system.

5.1 Linux changes for Altix

To get from awww.kernel.org Linux ker-
nel to a Linux kernel for Altix, we apply the
following open-source community patches:

• The IA-64 patch maintained by David
Mossberger [14]

• The "discontiguous memory" patch orig-
inally developed as part of the Atlas
project [1]

• The O(1) scheduler patch from Erich
Focht [7]

Linux Symposium 81

• The LSE rollup patch for the Big Kernel
Lock [19]

This open-source base is then modified to
support the Altix platform-specific addressing
model and I/O implementation. This set of
patches and the changes specific to Altix com-
prise the largest set of differences between a
standard Linux kernel and a Linux kernel for
Altix.

Additional discretionary enhancements im-
prove the user’s access to the full power of the
hardware architecture. One such enhancement
is the CpuMemSets package of library and ker-
nel changes that permit applications to control
process placement and memory allocation. Be-
cause the Altix system is a NUMA machine,
applications can obtain improved performance
through use of local memory. Typically, this
is achieved by pinning the process to a CPU.
Storage allocated by that process (for example,
to satisfy page faults) will then be allocated in
local memory, using a first-touch storage allo-
cation policy. By making optimal use of local
memory, applications with large CPU counts
can be made to scale without swamping the
communications bandwidth of the Altix inter-
connection network.

Another enhancement is XSCSI, a new SCSI
midlayer that provides higher throughput for
the large Altix I/O configurations. Fig-
ure 3 shows a comparison of I/O bandwidths
achieved at the device-driver level for SCSI
and XSCSI on a prototype Altix system.
XSCSI was a tactical addition to the Linux ker-
nel for Altix in order to dramatically improve
I/O bandwith performance while still meeting
product-development deadlines.

5.2 Big Kernel Lock

The classic Linux multiprocessor bottleneck
has been thekernel_flag, commonly known as

0

200

400

600

800

1000

0 200 400 600 800 1000

M
B

/s

Request size (in 512 byte blocks)

XSCSI Raw I/O read performance

xscsi
scsi

Figure 3:Comparison of SCSI and XSCSI on Pro-
totype Altix Hardware

the Big Kernel Lock (BKL). Early Linux MP
implementations used the BKL as the primary
synchronization and serialization lock. While
this may not have been a significant problem
for workloads on a 2-CPU system, a single
gross-granularity spinlock is a principal scal-
ing bottleneck for larger CPU counts.

For example, on a prototype Altix platform
with 28 CPUs running a relatively unimproved
2.4.17 kernel and with Ext2 file systems, we
found that with an AIM7 workload, 30% of
the CPU cycles were consumed by waiting
on the BKL, and another 25% waiting on the
runqueue_lock. When we introduced a more
efficient multiqueue scheduler that eliminated
contention on therunqueue_lock, we discov-
ered that therunqueue_lockcontention sim-
ply became increased contention pressure on
the BKL. This resulted in 70% of the system
CPU cycles being spent waiting on the BKL,
up from 30%, and a 30% drop in AIM7 peak
throughput performance. The lesson learned
here is that we should attack the biggest bot-
tlenecks first, not the lesser bottlenecks.

Linux Symposium 82

We have attempted to solve the BKL problem
using several techniques. One approach has
been in our preferential use of the XFS® file
system, vs. Ext2 or Ext3, as the Altix file sys-
tem. XFS uses scalable, fine-grained locking
and largely avoids the use of the BKL alto-
gether. Figure 4 shows a comparison of the rel-
ative scalability of several different Linux file
systems under the AIM7 workload [5].

0

1

2

3

4

5

6

0 4 8 12 16 20 24 28

T
hr

ou
gh

pu
t (

re
la

tiv
e

to
 E

xt
2

at
 2

 C
PU

S)

Number of Processors

Filesystem Performance

ext2
ext3

ReiserFS
XFS

Figure 4:File System Scalability of Linux® 2.4.17
on Prototype Altix Hardware

Other changes were targeted to specific func-
tionality, such as back porting the 2.5 algorithm
for process accounting that uses a new spinlock
instead of using the BKL.

The largest set of changes was derived from the
LSE rollup patch [19]. The aggregate effect of
these changes has reduced the fraction of cy-
cles spent spinning (out of all CPU cycles) for
the BKL lock from 50% to 5% when running
the AIM7 benchmark, with 64 CPUs and XFS
filesystems on 64 disks.

5.3 TLB Flush

For the Altix platforms, a global TLB flush
first performs a local TLB flush using the In-
tel ptc.gainstruction. Then it writes TLB flush
address and size information to special SHUB
registers that trigger the remote hardware to
perform a local TLB flush of the CPUs in that
node. Several changes have been incorporated
into the Linux kernel for Altix to reduce the
impact of TLB flushing. First, care is taken
to minimize the frequency of flushes by elimi-
nating NULL entries in themmu_gathersarray
and by taking advantage of the larger Itanium 2
page size that allows flushing of larger address
ranges. Another reduction was accomplished
by having the CPU scheduler remember the
node residency history of each thread; this al-
lows the TLB flush routine to flush only those
remote nodes that have executed the thread.

5.4 Multiqueue CPU Scheduler

The CPU scheduler in the 2.4 (and earlier) ker-
nels is simple and efficient for uniprocessor
and small MP platforms, but it is inefficient
for large CPU counts and large thread counts
[3]. One scaling bottleneck is due to the use
of a single globalrunqueue_lockspinlock to
protect the global runqueue, thereby making it
heavily contended.

A second inefficiency in the 2.4 scheduler is
contention on cache-lines that are involved
with managing the global runqueue list. The
global list was frequently searched, and pro-
cess priorities were continually being recom-
puted. The longer the runqueue list, the more
CPU cycles were wasted.

Both of these problems are addressed by
new Linux schedulers that partition the sin-
gle global runqueue of the standard scheduler
into multiple runqueues. Beginning with the
Linux® 2.4.16 for Altix version, we began to

Linux Symposium 83

use the Multiqueue Scheduler contributed to
the Linux Scalability Effort (LSE) by Hubertus
Franke, Mike Kravetz, and others at IBM [8].
This scheduler was replaced by the O(1) sched-
uler contributed to the 2.5 kernel by Ingo Mol-
nar [16] and subsequently modified by Erich
Focht of NEC and others. The Linux kernel for
Altix now uses a version of the 2.5 scheduler
with some "NUMA-aware" enhancements and
other changes that provide additional perfor-
mance improvements for typical Altix work-
loads.

What is relatively peculiar to Altix workloads
is the commonplace utilization of the task
cpus_allowedbitmap to constrain CPU res-
idency. This is typically done to pin pro-
cesses to specific CPUs or nodes in order to
efficiently use local storage on a particular
node. The result is that the Altix scheduler
commonly encounters processes that cannot be
moved to other CPUs for load-balancing pur-
poses. The 2.5 version of the O(1) sched-
uler’s load_balance()routine searches only the
“busiest” CPU’s runqueue to find a candidate
process to migrate. If, however, the “busiest”
CPU’s runqueue is populated with processes
that cannot be migrated, the 2.5 version of
the O(1) scheduler does not then search other
CPUs’ runqueues to find additional migration
candidates. What is done in the Linux kernel
for Altix is that load_balance()builds a list of
“busier” CPUs and searches all of them (in de-
creasing order of imbalance) to find candidate
processes for migration.

A more subtle scaling problem occurs when
multiple CPUs contend insideload_balance()
on a busy CPU’s runqueue lock. This is
most often the case when idle CPUs are load-
balancing. While it is true that lock contention
among idle CPUs is often benign, the problem
is that that “busiest” CPU’s runqueue lock has
now become highly contended, and that stalls
any attempt totry_to_wake_up()a process on

that queue or on the runqueue of any of the idle
CPUs that are spinning on another runqueue
lock. Therefore, it is beneficial to stagger the
idle CPUs’ calls toload_balance()to minimize
this lock contention. We continue to experi-
ment with additional techniques to reduce this
contention.

At the time this paper was being written, we
have begun to use an adaptation of the O(1)
scheduler from Linux® 2.5.68 in the Linux
kernel for Altix. To this version of the sched-
uler, we have added a set of “NUMA-aware”
enhancements that were contributed by various
developers and that have been aggregated into
a roll-up patch by Martin Bligh [2]. Early per-
formance tests show promising results. AIM7
aggregate CPU time is roughly 6% lower at
2500 tasks than without these “NUMA-aware”
improvements. We will continue to track fur-
ther changes in this area and to contribute SGI
changes back to the community.

5.5 dcache_lock

In the 2.4.17 and earlier kernels, the
dcache_lockwas a modestly busy spinlock for
AIM7-like workloads, typically consuming
3% to 5% of CPU cycles for a 32-CPU
configuration. The 2.4.18 kernel, however,
began to use this lock indnotify_parent(),
and the compounding effect of that additional
usage made this lock a major CPU cycle
consumer. We have solved this problem in
the Linux kernel for Altix by back porting
the 2.5 kernel’s finer-graineddparent_lock
strategy. This has returned the contention on
thedcache_lockto acceptable levels.

5.6 lru_list_lock

One bottleneck in the VM system we have en-
countered is contention for thelru_list_lock.
This bottleneck cannot be completely elimi-
nated without a major rewrite of the Linux

Linux Symposium 84

2.4.19 VM system. The Linux kernel
for Altix contains a minor, albeit measur-
ably effective, optimization for this bottle-
neck in fsync_buffers_list(). Instead of re-
leasing thelru_list_list and immediately call-
ing osync_buffers_list(), which reacquires it,
fsync_buffers_list()keeps holding the lock
and instead calls a new__osync_buffers_list(),
which expects the lock to be held on entry. For
a highly contended spinlock, it is often better to
double the lock’s hold-time than to release the
lock and have to contend for ownership a sec-
ond time. This particular change produced 2%
to 3% improvement in AIM7 peak throughput.

5.7 xtime_lock

Thextime_lockread-write spinlock is a severe
scaling bottleneck in the 2.4 kernel. A mere
handful of concurrent user programs calling
gettimeofday()can keep the spinlock’s read-
count perpetually nonzero, thereby starving the
timer interrupt routine’s attempts to acquire
the lock in write mode and update the timer
value. We eliminated this bottleneck by in-
corporating an open-source patch that converts
thextime_lockto a lockless-read usingfrlock_t
functionality (which is equivalent toseqlock_t
in the 2.5 kernel).

5.8 Node-Local Data Structures

We have reduced memory latencies to var-
ious per-CPU and per-node data structures
by allocating them in node-local storage and
by employing strided allocation to improve
cache efficiency. Structures where this tech-
nique is used includestruct cpuinfo_ia64,
mmu_gathers, andstruct runqueue.

6 Beyond 64 Processors

The Altix platform hardware architecture sup-
ports a cache-coherent domain of 512 CPUs.

Although SGI currently supports a maximum
of 64 processors in a single Linux image, we
believe there is potential interest in SSI Linux
systems that are larger than 64 CPUs (judging
from our experience with IRIX systems, where
some customers run 512-CPU SSI systems).
Additionally, testing on systems that are larger
than 64 CPUs can help us find scalability prob-
lems that are present, but not yet obvious in
smaller systems.

The Linux kernel currently defines a CPU bit
mask as anunsigned long, which for an Ita-
nium architecture provides enough bits to spec-
ify 64 CPUs. To support a CPU count that ex-
ceeds the bit count of anunsigned longrequires
that we define acpumask_ttype, declared as
unsigned long[N], where N is large enough
to provide sufficient bits to denote each CPU.
While this is a simple kernel coding change,
the change affects numerous files. Moreover, it
also affects some calling sequences which to-
day expect to pass acpumask_tas a call-by-
value argument or as a simple function return
value. Most problematic is whencpumask_t
is involved in a user-kernel interface, such as
we have with the SGI CpuMemSets functions
like runon anddplace. Our plan is to follow
the approach of the 2.5 kernel in this area (c.f.,
sched_set/get_affinity).

Our initial 128-CPU investigations have so far
not yielded any great surprises. The Altix hard-
ware architecture scales memory access band-
widths to these larger configurations, and the
longer memory access latencies are small (65
nanoseconds per router “hop” in the current
systems) and well understood.

The large NR_CPU configurations benefit
from anti-aliasing the per-node data and from
dynamically allocating thestruct cpuinfo_ia64
andmmu_gathers. Dynamic allocation of the
runqueue_telements reduces the static size of
the kernel, which otherwise produces a “gp

Linux Symposium 85

overflow” at link time. Inter-processor inter-
rupts and remote SHUB references are made
in physical addressing mode, thereby avoiding
the use of TLB entries and reducing TLB pres-
sure. Finally, several calls to__cli() were elim-
inated or converted into locks.

7 HPC Application Benchmark
Results

In this section, we present some benchmark re-
sults for example applications in the HPC mar-
ket segment.

7.1 STREAM

The STREAM Benchmark [12] is a “simple
synthetic benchmark program that measures
sustainable memory bandwidth (in MB/sec)
and the corresponding computation rate for
simple vector kernels” [12]. Since many HPC
applications are memory bound, higher num-
bers for this benchmark indicate potentially
higher performance on HPC applications in
general. The STREAM Benchmark has the fol-
lowing characteristics:

• It consists of simple loops

• It is embarrassingly parallel

• It is easy for compiler to generate scalable
code for this benchmark

• In general, only simple optimization lev-
els are allowed

Here we report on what is called the "triad"
portion of the benchmark. The parallel Fortran
code for this kernel is shown below:

!$OMP PARALLEL DO

DO j = 1, n

a(j) = b(j) + s ∗c(j)

CONTINUE

To execute this code in parallel on an Al-
tix system, the data is evenly divided among
the nodes, and each processor is assigned to
do the calculations on the portion of the data
on its node. Threads are pinned to proces-
sors so that no thread migration occurs dur-
ing the benchmark. The scalability results for
this benchmark on Altix 3000 are as shown
in figure 5. As can be seen from this graph,

0

20

40

60

80

100

120

140

0 8 16 24 32 40 48 56 64

G
B

/s

Number of Processors

Altix 3000 STREAM Triad Benchmark

Linear
SGI Altix 3000

Figure 5:Scalability of STREAM TRIAD bench-
mark on Altix 3000

the results scale almost linearly with proces-
sor count. In some sense, this is not surpris-
ing, given the NUMA architecture of the Altix
system, since each processor is accessing data
in local memory. One can argue that any non-
shared memory cluster with a comparable pro-
cessor could achieve a similar result. However,
what is important to realize here is that not all
multiprocessor architectures can achieve such
a result. A typical uniform-memory-access
multiprocessor system, for example, could not
achieve such linear scalability because the in-
terconnection network would become a bottle-
neck. Similarly, while it is true that a non-

Linux Symposium 86

shared memory cluster can achieve good scal-
ability, it does so only if one excludes the data
distribution and collection phases of the pro-
gram from the test. These times are trivial on
an Altix system due to its shared memory ar-
chitecture.

We have also run the STREAM benchmark
without thread pinning, both with the standard
2.4.18 scheduler and the O(1) scheduler. The
O(1) scheduler produces a throughput result
that is nearly six times better than the standard
Linux scheduler. This demonstrates that the
standard Linux scheduler causes dramatically
more thread migration and cache damage than
the O(1) scheduler.

7.2 Star-CD™

Star-CD [21] is a fluid-flow analysis system
marketed by Computational Dynamics, Ltd. It
is an example of a computational fluid dynam-
ics code. This particular code uses a message-
passing interface on top of the shared-memory
Altix hardware. This example uses an “A”
Class Model, with 6 million cells. The results
of the benchmark are shown in Figure 6.

7.3 Gaussian® 98

Gaussian [9] is a product of Gaussian, Inc.
Gaussian is a computational chemistry system
that calculates molecular properties based on
fundamental quantum mechanics principles.
The problem being solved in this case is a sam-
ple problem from the Gaussian quality assur-
ance test suite. This code uses a shared mem-
ory programming model. The results of the
benchmark are shown in Figure 7.

8 Concluding Remarks

With the open-source changes discussed in this
paper, SGI has found Linux to be a good fit

0

10

20

30

40

50

60

0 8 16 24 32 40 48 56 64

Sp
ee

du
p

Number of Processors

Star−CD Scalability Altix 3000 Prototype

Linear
SGI Altix 3000

Figure 6:Scalability of Star-CD Benchmark

0

5

10

15

20

25

30

0 8 16 24 32

Sp
ee

du
p

Number of Processors

Gaussian Sclability Altix 3000 Prototype

Linear
SGI Altix 3000

Figure 7:Scalability of Gaussian Benchmark

Linux Symposium 87

for HPC applications. In particular, changes in
the Linux scheduler, use of the XFS file sys-
tem, use of the XSCSI implementation, and
numerous small scalability fixes have signifi-
cantly improved scaling of Linux for the Altix
platform. The combination of a relatively low
remote-to-local memory access time ratio and
the high bandwidth provided by the Altix hard-
ware are also key reasons that we have been
able to achieve good scalability using Linux on
the Altix system.

Relatively speaking, the total set of changes in
Linux for the Altix system is small, and most
of the changes have been obtained from the
open-source Linux community. SGI is com-
mitted to working with the Linux community
to ensure that Linux performance and scalabil-
ity continues to improve as a viable and com-
petitive operating system for real-world envi-
ronments. Many of the changes discussed in
this paper have already been submitted to the
open-source community for inclusion in com-
munity maintained software. Versions of this
software are also available atoss.sgi.com .

We anticipate future scalability efforts in mul-
tiple directions. One is an ongoing reduction
of lock contention, as best we can accomplish
with the 2.4 source base. We have work in
progress on CPU scheduler improvements, re-
duction of thepagecache_lockcontention, and
reductions in other I/O-related locks.

Another class of work will be analysis of cache
and TLB activity inside the kernel, which will
presumably generate patches to reduce over-
head associated with poor cache and TLB us-
age.

Large-scale I/O is another area of ongoing fo-
cus, including improving aggregate bandwidth,
increasing transaction rates, and spreading in-
terrupt handlers across multiple CPUs.

References

[1] sourceforge.net/projects/
discontig

[2] www.kernel.org/pub/linux/
kernel/people/mbligh/

[3] Ray Bryant and Bill Hartner, Java
technology, threads, and scheduling in
Linux, IBM Developerworkswww-106.
ibm.com/developerworks/
library/j-java2/index.html

[4] Ray Bryant and John Hawkes,
Lockmeter: Highly-Informative
Instrumentation for Spin Locks in the
Linux Kernel,Proceedings of the Fourth
Annual Linux Showcase & Conference,
Atlanta, Ga. (2000),oss.sgi.com/
projects/lockmeter/als2000/
als2000lock.html

[5] Ray Bryant, Ruth Forester, and John
Hawkes, Filesystem Performance and
Scalability in Linux 2.4.17,Proceedings
of the Freenix Track of the 2002 Usenix
Annual Technical Conference, Montery,
Ca., (June 2002).

[6] Ray Bryant, David Raddatz, and Roger
Sunshine, PenguinoMeter: A new
File-I/O Benchmark for Linux,
Proceedings of the 5th Annual Linux
Showcase and Conference, Oakland, Ca.
(October 2001).

[7] home.arcor.de/efocht/sched

[8] M. Kravetz, H. Franke, S. Nagar, and R.
Ravindran, Enhancing Linux Scheduler
Scalability,Proceedings of the Ottawa
Linux Symposium, Ottawa, CA, July
2001.

[9] Gaussian, Inc., Carnegie Office Park,
Building 6, Suite 230, Carnegie, PA
15106 USA.www.guassian.com

Linux Symposium 88

[10] James Laudon and Daniel Lenoski, The
SGI Origin: a ccNUMA Highly Scalable
Server,ACM SIGARCH Computer
Architecture News, Volume 25, Issue 2,
(May 1997), pp. 241-251.

[11] Daniel Lenoski, James Laudon, Truman
Joe, David Nakahira, Luis Stevens,
Anoop Gupta, and John Hennesy, The
DASH prototype: Logic overhead and
performance,IEEE Transacctions on
Parallel and Distributed Systems,
4(1):41-61, January 1993.

[12] John D. McCalpin, STREAM:
Sustainable Memory Bandwidth in High
Performance Computers,
www.cs.virginia.edu/stream

[13] David Mosberger and Stephane Eranian,
IA-64 Linux Kernel, Design and
Implementation, Prentice-Hall (2002),
ISBN 0-13-061014-3, pp. 405-406.

[14] www.kernel.org/pub/linux/
kernel/ports/ia64

[15] www.hpl.hp.com/research/
linux/perfmon/ .

[16] www.ussg.iu.edu/hypermail/
linux/kernel/0201.0/0810.
html

[17] oss.sgi.com/projects/
lockmeter

[18] oss.sgi.com/projects/
kernprof

[19] lse.sourceforge.net/
lockhier/bkl_rollup.html

[20] www.intel.com/software/
products/vtune

[21] Star-CD,www.cd-adapco.com .

[22] www.spec.org

© 2003 Silicon Graphics, Inc. Permission to re-
distribute in accordance with Ottawa Linux Sym-
posium submission guidelines is granted; all other
rights reserved. Silicon Graphics, SGI, IRIX, Ori-
gin, XFS, and the SGI logo are registered trade-
marks and Altix, NUMAflex, and NUMAlink are
trademarks of Silicon Graphics, Inc., in the United
States and/or other countries worldwide. Linux is
a registered trademark of Linus Torvalds. MIPS
is a registered trademark of MIPS Technologies,
Inc., used under license by Silicon Graphics, Inc.,
in the United States and/or other countries world-
wide. Intel and Itanium are registered trademarks
and VTune is a trademark of Intel Corporation. All
other trademarks mentioned herein are the property
of their respective owners. (05/03)

An Implementation of HIP for Linux

Miika Komu∗

Miika.Komu@hiit.fi

Mika Kousa*
Mika.Kousa@hiit.fi

Janne Lundberg†

Janne.Lundberg@hut.fi

Catharina Candolin‡

Catharina.Candolin@hut.fi

Abstract

One of the main problems with IP has been its
lack of security. Although IPSec and DNSSec
have provided some level of security to IP, the
notion of a true identity for hosts is still miss-
ing. Typically, the IP address of the host has
been used as the host identity, regardless of
the fact that it is nothing more than routing in-
formation. The purpose of the Host Identity
Payload/Protocol (HIP) architecture is to add a
cryptographically based name space, the Host
Identity, to the IP protocol. The Host Identity
serves as the identity of the host, whereas the
IP address is merely used for routing purposes.
In this paper, we describe the HIP architecture
further, and present our IPv6 based implemen-
tation of HIP for Linux.

1 Introduction

The lack of security has been one of the main
problems with IP. Although IPSec [8] and
DNSSec [14] have provided some level of se-
curity to IP, such as data origin authentication,

∗Helsinki Institute for Information Technology, P.O.
Box 9800, FIN-02015 HUT, Finland

†Laboratory for Theoretical Computer Science,
Helsinki University of Technology, P.O. Box 9205, FIN-
02015 HUT, Finland

‡Laboratory for Theoretical Computer Science,
Helsinki University of Technology, P.O. Box 5400, FIN-
02015 HUT, Finland

confidentiality, integrity, and so forth, the no-
tion of a true identity for hosts is still miss-
ing. The IP address has typically been used
both to identify the host and to provide rout-
ing information. This has led to the misuse
of IP addresses for identification purposes in
many security schemes. To overcome the prob-
lems related to the current use of IP addresses,
the Host Identity Payload/Protocol (HIP) archi-
tecture adds a cryptographically based name
space, the Host Identity, to the IP protocol.
Each host (or more specifically, its network-
ing kernel or stack) is assigned at least one
Host Identity, which can be either public or
anonymous. The Host Identity can be used
for authentication purposes to support trust
between systems, enhance mobility and dy-
namic IP renumbering, aid in protocol transla-
tion/transition and reduce denial-of-service at-
tacks. Furthermore, as all of the higher proto-
cols are bound to the Host Identity instead of
the IP address, the IP address can now be used
solely for routing purposes.

In this paper, we describe the HIP architecture
and present our IPv6 [6] based implementation
of HIP for Linux. The rest of the paper is struc-
tured as follows: in Section 2, the HIP architec-
ture and the Host Layer Protocol is described.
Section 3 describes our implementation, and
Section 4 concludes the paper.

Linux Symposium 90

2 The HIP architecture

There are two name spaces in use in the In-
ternet today: IP addresses and domain names.
IP addresses have been used both to identify
the network interface of the host and the rout-
ing direction vector. The three main prob-
lems with the current name spaces are that
dynamic readdressing cannot be directly man-
aged, anonymity is not provided in a consis-
tent and trustable manner, and authentication
for systems and datagrams is not provided.

In [10][11][12], the HIP architecture is intro-
duced. HIP introduces a new cryptographically
based name space, the Host Identity (HI), and
adds a Host Layer between the network and the
transport layer in the IP stack.

The modification to the IP stack is depicted in
Figure 1. In the current architecture, each pro-
cess is identified by a process ID (PID). The
process may establish transport layer connec-
tions to other hosts (or to the host itself), and
the transport layer connection is then identi-
fied using the source and destination IP ad-
dresses as well as the source and destination
ports. On the IP layer, the IP address is used as
the endpoint identifier, and on the MAC layer,
the hardware address is used. In HIP, the trans-
port layer is modified so that the connections
are identified using the source and destination
HIs as well as the source and destination ports.
HIP then provides a binding between the HIs
and the IP addresses, e.g. using DNS [9].

The HI is typically a cryptographic public key,
which serves as the endpoint identifier of the
node. Each host will have at least one HI as-
signed to its networking kernel or stack. The
HI can be either public or anonymous. Public
HIs may be stored in directories, such as DNS,
in order to allow the host to be contacted by
other hosts. A host may have several HIs, and
it may also generate temporary (anonymous)

TRANSPORT
LAYER

NETWORK
LAYER

ACCESS
MEDIUM

TRANSPORT
LAYER

HOST
LAYER

NETWORK
LAYER

ACCESS
MEDIUM

Process
ID

(IP, port)
pairs

Process
IDAPPLICATION APPLICATION

IP address

MAC address

(HI, port)
pairs

HI

MAC address

IP address

Figure 1: The current IP stack and the HIP
based stack

HIs on the fly for establishing connections to
other hosts. The main purpose of anonymous
HIs is to provide privacy protection to the host,
should the host not wish to use its public HI(s).

The HI is never directly used in any Internet
protocol. It is stored in a repository, and is
passed in HIP. Protocols use a 128-bit Host
Identity Tag (HIT), which is a hash of the HI.
Another representation of the HI is the Local
Scope Identity (LSI), which has a size of 32
bits, but is local to the host. Its main purpose
is to support backwards compatibility with the
IPv4 API.

The main advantages of using HIT in proto-
cols instead of the HI is that its fixed length
makes protocol coding easier and also does not
add as much overhead to the data packets as a
public key would. It also presents a consistent
format to the protocol regardless of the under-
lying identity technology used. HIT functions
much like the SPI does in IPSec, but instead of
being an arbitrary 32-bit value that identifies
the Security Association for a datagram (to-
gether with the destination IP address and se-
curity protocol), HIT identifies the public key

Linux Symposium 91

that can validate the packet authentication.

The probability that a collision will occur is ex-
tremely small. However, should there be two
public keys for one HIT, the HIT acts as a hint
for the correct public key to use.

The HIP architecture basically solves the prob-
lems of dynamic readdressing, anonymity, and
authentication. As the IP address no longer
functions as an endpoint identifier, the prob-
lem of mobility becomes trivial, as the node
may easily change its HI and IP address bind-
ings as it moves. Anonymity is provided by
temporary and anonymous HIs. Furthermore,
as the name space is cryptographically based,
it becomes possible to perform authentication
based on the HIs. In [13], the concept of in-
tegrating security, mobility, and multi-homing
based on HIP is discussed further.

2.1 The Host Layer Protocol

The Host Layer Protocol (HLP) is a signal-
ing protocol between the communicating end-
points. The main purpose of the protocol is to
perform mutual end-to-end authentication and
to create IPSec ESP [7] Security Associations
to be used for integrity protection and possibly
also encryption. Furthermore, the protocol per-
forms reachability verification using a simple
challenge-response scheme.

The HLP protocol provides seven message
types, of which four are dedicated to the base
exchange. In Figure 2, the base exchange is de-
picted. In the first message,I1, the initiatorI
sends its own HIT and the HIT of the responder
to the responder. The responderR replies with
messageR1, which contains the HITs ofI and
itself as well as a puzzle based challenge for
I to solve. The purpose of the challenge is to
make the protocol resistant to denial-of-service
attacks. (Puzzle based schemes have been pre-
viously used for providing DoS protection to

I

I1: <HIT(I), HIT(R)>

R1: <HIT(I), HIT(R), challenge>

I2: <HIT(I), HIT(R), response, authentication>

R2: <HIT(I), HIT(R), authentication>

R

Figure 2: The base exchange of the Host Layer
Protocol

both authentication [3] and encryption [5] pro-
tocols.) I solves the puzzle and sends inI2
the HITs of itself andR as well as the solu-
tion to the puzzle, and performs the authenti-
cation. R2 now commits itself to the commu-
nication, and responds with the HITs ofI and
itself, and performs the authentication. After
this, I andR have performed the mutual au-
thentication and established Security Associa-
tions for ESP, and can now engage in secure
communications. Furthermore, reachability is
verified by the fact that the protocol has more
than two rounds.

If I does not have any prior information ofR, it
may retrieve the information from a repository,
such as DNS.I sends a lookup query to the
DNS server, which replies withR’s address,
HI, and HIT.

There are three other messages in the HLP. The
HIP New SPI Packet (NES) provides the peer
system with its new SPI, provides a new Diffie-
Hellman key to produce new keying material,
and provides any intermediate system with the
mapping of the old SPI to the new. The HIP
Readdress Packet (REA) allows a host to no-
tify its partners of a change of the IP address
(e.g. as a result of mobility). The HIP Boot-
strap Packet (BOS) is used when the initiator is
unable to learn a responders information from
a repository.

Linux Symposium 92

3 Implementation

The protocol is implemented as a kernel mod-
ule which uses a user space daemon process for
some cryptographic operations, such as com-
putation and verification of DSA signatures.
Since the protocol is implemented as a ker-
nel module, the kernel can remain as intact
as possible, with only minor modifications.
The modifications are backwards compatible
so that normal TCP/IP connectivity without
HIP can still be used. The state information re-
quired by the protocol state machine is located
within the kernel module. The user space dae-
mon acts as a slave to the kernel module and
does not contain state.

The implementation is based on the Linux ker-
nel version 2.4.18 with USAGI [2] patches.
The implementation supports HIP only over
IPv6.

3.1 Network Socket API

The most important design goal in the network
socket API has been the transparent use of HIP
by legacy applications. Thus, the legacy appli-
cations do not need any changes in their source
code to utilize the benefits of HIP. On the other
hand, applications that are HIP aware should
be able to perform some additional tasks that
will not be available to legacy applications. For
example, a HIP aware application may require
or deny the use of HIP. A reason to require HIP
would be to benefit from the multihoming, se-
curity, and mobility features of HIP. A reason
to deny the use of HIP might be to avoid the
extra overhead caused by the cryptographic op-
erations in a device with limited computing ca-
pacity.

A typical network application does not usually
establish a network connection directly to an
IPv6 address. Instead, the application is usu-
ally given the hostname of the peer, which has

to be resolved to an IPv6 address from DNS.
The connection can then be established to the
IPv6 address.

When HIP is used, the network application
needs additional support in the resolver for two
different reasons. The first reason is that the re-
solver should return HITs instead of IPv6 ad-
dresses if HIP is being used transparently in a
legacy application. The second reason is that
a HIT to IPv6 address mapping should always
be sent to the kernel as a side effect of the do-
main name query. Otherwise the IPv6 layer in
the kernel does not have an address it can use
for routing packets.

The resolver interfaces are traditionally con-
tained in libc . The USAGI project has
its own modified version oflibc which is
also used in the implementation. Only the
getaddrinfo resolver interface is currently
supported in the implementation for experi-
mentation purposes.

Most of the legacy IPv6 applications, such as
telnet clients and web browsers, are able to use
HIP in transparent mode if they can access the
HIP enabled resolver. This means that they
should be relinked against the HIP patched US-
AGI libc . Firewalls, network address trans-
lators and other applications that handle raw
packets may need changes in application code
in order to utilize HIP.

3.2 Userspace daemon

A userspace daemon is required by the HIP
module for several reasons, of which the most
important reason is that the protocol requires
DSA and Diffie-Hellman cryptographic algo-
rithms which cannot easily be implemented
within the kernel. Unfortunately, there are no
known kernel cryptographic libraries support-
ing those algorithms, so those tasks have to be
done in user space libraries. The HIPL im-

Linux Symposium 93

plementation uses the OpenSSL [1] library for
user space cryptographic operations.

The daemon is used by the kernel module to
perform many small operations on data. The
kernel module can send queries such assign
the given data with this DSA keyor solve
this cookieto the daemon. The daemon cal-
culates a response for the given query and
the response either contains the answer to the
query or an error message if something went
wrong. Messages between the kernel module
and the daemon are exchanged synchronously
in a request-response fashion.

The request-response communication is imple-
mented using a common interface in the kernel.
When a request is carried out in the kernel, the
current context of execution will be saved. The
contents of the context depends on the opera-
tion being executed, but a minimal context de-
fines at least a reference to a callback function.
The callback function is called after the request
has been served in the daemon and the daemon
has sent a response message to the kernel mod-
ule. The kernel module can restore its state
based on the information stored in the context
and then continue its execution where it left off.

The actual request-response communication is
implemented in a straightforward manner. The
implementation can serve only one daemon re-
quest at a time, and subsequent requests are
saved into a FIFO queue. An arriving response
message from the daemon triggers a new dae-
mon request from the top of the FIFO queue.

3.3 Networking Stack

Transport layer communications are bound to
HITs when HIP is used. When data is sent
over the transport layer connections, packets
are created and received as if they were using
HITs as the source and destination addresses in
the transport layer headers. As the packets are

passed up and down the protocol stack, they
will encounter a number of hooks that may in-
tercept the passing packet to the HIP module
for modifications. Currently, the implementa-
tion has three major entry points into the HIP
module from the IPv6 stack.

IPv6 output functions. The hooks in the out-
put functions are triggered after the packet
has been built and the packet has passed
IPsec ESP processing. If the packet be-
longs to a HIP connection, it has a HIT in-
stead of an IPv6 address as the destination
address in the IPv6 header. Such a packet
will be intercepted by the HIP module.
Other packets are allowed through intact.

When the HIP output functions receive a
packet, the module first checks whether
the packet belongs to an established HIP
connection by searching its table of estab-
lished connections using the source and
destination HITs as the key. If an exist-
ing connection is not found, the packet
is dropped and a HIP exchange is started
by sending an I1 packet. On the other
hand, if an existing connection is found,
the source and destination HITs in the
IPv6 header are replaced by the IPv6 ad-
dresses that are stored in the mapping ta-
ble in the kernel. Thus, even if connec-
tions are maintained using HITs as identi-
fiers in the transport layer, the actual pack-
ets that are sent to the network will still
always contain valid IPv6 addresses.

IPv6 ESP input functions. All received
packets that belong to an established
HIP connection will have an ESP header.
Therefore, it is only necessary to intercept
HIP packets from within ESP. Packets
that are received by ESP are classified
to those that belong to a HIP connection
and those that do not. The reverse of
the output mapping is performed. The

Linux Symposium 94

correct mapping is located using the SPI
field in the ESP header, and if a mapping
is found, the source and destination
addresses in the packet are replaced by
the corresponding HITs before the packet
is forwarded to the actual ESP processing.
Again, the ESP processing only sees the
HITs, and not the IPv6 addresses.

HIP protocol input. A special case is re-
quired for HIP packets that are re-
ceived during the connection establish-
ment phase. The HIP module is registered
as a transport layer protocol and does not
actually require a special hook for this
functionality. This intercept point is used
to receive I1, R1, I2 and R2 packets, as
well as other HIP negotiation packets.

Also, a few other hooks are required in or-
der to, for example, make the neighbor discov-
ery in IPv6 work correctly with HIP. However,
these hooks are not relevant for this discussion.

3.4 Collaboration of Components

This section gives an overview of the collab-
oration of the components through an exam-
ple. Figure 3 represents an overview of the
system architecture and the logical connections
between the components.

For simplicity, only a minimalistic base ex-
change is demonstrated. For example, mobil-
ity and multihoming are not demonstrated here.
The configuration in this example consists of
two hosts which use legacy applications that
have not been designed for HIP, and therefore
the transparent mode is used. The host that
starts the HIP exchange will be referred to as
the initiator while the peer is known as the re-
sponder. The initiator is a host that wishes to
browse a web page from another host, and the
responder has a web server listening for incom-
ing requests. A DNS server in the domain of

HIP network
module

HIP daemon

USERSPACE

KERNEL

Figure 3: Collaboration of components

the responder is configured to return the IPv6
address and the HIT of the responder.

When the HIP module is loaded into the ker-
nel, it first queries a Host Identity from the dae-
mon. This identity will be used in all signed
HIP packets that are sent by the host. The ker-
nel module also generates a list of prebuilt R1
packets for quick sending. Finally, the module
registers its hooks into the kernel. HIP connec-
tions can now be established.

When the user of the initiator host inputs the
URL of the requested web page into the web
browser to view the web pages in the respon-
der’s web server, the browser queries DNS for
the name of the host using the resolver routine
getaddrinfo . Since the browser is linked
to the modifiedlibinet6 , the query is han-
dled by the modified resolver.

The resolver queries the DNS for the respon-
der’s hostname. When the resolver receives the
response from the DNS, it finds IPv6 addresses
as well as HITs in the reply. Two things are
done before the DNS reply is returned in a list
from the resolver to the web browser. First,
the resolver changes the order of the addresses
in the DNS reply list before returning them to
the application. The HITs of the responder are
placed in the beginning of the list before the
IPv6 addresses of the responder. Second, the

Linux Symposium 95

kernel is notified about the mapping of the HIT
to the corresponding IPv6 address.

The result of the resolver call is a list contain-
ing first the HIT and then the IPv6 address of
the responder. The browser is assumed to make
the straightforward choice and select the first
address from the list, which is a HIT in this
case. The HIT is then used in the socket calls.
Because the browser uses the HTTP [4] proto-
col which runs over TCP, the browser passes
the HIT to the TCPconnect call in the net-
work socket API.

Theconnect call is handled by the TCP layer
in the kernel. The TCP layer begins a hand-
shake to establish a connection by generating a
SYN packet to be delivered to the web server.
When the SYN packet is encapsulated into an
IPv6 packet in the IPv6 layer, the packet is cap-
tured by the output hook of the HIP module.
The HIP module then examines the packet and
discovers that the addresses in the packets are
HITs instead of regular IPv6 addresses. The
module also attempts to lookup a previously
established HIP connection from its table of
established HIP connections. The lookup fails
because the connection attempt was a new one
and a HIP exchange is needed to establish the
new HIP connection. Since a HIP connection
between the client and the server does not ex-
ist, the TCP SYN packet cannot immediately
be delivered to the web server. For simplicity,
the SYN packet will be dropped. Retransmis-
sions will also be dropped until the base ex-
change has been completed.

To start the base exchange, the initiator sends
an I1 packet to the web server. R1, I2 and R2
packets are exchanged after this. The build-
ing and parsing of each of the R1, I2, and R2
packets requires the assistance of the HIP dae-
mon. For example, the daemon verifies the va-
lidity of the identity of the peer from DNS and
creates a symmetric Diffie-Hellman key for the

hosts during the base exchange.

Once the base exchange is completed, the hosts
will have generated a common secret that they
will be able to use to secure their communica-
tion. They will also have established IPsec Se-
curity Associations that will be used to encrypt
the communication between the hosts. The
TCP handshake can continue, and once it has
been completed, the initiator can receive web
pages from the web server at the responder. If
further TCP connections need to be established
between the two hosts, the HIP negotiation is
not needed to be performed again, but the ex-
isting security associations are reused for the
new connections.

4 Conclusion

In this paper, we described the HIP architec-
ture, which has been designed to overcome
problems mainly with respect to security, mo-
bility, and privacy in the current Internet. HIP
adds a new layer, the Host Layer, between the
networking and transport layer in the IP stack,
and introduces a Host Identity (HI) to serve as
an end-point identifier of the host. Typically,
the HI is represented by a public key. Each
host will have at least one HI assigned to its
networking kernel or stack. As the HI is used
to identify the hosts, the IP addresses are used
merely for routing purposes.

HIP defines a Host Layer Protocol to be used
as a signaling protocol between end hosts. The
purpose of the protocol is to perform mu-
tual end-to-end authentication and to establish
IPSec Security Associations. HLP consists of
seven message types, of which four are part of
the HIP base exchange.

As part of this paper, we presented our IPv6
based implementation of HIP for Linux. The
Host Layer Protocol is implemented as a ker-
nel module, which uses a user space daemon

Linux Symposium 96

process to perform some cryptographic opera-
tions. The advantage of our approach is that
the kernel can remain as intact as possible,
with only minor modifications. Furthermore,
the modifications are backwards compatible so
that the host is able to do networking with-
out HIP. Our implementation is based on Linux
kernel version 2.4.18 with USAGI patches.

Acknowledgments

This research is funded by the National Tech-
nology Agency of Finland (TEKES), Elisa
Communications, Ericsson, Nokia, TeliaSon-
era, Creanor, and More Magic Software. We
thank Jukka Ylitalo, Jorma Wall, Petri Jokela,
and especially Pekka Nikander from Ericsson
Research for fruitful cooperation and interop-
erability testing with their implementation of
HIP for BSD. Furthermore, we are grateful for
the valuable discussions we have had with An-
drew McGregor and Thomas Henderson.

References

[1] Openssl: The open source toolkit for
ssl/tls.
http://www.openssl.org/ .

[2] Usagi project.
http://www.linux-ipv6.org/ .

[3] T. Aura, P. Nikander, and J. Leiwo.
Dos-resistant authentication with client
puzzles,.

[4] T. Berners-Lee, R. Fielding, H. Frystyk,
J. Gettys, and J. Mogul. Hypertext
Transfer Protocol – HTTP/1.1. Technical
report, Internet Engineering Task Force,
January 1997. RFC 2068.

[5] Catharina Candolin, Janne Lundberg,
and Pekka Nikander. Experimenting

with early opportunistic key agreement.
In Proceedings of Workshop SEcurity of
Communication on Internet, Internet
Communication Security, Tunis, Tunisia,
September 2002.

[6] S. Deering and R. Hinden. Internet
Protocol, Version 6 (IPv6) Specification.
IETF Request for Comments 2460,
December 1998.

[7] S. Kent and R. Atkinson. IP
Encapsulating Security Payload (ESP).
Request for Comments 2406, 1998.

[8] S. Kent and R. Atkinson. Security
Architecture for the Internet Protocol.
IETF Request for Comments 2401, 1998.

[9] P. Mockapetris. Domain Names —
Implementation and Specification. IETF
RFC 1035, 1987.

[10] R. Moskowitz. Host identity payload and
protocol. Internet Draft
draft-moskowitz-hip-05.txt, work in
progress, 2001.

[11] R. Moskowitz. Host identity payload
architecture. Internet Draft
draft-ietf-moskowitz-hip-arch-02.txt,
work in progress, 2001.

[12] R. Moskowitz. Host Identity Payload
Implementation. Internet Draft
draft-ietf-moskowitz-hip-impl-01.txt,
work in progress, 2001.

[13] P. Nikander, J. Ylitalo, and J Wall.
Integrating Security, Mobility, and
Multi-homing in a HIP way. In
Proceedings of Network and Distributed
Systems Security Symposium (NDSS’03),
pages 87–99, San Diego, USA, February
2003.

[14] B. Wellington. Domain Name System
Security (DNSSEC) Signing Authority.

Linux Symposium 97

IETF Request for Comments 3008,
November 2000.

Improving enterprise database performance on
Intel Itanium ® architecture

Ken Chen, Rohit Seth, Hubert Nueckel
Intel Corporation

Software and Solutions Group

Abstract

In this paper, we will present several operating
system features that improved database per-
formance under OLTP1 workload significantly,
such as Huge TLB2 page to reduce DTLB3

misses as database uses large amount of shared
memory and asynchronous I/O to accommo-
date high amount of random I/O without in-
troducing the overhead of many I/O processes.
We will also present many other kernel opti-
mizations that were developed by Intel, Red
Hat and the Linux community that improved
the scalability and performance of Linux ker-
nel, specifically the areas are: raw vary I/O,
kernel data structure footprint reduction, global
io_request_lock reduction, and storage device
driver optimization.

1 Introduction

Linux has been receiving a great deal of at-
tention in the past few years. The popular-
ity is propelled by wide range of adoption of
Linux for enterprise computing. Major soft-
ware vendors have been supporting their prod-
ucts on Linux for many years. As the enter-
prise software solution stack builds up every-
day, it is crucial that Linux kernel develop-

1On-Line Transaction Processing
2Translation Lookaside Buffer
3Data TLB

ment takes this opportunity to ensure that ker-
nel provides key necessary infrastructure for
enterprise application to excel. This means de-
veloping enterprise focused operating system
(OS) features, improving performance by ex-
tending the scalability, and many other areas.

Relational database management systems
(RDBMS) are complex server applications
that solve the problems of information man-
agement. The RDBMS reliably manages large
amount of data in a multi-user environment
such that users can concurrently access shared
data. While it is required to maintain con-
sistent data between users, it is also required
to deliver high performance. All these re-
quirements need high-quality infrastructure
provided by the operating system. Some of
the examples are virtual memory manage-
ment for managing vast amount of physical
memory, scalable I/O subsystem, robust / high
performance storage subsystem, light-weight
inter-process communication, and robust /
high performance networking subsystem.

Recent Linux kernel development has ad-
dressed many of the areas with a focus to
provide key functionality for enterprise work-
loads. The rest of the paper will discuss new
kernel features as well as performance en-
hancements in the context of database running
OLTP workload.

Linux Symposium 99

2 Overview

On-line transaction processing refers to a class
of applications that facilitates and manages
transaction-oriented operation, typically for
data entry and retrieval transactions in a num-
ber of industries. The basic skeleton of
OLTP environment consists of multi-tier soft-
ware applications that allow thousands of users
to concurrently execute transactions against a
database. Typically transactions are either ex-
ecuted on-line or queued for deferred execu-
tion and have certain characteristics on the dis-
tribution between a mixture of different types.
Because of the complexity and overall execu-
tion behavior of OLTP workload, the workload
characteristics can be summarized as:

• Simultaneous execution of multiple types
of transactions that span a breadth of com-
plexity

• On-line and deferred transaction execu-
tion

• Significant random disk input/output

• Transaction integrity

• Unique distribution of data access

• Contention on data access and update

From system architecture perspective, the
OLTP workload exercises a breadth of system
components associated with the environment.
Database server application and the underly-
ing operating system software are the key soft-
ware components to provide high performance.
Earlier evaluation of Linux kernel under OLTP
workload revealed several hot spots or limita-
tions from performance point of view, such as
large execution time spent in low level TLB
miss handling, large number of process context
switch due to blocking synchronous I/O, large

execution time on functions related to I/O ele-
vator algorithm, and large execution time spent
on spinning on a highly contended lock like
global io_request_lock. In the following sec-
tions, we will examine how features like Huge
TLB and asynchronous I/O allow database ap-
plication to exploit maximum hardware capa-
bility with minimum overhead from Linux ker-
nel and how Linux I/O subsystem is improved
to reduce kernel execution time.

3 Huge TLB Support in Linux

3.1 Motivation of Huge TLB page

A TLB (Translation Lookaside Buffer) is a
hardware structure for virtual-to-physical ad-
dress translations that supports high perfor-
mance paged virtual memory system. Typi-
cally it is a scarce resource on a processor. Op-
erating systems always try to make best use
of the limited number of available TLB en-
tries on a system. Orthogonally, with advance-
ment of semiconductor technology that result-
ing in ever growing memory capacity, it be-
comes more and more feasible both technically
and economically to populate tens of gigabytes
of memory on a server. For example, HP server
rx5670 can be populated with 48 GB of mem-
ory with 1GB DIMM4, or even 96 GB with lat-
est 2GB DIMM.

Database server applications generally use
large amounts of system memory in order to
efficiently manage the actual databases that
are usually much larger than system memory.
It typically utilizes shared memory segments
among multiple database processes. The first
area in shared memory segments, usually the
largest, is the database buffer cache. It holds
copies of data blocks read from datafiles. A
data block is the smallest unit of storage space

4dual in-line memory module

Linux Symposium 100

managed by database server. The RDBMS ac-
tively manages the data blocks in the buffer
cache. When a user process requires a particu-
lar piece of data, it searches through the buffer
cache. If the data is already in the cache (a
cache hit), it will read the data directly from
memory. Otherwise data block will be copied
from datafile on disk into memory (a cache
miss). It is well known that accessing data
from memory is several orders of magnitude
faster than accessing data from disk. Therefore
in production environment, system administra-
tor will typically allocate as much memory as
possible for shared memory segments in order
to improve cache hit rate by maximizing buffer
cache size. However, accessing large amount
of memory combined with random data access
pattern of OLTP workload, it puts lots of pres-
sure on CPU’s TLB resource. For example, as-
suming 16K page size for Linux-IA64, a 48 GB
of process memory would need 3 million TLB
translations. Or to look at from hardware point
of view, an Itanium 2 processor’s internal TLB
resource would only cover 2 MB of virtual ad-
dress space with 16 KB page size.

With vast amount of memory each applica-
tion process access, there is a need to make
each TLB mapping as large as possible to re-
duce TLB pressure. Large contiguous regions
in a process address space, such as contigu-
ous data, may be mapped by using small num-
ber of large pages rather than large number of
small pages. It is also important to note here
that OS kernel cannot blindly pick up a larger
page size for all applications because it may
cause lots of fragmentation and very poor uti-
lization of large amount of physical address
space. Thus a requirement for having a sepa-
rate large page size facility from the operating
system becomes more and more important in
terms of functionality and performance.

3.2 Design and Implementation

To support large page size for user application
to utilize processor’s capability, Intel worked
with the Linux community to introduce a new
OS feature that exposes the hardware architec-
ture for application to benefit from using huge
page size without affecting many other aspects
of the OS. This new feature is called Huge TLB
page. Specifically the Huge TLB support is at-
tempting to solve the following problems:

• Increase CPU TLB coverage / Reduce
data TLB miss rate

• Reduce process’s page table memory re-
quirement

• Pin data pages in physical memory

The design goal of Huge TLB interface is to
expose the hardware architecture to applica-
tion. Mapping the kernel, or specialized de-
vices such as frame buffers by using large map-
ping is a relatively straightforward exercise. It
only affects very limited portions of the oper-
ating system code. However, virtual memory
implementation in Linux kernel makes the ba-
sic assumption that there is only one page size
for user applications. This one size is related to
MMU page size supported by a specific archi-
tecture. For example, on IA-32 this page size
is 4K, and on Itanium-based system, user page
size is configurable at kernel build time to be
either 4K, 8K, 16K or 64K. Itanium 2 proces-
sor actually provides concurrent multiple page
size support (4K, 8K, 16K, 64K, 256K, 1M,
4M, 16M, 256M, 1G and 4G). The current VM
system is not suited for supporting multiple
user page sizes because the knowledge of one
page size is ingrained in several subsystems
within the kernel. It is important to note that
supporting multiple page sizes affects both ar-
chitecture dependent and independent portions

Linux Symposium 101

of the Linux kernel. That is, a clean separa-
tion of architecture dependent and independent
code in kernel is not enough to mitigate the dif-
ficulties of supporting multiple page sizes.

The allocation of Huge TLB page is performed
in two phases. First a system administrator re-
quests the kernel to reserve a set of memory
in a special huge TLB page pool. The reser-
vation of each huge TLB page is constrained
that memory to be physically contiguous. Once
huge TLB pages are reserved by the operat-
ing system, they can be used by application
through two well defined system interfaces, ei-
ther by mmap interface or through the stan-
dard System V shared memory interface. Note,
application changes are required to use Huge
TLB pages.

3.3 Application Benefit

To quantify the speed up of RDBMS under
OLTP workload, we setup an experimental en-
vironment similar to industry standard OLTP
benchmark on a Itanium 2 processor based
platform.

First a baseline result is established with stan-
dard 16K page size. We then ran experi-
ment with 256 MB page size while holding to-
tal memory in shared memroy segments con-
stant. Throughput is then normalized to base-
line. Figure 3.1 depicts the result.

We can easily see that with each incremental
increase in page size used for data pages in
shared memory segments, the speed up is no-
tably at 11% overall for 256 MB huge TLB
page size.

To further study how various page size speeds
up the overall OLTP throughput at hardware
micro-architecture level, we used Itanium-
processor’s hardware performance monitoring
unit (PMU) to measure TLB pressure with var-
ious page size. The usage model of PMU

0.00

0.25

0.50

0.75

1.00

1.25

16 KB 256 MB

page size

no
rm

al
iz

ed
 th

ro
ug

hp
ut

Figure 3.1: Relative OLTP throughput with
various page size while holding database buffer
cache size constant

are described in detail in several publications
[1][2].

Again a baseline is established and data were
collected for each page size. To measure hard-
ware TLB pressure, we measured with met-
ric of DTLB miss rate, or inverse of average
number of data references per DTLB miss. As
shown from figure 3.2, there is significant re-
duction in data TLB miss rate by using huge
page size. For 256 MB page size, the DTLB
miss rate is reduced by 65%, or inversely, the
number of data references between successive
TLB misses increases by 280%.

1.00

0.35

0.00

0.20

0.40

0.60

0.80

1.00

1.20

16 KB 256 MB

page size

D
TL

B
 m

is
s

ra
te

Figure 3.2: DTLB miss rate comparison

It is also interesting to observe that TLB pres-

Linux Symposium 102

sure for OLTP workload on Itanium 2 based
system does not vary much with respect to to-
tal memory size, it is more or less a function of
I/O load. For example, two experiments were
conducted such that one with 16 GB database
buffer cache while the other has 32 GB. The
micro-architecture DTLB miss rate for both
configurations are well within a couple of per-
centage points. This experiment points out that
even at different OLTP throughput due to dif-
ferent size of database buffer cache, the benefit
of using larger page size is equally significant.
With 256 MB page size, the hardware TLB re-
source on Itanium 2 processor would be able
to cover up to 32 GB of memory and primary
source of TLB misses are shifted to data access
to process’s local data and task context switch-
ing.

DTLB miss rate vs. memory size

0

0.2

0.4

0.6

0.8

1

1.2

16 GB 32 GB

Total Database Cache Size

D
TL

B
 m

is
s

ra
te

Figure 3.3: DTLB miss rate vs. memory size

A second benefit of using huge TLB feature is
that the memory usage for process’s page ta-
ble is significantly reduced. Taking a 48 GB
system as an example, if 45 GB is allocated as
180 256MB huge TLB pages, memory for page
table covers that 45 GB of vma is only 1440
byte. For 100 processes that shares the 45 GB
of shared memory segment, total memory for
page table is 1.6 MB considering each process
round up 1440 byte to one page. In the case
of using normal 16 K page size, the memory
requirement grows to 2250 MB (3 million en-
tries * 8 bytes/entry * 100 processes, ignoring

first and second level page table structure for
simplicity). A secondary effect is that this 2.2
GB of memory reduced from page table can be
better utilized by application to further increase
application’s performance.

A third benefit of huge TLB feature is that
memory allocated for huge TLB page is pinned
in physical memory and is not considered for
swapping. This eliminates the chance of swap-
ping physical pages that are being used for
holding critical application data.

4 Linux I/O Subsystem

4.1 Dynamic vs. Static kiobuf allocation

Direct device access via raw devices partition
improves database performance. A raw device
partition is a contiguous region of a disk that
can be accessed via a character device inter-
face (/dev/raw on Linux). Such access typi-
cally bypasses the file system buffering. Since
RDBMS does its own memory cache and I/O
management, there is no need to have operat-
ing system to perform another level of caching
and buffering. In fact, it is better to leave that
task to application because it has much better
information to determine optimal I/O strategy.

In a large OLTP workload configuration, due
to sheer number of disk drives and the need
to spread I/O load onto large number of disk
drives, a database server typically opens large
amount of data files where these data files re-
side on raw devices. Independent processes
within the database server application will each
open same set of data files.

The existing raw I/O code will statically allo-
cate one kiobuf and its associated structures
(mainly buffer_head structure, abbreviated as
bh hereafter) upon every raw device open.
There are 1024 bh allocated for each kiobuf.
In a benchmark configuration, the memory re-

Linux Symposium 103

quirement just for the bh structure is calculated
as following:

150 raw devices * 120 db processes * 1024 bh
* 192 byte/bh = 3534 MB

However, since each process can have only one
outstanding synchronous I/O at any given time,
the active memory required for 120 processes
are:

120 db processes * 1024 bh * 192 byte/bh = 24
MB

There are massive amount of memory being
set aside by the bh structure and only 0.67%
of them are being actively used. This large
amount of under-utilized memory can be better
devoted for other part of the system, for exam-
ple, database buffer cache.

The cause of the issue is that each kiobuf struc-
ture is associated with a file descriptor. Al-
though in certain cases, static bh allocation
avoids the overhead of dynamic allocation, this
static allocation scheme actually hurts perfor-
mance for OLTP workload due to displacement
of memory allocated for bh structure but other-
wise can be used for database buffer cache.

To enable large number of raw devices to
be opened simultaneously, we removed the
static kiobuf allocation in raw_open function
and at each invocation of rw_raw_dev func-
tion, kiobuf is dynamically allocated and freed
for each raw I/O request. In order to re-
duce the prohibitive amount of overhead with
dynamic allocation of all the memory arrays
in kiobuf, we treat kiobuf and its associated
member arrays as one entity. With the aid
of constructor and destructor API provided by
the kernel slab allocator, member arrays of
kiobuf are allocated and initialized upon the
creation of kiobuf object. Subsequent dy-
namic allocation would only incur one level
of kmem_cache_alloc and kmem_cache_free

overhead for such large data structure. With the
per-CPU slab allocation area, the cost of dy-
namic allocation is even more affordable. The
overhead of this dynamic kiobuf allocation is
measured at 0.8 % for 2 KB I/O size and 0.1%
for 128 KB I/O size.

It should be noted that even though the size of
kiobuf structure is small (128 byte on Linux-
IA64), the entire kiobuf entity is fairly large
at 200KB. The per-CPU array for kiobuf slab
cache should be managed pro-actively. With
default parameter that calculates the per-CPU
array size based on object size, there will be
maximum 252 objects allocated on per-CPU
array and on a 4 CPU system, this leads to 1008
kiobuf entity, or 200MB memory allocation. A
small burden to the system administrator.

4.2 Variable size Block I/O

A second enhancement made to the raw de-
vice layer is to enhance the effectiveness for
the raw vary I/O on Linux-IA64. The exist-
ing code restricts the sector combining to max-
imum size of RAWIO_BLOCKSIZE (4KB).
The user pointer is also restricted to be aligned
on that boundary (4K aligned). Both restric-
tions are sub optimal on Linux-IA64 because
they reject many scenarios that can be put into
speed path.

The implementation can be modified to be run
time page size aware instead of hard coded
constant value. The concept is to combine all
sectors within a page to send down to sub-
mit_bh. For example, on a system with de-
fault page size of 16KB, a raw I/O request with
16KB size would be broken down to 4-4-4-
4KB with existing code where it could be com-
bined optimally as one 16KB request to sub-
mit_bh. The user pointer should only be re-
stricted to sector aligned. For example, again
on a system with page size of 16KB, a raw
I/O request of 4 KB I/O size with user pointer

Linux Symposium 104

aligned on 2KB into a page would be rejected
by the existing code for fast path consideration
where technically it could be in the fast path.
We measured the speed up varies from 10% to
280% with micro-benchmark depending on the
I/O size and buffer alignment for this enhance-
ment.

Again, using OLTP workload to measure how
well the raw vary I/O and the enhancements
measure up in production environment, we ran
two experiments, one with and one without
raw vary I/O. It was measured that raw vary
I/O gives 4% performance advantage over one
without for OLTP workload.

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

without raw vary io with raw vary io

no
rm

al
iz

ed
 th

ro
ug

hp
ut

Figure 4.1: Comparison of raw vary I/O under
OLTP workload

4.3 Relieve global lock contention

Another area of improvement in block
I/O subsystem was the reduction of global
io_request_lock usage. Much work has been
done in this area [4] and the result of the work
is incorporated in products released by several
major Linux OS distributors. In earlier releases
of Linux kernel 2.4, I/O requests are queued
one at a time while holding the global lock
io_request_lock. The Linux community has
implemented many iterations/versions to break
the global lock to per device lock. With the
optimization, I/O requests are queued while
holding a lock specific to the queue associated

with the request. This improves concurrent
I/O queuing and significantly improves I/O
throughput.

5 Asynchronous I/O

5.1 History of AIO implementation

Several asynchronous I/O implementations fol-
lowing the POSIX standard were developed
during the Linux kernel 2.3 development cy-
cle. The implementations were either in ker-
nel space or user space. Both of them em-
ployed an idea of an I/O queue with N number
of helper threads that issues synchronous I/O
to the underlying OS. However, there are sev-
eral drawbacks with this approach for database
application. First of all, even though the inter-
face is asynchronous like, the I/O throughput is
severely limited due to another layer of queu-
ing. The optimum number of helper threads
also depends on the characteristics of I/O sub-
system and thus not flexible for wide range of
production environment. A second issue is that
the POSIX defined reap function aio_suspend()
has a worst case of O(n) operation and tends to
break down with large number of pending I/O.

5.2 A New paradigm

During the Linux 2.5 kernel development cy-
cle, Red Hat kernel developers implemented
a new AIO and its API based on the concept
of completion queue [3]. Subsequently Intel
worked with Red Hat to port and refined the
AIO design for Linux kernel 2.4 on Linux-
IA64.

The core of this kernel AIO implementation is
centered around the completion queue. It intro-
duces 5 new system calls for asynchronous op-
eration. The core is generic that the operation
is not just restricted to disk I/O, but also for
network and file system I/O. The completion

Linux Symposium 105

queue is created by system call io_queue_init
and destroyed via io_queue_release. New I/Os
are submitted via io_submit and queued only
if there is sufficient space in the completion
queue to receive resulting event. When I/O is
completed, a corresponding event is put into
the complete queue and can be reaped via
io_get_events. RDBMS application typically
uses unbuffered I/O and combined with AIO
infrastructure, disk I/Os are now being queued
directly at block layer to exploit maximum
concurrency for the capability of the underly-
ing hardware devices.

5.3 AIO Evaluation and Optimization

We first turn our attention to evaluate how
well does kernel asynchronous I/O performs
under heavy disk I/O workload using micro-
workload. The system under test has 3 fiber
channel host adaptors connected to 180-disk
Clariion towers. The disk towers are con-
figured as 10 hardware RAID-0 disk drives
and each RAID-0 drive has 10 raw partitions.
A micro-benchmark program is then request-
ing AIO randomly on the 180 raw partitions
with random offset (round to multiple of sector
size). The I/O size is limited to 2KB and 16KB
to limit the permutation of all other variables.

The micro benchmark basically throttles I/O to
keep the system busy with at least N number of
I/O pending at any given time. When number
of pending I/O reduces to N, test program will
batch next set of I/O with ‘B’ number of I/O
in one AIO io_submit call. Completed I/O also
gets reaped with each occurrence of AIO sub-
mit, i.e., program will reap approximately ‘B’
number of I/O in one io_get_events call.

The first experiment is to measure average
CPU time spent on processing one I/O in the
AIO request array. We sweep across the ‘B’ pa-
rameter from 32 to 1024 while holding N con-
stant at 1000. The data was measured with pure

CPU cycles spend on processing I/O excluding
the wait time due to disk access latency. Figure
5.1 depicts the result.

0

5

10

15

20

25

30

35

40

10 100 1000 10000

of I/O submited per syscall

av
er

ag
e

pr
oc

es
si

ng
 ti

m
e

pe

r
I/O

 (u
s)

16K I/O size

2K I/O size

Figure 5.1: average AIO cost per I/O

For un-buffered I/O via raw device, the pro-
cessing cost per AIO request in the most ideal
case should be insensitive to the size of I/O.
However, the large differences in the average
cost between 2KB and 16 KB size in figure 4.1
indicate that there are some code path in the
system break down badly with large I/O size.
A kernel profiler showed that the elevator al-
gorithm was responsible for the extra cost in
the 16 KB case. It was apparent that raw vary
I/O is also needed for asynchronous I/O path
on raw device. Enhancements in addtion to raw
vary I/O were also made in the generic AIO
layer. Figure 5.2 illustrates the result of opti-
mizations.

With raw vary I/O optimization, the cost of
AIO on raw device is now quite consistent for
different I/O size which matches to our expec-
tation. The overall optimization improves 16
KB I/O size by 400% and 27% for 2 KB I/O
size.

5.4 Application benefit

With all these fancy analysis done with micro-
benchmark, the next question is how does

Linux Symposium 106

0

5

10

15

20

25

30

35

40

10 100 1000 10000

of I/O submited per syscall

av
er

ag
e

C
P

U
 ti

m
e

pe
r

I/O
 (u

s)

16K-orig

2K-orig

16K-varyio

2K-varyio

Figure 5.2: average AIO cost per I/O with op-
timization

AIO and the optimizations measure up in
a real world production environment, like
RDBMS with OLTP workload? Most I/O
cache schemes employ deferred I/O operations
and periodically sync up memory content with
persistent data storage. A write back pro-
cess is typically woken up on various condi-
tions. One condition is database checkpoint
where the process will write modified database
records to persistent media in order to bring
those copies of record in the persistent media
current.

At high transaction rate and especially large
percentage of update intensive queries in the
OLTP transactions, the amount of modified
database records existed in the buffer cache are
high at the time when checkpointing initiates.
It is essential that a write back process write
those records to disks as quickly as possible to
minimize amount of CPU processing time con-
sumed on checkpoint task. Since the purpose
of checkpoint is to sync-up persistent data file
with content in memory, it actually has very
little data dependency on when the blocks are
being written, as long as database server gets
notified that the writes are completed. This re-

quirement fits perfectly with the non-blocking
semantics of asynchronous I/O.

There are two ways for the writeback pro-
cess to submit I/O to the OS. One is an inter-
nal RDBMS facility that distributes I/O among
multiple helper processes for system that lacks
the native AIO implementation. This facility is
similar to I/O queue and help threads described
earlier. The other is to submit I/O to the OS via
native AIO interface. Again, two experiments
were conducted, first with I/O helper threads
configuration to establish a baseline result and
second with native AIO configuration. Figure
5.3 depicts the result.

comparison of io threads vs. AIO

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50

run time (minutes)

no
rm

al
iz

ed
 th

ro
ug

hp
ut

aio

io threads

Figure 5.3: Benefit of AIO for OLTP workload

Several points worth noting here. At steady
state, configuration with AIO is 10% higher in
OLTP throughput compare to without AIO. It
is due to combination of reduction in I/O pro-
cesses’ overhead and efficient OS I/O queuing
and event reaping. Second note is that in the
I/O helper thread configuration, system takes
extra overhead in context switching between
the helper threads and other active processes.
Not only the helper thread takes a penalty hit
with process context switch, it also puts more
pressure on the CPU’s data cache because more
processes are actively running on the system.
In the asynchronous I/O case, disk I/Os are

Linux Symposium 107

submitted directly to OS, thus reduces number
of context switches. As illustrated from figure
5.4, the number of process context switches is
reduced by 12 % with asynchronous I/O.

system context switch rate

0.80

0.85

0.90

0.95

1.00

1.05

without AIO with AIO

N
or

m
al

iz
ed

 to
 b

as
el

in
e

Figure 5.4: system context switch rate with and
without AIO

There are many other secondary effects indi-
rectly improving overall system performance
by using AIO. System memory consumption
is reduced because there aren’t any I/O helper
threads at all. OS scheduler will have less pres-
sure because less number of active tasks it need
to manage, and lastly inter-process communi-
cation overhead between the helper threads are
eliminated. All of these translate into highly
efficient scalable asynchronous I/O layer and
higher OLTP throughput.

6 Storage Device Driver Optimiza-
tion

While most I/O enhancements outlined in pre-
vious section are more or less transparent to
storage device driver, some still do require co-
operation from each individual driver to en-
able specific optimization. One example would
be HP’s smart array family of disk controllers.
Since this driver hooks directly into Linux I/O
block layer, it missed out all the enabling in-
frastructures for the raw vary I/O and the global

io_request_lock optimization implemented for
SCSI devices.

Both optimizations are fairly straightforward to
enable. What we did was at the time of the
controller’s initialization, we initialize a per-
controller raw vary I/O capability array and
then hook that array into the blkdev_varyio de-
fined in the block layer. To enable per de-
vice request lock, two locks are added in the
controller’s data structure, one lock for I/O re-
quest queue, and one for the controller itself.
Locking primitives are then modified to use the
corresponding request queue lock in the case
of I/O queuing/dequeuing. For operations that
pertain to controller, the controller lock will be
used.

Other optimizations that were also actively
worked on for this particular storage device
driver are interrupt coalescing, 32-bit DMA
command pool, and Itanium architecture spe-
cific command structure alignment.

7 Conclusions

In this paper we have outlined some of the
key operating system requirements for running
a high performance database on Linux. Im-
plementations of huge TLB support and asyn-
chronous I/O have been described along with
how these features perform to expectation un-
der OLTP workloads. The I/O subsystem for
the Linux kernel 2.4 has been improved signif-
icantly to achieve high concurrency and effi-
ciency for high demand I/O workload. Storage
device driver optimizations are also shown to
be equally important to materialize optimiza-
tions done at generic layer.

8 Acknowledgement

The authors of this paper would like to thank
the following people who enthusiastically con-

Linux Symposium 108

tribute directly or indirectly to this paper, in no
particular order: Asit Mallick, Arun Sharma,
Tony Luck, Sunil Saxena, Mark Gross and sev-
eral other groups at Intel Corporation; Red Hat
kernel developers; Linux community around
the world.

References

[1] Intel Itanium Architecture Software
Developer’s Manual, Volume 1-3.

[2] David Mosberger and Stephane Eranian,
ia-64 linux kernel design and
implementation., Prentice Hall, 1st
edition, 2002.

[3] Benjamin LaHaise,An AIO
Implementation and its Behavior, Ottawa
Linux Symposium proceedings 2002.

[4] Peter Wai Yee Wong, et al.,Improving
Linux Block I/O for Enterprise Workloads,
Ottawa Linux Symposium proceedings
2002.

Trademarks

Itanium is a registered trademark of Intel Corpora-
tion or its subsidiaries in the United States and other
countries.

Other names and brands are the property of their
respective owners.

High Availability Data Replication

Paul Clements
SteelEye Technology, Inc.

http://www.steeleye.com/

paul.clements@steeleye.com

James E.J. Bottomley
SteelEye Technology, Inc.

http://www.steeleye.com/

james.bottomley@steeleye.com

Abstract

This paper will identify some problems that
were encountered while implementing a highly
available data replication solution on top of ex-
isting Linux kernel drivers. It will also discuss
future plans for implementing asynchronous
replication and intent logging (which are re-
quirements for performing disaster recovery
over a WAN) in the Linux kernel.

1 Introduction

The first part of this paper (Section 2) will dis-
cuss some issues in the 2.2 and 2.4 Linux ker-
nels that had to be overcome in order to im-
plement a replication solution using raid1 over
nbd.

The second part of the paper (Section 3) will
present future plans for implementing asyn-
chronous replication and intent logging in the
md and raid1 drivers.

2 Fixing the existing problems

We’ve done considerable work over the past 3
years testing, debugging, and finally fixing sev-
eral problems in the md, raid1, and nbd drivers
of the Linux kernel. We ran into several bugs
in these drivers, primarily due to the fact that
we’re using them in an unusual fashion, with

one of the underlying disk devices of the raid1
mirror being accessed over the network, via a
network block device (see Figure 1). Our us-
age of raid1 in conjunction with nbd led to the
increased occurrence of several race conditions
and also caused the error handling code of the
drivers to be stressed much more than a nor-
mal, internal disk only, raid1 setup.

The following is a brief summary of some of
the problems we’ve uncovered and solved:

• eliminating md retries in order to avoid
massive stalls when a device (in our case,
a network device) fails

• correcting SMP locking errors and al-
lowing an nbd connection to be cleanly
aborted when problems are encountered

• fixing various bugs in the raid1 driver:

– mistakes in the error handling code

– incorrect SMP locking

– IRQ enabling/disabling bugs

– non-atomic memory allocations in
critical regions

– block number “off by one” error1

At the time of this writing, patches for all of
these problems have been accepted into the lat-
est releases of the mainline 2.4 and 2.5 kernel

1This problem was actually corrected by Neil Brown
after our initial bug report to him.

Linux Symposium 110

/dev/sda1

/dev/md0 raid1 device

local disk
network

block device /dev/sda1 local disk/dev/nb0

 Replication Source Replication Target

Figure 1: Data replication using raid1 over nbd

series. For information about all of SteelEye’s
open source patches or to download the source
code for the patches, visit the SteelEye Tech-
nology Open Source Website[1].

2.1 Eliminating md retries

This was one of the first problems that we en-
countered back in the fall of 2000. At the
time, we were working with the 2.2 Linux ker-
nel. The md resynchronization code (md_do_
sync) was written, at the time, to always retry
any failed I/O (read or write) no less than 4096
times!2 On a network failure, this caused raid1
and nbd to spin in tight loops for several sec-
onds, hanging the entire system. Our stopgap
solution (read, hack) was to strategically in-
sert schedule calls into the error handling
code of those drivers.3 Needless to say, the

2PAGE_SIZE∗(1 << 1) ∗ 2/ sizeof(struct
buffer_head *) (md.c, c. 2.2.16 kernel)

3We did not have the option of modifying md, since
it is compiled into the kernel in most Linux distributions,

md resynchronization code got a major over-
haul before the 2.4 kernel was released and this
issue was fixed.

2.2 Allowing nbd connections to be aborted

After initially fixing a few trivial bugs in nbd
having to do with missing or incorrect spin lock
calls, we realized that we could not afford to
wait for TCP socket timeouts when we needed
to abort a network connection, or when the net-
work went down. We needed to have the abil-
ity to terminate nbd connections at will, so that
our high availability services could have com-
plete control over the data replication process.
To fix this, we unblockedSIGKILL during the
network transmission phase of nbd so that we
could send a signal from user space to termi-
nate an nbd connection. We also needed to add
code to ensure that nbd’s request queue was

and we did not want to be in the business of distributing
entire rebuilt kernels.

Linux Symposium 111

cleared and all outstanding I/Os were marked
as failed when a connection was terminated.

Our patches for nbd have been accepted into
the mainline 2.5 kernel (c. 2.5.50) and were
backported and accepted into the 2.4 kernel
(c. 2.4.20-pre).

2.3 Fixing various bugs in the raid1 driver

The raid1 driver, by far, has been the biggest
thorn in our side. . . we’ve made many fixes to
raid1 over the past few years in order to in-
crease its robustness. Neil Brown has simul-
taneously been performing a lot of cleanup and
bugfix work in the md and raid1 drivers that
was beneficial to our cause, as well.

The first set of problems that we ran into with
raid1 was related to handling failures of the
underlying devices.4 To correct the problems,
we added code to detect device failures dur-
ing resync and during normal I/O operations.
The additional code correctly marks the device
“bad,” fails all outstanding I/Os, and aborts
resync activities, if necessary.

After fixing this initial set of problems, we
were able to stress the raid1 driver much more
heavily than we previously had been able to
(without it falling over dead). Unfortunately,
this heavier stress uncovered a whole raft of
new problems. We were able, however, to
eventually pin-point and solve each of these
new problems. Many of the problems turned
out to be due to some fairly common kernel
programming mistakes, such as:

• “nested” spin_lock_irq calls– Fail-
ure to use thesave and restore
versions of the spin lock macros with
nested calls (i.e., spin_lock_irq

4Since we use nbd underneath raid1, device “fail-
ures” are quite a common occurrence (e.g., when the
network goes down).

called while anotherspin_lock_irq
is already in force) leads to the CPU flags
being improperly set. This means that
interrupts could be enabled at inappro-
priate times, causing deadlocks to occur.
The rule of thumb here is that it’s best to
avoid nesting spin locks whenever possi-
ble, and to always use theirqsave and
irqrestore versions of the macros, in-
stead of the simpleirq versions, if dead-
locks are a concern.

• sleeping with a spin lock held– There
were cases where the driver was doing
non-atomic memory allocations or calling
schedule with a spin lock held, which
caused deadlocks to occur. To avoid the
deadlocks, the code was rearranged so
that a spin lock was never held while call-
ing schedule and a fewkmalloc calls
were changed to use theGFP_ATOMIC
flag rather than theGFP_KERNELflag.

• “off by one” error – This was a simple
case of differing block sizes being used
in the md and raid1 drivers resulting in
one of the block counts used in the resync
code being shifted incorrectly. This bug
caused resyncs to hang, leaving the raid
device in an unusable state.

Our patches for raid1 have been accepted into
the Red Hat Advanced Server 2.1 kernel (2.4.9-
ac based) and an alternate version of the fixes
(authored by Neil Brown) has been accepted
into the mainline 2.4 kernel (c. 2.4.19-pre).
The raid1 driver in the 2.5 kernel is not be-
lieved to suffer from any of the aforementioned
problems.

3 Future enhancements

We are planning to enhance the md and raid1
drivers of the Linux kernel to support asyn-
chronous data replication and intent logging.

Linux Symposium 112

shadow bit block counter

1 n − 1 memory

 disk

Figure 2: In-memory and on-disk bitmap layout

Our strategy for implementing these changes
will be to place the bulk of the code into the
md driver, in a manner that will allow all the
underlying raid drivers to take advantage of it.
We will also add the necessary code to raid1 to
call the md driver hooks.

We plan to leverage some of the implementa-
tion and design of Peter T. Breuer’sfr1 code[2],
which was recently published[3]. Thefr1
driver implements intent logging and asyn-
chronous replication as an add-on to the raid1
driver. We will make the following, additional
changes to thefr1 code, to produce a final so-
lution:

• disk backing for the bitmap (intent log)

• addition of a daemon to asynchronously
clear the on-disk bitmap

• conversion of single bits to 16-bit block
counters (to track pending writes to a
given block, so as not to prematurely clear
a bitmap bit on disk)

• allow rescaling of the bitmap (i.e., allow
one bit to represent various block sizes—
the current code is restricted to one bit per
1024-byte data block only)

• make the code fully leveragable by all the
raid personality drivers

• add some additional configuration inter-
faces for the new features

3.1 Intent Logging

In a data replication system, an intent log is
used to keep track of which data blocks are
out of sync between the primary device and
the backup device. An intent log is simply a
bitmap, in which a set bit (1) represents a data
block that is out of sync, and a cleared bit (0)
represents a data block that is in sync. The use
of an intent log obviates the full resync that is
normally required upon recovery of an array.

3.1.1 Bitmap Layout

We will store the bitmap both in memory and
on disk, in order to be able to withstand fail-
ures (or reboots) of the primary server without
losing resynchronization status information.

We will use a simple, one-bit-per-block bitmap
for the on-disk representation of the intent log,
while the in-memory representation will be

Linux Symposium 113

slightly more complex. The reason for this ad-
ditional complexity is the need to track pending
writes, so as not to clear a bit in the bitmap un-
til all pending writes for that data block have
completed5. The write tracking will be han-
dled using a 16-bit counter for each data block.
One bit in the counter will actually be used as a
“shadow” of the corresponding on-disk bit, re-
ducing the usable counter size by one bit (see
Figure 2). The counter will be incremented
when a write begins and decremented when
one has completed. Only when the counter has
reached zero, can the on-disk bit be cleared.

In order to conserve RAM, the in-memory
bitmap will be constructed in a two-level fash-
ion, with memory pages being allocated and
deallocated on demand (see Figure 3). This al-
lows us to allocate only as much memory as
is needed to hold the set bits in the bitmap.
As a fail-safe mechanism, when a page can-
not be allocated, the (pre-allocated) pointer for
that page will actually be hijacked and used as
a counter itself. This will allow logging to con-
tinue, albeit with less granularity,6 during peri-
ods of extreme memory pressure.

The bitmap will also be designed so that it
is possible to readjust the size of the data
“chunks” that the bits represent. This will
be handled by translating from the default md
driver I/O block size of 1KB to the chunk
size, whenever the bitmap is marked or cleared.
So, with a chunk size of 64KB, for example,
the I/O to 64 contiguous disk blocks will be
tracked by a single bit in the on-disk bitmap
(and the corresponding in-memory counter).

5clearing the bit prematurely could result in data cor-
ruption on the backup device if a network failure coin-
cides

6On x86, with 32-bit pointers and 4KB pages, the
granularity is reduced to roughly 1/1000 the normal
level.

3.1.2 Bitmap Manipulation

To make use of the bitmap, we will make mod-
ifications to two areas of the raid1 driver:

1. Ordinary write operations will require
a bitmap entry be made (and synced to
disk) before the actual data is written—the
bitmap entry will be cleared once the data
has been written to the backup device.

2. Resynchronization operations will no
longer involve a full resynchronization of
the backup device, but rather a resync of
just the “dirty” blocks (as indicated by the
bitmap).

3.1.3 Write Operations

The sequence of events to write blockn on a
raid1 device with an intent log is as follows:

1. set thenth shadow bit in the in-memory
bitmap and increment the counter for
block n (both can be done as a single op-
eration since the shadow bit and counter
are contiguous)

2. increment the “outstanding write request”
counter for the array7 (and disallow fur-
ther writes to the device if the counter has
exceeded the configured limit)

3. sync the shadow bit to disk, if the on-disk
bit was not already set

4. duplicate the write request, including its
data buffer

5. queue the write request to the primary de-
vice

7This counter is really only used when the array is
in asynchronous replication mode. For more details, see
Section 3.2.

Linux Symposium 114

 . . . page pointers (pre−allocated)

pages (allocated on demand)

Figure 3: Two-level, demand-allocated bitmap

6. queue the duplicate request to the backup
device

We then allow the writes to complete asyn-
chronously. After each write is completed,
the raid1 driver is notified with a call to its
b_end_io callback function (raid1_end_
request). This function is responsible for
signalling the completion of I/O back to its
initiator. In synchronous mode, we wait un-
til the writes to both the primary and backup
devices have completed before acknowledging
the write as complete. In asynchronous mode,
the write is acknowledged as soon as the data
is written to the primary device.

After the write has been acknowledged, the
callback function is responsible for decrement-
ing the block counter and, if the counter’s value
is 0, clearing the shadow bit in the in-memory
bitmap. Whenever a shadow bit is cleared, a re-
quest will also be placed in a queue to indicate
that the on-disk bit needs to be cleared.

The bits in the on-disk bitmap will be cleared
asynchronously, by a dedicated kernel dae-
mon, mdflushd . The daemon will periodi-
cally awaken and flush all the queued updates
to disk.8 The interval at which the daemon

8unless the shadow bit has been reset in the mean-
time, in which case the update is simply discarded and
the on-disk bit is left set.

will awaken and flush its queue will be tunable
(with a default value of 5 seconds).

Clearing the bits in the on-disk bitmap in a lazy
manner will help to reduce the number of disk
writes, and will also ensure that any bits that
happen to correspond to I/O “hotspots”9 will
simply remain dirty, rather than causing a con-
stant stream of writes to the on-disk bitmap.

3.1.4 Resynchronization Operations

The resynchronization process of the md driver
is fairly straightforward. Following recovery
from a failure, the driver will attempt a com-
plete resync of the backup device. We will
modify this process slightly, so that for each
data block that is to be resynchronized, we will
first check the appropriate shadow bit in the in-
memory bitmap and then, either:

• resync the block (if the bit is set), or

• discard the resync request and indicate
success (if the bit is cleared)

Once a block has been resynced, its shadow
bit will be cleared and its block counter ze-
roed. An update request will then be queued

9areas of the disk that are continually written, such
as an ext3 filesystem journal

Linux Symposium 115

to tell mdflushd that the on-disk bit should
be cleared.

3.2 Asynchronous Replication

In an asynchronous replication system, write
requests to a mirror device are acknowledged
as soon as the data is written to the primary
device in the mirror. In contrast, in a syn-
chronous replication system, writes are not ac-
knowledged until the data has been written to
all components of the mirror. Synchronous
replication works well in environments where
the mirror components are local. However,
when the backup device is located on a net-
work, the write throughput of a synchronous
mirror decreases as network latency increases.
An asynchronous mirror does not suffer this
performance degradation since a write opera-
tion can be completed without waiting for the
write request and its acknowledgement to make
a complete roundtrip over the network. To
achieve reasonable write throughput in a WAN
replication environment, an asynchronous mir-
ror is generally employed.

3.2.1 Outstanding Write Request Limit

In an asynchronous mirror, there can be sev-
eral outstanding (i.e., in-flight) write requests
at any given time. In order to limit the amount
of data that is out of sync on the backup de-
vice during normal mirror operation, it is nec-
essary to keep the number of outstanding write
requests fairly low. Therefore, we will place
a limit on the number of outstanding write re-
quests. However, to avoid degrading the write
throughput of the mirror, this limit must be ad-
equately high. Since the limit will need to be
tuned appropriately for each environment, it
will be made a user configurable parameter.10

10To avoid overflowing the block counters in the in-
memory bitmap, we will make it impossible to set this

When the limit for outstanding writes has been
exceeded, the driver will throttle writes to the
mirror until another write acknowledgement
returns from the remote system (i.e., the mir-
ror will degrade to synchronous write mode).
A message will be printed in the system log
when this event occurs, to warn system admin-
istrators that they should adjust the relevant pa-
rameters. The outstanding write request limit
will default to a reasonable value (which will
be determined through testing).

3.2.2 Device Tagging

In synchronous replication mode, there is no
real need to differentiate between primary and
backup devices, since writes must be commit-
ted to all array components before being ac-
knowledged. However, in asynchronous mode,
the component devices of a raid1 array will
need to be tagged as “primary” or “backup” to
ensure that the bitmap is handled correctly, and
to ensure that read requests are always satisfied
from the primary device. To accomplish this,
we will need an additional/etc/raidtab
directive to enable a device to be tagged as a
“backup.” Devices tagged as backups will be
placed into a special “write-only” mode that
exists in md.

4 Conclusion

With the recent bugfix and cleanup work that
has been done, and with the upcoming addi-
tional features that are in the works, the Linux
kernel md driver will finally be an enterprise-
class software RAID and data replication so-
lution: robust, and capable of being used for
many different applications, from simple inter-
nal disk mirroring and striping, to LAN data
replication, and even disaster recovery over a

limit higher than the maximum value for those counters.

Linux Symposium 116

WAN.

5 Acknowledgements

We would especially like to thank Peter T.
Breuer and Neil Brown for their outstanding
and ongoing work in the Software RAID (md)
subsystem of the Linux kernel. Without their
contributions, we would not have been able to
undertake such a huge endeavor.

References

[1] SteelEye Technology, Inc.SteelEye
Technology Open Source Website
http://licensing.steeleye.
com/open_source/

[2] Peter T. Breuer.Fast Intelligent Software
RAID1 Driverhttp:
//www.it.uc3m.es/ptb/fr1/
http://freshmeat.net/
projects/fr1/

[3] Peter T. Breuer, Neil Brown, Ingo
Molnar, Paul Clements.linux-raid
mailing list discussions on raid1 bitmap
and asynchronous writes
http://marc.theaimsgroup.
com/?l=linux-raid&b=200302
Jan-Apr 2003

Porting NSA Security Enhanced Linux to Hand-held
devices

Russell Coker
russell@coker.com.au

http://www.coker.com.au/

Abstract

In the first part of this paper I will describe how
I ported SE Linux to User-Mode-Linux and to
the ARM CPU. I will focus on providing infor-
mation that is useful to people who are porting
to other platforms as well. In the second part
I will describe the changes necessary to appli-
cations and security policy to run on small de-
vices. This will be focussed on hand-held de-
vices but can also be used for embedded appli-
cations such as router or firewall type devices,
and any machine that has limited memory and
storage.

1 Introduction

SE Linux offers significant benefits for secu-
rity. It accomplishes this by adding another
layer of security in addition to the default Unix
permissions model. This is achieved by firstly
assigning atype to every file, device, network
socket, etc. Then every process has adomain,
and the level of access permitted to a type is
determined by the domain of the process that is
attempting the access (in addition to the usual
Unix permission checks). Domains may only
be changed at process execution time. The do-
main may automatically be changed when a
process is executed based on the type of the
executable program file and the domain of the
process that is executing it, or a privileged pro-
cess may specify the new domain for the child

process.

In addition to the use of domains and types
for access control SE Linux tracks theidentity
of the user (which will besystem_ufor pro-
cesses that are part of the operating system or
the Unix user-name) and the role. Eachidentity
will have a list of roles that it is permitted to as-
sume, and eachrole will have a list of domains
that it may use. This gives a high level of con-
trol over the actions of a user which is tracked
through the system. When the user runs SUID
or SGID programs the original identity will
still be tracked and their privileges in the SE se-
curity scheme will not change. This is very dif-
ferent to the standard Unix permissions where
after a SUID program runs another SUID pro-
gram it’s impossible to determine who ran the
original process. Also of note is the fact that
operations that are denied by the security pol-
icy [1] have theidentityof the process in ques-
tion logged.

I often run SE Linux demonstration machines
on the Internet which provide root access to the
world and an invitation to try and break the se-
curity. [2]

For a detailed description of how SE Linux
works I recommend reading the paper Peter
Loscocco presented at OLS in 2001 [3].

SE Linux has been shown to provide sig-
nificant security benefits for little overhead
on servers, desktop workstations, and laptops.

Linux Symposium 118

However it has not had much use in embedded
devices yet.

Some people believe that SE Linux is only
needed for server systems. I think that is in-
correct, and I believe that in many situations
laptops and hand-held devices need more pro-
tection than servers. A server will usually have
a firewall protecting it, with a small number
of running applications which are well main-
tained and easy to upgrade. Portable comput-
ers are often used in hostile environments that
servers do not experience, they have no fire-
walls to protect them, and often they are con-
nected to routers operated by potentially negli-
gent or hostile organizations.

But there are two main factors that cause an
increased need for security on portable devices.
One is that it is usually extremely difficult and
expensive to upgrade them if a new security fix
is needed. This means that in commercial use
portable computers tend to never have security
fixes applied. Another factor is that often the
person in posession of a hand-held computer is
not authorised to access all the data it contains,
and may even be hostile to the owner of the
machine.

Naturally for a full security solution for
portable computers a strong encryption system
will need to be used for all persistent file sys-
tems. There are various methods of doing this,
but all aspects of such encryption are outside
the scope of this project and can be imple-
mented independently.

2 Kernel Porting

The current stable series of SE Linux is based
on the 2.4.x kernels and uses the Linux Secu-
rity Modules (LSM) [4] interface. The current
LSM interface has a single sys_security() sys-
tem call that is used to multiplex all the system
calls for all of the security modules. SE Linux

uses 52 different system calls through this in-
terface. Due to problems in porting the kernel
code to some platforms (particularly those that
have a mixed 32 and 64bit memory model) the
decision was made to change the LSM inter-
face for kernel 2.6.0. The new interface will
make the code fully portable and remove the
painful porting work that is currently required.
However I needed to have SE Linux working
with the 2.4.x kernels so I couldn’t wait for ker-
nel 2.6.0.

The main difficulty in porting the code is the
system call execve_secure() which is used to
specify the security context for the new pro-
cess. This calls the kernel funtion do_exec() to
perform the execution, and do_exec() needs a
pointer to the stack, thus requiring architecture
specific code in the sys_execve_secure() func-
tion. The sys_security_selinux_worker() func-
tion (which determines which SE Linux sys-
tem call is desired and passes the appropriate
parameters to it) calls sys_execve_secure() and
therefore also needs architecture specific code,
and so does the main system call sys_security_
selinux().

My first port of SE Linux was to User-Mode
Linux [5]. This was a practice effort for the
main porting work. It is quite easy to debug
kernel code under UML, and as it uses the i386
system call interface I could port the kernel
code without any need to port application code.

The main architecture dependent code is
in the source filesecurity/selinux/
arch/i386/wrapper.c , which has code
to look on the stack for the contents of par-
ticular registers. This needs to be changed for
platforms with different register names, and for
UML which does not permit such direct access
of registers.

The solution in the case of UML was to not
have a wrapper function, as thecurrent struc-
ture had a pointer to the stack anyway that

Linux Symposium 119

could be used inside the sys_execve_secure()
function. So I renamed the sys_security_
selinux_worker() function to sys_security_
selinux() for the UML port and entirely re-
moved all reference to the wrapper. Then
I moved the implementation of sys_execve_
secure() into the platform specific directory
and implemented a different version for each
port.

This was essentially all that was required to
complete the port, the core code of SE Linux
was all cleanly written and could just be com-
piled. The only other work involved getting the
Makefile’s correctly configured, and adding a
hook to sys_ptrace().

One thing I did differently with my port to the
ARM architecture was that I removed the code
to replace the system call entry. When the SE
Linux kernel code loads on UML and i386 it
replaces the system call with a direct call to the
SE Linux code (rather than using the option for
LSM to multiplex between different modules).
As there is currently no support for having SE
Linux be a loadable module there seems to be
no benefit in this, and it seems that on ARM
there will be more overhead for adding an extra
level of indirection for this. So I made the SE
Linux patch hard-code the SE system call into
the sys-call table.

3 iPaQ Design Constraints

The CompaQ/HP iPaQ [6] computers are small
hand-held devices. The most powerful iPaQ
machines on sale have a 400MHz ARM based
CPU that is of comparable speed to a 300MHz
Intel Celeron CPU, with 64M of RAM and
48M of flash storage.

An iPaQ is not designed for memory upgrades.
There are some companies that perform such
upgrades, but they don’t support all models,
and this will void your warantee. Therefore

you are stuck with a memory limit of 64M.

The flash storage in an iPaQ can only be writ-
ten a limited number of times, this combined
with the small amount of storage makes it im-
possible to use a swap space for virtual mem-
ory unless you purchase a specialsleevefor us-
ing an external hard drive. Attaching an exter-
nal hard drive such as the IBM/HitachiMicro
Drive is expensive and bulky. Therefore if you
have a limited budget then storage expansion
(for increased file storage or swap space) is not
an option.

For storing files, the 32M file system can con-
tain quite a lot. The Familiar distribution is op-
timised for low overheads (no documentation
or man pages) and all programs are optimised
for size not speed. Also the JFFS2 [7] file
system used by Familiar supports several com-
pression algorithms including the Lempel-Ziv
algorithm implemented in zlib, so more than
32M of files can fit in storage.

For a system such as SE Linux to be viable on
an iPaQ it has to take up a small portion of the
32M of flash storage and 64M of RAM, and
not require any long CPU intensive operations.

Finally the screen of an iPaQ only has a reso-
lution of 240x320 and the default input device
is a keyboard displayed on the screen. This
makes an iPaQ unsuitable for interactive tasks
that involve security contexts as it takes too
much typing to enter them and too much screen
space to display them. As a strictly end-user
device this does not cause any problems.

4 CPU Requirements

Benchmarks that were performed on SE Linux
operational overheads in the past show that
trivial system calls (reading from /dev/zero and
writing to /dev/null) can take up to 33% longer
to complete when SE Linux is running, but that

Linux Symposium 120

the overhead on complex operations such as
compiles is so small as to be negligible [8]. The
machines that were used for such tests had sim-
ilar CPU power to a modern iPaQ.

One time consuming operation related to SE
Linux installation is compiling the policy
(which can take over a minute depending on
the size of the policy and the speed of the
CPU). This however is not an issue for an iPaQ
as the policy takes over a megabyte of perma-
nent storage and 5 megs of temporary file stor-
age, as well as requiring many tools that are not
normally installed (make, m4, the SE Linux
policy compilation program checkpolicy, etc).
The storage requirements make it impractical
to compile policy on the iPaQ, and the typical
use involves configuration being developed on
other machines for deployment on iPaQ. So the
time taken to compile the policy database is not
relevant.

The only SE Linux operation which can take a
lot of time that must be performed on an iPaQ
is labeling the file system. The file system must
be relabeled when SE Linux is first installed,
and after an upgrade. On my iPaQ (H3900 with
400MHz X-Scale CPU) it takes 29.7 seconds
of CPU time to label the root file system which
contains 2421 files. For an operation that is
only performed at installation or upgrade time
29.7 seconds is not going to cause any prob-
lems. Also thesetfilesprogram that is used to
label the file system could be optimised to re-
duce that time if it was considered to be a prob-
lem.

I conclude that for typical use of a hand-
held machine SE Linux only requires the CPU
power of an iPaQ. In fact the CPU use is
small enough that even the older iPaQ ma-
chines (which had half the CPU power) should
deliver more than adequate performance.

5 Kernel Resource Use

To compare the amounts of disk space and
memory I compiled three kernels. One
was 2.4.19-rmk6-pxa1-hh13 with the de-
fault config for the H3900 iPaQ. One was
a SE Linux version of the same kernel
with the options CONFIG_SECURITY, CON-
FIG_SECURITY_CAPABILITIES, and CON-
FIG_SECURITY_SELINUX. Another was the
same SE Linux kernel with development mode
enabled (which slightly increases the size and
memory).

For this project I have no need for the multi-
level-security (MLS) functionality of SE Linux
or the options for labelled networking and ex-
tended socket calls. This optional functionality
would increase the kernel size. I am focussing
on evaluating the choice of whether or not to
use SE Linux for specific applications, once
you have decided to use SE Linux you would
then need to decide whether the optional func-
tionality provides useful benefits to your use to
justify the extra disk space and memory use.

The kernel binaries are 658648 bytes for a non-
SE kernel, 704708 bytes for the base SE Linux
kernel, and 705560 bytes for the development
mode kernel. The difference between the ker-
nel with development mode enabled and the
regular one is that the development kernel al-
lows booting without policy loaded, and boot-
ing in permissive mode (with the policy deci-
sions not being enforced). For most develop-
ment work a kernel with development mode
enabled will be used, also for this test it al-
lowed me to determine the resource consump-
tion of SE Linux without a policy loaded.

To test the memory use of the different ker-
nels I configured an iPaQ to not load any ker-
nel modules. My test method was to boot the
machine, login at the serial console, wait 30
seconds to make sure that all daemons have

Linux Symposium 121

started, and runfreeto see the amount of mem-
ory that is free. This is not entirely accurate as
random factors may result in different amounts
of memory usage, however this is not as signif-
icant on the Familiar distribution due to the use
of devfsfor device nodes andtmpfsfor /var and
/tmp which means that in the normal mode of
operation almost nothing is written to the root
file system, so two boots will be working on
almost the same data.

From the results I looked at thetotal field in
the results (which gives the amount of RAM
that is available for user processes after the ker-
nel has used memory in the early stages of the
boot process), and theusedfield which shows
how much of that has been used. The kernel
message log gives a break-down of RAM that
is used by the kernel for code and data in the
early stages of boot, however that is not of rel-
evance to this study only the total amount that
is used matters.

The total memory available was reported as
63412k for the non-SE kernel, 63308k for the
SE Linux kernel, and 63300k for the develop-
ment mode kernel. So SE Linux takes 104k of
kernel memory early in the boot process and
112k if you use the development mode option.

The memory reported asusedvaried slightly
with each boot. For the vanilla kernel the value
18256k was reported in two out of four tests,
with values of 18252k and 18260k also be-
ing reported. I am taking the value 18256k as
the working value which I consider accurate to
within 8k.

For a standard SE Linux kernel the amount
reported asusedwas 19516k in three out of
six tests with the values of 19532k, 19520k,
and 19524k also being returned. So I consider
19516k as the working value and the accuracy
to be within 16k.

For the SE Linux kernel with development

mode enabled the memoryusedwas 19516k
in three out of four tests, and the other test was
19524k. So the difference between the devel-
opment mode kernel and the regular SE Linux
kernel is only 8K of kernel memory in the early
stages of the boot process.

Finally I did a test of a development mode ker-
nel with no policy loaded. The purpose of this
test was to determine how much memory is
used on a SE Linux kernel if the SE Linux code
is not loading the policy. For this the memory
reported asusedwas 18292k in three out of five
tests, with the values of 18296k and 18300k
also being returned.

Kernel memory used
non-SE 18256k
SE no policy 18292k
SE with policy 19516k

So an SE Linux kernel without policy loaded
uses approximately 36K more memory after
boot than a non-SE kernel in addition to the
104k or 112k used in the early stages of boot.

With a small policy loaded (360 types and
23,386 rules for a policy file that is 583771
bytes in size) the memory used by the kernel is
about 1224k for the policy and other SE Linux
data structures. The policy could be reduced
in size as there are many rules which would
only apply to other systems (the sample pol-
icy is quite generic and was quickly ported to
the iPaQ), although there may be other areas of
functionality that are desired which would use
any saved space.

So it seems that when using SE Linux the
memory cost is 104k when the kernel is loaded,
and a further 1260k for SE Linux memory
structures and policy when the boot process is
complete. The total is 1364k of non-swappable
kernel memory out of 64M of total RAM in an
iPaQ, this is about 2% of RAM.

Linux Symposium 122

All tests were done with GCC 3.2.3, a modi-
fied Linux 2.4.19, and an X-scale CPU. Differ-
ent hardware, kernel version, and GCC version
will give different results.

6 Porting Utilities

The main login program used on the Famil-
iar [9] distribution is gpe-login, which is an
xdm type program for a GUI login. This pro-
gram had to be patched to check a configura-
tion file and the security policy to determine
the correct security context for the user and to
launch their login shell in that context. The
patch for this functionality made the binary
take 4556 bytes more disk space in my build
(29988 bytes for the non-SE build compared to
34544 bytes for the version with SE Linux sup-
port).

The largest porting task was to provide SE
Linux support in Busybox [10]. Busybox pro-
vides a large number of essential utility pro-
grams that are linked into one program. Link-
ing several programs into one reduces disk
space consumption by spreading the overhead
for process startup and termination code across
many programs. On arm it seems that the min-
imum size of an executable generated by GCC
3.2.3 is 2536 bytes. In the default configura-
tion of Familiar Busybox is used for 115 com-
monly used utilities, having them in one pro-
gram means that the 2.5K overhead is only
used once not 115 times. So approximately
285K of uncompressed disk space is saved by
using busybox if the only saving is from this
overhead. The amount of disk space used
for initialisation and termination code would
probably increase the space used by more than
80% if all the applets were compiled separately
(my build of Busybox for the iPaQ is 337028
bytes).

The programs that are of most immediate note

in busybox arels, ps, id, and login. ls needs
the ability to show the security contexts of
the files, ps needs to show the security con-
texts of the running processes, andid needs to
show the context of the current process. Also
the /bin/login applet had to be modified in the
same manner as thegpe-loginprogram. These
changes resulted in the binary being 5600 bytes
larger (337028 bytes for a non-SE version and
342628 bytes for the version with SE Linux
support.

7 Busybox Wrappers for Domain
Transition

In SE Linux different programs run in differ-
ent securitydomains. A domain change can
be brought about by using theexecve_secure()
system call, or it can come from an automatic
domain transition. An example of an automatic
domain transition is when theinit process
(running in theinit_t domain) runs/sbin/getty
which has the typegetty_exec_t, which causes
an automatic transition to the domaingetty_t.
Another example is when getty runs/bin/login
which has the typelogin_exec_tand causes
an automatic transition to the domainlocal_
login_t. This works well for a typical Linux
machine where/sbin/gettyand /bin/login are
separate programs.

When using Busybox the getty and login pro-
grams will both be sym-links to/bin/busybox
and the type of the file as used for domain tran-
sitions will be the type of/bin/busybox, which
is bin_t. SE Linux does not perform domain
transitions based on the type of the sym-link,
and it assignes security types to the Inodes not
file names (so a file with multiple hard links
will only have one type). This means that we
can’t have a single Busybox program automat-
ically transitioning into the different domains.

There are several possible solutions to this

Linux Symposium 123

problem, one possible partial solution would
be to have Busybox useexecve_secure()to
run copies of itself in the appropriate domain.
Busybox already has similar code for deter-
mining when to change UID so that some of the
Busybox applets can be effectively SETUID
while others aren’t. The SETUID management
of Busybox requires that it be SETUID root,
and involves some risk (any bug in busybox can
potentially be exploited to provide root access).
Providing a similar mechanism for transition-
ing between SE Linux security domains would
have the same security problems whereby if
you crack one of the Busybox applets you
could then gain full access to any domain that
it could transition to. This does not provide
adequate security. Also it would only work
for transitions between privileged domains (it
would not work for transitions from unprivi-
leged domains). I did not even bother writing
a test program for this case as it is not worth
considering due to a lack of security and func-
tionality.

A better option is to split the Busybox program
into smaller programs so transitions can work
in the regular manner. With the current range
of applets that would require one program for
getty, one forlogin, one forklogd, one forsys-
logd, one formountandumount, one for ins-
mod, rmmod, andmodprobe, one for ifconfig,
one forhwclock, one for all the fsck type pro-
grams, one forsu, and one forping. Of course
there would also be one final build of busybox
with all the utility programs (ls, ps, etc) which
run with no special privilege. To test how this
would work I compiled Busybox with all the
usual options apart from modutils, and I did a
separate build with only support for modutils.
The non-modutils build was 323236 bytes and
the build with only modutils was 37764 bytes.
This gave a total of 361000 bytes compared to
342628 bytes for a single image, so an extra
18372 bytes of disk space was required for do-
ing such a split.

Splitting the binary in such a simple fashion
would likely cost 18K for each of the eleven
extra programs. If we changed the policy to
have syslogd and klogd run in the same domain
(and thus the same program) and have hwclock
run with no special privs (IE the domain that
runs it needs to have access to/dev/rtc) then
there would only be nine extra programs for
a cost of approximately 162K of disk space.
This disk space use could be reduced by fur-
ther optimisation of some of the applets, for ex-
ample in the case ofifconfig the code to check
argv[0] to determine the applet name could be
removed. A simple split in this manner would
also make it more difficult for an attacker to
make the program perform unauthorized ac-
tions. When a single program has/bin/login
functionality as well as/bin/shthen there is po-
tential for a buffer overflow in the login code to
trigger a jump to the shell code under control
of the attacker! When the shell is a separate
program that can only be entered through a do-
main transition it is much more difficult to use
an attack on the login program to gain further
access to the system.

Finally if we have a single Busybox pro-
gram that includes applets running in differ-
ent domains we need to make some significant
changes to the policy. The default policy has
assertrules to prevent compilation of a policy
that contains mistakes which may lead to secu-
rity holes. For the domainsgetty_t, klogd_t,
and syslogd_tthere are assertions to prevent
them from executing other programs without
a domain transition, and to prevent those do-
mains being entered through executing files of
types other than the matching executable type
(this requires that each of those domains have a
separate executable type, IE they are not all the
same program). Adding policy which requires
removing these assertions weakens the security
of the base domains and also makes the policy
tree different from the default tree which has
been audited by many people.

Linux Symposium 124

Another way of doing this which uses less disk
space is to have a wrapper program such as the
following:

#include <unistd.h>
#include <string.h>

int main(int argc, char **argv,
char **envp) {

/* ptr is the basename of the
executable that is being run */

char *ptr = strrchr(argv[0],
’/’);

if(!ptr)
ptr = argv[0];

else
ptr++;

/* basename must match one of
the allowed applets,
otherwise it’s a hacking
attempt and we exit */

if(strcmp(ptr, "insmod")
&& strcmp(ptr, "modprobe")
&& strcmp(ptr, "rmmod"))

return 1;
return execve("/bin/busybox",

argv, envp);
}

This program takes 2912 bytes of disk space.
The idea would be to have a copy of it
named/sbin/insmodwith type insmod_exec_t
which has symlinks/sbin/rmmodand mod-
probepointing to it. Then wheninsmod, rm-
mod, or modprobeis executed an automatic
domain transition to theinsmod_tdomain will
take place, and then the Busybox program will
be executed in the correct context for that ap-
plet.

This option is easy to implement, one advan-
tage is that there is no need to change the Busy-
box program. The fact that the entire Busybox
code base is available in privileged domains
is a minor weakness. Implementing this takes

about 2900 bytes of disk space for each of the
nine domains (or seven domains depending on
whether you have separate domains for klogd
and syslogd and whether you have a domain
for hwclock). It will take less than 33K or 27K
of disk space (depending on the number of do-
mains). This saves about 130K over the option
of having separate binaries for implementing
the functionality.

A final option is to have a single program to
act as a wrapper and change domains appropri-
ately. Such a program would run in its own do-
main with an automatic domain transition rule
to allow it to be run from all source somains.
Then it would look at its parent domain and the
type of the symlink to determine the domain of
the child process. For example I want to have
insmodrun in domaininsmod_twhen run from
sysadm_t. So I have an automatic transition
rule to transition fromsysadm_tto the domain
for my wrapper (bbwrap_t). Then the wrapper
determines that its parent domain issysadm_t,
determines that the type of the symlink for its
argv[0] is insmod_exec_tand asks the kernel
what domain should be entered when a process
in sysadm_texecutes a program of typeins-
mod_exec_t, and the answer isinsmod_t. So
the wrapper then uses theexecve_secure()sys-
tem call to execute Busybox in theinsmod_t
domain and tell it to run the insmod applet.

I implemented a prototype program for this.
For my prototype I used a configuration file to
specify the domain transitions instead of ask-
ing the kernel. The resulting program was
6K in size (saving 27K of disk space over the
multiple-wrapper method, and 156K of disk
space over the separate programs method), al-
though it did require some new SE Linux pol-
icy to be written which takes a small amount of
disk space and kernel memory.

One problem with this method is that it allows
security decisions to be made by an application

Linux Symposium 125

instead of the kernel. It is preferrable that only
the minimum number of applications can make
such security decisions. In a typical configu-
ration of SE Linux the only such applications
will be login, an X login program (in this case
gpe-login), cron (which is not installed in Fa-
miliar), andnewrole(the SE Linux utility for
changing the security context which operates
in a similar manner tosu).

The single Busybox wrapper is more of a risk
than most of these other programs. The login
programs are only executed by the system and
can not be run by the user with any elevated
privileges which makes them less vulnerable
to attack.Newroleis well audited and the do-
mains it can transition to are limited by kernel
to only include domains that might be used for
a login process (dangerous domains such aslo-
gin_t are not permitted).

Due to the risks involved with a single busy-
box wrapper, and the fact that the benefits of
using 6K on disk instead of 33K are very small
(and are further reduced by an increase in ker-
nel memory for the larger policy) I conclude
that it is a bad idea.

I conclude that the only viable methods of us-
ing Busybox on a SE Linux system are having
separate wrapper programs for each domain
to be entered (taking 33K of extra disk space
and requiring minor policy changes), or having
entirely separate programs compiled from the
Busybox source for each domain (taking ap-
proximately 162K of extra disk space with no
other problems). Also with some careful op-
timisation the 162K of overhead could be re-
duced for the option of splitting the Busybox
program. If 162K of disk space can be spared
(which should not be a problem with a 32M
file system) then splitting Busybox is the right
solution.

8 Removed Functionality

A hand-held distribution doesn’t require all the
features that are needed on bigger machines
such as servers, desktop workstations, and lap-
tops. Therefore we can reduce the size of the
SE Linux policy and the number of support
programs to save disk space and memory.

For a full SE Linux installation there are wrap-
pers for the commandsuseradd, userdel, user-
mod, groupadd, groupdel, groupmod, chfn,
chsh, andvipw. These can possibly be removed
as there is less need for adding, deleting, or
modifying users or groups on a hand-held de-
vice in the field. These programs would take
27K of disk space if they were included.

A default installation of Familiar does not in-
clude support for/etc/shadow, and therefore
there is no need for the wrapper programs for
the administrator to modify users’ accounts.
However I think that the right solution here is
to add /etc/shadowsupport to Familiar rather
than removing functionality from SE Linux.
This will slightly increase the size of the login
programs.

In a full install of SE Linux there are programs
chsidandchconto allow changing the security
type of files. These are of less importance for a
small device. There will be fewer types avail-
able, and the effort of typing in long names
of security contexts will be unbearable on a
touch-screen input device. A hand-held device
has to be configured to not require changing the
contexts of files, and therefore these programs
can be removed.

In the Debian distribution there is support for
installing packages on a live server and having
the security contexts automatically assigned to
the files. As iPaQ’s are used in a different en-
vironment I believe that there is less need for
such upgrades and such support could option-
ally be removed to save disk space. I have not

Linux Symposium 126

written the code for this yet, but I estimate it to
be about 100K.

The default policy for SE Linux has separate
domains for loading policy and for policy com-
pilation. On the iPaQ we can’t compile policy
due to not having tools such asm4 andmake,
so we can skip the compilation program and its
policy. Also the policy for a special domain for
loading new policy is not needed as the system
administration domainsysadm_tcan be used
for this purpose. It is possible to even save
3500 bytes of disk space by not including the
program to load the policy (a reboot will cause
the new policy to take affect).

A server configuration of SE Linux (or a
full workstation configuration) includes the
run_init program to start daemons in the cor-
rect security context. On a typical install of Fa-
miliar there are only three daemons, a program
to manage X logins, a daemon to manage blue-
tooth connections, and the PCMCIA cardmgr
daemon. For restarting these daemons it should
be acceptable to reboot the iPaQ, sorun_init is
not needed.

9 Disk Space and RAM Use

In the section on kernel resource usage I de-
termined that the kernel was using 1364K of
RAM for SE Linux with a 583771 byte policy
comprising 23,386 rules loaded. Since the time
that I performed those tests I reduced the pol-
icy to 455,422 bytes and 18,141 rules which
would reduce the kernel memory use. I did
not do any further tests as it is likely that I will
add new functionality which uses the memory I
have freed. So I can expect that 1.3M of kernel
memory is taken by SE Linux.

The SE Linux policy that is loaded by the ker-
nel takes 67K on disk when compressed. The
file_contextsfile (which specifies the security
contexts of files for the initial installation and

for upgrades) takes 24K. The kernel binary
takes 64K more disk space for the SE Linux
kernel. So the kernel code and SE Linux con-
figuration data takes 156K of disk space (most
of which is compressed data).

The programsetfilesis needed to apply thefile_
contextsdata to the file system.Setfilestakes
20K of disk space. Thefile_contextsfile could
be reduced in size to 1K if necessary to save
extra disk space, but in my current implemen-
tation it can not be removed entirely. In Fa-
miliar a large number of important system di-
rectories (such as/var) on Familiar are on a
ramfsfile system. I am usingsetfilesto label
/mnt/ramfs. So far it has not seemed beneficial
to have a smallfile_contextsfile for booting the
system and an optional larger one for use when
installing new packages or upgrading, but this
is an option to save 23K. Another option would
be to write a separate program that hard-codes
the security contexts for theramfs. It would
be smaller than setfiles and not require a em-
phfile_contexts file, thus saving 30K or more
of disk space. Currently this has not seemed
worth implementing as I am still in a prototype
phase, but it would not be a difficult task. Also
if such a program was written then the next
step would be to use ajffs2 loop-back mount
to label the root file system on a server before
installation to the iPaQ (so thatsetfilesnever
needs to run on the iPaQ.

The patches for thegpe-loginandbusyboxpro-
grams to provide SE Linux login support and
modified ls, ps, andid programs cause the bi-
naries to take a total of 10K extra disk space.

Splitting Busybox into separate programs for
each domain will take an estimated 162K of
disk space.

The total of this is approximately 348K of ad-
ditional disk space for a minimal installation
of SE Linux on an iPaQ. Adding support for
/etc/shadowand other desirable features may

Linux Symposium 127

increase that to as much as 450K depending
on the features chosen. However if you use
multiple Busybox wrappers instead of split-
ting Busybox then the disk space for SE Linux
could be reduced to less than 213K. If you then
replacedsetfilesfor the system boot labeling of
theramfsthen it could be reduced to 190K.

10 Conclusion

Security Enhanced Linux on a hand-held de-
vice can consume less than 1.3M of RAM and
less than 400K of disk space (or less than 200K
if you really squeeze things). While the mem-
ory use is larger than I had hoped it is within a
bearable range, and it could potentially be re-
duced by changing the kernel code to optimise
for reduced memory use. The disk space usage
is trivial and I don’t think it is a concern.

I believe that the benefits of reducing repair and
maintenance problems with hand-held devices
that are deployed in the field through better se-
curity outweigh the disadvantage of increased
memory use for many applications.

All source code and security policy code re-
leated to this article will be on my web
site [11].

References

[1] Configuring the SELinux Policy. Stephen
D. Smalley, NAI Labs.
http://www.nsa.gov/selinux/

policy2-abs.html

[2] Details of SE Linux test machine,
http://www.coker.com.au/

selinux/play.html

[3] Meeting Critical Security Objectives
with Security-Enhanced Linux. Peter A.
Loscocco, NSA; Stephen D. Smalley,

NAI Labs.http://www.nsa.gov/

selinux/ottawa01-abs.html

[4] Linux Security Modules,
http://lsm.immunix.org/

[5] User-Mode Linux,
http://sourceforge.net/

projects/user-mode-linux/

[6] HP Site for iPaQ Information,
http://whp-sp-orig.extweb.hp.

com/country/us/eng/prodserv/

handheld.html/

[7] Journalled Flash File System 2, http:

//sources.redhat.com/jffs2/

[8] Integrating Flexible Support for Security
Policies into the Linux Operating System.
Peter A. Loscocco, NSA; Stephen D.
Smalley, NAI Labs.http://www.nsa.

gov/selinux/freenix01-abs.html

[9] Familiar Linux distribution for
hand-held devices,
http://familiar.handhelds.org/

[10] Busybox - Swiss Army Knife of
Embedded Linux,
http://busybox.net/

[11] My SE Linux Web Pages, http:

//www.coker.com.au/selinux/

Strong Cryptography in the Linux Kernel
Discussion of the past, present, and future of strong cryptography in the Linux kernel

Jean-Luc Cooke
CertainKey Inc.

jlcooke@certainkey.com

David Bryson
Tsumego Foundation
david@tsumego.com

PGP:0x74B61620

Abstract

In 2.5, strong cryptography has been incorpo-
rated into the kernel. This inclusion was a
result of several motivating factors: remove
duplicated code, harmonize IPv6/IPSec, and
the usual crypto-paranoia. The authors will
present the history of the Cryptographic API,
its current state, what kernel facilities are cur-
rently using it, which ones should be using it,
plus the new future applications including:

1. Hardware and assembly crypto drivers

2. Kernel module code-signing

3. Hardware random number generation

4. Filesystem encryption, including swap
space.

1 History of Cryptography inside
the kernel

The Cryptographic API came about from two
somewhat independent projects: the interna-
tional crypto patch last maintained by Herbert
Valerio Riedel and the requirments for IPv6.

The international crypto patch (or ‘kerneli’)
was written by Alexander Kjeldaas and in-
tended for filesystem encryption, it has

grown to also optionally replace duplicated
code in the UNIX random character device
(/dev/*random). This functionality could not
be incorporated into the main line kernel at the
time because kernel.org was hosted in a na-
tion with repressive cryptography export reg-
ulations. These regulations have since been re-
laxed to permit open source cryptographic soft-
ware to travel freely from kernel.org’s locality.

The 2.5 kernel, at branch time, did not include
any built in cryptography. But with the advent
of IPv6 the killer feature of kernel space cryp-
tography has shown itself. The IPv6 specifica-
tion contains a packet encryption industry stan-
dard for virtual private network (VPN) tech-
nology. The 2.5 kernel was targeted to have
a full IPv6 stack–this included packet encryp-
tion. The IPv6 and kernel maintainers in their
infinite wisdom (!) saw an opportunity to re-
move duplicated code and encouraged the ker-
neli.org people to play with others.

And so, strong cryptography is now at the dis-
posal of any 2.5+ kernel hacker.

2 Why bring cryptography into
our precious kernel?

Cryptography, in one form or another, has ex-
isted in the main line kernel for many versions.
The introduction of the random device driver

Linux Symposium 129

by Theodore Ts’o integrated two well known
cryptographic (digest) algorithms, MD5 and
SHA-1. Other forms of cryptography were in-
troduced with the loopback driver (also writ-
ten by Theodore Ts’o) these included an XOR
and DES implementation for primitive filesys-
tem encryption.

The introduction of cryptography for filesys-
tem encryption, coupled with the kerneli
patches, allowed users to hook the loopback
device up to a cipher of their choosing. Thus
providing a solution for secure hard disk stor-
age on Linux.

With the advent of IPSec the introduction of
crypto into the kernel makes setting up en-
crypted IP connections extremely easy. Pre-
vious implementatinons have used userspace
hooks and required compilcated configuration
to setup properly. With IPSec being inside the
kernel much of those tasks can be automated.

More advanced features for cryptography in
the kernel will be explained throughout this pa-
per.

2.1 Example Code

The use of the API is quite simple and straight-
forward. The following lines of code show a
basic use of the MD5 hash algorithm on a scat-
terlist.

#include <linux/crypto.h>

struct scatterlist sg[2];
char result[128];
struct crypto_tfm *tfm;

tfm = crypto_alloc_tfm("md5", 0);
if (tfm == NULL)

fail();

/* copy data into */
/* the scatterlists */

crypto_digest_init(tfm);
crypto_digest_update(tfm, &sg, 2);
crypto_digest_final(tfm, result);

crypto_free_tfm(tfm);

Ciphers are implemented in a similar fashion
but must set a key value (naturally) before do-
ing any encryption or decryption operations.

#include <linux/crypto.h>

int len;
char key[8];
char result[64];
struct crypto_tfm *tfm;
struct scatterlist sg[2];

tfm = crypto_alloc_tfm("des", 0);
if (tfm == NULL)

fail();

/* place key data into key[] */
crypto_cipher_setkey(tfm, key, 8);

/* copy data into scatterlists */

/* do in-place encryption */
crypto_cipher_encrypt(tfm,sg[0],

sg[0],len);
crypto_free_tfm(tfm);

The encryption and decryption functions are
capable of doing in-place operations as well as
in/out (separate source and destination) opera-
tions. This example shows in-place opertaion.
By changing the encrypt line to:

crypto_cipher_encrypt(tfm,
sg[0], sg[1], len);

the code then becomes an in/out operation.

3 Kernel module code-signing

Signing of kernel modules has been a desired
addition to the kernel for a long time. Many

Linux Symposium 130

people have attempted to do some kind of au-
thenticated kernel module signing/encryption
but usually by the means of an external user-
mode program. With the movement of the
module loader into the kernel in the 2.4 se-
ries a truly secure module loader is possible.
The authors would like to propose a method for
trusted module loading.

To create the secure module structure we need
a way of designating a module as trusted. Dur-
ing compile time, a token can be created for
each module. The token contains two identi-
fiers.

• Time stamp token, denoting module cre-
ation time.

• A secure hash of the module in its com-
piled state.

After these three tokens are created they are
encrypted by an internal private key (protected
by a separate password of course) bound to the
kernel. The encrypted file is then stored in a
file on the local disk.

Loading of the module occurs as follows.

1. A request to load modulerot13 is made
by the system.

2. The kernel reads the encrypted file for
modulerot13 .

3. Using the kernels public key the file is
decrypted, and the tokens are placed in
memory

4. A hash is computed against the file on res-
ident disk of modulerot13 and com-
pared against the signed token.

5. If the hashes are equal the module is
trusted and code loaded into memory.

This allows for a large degree of flexibility.
Anybody on the system who has access to the
kernels public key can verify the validity of the
modules. Plus the kernel does not need to have
the private key in memory to authenticate since
the public key can do the decryption. Thus re-
ducing the time that the private key is stored in
resident memory unencrypted.

However this approach can only protect a sys-
tem to a point. If a malicious user is on your
system and is at the stage where they can load
modules (root access) this will only slow them
down. Nothing prevents them from compiling
a new kernel with a ‘dummy’ module loader
that skips this check (solutions to this problem
welcome!).

This system requires that the kernel contain
functionality to support arbitrarily large inte-
gers and perform asymmetric cryptography op-
erations. Currently, there is preliminary code
that supports this functionality, but has yet to
be formally tested or introduced to the commu-
nity.

4 Cryptographic Hardware and
Assembly Code

A new exciting aspect of cryptography in the
kernel is the ability to use hardware based cryp-
tographic accelerators. Many vendors offer a
variety of solutions for speeding up crypto-
graphic routines for symmetric and asymmet-
ric operations.

The chips provide cheap, efficient, and fast
cryptographic processors. These can be pur-
chased for as little as $80.00USD and offer a
considerable speedup for the algorithms they
support. The proposed method of integrating
hardware and assembly is to have the chip or
card register its capabilities with the API.

This way the API can serve as a front end to the

Linux Symposium 131

Figure 1: The proposed hardware interface
model

hardware driver module. Instead of a the hard-
ware registering “aes” it would register “aes-
<chipset name>” with the API. Calls to the API
can then specify which implementations of the
ciphers that are desired depending on what per-
formance is needed.

As of this writing (May 2003) there is also no
way to query the API for the fastest method it
has for computing a cipher. There is in the de-
sign stage an asynchronous system for dynam-
ically receiving requests and distributing them
to the various pieces of hardware (or software)
present on the system. The OpenBSD API and
cryptography sub-system is being used as a ref-
erence model.

This method would allow users of the API
to send queries to a scheduler with a call
similar to the current interface, but adding
using the cypher nameaes_fastest or
aes_hardware . The scheduler then sends
the requested command to a piece of hardware
that is waiting for requests, and fulfills the re-
quested hardware requirements.

Drivers that are currently finished and/or under
development include:

• Hifn series processors 7751 and 7951.

• Motorola MPC190 and MPC184 series.

• Broadcom BCM582[0|1|3] series.

4.1 Hardware Random Number Generation

Most cryptographic hardware and lately some
motherboards have been including a hardware
random number generation chip. These are
a wonderful source of generating entropy be-
cause they are both fast and produce very ran-
dom data. A set of free-running oscillators
usually generates the data. The oscillators fre-
quency clocks drift relative to each other and to
the internal clock of the chipset. Thus, produc-
ing randomly flipped bits in a specified ‘RNG’
register.

Random number generation in the kernel uses
interrupts from the keyboard, mouse, hard disk,
and network interfaces to create an entropy
pool. This entropy pool produces the out-
put of /dev/random and the less secure
/dev/urandom .

The current interface is missing a way to
add random data from an arbitrary hardware
source. By using tying the random driver into
the Cryptographic API the random driver can
gain both extra sources of entropy and the ac-
celeration from making its MD5 and SHA-
1 functions available for hardware execution.
The result would be a faster and better entropy
pool for random data generation.

5 Filesystem encryption

By far, the cryptographic API has the largest
user-base with filesystem encryption. Sev-
eral distributions have shipped with support for
filesystem loopback encryption for over a year.
Let us take a moment to explore the details of

Linux Symposium 132

filesystem encryption. When a write or read re-
quest occurs in the kernel the information des-
tined for a device passes through the VFS layer,
then down through the device driver layer and
onto the physical media.

Figure 2: A diagram of the Linux VFS

Looking for a place to encrypt the data isn’t
easy, we could intercept the information at the
VFS layer, but the result is encrypted data with
plaintext metadata. Thus giving an attacker an
edge, for example being able to track down
your /tmp/.SCO_source_code directory
and begin attacking the encrypted data there.
The next place to intercept the plaintext data
would be at the filesystem level. But writing
per filesystem hooks to encrypt both filesystem
data and filesystem metadata would be a night-
mare to implement, not to mention a horrible
design decision. So the only place left is some-
where outside of the filesystem code, but be-
fore the data is passed to the device driver for
the media. Enter loopback drivers.

The loopback device driver in Linux allows
us to send the data (plaintext) and metadata
(plaintext) through a layer of memory copying

before it is written to a device. Here is where
the encryption will be done—this way all data
written to the device can be encrypted instead
of just the filesystem data.

Figure 3: A diagram of the loopback encryp-
tion layer

By using the loopback driver an added level of
flexibility is added. Users can have their home
directories stored as large encrypted files on the
primary drive. These would then be loaded via
the cryptographic loopback driver upon login
and unmount when the user exits all sessions.

5.1 Swap memory Encryption

Encryption of swap is a difficult problem to
approach. Any system in which the filesys-
tem data is encrypted has the chance of the
data being moved out to swap memory when
the OS gets low on RAM. This can easily
be solved by ‘locking’ all memory into RAM
and not allowing it to be swapped to a physi-
cal media with themlock() function. How-
ever, this vastly reduces the usability of the sys-
tem (Linux tends to kill processes when out of

Linux Symposium 133

memory). In the past, Linux has implemented
encrypted swap with a loopback device run-
ning through the swap accesses. This approach
works, but is slow and cumbersome to imple-
ment.

What is needed is a policy for encryptingall
pages swapped to disk. The OpenBSD com-
munity has had a similar policy for a long time
and feels that the performance loss (roughly
2.5 times longer to write a page to disk) is
worth the added security.

The 2.4 series crypto (not a part of the main-
line the kernel) named the “International Ker-
nel Cryptography Patch” included a loopback
encryption driver. The driver had limited fea-
tures but did the job of encrypting data fairly
well. In the 2.5 series driver there have been
some performance improvements, like multi-
threaded (and SMP) reading from loopback de-
vices, and code readability improvements.

6 Userspace Access

Access to the API is not currently possible
from user space. Discussions over how to im-
plement this have come up with a variety of
proposals. The current direction is to have a
device provide access to the API via ioctls.

Compatibility with the already mature
OpenBSD API has been suggested. This
would decrease application porting time to
almost nothing.

7 Final Comments

Thus far the 2.5 Cryptographic API has been
under constant development with the adding of
new ciphers and functionality since its inclu-
sion in the kernel. The API is young and has
promising plans to expand, hopefully the au-
thors of this paper have given you an adequate

intro to the capabilites of the API.

References

[Bryson] David Bryson,The Linux CryptoAPI: A
Users Perspective. 16 May 2002.
http://www.kerneli.org/howto/
index.php .

[Morris] Morris, James, and David S. Miller.
Scatterlist Cryptographic API. 10 May.
2003. Linux Kernel Documentation linux/
Documentation/crypto/api-intro.txt.

[Steve] Steve,steve@trevithick.net . Re:
[CryptoAPI-devel] Re: hardware crypto
support for userspace ?11 Dec. 2002 via
http://www.kerneli.org/
pipermail/cryptoapi-devel .

[Hifn] Hifn, Inc. 7951 Data Sheet - Device
Specification. 2 June. 2001.
http://www.hifn.com/docs/a/
DS-0028-02-7951.pdf .

[Provos] Provos, Niels.Encrypting Virtual Mem-
ory. http://www.openbsd.org/

papers/swapencrypt.ps .

Porting drivers to the 2.5 kernel

Jonathan Corbet
LWN.net

corbet@lwn.net

Abstract

The 2.5 development series has brought with
it the usual large set of changes to the internal
driver API. The end result is a kernel that is
far more pleasant to program for, and a more
robust and reliable system. The cost of all
these changes, of course, is that kernel code—
including device drivers—must be updated to
work under the new regime. This paper will
give an overview of what has changed in the in-
ternal kernel API, why the changes were made,
and what must be done to make drivers work
again. Some familiarity with kernel program-
ming is assumed.

1 Introduction

2.5 was a busy time for kernel developers.
Much work was done to make kernel code
more reliable and less susceptible to com-
mon problems. There has also been a large
emphasis on improved performance on high-
end systems. The end result is that almost
no part of the kernel—and almost no inter-
nal API—was left untouched. The degree of
change varies from relatively small (for net-
work drivers, for example) to extreme (block
drivers). An awareness of these changes is
helpful for anybody who is interested in how
kernel development is proceeding, and crucial
for anybody who must make code work with
the new kernel.

This paper will start with the basic changes

which affect all drivers—module loading,
memory allocation, etc. Later sections will get
into the more advanced topics, including the
block layer, and memory management. Space
constraints make it impossible to get into much
detail here. A series of documents can be found
at the web site listed at the end of this paper;
those documents explore the topics found be-
low in much greater depth, and will be kept
current as the kernel evolves.

2 Loadable modules

The module loader was completely replaced in
2.5; the new implementation works almost en-
tirely within the kernel. Interestingly, moving
the module loader into the kernel resulted in
a net reduction in kernel code. This develop-
ment has forced a few changes in how modules
work, however.

2.1 Hello world

The obvious place to start is the classic “hello
world” program, which, in this context, is im-
plemented as a kernel module. The 2.4 version
of this module looked like:

#define MODULE
#include <linux/module.h>
#include <linux/kernel.h>

int init_module(void)
{

printk(KERN_INFO "Hello, world\n");
return 0;

}

void cleanup_module(void)

Linux Symposium 135

{
printk(KERN_INFO "Goodbye cruel world\n");

}

One would not expect that something this sim-
ple and useless would require much in the way
of changes, but, in fact, this module will not
quite work in a 2.5 kernel. So what do we have
to do to fix it up?

The first change is relatively insignificant; the
first line:

#define MODULE

is no longer necessary, since the kernel build
system defines it for you.

The biggest problem with this module, how-
ever, is that you have to explicitly declare
your initialization and cleanup functions with
module_init and module_exit , which
are found in<linux/init.h> . You really
should have done that for 2.4 as well, but you
could get away without it as long as you used
the namesinit_module and cleanup_
module . You can still get away with it, but
the new module code broke this way of doing
things once, and could do so again. It’s time to
bite the bullet and do things right.

With these changes, “hello world” now looks
like:

#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>

static int hello_init(void) {
printk(KERN_ALERT "Hello, world\n");
return 0;

}

static void hello_exit(void) {
printk(KERN_ALERT "Goodbye, cruel world\n");

}

module_init(hello_init);
module_exit(hello_exit);

This module will now work—the “Hello,
world” message shows up in the system log

file. At least, once you have succeeded in
building the module properly. . .

2.2 Module compilation

One result of the module changes (combined
with significant changed in the kernel build
mechanism) is that compiling loadable mod-
ules has gotten a bit more complicated. In the
2.4 days, a makefile for an external module
could be put together in just about any old way;
the job of creating a loadable module was han-
dled in a single, simple compilation step. All
you really needed was a handy set of kernel
headers to compile against.

With the 2.5 kernel, you still need those head-
ers. You also, however, need a configured ker-
nel source tree and a set of makefile rules de-
scribing how modules are built. All this is re-
quired because the new module loader needs
some additional symbols defined at compila-
tion time; because all modules must now go
through a linking step (even single-file mod-
ules); and because the new modversions imple-
mentation requires a separate processing step.

One could certainly, with some effort, write a
new, standalone makefile which would handle
the above issues. But that solution, along with
being a pain, is also brittle; as soon as the mod-
ule build process changes again, the makefile
will break. Eventually that process will stabi-
lize, but, for a while, further changes are al-
most guaranteed.

So, now that you are convinced that you want
to use the kernel build system for external mod-
ules, how is that to be done? The first step
is to learn how kernel makefiles work in gen-
eral; makefiles.txt from a recent ker-
nel’s Documentation/kbuild directory
is recommended reading. The makefile magic
needed for a simple kernel module is minimal,
however. In fact, for a single-file module, a
single-line makefile will suffice:

Linux Symposium 136

obj-m := module.o

(where module is replaced with the actual
name of the resulting module, of course). The
kernel build system, on seeing that declaration,
will compile module.o from module.c ,
link it with vermagic.o from the kernel tree,
and leave the result inmodule.ko , which can
then be loaded into the kernel.

A multi-file module is almost as easy:

obj-m := module.o
module-objs := file1.o file2.o

In this case,file1.c andfile2.c will be
compiled, then linked intomodule.ko .

Of course, all this assumes that you can get the
kernel build system to read and deal with your
makefile. The magic command to make that
happen is something like the following:

make -C /usr/src/linux \
SUBDIRS=\$PWD modules

Where/usr/src/linux is the path to the
source directory for the target kernel. This
command causesmake to head over to the ker-
nel source to find the top-level makefile; it then
moves back to the original directory to build
the module of interest.

Of course, typing that command could get tire-
some after a while. A trick posted by Gerd
Knorr can make things a little easier, though.
By looking for a symbol defined by the ker-
nel build process, a makefile can determine
whether it has been read directly, or by way
of the kernel build system. So the following
will build a module against the source for the
currently running kernel:

ifneq ($(KERNELRELEASE),)
obj-m := module.o
else
KDIR := /lib/modules/$(shell uname -r)/build
PWD := $(shell pwd)

default:
$(MAKE) -C $(KDIR) SUBDIRS=$(PWD) modules

endif

Now a simple “make” will suffice. The make-
file will be read twice; the first time it will sim-
ply invoke the kernel build system, while the
actual work will get done in the second pass.
A makefile written in this way is simple, and
it should be robust with regard to kernel build
changes.

2.3 Module parameters

The oldMODULE_PARMmacro, which used to
specify parameters which can be passed to the
module at load time, is no more. The new pa-
rameter declaration scheme add type safety and
new functionality, but at the cost of breaking
compatibility with older modules.

Modules with parameters should now include
<linux/moduleparam.h> explicitly. Pa-
rameters are then declared withmodule_
param :

module_param(name, type, perm);

Where name is the name of the parame-
ter (and of the variable holding its value),
type is its type, andperm is the permis-
sions to be applied to that parameter’s sysfs
entry. The type parameter can be one of
byte , short , ushort , int , uint , long ,
ulong , charp , bool or invbool . That
type will be verified during compilation, so it
is no longer possible to create confusion by
declaring module parameters with mismatched
types. The plan is for module parameters to ap-
pear automatically in sysfs, but that feature had
not been implemented as of 2.5.69; for now, the
safest alternative is to setperm to zero, which
means “no sysfs entry.”

If the name of the parameter as seen outside the
module differs from the name of the variable

Linux Symposium 137

used to hold the parameter’s value, a variant on
module_param may be used:

module_param_named(name, value, type, perm);

Where name is the externally-visible name
andvalue is the internal variable.

String parameters will normally be declared
with thecharp type; the associated variable is
achar pointer which will be set to the param-
eter’s value. If you need to have a string value
copied directly into achar array, declare it as:

module_param_string(name, string, len, perm);

Usually, len is best specified as
sizeof(string) .

2.4 The module use count

In 2.4 and prior kernels, modules maintained
their “use count” with macros likeMOD_INC_
USE_COUNT. The use count, of course, is
intended to prevent modules from being un-
loaded while they are being used. This method
was always somewhat error prone, especially
when the use count was manipulated inside
the module itself. In the 2.5 kernel, reference
counting is handled differently.

The only safe way to manipulate the count of
references to a module is outside of the mod-
ule’s code. Otherwise, there will always be
times when the kernel is executing within the
module, but the reference count is zero. So this
work has been moved outside of the modules,
and life is generally easier for module authors.

Any code which wishes to call into a module
(or use some other module resource) must first
attempt to increment that module’s reference
count:

int try_module_get(&module);

It is also necessary to look at the return value;
a zero return means that the try failed (perhaps
the module is being unloaded), and the module
should not be used.

A reference to a module can be released with
module_put() .

Again, modules will not normally have to man-
age their own reference counts. The only ex-
ception may be if a module provides a refer-
ence to an internal data structure or function
that is not accounted for otherwise. In that
(rare) case, a module could conceivably call
try_module_get() on itself.

2.5 Exporting symbols

In 2.5, module symbols are not exported
by default. Chances are that change will
cause few problems. When you get a
chance, however, you can removeEXPORT_
NO_SYMBOLSlines from your module source.
Exporting no symbols is now the default, so
EXPORT_NO_SYMBOLSis a no-op.

The 2.4 inter_module_ functions have
been deprecated as unsafe. Thesymbol_
get() function exists for the cases when
normal symbol linking does not work well
enough. Its use requires setting up weak refer-
ences at compile time, and is beyond the scope
of this document.

2.6 Kernel version checking

2.4 and prior kernels would include, in each
module, a string containing the version of the
kernel that the module was compiled against.
Normally, modules would not be loaded if the
compile version failed to match the running
kernel.

In 2.5, things still work mostly that way. The
kernel version is loaded into a separate, “link-
once” ELF section, however, rather than be-

Linux Symposium 138

ing a visible variable within the module itself.
As a result, multi-file modules no longer need
to define__NO_VERSION__before includ-
ing <linux/module.h> .

The new “version magic” scheme also records
other information, including the compiler ver-
sion, SMP status, and preempt status; it is thus
able to catch more incompatible situations than
the old scheme did.

3 The device model

One of the more significant changes in the 2.5
development series is the creation of the inte-
grated device model. The device model was
originally intended to make power manage-
ment tasks easier through the maintenance of
a representation of the host system’s hardware
structure. A certain amount of mission creep
has occurred, however, and the device model is
now closely tied into a number of device man-
agement tasks—and other kernel functions as
well.

The device model presents a bit of a steep
learning curve when first encountered. The fact
that the whole thing is still (as of 2.5.69) in
a state of fairly serious flux doesn’t help, es-
pecially considering that the documentation is,
in many cases, a few revisions behind the ac-
tual code. But the underlying concepts are not
that hard to understand, and driver program-
mers will benefit from a grasp of what’s going
on.

The fundamental task of the driver model is to
maintain a set of internal data structures which
reflect the architecture and state of the under-
lying system. Among other things, the driver
model tracks:

• Which devices exist in the system, what
power state they are in, what bus they are

attached to, and which driver is responsi-
ble for them.

• The bus structure of the system; which
buses are connected to which others (i.e.,
a USB controller can be plugged into a
PCI bus), and which devices each bus can
potentially support (along with associated
drivers), and which devices actually exist.

• The device drivers known to the sys-
tem, which devices they can support, and
which bus type they know about.

• What kinds of devices (“classes”) exist,
and which real devices of each class are
connected. The driver model can thus an-
swer questions like “where is the mouse
(or mice) on this system?” without the
need to worry about how the mouse might
be physically connected.

• And many other things.

Underneath it all, the driver model works by
tracking system configuration changes (hard-
ware and software) and maintaining a complex
“web woven by a spider on drugs” data struc-
ture to represent it all.

Many driver programmers will be able to get
away with ignoring the device model alto-
gether; most of the gory details are handled at
the bus level. There are times, however, when
an understanding of what’s going on can be
useful. A full discussion of the device model
would require a talk of its own (indeed, there
are two on the OLS schedule); suffice to say,
for now, that details can be found on the web
site.

4 Support interfaces

Now that we know how to compile a module,
it’s time to look at the various other changes it

Linux Symposium 139

will need to be adapted for. We’ll start with
various low-level support interfaces used by
many or most drivers (and other modules).

4.1 Memory allocation

The 2.5 development series has brought rela-
tively few changes to the way device drivers
will allocate and manage memory. In fact,
most drivers should work with no changes in
this regard. There are a few improvements
that have been made, however, that are worth a
mention. These include some changes to page
allocation, and the new “mempool” interface.

4.1.1 Allocation flags

The old <linux/malloc.h> include file
is gone; it is now necessary to include
<linux/slab.h> instead.

The GFP_BUFFERallocation flag is gone (it
was actually removed in 2.4.6). That will
bother few people, since almost nobody used
it. For reference, here is the full set of 2.5 al-
location flags, from the most restrictive to the
least:

GFP_ATOMIC: a high-priority allocation
which will not sleep; this is the flag to
use in interrupt handlers and other non-
blocking situations.

GFP_NOIO: blocking is possible, but no
I/O will be performed.

GFP_NOFS: no filesystem operations will
be performed.

GFP_KERNEL: a regular, blocking allo-
cation.

GFP_USER: a blocking allocation for
user-space pages.

GFP_HIGHUSER: for allocating user-
space pages where high memory may be
used.

The __GFP_DMA and __GFP_HIGHMEM
flags still exist and may be added to the above
to direct an allocation to a particular mem-
ory zone. In addition, 2.5.69 added some new
modifiers:

__GFP_REPEAT: This flag tells the page
allocater to “try harder,” repeating failed
allocation attempts if need be. Alloca-
tions can still fail, but failure should be
less likely.

__GFP_NOFAIL: Try even harder; allo-
cations with this flag must not fail. Need-
less to say, such an allocation could take a
long time to satisfy.

__GFP_NORETRY: Failed allocations
should not be retried; instead, a failure
status will be returned to the caller
immediately.

The__GFP_NOFAILflag is sure to be tempt-
ing to programmers who would rather not code
failure paths, but that temptation should be re-
sisted most of the time. Only allocations which
truly cannot be allowed to fail should use this
flag.

4.1.2 Page-level allocation

For page-level allocations, thealloc_
pages() and get_free_page() func-
tions (and variants) exist as always. They are
now defined in<linux/gfp.h> . There are
a few new ones as well. On NUMA systems,
the allocator will do its best to allocate pages
on the same node as the caller. To explicitly
allocate pages on a different NUMA node, use:

Linux Symposium 140

struct page *
alloc_pages_node(int node_id,

unsigned int gfp_mask,
unsigned int order);

4.1.3 vmalloc_to_page()

Occasionally, it is necessary to find astruct
page pointer for a page obtained from
vmalloc() ; usually this need arises in the
implementation ofnopage() methods. In the
past, a driver had to walk through the page
tables to find this pointer. As of 2.5.5 (and
2.4.19), however, all that is needed is a call to:

struct page *vmalloc_to_page(void *address);

This call is not a variant ofvmalloc() —
it allocates no memory. It simply returns a
pointer to thestruct page associated with
an address obtained fromvmalloc() .

4.1.4 Memory pools

Memory pools were one of the very first
changes in the 2.5 series—they were added to
2.5.1 to support the new block I/O layer. The
purpose of mempools is to help out in situ-
ations where a memory allocation must suc-
ceed, but sleeping is not an option. To that
end, mempools pre-allocate a pool of memory
and reserve it until it is needed. Mempools
make life easier in some situations, but they
should be used with restraint; each mempool
takes a chunk of kernel memory out of circula-
tion and raises the minimum amount of mem-
ory the kernel needs to run effectively.

A full discussion of mempools doesn’t fit into
this document; see the web site for details on
their use.

4.2 Per-CPU variables

The 2.5 kernel makes extensive use of per-CPU
data—arrays containing one object for each
processor on the system. Per-CPU variables
are not suitable for every task, but, in situations
where they can be used, they do offer a couple
of advantages:

• Per-CPU variables have fewer locking re-
quirements since they are (normally) only
accessed by a single processor.

• Restricting each processor to its own area
eliminates cache line bouncing and im-
proves performance.

Examples of per-CPU data in the 2.5 kernel in-
clude lists of buffer heads, lists of hot and cold
pages, various kernel and networking statis-
tics (which are occasionally summed together
into the full system values), timer queues,
and so on. There are currently no drivers
using per-CPU values, but some applications
(i.e., networking statistics for high-bandwidth
adapters) might benefit from their use. See the
web site listed at the end of this paper for a full
description of how to use per-CPU data.

4.3 Timekeeping

One might be tempted to think that the ba-
sic task of keeping track of the time would
not change that much from one kernel to the
next. And, in fact, most kernel code which
worries about times (and time intervals) will
likely work unchanged in the 2.5 series. Code
which gets into the details of how the kernel
manages time may well need to adapt to some
changes, however.

Linux Symposium 141

4.3.1 Internal clock frequency

One change whichshouldn’t be problematic
for most code is the change in the internal clock
rate on the x86 architecture. In previous ker-
nels,HZ was 100; in 2.5 it has been bumped
up to 1000. If your code makes any assump-
tions about whatHZ really was (or, by ex-
tension, whatjiffies really signified), you
may have to make some changes now.

4.3.2 Kernel time variables

With a 1KHz clock, a 32-bitjiffies will
overflow in just under 50 days, leading to oc-
casional problems. So the 2.5 kernel has a
new counter calledjiffies_64 . With 64
bits to work with,jiffies_64 will not wrap
around in a time frame that need concern most
of us—at least until some future kernel starts
using a petahertz internal clock.

For what it’s worth, on most architectures,
the classic, 32-bitjiffies variable is now
just the least significant half ofjiffies_64 .
Note that, on 32-bit systems, a 64-bit
jiffies value raises concurrency issues. It
is deliberately not declared as avolatile
value (for performance reasons), so the possi-
bility exists that code like:

u64 my_time = jiffies_64;

could get an inconsistent version of the vari-
able, where the top and bottom halves do not
match. To avoid this possibility, code access-
ing jiffies_64 should usextime_lock ,
which is the new seqlock type as of 2.5.60. In
most cases, though, it will be easier to just use
the convenience function provided by the ker-
nel:

#include <linux/jiffies.h>
u64 my_time = get_jiffies_64();

Users of the internalxtime variable will no-
tice a couple of similar changes. One is that
xtime , too, is now protected byxtime_
lock (as it is in 2.4 as of 2.4.10), so any code
which plays around with disabling interrupts
or such before accessingxtime will need to
change. The best solution is probably to use:

struct timespec current_kernel_time(void);

which takes care of locking for you.xtime
also now is astruct timespec rather than
struct timeval ; the difference being that
the sub-second part is calledtv_nsec , and is
in nanoseconds.

4.3.3 Timers

The kernel timer interface is essentially un-
changed since 2.4, with one exception. The
new function:

void add_timer_on(struct timer_list *timer,
int cpu);

will cause the timer function to run on the given
CPU with the expiration time hits.

4.3.4 Delays

The 2.5 kernel includes a new macro
ndelay() , which delays for a given
number of nanoseconds. It can be useful for
interactions with hardware which insists on
very short delays between operations. On most
architectures, however,ndelay(n) is equal
to udelay(1) for waits of less than one
microsecond.

4.4 Delayed tasks and workqueues

The longstanding task queue interface was
removed in 2.5.41; in its place is a new
“workqueue” mechanism. Workqueues are

Linux Symposium 142

very similar to task queues, but there are some
important differences. Among other things,
each workqueue has one or more dedicated
worker threads (one per CPU) associated with
it. So all tasks running out of workqueues have
a process context, and can thus sleep. Note
that access to user space is not possible from
code running out of a workqueue; there sim-
ply is no user space to access. Drivers can
create their own work queues—with their own
worker threads—but there is a default queue
(for each processor) provided by the kernel that
will work in most situations.

See the web site for a detailed discussion of
workqueues.

4.5 DMA support

The direct memory access (DMA) support
layer has been extensively changed in 2.5, but,
in many cases, device drivers should work
unaltered. For developers working on new
drivers, or for those wanting to keep their code
current with the latest API, there are a fair num-
ber of changes to be aware of.

The most evident change is the creation of the
new generic DMA layer. A new set of generic
DMA functions has been added which is in-
tended to provide a DMA support API that is
not specific to any particular bus. The new
functions look much like the older PCI-based
ones; changing from one API to the other is
a fairly automatic job. The full set of equiv-
alences between old and new DMA functions
may be found on the web site.

There has been one significant change in
the creation of scatter/gather streaming DMA
mappings. The 2.4 version ofstruct
scatterlist used a char * pointer
(calledaddress) for the buffer to be mapped,
with a struct page pointer that would be
used only for high memory addresses. In 2.5,

the address pointer is gone, and all scat-
terlists must be built usingstruct page
pointers.

Other developments of interest here include
support for DAC (64-bit) PCI DMA, an inter-
face for explicitly non-coherent mappings, and
PCI pools.

5 Kernel preemption

One significant change introduced in 2.5 is the
preemptible kernel. Previously, a thread run-
ning in kernel space would run until it returned
to user mode or voluntarily entered the sched-
uler. In 2.5, if preemption is configured in,
kernel code can be interrupted at (almost) any
time. As a result, the number of challenges
relating to concurrency in the kernel goes up.
But this is actually not that big a deal for code
which was written to handle SMP properly—
most of the time. If you have not yet got-
ten around to implementing proper locking for
your 2.4 driver, kernel preemption should give
you yet another reason to get that job done.

The preemptible kernel means that your driver
code can be preempted whenever the sched-
uler decides there is something more important
to do. “Something more important” could in-
clude re-entering your driver code in a differ-
ent thread. There is one big, important excep-
tion, however: preemption will not happen if
the currently-running code is holding a spin-
lock. Thus, the precautions which are taken
to ensure mutual exclusion in the SMP envi-
ronment also work with preemption. So most
(properly written) code should work correctly
under preemption with no changes.

That said, code which makes use of per-CPU
variables should take extra care. A per-CPU
variable may be safe from access by other pro-
cessors, but preemption could create races on
the same processor. Code using per-CPU vari-

Linux Symposium 143

ables should, if it is not already holding a spin-
lock, disable preemption if the possibility of
concurrent access exists. Usually, macros like
get_cpu_var() should be used for this pur-
pose.

Should it be necessary to control preemption
directly (something that should happen rarely),
some macros in<linux/preempt.h> will
be helpful. A call topreempt_disable()
will keep preemption from happening, while
preempt_enable() will make it possible
again. If you want to re-enable preemp-
tion, but don’t want to get preempted imme-
diately (perhaps because you are about to fin-
ish up and reschedule anyway),preempt_
enable_no_resched() is what you need.

One interesting side-effect of the preemption
work is that it is now much easier to tell if a
particular bit of kernel code is running within
some sort of critical section. A single vari-
able in the task structure now tracks the pre-
emption, interrupt, and softirq states. A new
macro,in_atomic() , tests all of these states
and returns a nonzero value if the kernel is run-
ning code that should complete without inter-
ruption.

6 Sleeping and waiting

Contrary to expectations, the classic func-
tionssleep_on() and interruptible_
sleep_on() were not removed in the 2.5 se-
ries. It seems that they are still needed in a
few places where (1) taking them out is quite a
bit of work, and (2) they are actually used in a
way that is safe. Most authors of kernel code
should, however, pretend that those functions
no longer exist. There are very few situations
in which they can be used safely, and better al-
ternatives exist.

6.1 Safe sleeping

Most of those alternatives have been around
since 2.3 or earlier. In many situations, one can
use thewait_event() macros:

DECLARE_WAIT_QUEUE_HEAD(queue);
wait_event(queue, condition);
int wait_event_interruptible (queue, condition);

These macros work as they did in 2.4:
condition is a boolean condition which
will be tested within the macro; the wait
will end when the condition evaluates
true. It is worth noting that these macros
have moved from<linux/sched.h> to
<linux/wait.h> , which seems a more
sensible place for them. There is also a new
one:

int wait_event_interruptible_timeout(
queue, condition, timeout);

which will terminate the wait if the timeout ex-
pires.

In many situations,wait_event() does
not provide enough flexibility—often because
tricky locking is involved. The longstanding
“manual sleep” method can be used in these
cases. In 2.5, however, a set of helper functions
has been added which makes this task easier.
The modern equivalent of a manual sleep looks
like:

DECLARE_WAIT_QUEUE_HEAD(queue);
DEFINE_WAIT(wait);

while (! condition) {
prepare_to_wait(&queue, &wait,

TASK_INTERRUPTIBLE);
if (! condition)

schedule();
finish_wait(&queue, &wait)

}

Use prepare_to_wait_exclusive()
instead when an exclusive wait is needed.
Note that the new macroDEFINE_WAIT()
is used here, rather thanDECLARE_
WAITQUEUE(). The former should be
used when the wait queue entry is to be used
with prepare_to_wait() , and should

Linux Symposium 144

probablynot be used in other situations unless
you understand what it is doing (which we’ll
get into next).

6.2 Wait queue changes

In addition to being more concise and less er-
ror prone, usingprepare_to_wait() can
yield higher performance in situations where
wakeups happen frequently. This improvement
is obtained by causing the process to be re-
moved from the wait queue immediately upon
wakeup; that removal keeps the process from
seeing multiple wakeups if it doesn’t otherwise
get around to removing itself for a bit.

The automatic wait queue removal is imple-
mented via a change in the wait queue mech-
anism. Each wait queue entry now includes its
own “wake function,” whose job it is to handle
wakeups. The default wake function (which
has the surprising namedefault_wake_
function()), behaves in the customary
way: it sets the waiting task into theTASK_
RUNNINGstate and handles scheduling issues.
The DEFINE_WAIT() macro creates a wait
queue entry with a different wake function,
autoremove_wake_function() , which
automatically takes the newly-awakened task
out of the queue.

And that, of course, is howDEFINE_WAIT()
differs from DECLARE_WAITQUEUE()—
they set different wake functions. How the se-
mantics of the two differ is not immediately
evident from their names, but that’s how it
goes. (The new runtime initialization function
init_wait() differs from the olderinit_
waitqueue_entry() in exactly the same
way).

If need be, you can define your own wake
function—though the need for that should be
quite rare (the only user, currently, is the sup-
port code for theepoll() system calls). See

the web site for details on how this is done.

One other change that most programmers
won’t notice: a bunch of wait queue cruft from
2.4 (two different kinds of wait queue lock,
wait queue debugging) has been removed from
2.5.

6.3 Completions

Completions are a simple synchronization
mechanism that is preferable to sleeping and
waking up in some situations. If you have a
task that must simply sleep until some pro-
cess has run its course, completions can do it
easily and without race conditions. They are
not strictly a 2.5 feature, having been added in
2.4.7, but they merit a quick summary here.

A completion is, essentially, a one-shot
flag that says “things may proceed.” Work-
ing with completions requires including
<linux/completion.h> and creating
a variable of typestruct completion .
This structure may be declared and initialized
statically with:

DECLARE_COMPLETION(my_comp);

A dynamic initialization would look like:

struct completion my_comp;
init_completion(&my_comp);

When your driver begins some process whose
completion must be waited for, it’s simply a
matter of passing your completion event to
wait_for_completion() :

void
wait_for_completion(struct completion *comp);

When some other part of your code has decided
that the completion has happened, it can wake
up anybody who is waiting with one of:

void complete(struct completion *comp);
void complete_all(struct completion *comp);

Linux Symposium 145

The first form will wake up exactly one wait-
ing process, while the second will wake up
all processes waiting for that event. Note
that completions are implemented in such a
way that they will work properly even if
complete() is called beforewait_for_
completion() .

If you do not usecomplete_all() , you
should be able to use a completion structure
multiple times without problem. It does not
hurt, however, to reinitialize the structure be-
fore each use—so long as you do it before initi-
ating the process that will callcomplete() !
The macroINIT_COMPLETION() can be
used to quickly reinitialize a completion struc-
ture that has been fully initialized at least once.

7 Interrupt handling

The kernel’s handling of device interrupts has
been massively reworked in the 2.5 series. For-
tunately, very few of those changes are visible
to the rest of the kernel; most well-written code
should “just work” under 2.5. There are, how-
ever, two important exceptions: the return type
of interrupt handlers has changed, and drivers
which depend on being able to globally disable
interrupts will require some changes for 2.5.

7.1 Interrupt handler return values

Prior to 2.5.69, interrupt handlers returned
void . There is, however, one useful thing that
interrupt handlers can tell the kernel: whether
the interrupt was something they could handle
or not. If a device starts generating spurious
interrupts, the kernel would like to respond by
blocking interrupts from that device. If no in-
terrupt handler for a given IRQ has been reg-
istered, the kernel knows that any interrupt on
that number is spurious. When interrupt han-
dlers exist, however, they must tell the kernel
about spurious interrupts.

So, interrupt handlers now return an
irqreturn_t value; void handlers will
no longer compile. If your interrupt handler
recognizes and handles a given interrupt, it
should returnIRQ_HANDLED. If it knows that
the interrupt was not on a device it manages,
it can returnIRQ_NONEinstead. The macro
IRQ_RETVAL(handled) can also be used;
handled should be nonzero if the handler
could deal with the interrupt. The “safe” value
to return, if, for some reason you are not sure,
is IRQ_HANDLED.

7.2 Disabling interrupts

In the 2.5 kernel, it is no longer possible
to globally disable interrupts. In particular,
the cli() , sti() , save_flags() , and
restore_flags() functions are no longer
available. Disabling interrupts across all pro-
cessors in the system is simply no longer done.
This behavior has been strongly discouraged
for some time, so most codeshouldhave been
converted by now.

The proper way to do this fixing, of course,
is to figure out exactly which resources were
being protected by disabling interrupts. Those
resources can then be explicitly protected with
spinlocks instead. The change is usually fairly
straightforward, but it does require an under-
standing of what is really going on.

It is still possible to disable all inter-
rupts locally with local_save_flags()
or local_irq_disable() . A single inter-
rupt can be disabled globally withdisable_
irq() . Some of the spinlock operations also
disable interrupts on the local processor, of
course.

Linux Symposium 146

8 Asynchronous I/O

One of the key “enterprise” features added to
the 2.5 kernel is asynchronous I/O (AIO). The
AIO facility allows user processes to initiate
multiple I/O operations without waiting for any
of them to complete; the status of the opera-
tions can then be retrieved at some later time.
Block and network drivers are already fully
asynchronous, and thus there is nothing spe-
cial that needs to be done to them to support
the new asynchronous operations. Character
drivers, however, have a synchronous API, and
will not support AIO without some additional
work. For most char drivers, there is little ben-
efit to be gained from AIO support. In a few
rare cases, however, it may be beneficial to
make AIO available to your users. The web
site has details on how to do that.

9 Block drivers

The first big, disruptive changes to the 2.5 ker-
nel came from the reworking of the block I/O
layer. As 2.5 heads towards its final phases, the
block layer is still seeing a lot of attention. As
one might guess, the result of all this work is a
great many changes as seen by driver authors—
or anybody else who works with block I/O.
The transition may be painful for some, but it’s
worth it: the new block layer is easier to work
with and offers much better performance than
its predecessor.

Space constraints make it impossible to cover
all of the block layer changes here; they could
easily justify an entire paper to themselves.
These changesarecovered in detail on the web
site listed at the end of the paper. Here, how-
ever, we’ll have to content ourselves with an
overview.

So, what has changed with the block layer?

• A great deal of old cruft is gone. For
example, it is no longer necessary to
work with a whole set of global arrays
within block drivers. These arrays (blk_
size , blksize_size , hardsect_
size , read_ahead , etc.) have simply
vanished.

• As part of the cruft removal, most of the
<linux/blk.h> macros (DEVICE_
NAME, DEVICE_NR, CURRENT, INIT_
REQUEST, etc.) have been removed, and
the file itself should go away soon. It
is still possible to implement a simple
request loop for straightforward devices
where performance is not a big issue, but
the mechanisms have changed.

• The io_request_lock is gone; lock-
ing is now done on a per-queue basis.

• Request queues have, in general, gotten
more sophisticated. There is simple sup-
port for tagged command queueing, along
with features like request barriers and
queue-time device command generation.

• Buffer heads are no longer used in the
block layer; they have been replaced with
the new “bio ” structure. The new rep-
resentation of block I/O operations is de-
signed for flexibility and performance; it
encourages keeping large operations in-
tact. Simple drivers can pretend that the
bio structure does not exist, but most
performance-oriented drivers—i.e., those
that want to implement clustering and
DMA—will need to be changed to work
with bio s.

One of the most significant features of
thebio structure is that it represents I/O
buffers directly withpage structures and
offsets, not in terms of kernel virtual ad-
dresses. By default, I/O buffers can be lo-
cated in high memory, on the assumption
that computers equipped with that much

Linux Symposium 147

memory will also have reasonably modern
I/O controllers. Support operations have
been provided for tasks likebio splitting
and the creation of DMA scatter/gather
maps.

• Sector numbers can now be 64 bits wide,
making it possible to support very large
block devices.

• The rudimentary gendisk (“generic
disk”) structure from 2.4 has been greatly
improved in 2.5; generic disks are now
used extensively throughout the block
layer. The most significant change for
block driver authors may be the fact that
partition handling has been moved up into
the block layer, and drivers no longer need
know anything about partitions. That is,
of course, the way things should always
have been.

The end result is a fair amount of short-term
pain for maintainers of block drivers. It does
not take long, however, to realize that the new
interface is easier to program for and far more
robust.

10 Network drivers

Here’s the good news for people maintaining
network drivers: once you have deal with the
basic changes that affect all drivers and load-
able modules, your driver will likely work as
it is. The API that was presented to drivers in
2.4 is essentially unchanged. There has been
no gratuitous network driver breakage in 2.5.

The bad news is: a bunch of useful new stuff
has been added in 2.5. If you want your driver
to use the features of 2.5 to get the best perfor-
mance out of your hardware, you will have to
spend some time dealing with changes.

10.1 NAPI

The most significant change, perhaps, is the
addition of NAPI (“New API”), which is de-
signed to improve the performance of high-
speed networking. NAPI works throughinter-
rupt mitigation (reducing the thousands of in-
terrupts per second that accompany high net-
work traffic) andpacket throttling (keeping
packets out of the kernel if they will be dropped
anyway). NAPI was also backported to the
2.4.20 kernel.

Converting drivers to NAPI is essentially a
two-step process:

• Your driver should no longer process in-
coming packets in its interrupt handler.
Instead, it should disable further “packet
available” interrupts and tell the network-
ing system to begin polling the interface.

• A new poll() method must be created
which processes all available incoming
packets (up to a kernel-specified limit).
A new function, netif_receive_
skb() has been set up to accept packets
from poll() methods.

The web site has the inevitable details.

10.2 Receiving packets in non-interrupt mode

Network drivers tend to send packets into the
kernel while running in interrupt mode. There
are occasions where, instead, packets will be
received by a driver running in process context.
There is no problem with this mode of opera-
tion, but it is possible that the networking soft-
ware interrupt which performs packet process-
ing may be delayed, reducing performance. To
avoid this problems, drivers handing packets to
the kernel outside of interrupt context should
use:

int netif_rx_ni(struct sk_buff *skb);

Linux Symposium 148

instead ofnetif_rx() .

10.3 Other 2.5 features

A number of other networking features were
added in 2.5. Here is a quick summary of de-
velopments that driver developers may want to
be aware of.

Ethtool support. Ethtool is a utility which can
perform detailed configuration of network in-
terfaces; it can be found on the gkernel Source-
Forge page. This tool can be used to query net-
work information, tweak detailed operating pa-
rameters, control message logging, and more.
Supporting ethtool requires implementing the
SIOCETHTOOL ioctl() command, along
with (parts of, at least) the lengthy set of eth-
tool commands. See<linux/ethtool.h>
for a list of things that can be done. Imple-
menting the message logging control features
requires checking the logging settings before
eachprintk() call; there is a set of conve-
nience macros in<linux/netdevice.h>
which make that checking a little easier.

VLAN support . The 2.5 kernel has support for
802.1q VLAN interfaces; this support has also
been working its way into 2.4, with the core
being merged in 2.4.14.

TCP segmentation offloading. The TSO fea-
ture can improve performance by offloading
some TCP segmentation work to the adaptor
and cutting back slightly on bus bandwidth.
TSO is an advanced feature that can be tricky
to implement with good performance; see the
tg3 or e1000 drivers for examples of how it’s
done.

11 User space access

Thekiobuf abstraction was introduced in 2.3
as a low-level way of representing I/O buffers.
Its primary use, perhaps, was to represent zero-

copy I/O operations going directly to or from
user space. A number of problems were found
with the kiobuf interface, however; among
other things, it forced large I/O operations to
be broken down into small chunks, and it was
seen as a heavyweight data structure. So, in
2.5.43, kiobufs were removed from the kernel.
Direct access to user space remains possible,
however, as we’ll see.

The modern equivalent ofmap_user_
kiobuf() is a function calledget_user_
pages() :

int get_user_pages(
struct task_struct *task,
struct mm_struct *mm,
unsigned long start,
int len,
int write,
int force,
struct page **pages,
struct vm_area_struct **vmas);

task is the process performing the mapping;
the primary purpose of this argument is to say
who gets charged for page faults incurred while
mapping the pages. This parameter is almost
always passed as “current ”. The memory
management structure for the user’s address
space is passed in themmparameter; it is usu-
ally current->mm . Note thatget_user_
pages() expects that the caller will have a
read lock onmm->mmap_sem. The start
andlen parameters describe the user-buffer to
be mapped;len is in pages. If the memory
will be written to,write should be non-zero.
The force flag forces read or write access,
even if the current page protection would oth-
erwise not allow that access. Thepages array
(which should be big enough to holdlen en-
tries) will be filled with pointers to thepage
structures for the user pages. Ifvmas is non-
NULL, it will be filled with a pointer to the
vm_area_struct structure containing each
page.

Linux Symposium 149

The return value is the number of pages actu-
ally mapped, or a negative error code if some-
thing goes wrong. Assuming things worked,
the user pages will be present (and locked) in
memory, and can be accessed by way of the
struct page pointers. Be aware, of course,
that some or all of the pages could be in high
memory.

There is no equivalentput_user_pages()
function, so callers ofget_user_pages()
must perform the cleanup themselves. There
are two things that need to be done: marking
of modified pages, and releasing them from
the page cache. If your device modified the
user pages, the virtual memory subsystem may
not know about it, and may fail to write the
pages to permanent storage (or swap). That,
of course, could lead to data corruption and
grumpy users. The way to avoid this problem
is to call:

int set_page_dirty_lock(struct page *page);

for each page in the mapping.

Finally, every mapped page must be released
from the page cache, or it will stay there for-
ever; simply pass each page structure to:

void put_page(struct page *page);

After you have released the page, of course,
you should not access it again.

For a good example of how to useget_
user_pages() in a char driver, see the
definition of sgl_map_user_pages() in
drivers/scsi/st.c .

12 Conclusion

This paper is drawn from the LWN.net “Port-
ing Drivers to 2.5” series, which can be found
at:

http://lwn.net/Articles/
driver-porting/

Those articles contain much more detail than
was possible to squeeze into this paper. They
are also being maintained as kernel develop-
ment continues; there are, beyond a doubt,
things that have changed since this paper was
written. If nothing else, the kernel developers
will eventually figure out how they want to sup-
port larger device numbers. The driver-porting
web site will have the latest information on ker-
nel API changes.

13 Acknowledgments

Previous versions of this material have been
improved by comments from Jens Axboe, Ja-
mal Hadi Salim, Greg Kroah-Hartman, An-
drew Morton, Rusty Russell, and others I
have certainly forgotten. The creation of the
“driver porting” series of articles was funded
by LWN.net subscribers.

Class-based Prioritized Resource Control in Linux

Shailabh Nagar, Hubertus Franke, Jonghyuk Choi, Chandra Seetharaman
Scott Kaplan,∗ Nivedita Singhvi, Vivek Kashyap, Mike Kravetz

IBM Corp.
{nagar,frankeh,jongchoi,chandra.sekharan}@us.ibm.com

{nivedita,vivk,kravetz}@us.ibm.com

sfkaplan@cs.amherst.edu

Abstract

In Linux, control of key resources such as
memory, CPU time, disk I/O bandwidth and
network bandwidth is strongly tied to ker-
nel tasks and address spaces. The kernel of-
fers very limited support for enforcing user-
specified priorities during the allocation of
these resources.

In this paper, we argue that Linux kernel re-
source management should be based on classes
rather than tasks alone and be guided by class
shares rather than system utilization alone.
Such class-based kernel resource management
(CKRM) allows system administrators to pro-
vide differentiated service at a user or job level
and prevent denial of service attacks. It also en-
ables accurate metering of resource consump-
tion in user and kernel mode. The paper pro-
poses a framework for CKRM and discusses
incremental modifications to kernel schedulers
to implement the framework.

1 Introduction

With Linux having made rapid advances in
scalability, making it the operating system of
choice for enterprise servers, it is useful and

∗on sabbatical from Amherst College, MA

timely to examine its support for resource man-
agement. Enterprise workloads typically run
on two types of servers: clusters of 1-4 way
SMPs and large (8-way and upward) SMPs and
mainframes. In both cases, system adminis-
trators must balance the needs of the work-
load with the often conflicting goal of main-
taining high system utilization. The balancing
becomes particularly important for large SMPs
as they often run multiple workloads to amor-
tize the higher cost of the hardware.

A key aspect of multiple workloads is that
they vary in thebusiness importanceto the
server owner. To maximize the server’s utility,
the system administrator needs to ensure that
workloads with higher business importance get
a larger share of server resources. The ker-
nel’s resource schedulers need to allow some
form of differentiated service to meet this goal.
It is also important that the resource usage by
different workloads be accounted accurately
so that the customers can be billed accord-
ing to their true usage rather than an average
cost. Kernel support for accurate accounting
of resource usage is required, especially for re-
source consumption in kernel mode.

Differentiated service is also useful to the desk-
top user. It would allow large file transfers to
get reduced priority to the disk compared to
disk accesses resulting from interactive com-

Linux Symposium 151

mands. A kernel compile could be configured
to run in the background with respect to the
CPU, memory and disk, allowing a more im-
portant activity such as browsing to continue
unimpeded.

The current Linux kernel (version 2.5.69 at the
time of writing) lacks support for the above-
mentioned needs. There is limited and varying
support for any kind of performance isolation
in each of the major resource schedulers (CPU,
network, disk I/O and memory). CPU and in-
bound network scheduling offer the greatest
support by allowing specification of priorities.
The deadline I/O scheduler [3] offers some iso-
lation between disk reads and writes but not
between users or applications and the VM sub-
system has support for limiting address space
size of a user. More importantly, the granular-
ity of kernel supported service differentiation is
a task (process), or infrequently the userid. It
does not allow the user to define the granular-
ity at which resources get apportioned. Finally,
there is no common framework for a system
administrator to specify priorities for usage of
different physical resources.

The work described in this paper addresses
these shortcomings. It proposes a class-based
framework for prioritized resource manage-
ment of all the major physical resources man-
aged by the kernel. A class is a user-defined,
dynamic grouping of tasks that have associated
priorities for each physical resource. The pro-
posed framework permits a better separation
of user-specified policies from the enforcement
mechanisms implemented by the kernel. Most
importantly, it attempts to achieve these goals
using incremental modifications of the existing
mechanisms.

The paper is organized as follows. Section 2 in-
troduces the proposed framework and the cen-
tral concepts of classification, monitoring and
control. Sections 3,4,5,6 explore the frame-

work for the CPU, disk I/O, network and mem-
ory subsystems and propose the extensions
necessary to implement it. Section 7 concludes
with directions for future work.

2 Framework

Before describing the proposed framework, we
define a few terms.

Tasks are the Linux kernel’s common represen-
tation for both processes and threads. Aclass
is a group of tasks. The grouping of tasks into
classes is decided by the user using rules and
policies.

A classification rule, henceforth simply called
a rule, is a method by which a task can be clas-
sified into a class. Rules are defined by the sys-
tem administrator, generally as part of a policy
(defined later) but also individually, typically
as modifications or increments to an existing
policy. Attributes of a task, such as real uid,
real gid, effective uid, effective gid, path name,
command name and task or application tag (de-
fined later) can be used to define rules. A rule
consists of two parts: a set of attribute-value
tuples (A,V) and a class C. If the rule’s tuple
values match the corresponding attributes of a
task , then it is considered to belong to the class
C1.

A policy is a collection of class definitions and
classification rules. Only one policy is active in
a system at any point of time. Policies are con-
structed by the system administrator and sub-
mitted to a CKRM kernel. The kernel option-
ally verifies the policy for consistency and ac-
tivates it. The order of rules in a policy is im-
portant. Rules are applied in the order they are
defined (one exception is the application tags
as described in the notes below).

An Application/Task Tagis a user-defined at-
tribute associated with a task. Such an attribute

Linux Symposium 152

is useful when tasks need to be classified and
managed based on application-specific crite-
ria. In such scenarios, an applications tasks can
specify its tag to the kernel using a system call,
ioctl, /proc entry etc. and trigger its classifica-
tion using a rule that uses the task tag attribute.
Since the task tag is opaque to the kernel, it
allows applications and system administrators
additional flexibility in grouping tasks.

A Resource Manageris the entity which de-
termines the proportions in which resources
should be allocated to classes. This could be
either a human system administrator or a re-
source management application middleware.

With all the new terms of the framework de-
fined, we can now describe how the framework
operates to provide class-based resource man-
agement. Figure 1 illustrates the lifecycle of
tasks in the proposed framework with an em-
phasis on the three central aspects of classifi-
cation, monitoring and control.

2.1 Initialization

Sometime after system boot up, the Resource
Manager commits a policy to the kernel. The
policy defines the classes and it is used to clas-
sify all tasks (pre-existing and new) created
and all incoming network packets. A CKRM-
enabled Linux kernel also contains a default
policy with a single default class to which all
tasks belong. The default policy determines
classification and control behaviour until the
Resource Manager’s policy gets loaded. New
policies can be loaded at any point and override
the existing policy. Such policy loads trigger
reclassification and reinitialization of monitor-
ing data and are expected to be very infrequent.

2.2 Classification

Classification refers to the association of tasks
to classes and the association of resource re-

quests to a class. The distinction is mostly
irrelevant as most resource requests are initi-
ated by a task except for incoming network
packets which need to be classified before it is
known which task will consume them. Classi-
fication is a continuous operation. It happens
on a large scale each time a new policy is com-
mitted and all existing tasks get reclassified. At
later points, classification occurs whenever (1)
a new task is created e.g. fork(), exec(); (2)
the attributes of a task change e.g setuid(), set-
gid(), application tag change (initiated by the
application) and (3) explicit reclassification of
a specific task by the Resource Manager. Sce-
narios (1) and (2) are illustrated in Figure 1.

Classification of tasks potentially allows all
work initiated by the task to be associated
with the class. Thus the CPU, memory and
I/O requests generated by this task, or by the
kernel on behalf of this task, can be moni-
tored and regulated by the class-aware resource
schedulers. Kernel-initiated resource requests
which are on behalf of multiple classes e.g.
a shared memory page writeout need special
treatment as do application initiated requests
which are processed asynchronously. Classifi-
cation of incoming network connections and/or
data (which are seen by the kernel before the
task to which they are destined) is discussed
separately in Section 5.

2.3 Monitoring

Resource usage is maintained at the class level
in addition to the regular system accounting by
task, user etc. The system administrator or an
external control program with root privileges
can obtain that information from the kernel at
any time. The information can be used to as-
sess machine utilization for billing purposes or
as an input to a future decision on changing the
share allotted to a class. The CKRM API pro-
vides functions to query the current usage data
as shown in Figure 1.

Linux Symposium 153

Figure 1: CKRM lifecycle

2.4 Control

The system administrator, as part of the ini-
tial policy or at a later point in time, assigns a
per-resource share to each class in the system.
Each class gets a separate share for CPU time,
Memory pages, I/O bandwidth and incoming
network I/O bandwidth. The resource sched-
ulers try their best to respect these shares while
allocating resources to a class. e.g. the CPU
scheduler tries to ensure that tasks belonging
to Class A with a 50% CPU share collectively
get 50% of the CPU time. At the next level
of the control hierarchy, the system administra-
tor or a control program can change the shares
assigned to a class based on their assessment
of application progress, system utilization etc.
Collectively, the setting of shares and share-
based resource allocation constitute the control
part of the resource management lifecycle and
are shown in Figure 1. This paper concentrates
on the lower level share-based resource alloca-
tion since that is done by the kernel.

The next four sections go into the details of
classification, monitoring and control aspects
of managing each of the four major physical

resources.

3 CPU scheduling

The CPU scheduler is central to the operation
of the computing platform. It decides which
task to run when and how long. In general re-
altime and timeshared jobs are distinguished,
each with different objectives. Both are re-
alized through different scheduling disciplines
implemented by the scheduler. Before address-
ing the share based scheduling schemes, we de-
scribe the current Linux scheduler.

3.1 Linux 2.5 Scheduler

To achieve its objectives, Linux assigns a static
priority to each task that can be modified by
the user through thenice() interface. Linux
has a range of[0 . . . MAX_PRIO] priority classes,
of which the firstMAX_RT_PRIO(=100) are
set aside for realtime jobs and the remaining
40 priority classes are set aside for timesharing
(i.e. normal) jobs, representing the[−20 . . . 19]
nice value of UNIX processes. The lower the
priority value, the higher the “logical” priority

Linux Symposium 154

of a task, i.e. its general importance. In this
context we always assume the logical priority
when we are talking about priority increases
and decreases. Realtime tasks always have a
higher priority then normal tasks.

The Linux scheduler in 2.5, a.k.a the O(1)
scheduler, is a multi queue scheduler that as-
signs to each cpu a run queue, wherein local
scheduling takes place. A per-cpu runqueue
consists of two arrays of task lists, the active
array and the expired array. Each array index
represents a list of runnable task at their respec-
tive priority level. After executing for a period
task move from the active list to the expired
list to guarantee that all tasks get a chance to
execute. When the active array is empty, ex-
pired and active arrays are swapped. More de-
tail is provided further on. The scheduler sim-
ply picks the first task of the highest priority
queue of the active queue for execution.

Occasionally a load balancing algorithm rebal-
ances the runqueues to ensure that a similar
level of progress is made on each cpu. Real-
time issues and load balancing issues are be-
yond this description here, hence we concen-
trate on the single cpu issue for now. For more
details we refer to [12]. It might also be of
interest to abstract this against the Linux 2.4
based scheduler, which is described in [10].

As stated earlier, the scheduler needs to decide
which task to run next and for how long. Time
quantums in the kernel are defined as multiples
of a systemtick. A tick is defined by the fixed
delta(1/HZ) of two consecutive timer inter-
rupts. In Linux 2.5:HZ=1000, i.e. the inter-
rupt routinescheduler_tick() is called
once every msec at which time the currently
executing task is charged a tick.

Besides thestatic priority (static_prio),
each task maintains aneffective priority
(prio). The distinction is made in or-
der to account for certain temporary prior-

ity bonuses or penalties based on the recent
sleep averagesleep_avg of a given task.
The sleep average, a number in the range of
[0 . . . MAX_SLEEP_AVG ∗ HZ], accounts for the
number of ticks a task was recently desched-
uled. The time (in ticks) since a task went to
sleep (maintained insleep_timestamp) is
added on task wakeup and for every time tick
consumed running, the sleep average is decre-
mented.

The current design provisions a
range of PRIO_BONUS_RATIO=25%
[−12.5%..12.5%] of the priority range for the
sleep average. For instance a “nice=0” task has
a static priority of 120. With a sleep average
of 0 this task is penalized by 5 resulting in an
effective priority of 125. On the other hand,
if the sleep average isMAX_SLEEP_AVG=
10 secs, a bonus of 5 is granted leading to an
effective priority of 115. The effective priority
determines the priority list in the active and
expired array of the run queue. A task is
declaredinteractivewhen its effective priority
exceeds its static priority by a certain level
(which can only be due to its accumulating
sleep average). High priority tasks reach
interactivity with a much smaller sleep average
than lower priority tasks.

The timeslice, defined as the maximum time a
task can run without yielding to another task,
is simply a linear function of the static pri-
ority of normal tasks projected into the range
of [MIN_TIMESLICE . . . MAX_TIMESLICE]. The
defaults are set to[10 . . . 200] msecs. The
higher the priority of a task the longer its
timeslice . A task’s initial timeslice is de-
ducted from parents’ remaining timeslice. For
every timer tick the running task’s timeslice is
decremented. If decremented to “0”, the sched-
uler replenishes the timeslice, recomputes the
effective priority and either reenqueues the task
into the active array if it is interactive or into
the expired array if it is non-interactive. It then

Linux Symposium 155

picks the next best task from the active array.
This guarantees that all others tasks will exe-
cute first before any expired task will run again.
If a task is descheduled, its timeslice will not
be replenished at wakeup time, however its ef-
fective priority might have changed due to any
sleep time.

If all runnable tasks have expired their times-
lices and have been moved to the expired
list, the expired array and the active array
are swapped. This makes the scheduler O(1)
as it does not have to traverse a potentially
large list of tasks as was needed in the 2.4
scheduler. Due to interactivity the situation
can arise that the active queue continues to
have runnable tasks. As a result tasks in the
expired queue might get starved. To avoid
this, if the longest expired task is older than
STARVATION_LIMIT=10secs, the arrays are
switched again.

3.2 CPU Share Extensions to the Linux Sched-
uler

We now examine the problem of extending the
O(1) scheduler to allocate CPU time to classes
in proportion of their CPU shares. Propor-
tional share scheduling of CPUs has been stud-
ied in depth [7, 21, 13] but not in the context
of making minimal modifications to an exist-
ing scheduler such as O(1).

Let Ci, i=[1 . . . N] be the set ofN dis-
tinct classes with corresponding cpu shares
Scpu

i such that
∑N

i=1 Scpu
i = 1. Let

SHARE_TIME_EPOCH(STE) be the time in-
terval, measured in ticks, over which the modi-
fied scheduler attempts to maintain the propor-
tions of allocated CPU time. Further, we use
Φ(a) andΦ(a, b) to denote a functions of pa-
rameters a and b.

Weighted Fair Share (WFS): In the first ap-
proach considered, henceforth called weighted
fair share (WFS), a per class scheduling re-

source container is introduced that accounts
for timeslices consumed by the tasks currently
assigned to the class. Initially, the timeslice
TSi, i=[1 . . . N] of each classCi is determined
by TSi = Scpu

i × STE. The timeslice allo-
cated to a taskts(p) remains the same as in
O(1). Everytime a task consumes one of its
own timeslice ticks, it also consumes one from
the class’ timeslice. When a class’ ticks are
exhausted, the task consuming the last tick is
put into the expired array. When the sched-
uler picks other tasks from the same class to
run, they immediately move to the expired ar-
ray as well. Eventually the expired and active
arrays are switched at which time all resource
containers are refilled toTSi = Scpu

i × STE.
Since the array switch occurs as soon as the ac-
tive list becomes empty, this approach is work
conserving (the CPU is never idle if there are
runnable tasks). A variant of this approach was
initially implemented by [17] based on a patch
from Rik van Riel for allocatingequalshares
to all usersin the system.

However, WFS has some problems. If the tasks
of a class are CPU bound and

∑
p∈Ci

ts(p) >
TSi then a class could exhaust its timeslice be-
fore all its tasks have had a chance to run atleast
once. Therefore the lower priority tasks of the
class could perpetually move from the active
to expired lists without ever being granted exe-
cution time. Starvation occurs because neither
the static priority (sp) nor the sleep average (sa)
of the tasks is changed at any time. Hence each
task’s timeslicets(p) = Φ(sp) and effective
priority ep(p) = Φ(sp, sa) remain unchanged.
Hence the relative priority of tasks of a class
never changes (in a CPU bound situation) nor
does the amount of CPU time consumed by the
higher priority tasks.

To ensure a fair share for individual tasks
within classes, we need to ensure that the rate
of progress of a task depends on the share as-
signed to its class. Three approaches to achieve

Linux Symposium 156

this are discussed next.

Priority modifications (WFS+P): Let a
switching intervalbe defined as the time in-
terval between consecutive array switches of
the modified scheduler,∆j be its duration and
tj andtj+1 be the timestamps of the switches.
In the priority modifications approach to al-
leviating starvation in WFS, henceforth called
WFS+P, we track the number of array switches
se at which a task got starved due to its class’
timeslice exhaustion and increase the task’s ef-
fective priority based onse, i.e. ep(p) =
Φ(sp, sa, se). This ensures that starving tasks
eventually get theirep high enough to get a
chance to run at which pointse is reset. The
drawback of this approach is that the increased
scheduler overhead of tasks being selected for
execution and moving directly to the expired
list due to class timeslice exhaustion, remains
unchanged.

Timeslice modifications (WFS+T1,
WFS+T2): Recognizing that starvation
can occur in WFS for classCi only if∑

p∈Ci
ts(p) > TSi, the timeslice modification

approaches attempt to change one or the
other side of the inequality to convert it to an
equality. In WFS+T1, the left hand side of the
inequality is changed by reducing the times-
lices of each task of a starved class as follows.
Let exhi =

∑
p∈Ci

ts(p) − TSi when class
timeslice exhaustion occurs. At array switch
time, eachts(p) is multiplied byλi = TSi

TSi+exhi

which results in the desired equality. WFS+T1
is slow to respond to starvation because task
timeslices are recomputed in O(1)beforethey
move into the expired array and not at array
switch time. Hence any task timeslice changes
take effect only one switching interval later
i.e. two intervals beyond the one in which
starvation occurred. One way to address this
problem is to treat a task as having exhausted
its timeslice whents(p) gets decremented to
(1−λi× ts(p)) instead of 0. A bigger problem

with WFS+T1 is that smaller timeslices for
tasks could lead to increased context switches
with potentially negative cache effects.

To avoid reducingts(p)’s, WFS+T2 increases
TSi of a starving class to make

∑
p∈Ci

ts(p) =
TSi i.e. the class does not exhaust its times-
lice until each of its tasks have exhausted their
individual timeslices. To preserve the relative
proportions between class timeslices, all other
class timeslices also need to be changed ap-
propriately. Doing so would disturb the same
equality for those classes and hence WFS+T2
is not a workable approach.

Two-level scheduler: Another way to regu-
late CPU shares in WFS is to take tasks out
of the runqueue upon timeslice exhaustion and
return them to the runqueue at a rate commen-
surate with the share of the class. A prototype
implementation of this approach was described
in [17] in the context of user-based fair sharing.
This approach effectively implements a two-
level scheduler and is illustrated in Figure 2. A
modified O(1) scheduler forms the lower level
and a coarse-grain scheduler operates at the
upper level, replenishing class timeslice ticks.
In the modified O(1), when a task expires, it
is moved into a FIFO list associated with its
class instead of moving to the expired array.
At a coarse-granularity determined by the up-
per level scheduler, the class receives new time
ticks and reinserts tasks from the FIFO back
into O(1)’s runqueue. Class time tick replen-
ishment can be done for all classes at every ar-
ray switch point but that violates the O(1) be-
haviour of the scheduler as a whole. To address
this problem, [17] uses a kernel thread to re-
plenish 8 ms worth of ticks to one class (user)
every 8 ms and round robin through the classes
(users). A variant of this idea is currently being
explored.

Linux Symposium 157

Figure 2: Proposed two-level CPU scheduler

4 Disk scheduling

The I/O scheduler in Linux forms the interface
between the generic block layer and the low
level device drivers. The block layer provides
functions which are used by filesystems and the
virtual memory manager to submit I/O requests
to block devices. These requests are trans-
formed by the I/O scheduler and made avail-
able to the low-level device drivers (henceforth
only called device drivers). Device drivers
consume the transformed requests and forward
them, using device specific protocols, to the de-
vice controllers which perform the I/O. Since
prioritized resource management seeks to reg-
ulate the use of a disk by an application, the
I/O scheduler is an important kernel compo-
nent that is sought to be changed. It is also pos-
sible to regulate disk usage in the kernel layers
above and below the I/O scheduler. Changing
the pattern of I/O load generated by filesytems
or the virtual memory manager (VMM) is an
important option. A less explored option is
to change the way specific device drivers or
even device controllers consume the I/O re-
quests submitted to them. The latter approach

is outside the scope of general kernel develop-
ment and this paper.

Class-based resource management requires
two fundamental changes to the traditional ap-
proach to I/O scheduling. First, I/O requests
should be managed based on the priority or
weight of the request submitter with disk uti-
lization being a secondary, albeit important ob-
jective. Second, I/O requests should be associ-
ated with the class of the request submitter and
not a process or task. Hence the weight associ-
ated with an I/O request should be derived from
the weight of the class generating the request.

The first change is already occurring in the de-
velopment of the 2.5 Linux kernel with the de-
velopment of different I/O schedulers such as
deadline, anticipatory, stochastic fair queueing
and complete fair queueing. Consequently, the
additional requirements imposed by the sec-
ond change (scheduling by class) are relatively
minor. This fits in well with our project goal
of minimal changes to existing resource sched-
ulers.

We now describe the existing Linux I/O sched-
ulers followed by an overview of the changes
being proposed.

4.1 Existing Linux I/O schedulers

The various Linux I/O schedulers can be ab-
stracted into a generic model shown in Fig-
ure 3. I/O requests are generated by the
block layer on behalf of processes access-
ing filesystems, processes performing raw I/O
and from the virtual memory management
(VMM) components of the kernel such as
kswapd, pdflush etc. These producers of I/O
requests call __make_request() which invokes
various I/O scheduler functions such as eleva-
tor_merge_fn. The enqueuing functions’ gen-
erally try to merge the newly submitted block
I/O unit (bio in 2.5 kernels, buffer_head in

Linux Symposium 158

2.4 kernels) with previously submitted requests
and sort it into one or more internal queues. To-
gether, the internal queues form a single log-
ical queue that is associated with each block
device. At a later point, the low-level de-
vice driver calls the generic kernel function
elv_next_request() to get the next request from
the logical queue. elv_next_request interacts
with the I/O scheduler’s dequeue function ele-
vator_next_req_fn and the latter has an oppor-
tunity to pick the appropriate request from one
of the internal queues. The device driver then
processes the request, converting it to scatter-
gather lists and protocol-specific commands
that are then sent to the device controller. As
far as the I/O scheduler is concerned, the block
layer is the producer of I/O requests and the de-
vice drivers are the consumers. Strictly speak-
ing, the block layer includes the I/O scheduler
but we distinguish the two for the purposes of
our discussion.

Figure 3: Abstraction of Linux I/O scheduler

Default 2.4 Linux I/O scheduler: The 2.4
Linux kernel’s default I/O scheduler (eleva-
tor_linus) primarily manages disk utilization.
It has a single internal queue. For each new
bio, the I/O scheduler checks to see if it can be
merged with an existing request. If not, a new

request is placed in the internal queue sorted
by the starting device block number of the re-
quest. This minimizes disk seek times if the
disk processes requests in FIFO order from the
queue. An aging mechanism limits the num-
ber of times an existing request can get by-
passed by a newer request, preventing starva-
tion. The dequeue function is simply a removal
of requests from the head of the internal queue.
Elevator_linus also has the welcome property
of improving request response timesaveraged
over all processes.

Deadline I/O scheduler: The 2.5 kernel’s
default I/O scheduler (deadline_iosched) in-
troduces the notion of a per-request deadline
which is currently used to give a higher pref-
erence to read requests. Internally, it main-
tains five queues. During enqueing, each re-
quest is assigned a deadline and inserted into
queues sorted by starting sector (sort_list)and
by deadline (fifo_list). Separate sort and fifo
lists are maintained for read and write requests.
The fifth internal queue contains requests to be
handed off to the driver. During a dequeue
operation, if the dispatch queue is empty, re-
quests are moved from one of the four sort
or fifo lists in batches. Thereafter, or if the
dispatch queue was not empty, the head re-
quest on the dispatch queue is passed on to the
driver. The logic for moving requests from the
sort or fifo lists ensures that each read request
is processed by its deadline without starving
write requests. Disk seek times are amortized
by moving a large batch of requests from the
sort_list (which are likely to have few seeks as
they are already sector sorted) and balancing it
with a controlled number of requests from the
fifo list (each of which could cause a seek since
they are ordered by deadline and not sector).
Thus, deadline_iosched effectively emphasizes
average read request response times over disk
utilization and total average request response
time.

Linux Symposium 159

Anticipatory I/O scheduler: The anticipatory
I/O scheduler [9, 4] attempts to reduceper-
processread response times. It introduces a
controlled delay in dispatchingany new re-
quests to the device driver, thereby allowing
a process whose request just got serviced to
submit a new request, potentially requiring a
smaller seek. The tradeoff between reduced
seeks and decreased disk utilization (due to the
additional delays in dispatch) are managed us-
ing a cost-benefit calculation. anticipatory I/O
scheduling method is an additional optimiza-
tion that can potentially be added to any of the
I/O scheduler mentioned in this paper

Complete Fair Queueing I/O scheduler:
Two new I/O schedulers recently proposed
in the Linux kernel community, introduce
the concept of fair allocation of I/O band-
width amongst producers of I/O requests. The
Stochastic Fair Queueing (SFQ) scheduler [5]
is based on an algorithm originally proposed
for network scheduling [11]. It tries to appor-
tion I/O bandwidth equally amongst allpro-
cessesin a system using 64 internal queues
and one output (dispatch) queue. During an
enqueue, the process ID of the currently run-
ning process (very likely to be the I/O request
producer) is used to select one of the inter-
nal queues and the request inserted in FIFO
order within it. During dequeue, SFQ round-
robins through the non-empty internal queues,
picking requests from the head. To avoid too
many seeks, one full round of requests are
collected, sorted and merged into the dispatch
queue. The head request of the dispatch queue
is then passed to the device driver. Complete
Fair Queuing is an extension of the same ap-
proach where no hash function is used. Hence
each process in the system has a correspond-
ing internal queue and can get an fair share
of the I/O bandwidth (equal share if all pro-
cesses generate I/O requests at the same rate).
Both CFQ and SFQ manage per-process I/O
bandwidth and can provide fairness at a pro-

cess granularity.

Cello disk scheduler: Cello is a two-level
I/O scheduler [16] that distinguishes between
classes of I/O requests and allows each class
to be serviced by a different policy. A coarse
grain class-independent scheduler decides how
many requests to service from each class. The
second level class-dependent scheduler then
decides which of the requests from its class
should be serviced next. Each class has its own
internal queue which is manipulated by the
class-specific scheduler. There is one output
queue common to all classes. Enqueuing into
the output queue is done by the class-specific
schedulers in a way that ensures individual re-
quest deadlines are met as far as possible while
reducing overall seek time. Dequeuing from
the output queue occurs in FIFO order as in
most of the previous I/O schedulers. Cello has
been shown to provide good isolation between
classes as well as the ability to meet the needs
of streaming media applications that have soft
realtime requirements for I/O requests.

4.2 Costa: Proposed I/O scheduler

This paper proposes that a modified version of
the class-independent scheduler of the Cello
I/O scheduling framework can provide a low-
overhead class-based I/O scheduler suitable for
CKRM’s goals.

The key difference between the proposed
scheduler called Costa and Cello is the elimina-
tion of the class-specific I/O schedulers which
may be add unnecessary overhead for CKRM’s
goal of I/O bandwidth regulation. Fig 4 illus-
trates the Costa design. When the kernel is
configured for CKRM support, a new internal
queue is created for each class that gets added
to the kernel. Since each process is always
associated with a class, I/O requests that they
generate can also be tagged with the class id
and used to enqueue the request in the class-

Linux Symposium 160

Figure 4: Proposed Costa I/O scheduler

specific internal queue. The request->class as-
sociation cannot be done through a lookup of
the current process’ class alone. During de-
queue, the Costa I/O scheduler picks up re-
quests from several internal queues and sorts
them into the common dispatch queue. The
head request of the dispatch queue is then
handed to the device driver.

The mechanism also allows internal queues to
be associated withsystemclasses that group
I/O requests coming from important produc-
ers such as the VMM. By separating these out,
Costa can give them preferential treatment for
urgent VM writeout or swaps.

In addition to a weight value (which deter-
mines the fraction of I/O bandwidth that a class
will receive), the internal queues could also
have an associatedpriority value which deter-
mines their relative importance. At a given pri-
ority level, all queues could receive I/O band-

width in proportion of their weights with the
set of queues at a higher level always getting
serviced first. Some check for preventing star-
vation of lower priority queues could be used
similar to the ones used in deadline_iosched.

5 QoS Networking in Linux

Many research efforts have been made in net-
working QoS (Quality of Service) to provide
quality assurance of latency, bandwidth, jitter,
and loss rate. With the proliferation of mul-
timedia and quality-sensitive business traffic,
it becomes essential to provide reserved qual-
ity services (IntServ [23]) or differentiated ser-
vices (DiffServ [2]) for important client traffic.

The Linux kernel has been offering a well es-
tablished QoS network infrastructure for out-
bound bandwidth management, policy-based
routing, and DiffServ. Hence, Linux is being
widely used for routers, gateways, and edge
servers, where network bandwidth is the pri-
mary resource to differentiate among classes.

When it comes to Linux as an end server OS,
on the other hand, networking QoS has not
been given as much attention because QoS is
primarily governed by the system resources
such as CPU, memory, and I/O and less by
the network bandwidth. However, when we
consider the end-to-end service quality, we
also should require networking QoS in the end
servers as exemplified by the fair share admis-
sion control mechanism proposed in this sec-
tion.

In the rest of the section, we first briefly intro-
duce the existing network QoS infrastructure
of Linux. Then, we describe the design of the
fair share admission control in Linux and pre-
liminary performance results.

Linux Symposium 161

5.1 Linux Traffic Control, Netfilter, DiffServ

The Linux traffic control [8] consists of queue-
ing disciplines (qdisc) and filters. A qdisc con-
sists of one or more queues and a packet sched-
uler. It makes traffic conform to a certain pro-
file by shaping or policing. A hierarchy of
qdiscs can be constructed jointly with a class
hierarchy to make different traffic classes gov-
erned by proper traffic profiles. Traffic can
be attributed to different classes by the filters
that match the packet header fields. The filter
matching can be stopped to police traffic above
a certain rate limit. A wide range of qdiscs
ranging from a simple FIFO to classful CBQ
or HTB are provided for outbound bandwidth
management, while only one ingress qdisc is
provided for inbound traffic filtering and polic-
ing [8]. The traffic control mechanism can
be used in various places where bandwidth is
the primary resource to control. For instance
in service providers, it manages bandwidth al-
location shared among different traffic flows
belonging to different customers and services
based on service level agreements. It also can
be used in client sites to reduce the interference
between upstream and downstream traffic and
to enhance the response time of the interactive
and urgent traffic.

Netfilter provides sophisticated filtering rules
and targets. Matched packets can be accepted,
denied, marked, or mangled to carry out vari-
ous edge services such as firewall, dispatcher,
proxy, NAT etc. Routing decisions can be
made based on the netfilter markings so pack-
ets may take different routes according to their
classes. The qdiscs would enable various QoS
features in such edge services when used with
Netfilter. Netfilter classification can be trans-
ferred for use in later qdiscs by markings or
mangled packet headers.

The Differentiated Service (DiffServ) [2] pro-
vides a scalable QoS by applying per-hop be-

havior (PHB) collectively to aggregate traffic
classes that are identified by a 6-bit code point
in the IP header. Classification and condition-
ing are typically done at the edge of a DiffServ
domain. The domain is a contiguous set of
nodes compliant to a common PHB. The Diff-
Serv PHB is supported in Linux [22]. Classes,
drop precedence, code point marking, and con-
ditioning can be implemented by qdiscs and fil-
ters. At the end servers, the code point can be
marked by setting theIP_TOS socket option.

In the policy based networking [18], a pol-
icy agent can configure the traffic classification
of edge and end servers according to a pre-
defined filtering rules that match layer 3/4 or
layer 7 information. Netfilter, qdisc, and appli-
cation layer protocol engines can classify traf-
fic for differentiated packet processing at later
stages. Classifications at prior stages can be
overridden by the transaction information such
as URI, cookies, and user identities as they are
known. It has been shown that a coordination
of server and network QoS can reduce end-to-
end response time of important client requests
significantly by virtual isolation from the low
priority traffic [15].

5.2 Prioritized Accept Queues with Propor-
tional Share Scheduling

We present here a simple change to the existing
Linux TCP accept mechanism to provide dif-
ferentiated service across priority classes. Re-
cent work in this area has introduced the con-
cept of prioritized accept queues [19] and ac-
cept queue schedulers using adaptive propor-
tional shares to self-managed web servers [14].

Under certain load conditions [14], the TCP ac-
cept queue of each socket becomes the bottle-
neck in network input processing. Normally,
listening sockets fork off a child process to
handle an incoming connection request. Some
optimized applications such as the Apache web

Linux Symposium 162

Figure 5: Proportional Accept Queue Results.

server maintain a pool of server processes to
perform this task. When the number of incom-
ing requests exceeds the number of static pool
servers, additional processes are forked up to
a configurable maximum. When the incom-
ing connection request load is higher than the
level that can be handled by the available server
processes, requests have to wait in the accept
queue until one is available.

In the typical TCP connection, the client initi-
ates a request to connect to a server. This con-
nection request is queued in a single global ac-
cept queue belonging to the socket associated
with that server’s port. Processes that perform
an accept() call on that socket pick up the
next queued connection request and process it.
Thus all incoming connections to a particular
TCP socket are serialized and handled in FIFO
order.

We replace the existing single accept queue per
socket with multiple accept queues, one for
each priority class. Incoming traffic is mapped
into one of the priority classes and queued on
the accept queue for that priority. There are
eight priority classes in the current implemen-
tation.

The accepting process schedules connection
acceptance according to a simple weighted
deficit round robin to pick up connection re-
quests from each queue according to its as-
signed share. The share, or weight can be as-
signed by the sysctl interface.

In the basic priority accept queue design pro-
posed earlier in [6], starvation of certain pri-
ority classes was a possibility as the accept-
ing process picked up connection requests in
a descending priority order. With a propor-
tional share scheme in this paper, it is easier
to avoid starvation of particular classes to give
share guarantees to low priority classes.

The efficacy of the proportional accept queue
mechanism is demonstrated by an experiment.
In the experiment, we used Netfilter with man-
gle tables andMARKoptions to characterize
traffic into priority classes based on source IP
address. Httperfs from two client machines
send requests to an Apache web server run-
ning on a single server over independent giga-
bit Ethernet connections. The only Apache pa-
rameter changed from the default was the max-
imum number of httpd threads. This was set to
50 in the experiment.

Figure 5 shows throughput of Apache for two
priority classes, sharing inbound connection
bandwidth by 7:3. We can see that the through-
put of the priority class 0 requests is slightly
higher than that of the priority class 1 requests
when the load is low. As load increases, the
acceptance rates to the priority classes 0 and 1
will be constrained in proportion to their rel-
ative share, which in turn determines the pro-
cessing rate of the Apache web server and con-
nection request queueing delay. Under a severe
load, the priority class 0 requests are processed
at a considerably higher throughput.

Linux Symposium 163

6 Controlling Memory

While many other system resources can be
managed according to priorities or proportions,
virtual memory managers (VMM)currently do
not allow such control. Theresident set size
(RSS)of each process—the number of phys-
ical page frames allocated to that process–
will determine how often that process incurs
a page fault. If the RSS of each process is
not somehow proportially shared or prioritized,
then paging behavior can overwhelm and un-
dermine the efforts of other resource manage-
ment policies.

Consider two processes,A andB, whereA is
assigned a larger share thanB with the CPU
scheduler. IfA is given too small an RSS and
begins to page fault frequently, then it will not
often be eligible for scheduling on the CPU.
Consequently,B will be scheduled more often
than A, and the VMM will have become the
de factoCPU scheduler, thus violating of the
requested scheduling proportions.

Furthermore, it is possible for most existing
VMM policies to exhibit a specific kind of de-
generative behavior. Once processA from the
example above begins to page fault, its infre-
quent CPU scheduling prevents it from ref-
erencing its pages at the same rate as other,
frequently scheduled processes. Therefore,
its pages will become more likely to evicted,
thereby reducing its RSS. The smaller RSS
will increasethe probability of further page
faults. This degenerative feedback loop will
cease only when some other process either ex-
its or changes its reference behavior in a man-
ner that reduces the competition for main mem-
ory space.

Main memory use must be controlled just as
any other resource is. The RSS of eachaddress
space—the logical space defined either by a
file or by the anonymous pages within the vir-

tual address space of a process—must be cal-
culated as a function of the proportions (or pri-
orities) that are used for CPU scheduling. Be-
cause this type of memory management has re-
ceived little applied or academic attention, our
work in this area is still nascent. We present
here the structural changes to the Linux VMM
necessary for proportional/prioritized memory
management; we also present previous, appli-
cable research, as well as future research di-
rections that will address this complex prob-
lem. While the proportional/prioritized man-
agement of memory is currently less well de-
veloped than the other resources presented in
this paper, it is necessary that it be comparably
developed.

6.1 Basic VMM changes

Consider a function that explicitly calculates
the desired RSS for each address space—the
target RSS—when the footprints of the active
address spaces exceeds the capacity of main
memory. After this function sets these targets,
a system couldimmediatelybring the actual
RSS into alignment with these targets. How-
ever, doing so may require a substantial num-
ber of page swapping operations. Since disk
operations are so slow, it is inadvisable to use
aggressive, pre-emptive page swapping. In-
stead, a system should seek to move the the ac-
tual RSS values toward their targets in alazy
fashion, one page fault at a time. Until the ac-
tual RSS of address space matches its target, it
can be labeled as being either inexcessor in
deficitof its target.

As the VMM reclaims pages, it will do so
from address spaces with excess RSS values.
This approach to page reclamation suggests
a change in the structure of thepage lists—
specifically, theactive and inactive lists that
impose an order on pages1. The current Linux

1In the Linux community, these are known as the

Linux Symposium 164

VMM usesglobal page lists. If this approach
to ordering pages in unchanged, then the VMM
would have to search the page lists for pages
that belong to the desired address spaces that
have excess RSS values. Alternatively, one
pair of page lists—activeand inactive—could
exist for each address space. The reclamation
of pages from a specific address space would
therefore require no searching.

By ordering pages separately with each address
space, we also enable the VMM to more eas-
ily track reference behavior for each address
space. While the information to be gathered
would depend on the underlying policy that se-
lects target RSS values, we believe that such
tracking may play an important role in the de-
velopment of such policies.

Note that the target RSS values would need to
be recalculated periodically. While the period
should be directly proportional to thememory
pressure—some measure of the current work-
load’s demand for main memory space—it is a
topic of future research to determine what that
period should be. By coupling the period for
target RSS calculations to the memory pres-
sure, we can ensure that this strategy only in-
curs significant computational overhead when
heavy paging is occuring.

6.2 Proportionally sharing space

Waldspurger [20] describes a method of pro-
portionally sharing the space of a system run-
ning VMWare’s ESX Server between a number
of virtual machines. Specifically, as with a pro-
portional share CPU scheduler, memory shares
can be assigned to each virtual machine, and
Waldspurger’s policy will calculate target RSS
values for each virtual machine.

Proportionally sharing main memory space can

LRU lists. However, they only approximate an LRU or-
dering, and so we refer to them only aspage lists.

result in superfluous allocations to some virtual
machines. If the target RSS for some virtual
machine is larger than necessary, and some of
the main memory reserved for that virtual ma-
chine is rarely used2, then its target RSS should
be reduced. Waldspurger addresses this prob-
lem with ataxation policy. In short, this policy
penalizes each virtual machine for unused por-
tions of its main memory share by reducing its
target RSS.

Application to the Linux VMM. This ap-
proach to proportionally sharing main memory
could easily be generalized so that it can apply
to address spaces within Linux instead of vir-
tual machines on an ESX Server. Specifically,
we must describe how shares of main memory
space can be assigned to each address space.
Given those shares, target RSS values can be
calculated in the same manner as for virtual
machines in the original research.

The taxation scheme requires that the system
be able to measure the active use of pages in
each address space. Waldspurger used a sam-
pling strategy where some number of randomly
selected pages for each virtual machine were
access protected, forcingminor page faults
to occur upon the first subsequent reference
to those pages, and therefore giving the ESX
Server an opportunity to observe those page
uses. The same approach could be used within
the Linux VMM, where a random sampling
of pages in each address space would be ac-
cess protected. Alternatively, a sampling of the
pages’ reference bits could be used to monitor
idle memory.

Waldspurger observes that, within a normal
OS, the use of access protection or reference
bits, taken from virtual memory mappings, will
not detect references that are a result of DMA
transfers. However, since such DMA transfers

2Waldspurger refers to such space as beingidle.

Linux Symposium 165

are scheduled within the kernel itself, those ref-
erences could also be explicitly counted with
help from the DMA scheduling routines.

6.3 Future directions

The description above does not address a par-
ticular problem:shared memory. Space can be
shared between threads or processes in a num-
ber of ways, and such space presents impor-
tant problems that we must solved to achieve a
complete solution.

The problem of shared spaces. The assign-
ment of shares to an address space can be com-
plicated when that address space is shared by
processes in different process groups or ser-
vice classes. One simple approach is for each
address space to belong to a specific service
class. In this situation, its share would be de-
fined only by that service class, and not by the
processes that share the space. Another ap-
proach would be for each shared address space
to adopt the highest share value of its shared
tasks or processes. In this way, an important
process will not be penalized because it is shar-
ing its space with a less important process.

Note that this problem does not apply only to
memory mapped files and IPC shared mem-
ory segments, but to any shared space. For
example, the threads of a multi-threaded pro-
cess share a virtual address space. Similarly,
when a process callsfork() , it creates a new
virtual address space whose pages are shared
with the original virtual address space using
the copy-on-write (COW)mechanism. These
shared spaces must be assigned proportional
shares even though the tasks and processes us-
ing them may themselves have differing shares.

Proportionally sharing page faults. The
goal of proportional share scheduling is to

fairly divide the utility of a system among com-
peting clients (e.g., processes, users, service
classes). It is relatively simple to divide the
utility of the CPU because that utility islin-
ear and indepedent. One second of scheduled
CPU time yields a nearly fixed number of exe-
cuted instructions3. Therefore, each additional
second of scheduled CPU time nearly yields
a constant increase in the number of executed
instructions. Furthermore, the utility of CPU
does not depend on the computation being per-
formed: Every process derives equal utility
from each second of scheduled CPU time.

Memory, however, is a more complex resource
because its utility is neither independent nor
linear. Identical RSS values for two processes
may yield vastly different numbers of page
faults for each process. The number of page
faults is dependent on the reference patterns of
each process.

To see the non-linearity in the utility of mem-
ory, consider two processes,A andB. Assume
that for A, an RSS ofp pages will yieldm
misses, wherem > 0. If that RSS were in-
creased top + q pages, the number of misses
incurred byA may take any valuem′ where
0 ≤ m′ ≤ m4. Changes in RSS do not im-
ply a constant change in the number of misses
suffered by an address space.

The proportial sharing of memoryspace, there-
fore, does not necessarily achieve the stated
goal of fairly dividing the utility of a system.
Consider thatA should receive 75% of the
system, whileB should receive the remain-
ing 25%. Dividing the main memory space by
these proportions could yeild heavy page fault-

3We assume no delays to access memory, as memory
is a separate resource from the CPU.

4We ignore the possibility ofBelady’s anomaly[1],
in which an increase in RSS could imply an increase in
page faults. While this anomaly is likely possible for any
real, in-kernel page replacement policy, it is uncommon
and inconsequential for real workloads.

Linux Symposium 166

ing for A but not forB. Note also that none
of the 25% assigned toB may be idle, and so
Waldspurger’s taxation scheme will not reduce
its RSS. Nonetheless, it may be the case that a
reduction in RSS by 5% forB may increase its
misses only modestly, and that an increase in
RSS by 5% forA may reduce its misses drasti-
cally.

Ultimately, a system should proportionally
share the utility of main memory. We con-
sider this topic a matter of significant future
work. It is not obvious how to measure online
the utility of main memory for each address
space, nor how to calculate target RSS values
based on these measurements. Balancing the
contention between fairness and throughput for
virtual memory must be considered carefully,
as it will be unacceptable to achieve fairness
simply by forcing some address spaces to page
fault more frequently. We do, however, believe
that this problem can be solved, and that the
utility of memory can be proportionally shared
just as with other resources.

7 Conclusion and Future Work

In this paper we make a case for providing ker-
nel support for class-based resource manage-
ment that goes beyond the traditional per pro-
cess or per group resource management. We
introduce a framework for classifying tasks and
incoming network packets into classes, mon-
itoring their usage of physical resources and
controlling the allocation of these resources by
the kernel schedulers based on the shares as-
signed to each class. For each of four ma-
jor physical resources (CPU, disk, network and
memory), we discuss ways in which propor-
tional sharing could be achieved using incre-
mental modifications to the corresponding ex-
isting schedulers.

Much of this work is in its infancy and the ideas

proposed here serve only as a starting point for
future work and for discussion in the kernel
community. Prototypes of some of the sched-
ulers discussed in this paper are under develop-
ment and will be made available soon.

8 Acknowledgments

We would like to thank team members from
the Linux Technology Center, particularly
Theodore T’so, for their valuable comments on
the paper and the work on individual resource
schedulers. Thanks are also in order for nu-
merous suggestions from the members of the
kernel open-source community.

References

[1] L. A. Belady. A study of replacement
algorithms for virtual storage.IBM
Systems Journal, pages 5:78–101, 1966.

[2] S. Blake, D. Black, M. Carlson,
E. Davies, Z. Wang, and W. Weiss. An
Architecture for Differentiated Services.
RFC 2475, Dec 1998.

[3] Jonathan Corbet. A new deadline I/O
scheduler.http:
//lwn.net/Articles/10874 .

[4] Jonathan Corbet. Anticipatory I/O
scheduling.http:
//lwn.net/Articles/21274 .

[5] Jonathan Corbet. The Continuing
Development of I/O Scheduling.http:
//lwn.net/Articles/21274 .

[6] IBM DeveloperWorks. Inbound
connection control home page.
http://www-124.ibm.com/pub/
qos/paq_index.html .

Linux Symposium 167

[7] Pawan Goyal, Xingang Guo, and
Harrick M. Vin. A Hierarchical CPU
Scheduler for Multimedia Operating
Systems. InUsenix Association Second
Symposium on Operating Systems
Design and Implementation (OSDI),
pages 107–121, 1996.

[8] Bert Hubert. Linux Advanced Routing &
Traffic Control.
http://www.lartc.org .

[9] Sitaram Iyer and Peter Druschel.
Anticipatory scheduling: A disk
scheduling framework to overcome
deceptive idleness in synchronous I/O.
In 18th ACM Symposium on Operating
Systems Principles, October 2001.

[10] M. Kravetz, H. Franke, S. Nagar, and
R. Ravindran. Enhancing Linux
Scheduler Scalability. InProc. 2002
Ottawa Linux Symposium, Ottawa, July
2001.
http://lse.sourceforge.net/
scheduling/ols2001/elss.ps .

[11] Paul E. McKenney. Stochastic Fairness
Queueing. InINFOCOM, pages
733–740, 1990.

[12] Ingo Molnar. Goals, Design and
Implementation of the new ultra-scalable
O(1) scheduler. In 2.5 kernel source tree
documentation
(Documentation/sched-design.txt).

[13] Jason Nieh, Chris Vaill, and Hua Zhong.
Virtual-time round-robin: An o(1)
proportional share scheduler. In2001
USENIX Annual Technical Conference,
June 2001.

[14] P. Pradhan, R. Tewari, S. Sahu,
A. Chandra, and P. Shenoy. An
Observation-based Approach Towards
Self-Managing Web Servers. InIWQoS
2002, 2002.

[15] Quality of Service White Paper.
Integrated QoS: IBM WebSphere and
Cisco Can Deliver End-to-End Value.
http:
//www-3.ibm.com/software/
webservers/edgeserver/doc/
v20/QoSwhitepap%er.pdf .

[16] Prashant J. Shenoy and Harrick M. Vin.
Cello: A disk scheduling framework for
bext generation operating systems. In
ACM SIGMETRICS 1998, pages 44–55,
Madison, WI, June 1998. ACM.

[17] Antonio Vargas. fairsched+O(1) process
scheduler.http://www.ussg.iu.
edu/hypermail/linux/kernel/
0304.0/0060.html .

[18] Dinesh Verma, Mandis Beigi, and
Raymond Jennings. Policy based SLA
Management in Enterprise Networks. In
Policy Workshop, 2001.

[19] T. Voigt, R. Tewari, D. Freimuth, and
A. Mehra. Kernel Mechanisms for
Service Differentiation in Overloaded
Web Servers. In2001 USENIX Annual
Technical Conference, Jun 2001.

[20] Carl A. Waldspurger. Memory resource
management in {VM}ware {ESX}
{S}erver. In Proceedings of the 5th
Symposium on Operating Systems
Design and Implementation, December
2002.

[21] Carl A. Waldspurger and William E.
Weihl. Stride scheduling: Deterministic
proportional- share resource
management. Technical Report
MIT/LCS/TM-528, 1995.

[22] Werner Almesberger Werner and Jamal
Hadi Salim amd Alexye Kuznetsov.
Differentiated Services on Linux. In
Globecom, volume 1, pages 831–836,
1999.

Linux Symposium 168

[23] J. Wroclawski. The Use of RSVP with
IETF Integrated Services. RFC 2210,
Sep 1997.

Trademarks and Disclaimer

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM is a trademark or registered trademarks of In-
ternational Business Machines Corporation in the
United States, other countries, or both.

Linux is a trademark of Linus Torvalds.

UNIX is a registered trademark of The Open Group
in the United States and other countries.

Other trademarks are the property of their respec-
tive owners.

Linux Support for NUMA Hardware

Matthew Dobson, Patricia Gaughen, Michael Hohnbaum
IBM LTC, Beaverton, Oregon, USA

colpatch@us.ibm.com, gone@us.ibm.com, hohnbaum@us.ibm.com

Erich Focht

NEC HPCE, Stuttgart, Germany
efocht@hpce.nec.com

Abstract

New large CPU-count machines are being de-
signed with non-uniform memory architecture
(NUMA) characteristics. The 2.5 Linux® ker-
nel includes many enhancements in support of
NUMA machines. Data structures and macros
are provided within the kernel for determin-
ing the layout of the memory and processors
on the system. These enable the VM subsys-
tem to make decisions on the optimal place-
ment of memory for processes. This topology
information is also exported to user-space via
sysfs . In addition to items that have been
incorported into the mainline Linux kernel,
there are NUMA features that have been de-
veloped that continue to be supported as patch-
sets. These include NUMA enhancements to
the scheduler, multipath I/O, and a user-level
API that provides user control over the alloca-
tion of resources in respect to NUMA nodes.

1 Introduction

1.1 Non-Uniform Memory Architecture

Demand for greater computing capacity has
lead to the increased use of multi-processor
computers. Most multi-processor computers
are considered Symmetric Multi-Processors

(SMP) as each processor is equal and has equal
access to all system resources (e.g., memory
and I/O busses). SMP systems generally are
built around a system bus that all system com-
ponents are connected to, and is used to com-
municate between the components. As SMP
systems have increased their processor count,
the system bus has increasingly become a bot-
tleneck. One solution that is gaining in use by
hardware designers is Non-Uniform Memory
Architecture (NUMA).

NUMA systems co-locate a subset of the
system’s overall processors and memory into
nodes, and provide a high speed and high band-
width interconnect between the nodes, see Fig-
ure 1. Thus there are multiple physical re-
gions of memory, but all memory is tied to-
gether into a single cache-coherent physical
address space. The resulting system has the
property such that for any given region of phys-
ical memory, some processors are closer to it
than other processors. Conversely, for any pro-
cessor, some memory is considered local (i.e.,
it is close to the processor) and other memory
is remote. Similar characteristics may also ap-
ply to the I/O busses—that is, I/O busses may
be associated with nodes.

While the key characteristic of NUMA systems
is the variable distance of portions of memory
from other system components, there are nu-

Linux Symposium 170

merous NUMA system designs. At one end of
the spectrum are designs where all nodes are
symmetrical—they all contain memory, CPUs,
and I/O busses. At the other end of the spec-
trum are systems where there are different
types of nodes—the extreme case being sepa-
rate CPU nodes, memory nodes, and I/O nodes.
All NUMA hardware designs are characterized
by regions of memory being at varying dis-
tances from other resources, thus having dif-
ferent access speeds.

To maximize performance on a NUMA plat-
form, Linux must take into account the way the
system resources are physically laid out. This
includes information such as which CPUs are
on which node, which range of physical mem-
ory is on each node, and what node an I/O bus
is connected to. This type of information de-
scribes the topology of the system.

There are several challenges Linux must ad-
dress to provide NUMA support. These in-
clude:

• discovery and internal representation of
the system topology

• minimization of traffic over the intercon-
nect between nodes

• localization of memory references

• fair access to locks

• I/O locality

• synchronization of time between nodes

• the location of low address memory (e.g.,
memory with physical address under 4
GB) all on the first node, on i386™ pro-
cessor (and potentially other 32-bit pro-
cessor architectures) based machines

• scheduling of processes and groups of
processes on the same node.

Figure 1: Simple view of NUMA system

Figure 2: NUMA system with supernodes

Linux running on a NUMA system obtains
optimal performance by keeping memory ac-
cesses to the closest physical memory. For ex-
ample, processors benefit by accessing mem-
ory on the same node (or closest memory
node), and I/O throughput gains by using mem-
ory on the same (or closest) node to the bus the
I/O is going through. At the process level, it
is optimal to allocate all of a process’s mem-
ory from the node containing the CPU(s) the
process is executing on. However, this also re-
quires keeping the process on the same node.

This paper looks at how Linux addresses these
NUMA challenges, focusing on the NUMA
support that is available in the 2.5 develop-
ment kernel. In addition, some discussion is
included about additional NUMA support that
is under development for future Linux releases.

1.2 Hardware Implementations

There are many design and implementation
choices that result in a wide variety of NUMA
platforms. This variety creates additional chal-

Linux Symposium 171

lenges for the Linux OS developer, as a single
solution is desired to support the many types of
NUMA hardware. This section discusses hard-
ware implementations, and provides examples
and descriptions of NUMA hardware imple-
mentations.

Types of nodes

The most common implementation of NUMA
systems consists of interconnecting symmetri-
cal nodes. In this case, the node itself is an
SMP system that has some form of high speed
and high bandwidth interconnect linking it to
other nodes. Each node contains some num-
ber of processors, physical memory, and I/O
busses. Typically, there is a node-level cache.
This type of NUMA system is depicted in Fig-
ure 1.

A variant on this design is to only put the pro-
cessors and memory on the main node, and
then have the I/O busses separate. Another de-
sign option is to have separate nodes for pro-
cessors, memory, and I/O busses which are all
interconnected.

It is also possible to have nodes which contain
nodes, resulting in a hierarchical NUMA de-
sign. This is depicted in Figure 2.

Types of interconnects

There is no standardization of interconnect
technology. More relevant to Linux is the
topology of the interconnect. NUMA ma-
chines exist that use the following interconnect
topologies:

• ring topology – each node is connected to
the node on either side of it. Memory ac-
cess latencies can be non-symmetric; that
is, accesses from node A to node B might

take longer than accesses from node B to
node A.

• crossbar interconnect – all nodes connect
into a common crossbar.

• point to point – each node has a number of
ports to connect to other nodes. The num-
ber of nodes in the system is limited to the
number of connection ports plus one, and
each node is directly connected to each
other node.

• mesh topologies – more complex topolo-
gies that, like point to point topologies,
are built upon each node having a number
of connection ports. But unlike point to
point topologies, there is not a direct con-
nection between each node. Hypercube
and torus topologies are examples of mesh
topologies.

The topology provided by the interconnect af-
fects the distance between nodes. This distance
needs to be accounted for when Linux is mak-
ing resource placement decisions.

Latency ratios

One important measurement for determining
the “NUMA-ness” of a system is the latency
ratio. This is the ratio between memory la-
tency for on-node memory access versus off-
node memory accesses. Depending upon the
topology of the interconnect, there might be
multiple off-node latencies. This latency can
be used to analyze the cost of memory refer-
ences to different parts of the physical address
space, and thus be used to influence decisions
affecting memory usage.

Linux Symposium 172

Specific NUMA implementations

Several hardware vendors are building NUMA
machines that run the Linux operating system.
This section briefly describes some of these
machines, but is not an all inclusive survey of
the existing implementations.

One of the earlier commercial NUMA ma-
chines is the IBM® NUMA-Q® box. This
machine is based upon nodes which contain
4 processors (i386), memory and PCI busses.
Each node also contains a management module
to coordinate booting, monitor environmen-
tals, and communicate with the system con-
sole. The nodes are interconnected using a ring
topology. Up to 16 nodes can be connected
for a maximum of 64 processors and 64 GB
of memory. Remote to local memory latency
ratios range from 10:1 to 20:1. Each node has
a large remote cache which helps compensate
for the large remote memory latencies. Much
of the Linux NUMA development has been on
these boxes due to their availability.

NEC builds NUMA boxes using Intel™ Ita-
nium™ processors. The most recent system in
this line is the NEC TX7. The TX7 supports up
to 32 Itanium2 processors in nodes of 4 pro-
cessors each. The nodes are connected by a
crossbar and grouped in two supernodes of four
nodes each. The crossbar provides fast access
to non-local memory with low latency and high
bandwidth (12.8 GB/second per node). The
memory latency ratio for remote to local mem-
ory in the same supernode is 1.6:1. The re-
mote to local memory latency ratio for outside
the supernode is 2.1:1. There is no node level
cache. I/O devices are connected through PCI-
X busses to the crossbar interconnect and thus
are all the same distance to any CPU/node.

The large IBM xSeries® boxes use Intel pro-
cessors and the IBM XA-32™ chipset. This
chipset provides an architecture that supports

four processors, memory, PCI busses, and
three interconnect ports. These interconnect
ports allow point to point connection of up to
4 nodes for a 16 processor system. Also sup-
ported is a connection to an external box with
additional PCI slots to increase the I/O capac-
ity of the system. The IBM x440 is built on this
architecture with Intel Xeon™ processors.

2 Linux NUMA Support

The basic infrastructure for supporting NUMA
hardware has been incorporated into the Linux
2.5 development kernel. This support in-
cludes topology discovery and internal repre-
sentation, memory allocation, process schedul-
ing, and timer support. In addition there are
kernel extensions in support of NUMA that
are not yet included in the mainline kernel,
but are being maintained as separate patchsets.
These include NUMA-aware multi-path I/O,
application-level directed binding of memory
to nodes, and scheduler extensions.

2.1 CONFIG Options

Most NUMA support options within the ker-
nel are enabled by the CONFIG_NUMA op-
tion. This includes the scheduler extensions,
NUMA memory allocation, and topology sup-
port. There is also an option, CONFIG_
DISCONTIGMEM, that is used for enabling a
portion of the NUMA memory support.

2.2 Linux Architecture Support

Linux supports many types of processors and
many hardware architectures. Within Linux,
when reference is made to an architecture it
typically refers to the processor type (e.g.,
i386, Power4™, alpha, etc.). Subarchitectures
are used to refer to a substantially different
hardware implementation of a particular archi-
tecture. Also, within an architecture there are

Linux Symposium 173

platforms which are an implementation of the
architecture.

For example, the x440 is part of the i386 archi-
tecture within Linux. However, the x440 is also
a unique subarchitecture within the i386 archi-
tecture. Another example is the IA64 architec-
ture which has DIG-64 and HP platforms, and
SGI-SN1 subarchitecture.

Throughout this paper references are made to
architecture which are more correctly subarchi-
tectures. References to architectures are meant
to refer to a specific hardware implementation
of a NUMA system.

3 Topology

There are performance penalties involved in
accessing hardware devices (CPUs, memory,
disks, network cards, etc.) that are remote to
the currently executing CPU. These can be sig-
nificantly reduced by having a knowledge of
the system’s topology, and using that informa-
tion to make good scheduling, allocation, mi-
gration, and I/O decisions. Topology informa-
tion is crucial to the kernel for making good
decisions on a NUMA machine, but this infor-
mation is also important to some user-space ap-
plications as well.

Topology information is currently used in the
kernel to schedule processes and allocate mem-
ory. This has contributed to performance im-
provements for NUMA architectures through-
out the 2.3, 2.4, and 2.5 kernel series.

3.1 Topology Elements

The topology of a system includes all hardware
components that make up the system. How-
ever, for the context of this paper, topology
is restricted to those physical elements which
are directly affected by the NUMA character-
istics of the system. These elements are nodes,

processors, memory, and I/O busses. Physical
components not considered here consist of the
actual I/O devices which are connected into the
system through the I/O busses.

CPUs provide the computing power in the
system. The location of the individual CPUs
in the overall topology is extremely impor-
tant for scheduling decisions. The current
in-kernel topology API exposes 4 CPU related
functions: cpu_to_node() , node_to_
cpumask() , node_to_first_cpu() ,
andpcibus_to_cpumask() . Information
about these functions is provided in the next
section. The two-node system in Figure 1,
contains 8 CPUs, 4 on node 0, and 4 on node
1.

A Memory Block, or memblk for short, repre-
sents a physically contiguous piece of memory.
It is typically used to represent all the mem-
ory in a particular memory bank on a particular
node. A node is permitted to have either 0 or 1
memory blocks. For example, in Figure 1, we
have a two-node system. Its total memory is
split into two memblks, one on node 0, one on
node 1. In UP/SMP systems, all the memory in
the system is represented by a single memory
block.

I/O bus elements represent physical I/O busses
in the underlying system. These are important
elements for operations like scheduling disk
I/O, networking tasks, or any I/O intensive pro-
cess. By utilizing knowledge about I/O local-
ity, processes can ensure they run efficiently by
constraining themselves to CPUs and memory
blocks on or close to the I/O bus they utilize.

When discussing NUMA, the word node is of-
ten overloaded. For the purposes of a Linux
topology discussion, a node is solely an ab-
stract container. Nodes are not meant to rep-
resent any physical element of the underlying
architecture. All elements, including nodes
themselves, are children of a node in the sys-

Linux Symposium 174

tem. The node element is designed to be a
medium through which queries can be made.
For example, in Figure 1, we see a simple il-
lustration of a two node system. Each node has
4 CPUs in it, as well as a block of memory.
To find out which memory block is closest to
CPU 3, a process can determine that CPU 3 is
a child of node 0, and that memblk 0 is also a
child of node 0. Thus, for efficiency, a process
running on CPU 3 would want to be sure that
its memory is allocated from memblk 0.

On some systems nodes can be nested, as seen
in Figure 2. This is important with things like
hyperthreading and multi-core processors be-
coming more available, which can be easily
represented as a small node with processors,
but no memory or I/O busses. Another usage
of nested nodes is for hierarchical NUMA sys-
tems, such as the NEC TX7, which is built with
supernodes that contain nodes.

There exists a strong possibility that there will
be a need to introduce new topology elements
in the future. Due to the simplicity of the de-
sign of the topology subsystem, adding new el-
ements is a straightforward procedure. As long
as there is a parent-child relationship between
the new element and nodes, the new element
should drop right in to the existing infrastruc-
ture.

3.2 Topology Kernel Functions

The following is a list of topology-related ker-
nel calls that form the basis of the current
topology framework. Along with the descrip-
tion of the call is a default return value for
the non-NUMA case. Architecture specific
definitions of these kernel calls are provided
for each architecture that has NUMA topol-
ogy support. Most architectures simply use the
default asm-generic/topology.h version, usu-
ally because the architecture does not support
NUMA.

• cpu_to_node(int cpu) – Returns
the number of the node containing CPU
cpu . For non-NUMA, defaults to 0.

• memblk_to_node(int memblk) –
Returns the number of the node contain-
ing memory blockmemblk . For non-
NUMA systems, defaults to 0.

• parent_node(int node) – Returns
the number of the node containing node
node . If the node number returned is
node , node is a top-level node. For non-
NUMA, defaults to 0.

• node_to_cpumask(int node) –
Returns a bitmask of the cpus on Node
node . For non-NUMA, defaults tocpu_
online_map .

• node_to_first_cpu(int node)
– Returns the number of the first CPU on
Nodenode . For non-NUMA, defaults to
the lowest-numbered CPU in the system.

• node_to_memblk(int node) –
Returns the number of the Memory
Block, if any, on Nodenode . For
non-NUMA, defaults to 0.

• pcibus_to_cpumask(int bus) –
Returns a bitmask of the CPUs closest to
PCI busbus . For non-NUMA, defaults
to cpu_online_map .

• numa_node_id() – Returns the num-
ber of the node containing the current
CPU. For non-NUMA systems, defaults
to 0.

3.3 Closest Element versus Distance Matrix

The current implementation of the topology
system is very helpful if the caller is look-
ing for information relating to the closest el-
ement. This choice was made primarily be-
cause this made the code small and compact,

Linux Symposium 175

but also because the majority of consumers of
this information simply want the closest ele-
ment. The other option, and possible future
method, is to use a distance matrix approach.
Using this approach, each machine type would
build a latency matrix representing the distance
from element X to element Y. The distance
matrix approach allows us much more flexi-
bility when retrieving information, and much
more complicated queries can be satisfied. We
decided against this approach, however, be-
cause it was determined that the added com-
plexity did not offer that much benefit, and
likely would have few consumers. However,
in hierarchical NUMA systems this type of ap-
proach is more likely to be required for optimal
performance benefits.

Exporting Topology Information to User Space

Topology information is important to multi-
threaded user-space applications. With a large
parallel NUMA machine, threads can be co-
ordinated across, but more importantly within,
nodes. This can yield significant speedups over
a standard SMP version run on the same ma-
chine. There is also a proposal to facilitate
the sharing of memory regions by establishing
bindings for those regions. This would allow
multi-threaded applications to specify memory
blocks close to the set of CPUs the group of
threads is executing on, and guarantee pages
faulted into specific memory regions (likely
shared) come from those memory blocks.

User-space applications currently have ac-
cess to NUMA topology information through
sysfs . The information is laid out follow-
ing the normal directory structure. Node di-
rectories contain CPU and memory block di-
rectories, as well as other node directories on
machines that take advantage of nested nodes.
Each of these directories have files in them,
with those files containing various bits of in-
formation that can be read and/or written. For

example, the nodes contain acpumap file that
contains a bitmap of CPUs on that node.

Currently I/O busses are not represented in the
topology directory ofsysfs . Adding this is a
future work item.

There is currently no way for a user-space ap-
plication to determine the CPU it is currently
executing on. This data is inherently volatile,
as it requires going into kernel-space to get it,
and while returning from the kernel it is pos-
sible for the process to be switched to another
CPU thus invalidating the information that is
about to be returned. There are other ways to
give user-space access to this information; for
example, by mapping a page that is shared be-
tween user-space and kernel-space and having
the kernel store the CPU that the process is cur-
rently executing on at a set location within that
page.

4 Memory

This section describes some of the issues en-
countered during the development of 2.5 to
support NUMA memory allocation, and the
Linux implementation to address the issues.
The purpose of this section is not to pro-
vide an in depth look at the Linux memory
subsystem—there is documentation available
on the net for that [1].

4.1 Discontiguous Memory Support

Each architecture needs to describe its physi-
cal layout to the kernel. This includes spec-
ifying which address ranges belong to which
node, and whether there are holes in between
those ranges (a hole is a physical address range
for which there is no real memory). CONFIG_
DISCONTIGMEM is currently used to repre-
sent a solution to some of these problems. The
name of the config option is a bit of a misnomer

Linux Symposium 176

because the memory may not be discontiguous.
In the case of the IBM x440 the memory is
contiguous, except for a large hole on the first
node.

The core data structure for describing the phys-
ical layout is thepg_data_t . This data struc-
ture currently has a 1:1 mapping to nodes. For
each node in the system, there exists onepg_
data_t . Thepg_data_t describes the start
and end of memory for the node, a pointer to
the zones for the node, and related information.
Support for multiplepg_data_t ’s have been
in the kernel since 2.4 (although several fixes
and optimizations have occured since then). It
is up to each architecture to populate these cor-
rectly for their system.

The config option, CONFIG_
DISCONTIGMEM turns on the function-
ality for creating multiple pg_data_t ’s.
CONFIG_NUMA turns on the code (i.e.
scheduling decisions, allocation decisions)
that makes use of the per nodepg_data_t ’s.

Zone Normal Memory on 32-bit Systems

During the setup of memory in system initial-
ization a special allocator is used—the boot-
mem allocator. This allocator only allo-
cates memory out of what will later become
ZONE_NORMAL. Once memory is setup the
bootmem allocator is no longer used. The
bootmem_data_t represents the address
range used by the bootmem allocator. The
pg_data_t for the node containing the mem-
ory has a pointer to thebootmem_data_t
(bdata).

One of the early issues ran into dur-
ing the development of i386 CONFIG_
DISCONTIGMEM support was the idea that
not all pg_data_t ’s will have a portion of
ZONE_NORMAL, or abootmem_data_t .

On i386, ZONE_NORMAL is limited to the
first 896 Mb of physical memory because of
limitations of the 32-bit architecture. So, a sys-
tem populated with 1GB of RAM per node will
only have a ZONE_NORMAL (and ZONE_
DMA) on node 0, the rest of the nodes will only
contain ZONE_HIGHMEM. Because the slab
allocator only allocates memory from ZONE_
NORMAL, and the kernel uses the slab alloca-
tor to allocate memory for internal data struc-
ture, most kernel related memory will be on
node 0. This also means that during early boot
only the first node’s memory will be used by
the bootmem allocator.

Two changes were made to make ZONE_
NORMAL only on node 0 work: (1) a deref-
erencing a null pointer bug was fixed in
__alloc_pages() that didn’t check that
the node had ZONE_NORMAL before us-
ing it. (2) alloc_bootmem_node() and
friends needed to be made to only use the
first node’spg_data_t , because the other
nodes would not have abootmem_data_t .
Since alloc_bootmem_node() is archi-
tecture independent, it was important to not
put arch specific requirements in the code,
so the changes were made in the header
files. Thus the creation of CONFIG_HAVE_
ARCH_BOOTMEM_NODE.

Page to Node Translation

Finding the node a memory address belongs to
is used throughout the kernel. The core routine
doing the translation from address to node id,
is pfn_to_nid() . Because it is called often,
it is important that the translation is fast. On
some architectures, the physical layout is such
that the first 64GB of address space belongs
to the first node (whether or not there really
is 64GB of RAM), second 64GB for the sec-
ond, and so on. This makes the algorithm for
figuring out what node an address belongs to

Linux Symposium 177

very simple, and very fast: if the address is be-
tween 0-64GB it’s node 0. But on i386 NUMA
architectures that have been tested, it is not as
clear. Because the memory is contiguous, there
isn’t a nice GB to node translation. The solu-
tion was to create a mapping of addresses to
node IDs on 256MB address ranges. The map
is created during memory setup and allows for
fast translations.

4.2 Node Aware Memory Allocation

One of the features enabled by CONFIG_
NUMA is that the system makes NUMA-aware
memory allocation decisions. The current pol-
icy is when memory is allocated, the kernel
tries to allocate from the local node. If that
fails, the allocator will allocate from the other
nodes. The exception is in the case of a system
with ZONE_NORMAL only on the first node;
in an i386 NUMA box for example, memory
allocated from ZONE_NORMAL will only be
allocated from the first node.

The allocation policies only apply to new
memory. Should a process migrate across
node, the memory related to the process will
not be migrated. Although if the memory is
swapped out, when the pages are swapped back
in they will be swapped to the node the process
has migrated to. One thing to keep in mind, is
that migrating the memory is expensive; how-
ever, if a page is being accessed often, it would
be a performance benefit to move it to the local
node.

When the kernel is attempting to allocate mem-
ory, and the system is low on pages,kswapd
will be woke to address the low memory is-
sue. Without NUMA awarenesskswapd may
free up lots of memory by swapping pages out,
but it may not make available memory local to
the node that is in need of memory. The solu-
tion was to makekswapd per node.kswapd
monitors the memory on the local node. When

memory needs to be freed, it’s freed from the
local node. Rmap [3] made this change to
kswapd possible, because of the ability to find
the virtual address(es) associated with a physi-
cal address (local to the node).

4.3 Node Local Kernel Data Structures

For kernel data structures that are frequently
accessed and have node specific information,
it makes sense to have their data structures in
node local memory. On most architectures,
when the bootmem allocator is available, it
is possible to allocate memory on a specific
node through the use ofalloc_bootmem_
node() . However, on i386 the bootmem al-
locator only allocates from node 0, soalloc_
bootmem_node() doesn’t work for allocat-
ing per node and all memory is allocated from
node 0. Because of the limited lifespan of
the bootmem allocator,alloc_bootmem_
node() is not a complete solution. No other
generic mechanism is available at this time for
allocating data structures on a per node basis.
A possible solution for a generic mechanism is
currently in development by Bill Irwin [2].

To work around this 32-bit architecture limi-
tation, for the specific case of themem_map
and pg_data_t , Martin Bligh has success-
fully made these two types of data structures
reside in node local memory. That is, these
structures are located on the node for the mem-
ory that they are describing.

The first phase was to makemem_mapper
node. This was done by reserving pages at the
top of the node and decrementing the size of
the address space by the size ofmem_map, and
then making use of that reserved space when
mem_mapwas set up. Nothing special had to
be done for node 0, because it is where the
bootmem allocator gets it memory for node 0’s
data. So, for node 0 the the normal bootmen
allocator can be used. Phase two was to make

Linux Symposium 178

pg_data_t per node. This was done using
the same method as for themem_map.

4.4 Replication

Since kernel text is read-only on production
systems, there is little downside to replicat-
ing it and placing a copy on each node. This
does consume extra memory, but kernel text
is relatively small and memories of NUMA
machines relatively large. Kernel-text replica-
tion requires special handling from debuggers
when setting breakpoints and from/dev/mem
in cases where users are sufficiently insane to
modify kernel text on the fly. In addition,
kernel-text replication means that there is no
longer a single “well-known” offset between a
kernel-text virtual address and the correspond-
ing physical address.

This functionality is present in some architec-
tures (e.g., sgi-ip27) in the 2.4 kernel. Also, the
IA64 discontigmem patch provides kernel text
replication support for IA64. It is not likely to
show up in the i386 tree because of the limita-
tions of the architecture.

4.5 Memory Binding

As mentioned in other sections of this paper,
writing code to run on a NUMA machine can
require changes to take advantage of the inter-
esting hardware configurations these machines
offer. Memory Binding is one API that we
feel large user-space programs will be able to
use to make significant performance improve-
ments for NUMA. The idea behind Memory
Binding is that processes can selectively bind
ranges of their virtual memory space to par-
ticular blocks of memory, according to differ-
ent allocation policies. For example, a large
database program that has many threads could
bind its threads to CPUs on two nodes, and also
bind a large section of its shared memory to the
memory that belongs on those two nodes. By

setting a policy that enforces an equal distribu-
tion of pages, the database could be sure that
all its shared pages are at least on the same set
of nodes as its processes, and that the memory
is evenly spread across those nodes. The Mem-
ory Binding API is available as a patch from:

http://www-124.ibm.com/linux/

patches/?patch_id=753

http://www-124.ibm.com/linux/

patches/?patch_id=754

5 NUMA scheduler

5.1 Introduction

As explained in the introductory section, ac-
cessing the memory of a remote node implies
taking penalties in memory access latency and
bandwidth. Therefore, it is desirable to keep
processes on or near the node on which their
memory (or most of it) is allocated.

The old (pre 2.5) Linux scheduler wasn’t aware
of the NUMA structure of a machine. Pro-
cesses could migrate to any CPU in the sys-
tem if the CPU was less loaded. On NUMA
machines with many CPUs, two scalability
problems were additionally limiting the per-
formance: the CPUs were competing for the
runqueue lock and the time needed for select-
ing the task to be scheduled next was linearly
growing with the length of the runqueue.

The scalability problems were mostly solved
by the O(1) scheduler[4]. Like other ap-
proaches [5, 6] it implements per CPU run-
queues1 avoiding the lock starvation problem.
Additionally it implements anO(1) search al-
gorithm for the task to be scheduled next.
The scalability problems for SMP machines
were solved, but theO(1) scheduler was not

1There are actually two runqueues per priority level
per CPU.

Linux Symposium 179

NUMA-aware, either. An idle CPU could eas-
ily steal a task from the node where its mem-
ory was allocated letting it run with degraded
memory performance.

5.2 NUMA scheduler approaches

The first notable Linux NUMA scheduler was
the one Andrea Arcangeli made on top of the
old Linux scheduler[7]. It implemented per
node runqueues and scheduled across node
boundaries only after failing to find an optimal
CPU within the same node. Being built on top
of the old Linux scheduler this approach suf-
fered of very similar scalability limitations.

Another approach was the extension of the
IBM MQ scheduler [5] to allow rescheduling
only inside pools of CPUs [8]. A loadbalanc-
ing module was added which allowed periodic
rebalancing across the pool boundaries.

The first NUMA scheduler on top of theO(1)
scheduler was designed and implemented by
Erich Focht [9]. Tasks were assigned a home
node at creation time (either atfork() or at
exec() , selectable for each task), allocated
their memory on (or near) the home node, and
were attracted by the home node CPUs. The
tasks were node-affine. Because the scheduler
changes were too complex for inclusion into
the 2.5 kernel baseline, Erich Focht, Michael
Hohnbaum, Martin Bligh, and Andrew Theurer
collaborated with the target to strip down and
rewrite the node-affine scheduler to a slim
NUMA variant acceptable for inclusion. The
result was included into the 2.5.59 kernel and
is described in the following section.

5.3 NUMA scheduler in the 2.5 kernel: imple-
mentation

When stripping down the node-affine sched-
uler, the goals were to keep the changes to the
O(1) scheduler as small as possible, and to add

NUMA awareness by making it difficult for a
task to change the node while trying to keep the
node load well-balanced. This was achieved by
three patches.

Initial load balancing at exec()

The NUMA support for the memory subsys-
tem described in section 4 ensures that mem-
ory pages are allocated from the node on which
the page-faulting task is running2. Normally
processes allocate most of their memory right
after creation; therefore, the choice of the ini-
tial node and CPU is very important for getting
well-balanced nodes.

Initial load balancing implies some over-
head because it involves scanning the cur-
rent node loads and determining the best
CPU on which the freshly created task should
be scheduled. This can be done either at
fork() or atexec() . Doing it at fork()
(andclone()) has the advantage that multi-
threaded jobs lead to a balanced machine as
well. This might be desireable on machines
with good latency ratios between the nodes.
On the other hand, every small and short living
thread picks up the initial balancing overhead,
unnecessarily migrates pages to other nodes by
copy on write (COW), and finds a cold instruc-
tion cache.

Doing initial balancing atexec() avoids the
COW problem because all pages are dropped
at that stage. Short-living threads which
don’t exec() benefit from a warm instruc-
tion cache. But long running memory intensive
multi-threaded programs might pick up perfor-
mance penalties due to the unbalanced nodes.

The implementation adds the arraystatic
atomic_t node_nr_running[MAX_
NUMNODES]to keep track of the num-

2If the current node has sufficient free memory.

Linux Symposium 180

ber of tasks running on each node.
kernel/sched.h is extended by three
functions:

• sched_best_cpu() : Finds the least
loaded CPU on the least loaded node us-
ing the current runqueue lengths.

• sched_migrate_task() : Migrates
a task to a certain CPU.

• sched_balance_exec() : Called by
do_execve() , it moves the current task
to the least loaded CPU.

Intra-node load balancing

The load_balance() and find_
busiest_queue() functions of the
O(1) scheduler have been modified to restrict
the search for the busiest CPU to the set
given by the newcpumask argument. In the
NUMA scheduler this mask uses topology
information and usually limits the search to
the current node. To be precise: all calls to
load_balance() except the one from the
timer interrupt are balanced only within the
current node.

Cross-node load balancing

Even with a perfect initial load balancing, a
machine can easily end up with poorly bal-
anced nodes, e.g. nodes with more running
tasks than available CPUs and idle nodes. In
such cases, it is preferrable to use the idle
CPUs for doing real work even if the tasks
running on them need to access memory from
other nodes. It is better if a task runs slower on
a remote node instead of waiting for the CPU
on its own node. The cross-node balancing
occurs periodically during the timer interrupt,
with the current settings (kernel 2.5.67) this

means: an idle CPU will try node-rebalancing
every 5 ticks (5ms on aHZ=1000 system); a
busy CPU will do it every 20s.

There continues to be debate as to the fre-
quency of the busy rebalance, with some be-
lieving the busy rebalance is occuring much
too infrequently. It is felt that the current fre-
quency, while showing advantages on simple
benchmarks is not optimal for real world con-
ditions.

Node rebalancing is achieved by a change in
scheduler_tick() and three additional
routines:

• rebalance_tick() : Decides when to
balance within the node and when across
the node boundaries. In the later case it
will first try an intra-node rebalance.

• balance_node() : Calls load_
balance() with cpumask set to the
least-loaded node plus the current CPU.

• find_busiest_node() Finds busi-
est node and uses a geometrically decay-
ing weight for the load measure:loadt =
loadt−1/2 + nr_node_runningt. This
flattens out sudden load peaks.

5.4 Current limitations and future develop-
ments

The NUMA scheduler currently implemented
in the Linux kernel is far from being complete.
The degree of NUMA-awareness of the sched-
uler gives clear performance boosts for “sim-
ple” load situations like parallel kernel com-
piles or an arbitrary but more or less constant
number of similar and long runningexec ’d
processes. The limitations are shown in envi-
ronments with long running jobs, and in sud-
denly varying loads, or with long running mul-
tithreaded applications like OpenMP.

Linux Symposium 181

The stripped down version of the node-affine
scheduler strongly reflects the influence of for-
mer IBM work [8]. Some of the useful features
of [9] were lost, among them the capability of
a process to remember the node on which its
memory resides and to return to that node. A
scheduler with such features is in production
on NEC TX7 IA64 servers and shows signifi-
cant benefits in production environments. Thus
possible extensions of the 2.5 NUMA sched-
uler could be:

• An option to allow particular tasks to ini-
tially balance their children atfork() .

• A method of keeping track of where one
task’s memory is.

• A method of pushing tasks to the node
where most of their memory resides.

6 Locking

In contrast to much of the other NUMA work,
NUMA-aware locking is not about making a
per-node lock, but rather it is about prevent-
ing lock starvation on highly-contended locks.
Lock starvation occurs when the contention on
a given lock is so high that by the time a CPU
releases the lock, at least one other CPU on
that same node is requesting it again. NUMA
latencies mean that these local CPUs can ac-
quire the lock when it becomes available faster
than remote CPUs can. On some architectures,
the CPUs on the node where the lock is located
can monopolize the lock, completely starving
CPUs on other nodes.

The best solution is to reduce lock contention,
but NUMA-aware locks can be an interim fix
while the locking design is reworked.

Two fair locking primitives are:

• mcs locks [10]

mcs locks are queued locks. The primi-
tive enforces fairness because requesters
are queued. The queuing ensures that the
local CPU does not have an advantage
on getting the lock. It’s first come, first
served.

• NUMA-aware locks [11]

NUMA-aware locks enforce fairness by
using a round-robin system amongst
nodes waiting for a lock. The implemen-
tation was written so that the fairness al-
gorithm could be modified to fit the need.
This means, if round robin proves ineffi-
cient, another method can be inserted.

The work in the area of NUMA-aware lock-
ing is currently not active. As previously
mentioned, the Linux solution for a highly-
contended lock is to break the lock up, and so
far lock starvation has not been seen to be a
problem. Therefore a need for a NUMA-aware
lock has not been established.

7 I/O

As with many aspects of writing software to
run efficiently on NUMA platforms, I/O code
benefits from fine-tuning for these machines.
The following section goes into more detail
about: why I/O subsystems require NUMA
considerations, the current state of Linux sup-
port of I/O on NUMA hardware, and where it
might be going.

7.1 I/O Locality

As discussed in the topology section, on
NUMA machines I/O busses are ususally
spread across nodes. When scheduling I/O
we attempt to ensure that the memory being
used for the I/O is close to the specific I/O
bus we are using. Cross-node I/O requests

Linux Symposium 182

suffer a performance penalty when compared
to I/O requests that are constrained to a sin-
gle node. Cross-node I/O travels across the
node interconnect busses and has the potential
to consume interconnect bandwidth, thus de-
grading the performance of other processes. If
the memory buffers used for I/O are physically
located in memory far from the I/O bus, there
will also be delays for cross-node memory ac-
cess. Ideally, the requesting process executes
on a CPU on the node with the memory and I/O
bus, thus eliminating any inter-node accesses.

7.2 Multi-Path I/O

While Multi-Path I/O, or MPIO for short, is not
a new concept, it can be a particularly powerful
tool on a NUMA platform. MPIO involves us-
ing multiple I/O adaptors (i.e., SCSI cards, net-
work cards) to gain multiple paths to the under-
lying resource (i.e., hard disks, the network),
thus increasing overall bandwidth. On SMP
platforms, potential speedups due to MPIO are
limited by the fact that all CPUs and mem-
ory typically share a bus, which has a maxi-
mum bandwidth. On NUMA platforms, how-
ever, different groups of CPUs, memory, and
I/O busses have their own distinct busses. This
allows potentially achieving larger aggregrate
I/O throughput by allowing each node to inde-
pendently reach its maximum bandwidth. An
ideal MPIO on NUMA setup consists of an I/O
card (SCSI, Network, etc.) on each node con-
nected to every I/O device, so that no matter
where the requesting process runs, or where
the memory is, there is always a local route to
the I/O device. With this hardware configura-
tion, it is possible to saturate several PCI busses
with data. This is even further assisted by the
fact that many machines of this size will be us-
ing RAID or other MD devices, thus further in-
creasing the potential bandwidth by using mul-
tiple disks.

There is a patch, currently against 2.5.59, that

implements MPIO for the SCSI Mid-Layer in
Linux. The SCSI layer is in the midst of many
changes right now, some of which affect algo-
rithms this patch was based on. This patch [12]
is maintained by Patrick Mansfield, and is be-
ing discussed in vastly more detail at another
presentation at OLS.

7.3 Interrupt Routing and Balancing

Interrupt handling is another area where ig-
noring NUMA locality issues can be costly.
When dealing with interrupts, it is important
that they are handled locally. Some architec-
tures and APIC setups prevent interrupts from
being handled remotely by their design, but for
those that don’t, we must make sure that inter-
rupts are kept local. What this means is that if,
for example, an I/O device raises an interrupt,
it should be handled by a CPU on the same
node as the I/O device. At the same time, we
don’t want every interrupt occurring on a par-
ticular node to be handled by the same CPU.
Currently the Linux kernel takes advantage of
the balance IRQ functionality, which changes
the destination of individual IRQs to a differ-
ent CPU after a certain number of ticks. This
code is not aware of NUMA topology, though,
and thus may sometimes make poor IRQ des-
tination decisions. There is significant work to
be done still in this area for NUMA support.

On some chipsets, IRQ balancing is provided
by the hardware, for example the 460GX re-
alted chipsets (used by the NEC TX7). This
chipset provides either a fixed redirection or
can redirectable within a target node based on
priorities.

8 Timers

On UP systems, the processor has a time source
that is easily and quickly accessible, typically
implemented as a register. On SMP systems,

Linux Symposium 183

the processors’ time source is usually synchro-
nized as all of the processors are clocked at
the same rate, and thus synchronization of the
time register between processors is a straight
forward task.

On NUMA systems synchronization of the
processors’ time source is not practical as not
only does each node have its own crystal pro-
viding the clock frequency, but there tend to
be minute differences in the frequencies that
the processors are driven at which thus leads
to time skew.

On multi-processor systems it is imperative
that there is a consistent system time. Other-
wise time stamps provided by different proces-
sors cannot be relied upon for ordering and if a
process is dispatched on a different processor it
is possible that there can be unexpected jumps
(backward or forward) in time.

Ideally, the hardware provides one global time
source with quick access times. Unfortunately,
global time sources tend to require off-chip ac-
cess and often off-node access which tend to be
slow. Clock implementations are very architec-
ture specific, with no clear leading implemen-
tation amongst the NUMA platforms. On the
x440, for example, the global time source is
provided by node 0 and all other nodes must
go off-node to get the time.

In Linux 2.5, the i386 timer subsystem has an
abstraction layer that simplifies the addition of
a differnt time source provided by a specific
machine architecture. For standard i386 archi-
tecture machines, the TSC is used which pro-
vides a very quick time reference. For NUMA
machines, a global time source is used (e.g., on
the x440 the cyclone timer).

9 Summary

Much work has been done to provide NUMA
support for the Linux kernel. At this point, the
basic infrastructure is in place. Performance
testing has shown measureable improvements,
though they tend to be widely variable depen-
dent upon the workload and the NUMA hard-
ware. As Linux gets used on more NUMA
hardware platforms, there are bound to be ad-
ditional areas exposed which will benefit from
additional NUMA optimizations.

Some areas that are actively being worked on
or considered for future work are:

• I/O busses insysfs topology

• MPIO

• scheduler enhancements

• interrupt routing and balancing

• kernel data structure placement

• memory binding

• page migration

• timers

Legal Statement

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM, NUMA-Q, Power4, and xSeries are trade-
marks or registered trademarks of International
Business Machines Corporation in the United
States and/or other countries.

Intel, i386, Itanium and Xeon are trademarks of In-
tel Corporation in the United States, other coun-
tries, or both.

Linux is a registered trademark of Linus Torvalds.

Linux Symposium 184

Other company, product, and service names may be
trademarks or service marks of others.

References

[1] M. Gorman: “Understanding the Linux
Virtual Memory Manager,” April 2003,
http://www.csn.ul.ie/~mel/
projects/vm/guide/html/
understand/

[2] W. Irwin, March 2003
http://marc.theaimsgroup.
com/?l=linux-kernel&m=
104660383911943&w=2

[3] LWN.net, “Speeding up reverse
mapping”http:
//lwn.net/Articles/9555/

[4] Ingo Molnár,
http://people.redhat.com/
mingo/O(1)-scheduler/

[5] M. Kravetz, H. Franke: “Implementation
of a Multi-Queue Scheduler for Linux,”
April 2001,
http://lse.sourceforge.net/
scheduling/mq1.html

[6] Davide Libenzi, October 2001,
http://www.xmailserver.org/
linux-patches/lnxsched.html

[7] Andrea Arcangeli, “NUMA,”
presentation at the UKUUG Manchester,
June 2001,
http://www.ukuug.org/
events/linux2001/papers/
html/AArcangeli-numa.html

[8] H. Franke et al, “PMQS: Scalable Linux
Scheduling for High-End Servers,”
http://lse.sourceforge.net/
scheduling/als2001/pmqs.ps

[9] Erich Focht: “Node-Affine NUMA
Scheduler,” Feb. 2002,http://home.
arcor.de/efocht/sched

[10] John Stultz: “Nodeless MCS Lock,”
http://www-124.ibm.com/
linux/patches/?patch_id=218

[11] “NUMA AWARE LOCKS,”
http://lse.sourceforge.net/
numa/locking

[12] Patrick Mansfield: “SCSI Mid-Level
Multi-path/port storage,”
http://www-124.ibm.com/
storageio/multipath/
scsi-multipath/index.php .

Kernel configuration and building in Linux 2.5

Kai Germaschewski
University of Iowa

kai@germaschewski.name

Sam Ravnborg
Ericsson Diax A/S

sam@ravnborg.org

Abstract

The development phase of Linux 2.5 brought
substantial changes to the kernel configuration
process, the actual kernel build and, in partic-
ular, implementation and building of loadable
modules.

The first part of this paper will give an
overview of the user-visible changes which oc-
cured in Linux 2.5, on the one hand for users
which build kernels themselves, on the other
hand for developers which maintain drivers or
other parts of the kernel, in order to help port-
ing to Linux 2.5/2.6.

The second part of the paper deals with the ac-
tual design and implementation of the current
kbuild, showing howGNU makeis actually
flexible enough to allow for nice condensed
Makefile fragments which per subdirectory de-
scribe which objects to build into the kernel or
as loadable modules. The paper ends with an
outlook showing possible approaches for im-
plementing additional features.

The paper also explains the improvements in
handling loadable kernel modules, including
symbol versioning, and the necessary build
system changes.

1 Introduction and history

Why is a kernel build system necessary at all,
and why does the Linux kernel use its own spe-

cial solution?

As the Linux kernel evolved from a student’s
terminal emulation program towards a full-
featured UNIX-like kernel, changes to the way
it was built became necessary and were inte-
grated, so the kernel build system basically fol-
lowed the evolutionary development of the ker-
nel itself.

In the science world, in particular people run-
ning numerical simulations, many people con-
sider a build system completely unnecessary,
they just run

f77 code.f
./a.out

However, this approach obviously doesn’t
scale to large projects. To keep projects main-
tainable, some kind of modularization occurs
the code is divided into a number of source files
and as the project is growing further, a direc-
tory hierarchy is introduced which helps orga-
nizing the code even further.

During development, normally only one or a
few files are edited and then the developer
wants to rebuild the program, in this case the
kernel vmlinux, be it just for compile-time
checks or testing.

First of all, one does not want to enter all the
commands manually for each build, so some
type of script is necessary to record those com-
mands. Next, it is actually a waste to recom-
pile every file if only few have changed. Smart

Linux Symposium 186

programmers recognized this a long time ago
and invented a tool calledmakewhich is still
the most popular build tool used today. We as-
sume in this paper that the audience is familiar
with the basics ofmake.

So even Linux 0.01 came already with a Make-
file which took care of building the kernel.

As time passed and Linux matured, new fea-
tures were incorporated into the build system,
such as

• Automatic generation of dependency
information. makeonly handles simple
dependencies like the dependency of an
object file on the corresponding source au-
tomatically, other prerequisites as for ex-
ample included header files need to be
added to the Makefile explicitly, a task
which can be (and was) automated.

• Configurability. As the code base for
the Linux kernel expanded, a need for a
user selectable configuration became ap-
parent and was introduced before release
of Linux 1.0. This system allows the user
to answer questions with respect to which
components are desired, and then only
builds those components into the kernel.

• Different architectures and cross–
compilation. Linux introduced support
for different architectures, which means
the kernel is build from a large arch-
independent code base as well as some
machine-specific low-level code. It is
also often necessary to cross–compile
the kernel, i.e. do the compilation on a
different platform than it is actually run
on.

• Loadable modules. Within Linux 1.3,
support for loadable kernel modules was
introduced, which again needed special

support in configuration and building of
those objects.

In particular the high configurability and sup-
port for loadable modules distinguish the
Linux kernel from most other projects, and it
thus comes as no surprise that its build system
also evolved away from a standard Makefile.
However,makeis still the underlying tool used
for building the kernel. In fact, the extensibility
of theGNUversion ofmake[1] in conjunction
with some support scripts / C code renders it
possible to meet the goals listed above.

2 A dummy’s guide to kbuild

This section is addressed to users and will ex-
plain how to use the kernel build system in
Linux-2.5/2.6. “Users” (as opposed to “devel-
opers”) here mean people who download the
linux kernel tree source, possibly apply patches
and then build and install their own kernels. Of
course, since kernel developers need to build
and run kernels, too, this section is of relevance
for them as well.

The build system is based onGNU make, i.e.
all commands are given tomakeby invoking it
as

make <target>

Contrary to many userspace packages which
are using autoconf/automake, there is no pre-
ceding ./configure necessary, the neces-
sary configuration process is embedded into
the build process.

The actual targets are in part platform-specific,
for example on i386 one typical wants to build
the boot imagebzImage and modules. A list
of supported targets for the platform can be ob-
tained frommake help .

Linux Symposium 187

Arch maintainers should setup their arch-
specific Makefile in a way that invokingmake
without parameters will build the commonly
used boot target for the architecture, for exam-
ple on i386 just typing

make

will build bzImage and modules (the latter
only whenCONFIG_MODULESis selected, of
course) which is what is typically needed.

If one just runsmakeafter unpacking the ker-
nel source tarball,makewill actually just error
out, asking you to configure your kernel first
by runningmake *config . (In Linux-2.4
and before, it would invokemake config
for you, but this is the wrong choice in 99%
of the cases, since nobody likes answering a
straight sequence of a couple of hundred ques-
tions. . .)

To generate a new kernel configuration, it is
recommended to usemake menuconfig ,
make xconfig (which uses Qt now) or
make gconfig (uses gtk).

However in most cases, it is easier to adapt an
existing kernel configuration to the current ker-
nel than to create a new one from scratch. This
is done by copying the.configfile into the top-
level directory of the source tree. kbuild will
recognize that the .config file may need adap-
tion for the current kernel source and automat-
ically run make oldconfig for you, which
makes sure that.config is consistent with the
current rules and asks the user about the value
of previously not existing options.

So the normal sequence for building a kernel is
just

cp /my/old/.config .config
make

where one could insert amake *config be-

tween those two steps if a change of configura-
tion options is desired.

The last remaining step is the installation of
the newly built kernel. The procedure to in-
stall the boot image depends of course on the
bootloader used.

For lilo , the kernel boot imagebzImageshould
be copied to a certain location (typically/boot),
then/etc/lilo.confmay need an appropriate en-
try and finally/sbin/lilo must be run.

For grub, copying the kernel image to/boot
and possibly editing/etc/grub.confshould suf-
fice.

An important change is that on i386bzIm-
age/zImagecan not be directly booted from
a floppy disk anymore. Instead the targets
zdisk and fdimage create a boot floppy
disk and a boot disk image, respectively. Those
targets now require mtools and syslinux to be
installed.

Since the actual installation of the boot
image varies as described above, one can
give the install target to make, which
will invoke a user– or distro–provided
script, ˜/bin/installkernel or
/sbin/installkernel which can be
customized for the local setup.

Installing modules is simpler, just invok-
ing make modules_install will do the
necessary work. By default this will in-
stall into /lib/modules/‘uname -r‘/ ,
though this can be customized by setting
INSTALL_MOD_PATH, e.g. if one wants to col-
lect the modules for transfer onto a different
machine.

This is basically all knowledge which is needed
to build a Linux kernel—everything else is
handled automatically by the build system.
Applying patches, editing files, changing con-
figuration options or adding compiler flags—

Linux Symposium 188

the build system will notice the change and re-
build whatever is needed. The one exception
to this rule is changing the architecture (by set-
ting the ARCHvariable), which needs an ex-
plicit make distclean to work correctly.

3 kbuild for kernel developers

3.1 kbuild in the daily work

Since developers tend to build kernels and
modules a lot, the previous section of course
also applies to them, in particular the fact that
just runningmake will recognize all changes
and rebuild whatever is necessary to generate a
consistentvmlinuxand modules.

Some additional features exist to support the
development / debugging process:

• make some/path/file.o will re-
build the single file given, using compiler
flags (e.g. -DMODULE) according to the
current.config.

• make some/path/file.i will
generate a preprocessed version of
/some/path/file.c , again using
compiler flags for the current configura-
tion.

• make some/path/file.s will gen-
erate a file containing the raw assembler
code forsome/path/file.[cS] .

• make some/path/file.lst (little
known but very useful) gives interspersed
assembler code with the C source, relo-
cated to the correct virtual address when a
currentSystem.mapexists.

Another useful feature for the daily work,
which has existed for a long time, is the ability

to override theSUBDIRSvariable on the com-
mand line, which will forcemaketo only de-
scend into the given subtree. This can be very
useful for faster build times, but it bypasses
some dependencies and thus does not guaran-
tee to result in a consistent state.

So while e.g. working on thehisax ISDN
driver, it’s useful to callmakeas

make SUBDIRS=drivers/isdn/hisax \
modules

for compile checks etc. However, before
installing a new kernel and modules, the
authors advise to always run a fullmake
bzImage/vmlinux/modules (or other-
wise, do not complain ;).

3.2 Integrating a driver

Basically each subdirectory in the Linux ker-
nel tree contains a file calledMakefile, which
is included bymakeduring the kernel build
process. However, these Makefiles are differ-
ent from regular Makefiles in that they nor-
mally don’t have any targets or rules, but only
set variables which tell the build process what
should be built and the latter takes control of
the actual compiling and linking.

In conjunction with the Makefile there nor-
mally exists aKconfig file, these files were
introduced with the configurator rewrite by
Roman Zippel and replace the oldCon-
fig.in/Config.helpfiles used during the config-
uration phase of the kernel build.

This paper does not intend to elaborate on the
new kernel configuration system, however the
following examples will provide some basic
usage guidance.

The most common case is adding a new driver
which is built from a single source file.

Linux Symposium 189

config TIGON3
tristate "Broadcom Tigon3 support"
depends on PCI
help

This driver supports Broadcom Tigon3 based gigabit Ethernet cards.

If you want to compile this driver as a module (= code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. This is
recommended. The module will be called tg3.

Figure 1:Kconfigfragment for the Tigon3 driver.

Figure 1 shows theKconfig fragment for the
Tigon3 driver, which defines a config option
TIGON3 (the corresponding variable will be
given the nameCONFIG_TIGON3), which is
a tristate, i.e. can have the valuesy , m, or
n with the obvious meanings (a config option
which has been turned off, actually has the
value "" , to be correct here). The fragment
depends on PCI states that this option is
only selectable when the optionPCI is also set
(that is, if the kernel supports the PCI bus).

The Makefile fragment for the Tigon3 driver

obj-$(CONFIG_TIGON3) += tg3.o

is very short and though a little awkward at
first, a very elegant way to quickly express
what files are supposed to be built. The
idea dates back to Micheal Elizabeth Castain’s
dancing Makefiles[2] and was globally intro-
duced into the kernel by Linus shortly before
the release of kernel 2.4.

What happens is that depending on the con-
fig optionCONFIG_TIGON3, the valuetg3.o
is appended to either of the variablesobj-y ,
obj-m or obj- .

The meaning of those special variables is as
follows:

• obj-y . All objects listen inobj-y will

be compiled as built-in objects, and will
finally be linked intovmlinux.

• obj-m . All objects listed inobj-m and
not not listed inobj-y will be compiled
as modules (so they actually end up being
called e.g.tg3.ko in 2.5/2.6).

• obj- . All objects listed inobj- and not
in obj-y or obj-m will be ignored by
kbuild.

Since the build system does not have any fur-
ther information ontg3.o , it will try to build
it from a source file calledtg3.c (or an as-
sembler sourcetg3.S , which only happens in
the architecture dependent part of the kernel,
though).

This is all what is needed to integrate a simple
driver into the kernel build, other than of course
writing the driver (tg3.c) itself.

It is also possible to list more than one object to
be built in the Makefile statement. The Make-
file line dealing with theeepro100driver looks
like the following:

obj-$(CONFIG_EEPRO100) += \
eepro100.o mii.o

If this driver is selected, themii.o support
module also needs to be compiled, which is
achieved by simply appending it to the state-
ment.

Linux Symposium 190

Other network drivers will, if selected, also
add mii.o to the list of objects to be built—
this is fine, the build system handles this case.
It is even possible that a support module like
mii.o got added to the list of built-in objects
obj-y and obj-m —again, the build system
recognizes this fact and just compiles the built-
in version, which will also be usable for the
drivers compiled modular.

The newe100driver examplifies two more fea-
tures. drivers/net/Makefileonly contains the
line

obj-$(CONFIG_E100) += e100/

which tells kbuild that it should descend into
the e100/subdirectory if the optionCONFIG_

E100 is set. What to do there will then be
determined bydrivers/net/e100/Makefile(Fig-
ure 2):

The first line after the comment looks famil-
iar, it advises the build system to builde100.o
built-in/modular depending on the value of
CONFIG_E100. WhenCONFIG_E100 equals
“m” the e100 driver is built as a module and
will be named em e100.ko.

The next line then states thate100.ois a com-
posite object which should be linked from the
listed individual object files—these object files
will automatically compiled with the appropri-
ate flags.

As a last point, instead of using the vari-
able<modname>-objs to declare the compo-
nents of the module<modname>.o, the variant
<modname>-y can be used, which allows for
easy definition of optional parts to a composite
modules, as seen in the example in Figure 3.

4 What is new in Linux-2.5/2.6’s
kbuild?

In this section, we describe some of the steps
in the evolution of the kernel build system
during the development phase of Linux 2.5.
One purpose is to show how this evolution
could actually be divided into small, Linus-
compatible “piece-meal” patches without the
famous “flag-day” patches and with only little
breakage along the way.

We will also show how using the extensions
provided by GNU make were actually ex-
ploited to provide a better build system while
still using a standard tool instead of creating a
specialized build solution for the kernel from
scratch.

We start by comparingdrivers/isdn/Makefile
in 2.4 and 2.5 (Figure 4), where many of the
improvements are easily seen. (a) shows the
Makefileas it is present in Linux 2.4.20, and
(b) shows the simpler variant present in 2.5.
kbuild has been adapted incrementally to allow
the more concise syntax. The following sec-
tions will describe the internals that eventually
allowed for the layout seen in (b).

4.1 O_TARGET/ linking objects in subdirecto-
ries

First of all, we start with a short descrip-
tion of what the kbuild interal implementa-
tion, which is hidden in the top-levelMake-
file and scripts/Makefile.*typically does in a
subdirectory: From the kbuildMakefile lo-
cated in the subdirectory we obtain a list
of what to build from the variablesobj-y
(built-in) and obj-m (modular) as explained
in the previous section. The default target
in scripts/Makefile.buildis __build and the
corresponding rule, shown in Figure 5, defines
what work needs to be done. Important here
is that we buildO_TARGETor L_TARGET, re-
spectively, when buildingvmlinuxandobj-m
when compiling modules. As opposed to 2.4,
in 2.5 O_TARGETis a kbuild internal variable

Linux Symposium 191

#
Makefile for the Intels E100 ethernet driver

obj-$(CONFIG_E100) += e100.o

e100-objs := e100_main.o e100_config.o e100_phy.o \
e100_eeprom.o e100_test.o

Figure 2:/drivers/net/e100/Makefile

#
Makefile for the Linux X.25 Packet layer.
#

obj-$(CONFIG_X25) += x25.o

x25-y := af_x25.o x25_dev.o x25_facilities.o x25_in.o \
x25_link.o x25_out.o x25_route.o x25_subr.o \
x25_timer.o x25_proc.o

x25-$(CONFIG_SYSCTL) += sysctl_net_x25.o

Figure 3:net/x25/Makefile

and needs no longer be defined in the kbuild
makefiles. Except for the rare case of build-
ing an actual library,O_TARGETis used in the
built-in case and we find the rule how to make
it as

$(O_TARGET): $(obj-y) FORCE
$(call if_changed,link_o_target)

SoO_TARGETis linked from the objects listed
in obj-y , which contains files locally com-
piled in the current directory as well as objects
which are built in subdirectories by descend-
ing. In Figure 6, we see how going from the
leaves to the root, theO_TARGETin each subdi-
rectory (here always calledbuilt-in.o) accumu-
lates the objects built below that directory until
we finally end up withvmlinuxat the root of the
hierarchy containing all built-in objects gen-
erated throughout the tree (this example only
shows a small fraction of the objects linked in
a normal build).

vmlinux
|-- drivers/built-in.o
| ‘-- isdn/built-in.o
| |-- isdn.o
| | |-- isdn_common.o
| | ‘-- isdn_net.o
| |
| |-- hisax/built-in.o
| | |-- hisax.o
| | | |-- config.o
| | | ‘-- isdnl*.o
| | ‘-- hisax_fcpcipnp.o
| |
| ‘-- icn/built-in.o
| ‘-- icn.o
|
‘-- fs/built-in.o

Figure 6: The hierarchy for linkingvmlinux

Linux Symposium 192

(a)

O_TARGET := vmlinux-obj.o
export-objs := isdn_common.o

list-multi := isdn.o
isdn-objs := isdn_net.o isdn_tty.o isdn_v110.o isdn_common.o
isdn-objs-$(CONFIG_ISDN_PPP) += isdn_ppp.o
isdn-objs += $(isdn-objs-y)

obj-$(CONFIG_ISDN) += isdn.o
obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o

mod-subdirs := hisax
subdir-$(CONFIG_ISDN_HISAX) += hisax
subdir-$(CONFIG_ISDN_DRV_ICN) += icn

obj-y += $(addsuffix /vmlinux-obj.o, $(subdir-y))

include $(TOPDIR)/Rules.make

isdn.o: $(isdn-objs)
$(LD) -r -o $@ $(isdn-objs)

(b)

obj-$(CONFIG_ISDN) += isdn.o
obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o

isdn-y := isdn_net_lib.o isdn_fsm.o isdn_tty.o \
isdn_v110.o isdn_common.o

isdn-$(CONFIG_ISDN_PPP) += isdn_ppp.o

obj-$(CONFIG_ISDN_DRV_HISAX) += hisax/
obj-$(CONFIG_ISDN_DRV_ICN) += icn/

Figure 4:drivers/isdn/Makefilein (a) 2.4.20 and (b) adapted for the build system in 2.5

In Linux 2.4, the name for the object which
accumulates all built-in objects in and below
the current subdirectory was chosen by setting
the variableO_TARGETin the local Makefile.
In Linux-2.5, it is instead just set tobuilt-in.o
by the build system. This allows to get rid of
the assignment ofO_TARGETin every subdir
Makefile and, more importantly, allows for fur-
ther clean-up:

In kbuild-2.4, we need to explicitly add the
subdirectories to descend into to the variables
subdir-y/m , and then also add the subdir-
generated built-in objects toobj-y so that they
get linked. This is redundant and error-prone,
in 2.5 it is sufficient to just add the objects gen-
erated in the subdirectories to the list of ob-
jects to be linked, and the build system will de-
duce from there that it needs to descend into
the named subdirectories. To simplify things
further, the name of theO_TARGET(now al-
ways beingbuilt-in.o) itself is left out and only
the trailing slash is kept:

Linux Symposium 193

__build: $(if $(KBUILD_BUILTIN),$(O_TARGET) $(L_TARGET) $(extra-y)) \
$(if $(KBUILD_MODULES),$(obj-m)) \
$(subdir-ym) $(always)

@:

Figure 5: The default__build rule fromscripts/Makefile.build

obj-$(CONFIG_...HISAX) += hisax/
obj-$(CONFIG_...ICN) += icn/

4.2 Multi-part modules

As can be seen from Figure 4, a number of
statements were necessary for generating a
multi-part module,isdn.oin that example. First
of all, the parts constituting the module need to
be declared by assigning them to the variable
isdn-objs . This step is of course essential
and was kept in 2.5.

However, it was also necessary to declare that
isdn.o is a multi-part module by listing it in
the variablelist-multi . This information
is redundant as it can be deduced by checking
for the existence of<module>-objs , which is
now done in 2.5.

Furthermore, in 2.4 a link rule has to be ex-
plicitly given for each multi-part object, which
was annoying and error-prone. In the new build
system, this link rule is generated bymake, hit-
ting just about the limits of whatGNU make
is capable of. We use a feature called “static
pattern rules,” and the code looks like the fol-
lowing:

cmd_link_multi-m = $(LD) ... \
-o $@ $(link_multi_deps)

$(multi-used-m) : \
%.o: $(multi-objs-m) FORCE

$(call if_changed,link_multi-m)

multi-used-m contains all multi-part mod-
ules we want to be built in the current directory
and multi-objs-m contains all of the indi-
vidual objects those are built of. This makes

each multi-part module in the directory depend
on the set of all components for all multi-part
modules in that directory, which is actually
too large, as it of course only is dependend
its own components; however the latter is not
implementable within the restrictions ofGNU
make. When doing the link, the variablelink_

multi_deps recovers the right list of compo-
nents from the target$@, so that linker is in-
voked correctly.

Another interesting detail is that we here as
well as in other places need to uniquify the
prerequisites, so that listing a component mul-
tiple times doesn’t lead to a link error.GNU
makeoffers thesort function, which throws
away duplicates, however it is unfortunately
not usable for this purpose since it sorts, i.e.
reorders its arguments and thus changes the
link/init order. The workaround here is to use
the variable$^ which actually uniquifies the
list of prerequisites exactly as needed. Finally,
since$^ lists all prerequisites which as men-
tioned above exceeds the list of components for
the current module, we filter the uniquified list
with that list of components to get the informa-
tion we need.

4.3 Including Rules.make

Each subdirectory Makefile in kbuild-2.4
needed to include$(TOPDIR)/Rules.makeex-
plicitly. In 2.5, when descending into subdirec-
tories, the build system now always callsmake
with the same Makefile,scripts/Makefile.build,
which then again includes the local subdi-
rectory Makefile, so the statement to include
Rules.makecould be dropped.

Linux Symposium 194

Furthermore, in 2.5. the build is still organized
in a recursive way, i.e.makeis only invoked
to build the objects in the local subdirectory
and other instances ofmakeare spawned for
the underlying directories. However, it does
not actually descend into the subdirectories,
it always does its work from the top-level
directory and prepends the path as necessary.
One of the advantages is that the output
includes the correct paths, so a compiler
warning will not show “inode.c: Warning
...”, but “fs/ext2/inode.c: ...”, which makes it
easier to recognize where the problem occurs.
More importantly, it allows to use relative
paths throughout the build, so that paths
like “BUG in /home/kai/src/kernel/

v2.5/linux-2.5.isdn/include/linux/

fs.h ” are history. Renaming/moving a kernel
tree will not cause spurious rebuilds due to
changing paths as seen above anymore, and
tools like “ccache” can work more effectively.

4.4 Objects exporting symbols

The old module symbol versioning scheme
used with Linux 2.4 needed the Makefiles to
declare which objects export symbols to mod-
ules, which was done by listing them in the
variableexport-objs . In 2.5, module ver-
sioning was completely redesigned, removing
the need for this explicit declaration. The
changes are so complex that they are rewarded
their own section in this paper.

Here we conclude the comparison between a
2.4 and 2.5 subdirectory Makefile, where we
have shown that all the redundant and de-
ducible information has been removed and the
necessary information is revealed to the build
system in a very compact form.

Two additional important internal changes,
which did not affect the subdirectory Makefile
layout will be described in the following:

4.5 Compiling built-in objects and modules in
a single pass, recognizing changed com-
mand line arguments

The major performance issue for the kernel
build are the invocations ofmake(most of the
time is of course normally spent compiling /
linking, but this cost is independent of the build
system used).makehas to read the local Make-
file, the general rules and all the dependencies
and figure out the work to be done from there.
An obvious way to optimize the performance
of the build system is thus to avoid unneces-
sary invocations. In 2.4,makeneeds to do sep-
arate passes for modules and built-in objects
and within each directory, it will even call it-
self again, so an about four-times performance
increase is possible by just combining those in-
vocations into a single pass.

The primary reason why kbuild-2.4 needs two
passes for built-in and modules lies in its flags
handling. This means that it tries to check not
only whether prerequisites have changed (e.g.
the C source for an object), but also if the com-
piler flags have changed.

This objective was achieved by generating a
.<target>.flagsfile like the following (simpli-
fied) for each target built:

ifeq (-D__KERNEL__ -DMODULE
-DEXPORT_SYMTAB,
$(CFLAGS) -DEXPORT_SYMTAB)))

FILES_FLAGS_UP_TO_DATE += config.o
endif

On a rebuild, the Makefile would read all those
.*.flagsfragments and forces all files which are
not listed inFILES_FLAGS_UP_TO_DATEto
be rebuild.

The flaw of this method is that it cannot handle
differing flags for different groups of files, so
makeneeds to invoked twice, once for the tar-
gets to be built-in with the normalCFLAGS, and
again for the modular targets with-DMODULE

Linux Symposium 195

added toCFLAGS. In the example above it is
also visible that the handling for-DEXPORT_
SYMTABis broken, this method can not de-
tect when a file was added / removed from
the list of files exporting symbols, since the
-DEXPORT_SYMTABwas hardcoded on both
sides of the comparison and thus useless—the
only way to fix this within in the old frame-
work would have been to invokemake four
times, for all combinations of built-in/module
and export/no-export.

A more flexible scheme to handle changing
command lines withinGNU makewas created:

As an example, we present the rule which is
responsible for linking built-in objects into a
library in Figure 7. The actual use is pretty
simple, instead of writing the command di-
rectly into the command part of the rule, it is
instead assigned to the variablecmd_link_

l_target and the build system takes care of
executing the command as necessary, keeping
track of changes to the command line itself.

The implementation works as follows: Af-
ter executing the command, the macroif_

changed , records the command line into the
file .<target>.cmd. As makeis invoked again
during a rebuild, it will include those.*.cmd
files. As it tries to decide whether to rebuild
L_TARGET, it will find FORCEin the prerequi-
sites, which actually forces it to always rerun
the command part of the rule.

However, the command part of the rule now
does the actual work: It checks whether any
of the prerequisites changed, i.e.$? is non-
empty or if the command line changed, which
is achieved by the twofilter-out state-
ments. Only if either of those two conditions
is met, if_changed expands to a command
rebuilding the target, otherwise it is empty and
the target will not be rebuilt.

The advantage of this method, apart from the

easier use in a rule as shown above, is that all
the checking is done within the context of the
actual rule and not in a unrelated place later in
the Makefile. This allows for the use and cor-
rect checking ofGNU make’s per target vari-
ables, e.g.

modkern_cflags := $(CFLAGS_KERNEL)
$(real-objs-m) : \

modkern_cflags := $(CFLAGS_MODULE)

which sets modkern_cflags to
$(CFLAGS_KERNEL) by default, but to
$(CFLAGS_MODULE) for objects listed in
$(real-objs-m) , i.e. for objects compiled
as modules. The compilation rule can then
just use $(modkern_cflags) to get the
right flags for the current object, where the
mechanism described above will take care of
recognizing changes and acting accordingly.

4.6 Dependencies

Between configuration and building of a ker-
nel, the old kernel build needed the user to
run “make dep”, which served to purposes:
It generated dependency information for the C
source files on headers and other included files,
and it generated the version checksums for ex-
ported symbols.

Both of these task have become unnecessary in
2.5, so the reliance on the user to rerun “make
dep ” as needed is gone (additionally, the sys-
tem in 2.4 is broken that in some modversions
cases it’s not even sufficient to rerun “make
dep ”, the only solution then is to do “make
distclean ” and start over).

2.4 used a small tool calledmkdepto generate
dependencies for C sources. This tools basi-
cally extracted the names of the included files
out of the source, but did not actually recur-
sively scan those includes then. So, iffoo.cin-
cludesfoo.h, which itself includesbar.h, mkdep
would only pick up the dependency offoo.con
foo.h, but foo.c also needs recompiling when

Linux Symposium 196

cmd_link_l_target = rm -f $@; $(AR) $(EXTRA_ARFLAGS) rcs $@ $(obj-y)

$(L_TARGET): $(obj-y) FORCE
$(call if_changed,link_l_target)

targets += $(L_TARGET)

[...]

if_changed = $(if $(strip $? \
$(filter-out $(cmd_$(1)),$(cmd_$@))\
$(filter-out $(cmd_$@),$(cmd_$(1)))),\

@set -e; \
$(cmd_$(1)); \
echo ’cmd_$@ := $(cmd_$(1))’ > $(@D)/.$(@F).cmd)

Figure 7: Checking for a changed command line

foo.h changes. This problem was solved in
2.4 by assuming thatfoo.hwould reside inin-
clude/* (which is mostly, but not always, true).
For those files it would generate another set of
dependencies, basically:

foo.h: bar.h
@touch $@

So asbar.h changes, this rule will update the
timestamp onfoo.h, which will then be seen by
the rule forfoo.cand causefoo.cto be rebuild.

This method has several disadvantages:

• Changing the timestamp on files which
have not actually been modified confuses
a number of source management systems.

• It only works for header files in thein-
clude/*subdirectories.

• As foo.h is changed to also includebaz.h,
the dependency information does not get
updated, so a subsequent change tobaz.h
will erroneously not causefoo.c to be re-
compiled.

• Starting from a clean tree, the user has
to wait for the dependency information

to be created (for all files, even for en-
tire subsystem which may not be selected
in the configuration at all), even though
this information is totally useless for a
first build—it’s only useful for deciding
whether a file needs to be rebuilt.

The build system in Linux 2.5 instead uses
gcc’s -MD flag to generate the dependency in-
formation during the build. This flag generates
the full list of all files included during the com-
pile, so in the example above it would generate
“ foo.o: foo.c foo.h bar.h” (and “baz.h” as that
gets added). This procedure is much simpler,
and it gets around all the disadvantages listed
above.

The only quirk which is applied similarly in 2.4
and 2.5 is related to the high configurability of
the linux kernel.

Using the gcc generated list of dependencies
as-is has the drawback that virtually every file
in the kernel includes<linux/config.h>which
then again includes<linux/autoconf.h>

If a user rerunsmake *config to change a
configuration option,linux/autoconf.hwill be
regenerated.makewill notice this and rebuild

Linux Symposium 197

every file which includes autconf.h, i.e. basi-
cally all files. This is correct, but extremely
annoying if the user just changed some option
CONFIG_THIS_DRIVERfrom n to m.

So we use the same trick that “mkdep” ap-
plied before. We replace the dependency on
linux/autoconf.hby a dependency on every
config option which is mentioned in any of the
listed prerexquisites.

The effect is that if a user changes the
CONFIG_THIS_DRIVER option, only the ob-
jects which (themselves, or in any of
the included files) referenceCONFIG_THIS_

DRIVER will be rebuilt, which most likely is
only this one driver.

5 Modules and the kernel build
process

The implementation of loadable kernel mod-
ules has been substantially rewritten by Rusty
Russell in the development cycle 2.5. These
changes are so complex that this paper will not
attempt to describe them in detail. Instead, we
concentrate on the changes which were done in
the build system to accomodate the new con-
cepts.

5.1 Module symbol versions

Loadable modules need to interface with the
kernel. They do this by accessing certain
data structures and functions which have been
marked as exported symbols in the source.
That means not all global symbols in the kernel
are accessible to modules, but only an explic-
itly exported API.

These symbols remain unresolved in the
loadable module objects at build time and
are then resolved at load time, either by an
external program,modutils, in 2.4, or by an

in-kernel loader in 2.5. A common problem
is that Linux does not guarantee a stable
binary interface to modules, in fact the binary
interface often changes between releases in
a stable kernel series and even depending on
the configuration of the kernel. One simple
example is the struct net_device ,
which embeds aspinlock_t . If the kernel
is configured for uni-processor operation, this
lock expands to nothing, so the layout of the
struct net_device changes . When
calling register_netdev(struct
net_device *) where the in-kernel func-
tion register_netdev() assumes the
SMP layout, though the module set up the
argument in the UP layout, we have an obvious
mismatch which often leads to hard to explain
kernel crashes.

Other operating systems solve this problem by
prescribing a stable ABI between kernel and
modules, however in Linux it is preferred to not
carry around binary compatibility layers and
cope with unflexible interfaces, instead since
the source is openly accessible, one just needs
to recompile the modules so that they match
the kernel.

Now, it is easily possible for users to get this
wrong and we thus want a way to detect ver-
sion mismatches and refuse to load the mod-
ules or at least warn. This is what “module
symbol versioning” accomplishes. The basic
idea is to analyze the exported symbols, includ-
ing the types of the arguments for function calls
and generate a checksum for a specific layout.
If anything changes in the ABI, the versioning
process will generate a different checksum and
thus detect the mismatch. The main work in
this scheme is done by the programgenksyms,
which is basically a C parser that reads a pre-
processed source file and finds the definitions
for the exported symbols from there.

This procedure has caused trouble in the

Linux Symposium 198

build system for a long time. In Linux 2.4,
the “make dep” stage, apart from build-
ing dependency information, preprocesses
all source files which export symbols (that
is why they need to be specifically de-
clared in the Makefiles) and then gener-
ates include/linux/modversions.hwhich man-
gles the exported symbols with the gen-
erated checksum, using the C preproces-
sor. The kernel will then not export the
symbol register_netdev , but instead
register_netdev_R43d2381 . A mod-
ule referencingregister_netdev will end
up with an unresolved symbolregister_
netdev_R43d2381 , so loading it into the
kernel will work fine. Has the module how-
ever built against a different kernel or a differ-
ent configuration, the checksum has changed
and any attempt to load it will result in an error
about unresolved symbols.

This implementation was rather fragile, as
it relies on the user to rerun “make dep”
whenever the version information has possibly
changed, and even if only one symbol changed,
that basically forces a recompilation of every
file. In addition, some of the optimizations
made in 2.4’s build system were actually bro-
ken, leading to the well-known fact that it can
get into a state where not even running “make
dep ” will recover from generating inconsis-
tent version information, and starting over
from “make mrproper/distclean ” is
needed.

Module versioning is still a challenge to the
build system in 2.5, the underlying reason
for that is that it introduces cross-directory
dependencies, which a recursive build sys-
tem cannot easily handle. For example,
the ISDN moduledrivers/isdn/hisax/hisax.ko
usesregister_isdn() , which is exported
by drivers/isdn/isdn_common.o. So building
hisax.ko needs knowledge of the checksum
generated fromdrivers/isdn/isdn_common.o,

but it has no way to make sure that it is up-
to-date since it is located in a different subdi-
rectory.

Module versioning is instead implemented as
a two stage process, the first stage is the nor-
mal build, which also generates all the check-
sums. After this stage is completed, we can
be sure that all checksums are up-to-date now,
and then just record this up-to-date information
into the modules. This is one of the reasons
why modules have been renamed with a “.ko”
extension: The first stage just builds the nor-
mal “.o” objects, and afterwards a postprocess-
ing step follows, which builds “.ko” modules
adding version checksums for unresolved sym-
bols and other information.

In more detail, the following steps are exe-
cuted:

• Compiling

Knowledge of which source files export
symbols is not required up front. As
an EXPORT_SYMBOL(foo) is encoun-
tered, the definition ofEXPORT_SYMBOL
from include/linux/module.hwill generate
special sections with tables containg the
name of the symbol, its address and its
checksum. Actually, since the checksum
is not known at this time, the value of
the checksum is set to a symbol called
__crc_foo . This is a trick which allows
to use the linker to record the checksum
even after the object file is already com-
piled.

As the object file has been generated, we
check it for the existance of the special
section mentioned above. If it exists,
the source file did export symbols and
genksymsis run to obtain the checksums
for those symbols. Finally, these check-
sums are entered into the object using the
linker in conjunction with a small linker
script.

Linux Symposium 199

$ nm drivers/isdn/i4l/isdn.ko | grep __crc
86849dd0 A __crc_isdn_ppp_register_compressor
843d2381 A __crc_isdn_ppp_unregister_compressor
66d136e2 A __crc_register_isdn

Figure 8: Examining the checksums for exported symbols

The checksums can easily examined at
running the command shown in Figure 8.

• Postprocessing

After stage one, we have the check-
sums for the exported symbols embedded
within vmlinux and the modules. What
is yet to be done is recording the check-
sums into the consumers, that is adding
the checksums for unresolved symbols
into the modules.

This step was initially handled by a small
shell script but is now done by a C pro-
gram for performance reasons, which also
handles other postprocessing needs like
generating aliases.

This program basically reads all the ex-
ported symbols and their checksums from
all modules, and then scans the modules
for unresolved symbols. For each unre-
solved symbol, an entry in a table associ-
ating the symbol string with the checksum
is made, this table is output as C source
module.mod.cand compiled and linked
into the final.ko module object.

Figure 9 shows an excerpt from
drivers/isdn/hisax/hisax.mod.c which
calls register_isdn() . The
checksum obviously matches the
checksum for the exported symbol
in drivers/isdn/i4l/isdn.ko, so that the
module will load without complaint.

An additional advantage of the new way of
handling module version symbols, apart from
being cleaner from a build system point of

view, is that the actual symbols are not man-
gled, so it became possible to force a module
load even if the checksums do not match—
though the kernel will set the taint flag in these
case.

The module postprocessing step, introduced
mainly for the module symbol versioning, al-
lowed for a number of additional features, i.e.
module aliases / device table handling, addi-
tional version checks as well as recognition of
unresolved symbols during the build stage.

6 Conclusion and Outlook

This paper presented an introduction to using
the kernel build system for the Linux kernel
2.5 and 2.6 for users who want to compile their
own kernels and developers working on ker-
nel code. We also showed how in the transi-
tion from kbuild-2.4 to 2.5, features ofGNU
makecould be applied to remove redundant in-
formation and allow for simpler Makefile frag-
ments as well as a more consistent and fool-
proof build system.

Additionally, parts of the internal implementa-
tion have been described and an overview over
changes related to the new module loader and
new module versioning system has been given.

The kernel build system in 2.5 has been im-
proved significantly, but some features remain
to be implemented.

Linux Symposium 200

static const struct modversion_info ____versions[]
__attribute__((section("__versions"))) = {

{ 0xfa7bbba7, "struct_module" },
{ 0x66d136e2, "register_isdn" },
{ 0x1a1a4f09, "__request_region" },

[...]

Figure 9: Excerpt fromdrivers/isdn/hisax/hisax.mod.c, generated by the postprocessing stage

Separate source and object directories

As opposed to kernel 2.4, source files are not
altered or touched during the build in 2.5 any-
more, enhancing interoperability with source
management systems. The next step is to al-
low for completely separate source and ob-
ject directory trees, so that the source can be
completely read-only and multiple builds at the
same time from the same source are possible.
The current code in 2.5 has taken preparatory
steps for this feature but work is not completed
yet.

Non-recursive build

It is an open question whether it is actually ad-
visable to switch to a non-recursive build sys-
tem. Obviously, distributing build information
with the source files is desirable, this trend is
visible in e.g. the split of the global Con-
figure.help file into per-directory fragments
which eventually were unified with the new
Kconfigconfiguration info. Of course it is es-
sential to keep the build information in the per-
subdirectory Makefiles distributed as it is cur-
rently, it would be a step back to collapse it into
one big file.

However this does not preclude collecting the
distributed information when starting a build
and generating a global Makefile, which is then
used as a main stage. The advantage of this
method is that it can handle cross-directory de-
pendencies more easily, whereas the current
system has to resort to a two-stage process for

module post-processing. On the other hand, a
global Makefile which contains also needs to
incorporate dependencies for all files will use
a significant amount of memory and may turn
out to be problematic on low–end systems.

There are two ways to implement a global
Makefile: One possibility is usingGNU make
itself, replacing the rules to actually compile /
link objects by dummy routines recording the
necessary actions into a global Makefile. The
second possibility is, as the subdir Makefiles
have a very consistent form by now, to write a
specialized parser for those files and have that
generate a global Makefile.

Whether switching to a non-recursive build
system is worth the tradeoffs will be investi-
gated in the Linux 2.7 development cycle.

References

[1] GNU makehttp://www.gnu.org/
software/make/make.html

[2] Michael Elizabeth Castain:
dancing-makefiles
http://www.kernel.org/pub/
linux/kernel/projects/
kbuild/dancing-makefiles-2.
4.0-test10.gz

Device discovery and power management in
embedded systems

David Gibson
OzLabs, IBM Linux Technology Center

dwg@au1.ibm.com, ols2003@gibson.dropbear.id.au

Abstract

This paper covers issues in device discovery
and power management in embedded Linux
systems. In particular, we focus on the IBM®

PowerPC® 405LP (a “system-on-chip” CPU
designed for handheld applications) and IBM’s
PDA reference design based upon it. Peripher-
als in embedded systems are often connected
in an ad-hoc manner and are not on a bus
which can be scanned or probed. Thus the
kernel must have knowledge of what devices
are present built in at compile time. We ex-
amine how the new unified device model pro-
vides a clean method for representing this in-
formation, while allowing good re-use of code
from machine to machine. The 405LP includes
a number of novel power management fea-
tures, in particular the ability to very rapidly
change CPU and bus frequencies. We also ex-
amine how the device model provides a frame-
work for representing constraints the periph-
erals and their interconnections place upon al-
lowable frequencies and other information rel-
evant to power management.

1 Introduction: the device discov-
ery problem

Device discovery is the process the kernel and
its device drivers use to determine what pe-
ripheral devices are present in a machine and

how to communicate with them. Generally this
means determining what IO addresses, inter-
rupt lines and/or other bus specific addresses
and resources are associated with each device.

Usually there are a few peripherals that are
present in every machine of a particular type.
Then there are optional devices that may or
may not be installed in a particular machine.
Some of these may be added or removed only
from one boot to the next, and some may be
hot-pluggable, added or removed while the ma-
chine is running.

The peripheral devices in an embedded ma-
chine often look very different to those in a
conventional desktop or server. Even when a
similar peripheral is used, differences in the
way it is connected into the system can mean
that it must be accessed and initialised quite
differently. Many assumptions that are made
about devices in a “normal” machine cannot
be made in embedded machines, and the hard-
ware and firmware of embedded machines gen-
erally provides much less assistance to the ker-
nel for device discovery. All these things re-
quire different approaches to device discovery
to be used.

Linux Symposium 202

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � �
� � � � �
� � � � �
� � � � �

USB

MDOC

SDIO

FPGA

PCCF

TCPA

LED Ctrl

USB Gadget

SDIO

Tricolour LED

Frontlight
TDES

IIC
Touchpanel

GPIO

Buffers

USB Host

Ethernet

PCMCIA

Battery ADC

CSI Audio Codec
Speakers

Microphone

Line in/out

Buttons

LCD Panel

32MB SDRAM

UIC

O
n−

bo
ar

d
P

er
ip

he
ra

l B
us

 (O
P

B
)

External Bus

Frontlight Ctrl

405LP
PowerPC 405LP PDA Reference Design (eLAP)

SDRAM

EBC

SLA

LCDC

POB

DMAC

D
ev

ic
e

C
on

tro
l R

eg
is

te
r (

D
C

R
) B

us

P
ro

ce
ss

or
 L

oc
al

 B
us

 (P
LB

)

I2C Bus

Debug Sled

32MB NOR Flash

Core
PowerPC 405

Ethernet MAC

UART1

UART0

TS Ctrl.

RS232

PLB
OPB
External Bus

Interrupt Line
Other connection
DCR Bus
I2C Bus

Socket

Physical device

External connection

APM

CPM

RTC

APM Power management unit, implements the CPU sleep/suspend
states (NB: this is not related to the APM BIOS in PC laptops)

Audio Codec Texas Instruments TLV320AIC23 stereo audio codec
Battery ADC ADS7823 ADC monitoring battery voltage

CPM Clock and Power Management unit
CSI Codec Serial Interface (interface to audio codec devices)

DMAC DMA controller (can DMA to/from devices on both the PLB and
OPB)

EBC External Bus Controller
Ethernet MAC RTL8109 Ethernet controller
Frontlight Ctrl DS1050 LCD frontlight controller

GPIO General Purpose IO interface
IIC I2C bus interface (both master and slave capable)

LED Ctrl BU8770KN tricolour LED driver
LCDC LCD display controller

MDOC 64M of M-Systems Millennium Plus Disk-on-Chip
(NAND flash with specialised controller)

PCCF PCMCIA and Compact Flash controller
POB PLB-to-OPB bridge
RTC Real Time Clock

SDIO Toshiba TC6380AF Secure Digital and SDIO inter-
face

SDRAM SDRAM controller
SLA Speech Label Accelerator (hardware implementation

of a particular speech recognition algorithm)
TCPA Atmel AT97SC3201 TPM
TDES Triple-DES accelerator

TS Ctrl Semtech UR7HCT52_S840L touchscreen controller
UARTx NS16550 compatible UARTs

UIC Universal Interrupt Controller
USB Phillips ISP1161 USB interface (includes both host

controller and gadget-side interface)

Figure 1: Block diagram of the eLAP

2 The PowerPC 405LP PDA refer-
ence design

Most of the issues we discuss in this paper
apply to many different embedded machines.
However, for simplicity we focus on one ex-
ample machine, the PowerPC 405LP PDA ref-
erence design, also known as the Embedded
Linux Application Platform or eLAP. As the
name suggests, this is a prototype reference de-
sign for a PDA based on the PowerPC 405LP
CPU.

The IBM PowerPC 405LP is a CPU from the
PowerPC 4xx family. This series of CPUs is
designed for “system-on-chip” embedded ap-
plications. As the name suggests these proces-
sors are implementations of the PowerPC Ar-
chitecture™, however they have some notable
differences from “classic” PPC CPUs (as used
in IBM pSeries™ servers and Apple worksta-
tions). The 4xx CPUs operate at much lower
clock rates (and hence are cooler and cheaper),
although they are in the high end by embedded
standards. They have a much simpler MMU
(just a software loaded TLB) and they have no

Linux Symposium 203

FPU. More interestingly, they include a num-
ber of peripheral devices built into the CPU die
itself (hence the term “system-on-chip”).

Different CPUs in the 4xx family are designed
for different applications and have different
collections of on-chip peripherals. The 405LP
is designed for handheld, battery-powered ap-
plications. Figure 1 shows a block diagram
of the eLAP, including the various built-in
peripherals of the 405LP. The chip includes
no less than three internal buses: the high-
bandwidth Processor Local Bus (PLB) con-
nected directly to the CPU core, the slower
On-Board Peripheral bus (OPB), and the spe-
cial DCR bus. The latter is used to implement
Device Control Registers: rather than using
normal memory-mapped IO, some of the on-
chip devices use these special registers which
are accessed using special machine instruc-
tions. As shown, the 405LP’s peripherals in-
clude amongst other things, an LCD controller,
a real-time clock, an I2C interface and two se-
rial ports. Other 4xx chips can include devices
such as Ethernet controllers, HDLC interfaces,
PCI host bridges, IDE and USB controllers.
The 405LP also includes a number of novel
power management features, which we’ll ex-
amine in §5.

In addition to the devices within the 405LP, the
eLAP includes 32MB of RAM, 32MB of NOR
Flash and a number of additional peripherals,
also shown in Figure 1. Most of these are con-
nected via a minimal bus driven by the 405LP’s
on-chip External Bus Controller (EBC) unit.
An extra debug and development sled can be
attached to the eLAP, again shown in Figure
1. It includes an Ethernet controller, the physi-
cal PCMCIA slot driven by the 405LP’s PCCF
core and the physical connectors for the USB
host port and serial port. Of course, as well as
the peripherals shown, further devices can be
attached via the PCMCIA and SDIO slots and
the USB host interface.

3 Current approaches

3.1 Conventional machines

On normal server or workstation machines, de-
vice discovery is mostly quite straightforward.1

Nearly all modern machines are based on PCI,
which (like most modern buses) is designed so
that devices can be queried and configured in a
standard way. This makes it easy for the kernel
to scan the PCI bus (or buses), determine what
devices are present and their addresses, and
pass this information to the appropriate device
drivers. USB devices provide similar function-
ality, as do PCMCIA and ISA/PnP devices.2

The few remaining devices (including the PCI
host bridge itself) are usually standard—to be
found on all machines of this type and often
nearly all machines of this architecture. They
can be found at well-known addresses, so the
drivers for these devices simply hardcode this
information. On PCs, non-PnP ISA devices do
introduce some problems. In fact they demon-
strate a subset of the problems with embedded
hardware that we will examine in the next sec-
tion.

Many non-x86 machines make device discov-
ery even simpler with firmware support. Open
Firmware (on IBM and Apple PowerPC ma-
chines) and likewise its ancestor OpenPROM
(on Sun machines) builds a tree with informa-
tion about each of the peripherals on the ma-
chine. At boot time the kernel queries this in-
formation, making a copy of the device tree
which can later be used by drivers to find
devices. The ACPI BIOS found on recent
Intel® machines provides some similar infor-
mation, although neither the ACPI implemen-
tations nor Linux’s use of them is very well es-

1Although on big servers keeping track of the devices
once they’re discovered can be another matter.

2At least in theory; many ISA/PnP implementations
are buggy in practice.

Linux Symposium 204

tablished as yet.

3.2 Embedded weirdness

On embedded machines all the assumptions
that are made on “normal” machines break
down. Embedded machines can and do have
arbitrarily peculiar combinations of peripherals
connected in a more-or-less ad-hoc manner.

Often, many of an embedded machine’s pe-
ripherals are connected via an unconventional
bus which provides no facilities for system-
atic scanning or probing of devices. On the
405LP this is true of both the on-chip buses
and the main external bus. Devices can appear
essentially anywhere within the CPU’s phys-
ical address space. Some times the address or
other behaviour of a device is affected by a cus-
tom FPGA or other programmable logic device
with its own control registers. Device inter-
rupt lines introduce even more problems, being
routed in complex and arbitrary ways that are
often controlled or masked by a board-specific
FPGA or CPLD. Devices can sometimes have
multiple dependencies on other devices: for
example on the eLAP, audio is driven by the TI
codec, which is controlled and configured via
the I2C bus. However, the actual audio data is
delivered to the codec via a serial connection to
the on-chip Codec Serial Interface (CSI). The
CSI in turn depends on the on-chip DMA con-
troller to supply data from RAM.

Sometimes machines also have a more conven-
tional bus such as PCI or PCMCIA, but it may
have to be accessed via a bridge which is not
configured in the same way as one would ex-
pect on a conventional machine. Worst of all,
there are dozens or hundreds of different types
of embedded machine, each with its own com-
pletely different set of devices and connections.

Under these circumstances, it is tempting to
turn to each board’s firmware to provide in-

formation about which devices are present.
Unfortunately the firmware on most embed-
ded machines is very primitive, providing little
more than a boot loader. Usually it will provide
a few useful pieces of information, such as the
amount of RAM on the system or the board
revision, but it certainly won’t give compre-
hensive device information. Furthermore, what
information the firmware does provide usually
can’t be used without already knowing some-
thing about the machine in question, since em-
bedded firmwares are almost as varied as em-
bedded machines themselves.

Since embedded machines can and do break
any assumption one might care to make about
how devices are attached, there is no magical
way that the kernel can detect what devices are
present. So, the only approach is to have the
kernel “just know” the device setup for a par-
ticular board by building the knowledge into
the kernel at compile time.

Although it is impossible to completely avoid
hardwired knowledge of boards in the kernel,
we do want to keep this information in as clean
a way as possible. Specifically, we want to iso-
late the direct knowledge of board specific de-
tails to as small a section of the kernel as pos-
sible, and we want to make it easy to add the
details of new boards and their peripherals.

In this paper, we generally assume that the ker-
nel must be configured for one particular type
of embedded machine, since this is the sim-
plest case. Building a kernel which will sup-
port multiple machines is certainly possible,
and most of the methods we discuss can still
be applied. In this case the kernel need to in-
clude device information about all supported
boards. Early in boot, the kernel will identify
the machine it is running on (by some ad-hoc
method), and select which information to use
on that basis.

Now, we examine some of the existing meth-

Linux Symposium 205

ods by which embedded devices are supported
in the kernel.

3.3 Hardcoded hacks

The naïve approach to handling embedded de-
vices that aren’t on a conventional bus is to
treat them all like the “system” devices on a PC
or other conventional machine. That is, sim-
ply hardcode knowledge of the device into the
relevant device driver or into the kernel initial-
isation code for the machine in question. This
approach is currently used for quite a number
of embedded devices—unsurprisingly since, as
we’ll see, a comprehensive better approach has
yet to be implemented.

This method has some serious shortcomings.
The most obvious problems come with embed-
ded peripherals that are similar to ones also
found in conventional machines. For obvious
reasons, it is normal in this case to adapt the
existing conventional driver for use in the em-
bedded machine.

Sometimes this has been done by adding
#ifdef s to the driver for the board specific
code. For example, this has been done with the
cs89x0 driver for the CrystalLAN CS8900
Ethernet chip. This chip is used on some ISA
cards, but is also found on the “Beech” em-
bedded board (another IBM reference board
based on the 405LP). Apart from the fact
that#ifdef s make the driver code ugly, this
clearly causes a problem if the embedded ma-
chine can also have a normal ISA or PCMCIA
version of the device: the kernel can’t support
both versions of the peripheral on the same ma-
chine.

Another method is to copy, then modify the
existing driver to make a version specific to a
particular embedded machine. The approach
was taken for thearctic_enet driver for
the Ethernet on the eLAP’s debug sled. The

sled’s Ethernet is based on an RTL8019 chip,
which is used in a number of ISA cards, as
well as several other embedded machines. This
method allows multiple versions of the de-
vice to be simultaneously supported, but incurs
the obvious maintenance problems of having
several almost-but-not-quite identical drivers
present in the kernel. The situation is aggra-
vated as more embedded machines are sup-
ported.

The fundamental problem with this approach
is that there are many more types of embed-
ded machine than there are of normal ma-
chines. Indeed there is often only one domi-
nant type of conventional machine per archi-
tecture (PC for x86, CHRP for PowerPC, Sun
server/workstation for SPARC, etc.). With the
large number of different types of embedded
machine, direct hardcoding quickly becomes
messy: there is a lot of duplicated code, and
it is inconvenient to add new machines and pe-
ripherals.

3.4 The OCP subsystem

Since we can’t entirely avoid hardcoded infor-
mation, the obvious approach to isolating the
messiness is to encode information about de-
vices into a data structure which is statically
compiled into the kernel, but parsed to provide
data to the drivers at runtime. This solution is
conceptually similar to using device informa-
tion from firmware except that the device tree
is supplied by the kernel itself, rather than read
at boot time.

The “OCP” subsystem (standing for On-Chip
Peripheral) is a partial implementation of this
approach. It only covers the on-chip devices on
PPC 4xx chips, and is quite limited in the sorts
of device information it can represent, but it iss
still a substantial improvement over hardcoded
drivers.

Linux Symposium 206

The subsystem has been through several signif-
icant rewrites before reaching its present form.
The initial implementation in thelinuxppc_
2_4_devel BK tree had a number of seri-
ous design and interface problems. It was then
rewritten in 2.5 based on the new Linux uni-
fied device model, and using the PCI subsys-
tem as a reference. This version is considerably
cleaner, but still contains some poorly thought
out elements, in particular some things have
been copied from PCI which make little sense
in their new context. It has now been rewrit-
ten again by Benjamin Herrenschmidt in the
linuxppc-2.4 BK tree. This latest rewrite
is conceptually similar to the 2.5 version, but
considerably simpler and cleaner. This final
version still needs to be forward ported to 2.5,
re-introducing the integration with the unified
device model.

For each CPU with OCP devices, there is a ta-
ble of definitions like that in Figure 2. This is
found in a C file specific to the particular CPU,
along with any initialisation or support code for
that CPU. The example in Figure 2 doesn’t in-
clude all the 405LP’s on-chip devices, since
not all the drivers have been adapted to use
the OCP infrastructure yet. The table con-
sists of ocp_def structures, shown in Fig-
ure 3. At boot time, the OCP system scans the
core_ocp table to produce a list of OCP de-
vices present, making anocp_device struc-
ture (also in Figure 3) for each to keep track of
it at runtime.

The vendor and function fields between
them identify the type of device. This mim-
ics the vendor/function pairs used to iden-
tify PCI and USB devices. However in this
case the ID values are not built into the de-
vice but are simply arbitrary values allocated
in include/asm/ocp_ids.h . Drivers
for the on-chip peripherals register themselves
when loaded, using theocp_register_
driver function and a table of OCP device

from
arch/ppc/platforms/ibm405lp.c

struct ocp_def core_ocp[]
__initdata = {

{ .vendor = OCP_VENDOR_IBM,
.function = OCP_FUNC_OPB,
.index = 0,
.irq = OCP_IRQ_NA,
.pm = OCP_CPM_NA,

},
{ .vendor = OCP_VENDOR_IBM,

.function = OCP_FUNC_16550,

.index = 0,

.paddr = UART0_IO_BASE,

.irq = UART0_INT,

.pm = IBM_CPM_UART0
},
{ .vendor = OCP_VENDOR_IBM,

.function = OCP_FUNC_16550,

.index = 1,

.paddr = UART1_IO_BASE,

.irq = UART1_INT,

.pm = IBM_CPM_UART1
},
{ .vendor = OCP_VENDOR_IBM,

.function = OCP_FUNC_IIC,

.paddr = IIC0_BASE,

.irq = IIC0_IRQ,

.pm = IBM_CPM_IIC0
},
{ .vendor = OCP_VENDOR_IBM,

.function = OCP_FUNC_GPIO,

.paddr = GPIO0_BASE,

.irq = OCP_IRQ_NA,

.pm = IBM_CPM_GPIO0
},
{ .vendor = OCP_VENDOR_INVALID
}

};

Figure 2: OCP device table for 405LP

Linux Symposium 207

from include/asm/ocp.h

struct ocp_def {
unsigned int vendor;
unsigned int function;
int index;
phys_addr_t paddr;
int irq;
unsigned long pm;
void *additions;

};

struct ocp_device {
struct list_head link;
char name[80];
const struct ocp_def *def;
void *drvdata;
struct ocp_driver *driver;
u32 current_state;

};

Figure 3: OCP device structure

from drivers/i2c/i2c-ibm_iic.c

static struct ocp_device_id
ibm_iic_ids[] = {

{ .vendor = OCP_ANY_ID,
.function = OCP_FUNC_IIC },

{ .vendor = OCP_VENDOR_INVALID }
};

static struct ocp_driver
ibm_iic_driver = {

.name = "iic",

.id_table = ibm_iic_ids,

.probe = iic_probe,

.remove = iic_remove,
};

...

ocp_register_driver(
&ibm_iic_driver);

Figure 4: OCP driver registration (for the IIC
driver)

IDs like that shown in Figure 4. This again is
analogous to a PCI driver. The OCP subsys-
tem matches the driver against the list of OCP
devices, calling the driver’s probe routine for
each relevant device.

The index field is used to distinguish be-
tween multiple devices of the same type. The
paddr and irq fields, unsurprisingly, give
the device’s physical base address (on PPC all
IO is memory-mapped) and its IRQ line. The
pmfield is used for power management, we’ll
look at it in §5.3. Finally, theadditions
field is a hack used to supply extra device-
specific information. It is not needed for any
of the devices on the 405LP but it is used
on some other chips: for example, some 4xx
CPUs, such as the 405GP and NPe405H in-
clude one or more Ethernet MAC controller
(EMAC) units. These make use of a spe-
cialised DMA controller known as the Memory
Access Layer (MAL). Theadditions field
is used to identify which MAL channels are
associated with each EMAC—another piece of
information that the kernel has to “just know.”

The 2.5 version of the OCP system is in-
tegrated with the unified device model. At
bootup the OCP code registers an OCPbus_
type and one instance of it—all the OCP de-
vices are registered as devices on this bus.3 The
ocp_device and ocp_driver structures
become wrappers around the device model’s
device anddevice_driver structures.

4 Future approaches

As yet, there is no really convenient and com-
prehensive way of dealing with embedded “un-
probeable” peripherals. The OCP system is

3This ignores the distinction between the two on-chip
buses, PLB and OPB. We can get away with this because
the POB is always enabled and has a fixed configuration,
so in practice we can ignore the distinction for the pur-
poses of device discovery.

Linux Symposium 208

probably the closest thing to such a system,
but it has significant limitations: it only covers
PPC 4xx on-chip devices, and its data structure
is a flat table so it cannot represent peripherals
behind a bus-to-bus bridge or other more com-
plex interconnections.

The fact that some peripherals are built into
the CPU chip is interesting from a hardware
point of view. However, for the purposes of de-
vice discovery, there is little inherent difference
between on-chip devices, and devices which
are on a separate chip, but which still can’t be
straightforwardly scanned or probed. It seems
worthwhile, then, to extend the idea of the OCP
system to cover embedded devices more gener-
ally.

The Linux unified device model provides the
obvious place to represent information about
these devices at runtime: it already provides
the code for matching devices to drivers and its
tree structure allows multiple buses with con-
figurable bridges between them to be repre-
sented.

It is not immediately clear how to represent
everything that’s needed in the device tree,
though. While for many devices the physical
address and IRQ number is all the informa-
tion that is needed, some devices have mul-
tiple IRQs and/or IO windows, at discontinu-
ous addresses. Some buses require different re-
source addresses: for example many of the 4xx
on-chip devices need DCR numbers, and I2C
devices need I2C addresses rather than phys-
ical IO addresses. Hence, devices on differ-
ent buses are likely to need different wrappers
aroundstruct device providing different
address information.

Even less obvious is how to represent devices
with multiple connections, such as the audio
codec on the eLAP, connected both the the I2C

bus and to the CSI.4 As yet, the device model
does not have a clear way to represent this.

Another as yet unanswered question is how the
device information should be represented in the
kernel image. In fact, we gain a little flexibil-
ity if this information is removed from the ker-
nel proper by having it as a blob of data which
is passed to the kernel by the bootstrap loader
(the shim between the firmware bootloader and
the kernel proper which handles decompress-
ing the kernel and moving it to the correct ad-
dress in memory). This has the advantage that
on those machines which do have a reasonable
sophisticated firmware or bootloader, such as
PPCBoot/U-Boot (see [7]), the device informa-
tion can be taken from there.

from include/asm/bootinfo.h

struct bi_record {
unsigned long tag;
unsigned long size;
unsigned long data[0];

};

#define BI_FIRST 0x1010
#define BI_LAST 0x1011
#define BI_CMD_LINE 0x1012
#define BI_BOOTLOADER_ID 0x1013
#define BI_INITRD 0x1014
#define BI_SYSMAP 0x1015
#define BI_MACHTYPE 0x1016
#define BI_MEMSIZE 0x1017
#define BI_BOARD_INFO 0x1018

Figure 5: Boot info records

On PPC systems, there already exists a flexible
method of passing data from the bootstrap to
the kernel proper through “boot info records.”
The bootstrap passes to the kernel a list ofbi_
record structures, shown in Figure 5. Each

4Note that this is a different problem to multipath IO.
That deals with the case where a device can be accessed
by any of several routes, here we have devices that re-
quires several connections simultaneously.

Linux Symposium 209

bi_record is a blob of data with a length and
tag, the internal format of the information be-
ing determined by the tag (some tag values are
also shown in Figure 5). Currently this method
is used for passing information such as the size
of memory and the board and bootloader ver-
sions. This system could be extended to pass
an entire set of device information to the kernel
(there is no reason a particularbi_record
couldn’t contain a list of furtherbi_record s,
giving a tree structure).

A related question is how to represent the de-
vice information in the kernel source. The sim-
plest approach would be to directly include the
data structure used to represent the informa-
tion at boot time. However, that’s likely to
be quite inconvenient to edit and extend, espe-
cially if the format includes length fields (like
bi_record s) or internal pointers. It might be
worthwhile, then, to create adevice tree com-
piler: a program used during the kernel build
to take a text file describing the device layout
and generate code or data to be included in the
kernel image.

5 Power management

In a battery powered device such as the eLAP,
it is clearly important to minimise power con-
sumption. The most obvious way to do this
is to power down sections of the system when
they are not in use. Obviously, this means that
the kernel needs to know when a device is in
use, including when it is in use indirectly be-
cause another device relies on it.

The topics of power management and device
discovery are therefore related: device discov-
ery is about providing exactly the sort of in-
formation about the interconnection of devices
that effective power management requires.

As yet the integration of power management
techniques with detailed device information is

very much a work-in-progress, even on con-
ventional systems and doubly so on embedded
machines. So, we can only give an overview
here of what the major issues are: most of the
hard cases remain to be investigated, let alone
implemented.

Again we will use the eLAP as our example:
the 405LP’s power management features intro-
duce some new (and largely unsolved) prob-
lems in providing device information for power
management. So, we first examine these fea-
tures, then in §5.2, §5.3 and §5.4 we examine
several different methods of reducing power
consumption and the device information prob-
lems they introduce.

5.1 eLAP power management features

The 405LP CPU is designed especially for low
power operation and as such it has some novel
and interesting power management features.
Most of the on-chip peripherals can be pow-
ered on and off under software control. Some
also provide more detailed power control to al-
low power savings when only parts of the pe-
ripheral are in use, or when it is in use inter-
mittently. It also allows for several methods of
saving the CPU state while shutting down the
chip as a whole (i.e., “sleep” modes).

More interestingly, the 405LP includes a clock
generation core that allows the clock frequency
of the CPU core and also the PLB, OPB and
EBC buses to be altered dynamically. The ra-
tios between the CPU and various bus frequen-
cies are not fixed, so the chip can be adjusted
differently for IO versus compute performance.
While a number of different CPUs allow the
frequency to be changed while running, the
405LP can change frequency exceptionally
quickly (microseconds) which enables new
power management techniques based on dy-
namically adjusting frequency based on work-
load and idle periods. The 405LP can also op-

Linux Symposium 210

erate at a variety of different voltages, which
can provide much greater power savings than
just adjusting the frequency (power consump-
tion varies roughly linearly with frequency and
cubicly with voltage, maximum frequency is
roughly linear with voltage). Another novel
feature of the 405LP is that it can continue to
operate, albeit slowly in some cases, while a
voltage transition is in progress.

As well as supporting the 405LP’s features,
the eLAP board has some extra power man-
agement features of its own. A number of the
on-board devices, such as the audio codec, in-
clude the ability to power down some or all of
their operations while not in use. Other de-
vices, such as the USB and SDIO chips can be
powered down under the control of an FPGA
register.

5.2 Static power management

We use the term static power management for
the process of suspending or sleeping a ma-
chine, i.e. saving the machine’s state while
turning most or all of the machine off, then
restoring the state when the machine is pow-
ered on again. This of course is normal in ev-
eryday laptops, and handling this for embed-
ded machines is not a great deal different.

Embedded devices do introduce some extra
complexities, though. On PC laptops, the
BIOS (either APM or ACPI) provides some
support to the kernel on how to properly sus-
pend the machine (indeed, in the APM case the
BIOS handles most of the work itself). Em-
bedded machines, on the other hand, usually
require the kernel to know how to suspend and
resume the machine directly. For example the
suspend code for the eLAP knows how to use
the 405LP’s features to save the CPU state,
how to configure the RAM to enter self-refresh
mode, how to use the board’s FPGA registers
to turn off the board, and how to rebuild the

state when the machine is resumed.

In addition, static power management on all
machines requires knowledge of what devices’
dependencies on each other are, so they can
be shut down and later restarted in the cor-
rect order—this was one of the major moti-
vations for the creation of the unified device
model. Hence, all the complexities of obtain-
ing detailed device information for embedded
systems impact on static power management.
However static power management doesn’t re-
ally add further difficulties beyond those we
have already discussed for device discovery.

5.3 Peripheral power management

We use the term peripheral power management
to refer to disabling and powering down pe-
ripheral devices when they are not in use. This
is often relatively straightforward, since it can
be handled directly by the driver for the device
in question. This also delegates the question
of when the device is “in use” to the driver.
Sometimes it is sufficient to enable power to
the device when it is open, and disable it when
closed, other times more fine-grained control
of the power is desirable, e.g. to take advan-
tage of idle periods.

When the device depends on other devices be-
ing enabled, the situation is a little more com-
plex. However the driver will generally know
what the other devices are and their drivers, so
it is usually quite simple to create an ad-hoc in-
terface whereby one driver can ask the other to
enable the device it requires.

Difficulties do arise where power to one de-
vice is controlled by another: for example the
4xx on-chip devices are controlled by a cen-
tral clock and power management unit (CPM).
Similarly many boards have devices which are
powered on and off by board-specific FPGA
registers.

Linux Symposium 211

The 4xx CPM has a simple interface, allow-
ing the OCP subsystem to support peripheral
power management quite easily. Thepmfield
in the OCP device definitions (see Figures 2
& 3) is a mask describing which bit in the
CPM registers controls power to this periph-
eral. Drivers can then use functions from the
OCP subsystem to switch the device on and off.

Obviously, for peripherals that are unique to a
particular board it is also easy for the driver
to directly control power to the device. So far
however, little work has been done on the gen-
eral case where common devices may be pow-
ered on and off by board specific controls.

5.4 Dynamic power management

Dynamic power management (DPM) refers to
dynamically adjusting CPU frequencies and
voltage during operation. This approach is
quite new, at least in Linux, and very much un-
der development. The details of the motiva-
tions and approaches to dynamic power man-
agement are outside the scope of this paper,
for more information see [4]. IBM and Mon-
taVista software are collaborating on further
development in this area.

DPM does introduces some new problems re-
lated to device information. To work properly,
devices in operation may have to impose con-
straints on what frequency or other settings are
allowed. For example, a device may require
a certain amount of bus bandwidth, and hence
impose a minimum bus frequency, or it may re-
quire interrupts to be handled without too high
a latency, and hence impose a minimum CPU
frequency.

These constraint details are somewhat like the
basic information about device interconnection
that we have already examined, but clearly re-
quire even more detailed information about the
devices. Since these constraints may well de-

pend on details of the hardware interconnects,
this is yet more information which the kernel
must “just know.”

Again, the unified device model provides an
obvious framework in which to represent this
information. [4] discusses some methods for
setting constraints within drivers. A general
approach to representing constraints in a way
that is easily extensible to new boards is yet to
be implemented, and is likely to take consider-
able further investigation and development.

References

[1] IBM Corporation,PowerPC® 405LP
Embedded Processor User’s Manual,
Preliminary, 2002.

[2] IBM Corporation,PowerPC® 405GP
Embedded Processor User’s Manual,
Seventh Preliminary Edition, 2000.

[3] IBM Corporation,PowerNP NPe405H
Network Processor User’s Manual,
Preliminary, 2002.

[4] IBM and MontaVista Software,Dynamic
Power Management for Embedded
Systems, Version 1.0,
http://www.research.ibm.
com/arl/projects/papers/
DPM_V1.1.pdf , 2002.

[5] linuxppc_2_4_devel kernel tree,
bk://ppc@ppc.bkbits.net/
linuxppc_2_4_devel .

[6] linuxppc-2.4 kernel tree,
bk://ppc@ppc.bkbits.net/
linuxppc-2.4 .

[7] PPCBoot homepage,http:
//ppcboot.sourceforge.net/ .

Linux Symposium 212

About the author

David Gibson is an employee of the IBM Linux
Technology Center, working from Canberra,
Australia. Most recently he has been work-
ing on board and device bringup for Linux on
embedded PowerPC machines, along with var-
ious bits of kernel infrastructure for cleanly
supporting PowerPC 4xx and other system-on-
chip CPUs. He is also the author and main-
tainer of the orinoco driver for Prism II based
802.11b NICs. In the past he has worked on
ramfs (as included in the -ac kernel tree), and
“esky,” a userspace implementation of check-
point/resume.

Legal Statement

This work represents the view of the author and
does not necessarily represent the view of IBM.

IBM, PowerPC, PowerPC Architecture and pSeries
are trademarks or registered trademarks of Interna-
tional Business Machines Corporation in the United
States and/or other countries.

Intel is a registered trademark of Intel Corporation
in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

Gnumeric
Using GNOME to go up against MS Office

Jody Goldberg
jody@gnome.org

Abstract

MS Office is popular for a reason. Microsoft
and its massive user base have kicked it hard,
and polished the roughest edges along the way.
The hidden gotcha is that MS now holds your
data hostage. Their applications define if your
data can be read, and how you can manipu-
late it. The Gnumeric project began as a way
to ensure the GNOME platform could support
the requirements of a major application. It has
evolved into the core of a spreadsheet platform
that we hope will grow past the limitations of
MS Excel. Gnumeric has taught us a lot about
spreadsheets and, for the purpose of this talk,
about what types of capabilities MS has put
into its libraries and applications to provide the
UI that people are familiar with. I’d like to dis-
cuss the tools (available and unwritten) neces-
sary to produce a competitor and eventually a
replacement.

1 Introduction

History

• Aug 17 1997 GNOME Created

• July 2 1998 Gnumeric Created

• Dec 31 2001 version 1.0.0 released

• Aug ?? 2003 version 1.2.0 released

Miguel de Icaza began work on Gnumeric in
July 1998 with the stated purpose of building

a large, real world, application to validate the
GNOME libraries. Without much background
in spreadsheets he persevered, learning as he
went, writing maintainable code, and testing
such core libraries as gnome-canvas, gnome-
print, libgsf, and Bonobo.

Status

At this writing Gnumeric now has basic sup-
port for 100% of the spreadsheet functions
shipped with Excel and can write MS Office
95 through XP, and read all versions from Ex-
cel 2 upwards. It covers most major features,
but is still lacking pivot tables, and conditional
formats which are planned for the 1.3 release
cycle.

2 Container File Format

The first step in interoperability with MS Of-
fice is to read and write its files. MS Office 95
was an epochal event for the suite. Before then
each application had its own format. As of Of-
fice 95 it shares a single container format used
to wrap each application’s native representa-
tion. This is convenient for embedding because
it allows a user to transfer the entire content of
a document, including all of its components as
a single file.

Linux Symposium 214

2.1 OLE2, The MS solution

The wrapper format used throughout MS of-
fice is calledOLE2. That title actually en-
compasses the container and a sub-format used
to store metadata. GNOME had no support
for reading or writing either one. For Gnu-
meric Michael Meeks used earlier work in
laola by Arturo Tena and Caolan McNamara,
and scraps of documentation to create libole2.
In the last few years the set of available doc-
umentation has improved greatly. Apache’s
POIFS project has generated some nice co-
herent write-ups for their Java implementation.
Additionally, although the Chicago project has
not produced any code, they googled extremely
well, and collected enough documentation to
illuminate the remaining corners.

OLE2 is quite literally a filesystem in a file. It
has a directory tree for the offsets and file allo-
cation tables to store the layout of the blocks.
Unfortunately for libole2 it also has a meta
file allocation table, which libole2 could not
export correctly. As a result, after approxi-
mately 6.8 MB of data, the library and all of its
derivatives produced invalid results. Given the
new documentation, we’re written libgsf (the
GNOME Structured File library) to solve that.
The new code has been quite stable, and now
that libole2 has been deprecated it has made
its way into koffice, abiword, and several other
applications. Including potentially OOo via the
WordPerfect library.

2.2 The Future

• Format should be easy to create and ma-
nipulate without special tools.

• Existing filemagic type sniffing should be
able to ID the documents as documents,
not their container type

• Support for ‘filesystem in a file’ structured
files to facilitate embedding and split data

from metadata.

• Space & time efficient for reading and
generation

• Portable to as many platforms as feasible

• signing

• encryption

• embedded object handling

• possible dual/multiple version support

• meta data

Things we do not need

Transaction support is probably overkill.
Given the general size of documents, it seems
simpler to just generate the entire file each time
it is saved.

In-place update (rewrite one element without
touching the rest) is also probably unnecessary.
This is useful for things like presentation pro-
grams with large data blobs (images, sound)
and relatively little content, it is also conceiv-
ably useful in situations where an external app
is editing just metadata. However, the imple-
mentation costs for these are high in compari-
son to available manpower.

At the time of this writing, OOo’s container
format is the leading contender. There are dis-
cussions at this time to potentially adopt the
container format (not the underlying xml con-
tent).

3 File Format

3.1 XLS

Like a Russian doll, parsing the wrapper for-
mat is just the beginning. Within the OLE2

Linux Symposium 215

files are sub-files called Book or Workbook
(depending on version) that are in theBIFF
format with several different variants. There is
actually some reasonably good documentation
for this due to some MS greed (tm) and hard
work on the part of the OOo xls filter team.
BIFF is fairly similar in structure to earlier lo-
tus formats, and thanks to microsoft padding
one of its books (The Excel 97 Developers Kit)
with their internal file format docs we know
a fair amount about how things are structured.
Contrary to the common Slashdot wisdom the
hard part is not in knowing the broad details
of the records. The devil is in the details, im-
plementers need to understandwhatMicrosoft
means for each flag and have a strict superset
of the corresponding application to avoid infor-
mation being lost when round tripping data to
a proprietary format.

An odd truth of open-source spreadsheets is
that they generally interoperate better via xls
than their native formats. E.g., Gnumeric can
read OpenCalc, but not write it, and OpenCalc
has no support for Gnumeric at all. This speaks
volumes for the ubiquitous nature of the Mi-
crosoft formats. The resource expenditure to
support xls fully limits the amount of develop-
ment time for other formats.

Within the BIFF records is nested yet another
format to store the details of the expressions,
which is also reasonably documented.

3.2 Escher

A major change in Office97 was the addition
of a shared drawing layer for all of the ap-
plications. This allows you to draw an org
chart in Excel and paste it into Powerpoint.
Its high level format was reasonably docu-
mented on the web until that was pulled a
few years ago. This content is nested within
BIFF records within OLE2 records. Escher
is a format in the classic ‘specification by im-

plementation’ genre. Although both OOo and
Gnumeric have decent parsers for the records
themselves, parsing the content is tricky. One
rarely knows what attributes correspond to vis-
ible properties. Exporting escher is even more
complex. Both Gnumeric and OOo appear to
have adopted a monkey see, monkey do ap-
proach to work around Microsoft’s reluctance
to use ‘conventional’ values for flags requiring
things like 0xAAAAFFFF for true for some of
the boolean flags.

3.3 WMF/EMF

Users expect their word/clip art to appear faith-
fully. That content is usually stored using a set
of drawing primitives in a series of MetaFile
formats (Windows and Extended). The primi-
tives are slightly higher level than a serialized
set of X protocol requests. There in an existing
rasterizer for wmf in libwmf, but it can not cur-
rently handle emf. OOo has a parser for both
wmf and emf, but it is tightly coupled to the
OO platform and of marginal quality. Proper
handling of this is still an open question. There
have been discussions with the maintaers of
libwmf, and libEMF to combine efforts to fill
this niche, but nothing concrete has material-
ized as yet.

3.4 Security

Unfortunately each element of MS Office han-
dles this slightly differently, and approaches
vary from version to version. There is no se-
cure notion of authentication within OLE2, or
xls. Microsoft apparently assumes that is han-
dled at a higher level. Within xls there are 3
main forms of encryption. The first is sheet
level protection that is little more than an XOR
of the records with a 16-byte hash of the pass-
word. This is tissue-thin, and can be supported
trivially. Workbook level encryption is sig-
nificantly more secure and uses md5 hashed

Linux Symposium 216

passwords and rc4 to encrypt the BIFF record
content. Workbook level protection is rather
strange. It uses the secure workbook level en-
cryption, with a hard coded password. Gnu-
meric is the only open source application that
can handle all three.

3.5 VBA

This is still largely uncharted territory for open
source applications. MS Office appears to store
the VBA code in at least 3 formats.

1. Compressed source code. libgsf, libole2,
and openoffice can all decompress the
code with varying degrees of accuracy.
What none of us knows is how to lo-
cate the offset to the start of the com-
pressed stream. OO and libole2 both have
kludges in place to guess, but neither is
reliable. There is clearly documentation
on the subject available to the anti-virus
manufacturers, but its licensing precludes
its use in open source libraries. This
is the most likely route to support im-
porting VBA in the near term. It is not
immediately obvious that source code is
what we really want, because it requires a
lexer, parser, and libraries to back it up—a
rather significant amount of work. There
is some hope that the Mono project and
its emulation of the .Net API will provide
support for this.

2. P-Code. A preparsed set of tokens to be
interpreted by the VB engine. The for-
mat of this has no open documentation,
although it is fairly amenable to parsing.
On the positive side this is the holy grail
in many ways. Having pre-parsed code re-
moves the need for a lexer and parser, and
allows us to map the content to more mod-
ern languages such as python. The down
side is that the p-code comes in many vari-
ants, and depends on versioning.

3. S-Code. Like P-Code, but different in
some unspecified way. No known parsers
or documentation exists.

4 Expansion

In addition to their core functionality, office ap-
plications are expandable. Organizations have
some limited ability to customize their installa-
tions, and third party developers can use them
as a development platform for their niche ap-
plications. From tasks as simple as work-
flow macros, up to massive extensions such as
FEA’s @Risk, or DeltaGraph, people are ex-
tending MS Excel.

4.1 XLLs & XLMs

Early versions of Excel offered 2 forms of ex-
tension. The first was a kludge that grafted a
pseudo-procedural language into the functional
format of a spreadsheet, called XLM. This is
no longer widely used.

There is also the opportunity to load an XLL,
a DLL shared library with special entry points,
directly into the process’ address space. Al-
though its interface is only partially docu-
mented, somewhat byzantine, and deprecated,
this is the most popular form of extension. The
primary benefit is that a developer’s code can
be written in C/C++, and compiled to link the
external libraries fairly easily.

To the best of my knowledge there are no open
source or proprietary applications that support
XLMs or XLLs other than MS Excel. This
hinders transition. XLMs could potentially be
supported, but the limited remaining user base
does not warrant the expense. XLLs might be
feasible under win32, but due to the nature of
the interface, would probably require WINE
under *nix.

Linux Symposium 217

4.2 VBA & OLE

With Office97 came a unification of embed-
ding and scripting via VBA and the OLE com-
ponent model. VBA as a language was a sig-
nificant improvement over XLM and quickly
supplanted it. OLE was more of a mixed bless-
ing. The increased complexity of the interface
required Dev Studio wizards to generate the
wrapper code, which was fairly unmaintainble.
As a result most installations fell back on VBA
external declaration support to add new capa-
bilities. This worked well for tasks amenable
to scripting, but was painful when linking to
external analytics. Adding a new spreadsheet
function involved writing it in C, then creating
a dummy wrapper in VBA that links to it.

4.3 Gnumeric

Worksheet function management is an area
where Gnumeric is well ahead of MS Office.
Adding new functions to Gnumeric is triv-
ial. An abstract interface for loading modules
has been implemented for shared libraries (via
glib’s g_module utilities), and python. Cou-
pled with an xml-based configuration mecha-
nism and just-in-time loading, the vast major-
ity of the worksheet functions are in plugins.

Less well defined are the scripting interfaces.
Building on GNOME’s strong set of language
bindings there have also been experiments in
scripting in guile, perl, CORBA, VB, and
python. The only clear result thus far has been
that the scripting interface is fairly language-
agnostic. Defining a clear and coherent api is
on the short list of extensions to be made dur-
ing the 1.3–to–2.0 development cycle.

5 Preferences

Storing user preferences is another area where
GNOME technology has the advantage over

its Windows counterpart. GConf attempts to
learn the lessons of the Windows registry while
learning from its failures. By storing content in
several distinct user readable xml files, gconf
offers the convenience of a global structured
storage, while retaining the flexibility in the
face of file errors or corruption not found in the
more monolithic Windows registry. Work re-
mains though. There is still some thought nec-
essary to implement lockdown features, and to
address logical paths (HOME, PREFIX, etc.).

6 GUI Toolkit

Over time, the initial separation between
gnome libraries as extensions to gtk have been
largely removed. With the addition of pango to
handle advanced text, and extensions to Gtk’s
rendering model that produced the foocanvas,
gtk+ now supports the primary display needs
of Gnumeric. Coupled with libglade for easy
maintenance and configurability, it is relatively
painless to produce extremely usable dialogs.
There are, however, a few lingering issues to
address.

Configurable UI

The current gtk+ api for menus and toolbars
makes no distinction between the actions and
their layout. Applications are forced to hard-
code their menu/toolbar layouts in order to
modify them. This removes the ability of a
user to reorganize things. The limitations of
the gtk+ path-based API prompted the creation
of GNOME_UI app helpers, which simplified
creation and added stock items to improve con-
sistency between GNOME applications. How-
ever, it did nothing to solve the issue of hard-
coded layouts. In an effort to solve the prob-
lem of merging menus and toolbars for com-
ponents, Bonobo made an attempt to solve the
layout problems by separating the layout from
the actions. Unfortunately, the API was pro-

Linux Symposium 218

duced without enough review, and it was in-
sufficent for large applications. The hopefully
final rendition is now in its evaluation phase
in libegg menu/toolbar. This code allows ef-
fective management of different action groups,
and the creation of new action types such as
combos and accelerators. The main remaining
question is how to store a user’s edits. KDE has
long had support for this sort of editing, they
don’t appear to have a good solution to storing
the edits as yet.

File Selector

The gtk+ file selector has long been a source
of ridicule and disgust. It is functional, but too
barebones for a modern desktop. The fact that
it has no solid support for network addresses,
or histories has greatly hindered the adoption
of gnome-vfs. There have been several write-
ups and Owen Taylor has apparently completed
a replacement version that will be included in
gtk+-2.4.

7 Spreadsheet-specific Functional-
ity

Spreadsheets are an ideal testing ground for
all those obscure datastructures we all learned
back in school. In most instances there is not
enough data to make using something esoteric
worthwhile. With an apparent size of 256×
64k (Gnumeric can scale considerably larger),
it is very easy to quickly operate on significant
swaths of data.

As an example, Gnumeric uses an asymetric
quadtree to store style information. This allows
us to easily handle someone doing a “Select all,
Bold” (explode kspread). It also supports “Se-
lect all minus one row and one col” (explode
MS Excel, and OpenCalc).

8 Acknowledgements

The Gnumeric development team. You know
who you are, as do the CVS logs.

Ximian employees for their continuing per-
sonal contributions to Gnumeric.

9 References

http://www.gnome.org/projects/
gnumeric

DMA Hints on IA64/PARISC
Optimizing DMA performance for HP Chip sets

Grant Grundler
Hewlett Packard

grundler@cup.hp.com

Abstract

Modern IO subsystems implement complex
DMA transaction parameters, called DMA
hints, which are not explicitly supported by
the Linux DMA API. This paper investigates
benefits of using non-default DMA hints and
thus whether such hints should be abstracted
into the DMA API. My conclusion is the im-
plementation (ZX1) investigated does not war-
rant changing the DMA API. Other implemen-
tations need to be compared before proposing
any changes.

HP PA-RISC (Astro[1]/Elroy[2]) and IA64 IO
Controllers (ZX1) both support several types of
DMA hints and both are commercially avail-
able. My primary interest was the ability to
prefetch cache lines for PCI devices. The ben-
efit is same as for CPU: bring the data closer
to the consumer. But to my surprise, cache line
prefetching is not the most important hint since
default prefetching works well for all devices.
Relaxing the PCI ordering rules turns out to
be more important since firmware can’t know
when it’s safe to do so.

Updated versions of this paper will be avail-
able from http://iou.parisc-linux.

org/ols2003/

1 Introduction

DMA performance seems like such an obvious
thing. Drivers just need to tell the device where
to fetch something from memory, poke it, and
life is good. Unfortunately, those days are over.

Modern SMP servers require multiple levels of
bridges in order to support PCI-X Bandwidth
(peak burst rate 133MHz/64-bits). In order to
work well with CPUs and memory controllers,
IO Devices participate in the CPU Cache Co-
herency protocols. They also need to minimize
the number transactions used and use the ap-
propriate type of transaction in order to opti-
mally utilize available bandwidth.

Throughout this paper (and even in the title!)
I use the wordHint which implies an “infor-
mational only” parameter. This isn’t strictly
accurate. Some platforms depend on certain
parameters for correct operation. I.e. incor-
rect results may occur for some combinations
of DMA hints. The DMA hints discussed in
this paper should always provide correct re-
sults though I’ve crashed the ZX1 with some
hints as noted.

And I recycled the ZX1 block diagram used
in my 2002 OLS talk, “Porting Drivers to
ZX1.”[3] The diagram is useful to understand
the routing of data between PCI devices, Mem-
ory, and CPU. [4]

Linux Symposium 220

LBA LBA LBA LBA

Memory

USB
SCSI
LAN

IO MMU

SBAMckinley Bus

CPU CPU

Figure 1: HP ZX1 Block Diagram

2 Overview of DMA

The following sections introduce some of the
key concepts relating to Direct Memory Ac-
cess.

2.1 Consistent vs. Streaming DMA Mappings

The Linux DMA mapping interface differen-
tiates between two memory access patterns.
A short summary ofDMA-mapping.txt [5]
follows.

Consistent DMA mappings are intended for
data which is concurrently accessed by both
CPU and PCI device(s) (i.e. Host RAM base
device control structures like mailbox rings).
Key feature is updates (writes) from either
must be visible to the other based on PCI order-
ing rules. In short, fairly strict R/W ordering
rules and transactions are typically less than a
cache line in length.

Streaming DMA mappings are intended for
memory regions exclusively accessed by the
PCI device(s). This “exclusive” access begins
when a host memory region is mapped and
ends when the same region is unmapped.

The Streaming DMA interface provides two

explicit hints: DMA direction and DMA
length. From the length, we know the block
size on which the DMA will terminate. But
as noted in the introduction, DMA direc-
tion is required for correct operation on some
platforms—but not ZX1 or PARISC IOM-
MUs.1 The ZX1 System Bus Adapter(aka
SBA; Seesba_iommu.c) code does option-
ally use direction to optimize VM bits. Other
hints regarding PCI Ordering compliance and
DMA Read data consumption rate are not spec-
ified.

2.2 PCI DMA

A single DMA operation is fairly straight for-
ward at the PCI bus level. The PCI Device
asks the PCI arbiter for bus ownership. The
Arbiter eventually grants the PCI device own-
ership of the bus. PCI device accepts owner-
ship and sends the target address (possible two
cycles worth for 64-bit addressing) followed by
data. The transaction ends when either the PCI
Controller asks the device or the PCI device
volunteers to give ownership.

PCI supports several different types of Com-
mands. Here are the ones relating to DMA
along with summaries of their PCI Local bus
definition:

• Memory Read command is used to read
data from an agent mapped in the Mem-
ory Address Space. The target is free to
do an anticipatory read for this command
only if it can guarantee that such a read
will have no side effects. Furthermore, the
target must ensure the coherency (which
includes ordering) of any data retained in
temporary buffers after this PCI transac-
tion is completed.

• Memory Read Line command is seman-

1PARISC platforms without IOMMU do require
R/W direction hint.

Linux Symposium 221

tically identical to the Memory Read com-
mand. Use of MRL indicates the intention
to read a full cache line of data.

• Memory Read Multiple command is se-
mantically identical to the Memory Read
command. Use of MRM indicates the in-
tention to read more than one cache line
of data before disconnecting. MRM is
intended to be used with bulk sequential
data transfers where the memory system
(and the requesting master) might gain
some performance advantage by sequen-
tially reading ahead one or more addi-
tional cache line(s) when a software trans-
parent buffer is available for temporary
storage.

• Memory Write command is used to write
data to an agent mapped in the Memory
Address Space. When the target returns
“ready,” it has assumed responsibility for
the coherency (which includes ordering)
of the subject data.

• Memory Write and Invalidate com-
mand is semantically identical to the
Memory Write command. The differ-
ence is MWI requires the device to write
at least one complete cache line and the
Host Cache controller can invalidate ex-
isting contents without having to send the
contents (just reassign ownership) to the
IO or Memory Controller. This avoids
unnecessary cycles on the Front Side
Bus for DMA writes. MWI requires
CACHELINE_SIZE register in the de-
vice configuration space to (a) be imple-
mented and (b) programmed by BIOS or
PCI Initialization code to a suitable value.

The number of bytes transferred is constrained
by the transfer type (MR, MRL, MRM, MW,
MWI) and LATENCY_TIMERvalue. The
LATENCY_TIMERis described briefly later in

this paper and by the PCI Local Bus Specifica-
tion.

Memory Writes are typically the simpler
case from a software performance perspective.
DMA Writes are buffered by the chip set and
routed to the memory controller[6] at whatever
rate the internal interconnect supports. Data
throughput is typically limited by the PCI bus
controller[7] or memory controller.

Reads are more complicated because the mem-
ory controller latency is harder to hide. All data
handling systems (like disk IO) deal with this
problem by “Read Ahead” (a.k.a. prefetching)
or caching. However, large caches like those
implemented in a CPU are expensive in many
ways. And large caches don’t help much since
the read and write access patterns for IO de-
vices typically aren’t for the same cache lines
repeatedly. Or in the case of shared data, the
IO device competes at times with the CPU for
the cache line.

Successive requests for bulk data can be
prefetched by the I/O Controller. I was ex-
pecting prefetching to make a big difference
for PCI devices. But the individual devices I
tested (except 53c1010 Consistent DMA) did
not perform better or worse for different levels
of prefetching. Like disk IO, the effectiveness
of the prefetching really depends on the data
access pattern. I suspect this is because the PCI
devices are designed to work well with out any
prefetching and buffer enough data to keep the
IO device from stalling.

2.3 DMA on PCI-X

PCI-X obsoletes much of what I was trying to
accomplish in this paper. Cache line prefetch-
ing hint only applies to PCI. But three new
PCI-X-only features are of interest:

• Attributesare part of the PCI-X command.

Linux Symposium 222

• Split Transactionsreplace the goofy “retry
forever” schemes used when read data is
not available.

• Burst Transactionsreplace MRM, MRL,
and MWI.

2.3.1 Command Attributes

The PCI-X Specification[8] (drafts are avail-
able for free) has more details about command
attributes in section2.3 PCI-X Command En-
coding. I’ll try to summarize below. Two at-
tributes are currently defined for PCI-X com-
mands.

Relaxed Ordering is also described in Sec-
tion 4.1. In a nutshell, ignoring the PCI or-
dering rules regarding Programmed I/O (CPU
R/W) and DMA (PCI R/W) yields measurable
performance gains without sacrificing correct
operation. The handful of drivers I’ve used
under PARISC-Linux and IA64-Linux run just
fine with outbound data2 ordering rules re-
laxed.

Note the PCI-X spec doesn’t require the PCI-X
device to use Relaxed Ordering attribute when
the Relaxed Ordering bit is set in the command
register. ZX1 chip can override the Command
Attribute for Relaxed Ordering behavior. And
ZX1 chip set only implements this optimiza-
tion for outbound data flow (PIO Write/DMA
Read return). The PCI-X spec defines opti-
mizations in both directions of data flow.

No Snoopattribute isn’t relevant for most IO
devices. Most Linux drivers expect DMA
transactions under control of DMA mapping
services to be coherent. “No Snoop” means the
host driver guarantees the latest copy of a cache
line is in the memory controller. And it implies

2Inbound data reordering causes Bad Things™ to
happen. Discussed on ia64-linux mailing list.

the chip set can perform better if it doesn’t have
to Snoop. My understanding is non-coherent
transaction are interesting for graphics devices,
not the LAN/Storage devices I work with.

2.3.2 Split Transactions

Split Transactions just means the request for
information and the completion (reply) of that
request are separate transactions on the bus.
This is a good thing for several reasons:

• Up to 32 transactions can be pending at
the same time. Only 5 bits are defined in
theTagfield of the PCI-X command. But
the exact number of outstanding transac-
tions supported depends on chip set im-
plementation. This is identical in concept
to Tagged Queuesdefined for SCSI proto-
col.

• More efficient: eliminates the need to poll
(aka “retry forever”) when the PCI Con-
troller disconnects in the middle of a (e.g.)
read transaction.

• Acts more like a Memory bus rather than
an IO bus. Thus, it’s easier for HW
designers to route transactions across a
larger fabric.

2.3.3 Burst Transactions

Memory Read Block (MRB) and Memory
Write Block (MWB) are replacements for
MRL/MRM and MWI respectively. The key
difference between the above PCI and PCI-X
commands is addition of aByte Countfield. By
making the transfer length visible to the PCI-X
controller, the chipset can prefetch cache lines
appropriately. This is significant since not in-
volving driver writers for 4 or 5 different OSs
to program DMA hint bits is a good thing.

Linux Symposium 223

3 DMA Parameters

Two additional parameters defined by PCI
Local Bus specification affect DMA behav-
ior. Both reside in the PCI device configu-
ration space header:LATENCY_TIMERand
CACHELINE_SIZE.

3.1 LATENCY_TIMER

LATENCY_TIMERconstrains how long the
PCI device will burst DMA before volunteer-
ing to give up the PCI bus. It should be
long enough to transfer several cache lines
of data if the device is capable. While this
is a “tunable” parameter, I didn’t feel it was
necessary to experiment with this value since
LATENCY_TIMERis a pretty well understood
and described else where.

3.2 CACHELINE_SIZE

CACHELINE_SIZE is only required by PCI
MWI command. CACHELINE_SIZE has to
be the IO cache line size and not the CPU size.
Typically this is either the line size of the mem-
ory controller or the line size of outer most
CPU cache (e.g. L2 or L3 Cache). The CPU
can use smaller lines for first and/or second
level caches.

Since firmware is expected to program
CACHELINE_SIZE with the appropriate
value, it’s a not really either a parameter nor
tunable.

4 HP ZX1 DMA Hint bits

The HP ZX1 chip set implements several bits
for DMA Hints. None of these are supported
by the current Linux DMA mapping API. My
original goal was to propose extensions to the
Linux DMA mapping API. But I’ve concluded

it’s not absolutely necessary and I don’t know
which hints are of interest to other chip sets.
Hopefully this paper will precipitate more dis-
cussion and comparison of chips and capabili-
ties.

The primary reason it’s not absolutely neces-
sary is IA64 firmware is compensating for an
ignorant OS. Firmware errs on the overly ag-
gressive side in setting the cache line prefetch-
ing (for simple, single unit tests) and errs con-
servatively on the correctness case (Relaxed
Ordering is disabled). Though it’s not optimal,
ZX1 IOMMU code could blindly set Relaxed
Ordering hint bit (i.e. not enforce ordering) and
some hacks can take care of the others.

And because PCI-X obsoletes the key PCI-
only hint, I can’t argue HP needs them. My
pet architecture (PA-RISC) would benefit since
HW shipped to date only supports PCI—but
that’s not of commercial interest. And PA-
RISC alone is not a justification for extensions
to the interface.

Even if I had HW descriptions for other IOM-
MUs, it would be a lot of work to indepen-
dently abstract the DMA hints. Understand-
ing platform IOMMU support well enough to
abstract what’s important is non-trivial. And
since I’m fundamentally lazy (or “good at op-
timizing” as Bdale Garbee puts it), I’ll pass for
now.

Lastly, assuming hints are chip set specific
(since no one has abstracted them), introduc-
ing hints for each chip set is the path to hell
for driver writers. A relatively small number of
people (per OS) understand how one IOMMU
on one platform works. Trying to get a broader
audience to understand several platform chip
sets is unrealistic. Been there, done that.

Linux Symposium 224

4.1 Relaxed Ordering

Relaxed Ordering tells the HW it can ignore
one PCI ordering rule. PCI-X specification of-
fers this optimization in each direction (not just
outbound) with its definition of Relaxed Order-
ing. HP’s chip set is sufficiently well imple-
mented in the inbound (DMA writes) path that
the inbound optimization isn’t helpful and thus
not implemented.

HP also calls this optimization “PIOW/DMAR
Ordering.” The cryptic acronym means “Pro-
grammed IO Writes/DMA Reads” Ordering.
Setting this hint indicates the driver and de-
vice don’t depend on ordering of DMA Read
returns and PIO Writes for correct operation.
This hint allows DMA read returns to bypass
PIO Writes in order to prevent an in-progress
DMA burst from disconnecting on the PCI bus
and force retries.

I didn’t have any expectations for this hint.
Mostly because of my ignorance when I started
this investigation.

4.2 Read Current

Read Current transactions gets the most re-
cent copy of cache line datawithout changing
the cache line state. The key thing is the CPU
can keep cache line ownership. By not giving
up ownership, the CPU can continue to modify
cache line contents without having to fight with
the IO Controller (ping pong) for the cache
line. However, the copy of the cache line is not
maintained and can become stale. It should be
consumed immediately (for some finite defini-
tion of NOW; parents will understand). Thus
it’s most useful when data is leaving the cache
coherency domain (i.e. DMA reads).

Most driver writers will not need (or want) to
worry about Read Current hint. First, differ-
ent chip-sets have minor variations in imple-

mentation which may in fact still ping-pong the
cache line. Secondly, Read Current hint has no
effect on chip sets which already implement
DMA reads by issuing Read Current transac-
tions. And third, to date, none of the PCI de-
vices that interest me obviously benefited by
explicitly setting or clearing this hint bit on the
platforms I’ve tested.

Read Currentis implemented on both PARISC
Runway[9] and McKinley bus.

4.3 Cache line Prefetching (PCI Only)

Cache line Prefetchingfor IO devices serves
the same purpose as prefetching does for
CPUs: avoid stalling by bringing data closer
before it’s needed. The amount of prefetch
needed is a function of the device’sdata con-
sumption rateand the actual memory con-
troller latency.

For example, if the memory controller can de-
liver a cache line in 120ns and the device can
consume a cache line in 120ns (8 * 15ns), we
need to prefetch 1 cache line at any given mo-
ment in time. In other words, 2 cache lines
of data will be in flight at any given moment
in time. But as system workload increases,
the average memory controller latency usually
goes up too. It might really take 200 or 300ns
to deliver a cache line. We need to compro-
mise and pick the number of cache lines to
prefetch so things work OK under worst case
but perform optimally in the “expected work
load” range.

ZX1 chip set can deliver a 128 byte cache line
in about 110 ns[10] PCI devices can only con-
sume 128 bytes every 240 ns (16 * 15ns) at
best. The PCI device probably stalls less than
1/3 of the time waiting for data. This is sub-
stantially different than for the PARISC chip
set which can only deliver a 64 byte cache line
in about 180 ns.[11]

Linux Symposium 225

PCI-X mode of operation does NOT support
cache line prefetching hints. It’s not necessary
because with split transactions, the device can
have much more IO outstanding and in effect,
perform its own prefetching.

4.4 DMA Block Size (PCI Only)

DMA Block Size tells the chip set when to stop
prefetching. Prefetching will continue up to the
block size boundary and resume when the first
cache line of the next block is requested.

This hint also does not apply to PCI-X busses.
It’s not necessary because the PCI-XBurst
Transactionsspecify the number of bytes be-
ing transferred and the chip set (or OS code)
doesn’t have to guess when to stop prefetching.

I didn’t expect block size to matter much in
single unit testing. It would be interesting to
know how much it matters when testing a fully
loaded system.

5 Case Study: BCM5701 (PCI)

In 2002, around the same time HP ZX1 prod-
ucts became available, HP started shipping
Tigon3 NICs (designed and tested by HP).
The BCM5701 NIC supported by HP-UX is
shipped operating in PCI mode.

Test used is:
/opt/netperf/netperf -l 60 \
-H 10.0.30.0 -t UDP_STREAM -- \
-m 1024 -s 131072 -S 131072

UDP_STREAM is useful for testing output if
the host networking stack only sends what the
NIC can consume. I’m told this is the case for
Linux. And while some applications really do
run on top of UDP, I also ran TCP_STREAM
test to get an idea of the workloads I’m familiar
with.

Client (HP RX2600, 1GHz) was running
2.4.20-em19 + tg3 v1.5 over the built-in
BCM5701.
Server (HP RX2600, 900MHz) was running
the same kernel, same built-in BCM5701.

NICs were connected via cross-over cable and
set to either 1500 or 9000 bytes MTU.

Firmware sets the default PCI Command Hint
to 3 cache lines prefetch, Relaxed Ordering
disabled, 4k block size, Read Current enabled.

I then varied the DMA Hints on theClient
who was sending packets. While this sounds
backwards, it’s the netperf point of view. We
want to observe the netperf “client” send per-
formance.

5.1 Relaxed Ordering

Relaxed Ordering Hint is (on) enforced by de-
fault. I’ve turned it off selectively for MR,
MRL and MRM PCI transactions in Table 1.
Runs with 2.4.20+tg3 v1.5 only showed about
4% improvement with 1k messages.

Previous experience with UDP_STREAM test-
ing on RHAS 2.1 (IA64, e.25?, using tg3
v0.99) demonstrated nearly 10% performance
improvement with 1080 byte messages. With-
out ordering enforced, netperf reported 862
Mb/s3 vs. around 775 Mb/s when ordering was
enforced (default behavior).

TCP Stream test showed a smaller, but similar,
sensitivity to this parameter. Clearing Relaxed
Ordering hint in the MRM hint for Streaming
DMA resulted in 778 Mb/s (vs. ~758 nor-
mally) using 1024 byte message and 1500 byte
MTU.

3Or 848 Mb/s when the netperf client ran on the same
CPU as the one interrupts were directed at.

Linux Symposium 226

PCI Cmd Consistent Streaming
NONE 759.61 758.74

MR 759.09 760.67
MRL 759.99 759.70
MRM 759.68 797.19
ALL 758.99 800.65

Table 1: BCM5701 UDP_STREAM Relaxed
Ordering, 1k Msg

5.2 Cache line Prefetching

Neither TCP nor UDP showed any statistically
significant differences as I varied the cache
line prefetching for MR, MRL, or MRM com-
mands. This was true for both 1k (1500 byte
MTU) and 8k (9000 byte MTU) message sizes.

I suspect this is primarily because I’m measur-
ing what the card is buffering, not PCI bus uti-
lization. The card’s ability to buffer is not af-
fected by how inefficient the PCI bus is used.
Unfortunately, I don’t have the tools to mea-
sure PCI Bus utilization on the RX2600.

Again, like learning PCI-X obsoletes cache
line prefetching, this is a disappointing but use-
ful result.

5.3 DMA Block Size

Unlike cache line prefetching, I didn’t expect
much difference between the various block
sizes. Once I knew prefetching makes no dif-
ference for the BCM5701, the fact that varying
Block size hint also makes no difference was
no surprise.

5.4 Read Current

Disabling Read Current Hint for Consistent
mappings will crash the system. It’s not clear
to me why. I talked with the HW designers and
it is clearly not an expected result due to how

the read/write paths are implemented.

I wasn’t expecting any measurable perfor-
mance difference with (vs. without) Read Cur-
rent for Streaming DMA. And in fact, I didn’t
see any.

6 Case Study: BCM5704S (PCI-X)

Since I only have one BCM5704S,4 I ended up
connecting both ports of the BCM5704S (tg3
v1.5) to the 82546EB (e1000 4.4.12-k1) in the
other machine.

It’s worth mentioning the BCM5704S sits
behind an IBM PCI-X to PCI-X bridge:

...
+-[80]-+-01.0-[81]--+-04.0 QLA2312
| | +-04.1 QLA2312
| | +-06.0 BCM5704S
| | \-06.1 BCM5704S
| \-1e.0 PCI Bus Controller
...

The bridge plays a bigger role in performance
than people expect. For grins, I sent 4k mes-
sages out the client through both BCM5704S
ports at the same time using default hints.
Throughput was 990± 0.1 Mb/s for each
port (total 1980 Mb/s). vmstat reports ~25%
CPU (dual CPU systems) on the server (e1000
driver) and about 33% on the client (tg3
driver). Why was throughput so good? The
IBM PCI-X bridge is prefetching data for
the chip and also supports split transactions.
The prefetching caused some heartburn for the
IOMMU code since the IBM bridge ended up
prefetching past page boundaries on early pro-
totypes. Changes were made to the ZX1 PCI

4HP has no plans for productizing anything with
BCM5704 on IA64 at this time. It happens to work and
provides a nice comparison to the BCM5701 case study
(PCI-X vs. PCI).

Linux Symposium 227

PCI Cmd Consistent Streaming
ALL 949.35 950.93
MR 952.97 951.79

MRL 952.64 952.66
MRM 953.97 952.58
NONE 951.19 945.10

Table 2: BCM5704 TCP_STREAM 8k Msg

Bus Controller (aka LBA) to stop the prefetch-
ing behavior.

6.1 Relaxed Ordering

With 4k messages, running TCP_STREAM
gave consistent results around 990± 0.1 Mb/s.
This wasn’t the case for 8k messages. I’m not
sure why since the MTU should have been 9k
when running the tests. Table 2 is included for
your amusement only.

It’s irritating I don’t know why the results are
lower than with 4k messages or what’s causing
the variability. For the record, UDP_STREAM
test was able to send 984.18± 0.01 Mb/s using
4k messages and 992.04± 0.01 Mb/s for 8k
messages.

7 Case Study: 82546EB (PCI-X)

This is Intel’s “4th Generation Gigabit MAC
design with fully integrated, physical-layer cir-
cuitry to provide two standard IEEE 802.3 Eth-
ernet interfaces. . . .”5 Same setup as with the
BCM5701 except an Intel add-on NIC is in
both netperf client and server. Both NICs are
configured to use 9000 byte MTU.

Table 3 shows results for the driver Intel of-
5HP has no plans for productizing 82546EB on IA64

at this time. 82546EB only happens to work under Linux
because e1000 driver uses I/O Port space. This chip has
serious bugs when using MMIO space to access regis-
ters.

Msg Size UDP TX UDP RX
1024 937.77 492.27
1024 937.76 477.22
4096 983.70 959.55
4096 983.70 959.59
8192 991.80 991.80
8192 991.80 991.80

Table 3: e1000 v4.3.15 UDP (Mb/s)

Msg Size TCP UDP TX UDP RX
1024 976.75 937.76 501.25
4096 978.16 983.72 983.70
8192 907.69 991.80 991.80

Table 4: e1000 v4.4.12 TCP/UDP (Mb/s)

fered on their web site download area: e1000
v4.3.15 driver. But as Table 3 shows, TCP re-
sults varied from 639 to 660 Mb/s (1k mes-
sages) and got worse (540-565 Mb/s) for 8k
messages. UDP results for smaller messages
were very poor as well. Something is clearly
wrong.

In contrast, TCP Streaming performance for
v4.4.12-k1 e1000 driver was quite good. With
default hints, both ports combined could send
about 1770 Mb/s using 8k message.

7.1 Relaxed Ordering

Disabling ordering enforcement did not change
performance in any statistically significant
way. In fact, UDP results were identical to Ta-
ble 4 except for slightly higher UDP RX result.
TCP results also showed the same 70 Mb/s
drop for 8192 byte messages. And combined
port throughput stayed around 1770 Mb/s for
8k message size.

For grins, combined throughput with 4k mes-
sage size achieved 1936± 1 Mb/s. Definitely
an impressive result given both ports are shar-

Linux Symposium 228

Consistent Streaming
PCI Cmd Order Current Order Current

MR 223 NA 221 220
MRL 220 NA 221 214
MRM 220 NA 221 208

NONE6 222 NA 219 217

Table 5: 53c1010 Ordering/Current Hints
(MB/s)

ing the PCI-X bus.

7.2 Read Current

Clearing Read Current bit for either Consistent
or Streaming DMA resulted in a slight drop
(890 Mb/s) for TCP Streaming test compared
to Table 4. I’m suspicious of this result be-
cause afterwards, I could consistently only get
960 Mb/s (8 Mb/s less) for TCP Streaming us-
ing 4K messages.

I didn’t run UDP tests for Read Current Hint.

8 Case Study: LSI 53c1010 (PCI)

LSI’s 53c1010 (Ultra3 LVD) is pretty widely
used along with 53c896 (Ultra2 LVD). Both
are driven by the sym53c8xx_2 SCSI driver.

Since parallel SCSI busses are not duplex, test-
ing this was fairly straightforward. I setup a
MD RAID0 across both channels (alternating
disks) with 10 odd-ball Ultra3 disks (9, 18,
36GB, mix of vendors). Then ran:
dd if=/dev/zero of=/dev/md4 \

bs=64k count=200000

I learned later that running RAID0 was not
such a good idea. More on this in the u320
(53c1030) case study.

Consistent DMA
Prefetch Depth 0 1 2 3
MR 223 219 219 224
MRL 224 223 221 224
MRM 104 168 220 223
Block Size 512 1024 2048 4096
MR 223 223 222 223
MRL 220 218 218 221
MRM 220 221 219 220

Streaming DMA
Prefetch Depth 0 1 2 3
MR 218 214 223 219
MRL 221 223 216 219
MRM 216 221 214 220
Block Size 512 1024 2048 4096
MR 216 220 208 219
MRL 215 221 221 222
MRM 218 210 224 223

Table 6: 53c1010 Cache line Prefetching,
MB/s

8.1 Relaxed Ordering and Read Current

I’ve globbed both Relaxed Ordering & Read
Current into Table 5 only because they are
both boolean values. Differences of less than
3 MB/s are probably not significant.

Disabling Read Current for Streaming DMA
clearly reduces performance for MRL and
MRM transactions. I thought the “NONE”
(217 MB/s) result is a weighted average of all
three types of transactions but that is a logi-
cal fallacy. This result can’t be better than the
worst case unless some other interaction is tak-
ing place.

8.2 Cache line Prefetching

Of particular interest in Table 6 is the extent
Consistent MRM prefetching affects through-
put. I guessed this is because the 53c1010

6Well, this should really be “ALL” for Relaxed Or-
dering hint since all the bits are set.

Linux Symposium 229

“scripts” are kept in host memory (but cached
locally) and all IO grinds to a halt when an un-
cached portion of script is not available. James
Bottomley suggested the entire script fit in on-
board RAM and was loaded under Host CPU
control at init time. If true, then the scripts
themselves are sequentially fetching control
data and getting hurt badly by not having the
control data available immediately.

9 Case Study: LSI 53c1030 (PCI-
X)

Using the same methods (and the same u160
disk drives) as for 53c1010 didn’t work. The
results varied from 160 MB/s to 185 MB/s re-
gardless of hint settings. I expected at least
equivalent performance to the 53c1010 and
suspect whatever is causing the variability is
also limiting performance.

Trying a different method suggested by James
Bottomley led to an interesting result. He was
appalled I was using RAID0 because of is-
sues with MD layer not coalescing IO requests
again at the disk level. But using a 64k chunk,
aka stride, I thought would provide big enough
blocks.

To avoid RAID0, James suggested checking
if multiple copies ofsg_dd would (one per
disk) would work. Well, I’d like to see multiple
IOs outstanding per spindle. And fortunately
sgp_dd man page suggests exactly that. Nice.

While the advantage of this method is it by-
passes lots of kernel code related to buffer
cache, the drawback is it also bypasses all the
statistics gathering in the kernel. Neither vm-
stat nor iostat sees any of this disk activity.
The solution is to measure the throughput of
each disk individually (23 to 48MB/s) and then
adjust the number of blocks transfered such
that all 10 disks finished their sgp_dd process

PCI Cmd Consistent Streaming
ALL 268421 266666
MR 266666 266666

MRL 266666 264935
MRM 268421 266666
NONE 264935 266666

Table 7: 53c1030 Relaxed Ordering, KB/s

within about 1 second of each other. Then
date +%s could time the cumulative I/O.
Add up how much data each sgp_dd copied and
divide by total time. This worked better than
I expected and Table 7 shows how consistent
that data was. The accuracy of the data is± 1
second of 153 second (average, 266666 KB/s)
run times. In retrospect, clearly a better method
than using RAID0 and suggests roughly the
performance RAID0 should be getting.

The bad news is that despite contortions to col-
lect reliable data, neither Read Current nor Re-
laxed Ordering hints made a statistical differ-
ence for the configuration I had. I still won-
der if I misunderstand what the hint bits mean
in the context of PCI-X. But I couldn’t find
anything in the chip set documentation to indi-
cate otherwise. I worry the ZX1 chip set might
“allow” (logical And) the ZX1 DMA Hint and
PCI-X command attribute bits vs. “forcing on”
(logical Or). My expectation was the latter
based on documentation.

10 Case Study: qla2312 (PCI-X)

The qla2312 is a Qlogic PCI-X, dual port,
2Gb/s FC chip. Qlogic sells this chip for both
dual port and single port FC HBAs. A single
port is theoretically capable of 2 Gb/s (about
200MB/s) output and input (full duplex). The
dual port HBA is theoretical capable 800 MB/s
throughput. I tested the qla2312 in two con-
figurations: with IBM PCI-X bridge and again

Linux Symposium 230

without (thinking the PCI-X bridge was sub-
stantially impacting results).

I used the same methodology as for the
53c1030 Case Study with one of the two ports.
Unfortunately, I didn’t get a second DS2405
enclosure until much too late. And then I found
out the second FC port on the card with the
PCI-X Board was disfunctional. I was only
able to run a few tests through both ports on
a QLA2342 FC HBA (uses qla2312 chip).

The qla2312 HBA was running in PCI-X mode
with Firmware version 3.01.18. Same 2.4.20-
em19 kernel as before with qla2300 v6.04.00
driver.

10.1 Outbound vs. Inbound IO

To cut to the chase, setting Relaxed Ordering
or disabling Read Current hints did not affect
performance. With 8 disks,sgp_dd was con-
sistently writing 190± 1 MB/s. Two things
might have contributed to this result: No in-
bound load was saturating IO path or PCI-X to
PCI-X bridge was “hiding” the effect.

Alone, sgp_dd inbound (IO reads) workload
would get 198 MB/s consistently. Combined
with the same outbound (IO writes) work-
load as above, the inbound rate drops to about
145 MB/s and the outbound workload hovers
around 51 MB/s± 1 MB/s.7 Again, Relaxed
Ordering and Read Current Hints made no dif-
ference.

Switching to the other RX2600 (900MHz)
which had a qla2312 connected to the same set
of disks, I reproduced the 198412 KB/s on the
inbound-only workload as well. Bidirectional
throughput was about the same: 143 MB/s in
and 53 MB/s out (9% CPU utilization).

7Given the 3:1 bias of inbound:outbound throughput,
I tried 6:7 (inbound:outbound) and 5:8 disks—yielded
basically the same results.

Having spent several days on this, I started to
doubt this HBA was operating in full duplex
mode despite all the marketing literature mak-
ing such a claim. Scrounging through the 300
line qla2x00_nvram_config() function
suggests full duplex mode is intentionally dis-
abled:

...

/*

* Setup driver firmware options.

*/

icb->firmware_options.enable_full_duplex = 0;

icb->firmware_options.enable_target_mode = 0;

...

Settingenable_full_duplex to 1 did not
help.

10.2 Dual Port

I tried the samesgp_dd workload on both
ports. Unfortunately, the 7 disks in the DS2405
I was loaned were ST336605FC (10k RPM)
and not ST336753FC (15K RPM). This meant
I had to compensate by adjusting the amount of
data written to various disks again.

The bottom line is varying Read Current and
Relaxed Ordering hints didn’t matter for this
workload. The outboundsgp_dd tasks man-
aged 370 MB/s consistently.8

10.3 Summary of Lessons learned

The quote about the journey being more impor-
tant than the destination comes to mind. Sev-
eral things learned on this journey:

1. Firmware teams will compensate for
stupid OSs. In this case performance

8I can’t help but wonder if I’ve got some piece of
the puzzle wrong. But I’ve reviewed everything several
times and if something is wrong, it’s not obvious to me.
I’ll update the paper if I learn otherwise.

Linux Symposium 231

gains aren’t what I expected because
firmware was already setting aggressive
cache line prefetching. On fully loaded
systems performance could be worse
. . . but haven’t measured that yet. How-
ever, Firmware couldn’t useunsafe hints
(e.g. Relaxed Ordering).

2. IO Card Vendors will compensate for
stupid chip sets. It didn’t initially occur
to me high performance IO cards would
buffer IO in order to compensate. But the
tradeoff is latency.

3. PCI-X is a different bus protocol com-
pared to PCI, not just a speedup. The dif-
ferences in bus protocol obsoleted the key
thing I was hoping to measure (cache line
prefetching for DMA Reads).

4. Don’t start by testing an adaptive driver.
An adaptive driver will adjust its operat-
ing parameters after a period of time to
optimize for the given workload. I wasted
time trying to figure out why my tg3 per-
formance measurements varied in unpre-
dictable ways. Adding “sleep 30” be-
tween scripted test runs helped solve that
problem.

5. The major weakness of this paper is
methodology. I didn’t know what I
was measuring until I started investigat-
ing why I didn’t get expected results. I
need a PCI/PCI-X logic analyzer which
can accurately measure the bus utilization.
I believe HP has several such analyzers on
site; they just won’t fit in the RX2600. I
would have to chop open the sheet metal
so IO cards could stick out. I’m not will-
ing to do that because airflow would be,
uhm, dramatically altered.

10.4 Future Work

Several things come to mind that are still out-
standing:

1. Test fully loaded systemsThe busier the
memory controller is, the higher the la-
tency memory fetches will be (2x-4x). We
don’t want to waste memory bandwidth
(prefetching too much) or IO bandwidth
(prefetch too little). Just enough to com-
pensate for average latency.

2. PARISC implementation only supports
PCI. Memory controller latencies are
slower as is the IO MMU. It should bene-
fit more from DMA Hints than IA64 does.
I will update this paper (and remove this
“Future work” item) with PARISC results
when I have them.

3. PCI-X DMA Hints Not as much to do
here but still worth exploring. Understand
how different chip sets implement PCI-X
DMA support.

4. PCI/PCI-X Logic Analyzer Perhaps in
the future I can get access to an RX5670
with logic analyzer card installed and re-
run the tests. Logistically it’s non-trivial
since RX5670 is not a machine I can walk
around with under my arm.

5. More 2Gb/s FC disks would be useful.
Need to figure out how to stress input and
output at the same time. Maybe stripe
across both controllers, two RAID0 md
devices; one for reading and the other for
writing.

10.5 And thanks to. . .

A fair number of people contributed to this pa-
per. They provided support, ideas, or reviewed
content. In no particular order:

Linux Symposium 232

Alan C. Meyer, James Bottomley, Erin Hand-
gen, Thomas Bogendörfer, Kevin Carson,
Stephane Eranian, David Mosberger, Alex
Williamson, Dave Miller, Joe Cowan, Fred
Worley, Mike Krause, Matthew Wilcox.

My apologies if I omitted other contributors.

References

[1] http://ftp.parisc-linux.org/docs
/astro_intro.ps

[2] http://ftp.parisc-linux.org/docs
/elroy_ers.ps

[3] http://iou.parisc-
linux.org/ols2002/

[4] http://www.hp.com/products1
/itanium/chipset/index.html

[5] http://cvs.parisc-
linux.org/*checkout*/linux
/Documentation
/DMA-mapping.txt?rev=HEAD
&content-type=text/plain

[6] http://h21007.www2.hp.com
/dspp/files/unprotected/linux
/zx1-mio.pdf

[7] http://h21007.www2.hp.com
/dspp/files/unprotected/linux
/zx1-ioa-mercury_ers.pdf

[8] http://www.pcisig.com/

[9] http://ftp.parisc-linux.org/docs
/astro_runway.ps

[10] http://www.hp.com/products1
/itanium/performance/architecture
/lmbench.html

[11] http://lists.parisc-
linux.org/pipermail/parisc-linux
/2002-March/015966.html

A 2.5 Page Clustering Implementation

William Lee Irwin III
IBM Linux Technology Center

wli@holomorphy.com | wlirwin@us.ibm.com

Abstract

Page clustering is a form of “large pages” that
increases the kernel’s minimum allocation unit
for physical memory (base page size). There
are several good reasons to do this. One is a
form of prefaulting accomplished by instanti-
ating groups of PTE’s mapping a given base
page. Another is a constant factor reduction
of the number of objects the kernel must tra-
verse in order to manipulate a given collec-
tion of pages. The increase inPAGE_SIZE
also implies an increase inPAGE_CACHE_
SIZE , which enables the use of filesystems
with larger blocksizes. Last, but not least,
the constant factor reduction of lowmem con-
sumed bymem_mapis crucial for the perfor-
mance of 64GB i386 machines.

Page clustering has a number of technical chal-
lenges involved in a 2.5 counterpart of the 2.4.7
implementation. First, highpte poses unusual
difficulties, as neither sub-PAGE_SIZE high-
mem allocations nor sub-PAGE_SIZE kmap-
ping were supported in the original imple-
mentation. Rmap also poses challenges, as it
makes direct assumptions about PTE’s being
of sizePAGE_SIZE. Finally, arch code above
all makes many assumptions aboutPAGE_
SIZE ’s relationship to the area mapped by
PTE’s, particularly in arch support and VM ini-
tialization code.

In summary, the author will describe the prob-
lems that arose during his implementation of
page clustering for 2.5 along with their solu-

tions, for an audience of kernel programmers.

1 What is page clustering?

1.1 Background

Memory present in a system is described by
physical addresses. Most (if not all) mod-
ern machines are byte addressable, but the
MMU usually operates at a lower “resolution,”
and its finest resolution is what page clus-
tering refers to asMMUPAGE_SIZE. When
the MMU’s translations are set up, be they
in hardware-interpreted data structures or in
software-programmable TLB’s, they refer to
“page frames” of that size or larger, which ef-
fectively are a unit of measurement for mem-
ory. Similarly one may refer to virtual mem-
ory in those units, and arbitrary relationships
between virtual page frames and physical page
frames are constructible with a combination of
hardware and software translation tables.

Demand-paged virtual memory systems, when
a task takes a TLB miss not resolvable via the
kernel’s software translation tables (which may
be interpreted directly by hardware) are then
faced with the task of finding a physical page
frame to back a virtual page frame with.

Without page clustering, the kernel maintains a
data structure, thestruct page , represent-
ing each physical page frame, and another, the
page table entry, to represent each virtual page
frame. When not constrained by hardware, the

Linux Symposium 234

kernel is free to make ridiculous choices of
structures for the page tables. For instance,
each virtual page frame could (in principle) be
represented by a node in a binary search tree
or a linked list. Linux® uses radix trees as
mandated by hardware on i386 on all architec-
tures, which are somewhat more efficient than
various choices, though some architectures na-
tively use other structures such as inverted page
tables for them.

The page tables are assisted by a binary search
tree of virtual extents representing either ex-
tents of files or zero-filled regions, whose
nodes are calledvma’s. The physical page is
chosen so as to arrange virtual contiguity of
file pages in tandem with file offset contigu-
ity, or otherwise to fetch largely arbitrary pages
and zero them out before mapping them. When
the relationship of a pagetable entry to a physi-
cal page frame and its correspondingstruct
page data structure, is restricted to within a
singlevma it is a 1:1 relationship.

A system for tracking memory in use and not in
use is built around this relationship, and so the
MMUPAGE_SIZEbecame the allocation unit
for memory. PAGE_SIZE is used to simulta-
neously refer to the notion of the MMU’s finest
granularity and the memory allocator’s finest
granularity in preexisting Linux ® code.

1.2 How page clustering differs

First, one should observe that if the MMU’s
finest granularity isMMUPAGE_SIZE, one
may simulate an MMU with a granular-
ity of any power of two multiple (PAGE_
MMUCOUNT) by simply instantiatingPAGE_
MMUCOUNTPTE’s at a time, and making each
struct page refer to PAGE_MMUCOUNT
contiguous and aligned native page frames.
Also, if the pagetables are not constrained
by hardware, one can easily alter their struc-
ture to only have one PTE for eachPAGE_

SIZE instead ofMMUPAGE_SIZEand by so
doing reduce their space consumption. Ad-
ditionally, if the MMU supports translations
of sizePAGE_SIZE one can simply perform
one TLB insertion (or PTE instantiation if
hardware-interpreted) for eachPAGE_SIZE
area mapped by the pagetables.

One could say this is a “weak form” of page
clustering. It has the undesirable side-effect
of breaking binary compatibility and hence
not being transparent, but has several advan-
tages. The port of Linux ® to the IA64 pro-
cessor already uses this low code impact tech-
nique for performance reasons, as it reduces
TLB misses and the overhead of manipulat-
ing large collections of pages by a factor of
PAGE_MMUCOUNT. Some performance bene-
fits for I/O are possible, as physical contiguity
is better preserved so larger scatter/gather lists
are possible, though this is offset by a larger
cost of preparing buffers for small I/O transac-
tions. BSD’s VAX port did it this way.

The binary incompatibility inherent in the
above approach makes it unsuitable for prac-
tical deployment on systems with significant
preexisting userbases. For instance, ELF ex-
ecutables are linked in ways mandating dif-
fering protections within what could poten-
tially be a single PAGE_SIZE virtual re-
gion, and mmap() is often performed at off-
sets that are notPAGE_SIZE-aligned or in
lengths divisible byPAGE_SIZE. To address
the mmap() granularity issue, the 1:1 rela-
tionship between virtual page frames and ac-
counting structures for physical memory must
be extended toPAGE_MMUCOUNT:1. There
is also a very invasive audit required to en-
force the newly introduced distinction between
MMUPAGE_SIZEand PAGE_SIZE by pro-
gramming dimensional analysis into various
address and index calculations. This could be
called the “strong form” of page clustering.

Linux Symposium 235

The solution, in high-level terms, essentially
has two cases for userspace. The first, which
is easier, is file-backed memory. The unit
of memory cacheing file contents isPAGE_
CACHE_SIZE, which (for 2.5) is identical to
PAGE_SIZE. An index in units of PAGE_
SIZE is usable for recovering the struct page
representing the area of the file that would need
to be faulted in. However, to preserve mapping
semantics one must also recover an offset into
the area represented by thestruct page in
units ofMMUPAGE_SIZE. The second case is
anonymous memory, which is not forced to be
simultaneously virtually and physically con-
tiguous by virtue of its contents. Userspace
demands oneMMUPAGE_SIZEunit of mem-
ory but receivesPAGE_SIZEunit of memory,
and so to prevent very noticeable amounts of
waste, one scans nearby PTE’s for other vir-
tual pages anonymizing faults, that is, write
faults on COW file pages or on the zero page,
could be taken on. These are candidate pages
for copying (the zero page is special cased to
use faster zeroing algorithms on most architec-
tures). The anonymizing case results in a com-
plex relationship between the virtual pages in a
process and the anonymous page.

In summary, page clustering divorces the ker-
nel’s internal allocation unit, or the size of an
area represented by a struct page, from the no-
tion of the MMU’s mapping granularity with
the constraint that the allocation unit be larger.

1.3 Why page clustering?

Page clustering introduces several advantages.
The first is that by using a larger unit for
cacheing file pages, one can support filesys-
tems with larger block sizes. The second is that
the additional physical contiguity introduced
by the larger allocation unit allows one to con-
struct larger scatter gather lists for I/O (again
with the proviso about preparing write buffers).
The third is that the number of objects in vari-

ous collections of pages is reduced for a linear
speedup of the algorithms. The fourth is that
the page faults may be batched, reducing the
page fault rate.

The fifth, which is the primary reason why this
project to resurrect the 2.4.7 page clustering
patch was carried out, is largely specific to i386
PAE, though possibly also applicable to 32-bit
kernels running on large memory 64-bit ma-
chines. sizeof(struct page)/PAGE_
SIZE is the constant of proportionality for the
fraction of memory consumed by thestruct
page ’s required to account for all the phys-
ical memory in the system. On 32-bit sys-
tems with extended addressing or when the
kernel runs in 32-bit mode, this is irrespective
of virtualspace and the total memory consumed
may be larger than kernel virtualspace. For
instance, with a fully-populated 40-bit physi-
cal address space, a 32-bit virtualspace, a 4KB
PAGE_SIZE, and a 64Bsizeof(struct
page) , the coremap is 16GB in size, which is
infeasible to simultaneously map. Page cluster-
ing reduces this space overhead by a factor of
PAGE_MMUCOUNT, which is arbitrary (within
the constraints of the quality of implementa-
tion), and so renders the coremap’s space over-
headO(1) with respect to physical memory.

2 Implementation

2.1 Early boot

The issues encountered in early boot were
largely simple, but widespread. Early boot de-
bugging was done on a 16 processor NUMA-
Q ® with 16GB RAM. First, pagetables and
various fragments of memory that were for-
merly assumed to be 4KB but described with
PAGE_SIZE needed to be updated, including
mappings for the IO-APIC, numerous pageta-
bles, and structures like the idle threads’ stacks.
Then memory detection required various kinds

Linux Symposium 236

of dimensional analysis to properly calculate
coremap indices from page frame numbers and
vice-versa.

Numerous index calculations and indexing op-
erations into the coremap were broken. They
had no counterpart in 2.4.x, but didn’t require
much thought to correct:

#define pfn_to_page(pfn) (mem_map + (pfn))

#define page_to_pfn(page) \

((unsigned long)((page) − mem_map))

#define pfn_valid(pfn) ((pfn) < max_mapnr)

became

#define pfn_to_page(pfn) \

(&mem_map[(pfn)/PAGE_MMUCOUNT])

#define page_to_mapnr(page) \

((unsigned long)((page) − mem_map))

#define page_to_pfn(page) \

(PAGE_MMUCOUNT∗page_to_mapnr(page))

#define pfn_valid(pfn) \

((pfn) < max_mapnr∗PAGE_MMUCOUNT)

and so on.

Of the issues, kmap_pte and pkmap_
page_table were particularly troublesome;
to get booting, they were removed in favor of
walking kernel pagetables, but are to be rein-
stated in the near future. The issue was that
they were allocated 4KB at a time using the
bootmem allocator, but were assumed to point
at contiguous pagetables capable of mapping
the entire permanent kmap and atomic kmap
arenas, which had grown to where they re-
quired multiple pagetables each.

An unusual issue arose from maintaining an
8KB stack size while raisingPAGE_SIZE to
arbitrary sizes.fork_init() first received
a divide by zero from the following code frag-
ment:

/ ∗ create a slab on which task_structs can be allocated ∗/

task_struct_cachep =

kmem_cache_create("task_struct",

sizeof(struct task_struct),0,

SLAB_MUST_HWCACHE_ALIGN, NULL, NULL);

if (!task_struct_cachep)

panic("fork_init(): cannot create

task_struct SLAB cache");

/ ∗

∗ The default maximum number of threads is set to a safe

∗ value: the thread structures can take up at most half

∗ of memory.

∗/

max_threads = mempages /

(THREAD_SIZE/PAGE_SIZE) / 8;

This was clearly due to THREAD_
SIZE/PAGE_SIZE vanishing. But then
unusual errors arose for unclear reasons. As
it turned out, I’d changed kernel stacks to be
slab allocated, but, the kernel stacks were so
small compared toPAGE_SIZE they used
on-slab slab management and so failed to be
8KB-aligned. Changing the threshold to use
off-slab slab management for objects larger
thanMMUPAGE_SIZEin addition to the other
criteria sufficed, with zero runtime impact on
thePAGE_SIZE == MMUPAGE_SIZEcase.

Next, the placement of vmallocspace relative
to fixmapspace and the overrunning of vmal-
locspace by fixmapspace for unusually large
values ofPAGE_SIZE became issues. This
was resolved by some painful compile-time
mechanics to shove the kmap and permanent
kmap windows into vmallocspace, dynami-
cally size them with respect toPAGE_SIZE,
and make poor guesses in assembly as to the
boundaries between vmallocspace andZONE_
NORMAL. The boundaries out to be safe be-
cause the assumptions were not truly used
apart from an indirect reference to them via
MAXMEM. Specifically:

Linux Symposium 237

#define VMALLOC_END

(FIXADDR_START−2∗MMUPAGE_SIZE)

#define __VMALLOC_START \

(VMALLOC_END− VMALLOC_RESERVE\

− 2∗MMUPAGE_SIZE)

#define VMALLOC_START \

(high_memory \

? max(__VMALLOC_START, \

(unsigned long)high_memory) \

: __VMALLOC_START \

)

#define __MAXMEM \

((VMALLOC_START − 2∗MMUPAGE_SIZE \

− __PAGE_OFFSET) \

& LARGE_PAGE_MASK)

#define MAXMEM \

__pa((VMALLOC_START−2∗MMUPAGE_SIZE)\

& LARGE_PAGE_MASK)

This is actually a side effect of a design de-
cision which makes the virtualspace layout
change dynamically withPAGE_SIZE. That
is, virtual mapping windows raise an issue now
that the area callers want to map is usually
PAGE_SIZE in size, and to make it the size
they expect, fixmapspace must grow. There is
an alternative design possible, which is to keep
fixmapspace a fixed size or at most some fixed
size, and to have “sliding windows into a par-
tial page.” Using such an API would proceed
something like the following:

This is somewhat more invasive, but more ef-
ficient with respect to virtualspace. AsPAGE_
SIZE grows in a 32-bit environment with
progressively more extended physical mem-
ory, such measures become progressively more
prudent. However, the need to take such mea-
sures may be significantly mitigated by elim-
inating the permanent kmap pool in combi-
nation with using per-cpu pagetables for the
kmap windows, as the typical targets needing
the largestPAGE_SIZE values have a maxi-

int k;

void ∗old, ∗new;

old = kmap_atomic_start(old_page, KM_USER0);

new = kmap_atomic_start(new_page, KM_USER1);

for (k = 0; k < PAGE_KMAP_COUNT; ++k){

memcpy(new, old, KMAP_SIZE);

old = kmap_atomic(old_page, KM_USER0, k);

new = kmap_atomic(new_page, KM_USER1, k);

}

kmap_atomic_end(old_page, old, KM_USER0);

kmap_atomic_end(new_page, new, KM_USER1);

mum of 32 or 64 cpus. Eliminating the perma-
nent kmap pool has the additional advantage
of preventing deadlocks caused by a number of
tasks each attempting to acquire multiple per-
manent kmaps but acquiring fewer than desired
by the time the pool is exhausted.

2.2 coremap initialization

The coremap initialization is worthy of its own
discussion. First, in order to satisfy the early
boot setup code, the coremap must be laid out
so it mapsPAGE_SIZE units of memory to
properly aligned positions in the coremap. Si-
multaneously, most (if not all) of the calcula-
tions are done with pfn’s so various bits of di-
mensional analysis must be programmed in.

First, zone->zone_start_pfn and
zone->spanned_pages need to be treated
consistently. Then,zones_sizes[] needs
to be converted to passPAGE_SIZEunits and
free_area_init_core() fixed up to in-
crement its pfn counter byPAGE_MMUCOUNT.
bad_range() must then be adjusted for unit
conversion before doing its bounds checks.
Finally, the page allocator need not keep so
many orders around to satisfy allocations of
a given size, so useMAX_ORDER - PAGE_
MMUSHIFTinstead ofMAX_ORDER.

Bootmem also needed large adjustments; they

Linux Symposium 238

were largely done to make its own internal ac-
counting based onMMUPAGE_SIZEand then
interface it with the page allocator which has a
PAGE_SIZEgranularity. This ended up being
rather invasive.

2.3 Kernel pagetables

vmalloc() usage was too widespread to
undergo a full audit for space conserva-
tion. The choice was between usingPAGE_
SIZE or MMUPAGE_SIZEas the unit of
vmalloc() mapping and allocation, and I
choseMMUPAGE_SIZE. This is transparent to
userspace, so either would be legitimate, but
on i386 PAE vmallocspace is too constrained
to take internal fragmentation hits. This meant
that instead of a full audit for space conserva-
tion, a full audit for misuse ofPAGE_SIZE is
needed. This turned out not to be very prob-
lematic at all, as few drivers needed the conver-
sion, and those that did had mild failure modes,
failing only to probe.

page_table_range_init() and rela-
tives greatly disliked the change of units and
the ambiguous location ofkmap_pte and
pkmap_page_table . It proved infeasible
rapidly bring up the system while preserving
them intact, so they were removed and the code
greatly simplified at the expense of a very large
diff.

2.4 Process pagetables

User pagetable manipulations consisted largely
of straightforward substitutions in pagetable
code. Of course, something was missed. It
appeared that an unusual binary compatibility
bug arose with respect to shared libraries that
was very difficult to trigger. The cause of this
was that there was only one caller ofpte_
modify() in the core VM in a corner case
of mprotect() . This passed a first pass of
inspection because_PAGE_CHG_MASKdidn’t

trip grep, but it turned out to rely onPTE_
MASK, which by virtue of the macro indirec-
tion, also slipped past grep. After over a
week of chasing it, the substitution that slipped
through my fingers was finally carried out.

The next “interesting” binary compatibility
bug was that core dumps were corrupted.
The get_user_pages() calling conven-
tion had become lossy. It was returning
struct page ’s to refer to the areas mapped
by PTE’s, and it along withfollow_page()
was the only area of the kernel exibiting this
particular kind of confusion. The solution was
to return pfn’s and notstruct page ’s, and
was highly successful. Badari Pulavarty as-
sisted in implementing the portion relevant to
direct I/O.

The most interesting bug of all was actually
the first, which prevented userspace from run-
ning at all. /sbin/init would be stuck in a
loop somewhere in userspace, and it could only
very rarely be caught in the kernel. What even-
tually had to be done to track down the issue
was to log all page faults. What was eventu-
ally discovered was that pid 1 has a special sta-
tus in the kernel, and loops when taking invalid
faults instead of being delivered SIGSEGV. Af-
ter some poking around, it became evident they
were always anonymous pagefaults.

So at first, the workaround was to fragment
anonymous pages. But this could only be tem-
porary in order to meet the performance goals.
The issue was resurrected when it came time
to attempt to fully utilize anonymous pages
for performance reasons. It took some time
to come around to examining the contents of
the purportedly zeroed memory, but eventu-
ally divining the page pointed to by the PTE
taking the fault, which pointed to the zero
page. And the fact a nonzero address was be-
ing fetched from the zero page prompted the
examination of its contents. By an unusual

Linux Symposium 239

coincidence the author had been implement-
ing the GDT setup for an i386 executive ear-
lier that day, and noticed a very clear resem-
blance to the contents of the supposed zero
page. Very shortly thereafter it was discov-
ered that theempty_zero_page[] used on
i386 as backing memory for the zero page was
a 4KB array followed immediately by the ker-
nel’s GDT. The bug was resolved by using a
custom-allocated and zeroed page instead of
the struct page trackingempty_zero_
page[] .

Finally, userspace pagetables required fixups
in order to prevent extremely wasteful frag-
mentation. The code turned out to be some-
what hairy, as it required reference counting
pagetable pages and some scanning of PMD
entries in an alignedPAGE_MMUCOUNT-sized
group. Furthermore, in order to interoper-
ate with highpte, significantly more complex
definitions of pte_offset_map() , pmd_
populate() and relatives were required.

#define pte_offset_map(dir, address) \

((pte_t ∗) \

kmap_atomic(pmd_page(∗(dir)),KM_PTE0) \

+ (PTRS_PER_PTE \

∗ ((pmd_val(∗(dir))/MMUPAGE_SIZE) \

% PAGE_MMUCOUNT) \

+ pte_index(address)) \

)

pmd_populate() became too large to paste
here because it had to deal with several is-
sues to recover from partial unmappings of the
PAGE_MMUCOUNTPMD group and PTE page
refcounting. For the wary, it collapses to its
prior size whenPAGE_MMUCOUNT == 1.

2.5 file-backed memory

Handling userspace faulting semantics for file-
backed memory was actually trivial. The most

unsophisticated fault handling scheme imagin-
able suffices.

There was a small issue withsys_remap_
file_pages() where the populate methods
used theinstall_page() API internally to
perform the dirty work of walking the pageta-
bles down to the PTE to edit, and as it referred
to the location to map by thestruct page ,
lost the offset into the page to map. This was
trivially corrected with an additional argument
with the offset.

2.6 Swap-backed memory

Swap faults are not truly worth optimizing with
pagetable scanning; they don’t fragment like
freshly zeroed anonymous pages because the
swapcache is an effective lookup structure and
userspace can fetch things just fine. Instead
they are faulted in one by one, and that simpli-
fied things at least temporarily while the scan-
ning code wasn’t in place.

The organization of the swap map differs from
the 2.4.7 patch, which created a swap map en-
try for eachMMUPAGE_SIZEpiece of a page,
and so had to account for reference counts on
the page held by multiple swap entries. The 2.5
page clustering implementation instead uses
a single swap map entry for everyPAGE_
SIZE -sized page, and so simplified swap ref-
erence count semantics, reduces the vmalloc-
space consumption of the swap map by a factor
of PAGE_MMUCOUNT, and reduces the search
space for swapoff. Some differences there
are also visible with the encoding ofswp_
entry_t ’s, which directly play with swap
map indices and offsets into pages in various
points throughout the core VM where before-
hand they didn’t need to..

Linux Symposium 240

2.7 anonymizing faults

There is a problem to solve caused by the fact
that a process faulting on anonymous mem-
ory requestsMMUPAGE_SIZEbytes of mem-
ory but is grantedPAGE_SIZEbytes of mem-
ory. Again, there is more than one way to deal
with this.

The first, not used here, is to maintain a one
PAGE_SIZEarea as a “ready list” and service
anonymous faults until it’s exhausted.

The second is to speculatively prefault neigh-
boring anonymous pages in order to utilize the
entire anonymous page. Scanning neighboring
PTE’s for zero-mapped or COW pages (i.e. to
be anonymized). This has the potential to re-
duce the fault rate for some loads at the cost
of not guaranteeing full utilization. Initial in-
dications appear to be that even heuristics that
appear relatively weak in comparison to those
of the 2.4 patch suffice.

The logic is relatively complex, and some ad-
ditional complexity as compared to the 2.4.x
code was added by simultaneously scanning
PTE’s both upward and downward. Some
additional code is required to crossvma
boundaries and detect whether a given page
is anonymous or COW. Crossing pagetable
page boundaries was not implemented, for the
basic reason thatPAGE_MMUCOUNT*PMD_
SIZE is enough virtualspace to scan to mit-
igate most of the fragmentation, and also to
remain future-compatible with pagetable shar-
ing, which is somewhat adverse to crossing
pagetable pages. Additionally, totally un-
bounded scanning could result in some over-
head.

When the scanning code is done, what it has
done is assembled a vector of pfn’s for all the
mmupages it has to copy, and they are by no
means contiguous. In order not to be grossly
TLB-inefficient, an interface is provided to

map vectors of pfn’s,kmap_atomic_sg() .
The use of it is obvious, as it maps each compo-
nent of the pfn vector to a virtually contiguous
PAGE_SIZE virtual area in its corresponding
piece of the virtual page, and the only non-
straight-line code in copying is checking for
the zero page.

2.8 I/O

I/O by and large had relatively simple is-
sues. The i386 PCI DMA API had some
address calculations in need of minor sub-
stitutions, and the block layer was largely
immune to the whole affair apart from di-
rect I/O and SCSI ioctl’s usingget_user_
pages() . An unfortunate limitation ex-
ists in that the block layer is incapable
of dealing with512*q->max_sectors <
PAGE_SIZE. I didn’t produce a fix for this, as
it’s a somewhat obscure condition that can only
occur when particularly crippled devices meet
particularly large value ofPAGE_SIZE. I feel
that it should eventually be handled as part of
the implementation.

IDE had a small issue in that its PRD tables
were sized in terms ofPAGE_SIZE, which it
appears to expect not to vary from 4KB. AGP
also had an unusual issue involving mapping
its aperture. But most drivers that failed sim-
ply performed avmalloc() or ioremap()
of an area sized proportionally toPAGE_SIZE
during initialization and failed to probe, which
was harmless apart from failing to provide
functionality (i.e. no data corruption) and very
easy to correct. The starfire ethernet adapter
fell in this category.

3 Trademarks

This work represents the view of the author and
does not necessarily represent the view of IBM.

IBM is a trademark of International Business Ma-

Linux Symposium 241

chines Corporation.

Linux® is a trademark of Linus Torvalds.

Other company, product or service names may be
trademarks or service marks of others.

Ugly Ducklings
Resurrecting unmaintained code

Dave Jones
SuSE Labs

davej@suse.de

Abstract

Throughout the development of the 2.5 kernel,
a number of drivers and pieces of infrastruc-
ture that had been left to stagnate finally got a
long overdue cleanup. In some cases, code that
hadn’t been touched for several years got over-
hauled. Each time another area got the cleanup
treatment, patterns started to emerge.

This paper attempts to document some of these
patterns so that hopefully by keeping them in
mind, future driver authors don’t fall into the
pitfalls that some of these have fixed up such as
over-abstracting, and massive duplication. By
way of examples, it covers several areas that
got cleaned up in the 2.5 series, but focuses on
the bulk of the work the paper author did on the
agpgart driver.

1 Introduction

It has been a long-standing philosophy that
bending an existing driver to work on a new
piece of hardware is much favoured over a new
implementation which ends up with 99% the
same code as the old. The typical life-cycle of
a driver is as follows.

• Driver is written for hardware vendors A’s
new widget

• Vendor B makes a compatible widget.

• Id’s for Vendor B’s product get added to
the driver

• (Repeat for several other vendors/other
register compatible widgets)

• Slightly different widgets start appearing,
which are still mostly compatible. Driver
starts to take on new form where it needs
to special case certain widgets in different
code paths.

• Repeat for several more new widgets.

• Driver is now 100K+ of spaghetti.

• Original driver maintainer moves on to
new project, leaving driver in current
state.

• New widget Id’s get added.

• Most people too scared to change too
much of the code in fear of subtly break-
ing support for other widgets.

2 Cleanups overview

Throughout the development of the 2.5 kernel,
a number of drivers and pieces of infrastruc-
ture that had been left to stagnate finally got a
long overdue cleanup. Each time another area
got the cleanup treatment, patterns started to
emerge.

Linux Symposium 243

2.1 The splitting up of multiple instances

The “support all hardware all in the same driver
.c file” approach is flawed. If you want to
change how vendor B’s products work, you
shouldn’t be touching any code for other ven-
dors devices. With hundreds or thousands of
lines of irrelevant code, it’s also a pain to nav-
igate your way around the source. By split-
ting the driver into multiple vendor.c files,
you also start to notice patterns such as “this
function is duplicated in all vendor files, so be-
longs in a generic.c file.” Sometimes, how-
ever, things go the other way. In 2.4, we have
several separate RNG (Random Number Gen-
erator) drivers. Jeff Garzik found that by merg-
ing all of these to the same file, lots of code
duplication got removed. Whilst the number of
RNG drivers is quite low, if there comes a day
when the driver supports many more, it may
make sense to abstract them back out into sep-
arate files again.

2.2 Reorganising directory structures

The whole idea of directories is to keep sim-
ilar things together. One simple cleanup that
happened in 2.5 was the introduction of the
drivers/char/watchdog directory. Pre-
viously, drivers/char contained over 200
.c and .h files. By introducing the watch-
dog subdirectory, you can instantly find all rel-
evant drivers. Useful when you have to make
changes that affect all watchdog drivers (as was
the case in 2.4 when a security bug had been
copied through all drivers).

2.3 Simplification of abstraction layers

Sometimes, after introducing support for mul-
tiple widgets to a driver, people over-abstract.
A prime example of this was the agpgart cache
flush routine, which ended up calling through
4–5 function pointers before it actually got to

do anything useful.

2.4 Moving to new APIs to decrease LOC

With code lying dormant and unmaintained for
several years, it tends to miss the opportunity to
take advantage of easier or faster ways of call-
ing kernel-supplied functionality. As helper
functions get continually added, the number of
lines of code needed to be duplicated in drivers
goes down.

3 Case study #1: IA32 CPU setup
routines

This started out life as arch/i386/
kernel/setup.c , and in 2.4, currently
stands at 84KB of code which handles setting
up of the CPU in terms of working around er-
rata, enabling CPU specific features, and doing
some detective work such as finding out the
cache sizes. Initially supporting Intel CPUs,
the clones started to follow. Today it supports
dozens of different types of x86 CPU, from 10
different vendors. In 2.5, Patrick Mochel split
this file up into per-vendor support files, and
a few generic files.arch/i386/kernel/
cpu/ is a much simpler place to navigate, and
is a lot nicer to hack on than its predecessor as
a result.

4 Case study #2: IA32 MTRR
driver

This monster has been around a few years,
and it shows. 71KB of monolithic code, with
multiple implementations built on top of each
other. Each time, with the abstraction layer
bent and twisted into something new. Ini-
tially supporting generic Intel MTRRs, it was
bent into shape to deal with AMD K6’s vari-
ants. Then Cyrix’s ARR’s. Then a myriad

Linux Symposium 244

of other clones which did things slightly dif-
ferent. Again, chopping this into per-vendor
pieces makes things a lot simpler, and reduces
the chance of breaking one vendor when fixing
something for another (which has been the case
in the past on more than one occasion).

5 Case study #3: Bluesmoke

Bluesmoke is the IA32 machine check excep-
tion handling support. As usual, it first only
supported Intel P5 and P6 CPUs. Over time,
things were changed to support AMD proces-
sors, Intel Pentium 4, IDT Winchips, and some
additional features such as background check-
ing. This all started to blow up the file size, and
it became a pain to find your way around a file
with a half dozen similarly named functions.
Time for the split-up treatment. 2.5 now has 7
separate C files for the implementations, with
a central ‘generic’ file which calls the specific
per-vendor/model implementations.

Whilst it’s theoretically possible that you could
hack the Makefiles now to only build in (for
example) the Intel code if you don’t own any
non-Intel parts, the added complexity and re-
duction in functionality for the net-gain of just
a few KB of object wasn’t deemed worth it. A
bigger challenge which would benefit from this
change came in the form of the final case study.

6 Case study #4: AGPGART

6.1 History of AGPGART

AGP support was added to Linux back in
1999. Subsequent updates were somewhat in-
frequent. The bulk of the code never really
changed much. Each update just added PCI
ID’s of new devices, or occasionally a new agp-
gart implementation when things were just too
different to the existing agpgarts.

6.2 How I got involved

During 2002, I was asked by SuSE to im-
plement AGP support for the AMD x86-64.
Thinking this would be easy basing assump-
tions on what I’d previously seen happen to
agpgart (thinking it would be just adding some
new PCI idents or the likes), I (foolishly?)
agreed to do it. Shortly afterwards, I dis-
covered the GART I was writing support for
was unlike anything Linux currently supported.
Firstly, the north-bridge was on-CPU, which
meant on an SMP box, there would be more
than one of them, and they would have to be
kept coherent with each other. Secondly, it was
the first GART to support version 3.0 of the
AGP standard. Whilst this is backwards com-
patible for the most part, there are some ad-
ditional features that need to be taken care of
(such as the transfer speed selector working in
completely different ways to how it did in pre-
vious versions of the standard). This was quite
a lot to take on board, so I started staring at the
134KB of agpgart back-end code (there’s also
25KB of front-end code).

6.3 More problems. . .

Getting up to speed on a driver of this size,
which supports over 50 different AGP chipsets,
is not a task that happens overnight. Lots of
those implementations are either the same, or
very similar, but it still leaves around a dozen
or so separate code paths. Now to find out
which one is most similar to the GART I’m
writing for. I eventually gave up trying to
find one similar enough, and just started from
scratch. My mails for “help” to the original
maintainer of agpgart went to/dev/null ,
which meant I had to figure out how a lot of
it worked, the hard way. After finally getting
things working, I had decided that enough was
enough, and for 2.5, I was going to give this
code a major overhaul.

Linux Symposium 245

6.4 How things were cleaned up

• As usual, first things first, split
drivers/char/agp/agpgart_
be.c (134KB) into lots of smaller source
files. One per chipset vendor. This was an
instant cleanup, which had no problems
being merged. Shortly afterwards, Greg
Kroah-Hartman converted the chipset
probing routines over partially to some
of the ‘new’ PCI API, killing off a bunch
more useless, ugly code.

• With everything in per-vendor files now,
things were a lot cleaner, but there was
still some real bad mess that needed clean-
ing. The agpgart_be.c file still ex-
isted, which acted as a generic part which
had all the bits to call the routines in
the per-vendor files. One particular ugly
that stuck out was the 350-line struct that
matched known PCI IDs to init routines.
The redundancy in this struct was really
bad.

static struct {
unsigned short device_id;
unsigned short vendor_id;
enum chipset_type chipset;
const char *vendor_name;
const char *chipset_name;
int (*chipset_setup) (struct

pci_dev *pdev);
} agp_bridge_info[]

__initdata = {
\#ifdef CONFIG_AGP_ALI

{ PCI_DEVICE_ID_AL_M1541_0,
PCI_VENDOR_ID_AL,
ALI_M1541,
"ALi",
"M1541",
ali_generic_setup },

... (Continue for dozens
more entries) ...

With this wasteful struct, if 20 out of those
50 entries are for Intel GARTs, we dupli-
cate the vendor ID, vendor name string,

and in a lot of cases, the setup routine too.
This was cleaned up in several steps.

– Split the structs out from
agpgart_be.c to $vendor.h
(I.e., move all the ALi entries to
ali.h , AMD entries to amd.h ,
etc.)

– Remove all duplication from each of
these structs.

– Replace the duplication with a
‘header struct’ containing the ven-
dor ID, vendor name string, and a
pointer to the remaining data.

– Replace the struct inagpgart_
be.c with a struct that points to
the various split out structures in the
$vendor.h files.

6.5 The “new” PCI API

Somewhat pleased with myself, I mailed off
the changes to Linus, who told me to start
again, this time using the pci_driver function-
ality. As GregKH had done part of the work
here already, it wasn’t actually that much work
to bend what I had already into shape. This
did, however, bring about a big change over
2.4’s agpgart. With each of the per-chipset
drivers now containing a pci_driver struct, they
worked independently of the agpgart core as
stand-alone modules. I wasn’t initially happy
with this, but Linus liked it, so it stayed that
way. It did, however, mean a rewrite in module
locking was needed, which nicely coincided
with Rusty Russell rewriting how module lock-
ing worked.

6.6 Maintainership

By this point, I had completely gutted the way
the agpgart backends worked. I felt I had made
significant enough change to adopt the code,

Linux Symposium 246

and make an entry for myself in the MAIN-
TAINERS file. Which was probably my sec-
ond biggest mistake so far. Within just a few
days of doing so, my mailbox was flooded with
bug reports, stagnant patches, thank-you’s, and
insults. One thing that I hadn’t anticipated
was just how far-reaching this code was. Not
only did I now have to follow and understand
what was going on in the agpgart code, but
also found myself digging further into DRI to
follow its interaction with AGPGART. Sub-
sequently, even parts of XFree86 came under
scrutiny, and even FreeBSD (which interest-
ingly did the ‘separate-file-per-vendor’ thing
from Day One) to see just how much I could
or couldn’t change without breaking things too
much from a userspace point of view.

6.7 Taking AGPGART forward: AGP 3.0 sup-
port

After getting on top of the various patches,
and fixing the various problems the new code
brought about, AGPGART had been dragged
kicking and screaming into something that re-
sembled a modern driver. Well, almost. I then
moved on to start tackling the next big thing for
agpgart: generic AGP 3.0 support. Matthew
Tolentino from Intel had come up with a patch
for Intel’s AGP3.0 chipset (the I7505), and had
re-implemented a bunch of code that I had writ-
ten for the x86-64. After factoring out the
common parts, this got to a state where things
looked just fine.

6.8 Return of the previous maintainer

Just when things were beginning to go quiet
(apart from additional AGP3 GARTs turn-
ing up needing implementing), Jeff Hartmann,
the original maintainer of the 2.4 AGPGART,
reappeared with a 130KB patch against the
original 2.4 code. It offered various function-
ality, supporting AGP3, and cleaning up a lot
of code in the process. In a lot of other ways,

however, it was a huge step backwards. Split-
ting Jeff’s huge patch into smaller pieces was
a massive job. Bits of it went in, and Linus re-
jected a bunch of them, but there was worse
to come (more diffs). At the time of writ-
ing, Jeff’s outstanding diffs vs. 2.5.59 is around
380KB. A lot of this is unlikely to be merged
before 2.6 without considerable rewriting.

6.9 Useless abstractions

Furthering the cleanup mantra, agpgart code
has been described in many ways by many peo-
ple (including shit by Linus himself). Pre-
cleanup, however, my pet-name for this mon-
ster was “abstraction hell.” As an excellent
HOWNOTTO in abstraction, here’s how agp-
gart used to flush the cache.

• At strategic parts of the code there are
CACHE_FLUSH(); calls.

• CACHE_FLUSH turns out to be
a macro which expands toagp_
bridge.cache_flush

• agp_bridge.cache_flush in 99%
of cases, points toglobal_cache_
flush . The remaining case could have
been special-cased inglobal_cache_
flush .

• On SMP,global_cache_flush is a
define forsmp_flush_cache . On UP,
it’s a define forflush_cache .

• smp_flush_cache just does ansmp_
call_function on flush_cache .

• Finally, flush_cache does a “wbinvd”
on IA32/X86_64, “mb” on IA64, or
#error s on anything else.

Linux Symposium 247

7 Future directions

7.1 AGPGART

There is still a lot of work to be done on AGP-
GART. All the work so far concentrated on the
back end (which is where all the chipset magic
happens).

• The front-end of the driver (ioctl interface,
etc.) is almost as crufty, and needs a lot
of work to rid it of silly things like open-
coded list handling routines instead of us-
ing the genericlist.h routines. (Yet
more proof that duplicating functionality
is a bad thing: it gets its double-linked list
implementation horribly wrong.)

• More work on making the AGP3.0 sup-
port transparent.

• Inevitably more support for additional
chipsets.

• Multiple AGP bridge support.

• sysfs migration to get away from the
horrible ioctl interface. This will unfortu-
nately make the Linux AGPGART com-
pletely incompatible with the FreeBSD
implementation. The only people this
causes concern for are XFree86 develop-
ers, who have to support an additional in-
terface.

7.2 Other kernel work

• APIC drivers. The IA32 APIC code is
quite horrible, and quite fragile. It sup-
ports a lot of different types of setup,
from lots of different generic PCs, to
the weird and wonderful bigger machines
like NUMA-Q, Summit, and more. The
x86 sub-architecture support cleaned up
some of this by introducing the possibility

for each sub-arch to implement their own
APIC code, but it hasn’t really improved
readability or maintainability of the APIC
code to any great length.

• Watchdogs. Small scale cleanup oc-
curred already in 2.5, which was to
just group all the watchdog drivers from
drivers/char into a new subdirectory
called imaginativelywatchdog/ . A lot
of these drivers are duplicating lots of
code, sometimes subtly differently, when
they should be using the same code. For
2.7 a nice cleanup would be to abstract out
the generic parts of this to a layer above
the watchdog drivers in a similar way to
what happened with AGPGART. In 2.4
there was a security hole which meant ev-
ery single watchdog driver needed to be
audited and fixed. By moving all this
functionality out of the drivers, this could
have been fixed in a single place.

8 Summary

• Split out multiple implementations to
their own files unless they are small and/or
similar enough to the existing implemen-
tation.

• Don’t re-implement code unnecessarily,
even if you think you may need some-
thing extra that the generic code doesn’t
give you. Build on top of the generic code
rather than re-implementing.

• Use modern interfaces where possible.
This isn’t always easy if you want your
driver to compile on earlier kernel ver-
sions as well (especially true for out-of-
tree drivers).

• Before abstracting something out, think
about why you actually need it abstracted.
What will the callers of the abstraction do
in the common case?

Linux Symposium 248

• Directories are there to keep similar things
together. Use them. (Obviously, only
when they make sense; a directory for 2–3
drivers is perhaps going too far).

• Don’t disappear for four years and reap-
pear with a 380KB patch against the last
code you maintained. You may find that a
lot has changed whilst you were gone, and
merging will be anightmare—especially
if you didn’t keep individual per-change
changesets.

udev – A Userspace Implementation of devfs

Greg Kroah-Hartman∗

IBM Corp.
Linux Technology Center

greg@kroah.com, gregkh@us.ibm.com

Abstract

Starting with the 2.5 kernel, all physical
and virtual devices in a system are visible
to userspace in a hierarchal fashion through
sysfs . /sbin/hotplug provides a noti-
fication to userspace when any device is added
or removed from the system. Using these two
features, a userspace implementation of a dy-
namic/dev is now possible that can provide a
very flexible device naming policy.

This paper will discussudev , a program that
replaces the functionality ofdevfs (only pro-
viding /dev entries for devices that are in the
system at any moment in time), and allows for
features that were previously not able to be
done throughdevfs alone, such as:

• Persistent naming for devices when they
move around the device tree.

• Notification of external systems of device
changes.

• A flexible device naming scheme.

• Allow the kernel to use dynamic major
and minor numbers

• Move all naming policy out of the kernel.

∗This work represents the view of the author and
does not necessarily represent the view of IBM.

This paper will describe why such a userspace
program is superior to a kernel baseddevfs ,
and detail the design decisions that went into
its creation. The paper will also describe how
udev works, how to write plugins that ex-
tend the functionality of it (different naming
schemes, etc.), and different trade offs that
were made in order to provide a working sys-
tem.

1 Introduction

The /dev directory on a Linux machine is
where all of the device files for the system
should be located.[2] A device file is how a
user program can access a specific hardware
device or function. For example, the device
file /dev/hda is traditionally used to repre-
sent the first IDE drive in the system. The name
hda corresponds to both a major and a minor
number, which is used by the kernel to deter-
mine what hardware device to talk to. Cur-
rently a very wide range of names that match
up to different major and minor numbers have
been defined.

All major and minor numbers are assigned
a name that matches up with a type of
device. This allocation is done by The
Linux Assigned Names And Numbers Au-
thority (LANANA)[4] and the current de-
vice list can be always be found on their
web site athttp://www.lanana.org/
docs/device-list/devices.txt

Linux Symposium 250

As Linux gains support for new kinds of de-
vices, they need to be assigned a major and mi-
nor number range in order for the user to be
able to access them through the/dev direc-
tory (one alternative to this is to provide ac-
cess through a filesystem [3]). In the kernel
versions 2.4 and earlier, the valid range of ma-
jor numbers was 1-255 and minor numbers was
1-255. Because of this limited range, a freeze
was placed on allocating new major and mi-
nor numbers during the 2.3 development cycle.
This freeze has since been lifted, and the 2.6
kernel should see an increase in the range of
major and minor numbers available for use.

2 Problems with current scheme

2.1 What /dev entry is which device

When the kernel finds a new piece of hard-
ware, it typically assigns the next major/minor
pair for that kind of hardware to the device.
So, on boot, the first USB printer found would
be assigned the major number 180 and mi-
nor number 0 which is referenced in/dev as
/dev/usb/lp0 . The second USB printer
would be assigned major number 180 and mi-
nor number 1 which is referenced in/dev
as /dev/usb/lp1 . If the user rearranges
the USB topology, perhaps adding a USB hub
in order to support more USB devices in the
system, the USB probing order of the print-
ers might change the next time the computer
is booted, reversing the assignment of the dif-
ferent minor number to the two printers.

This same situation holds true for almost any
kind of device that can be removed or added
while the computer is powered up. With the
advent of PCI hotplug enabled systems, and
hot-pluggable busses like IEEE1394, USB, and
CardBus, almost all devices have this problem.

With the advent of thesysfs filesystem

in the 2.5 kernel, the problem of deter-
mining which device minor is assigned to
which physical device is now much eas-
ier to determine. For a system with two
different USB printers plugged into it, the
sysfs /sys/class/usb directory tree can
look like Figure 1. Within the individ-
ual USB device directories pointed to by the
lp0/device and lp1/device symbolic
links, a lot of USB specific information can be
determined, such as the manufacturer of the de-
vice, and the (hopefully unique) serial number.

As can be seen by the serial files in Fig-
ure 1, the /dev/usb/lp0 device file is
associated with the USB printer with se-
rial number HXOLL0012202323480 , and
the /dev/usb/lp1 device file is associ-
ated with the USB printer with serial number
W09090207101241330 .

If these printers are moved around, by placing
them both behind a USB hub, they might get
renamed, as they are probed in a different order
on startup.

In Figure 2, /dev/usb/lp0 is assigned
to the USB printer with the serial number
W09090207101241330 due to this different
probing order.

sysfs now enables a user to determine which
device has been assigned by the kernel to
which device file. This is a very power-
ful association that has not been previously
easily available. However, a user gener-
ally does not care that/dev/usb/lp0 and
/dev/usb/lp1 are now reversed and should
be changed in some configuration file some-
where, they just want to always be able to print
to the proper printer, no matter where it is in
the USB device tree.

Linux Symposium 251

/sys/class/usb/
|-- lp0
| |-- dev
| |-- device -> ../../../devices/pci0/00:09.0/usb1/1-1/1-1:0
| ‘-- driver -> ../../../bus/usb/drivers/usblp
‘-- lp1

|-- dev
|-- device -> ../../../devices/pci0/00:0d.0/usb3/3-1/3-1:0
‘-- driver -> ../../../bus/usb/drivers/usblp

$ cat /sys/class/usb/lp0/device/serial
HXOLL0012202323480
$ cat /sys/class/usb/lp1/device/serial
W09090207101241330

Figure 1: Two USB printers plugged into different USB busses

$ tree /sys/class/usb/
/sys/class/usb/
|-- lp0
| |-- dev
| |-- device -> ../../../devices/pci0/00:09.0/usb1/1-1/1-1.1/1-1.1:0
| ‘-- driver -> ../../../bus/usb/drivers/usblp
‘-- lp1

|-- dev
|-- device -> ../../../devices/pci0/00:09.0/usb1/1-1/1-1.4/1-1.4:0
‘-- driver -> ../../../bus/usb/drivers/usblp

$ cat /sys/class/usb/lp0/device/serial
W09090207101241330
$ cat /sys/class/usb/lp1/device/serial
HXOLL0012202323480

Figure 2: Same USB printers plugged into a USB hub

2.2 Not enough numbers

The current range of allowed major and minor
numbers is 8 bits (0-255). Currently there are
very few major numbers left for new charac-
ter devices, and about half the number of ma-
jor numbers available for block devices (block
and character devices can use the same num-
bers, but the kernel treats them separately, giv-
ing the whole range for both types of devices.)

This seems like a lot of free numbers, but there
are users who want to use a very large number
of disks all at the same time, for which the 8 bit
scheme is too small. A common goal of some
companies is to connect about 4,000 disks to
a single system. For every disk, the kernel re-
serves 16 minor numbers, due to the possibility
of there being up to 16 partitions on every disk.
So 4,000 disks would require 64,000 different
device files, needing at least 250 major num-

Linux Symposium 252

bers to handle all of them. This would work
in the 8 bit scheme, as they all would fit, but,
the majority of the current major numbers are
already reserved. The disk subsystem can not
just steal major numbers from other subsys-
tems very easily. And if it did so, userspace
would have to know which previously reserved
major numbers are now being used by the SCSI
disk subsystem.

Because of this limitation, a lot of people are
pushing for an increase in the size of the major
and minor number range, which would be re-
quired to be able to support more than 4,000
disks (some users talk of connecting 10,000
disks at once.) It looks like this work will go
into the 2.6 kernel; however, the large problem
remains of how to notify userspace which ma-
jor and minor numbers are being used.

Even if the major number range is increased,
the requirement of reserving major number
ranges for different types of subsystems is still
present. It still requires an external naming
authority, and possibly we could run out of
ranges sometime in the far future. If the kernel
were to switch to a dynamic method of allocat-
ing major and minor numbers, for only the de-
vices that were currently connected to the sys-
tem, this authority would no longer be needed,
and the range of numbers would never run out.
The biggest problem with dynamic allocation
is again, userspace has no idea which devices
are assigned to which major and minor num-
bers.

A few kernel subsystems currently do allocate
minor numbers dynamically. The USB to Se-
rial subsystem has been doing this since the 2.2
kernel series, with great success. The biggest
problem still is the user does not know what de-
vice is assigned to what number, and has to rely
on looking in a kernel log to make that deter-
mination. Withsysfs in the 2.5 kernel, this
is much easier.

2.3 /dev is too big

Not all device files in the/dev directory of
most distributions match up to a physical de-
vice that is currently connected to the computer
at that time. Instead, the/dev directory is cre-
ated when the operating system is initialized
on the machine, populating the/dev directory
with all known possible names. On a machine
running Red Hat 9, the/dev directory holds
over 18 thousand different entries. This large
number of different entries soon becomes very
unwieldy for users to try to determine exactly
what devices are currently present.

Because of the large numbers of device files
in the /dev directory, a number of operating
systems have moved over to having the ker-
nel itself manage the/dev directory, as the
kernel always knows exactly what devices are
present in the system. It does this by creating
a ram based filesystem calleddevfs . Linux
also has this option, and it has become popular
over time with a number of different distribu-
tions (the Gentoo distribution being one of the
more notable ones.)

2.4 devfs

A number of other Unix-like operating systems
have solved a lot of the previously mentioned
problems by using a kernel-baseddevfs
filesystem. Linux also has adevfs filesystem,
and for a number of people, this solves their
immediate needs. However, the Linux-based
devfs implementation still has a number of
problems unsolved.

devfs does only show exactly what devices
are currently in the system at any point in time,
solving the “/dev is too big” issue. How-
ever, the names used bydevfs are not the
names that the LANANA authority has issued.
Because of this, switching between adevfs
system, and a static/dev system is a bit dif-

Linux Symposium 253

ficult, due to the number of different config-
uration files that need to be modified. The
devfs authors have tried to address this prob-
lem and have provided some compatibility lay-
ers to emulate the/dev names.

Even with devfs running in compatibility
mode, the Linux kernel is imposing a set nam-
ing policy on userspace. It is saying that the
first IDE drive is going to be called/dev/hda
or /dev/ide/hd/c0b0t0u0 and there is
nothing that a user can do about this. Gener-
ally, the Linux kernel developers do not like
forcing any policies on userspace, when it can
be helped. This naming policy should be
moved out of the kernel, so that the kernel
driver developers can focus not on naming ar-
guments (of which thedevfs naming argu-
ments consumed many man years of time). In
short, the kernel should not care what a user
wants to call a device, but ifdevfs is used,
this is not possible.

devfs also does not allow devices to be bound
to major and minor numbers dynamically. The
current devfs implementation still uses the
same major and minor numbers that are as-
signed by LANANA.devfs can be modified
to do dynamic allocation; however, no one has
done so yet.

devfs also forces all of the device names and
the naming database into kernel memory. Ker-
nel memory can not be swapped out, and is
always resident. For very large amounts of
devices (like the previously mentioned 4,000
disks), the overhead of keeping all of the device
names in kernel memory is not unsubstantial.
During some testing of a wider major num-
ber range, one developer ran into memory star-
vation issues on a 32 bit Intel processor, just
with a static/dev system. Add the overhead
of 4,000 different disk names and structures to
manage those names, and even less memory
would be available for user programs to use.

3 udev ’s goals

So, in light of all of the previously mentioned
problems, theudev project was started. Its
goals are the following:

• Run in userspace

• Create a dynamic/dev .

• Provide consistent device naming, if
wanted.

• Provide a userspace API to access info
about current system devices.

The first item, “run in userspace,” is
easily done by harnessing the fact that
/sbin/hotplug generates an event for
every device that is added or removed from the
system, combined with the ability ofsysfs to
show all needed information about all devices.

The rest of the goals enable theudev project
to be split into three separate subsystems:

1. namedev – handles all device naming

2. libsysfs – a standard library for ac-
cessing device information on the system.

3. udev – dynamic replacement for/dev

3.1 namedev

Due to the need for different naming schemes
for devices, the device naming portion of udev
has been moved into its own subsystem. This
was done to move the naming policy deci-
sion out of the udev binary, allowing plug-
gable naming schemes to be developed by dif-
ferent groups. This device naming subsys-
tem, namedev, presents a standard interface
that udev can call to name a specific device.

Linux Symposium 254

With the initial releases ofudev , the namedev
logic is still provided in a few source files
that get linked into theudev binary. There
is currently only one naming scheme imple-
mented, the one specified by LANANA[4].
This scheme is quite simple, as generally the
sysfs representation of the device uses the same
name, and will be suitable for the majority of
current Linux users.

As the current kerneldevfs provides a com-
peting naming schema from LANANA, there
has been some interest in providing a module
that contains this, but this is currently unavail-
able due to lack of interest by the primary de-
velopers.

Part of the goal for theudev project is to pro-
vide a way for users to name devices based
on a set of policies. The current version of
namedev provides the user with a five step
sequence for determining the name of a given
device. These steps are consulted in order, and
if the device’s name can be determined at any
step, that name is used. The existing steps are
as follows:

1. label or serial number

2. bus device number

3. topology on bus

4. replace name

5. kernel name

In the first step, the device that is added to the
system is checked to see if it has a unique iden-
tifier, based on that type of device. For ex-
ample, on USB devices, the USB serial num-
ber is checked; for SCSI devices, the UUID is
checked; for block devices, the filesystem label
is checked. If this matches a identifier provided
by the user (in a configuration file), the result-
ing name (again specified in the configuration
file) is used.

The second step checks on the device’s bus
number. For a lot of busses, this number gen-
erally does not change over time, and all bus
numbers are guaranteed to be unique at any
one point in time in the system. A good ex-
ample of this is PCI bus numbers, which rarely
change on the majority of systems (however,
BIOS upgrades, or hotplug PCI controllers, can
renumber the PCI bus number the next time the
machine is booted.) Again, if the bus number
matches an identifier provided by the user, the
resulting name is assigned to the device.

The third step checks the position of the device
on the bus. For example, a USB device can be
described as residing in the 3rd hub port of the
hub plugged into the first port on the root hub.
This topology will not change, unless the user
physically moves the devices around, and is in-
dependent of any bus numbering changes that
might occur between reboots of a machine. If
the topology position on the bus matches the
position provided by the user, the requested
name is assigned to the device.

The fourth step is a simple string replacement.
If the kernel name for a device matches the
name specified here, the requested new name
will be used in its place. This is useful for
devices that users always know will have the
same kernel name, but wish to name something
different.

The fifth step is the catch-all step. If none of
the previous steps have provided a name for
this device, the default kernel name will be
used for this device. For the majority of de-
vices in a system, this is the rule that will be
used, as it matches the way devices are named
on a Linux system withoutdevfs or udev .

Figure 3 shows an examplenamedev con-
figuration file. This configuration file shows
how the four different ways of overriding the
default kernel naming scheme can be changed.
The first two entries show how to specify a se-

Linux Symposium 255

USB Epson printer to be called lp_epson
LABEL, BUS="usb", serial="HXOLL0012202323480", NAME="lp_epson"

USB HP printer to be called lp_hp,
LABEL, BUS="usb", serial="W09090207101241330", NAME="lp_hp"

sound card with PCI bus id 00:0b.0 to be the first sound card
NUMBER, BUS="pci", id="00:0b.0", NAME="dsp"

sound card with PCI bus id 00:07.1 to be the second sound card
NUMBER, BUS="pci", id="00:07.1", NAME="dsp1"

USB mouse plugged into the third port of the first hub to be
called mouse0
TOPOLOGY, BUS="usb", place="1.3", NAME="mouse0"

USB tablet plugged into the second port of the second hub to be
called mouse1
TOPOLOGY, BUS="usb", place="2.2", NAME="mouse1"

ttyUSB1 should always be called visor
REPLACE, KERNEL="ttyUSB1", NAME="visor"

Figure 3: Examplenamedev configuration file

rial number of a device to control what that de-
vice should be named. The third and fourth
entries show how to override the bus probing
order and name a device based on the specific
bus id. The fifth and sixth entries show how the
USB topology can be used to specify a device
name, and the seventh entry shows how to do a
simple name substitution.

3.2 libsysfs

There is a need for a common API to access de-
vice information insysfs by a number of var-
ied programs, not just theudev project. The
device naming subsystem and theudev sub-
system need to query a wide range of device
information from asysfs represented device.
Instead of duplicating this logic around in dif-
ferent projects, splitting this logic ofsysfs
calls into a separate library that will sit on top
of sysfs makes more sense.sysfs repre-
sentations of different devices are not standard
(PCI devices have different attributes from

USB devices, etc.) so this is another reason
for creating a common and standard library in-
terface for querying device information.

Right now the currentudev codebase is us-
ing an initial version oflibsysfs , and the
libsysfs codebase is under active develop-
ment.

3.3 udev

The udev program will be responsible
for talking to both the namedev and
libsysfs libraries to accomplish the de-
vice naming policy that has been speci-
fied. The udev program is run whenever
/sbin/hotplug is called by the kernel. It
does this by adding a symlink to itself in
the/etc/hotplug.d/default directory,
which is searched by the/sbin/hotplug
multiplexer script.

The /sbin/hotplug invocation by the ker-

Linux Symposium 256

nel exports a lot of device specific informa-
tion on what action just happened (add or re-
move), what device type the action took place
for (USB, PCI, etc.), and what device in the
sysfs tree did the action.udev takes this
information, callsnamedev to determine the
name it should give for this device (or the name
that has already been given to this device if it is
a remove event). If this is a new device that has
been added,udev useslibsysfs to deter-
mine the major and minor number that should
be used for the device file for this device, and
then creates the device file in the/dev di-
rectory with the proper name and major/minor
number. If this is a device that has been re-
moved, then the device file in the/dev direc-
tory that had previously been created for this
device will be removed.

4 Enhancements

There are a number of different enhancements
that different users have asked for, that can be
added to the existingudev implementation.

A lot of userspace programs want to be notified
when a new device has been added or removed
from the system. Gnome and KDE both want
to add a new icon if a disk has been added,
or possibly launch a sync program if a USB
Palm device has been attached. The D-BUS
project[1] has been created to help provide a
simple way for applications to talk to one an-
other using messages. It has been proposed
that theudev program create a D-BUS mes-
sage after it has created or removed a device
file, so that any listening applications can act
upon this event.

Currently,namedev uses a very simple con-
figuration file, creating a simple ram based
database that it uses to store all current device
information, and device naming rules. It has
been proposed that this database (if it can even

really be called such a thing), be moved to a
real, backing-store type database, in order to
store a persistent view of the system, or to pro-
vide a more complex naming scheme forudev
to use.

5 Thanks

The author would like to thank Daniel Stekloff
of IBM who has helped shape the design of
udev in many ways. Without his persever-
ance,udev might not even be working. He
also provided the initial design documents for
how udev could be split up into different
pieces, allowing pluggable naming schemes
and has been instrumental in the development
of libsysfs . Also, without Pat Mochel’s
sysfs and driver model core,udev would
not even have been possible to implement. The
author is indebted to him for undertaking what
most thought as an impossible task, and for al-
lowing others to easily build on his common
framework, allowing all users to see the “web
woven by a spider on drugs”[5] that the kernel
keeps track of.

6 Legal Statement

IBM is a registered trademark of International Busi-
ness Machines in the United States and/or other
countries.

Linux is a registered trademark of Linus Torvalds

UNIX is a registered trademark of The Open Group
in the United States and other countries.

Intel is a registered trademark of Intel Corporation
in the United States and/or other countries.

Other company, product, and service names may be
trademarks or service marks of others.

Linux Symposium 257

References

[1] D-BUS project.http://www.
freedesktop.org/software/dbus/ .

[2] Linux Filesystem Hierarchy Standard.http:
//www.pathname.com/fhs/2.2/ .

[3] Greg Kroah-Hartman. Putting a filesystem
into a device driver. InLinux.conf.au, Perth,
Australia, January 2003.

[4] The Linux Assigned Names And Numbers
Authority. http://www.lanana.org/ .

[5] Linux Weekly News.
http://lwn.net/Articles/31185/ .

Reliable NAS from Dirt Cheap Commodity
Hardware

Benjamin C.R. LaHaise
bcrl@kvack.org

Abstract

To many of us, the integrity of our data is
paramount. Unfortunately, the most cost ef-
fective commodity hardware available tends to
omit important features like ECC memory, or
only provides it at a substantial cost premium.
To address this, an approach that makes use
of concepts taken from NAS and clustering,
combined with a novel trick to obtain a CRC
on data blocks from existing ethernet NICs
is used. The resulting code is built on top
of the existing Linux Network Block Device,
network drivers and async io. Details rang-
ing from design considerations to performance
tuning and implementation provide an interest-
ing story on how to attain a much easier, and
cheaper, reliable storage solution.

1 Introduction

Anyone who uses computers can tell you that
they will inevitably break. From software bugs,
to hardware errata, or just plain old age, the
components of systems will always fail at some
point in their deployed lifespan. Hardware
vendors try to address various subsets of these
failures, but frequently only in high end sys-
tems. Even in the case of hardware specifically
designed to cope with a common mode of fail-
ure, RAID controllers are lost when a failed
SCSI device locks the bus.

Over the last few years, low end hardware

has come to provide capabilities well beyond
the needs of many server systems. Relatively
cheap IDE drives cost less than a third the
amount for a comperable SCSI device. As an
end user, that difference in the price perfor-
mance ratio raises more than a few eyebrows.
Several companies sell products into this niche,
yet there are a number of failure modes which
their devices fail to address. Data corruption
is still possible when disks make use of non-
error correcting memory, or firmware bugs ex-
ist (what body of software is bug-free?). So
what is a user that wishes to make use of the
price point of commodity hardware to do if
their data is truely valuable?

Take one kernel hacker, random bits of hard-
ware, several discussions over beer at confer-
ences, this problem, and mix. The result is
netmd.o .

2 What is Netmd?

Netmd at its core is a hybrid between the Linux
RAID implementation (known as md) and the
network block device (known as nbd), and is
quite similar to DRBD. DRBD allows users to
mirror disks over a network, yet it runs under
the assumption that the underlying hardware is
reliable and will detect any errors which cor-
rupt user data. Netmd changes this by making
use of an end to end CRC on sectors to check
if any of the BEs have unknowingly corrupted
read or write data. All told, netmd is much eas-

Linux Symposium 259

ier to use than either drbd or nbd while provid-
ing guarantees about data integrity.

3 Design Criteria

The front end system runs the netmd kernel
module. To provide the greatest likelyhood of
the software being correct, simplicity is strong
goal for the resulting code.

suffered from a simple single bit error, or more
gross errors resulting in so called fractured
blocks (ie, the case where the sector number it-
self is corrupt and the wrong data is read back
from disk). The basic assumption netmd makes
is that your front end hardware is reliable and
the bulk of errors will come from the back end
systems which house all of the disks. A front
end system running NetMD looks very much
like an NBD, but provides reliability guaran-
tees.

The simplest configuration for NetMD (see
Figure 3) consists of a front end system and
three back end systems networked via a switch
or hub. A minimum of three back ends are re-
quired for NetMD to establish quorum and pro-
vide the ability to hot swap one back end at a
time. Additional BEs can be added to improve
the performance and reliability of a NetMD
setup (such as in Figure 3).

Unlike nbd, which operates over TCP, NetMD
instead operates over UDP to take advantage
of the packet nature of the underlying network.
This allows writes to be optimized using mul-
ticast to deliver data to all BEs simultaneously.
BEs may also snoop read requests to rapidly re-
ply if the data is still available in its local cache.

In fact, the main data integrity feature of
NetMD comes from the ethernet packets which
are used to transmit read and write requests
over the network. All ethernet frames are pro-
tected from transmission errors by a trailing

32 bit CRC. Many ethernet cards are able to
record the CRC of an incoming packet. By
compensating for the header of each packet,
the data CRC can be extracted at low CPU cost.

Improving the Linux Test Project with Kernel Code
Coverage Analysis

Paul Larson
IBM Linux Technology Center

Nigel Hinds, Rajan Ravindran, Hubertus Franke
IBM Thomas J. Watson Research Center

{plars, nhinds, rajancr, frankeh}@us.ibm.com

Abstract

Coverage analysis measures how much of the
target code is run during a test and is a useful
mechanism for evaluating the effectiveness of a
system test or benchmark. In order to improve
the quality of the Linux® kernel, we are uti-
lizing GCOV, a test coverage program which is
part of GNU CC, to show how much of the ker-
nel code is being exercised by test suites such
as the Linux Test Project. This paper will dis-
cuss the issues that make code coverage analy-
sis a complicated task and how those issues are
being addressed. We will describe tools that
have been developed to facilitate analysis and
how these tools can be utilized for kernel, as
well as application code coverage analysis.

1 Introduction

The Linux Test Project (LTP) is a test suite for
testing the Linux kernel. Over the years, the
LTP has become a focal point for Linux testing
and Linux test tools. Just as the Linux kernel
is constantly under development, the LTP test
suite must also be constantly updated, modi-
fied, and improved upon to keep up with the
changes occurring in the kernel. As the Linux

Test Project test suite matures, its developers
constantly look for ways to improve its useful-
ness. Some of the considerations currently be-
ing addressed are what areas of the Linux ker-
nel test development efforts should focus on,
and proving that tests added to the LTP are
testing more than what was there before. In
order to gather data to support decisions for
these questions, analysis should be performed
to show what areas of the kernel are being exe-
cuted by any given test.

The design of a process for doing this analysis
took the following features into consideration:

1. Use existing tools as much as possible

2. Take a snapshot of coverage data at any
time

3. Clear coverage counters before a test ex-
ecution so just the coverage from the test
could be isolated

4. Provide output that looks nice and is easy
to read and compare

5. Show coverage percentages at any level of
directory or file

Linux Symposium 261

6. Show execution counts for every instru-
mented line of every file

This paper is outlined as follows: Section 2
provides a general description of code cover-
age analysis. Sections 3 and 4 discuss GCOV
and other code coverage tools. Section 5 de-
scribes Linux kernel modifications necessary
to provide kernel code coverage. Test results
are presented in Section 6. Section 7 presents
the LCOV toolkit for processing and display-
ing GCOV results. Section 8 describes how the
results of kernel code coverage analysis can be
used to improve the Linux Test Project. Fu-
ture work planned on this project is discussed
in Section 9. Finally, conclusions are presented
in Section 10.

2 How code coverage analysis
works

Before examining possible methods for the
task of kernel code coverage analysis, it is im-
portant to first discuss some general concepts
of code coverage analysis.

Code coverage analysis shows what percentage
of an application has been executed by the test
process. The metrics derived from code cover-
age analysis can be used to measure the effec-
tiveness of the test process [Perry].

Statement coverage analysis [Cornett] breaks
the code down into basic blocks that exist be-
tween branches. By design, it is clear that if
any line in a basic block is executed a given
number of times, then every instruction within
the basic block would have been executed the
same number of times. This provides for a con-
venient way of showing how many times each
line of code in a program has been executed.

There are, however, a number of deficiencies
in this approach. The following piece of code

exhibits one of the main issues with statement
coverage analysis:

int *iptr = NULL;
if(conditional)

iptr = &i;
*iptr = j*10;

The above code may show 100% code cover-
age but will obviously fail miserably if the con-
ditional is ever false.

To deal with situations such as the one
demonstrated above, branch coverage analy-
sis [Marick] is required. Rather than focusing
on the basic blocks and the lines of code exe-
cuted, branch coverage looks at possible paths
a conditional can take and how often each path
through the conditional is taken. This will
account for problems such as those described
above because it will clearly show that the con-
ditional was never evaluated to be false. An-
other advantage of branch coverage analysis is
that knowledge of how many times each line of
code was executed can be derived by knowing
how many times each conditional was evalu-
ated for each possible outcome.

Although branch coverage analysis provides
a more accurate view of code coverage than
statement coverage, it is still not perfect. To
gain a better understanding of the path taken
through the entire conditional, the outcome of
each test in a complex conditional must be de-
termined. For instance:

struct somestructure* p = NULL;

if(i == 0 || (j == 1 && p->j == 10))
printf("got here\n");

If i is ever non-zero whenj is 1, then the NULL
pointerp will be dereferenced in the last part
of the conditional. There are paths through this
branch in both the positive and negative case

Linux Symposium 262

that will never expose the potential segmenta-
tion fault.

Branch coverage would show how many times
the entire conditional was evaluated to true or
false, but it would not show the outcome of
each test that led to the decision.

There are many other types of coverage for
dealing with a variety of corner cases. How-
ever, statement coverage and branch coverage
are the two types that will be focused on in this
paper since they are the only ones supported by
GCOV.

3 Methods considered

This section discusses some of the more pop-
ular techniques for collecting statement and
branch coverage data in a running system.

3.1 Estimation

At a most basic level, estimating techniques
could be used to collect code coverage within
a given program. Obviously, this method has
no redeeming value at all with regards to accu-
racy or reproducibility. The advantage to this
method, and the only reason it is mentioned, is
that it requires the least amount of effort. Given
a developer with sufficient knowledge of the
code, a reasonable estimate of code coverage
may be possible to estimate in a short amount
of time.

3.2 Profiling

Performance profilers are well known, easy to
use, and can be used to track coverage; how-
ever these uses are not the purpose for which
performance profilers were intended. Perfor-
mance profilers use statistical profiling rather
than exact profiling.

Readprofile is a simple statistical profiler that
stores the kernel PC value into a scaled his-
togram buffer on every timer tick. Readprofile
profiles only the kernel image, not user space
or kernel modules. It is also incapable of pro-
filing code where interrupts are disabled.

Oprofile, another statistical profiler, leverages
the hardware performance counters of the CPU
to enable the profiling of a wide variety of in-
teresting statistics which can also be used for
basic time-spent profiling. Oprofile is capa-
ble of profiling hardware and software inter-
rupt handlers, the kernel, shared libraries, and
applications.

All of these statistical profilers can be used
indirectly to gather coverage information, but
because they approximate event distribution
through periodic sampling via an interrupt,
they cannot be considered accurate for true
coverage analysis.

3.3 User-Mode Linux

User-mode Linux is an implementation of the
Linux kernel that runs completely in user
mode. Because it runs as a user mode appli-
cation, the possibility exists to utilize analy-
sis tools that were normally intended to run
against applications. These tools would not
normally work on kernel code, but User-mode
Linux makes it possible. To make use of this
feature in User-mode Linux, the kernel needs
to be configured to compile the kernel with the
necessary flags to turn on coverage tracking.
To do this, the “Enable GCOV support” option
must be selected under “Kernel Hacking” from
the configuration menu.

When GCOV support is turned on for User-
mode Linux, the necessary files for using
GCOV are created, and coverage is tracked
from boot until shutdown. However, interme-
diate results cannot be gathered, and counters

Linux Symposium 263

cannot be reset during the run. So the resulting
coverage information will represent the boot
and shutdown process and everything executed
during the UML session. It is not possible to
directly gather just the coverage results of a
single test on the kernel.

3.4 GCOV-Kernel Patch

In early 2002, Hubertus Franke and Rajan
Ravindran published a patch to the Linux ker-
nel that allows the user space GCOV tool to
be used on a real, running kernel. This patch
meets the requirement to use existing tools. It
also provides the ability to view a snapshot of
coverage data at any time. One potential issue
with this approach is that it requires the use of
a kernel patch that must be maintained and up-
dated for the latest Linux kernel before cover-
age data can be gathered for that kernel.

The GCOV-kernel patch and GCOV user mode
tool were chosen to capture and analyze code
coverage data. The other methods listed above
were considered. However, the GCOV-kernel
patch was chosen because it allowed platform
specific analysis as well as the ability to easily
isolate the coverage provided by a single test.

4 GCOV Coverage Tool

Having decided to use the GCOV tool for LTP,
we first describe how GCOV works in user
space applications and then derive what modi-
fications need to be made to the kernel to sup-
port that functionality.

GCOV works in four phases:

1. Code instrumentation during compilation

2. Data collection during code execution

3. Data extraction at program exit time

4. Coverage analysis and presentation post-
mortem (GCOV program)

In order to turn on code coverage infor-
mation, GCC must be used to compile the
program with the flags “-fprofile-arcs
-ftest-coverage ”. When a file is
compiled with GCC and code coverage is
requested, the compiler instruments the code
to count program arcs. The GCC compiler
begins by constructing a program flow graph
for each function. Optimization is performed
to minimize the number of arcs that must
be counted. Then a subset of program basic
blocks are identified for instrumentation. With
the counts from this subset GCOV can recon-
struct program arcs and line execution counts.
Each instrumented basic block is assigned an
ID, blockno . GCC allocates a basic block
counter vectorcounts that is indexed by
the basic block ID. Within each basic block
the compiler generates code to increment its
relatedcounts [blockno] entry. GCC also
allocates a data-objectstruct bb bbobj to
identify the name of the compiled file, the size
of thecounts vector and a pointer to the vec-
tor. GCC further creates a constructor function
GLOBAL.I.FirstfunctionnameGCOV

that invokes a global function
__bb_init_func(struct bb*) with
the bbobj passed as an argument. A pointer
to the constructor function is placed into
the “.ctors” section of the object code. The
linker will collocate all constructor function
pointers that exist in the various *.o files
(including from other programming paradigms
(e.g. C++)) into a single “.ctors” section of
the final executable. The instrumentation
and transformation of code is illustrated in
Figure 1.

In order to relate the various source code line
information with the program flow and the
counter vector, GCC also generates two out-
put files for eachsourcefile.c compiled:

Linux Symposium 264

———————- file1.c ———————–

→ static ulong counts[numbbs];
→ static struct bbobj =
→ { numbbs, &counts,“file1.c”};
→ static void _GLOBAL_.I.fooBarGCOV()
→ { __bb_init_func(&bbobj); }

void fooBar(void)
{
→ counts[i]++;

<bb-i>
if (condition) {

→ counts[j]++;
<bb-j>

} else {
<bb-k>

}
}

→SECTION(“.ctors”’)
→ { &_GLOBAL_.I.fooBarGCOV }
——————————————————–
”→” indicates the lines of code inserted by the
compiler and<bb-x> denotes the x-th basic block
of code in this file and italic/bold code is added by
the GCC compiler. Notice that the arc from theif
statement into bb-k can be derived by subtracting
counts[j] from counts[i].

Figure 1: Code modification example

(i) sourcefile.bb , which contains a list of
source files (including headers) and functions
within those files and line numbers correspond-
ing to basic blocks in the source file, and (ii)
sourcefile.bbg contains a list of the pro-
gram flow arcs for each function which in com-
bination with the*.bb file enables GCOV to
reconstruct the program flow.

The glibc (C runtime library) linked with
the executable provides the glue and ini-
tialization invocation and is found in the
libgcc2.c . More specifically: it provides

the __bb_init_func(struct bb*)
function that links an object passed as an
argument to a globalbbobj list bb_head .
The runtime library also invokes all function
pointers found in the “.ctors” section, which
will result in all bbobj s being linked to the
bb_head list, as part of the_start wrapper
function.

At runtime, the counter vector entries are in-
cremented every time an instrumented basic
block is entered. At program exit time, the
GCOV enabled main wrapper function walks
thebb_head list and for eachbbobj encoun-
tered, it creates a filesourcefile.da (note
the source file name was stored in the structure)
and populates the file with the size of the vector
and the counters of the vector itself.

In the post mortem phase, the GCOV util-
ity integrates and relates the information of
the *.bbg, *.bb, and the *.da to produce the
*.gcov files containing per line coverage out-
put as shown in Figure 2. For instrumented
lines that are executed at least once, GCOV
prefaces the text with the total number of times
the line was executed. For instrumented lines
that were never executed, the text is prefaced
by the string###### . For any lines of code
that were not instrumented, such as comments,
nothing is added to the line by GCOV.

5 GCOV Kernel Support

The GCOV tool does not work as-is in con-
junction with the kernel. There are several rea-
sons for this. Though the compilation of the
kernel files also generates thebbobj s con-
structor, and the “.ctors” section, the resulting
kernel has no wrapper function to call the con-
structors in .ctors. Second, the kernel never ex-
its such that the *.da files can be created. One
of the initial overriding requirements was to
not modify the GCOV tool and the compiler.

Linux Symposium 265

——————– example.c ———————

int main() {
1 int i;

1 printf("starting example\n");
11 for(i=0;i<10;i++) {
10 printf("Counter is at %d\n",i);
10 }

/* this is a comment */

1 if(i==1000) {
printf("This line should "

"never run\n");
}

1 return 0;
1 }

Figure 2: GCOV output

The first problem was solved by explic-
itly defining a “.ctors” section in the ker-
nel code. The new symbol __CTOR_LIST__
is located at the beginning of this sec-
tion and is made globally visible to the
linker. When the kernel image is linked,
__CTOR_LIST__ has the array of constructor
function pointers. This entire array is delim-
ited by the ctors_start = &__CTOR_LIST__
; ctors_end = &__DTOR_LIST__ variables,
where __DTOR_LIST__ is the starting address
of the ".dtors" section, which in turn contains
all destructor functions. By default the counter
vectors are placed in zero-filled memory and
do not need to be explicitly initialized. The
data collection starts immediately with the OS
boot. However, the constructors are not called
at initialization time but deferred until the data
is accessed (see below).

The second problem is the generation of the
*.da files. This problem is solved by the in-
troduction of a /proc/gcov file system that can
be accessed from “user space” at any time.
The initialization, creation, and access of the
/proc/gcov filesystem is provided as a load-
able module “gcov-proc” in order to mini-
mize modifications to the kernel source code
itself. When the module is loaded, the con-

structor array is called and thebbobj s are
linked together. After that thebb_head
list is traversed and a/proc/gcov filesys-
tem entry is created for eachbbobj encoun-
tered. It is accomplished as follows: the ker-
nel source tree’s basename (e.g. /usr/src/linux-
2.5.xx) is stripped from the filename indicated
in the bbobj . The program extension (e.g.
*.c) of the resulting relative file path (e.g.
arch/i386/kernel/mm.c) is changed to (*.da)
to form the path name of the entry. Next,
this pathname is traversed under the /proc/gcov
filesystem and, for newly encountered levels
(directory), a directory node is created. This
process is accomplished by maintaining an in-
ternal tree data structure that linksbbobj s and
proc_entries together. Because GCOV
requires all *.c, *.bb, *.bbg, and *.da files to be
located in the same directory, three symbolic
links for the *.{c | bb | bbg } files are created
in their appropriate kernel source path. This is
shown in Figure 3.

Reading from the *.da file gives access to
the underlying vector of the corresponding
file in the format expected by the GCOV
tool. Though the data is accessed on a
per file basis, a /proc/gcov/vmlinux file to
dump the entire state of all vectors is pro-
vided. However, reading the full data from
/proc/gcov/vmlinux would require a change of
GCOV. Resetting the counter values for the en-
tire kernel is supported through writing to the
/proc/gcov/vmlinux file using‘echo “0” >
/proc/gcov/vmlinux’ . Individual file
counters can be reset as well by writing to
its respective *.da file under the /proc/gcov
filesystem.

5.1 Dynamic Module Support

Dynamic modules are an important feature that
reduces the size of a running kernel by com-
piling many device drivers separately and only
loading code into the kernel when a specific

Linux Symposium 266

sibling

child

parent

af_unix.c

time.c

garbage.c

sched.c

leaf with
*.da, *.bb, *.bbg

proc_entries

/proc

unix

kernelnet

gcov

directory with
proc_dir_entry

crossref

sched.c

bb_head

time.c

garbage.c

af_unix.c

kernel gcov-proc module

LEGEND

Figure 3: Data structures maintained by the gcov-proc loadable module

driver is needed. Like the kernel, the mod-
ule compile process inserts the coverage code
making counter collection automatic through
code execution. In order to access the GCOV
results through /proc/, the “.ctors” section of
the module code needs to be executed dur-
ing the dynamic load. As stated above, the
GCOV enabled kernel locates the array of con-
structor routine function pointers starting from
ctors_start to ctors_end . Due to the
dynamic nature of a module, its constructors
are not present in this section. Instead, to ob-
tain the constructor address of the dynamic
module, two more variables were added to
“struct module” (ie. ctors start and end) the
data structure which is passed along by the
modutils to the kernel each time a module is
loaded. When the dynamic module is loaded,
the kernel invokes the constructor which results
in the linkage of thebbobj to the tail of the
bb_head . If the gcov-proc module has al-
ready been loaded, then the /proc/gcov filesys-
tem entries are added. If the gcov-proc module
is not loaded, their creation is deferred until the
gcov-proc is loaded. Once when gcov-proc is
loaded, the /proc/gcov filesystem is created by
traversing thebb_head list.

Dynamic modules will create their proc file
system under /proc/gcov/module/{path to the
dynamic module source}. A module’s .da and
symbolic links *.{c | bb | bbg} will be auto-
matically removed at the time of module un-
loading.

Up to Linux 2.5.48, all the section address ma-
nipulation and module loading part are per-
formed by modutils. Accordingly we modi-
fied the modutils source to store the construc-
tor address of the module which is loaded and
pass that to the kernel as an argument. Starting
with Linux 2.5.48, Rusty Russell implemented
an in-kernel module loader, which allows the
kernel to obtain the constructor instead of re-
quiring modifications to the modutils.

5.2 SMP Issues

One of the first concerns with this approach
was data accuracy on symmetric multiproces-
sors (SMPs). SMP environments introduce the
possibility of update races leading to inaccu-
rate GCOV counter data. The machine level
increment operation used to update the GCOV
counter is not atomic. In CISC and RISC
architectures such as Intel® and PowerPC®,

Linux Symposium 267

memory increment is effectively implemented
as load, add, & store. In SMP environments,
this can result in race conditions where multi-
ple readers will load the same original value,
then each will perform the addition and store
the same new value. Even if the operation is
atomic on a uniprocessor, caching on SMPs
can lead to unpredictable results. For exam-
ple, in the case of three readers, each would
read the value n, increment and store the value
n+1. After all three readers were complete the
value would be n+1. The correct value, after
serializing the readers, should be n+3. This
problem exists on SMPs and multi-threaded
environments using GCOV in kernel or user
space. Newer versions of GCC are experiment-
ing with solutions to this issue for user space by
duplicating the counter array for each thread.
The viability of this approach is questionable in
the kernel where GCOV would consume about
2 megabytes per process. We discuss this issue
further in the Future Work section (10).

A test was constructed to observe the anomaly.
A normally unused system call was identified
and was used so the exact expected value of
the coverage count would be known. Two user
space threads running on different CPUs made
a total of 100K calls to thesethostname
system call. This test was performed 35 times
and the coverage count was captured. On av-
erage, the coverage count for the lines in the
sethostname kernel code was 3% less than
the total number of times the system call was
made.

The simplest solution was to ensure that
counter addition was implemented as atomic
operations across all CPUs. This approach was
tested on the x86 architecture where aLOCK
instruction prefix was available. The LOCK
prefix uses the cache coherency mechanism, or
locks the system bus, to ensure that the original
operation is atomic system-wide. An Assem-
bler pre-processor was constructed to search

the assembly code for GCOV counter operands
(LPBX2 labels). When found, the LOCK pre-
fix would be added to these instructions. A
GCC machine dependentaddition operation
was also constructed for x86 to accomplish the
same task.

The results of the sethostname test on the
new locking gcov kernel (2.5.50-lock-gcov)
showed no difference between measured cov-
erage and expected coverage.

5.3 Data Capture Accuracy

Another effect on data accuracy is that captur-
ing GCOV data is not instantaneous. When we
start capturing the data (first item on bb_head)
it may have valuevorig. By the time the last
item on bb_head is read, the first item may now
have valuevnew. Even if no other work is being
performed, reminiscent of the Heisenberg ef-
fect, the act of capturing the GCOV data mod-
ifies the data itself. In Section 8 we observed
that 14% of the kernel is covered just from run-
ning the data capture. So 14% coverage is the
lowest result we would expect to see from run-
ning any test.

5.4 GCOV-Kernel Change Summary

In summary, the following changes were made
to the linux kernel:

(a) modified head.S to include symbols which
identify the start and end of the .ctors sec-
tion

(b) introduced a new file kernel/gcov.c where
the __bb_init_func(void) func-
tion is defined

(c) added two options to the configure file, (i)
to enable GCOV support and (ii) enable
the GCOV compilation for the entire ker-
nel. If the latter is not desired, then it is

Linux Symposium 268

the responsibility of the developer to ex-
plicitly modify the Makefile to specify the
file(s). For this purpose we introduced
GCOV_FLAGS as a global macro.

(d) Modified kernel/module.c to deal with dy-
namic modules.

(e) An assembler pre-processor was written to
address issues with inaccurate counts on
SMP systems

Everything else is kept in the gcov-proc mod-
ule.

6 GCOV patch Evaluation

This section summarizes several experiments
we conducted to evaluate the GCOV-kernel im-
plementation. Unless otherwise stated all tests
were conducted on a generic hardware node
with a two-way SMP, 400 MHz Pentium® II,
256 MB RAM. The Red Hat 7.1 distribution
(with 2.5.50 Linux kernel) for a workstation
was running the typical software (e.g. In-
etd, Postfix), but remained lightly loaded. The
GCC 2.96 compiler was used.

The total number of counters in all the .da
files produced by GCOV was calculated for
2.5.50. 336,660 counters * 4 bytes/counter
⇒ 1.3 Mbytes of counter space in the ker-
nel1. The average number of counters per
file is 718. drivers/scsi/sym53c8xx.chad the
most lines instrumented with 4,115. Andin-
clude/linux/prefetch.hwas one of 28 files that
had only one line instrumented.

6.1 LOCK Overhead

A micro-benchmark was performed to esti-
mate the overhead of using the LOCK pre-
fix. From two separate loops, multiple incre-
ment and locked increment instructions were

1in GCC 3.1 and higher counters are 8 bytes.

Test kernel runtime (sec)

2.5.50 596.5
2.5.50-gcov 613.0
2.5.50-gcov-lock 614.0

Table 1: Results: System and User times (in
seconds) for 2.5.50 kernel compiles using three
test kernels.

called. The runtime for the loops were mea-
sured and an estimate of the average time per
instruction was calculated. The increment in-
struction took 0.015µs, and the locked incre-
ment instruction took 0.103µs. This represents
a 586% instruction runtime increase when us-
ing the LOCK prefix. At first this might seem
like a frightening and unacceptable overhead.
However, if the actual effect on sethostname
runtime is measured, it is 19.5µs per system
call with locking and 13.9µs per call without
locking. This results in a more acceptable 40%
increase. However, further testing is required
to ensure results do not vary depending on lock
contention.

6.2 Performance Results

Finally, a larger scale GCOV test was per-
formed by comparing compile times for the
Linux kernel. Specifically each test kernel was
booted and the time required to compile (ex-
ecutemake bzImage) the Linux 2.5.50 kernel
was measured. Table 1 shows runtimes (in sec-
onds) as measured by/bin/time for the three
kernels tested. These results show a 3% over-
head for using the GCOV kernel and a very
small additional overhead from using the lock-
ing GCOV kernel.

Linux Symposium 269

Figure 4: Partial LCOV output for fs/jfs

Figure 5: Example LCOV output for a file

7 Using GCOV and LCOV to gen-
erate output

Once the .da files exist, GCOV is capable
of analyzing the files and producing coverage
output. To see the coverage data for a user
space program, one may simply run ‘gcov pro-
gram.c’ where program.c is the source file. The
.da file must also exist in the same directory.

The raw output from GCOV is useful, but not
very readable. In order to produce nicer look-
ing output, a utility called LCOV was writ-
ten. LCOV automates the process of extracting
the coverage data using GCOV and producing
HTML results based on that data [Lcovsite].

The LCOV tool first calls GCOV to generate

the coverage data, then calls a script called gen-
info to collect that data and produce a .info file
to represent the coverage data. The .info file is
a plaintext file with the following format:

TN: [test name]
SF: [path and filename of the \

source file]
FN: [function start line number],\

[function name]
DA: [line number],[execution count]
LH: [number of lines with count > 0]
LF: [number of instrumented lines]
end_of_record

Once the .info file has been created, the gen-
html script may be used to create html output
for all of the coverage data collected. The gen-
html script will generate both output at a direc-
tory level as illustrated in Figure 4 and output

Linux Symposium 270

HTML

genhtml.pl

.info file

geninfo.pl

.da files

Running
Code

Figure 6: lcov flow

on a file level as illustrated in Figure 5. The ba-
sic process flow of the LCOV tool is illustrated
in Figure 6. The commands used to generate
kernel results are as follows:

1. Load the gcov-proc kernel module.

2. lcov -zerocounters
This resets the counters, essentially call-
ing ‘echo “0” > /proc/gcov/vmlinux’

3. Run the test.

4. lcov -c -o kerneltest.info
This produces the .info file described
above.

5. genhtml -o [outputdir]
kerneltest.info
The final step produces HTML output
based on the data collected in step 3.

The original intent of the LCOV tool was for
kernel coverage analysis, so it contains some
features, such as resetting the counters through
/proc, that are only for use with the gcov-
proc module. However, the LCOV tool can
also be used for analyzing the coverage of user
space applications, and producing HTML out-
put based on the data collected. The process
for using LCOV with applications is mostly the
same. In order for any coverage analysis to
take place, the application must be compiled
with GCC using the-fprofile-arcs and
-ftest-coverage flags. The application
should be executed from the directory it was
compiled in, and for GCOV to work on user
space programs, the application must exit nor-
mally. The process for using LCOV with an
application is as follows:

1. Run the program following your test pro-
cedure, and exit.

2. lcov -directory [dirname]
-c -o application.info

Linux Symposium 271

3. genhtml -o [outputdir]
application.info

LCOV can also be used to manipulate .info
files. Information describing coverage data
about files in a .info file may be extracted
or removed. Runninglcov -extract
file.info PATTERN will show just the
data in the .info file matching the given pattern.
Running lcov -remove file.info
PATTERNwill show all data in the given
.info file except for the records matching
the pattern, thus removing that record. Data
contained in .info files may also be combined
by running lcov -a file1.info -a
file2.info -a file3.info... -o
output.info producing a single file (out-
put.info) containing the data from all files
passed to lcov with the-a option.

8 Applying results to test develop-
ment

The real benefit of code coverage analysis is
that it can be used to analyze and improve
the coverage provided by a test suite. In this
case, the test suite being improved is the Linux
Test Project. 100% code coverage is neces-
sary (but not sufficient) for complete functional
testing. It is an important goal of the LTP to
improve coverage by identifying untested re-
gions of kernel code. This section provides a
measure of LTP coverage and how the GCOV-
kernel can improve future versions of the LTP
suite.

Results were gathered by running the LTP un-
der a GCOV enabled kernel. There are a few
things that must be taken into consideration.

It is obviously not possible to cover all of the
code. This is especially true for architecture
and driver specific code. Careful considera-
tion and planning must be done to create a ker-

ID Test KC DC TC

LTP LTP 35.1 0.0 100.0
CP Capture 14.4 0.3 97.7
MK Mkbench 17.0 0.0 99.9
LM Lmbench 22.0 0.3 98.5
SJ SPECjAppServer 23.6 1.2 95.1
X Xserver 24.7 1.7 93.0

XMLS X+MK+LM+SJ 29.4 3.1 89.5
B Boot 40.1 16.2 59.5

Table 2: Benchmarks: KC: kernel coverage;
DC: delta coverage; TC: test coverage

nel configuration that will accurately describe
which kernel features are to be tested. This
usually means turning on all or most things and
turning off drivers that do not exist on the sys-
tem under test.

In order to take an accurate measurement for
the whole test suite, a script should be written
to perform the following steps:

1. Load the gcov-proc kernel module

2. ‘echo “0” > /proc/gcov/vmlinux’ to reset
the counters

3. Execute a script to run the test suite with
desired options

4. Gather the results using LCOV

Using a script to do this will minimize variance
caused by unnecessary user interaction. Reset-
ting the counters is important to isolating just
the coverage that was caused by running the
test suite.

Alternatively, a single test program can be ana-
lyzed using the same method. This is mostly
useful when validating that a new test has
added coverage in an area of the kernel that was
previously uncovered.

Coverage tests were performed on a IBM®
Netfinity 8500R 8-way x 700 MHz SMP run-

Linux Symposium 272

ning the 2.5.50 Linux kernel. LTP is a test suite
for validating the Linux kernel. The version of
LTP used in this test was ltp-20030404. LTP
hits 47,172 of the 134,396 lines of kernel code
instrumented by GCOV-kernel (35%)2. This
figure alone suggests significant room for LTP
improvement. However, to get an accurate pic-
ture of LTP usefulness it is also important to
make some attempt to categorize the kernel
code. This way we can determine how much
of the importantkernel code is being covered
by LTP. For the purposes of this work we have
collected coverage information from a set of
benchmarks. This set is intended to represent
one reasonable set of important kernel code.
The code is important because it is used by our
set of popular benchmarks. Table 2 shows the
coverage for LTP and our suite of tests.Boot
captures the kernel coverage during the boot
process.Xservercaptures the kernel coverage
for starting the Xserver.Captureis the cover-
age resulting from a counter reset immediately
followed by a counter capture. The columnKC
(kernel coverage)specifies the percentage of
kernel code covered by the test.DC (delta cov-
erage)is the percent of kernel code covered by
the test, but not covered by LTP.

Although LTP coverage is not yet complete, we
see that it exercises all but 3.1% of the kernel
code used by the combined test XMLS. An-
other useful view of the data is the code cov-
ered by LTP divided by the code covered by
the test,percent of test coverage covered by
LTP. The columnTC (test coverage)shows
these results. For example, LTP covered (hit)
99.9% of the kernel code covered (used) by
mkbench. This figure is particularly useful be-
cause it does not depend on the amount of ker-
nel code instrumented. LTP provides almost
90% coverage of the important code used by

2Results are based on one run of the LTP test suite.
Although the number of times any one line is hit can
vary randomly, we would expect much smaller variance
when considering hits greater than zero.

our combined test, XMLS. This result shows
very good LTP coverage for the given test suite.
Boot should be considered separately because
much of the code used during boot is never
used again once the operating system is run-
ning. But even here, LTP covers 60% of the
code used during the boot process.

Another benefit of code coverage analysis in
the Linux Test Project is that it provides a
method of measuring the improvement of the
LTP over time. Coverage data can be gener-
ated for each version of LTP released and com-
pared against previous versions. Great care
must be taken to ensure stable test conditions
for comparison. The same machine and same
kernel config options are used each time, how-
ever the most recent Linux kernel and the most
recent version of LTP is used. Changing both is
necessary to prove that the code coverage pro-
vided by LTP is increasing with respect to the
changes that are occurring in the kernel itself.
Since features, and thus code, are more often
added to the kernel than removed, this means
that tests must constantly be added to the LTP
in order to improve the effectiveness of LTP as
a test suite.

9 Future Work

Obviously, the tools and methods described
in this paper are useful in their current state.
However, there is some functionality that is
still required. LCOV should be modified to
process and present branch coverage data cur-
rently produced by GCOV. This information
would give a better picture of kernel coverage.
Many other enhancements are currently being
designed or developed against the existing set
of tools.

It would be very useful to know kernel cover-
age for a specific process or group of processes.
This could be done by introducing a level of in-

Linux Symposium 273

direction, so process-specific counters can be
accessed without changing the code. This ap-
proach could utilize Thread Local Store (TLS)
which is gaining popularity[Drepper]. TLS
uses an entry in the Global Descriptor Table
and a free segment register as the selector to
provide separate initialized and uninitialized
global data for each thread. GCC would be
modified to reference the TLS segment register
when accessing global variables. For a GCOV
kernel, the storage would have to be in ker-
nel space (Thread Kernel Storage) The chal-
lenge here is to efficiently provide the indirec-
tion. Even if the cost of accessing TLS/TKS is
low, it is probably infeasible to gather coverage
data for all processes running on a system. The
storage required would be considerable. So, a
mechanism for controlling counter replication
would be necessary.

Some parts of the kernel code are rarely used.
For example,init code is used once and re-
moved from the running image after the kernel
boots. Also, a percentage of the kernel code
is devoted to fault management and is often
not tested. The result of this rarely used code
is to reduce the practically achievable cover-
age. Categorizing the kernel code could iso-
late this code, provide a more realistic view of
LTP results, and help focus test development
on important areas in the kernel. The kernel
code could be divided into at least three cate-
gories. Init and error path code being two sep-
arate categories. The rest of the kernel code
could be considered mainline code. Cover-
age would then be relative to the three cate-
gories. A challenge to some of this categoriza-
tion work would be to automate code identi-
fication, so new kernels could be quickly pro-
cessed. In Section 8 we attempted to defineim-
portantkernel code based on lines hit by some
popular benchmarks. This approach could also
be pursued as a technique for categorizing ker-
nel code.

Finally, a nice feature to have with the system
would be the ability to quickly identify the cov-
erage specific to a particular patch. This could
be accomplished with a modified version of
the diff program that is GCOV output format
aware. Such a system would perform normal
code coverage on a patched piece of code, then
do a reversal of the patch against GCOV output
to see the number of times each line of code in
the patch was hit. This would allow a patch de-
veloper to see how much of a patch was being
tested by the current test tools and, if necessary,
develop additional tests to prove the validity of
the patch.

10 Conclusions

This paper described the design and implemen-
tation of a new toolkit for analyzing Linux ker-
nel code coverage. The GCOV-kernel patch
implements GCOV functionality in the kernel
and modules, and provides access to results
data through a /proc/gcov filesystem. LCOV
processes the results and creates user friendly
HTML output. The test results show minimal
overhead when using the basic GCOV-kernel.
The overhead of an SMP-safe extension can be
avoided when precise counter data is not neces-
sary. This paper also described how this toolkit
is being used to measure and improve the ef-
fectiveness of a test suite such as the Linux Test
Project.

This system is already sufficient for use in pro-
ducing data that will expose the areas of the
kernel that must be targeted when writing new
tests. It will then help to ensure that the new
tests written for the Linux Test Project are suc-
cessful in providing coverage for those sections
of code that were not covered before. The ac-
tual implementation of the methods and tools
described above as a means of improving the
Linux Test Project is just beginning as of the
time this paper was written. However, several

Linux Symposium 274

tests such as mmap09, as well as LVM and de-
vice mapper test suites have been written based
solely on coverage analysis. Many other tests
are currently in development.

References

[Cornett] Code Coverage Analysis
http://www.bullseye.com/
coverage.html (2002)

[Drepper] Urlich Drepper,ELF Handling For
Thread Local Storage.
http://people.redhat.com/
drepper/tls.pdf (2003)

[Lcovsite] LTP Gcov Extension
http://ltp.sourceforge.net/
coverage/lcov.php (2002)

[Marick] Brian Marick,The Craft of Software
Testing, Prentice Hall, 1995.

[Perry] William E. Perry,Effective Methods
for Software Testing, Second Edition,
Wiley Computer Publishing, 2000.

Legal Statement

This work represents the view of the authors and
does not necessarily represent the view of IBM.

The following terms are registered trademarks of
International Business Machines Corporation in the
United States and/or other countries: PowerPC.

Intel and Pentium are trademarks of Intel Corpora-
tion in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

Effective HPC hardware management and Failure
prediction strategy using IPMI

Richard Libby
rml@hpc.intel.com

Abstract

Intelligent Power Management Interface
(IPMI) defines common interfaces to “intel-
ligent” hardware used to monitor a server’s
physical health characteristics, such as tem-
perature, voltage, fans, power supplies and
chassis. These capabilities provide infor-
mation that enables system management,
recovery, and asset tracking which help drive
down the total cost of ownership (TCO) and
increase reliability in today’s HPC market.
The new interfaces in IPMI v1.5 facilitate
the management of rack-mounted HPC
servers and systems in remote environment
over serial, modem and LAN connections.
New capabilities combined with the remote
management functionality allow HPC IT
managers to manage their servers and systems,
regardless of system health, power state
or supported communication media. IPMI
compliant servers essentially eliminate the
need for external hardware to perform the
same function, thus saving costs. This paper
will introduce the specification, the benefits of
IPMI with respect to HPC and other clusters
and how it could be used to generate alarms to
a monitoring system before hardware failures
become severe enough to cause cluster failure.

1 Introduction

If we were to look at what hinders large scale
cluster deployments, only a handful of barriers

come to mind. There is, of course, always the
barrier of limited bandwidth, be it in the front
side bus, the interconnect or any other form
of I/O. Others include space, power, cooling,
monitoring and management. This paper will
focus on monitoring, management and predic-
tive analysis: essentially overall HPC health
and ‘sickness prevention.’ Intelligent Power
Management Interface (hereafter referred to
as IPMI) is an abstracted hardware layer that
provides power control, alerting, sensor moni-
toring, Field Replaceable Unit (FRU) storage,
Sensor Data Record (SDR) storage, customiza-
tion, configuration all through multiple meth-
ods of secure access. The total cost of a hard-
ware and software package has come down
from US$30/node to sub-US$10, making man-
agement a viable solution to reduce the total
cost of ownership (TCO).

The IPMI specification itself is a mere 450
pages, and the other supporting documents
(four of them [Reference section: C, D, F & H],
plus 23 referenced documents or RFCs) make
for a good, long weekend of reading. This pa-
per is a brief summary on how to use IPMI to
get the most out managing large scale HPC de-
ployments, and be able to use it to predict fail-
ures before they happen, thereby reducing the
TCO of the entire system. The assumption is
made in this paper that IPMI is implemented
with strict consideration to the specifications.

Linux Symposium 276

2 Power Control

Hardware management of large scale HPC de-
ployments today is quite possible if you have
access to many people, infinite resources, or a
magic wand. Since most of us have either none
of these (in the case of the magic wand), or
limited amounts of them (in the case of many
people and infinite amounts of money), man-
aging large scale deployments of anything is
quite a chore. What do we really mean by
’managing?’ Most think of managing a clus-
ter as isolated systems: hardware and soft-
ware. I would submit that it is a combination
of both. If hardware fails, so does software.
If software fails, hardware becomes a really
expensive room heater. So, management be-
comes the ability to control software by look-
ing at hardware as one failure point, or have
the software control the hardware if thresholds
increase beyond set limits. These control meth-
ods include powering off a server, powering on
a server, resetting a server, and obtaining status
of the power condition.

Resetting the server from a remote location
seems trivial to most. “Why not just execute a
command such a remote ‘init 6’ (Soft reset)?”
or something similar depending on the operat-
ing system some might ask. Ah, but what hap-
pens if the operating system is hung? Oh, just
send one of your people down and hit the reset
button. In the case of the TeraGrid project, that
may not be possible since there are at least four
sites where the HPC might be at. So, a system
reset function has gone from being a trivial ac-
tion to a not-so-trivial action. Using IPMI, a
system reset is trivial with a mere command.

Powering on and off a system is not quite as
trivial to achieve. Sure it is, you say. You go
out and purchase a network power switch, and
spend about US$500.00 in the process. Ok,
so you can achieve power control this way,
but not cost effectively in a large scale HPC

deployment. Let’s say for example, that at
best you could control eight machines with one
network power switch. At US$63 per out-
let, 256 outlets would cost you US$16k, 512
outlets would cost US$32k and 1000 outlets
would cost US$63K. This adds only a little to
the overall cost, but hey, if it is offered with
an IPMI compliant server, you could use this
additional money to purchase more servers.
There’s more on powering on and off, but it
will be covered in another section.

In addition to being able to reset, power on
and off, having the ability to query the server
power status is also valuable. Instead of hav-
ing to force power off (if on and vice versa),
potentially losing a job or data, you can query
to see if the server’s power is on or off. This
seems rather trivial at times, but in some in-
stances when there is no OS available and the
server is not in any proximity to you, it is nice
to have this feature.

Lastly, one nice control feature is telling the
UID light what to do, and how long to do it
for. This is the little blue light found on the
front and rear of most servers that turns on to
identify it from other servers in cases of large
scale HPC build-outs.

3 Alerting

Power control is essential, but from a predic-
tive failure analysis standpoint, alerting is the
driving force of determining if any one point
of the HPC is suffering. Think of the alert-
ing component as pain identification. This
identification breaks down into event filtering,
trapping (via SNMP), and policy management.
Some aspects will not be mentioned fully, as
they will be covered in other sections.

Without going into too much depth, when
the Baseboard Management Controller (BMC,
a.k.a. the service processor) observes an event

Linux Symposium 277

that occurs (see sensor section for types of
events that might be interesting), it logs it into
non-volatile space into a Server Event Log
(SEL). Events generated either externally or
internally are run through a filter within the
BMC that can perform actions based on poli-
cies (more on policies later). These types
of events might indicate impending danger of
catastrophic events on any one machine, or in
more serious cases, could indicate rack-wide
implications, such as a fire. The ability to fil-
ter events combined with policy management
gives the HPC administrator a powerful tool in
predicting impending failure.

One of the keys to being able to predict (and
later analyze) whether there is an impending
failure, is knowing about it. The trapping com-
ponent forwards on messages via SNMP to a
“health master” that could look at the event
(and compare it against a set of policies), de-
termine if it was critical enough to ruin jobs on
that node, and take appropriate action(s).

Policies can be set up to read either discrete
or threshold-based values and define an action
based on the type of event it is. For example,
if a server in your HPC had a fan failure, the
most likely thing you would see from an end
user point of view is to hear the other fans ramp
up. That action is an event that was driven by
the BMC through a policy that was set either
by a factory setting, or specified by an admin-
istrator programmatically. Once the other fans
were ramped up to compensate for the missing
fan, alerts can be trapped and sent via any num-
ber of methods to the “health master,” which in
turn, can determine (possibly by its own set of
policies) if the event warrants moving data or
jobs from one machine to a spare. Data can
be recorded and analyzed later for recurring
trends or even external environment conditions
that might be causing failures. One example of
this might be as follows: One rack might be sit-
ting directly under a cooling source. The racks

adjoining it would read higher ambient chas-
sis temperature, and show skewed temperature
data, but with the information, a stealthy sysad-
min could correlate the HVAC ‘on’ times with
a drop in ambient temperature inside the rack
that gets hit with a blast of cool air. Although
this condition in and of itself is not bad, one
set of servers in the HPC might run faster due
to being slightly cooler and cause other bottle-
necks.

4 Common Sensor Model

So, what can IPMI in its present state touch and
feel? Presently, it includes voltage, tempera-
ture, fan speeds, and presence.

Servers based on IPMI give the ability to mon-
itor voltages on the baseboard and power sup-
ply. In cases where there is a lot of solar spot
activity, this data could be useful. For exam-
ple, too many voltage changes, and memory
might start to have single bit errors, and too
many of those might generate a multi-bit error
that is not recoverable. From an industrial and
commercial perspective, if the server suffered
this, jobs would either be lost, or potentially
have silent data corruption. Having the ability
to monitor and log this data could be useful to
see if there were external environment condi-
tions that would impact server stability. In this
particular example, a sysadmin might want to
spec out Telco grade hardware that runs on DC
power, thereby eliminating the external condi-
tion and increasing reliability.

With the tight thermal tolerances these days,
a fan failure in server chassis can result in
a catastrophic loss, especially in the smaller
form factors (i.e. 1U). Having the ability to
monitor fan speeds can greatly increase the
chance of keeping jobs that are running on one
member of the HPC and moving them to an-
other, provided the event deems it worthy of

Linux Symposium 278

doing so. This does not just include chassis
fans, but can be expanded to include processor,
memory, and hard drive bay fans.

Temperature is a key aspect to monitor for pre-
dicting failure in an HPC. Logging events, us-
ing stats to show trends, and reacting to gener-
ated alerts are the ways to decrease a sysad-
min’s possibilities of downtime. It will also
increase the ability to determine external envi-
ronment conditions that would affect HPC per-
formance, since heat is a critical aspect.

The last aspect of the common sensor model is
the ability to detect presence. At times it would
be nice to detect if the server chassis lid was
opened. The system might log an entry into the
SEL based on chassis intrusion. This might be
useful information later on to determine causes
of ambient temperature changes, or even to de-
termine what time the processors and memory
disappeared out of the best server.

5 Access Methods

Ok, so we are able to monitor all these cool
things on our server, but how does the sysad-
min or developerreally get to them? There
are multiple methods to get the information
you need from an IPMI-based server. They in-
clude KCS, LAN, serial, modem, I2C, IPMB
and ICMB. None of these methods will be dis-
cussed in too much detail here due to space and
scope constraints.

One of the most common methods to get to the
BMC is through an interface called Keyboard
Controller Style (KCS). For IPMI laymen, this
means a driver that is loaded and controlled
through the OS. This is the preferred method to
access the Intelligent Power Management Bus
(IPMB), but certainly not the only one, and cer-
tainly in cases where the OS has gone south for
the winter.

If the OS does go south, another nice method is
using the Remote Management Control Proto-
col (RMCP) over the LAN. IPMI-based servers
have 3.3 volts standby power that provides the
BMC with enough juice to live on. With the
cost of network interface cards (NIC) com-
ing down, and many board manufacturers plac-
ing them on their server boards, this becomes
the avenue on which to send UDP packets di-
rected to port 623 that can issue IPMI com-
mands. This becomes a close second to the
KCS in that it replaces legacy serial concentra-
tion servers, allowing the sysadmin or IT man-
ager to spend their US$50K (for every 40 ports
and US$1.2M for 1000 servers) elsewhere on
the HPC.

Other methods of access include direct serial
using a serial concentration server. The down-
side to this interface is the cost for the serial
concentration server. One nice feature worth
mentioning in a Linux environment is Serial
Over LAN (SOL). This allows the HPC sysad-
min to enable serial redirect and have it piped
over the network interface, thereby eliminat-
ing the need for a Keyboard-Video-Mouse con-
troller (KVM). Costs are exorbitant and ca-
bling becomes a nightmare for large scale HPC
deployments. (Other features include private
management bus (private I2C bus), and ability
to add above board remote management cards.)

One nice feature of IPMI is the ability to for-
ward information on to other IPMI compliant
servers. Essentially, each IPMI server can be-
come a proxy to relay messages to another
IPMB through the Intelligent Chassis Manage-
ment Bus (ICMB). A sysadmin or network ar-
chitect could design an ICMB network (really
an RS-845 multiport serial bus) that would al-
low up to 64 nodes per network. Manage-
ment packets could be routed over this network
instead of tying up the LAN channel, or in
cases when the LAN was down, routing over
ICMB. RS-845 also allows broadcasts, so the

Linux Symposium 279

sysadmin could invoke a broadcast to a bank
of servers. Imagine it, a command that said:
“Hello, rack of servers, shut down.”

6 Authentication

All the methods of access are excellent to have,
but how are they protected against intrusion?
This section briefly discusses the channel priv-
ilege levels and encryption methods used to au-
thenticate to the BMC.

There are four privilege levels to the BMC as
defined by the IPMI specification: callback,
user, operator, and administrative.

Callback is essentially irrelevant these days. It
calls only a predefined number via a modem. It
also only supports enough commands to initi-
ate a callback. If the user is not at that location,
then callback is not highly useful.

One nice channel privilege is called user. It
would allow subsystems to monitor HPCs
without being intrusive, and potentially lethal
from a job perspective. Think of this priv-
ilege as ’sensor snag’ only-essentially read-
only or only benign commands are allowed.
From a predictive analysis perspective, this
level would give alerting mechanisms with the
peace of mind that power control could be as-
signed to alternate members of the HPC.

Occasionally though, job scalability demands
delegation of authority, but not total relinquish-
ing of control. In these cases, the operator priv-
ilege level should be chosen. It has all com-
mands available to administration, except con-
figuration commands that can change the be-
havior of the out-of-band interfaces.

And then you have full rights-administrative
privilege level. This privilege allows for full
control over an IPMI-based server. In simple
“health master” implementations, this would

be the preferred privilege level to use. One
quick word of caution: an administrative privi-
lege level can even disable the channel they are
coming in over.

Encryption is tied closely to authentication.
There are basically three main points to re-
member on IPMI encryption. The first is that
passwords can be sent clear-text, so from a se-
curity standpoint, it is something to consider.
The second is that whatever the user initiates
as an encryption algorithm is what will be re-
turned, provided it falls into the third category.
That is that there are generally two supported
encryption algorithms, MD2 and MD5.

7 Field Replaceable Units (FRU)

An enterprise-class system will typically have
FRU information for each major system board
(e.g. processor board, memory board, I/O
board, etc.). The FRU data can include in-
formation such as serial number, part num-
ber, model, and asset tag. What is this really
good for in a failure prediction situation? Well,
the “health master” could be programmed such
that it could detect that a remote server’s part is
going to have a failure (let’s just say overheat-
ing CPU), look up the part in a parts database,
and alert the sysadmin which part they need to
take with them to service the unit, what the unit
serial number is, and possibly when it was last
serviced. It would minimize downtime. By the
way, FRU information can even be available
when the system is powered down. Another
useful example of FRUs being used is auto-
mated remote inventory. “IPMI does not seek
to replace other FRU or inventory data mech-
anisms, such as those provided by SM BIOS,
and PCI Vital Product Data. Rather, IPMI FRU
information is typically used to complement
that information or to provide information ac-
cess out-of-band or under ‘system down’ con-
ditions.”

Linux Symposium 280

8 Sensor Data Records

IPMI was created with extensibility and scala-
bility in mind. Unfortunately, with that capa-
bility comes a myriad of different components
that can be monitored and controlled in differ-
ent fashions. Sensor Data Records (SDRs) pro-
vide system management software the ability
to retrieve information from the platform, and
automatically configure itself to meet the capa-
bilities of the platform-essentially an abstrac-
tion layer.

SDRs exist primarily to describe to server man-
agement software what a sensor configura-
tion should look like, and to tell software to
pay special attention to certain sub functions.
SDRs are mostly not available to end users,
but could potentially, especially if purchasing a
board and chassis separately. For the most part,
SDRs are made specifically for certain config-
urations of board/chassis combinations.

SDRs also define thresholds and actions based
on those thresholds. For example, there might
be an upper critical threshold on a board ther-
mal sensor, and that might be tied via an SDR
to an action of ramping up fans if excessive
heat was detected. From a failure prediction
standpoint, the “health master” could detect
these changes, and ramp fans accordingly. This
is just one small case, but you can see that the
permutations get quite large with more servers
in your HPC. What kind of sensor types are
there? Two main categories exist-analog or
digital, or fan, voltage, temperature. SDRs tell
the BMC what the sensor type is in order to
know how to process it (i.e. analog fan situ-
ation: you actually get a voltage back when
polling it. The software will need to convert
it via a mathematical function (a slope func-
tion: logarithmic, square root, quadratic, sin
and many more defined in the IPMI spec.)

Realistically, the types of information that

SDRs can store configuration on are: CPU sen-
sors, chassis intrusion, power supply monitor-
ing, fan speeds, fan presence, board voltages,
board temperatures, bus errors, memory errors,
and even possibly ASF progress codes (where
the subsystem is in coming up-essentially a
POST code). “Sensor Data Records are kept in
a single, centralized non-volatile storage area
that is managed by the BMC. This storage
is called the Sensor Data Record Repository
(SDR Repository). Implementing the SDR
Repository via the BMC provides a mechanism
that allows SDRs to be retrieved via ‘out-of-
band’ interfaces, such as the ICMB, a Remote
Management Card, or other device connected
to the IPMB. Like most Intelligent Platform
Management features, this allows SDR infor-
mation to be obtained independent of the main
processors, BIOS, system management soft-
ware, and the OS.”

9 System Event Log

Every IPMI compliant server has a System
Event Log (SEL) which is a centralized, non-
volatile repository for all events generated.
Think of this not only as a BMC journal. Any
authenticated user can enter a SEL entry.

Common events that might be stored are re-
boots, processors offline, memory (both single
and multiple bit) errors, sensors that go beyond
set thresholds, PCI parity errors (PERR), Non-
maskable interrupts (NMI), and many more.
The “health master” could periodically poll se-
lect system event logs from the HPC, and deter-
mine if there are potential problems that could
be coming down the wire, and mitigate a re-
sponse to those problems.

Alerting is done off the SEL as well. When
an event is written to the SEL, it is checked
against policies and threshold values, and per-
forms actions based on those policies. Too

Linux Symposium 281

much of a health conscious sysadmin could
put in place tighter thresholds, and decrease
the possibility of downtime, while at the same
time possibly risking more time checking out
false alarms. A truly health conscious sysad-
min would determine standard thresholds to
work with safely, while keeping in mind that a
false alarm here and there might keep them on
their toes and possibly prevent a catastrophic
failure on a node (or more in some cases).

Clearing the SEL is possible as well, in fact,
once a SEL is queried and data is stored on the
“health master,” it is advisable to clear the SEL.
The main reason for this is that if the SEL fills
up, new entries are dropped. This could cause a
sysadmin to miss critical events that could lead
either to extensive downtime, or a catastrophe.

10 Configuration

IPMI gives such flexibility that many aspects
can be configured to fit the end-user’s needs.

These parameters include: BMC policies,
LAN configuration (such as static or dynamic
IP address, mask, and gateway), privilege lev-
els, alerting functions (such as whom to for-
ward alerts to), sensor polling rates, etc.

Imagine for a moment that your “health mas-
ter” detects that it one of the nodes in the HPC
is going down due to some failure, and you are
able to retrieve the critical data off the hard
drive. When you bring up a spare node in its
place, you can dump the hard drive data back
down, right? Sure, but what about BMC con-
figuration? This is where IPMI shines through
if implemented properly. With most IPMI
compliant servers today, a sysadmin can re-
trieve the BMC information. But stuffing it
back onto another machine is a little trickier,
especially if it is over the LAN interface.

11 Questions Users Might Ask

A few questions might remain in the reader’s
mind still after this brief whetting. One such
question might be, “What is the relationship
or difference between IPMI and Alert Standard
Forum (ASF)?” “While somewhat of an over-
simplification, ASF may be considered to be
scoped for ‘desktop/mobile’ class systems, and
IPMI for ‘servers’ where the additional IPMI
capabilities such as event logging, multiple
users, remote authentication, multiple trans-
ports, management extension busses, sensor
access, etc., are valued. However there are no
restrictions in either specification as to the class
of system that the specification can be used.
[(i.e.)] you can use IPMI for desktop and mo-
bile systems and ASF for servers if the level of
manageability fits your requirements.”

Another might be, I don’t have IPMI capable
servers today, can I add in an IPMI card? The
short answer to that question is possibly, but it
depends on your server base board. Provided it
has an interface to IPMB, the possibilities in-
crease. But, the best thing to do is to weigh the
costs associated with not having IPMI (as men-
tioned earlier-no KVM, network power switch,
serial concentration server) and see what bene-
fits it can bring to predict an impending failure
before it happens.

12 Summary

The key to using IPMI for failure prediction
analysis is the polling and listening software,
and how intelligent it is at analyzing the data
to make predictions as to where problems lie.

As most HPC sysadmins know, one large
scale cluster deployment barrier is manage-
ment, monitoring, fault isolation and failure
prediction. IPMI enables a sysadmin a great
way to reduce the TCO of HPCs by monitor-

Linux Symposium 282

ing overall HPC health and ‘prevent sickness’
by providing an abstracted hardware layer that
provides power control, alerting, sensor mon-
itoring, Field Replaceable Unit (FRU) stor-
age, Sensory Data Record (SDR) storage, cus-
tomization, configuration all through multiple
methods of secure access-all through software.

13 Call to Action

When writing RFQs, make sure to include
IPMI as a required feature in order to reduce
TCO and increase manageability in HPC de-
ployments.

14 References

A. Alert Standard Format v1.0 Specification,
©2001, Distributed Management Task
Force.http://www.dmtf.org

B. The I2C Bus And How To Use It, ©1995,
Philips Semiconductors. This document
provides the timing and electrical specifi-
cations for I2C busses.

C. Intelligent Chassis Management Bus
Bridge Specification v1.0, rev. 1.2,
©2000 Intel Corporation. Provides
the electrical, transport protocol,
and specific command specifications
for the ICMB and information on
the creation of management con-
trollers that connect to the ICMB.
http://developer.intel.com

/design/servers/ipmi

D. Intelligent Platform Management Bus
Communications Protocol Specifica-
tion v1.0, ©1998 Intel Corporation,
Hewlett-Packard Company, NEC Corpo-
ration, and Dell Computer Corporation.
This document provides the electri-
cal, transport protocol, and specific

command specifications for the IPMB.
http://developer.intel.com

/design/servers/ipmi

E. Intelligent Power Management In-
terface Specification v1.5; rev. 1.1,
©2002 Intel Corporation, Hewlett-
Packard Company, NEC Corpora-
tion, and Dell Computer Corporation.
http://developer.intel.com

/design/servers/ipmi

F. IPMI Platform Event Trap Format Spec-
ification v1.0, ©1998, Intel Corporation,
Hewlett-Packard Company, NEC Corpo-
ration, and Dell Computer Corporation.
This document specifies a common for-
mat for SNMP Traps for platform events.

G. Proposal for Callback Control Protocol
(CBCP), draft-ietf-pppext-callback-
cp-02.txt, N. Gidwani, Microsoft,
July 19, 1994. As of this writ-
ing, the specification is available via
the Microsoft Corporation web site:
http://www.microsoft.com

H. Platform Management FRU Informa-
tion Storage Definition v1.0, ©1999
Intel Corporation, Hewlett-Packard
Company, NEC Corporation, and Dell
Computer Corporation. Provides the
field definitions and format of Field
Replaceable Unit (FRU) information.
http://developer.intel.com

/design/servers/ipmi

I. RFC 1319, The MD2 Message-Digest Al-
gorithm, B. Kaliski, RSA Laboratories,
April 1992.

J. RFC 1321, The MD5 Message-Digest Al-
gorithm, R. Rivest, MIT Laboratory for
Computer Science and RSA Data Secu-
rity, Inc. April, 1992.

Linux Symposium 283

K. System Management BIOS Specification,
Version 2.3.1, ©1997, 1999 American
Megatrends Inc., Award Software Inter-
national, Compaq Computer Corporation,
Dell Computer Corporation, Hewlett-
Packard Company, Intel Corporation, In-
ternational Business Machines Corpora-
tion, Phoenix Technologies Limited, and
SystemSoft Corporation.

L. System Management Bus (SMBus) Spec-
ification, Version 2.0, ©2000, Dura-
cell Inc., Fujitsu Personal Systems Inc.,
Intel Corporation, Linear Technology
Corporation, Maxim Integrated Prod-
ucts, Mitsubishi Electric Corporation,
Moltech Power Systems, PowerSmart
Inc., Toshiba Battery Co., Ltd., Unitrode
Corporation, USAR Systems.

M. The TeraGrid Project, National Center for
Supercomputing Applications, San Diego
Supercomputer Center, Argonne National
Laboratory and Pittsburgh Supercomput-
ing Center; http://www.teragrid.org

N. Wired for Management Baseline Version
2.0 Release, ©1998, Intel Corporation.
Attachment A, UUIDs and GUIDs, pro-
vides information specifying the format-
ting of the IPMI Device GUID and FRU
GUID and the System Management BIOS
(SM BIOS) UUID unique IDs.

15 Glossary of Terms

BMC Baseboard Management Controller

CMOS In terms of this specification, this describes the
PC-AT compatible region of battery-backed 128
bytes of memory, which normally resides on the
baseboard.

Diagnostic Interrupt A non-maskable interrupt or sig-
nal for generating diagnostic traces and ‘core
dumps’ from the operating system. Typically NMI
on IA-32 systems, and an INIT on Itanium®-based
systems.

EFI Extensible Firmware Interface. A new model for
the interface between operating systems and plat-
form firmware. The interface consists of data
tables that contain platform-related information,
plus boot and runtime service calls that are avail-
able to the operating system and its loader. To-
gether, these provide a standard environment for
booting an operating system and running pre-boot
applications.

FRB Fault Resilient Booting. A term used to describe
system features and algorithms that improve the
likelihood of the detection of, and recovery from,
processor failures in a multiprocessor system.

FRU Field Replaceable Unit. A module or component
which will typically be replaced in its entirety as
part of a field service repair operation.

Hard Reset A reset event in the system that initializes
all components and invalidates caches.

HPC High Performance Computing, commonly com-
putationally intense.

I2C Inter-Integrated Circuit bus. A multi-master, 2-
wire, serial bus used as the basis for the Intelligent
Platform Management Bus.

ICMB Intelligent Chassis Management Bus. A se-
rial, differential bus designed for IPMI messag-
ing between host and peripheral chassis. Refer to
[ICMB] for more information.

I/O Input / Output. Typically refers to I/O subsystems
such as PCI (and variants), memory, and CPU
buses.

IPM Intelligent Platform Management.

IPMB Intelligent Platform Management Bus. Name
for the architecture, protocol, and implementation
of a special bus that interconnects the baseboard
and chassis electronics and provides a communi-
cations media for system platform management in-
formation. The bus is built on I2C and provides a
communications path between ’management con-
trollers’ such as the BMC, FPC, HSC, PBC, and
PSC.

NMI Non-maskable Interrupt. The highest priority in-
terrupt in the system, after SMI. This interrupt has
traditionally been used to notify the operating sys-
tem fatal system hardware error conditions, such
as parity errors and unrecoverable bus errors. It is
also used as a Diagnostic Interrupt for generating
diagnostic traces and ‘core dumps’ from the oper-
ating system.

Linux Symposium 284

MD2 RSA Data Security, Inc. MD2 Message-Digest
Algorithm. An algorithm for forming a 128-bit
digital signature for a set of input data.

MD5 RSA Data Security, Inc. MD5 Message-Digest
Algorithm. An algorithm for forming a 128-bit
digital signature for a set of input data. Improved
over earlier algorithms such as MD2.

PEF Platform Event Filtering. The name of the col-
lection of IPMI interfaces in the IPMI v1.5 spec-
ification that define how an IPMI Event can be
compared against ’filter table’ entries that, when
matched, trigger a selectable action such as a sys-
tem reset, power off, alert, etc.

PERR Parity Error. A signal on the PCI bus that indi-
cates a parity error on the bus.

PET Platform Event Trap. A specific format of SNMP
Trap used for system management alerting. Used
for IPMI Alerting as well as alerts using the ASF
specification. The trap format is defined in the
PET specification. See [PET] and [ASF] for more
information.

POST Power On Self Test.

RFQ Request for Quote.

SDR Sensor Data Record. A data record that provides
platform management sensor type, locations, event
generation, and access information.

SEL System Event Log. A non-volatile storage area
and associated interfaces for storing system plat-
form event information for later retrieval.

SERR System Error. A signal on the PCI bus that indi-
cates a ’fatal’ error on the bus.

Soft Reset A reset event in the system which forces
CPUs to execute from the boot address, but does
not change the state of any caches or peripheral
devices.

TCO Total Cost of Ownership. All of the possible
costs involved in the purchase, installation, man-
agement, support and use of the IT infrastructure
within an organization throughout a product’s life
cycle, from acquisition to disposal.

Interactive Kernel Performance
Kernel Performance in Desktop and Real-time Applications

Robert Love
MontaVista Software

rml@tech9.net, http://tech9.net/rml

Abstract

The 2.5 development kernel introduced multi-
ple changes intent on improving the interactive
performance of Linux. Unfortunately, the term
“interactive performance” is rather vague and
lacks proper metrics with which to measure.
Instead, we can focus on five key elements:

• fairness

• scheduling latency

• interrupt latency

• process scheduler decisions

• I/O scheduler decisions

In short, these attributes help constitute the feel
of Linux on the desktop and the performance
of Linux in real-time applications. As Linux
rapidly gains market share both on the desk-
top and in embedded solutions, quick system
response is growing in importance. This paper
will discuss these attributes and their effect on
interactive performance.

Then, this paper will look at the responses to
these issues introduced in the 2.5 development
kernel:

• O(1) scheduler

• Anticipatory/Deadline I/O Scheduler

• Preemptive Kernel

• Improved Core Kernel Algorithms

Along the way, we will look at the current in-
teractive performance of 2.5.

1 Introduction

Interactive performance is important to a wide
selection of computing classes: desktop, multi-
media, gamer, embedded, and real-time. These
application types benefit from quick system re-
sponse and deterministic or bounded behav-
ior. They are generally characterized as having
explicit timing constraints and are often I/O-
bound. The range of applications represented
in these classes, however, varies greatly—word
processors, video players, Quake, cell phone
interfaces, and data acquisition systems are
all very different applications. But they all
demand specific response times (although to
varying degrees) to various stimuli (whether its
the user at the console or data from a device)
and all of these applications find good interac-
tive performance important.

But whatis interactive performance? How can
we say whether a kernel has good interactive
performance or not? For real-time applica-
tions, it is easy: “do we meet our timing con-
straints or not?” For multimedia applications,
the task is harder but still possible: for ex-
ample, “does our audio or video skip?” For

Linux Symposium 286

desktop users, the job is even harder. How
does one express the interactive performance
of their text editor or mailer? Worse, how does
one quantify such performance? All too of-
ten, interactive performance is judged by the
seat of one’s pants. While actually perceiv-
ing good interactive performance is an impor-
tant part of their actually existing good inter-
active performance, a qualitative experience is
not regimented enough for extensive study and
risks suffering from the placebo effect.

For the purpose of this paper, we break down
the vague term “interactive performance” and
define five attributes of a kernel which benefit
the aforementioned types of applications: fair-
ness, scheduling latency, interrupt latency, pro-
cess scheduler decisions, and I/O scheduler de-
cisions.

We then look at four major additions to the 2.5
kernel which improve these qualities: the O(1)
scheduler, the deadline and anticipatory I/O
schedulers, kernel preemption, and improved
kernel algorithms.

2 Interactive Performance

2.1 Fairness

Fairness describes the ability of tasks to all
make not only forward progress but to do
so relatively evenly. If a given task fails to
make any forward progress, we say the task
is starved. Starvation is the worst example of
a lack of fairness, but any situation in which
some tasks make a relatively greater percent-
age of progress than other tasks lacks fairness.

Fairness is often a hard attribute to justify
maintaining because it is often a tradeoff be-
tween overall global performance and local-
ized performance. For example, in an effort
to provide maximum disk throughput, the 2.4
block I/O scheduler may starve older requests

in order to continue processing newer requests
at the current disk head position. This mini-
mizes seeks and thus provides maximum over-
all disk throughput—at the expense of fairness
to all requests.

Since the starved task may be interactive or
otherwise timing-sensitive, ensuring fairness to
all tasks (or at least all tasks of a given im-
portance) is a very important quality of good
interactive performance. Improving fairness
throughout the kernel is one of the biggest
changes made during the 2.5 development ker-
nel.

2.2 Scheduling Latency

Scheduling latency is the delay between a task
waking up (becoming runnable) and actually
running. Assuming the task is of a suffi-
ciently high priority, this delay should be quite
small: an interrupt (or other event) occurs
which wakes the task up, the scheduler is in-
voked to select a new task and selects the newly
woken up task, and the task is executed. Poor
scheduling latency leads to unmet timing re-
quirements in real-time applications, percepti-
ble lag in application response in desktop ap-
plications, and dropped frames or skipped au-
dio in multimedia applications.

Both maximum and average scheduling la-
tency is important, and both need to be min-
imized for superior interactive performance.
Nearly all applications benefit from minimal
average scheduling latency, and Linux pro-
vides exceptionally good average-case perfor-
mance. Worst-case performance is a differ-
ent issue: it is an annoyance to desktop users
when, for example, heavy disk I/O or odd VM
operations cause their text editor to go cata-
tonic. If the event is relatively rare enough,
however, they may overlook it. Both real-time
and multimedia applications, however, require
a specific bound on worst-case scheduling la-

Linux Symposium 287

tencies to ensure functionality.

The preemptive kernel and improved algo-
rithms (reducing lock hold time or reducing the
algorithmic upper bound) result in a reduction
in both average and worst-case scheduling la-
tency in 2.5.

2.3 Interrupt Latency

Interrupt latency is the delay between a hard-
ware device generating an interrupt and an in-
terrupt handler running and processing the in-
terrupt. High interrupt latency leads to poor
system response as the actions of hardware are
not readily perceived by the kernel.

Interrupt latency in Linux is basically a func-
tion of interrupt off time—the time in which
the local interrupt system is disabled. This only
occurs inside the kernel and only for short pe-
riods of time reflecting critical regions which
must execute without risk of an interrupt han-
dler running. Linux has always had compar-
atively small interrupt latencies—on modern
machines, less than 100 microseconds.

Consequently, reducing interrupt latency was
not a primary goal of 2.5, although it undoubt-
edly occurred as lock hold times were reduced
and the global kernel lock (cli()) was finally
removed.

2.4 Process Scheduler Decisions

The behavior and decisions made by the pro-
cess scheduler (the subsystem of the kernel
that divides the resource of CPU time among
runnable processes) are important to maintain-
ing good interactive performance. This should
go without saying: poor decisions can lead
to starvation and poor algorithms can lead to
scheduling latency. The process scheduler also
enforces static priorities and can issue dynamic
priorities based on a rule-set or heuristic.

The process scheduler in 2.5 provides deter-
ministic scheduling latency via anO(1) algo-
rithm and a new interactivity estimator which
issues priority bonuses for interactive tasks and
priority penalties for CPU-hogging tasks.

2.5 I/O Scheduler Decisions

I/O scheduler (the subsystem of the kernel that
divides the resource of disk I/O among block
I/O requests) decisions strongly affect fairness.
The primary goal of any I/O scheduler is to
minimize seeks; this is done by merging and
sorting requests. This maximizing of global
throughput can directly lead to localized fair-
ness issues. Request starvation, particularly of
read requests, can lead to long application de-
lays.

Two new I/O schedulers available for 2.5, the
deadline and the anticipatory I/O schedulers,
prevent request starvation by attempting to dis-
patch I/O requests before a configurable dead-
line has elapsed.

3 Process Scheduler

3.1 Introduction

The process scheduler plays an important role
in interactive performance. The Linux sched-
uler offers three different scheduling policies,
one for normal tasks and two for real-time
tasks. For normal tasks, each task is assigned
a priority by the user (the nice value). Each
task is assigned a chunk of the processor’s time
(a timeslice). Tasks with a higher priority run
prior to tasks with a lower priority; tasks at the
same priority are round-robined amongst them-
selves. In this manner, the scheduler prefers
tasks with a higher priority but ensures fairness
to those tasks at the same priority.

The kernel supports two types of real-time

Linux Symposium 288

tasks, first-in first-out (FIFO) real-time tasks
and round-robin (RR) real-time tasks. Both
are assigned a static priority. FIFO tasks run
until they voluntarily relinquish the processor.
Tasks at a higher priority run prior to tasks at
a lower priority; tasks at the same priority are
round-robined amongst themselves. RR tasks
are assigned a timeslice and run until they ex-
haust their timeslice. Once all RR tasks of a
given priority level exhaust their timeslice, the
timeslices are refilled and they continue run-
ning. RR tasks at a higher priority run before
tasks at a lower priority. Since real-time tasks
can be scheduled unfairly, they are expected to
have a sane design which properly utilizes the
system.

All scheduling in Linux is done preemptively,
except FIFO tasks which run until completi-
tion. New in 2.5, preemption of tasks can now
occur inside the kernel.

For 2.5, the process scheduler was rewritten.
The new scheduler, dubbed the O(1) sched-
uler, features constant-time algorithms, per-
processor runqueues, and a new interactivity
estimator. The Linux scheduling policy, how-
ever, is unchanged.

3.2 Interactivity Estimator

The 2.5 scheduler includes an interactivity es-
timator [mingo1] which dynamically scales a
task’s static priority (nice value) based on its
interactivity. Interactive tasks receive a prior-
ity bonus while tasks which excessively hog
the CPU receive a penalty. Tasks in some theo-
retical neutral position (neither interactive nor
hoggish) receive neither a bonus nor a penalty.
By default, up to five priority values are added
or removed to reflect the degree of the bonus
or the penalty; note this corresponds to 25% of
the full -20 to 19 nice value range.

Interactivity is estimated using a running sleep

average. The idea is that interactive tasks are
I/O bound. They spend much of their time
waiting for user interaction or some other event
to occur. Tasks which spend much of their time
sleeping are thus interactive; tasks which spend
much of their time running (continually ex-
hausting their timeslice) are CPU hogs. These
rules are surprisingly simple; indeed, they are
essentially the definitions of I/O-bound and
CPU-bound. The fact the heuristic is basically
following the definition lends credibility to the
estimator.

The heuristic determines the actual bonus or
penalty based on the ratio of the task’s actual
sleep average against a constant “maximum”
sleep average. The closer the task is to the
maximum, the more of the five bonus priority
levels it can receive. Conversely, the closer the
task is to the negation of the maximum sleep
average, the larger its penalty is.

The results of the interactivity estimator are ap-
parent:

USER NI PRI %CPU STAT COMMAND
rml 0 15 0.0 S vim
rml 0 18 0.4 S bash
rml 0 25 91.7 R infloop

First, note the kernel priority values (thePRI
column) correspond to a mapping of the default
nice value of zero to the value 20. The low-
est priority nice value, 19, is priority 39. The
highest priority nice value, -20, is zero. Thus,
lower priority values are higher in priority. A
text editor, vim, has received the full negative
five priority bonus. Since it initially had a nice
value of zero, it now has a priority of 15. Con-
versely, a program executing an infinite loop
received the full positive five priority penalty;
it now has a priority of 25. Bash, which is ba-
sically interactive but performs computation in
scripts, has received a smaller bonus and now
has a priority of 18.

Higher priority (that is, lower priority val-

Linux Symposium 289

ued) tasks are scheduled prior to lower prior-
ity (higher priority valued) tasks. They also re-
ceive a larger timeslice. This implies that in-
teractive tasks are usually runnable; they are
scheduled first and generally have plenty of
timeslice with which to run. This ensures that
the text editor is capable of responding to a
keypress instantly, even if the system is under
load.

The interactivity estimator does not apply to
real-time tasks, which occupy a fixed priority
in a higher priority range than any normal task.
The estimator benefits interactive desktop pro-
grams, such as a text editor or mailer.

3.3 Reinsertion of Interactive Tasks

All process schedulers implement a mech-
anism of recalculating and refilling process
timeslices. In the most rudimentary of sched-
ulers, this work occurs when all processes have
exhausted their timeslice and then the times-
lice and priority of each process is recalculated
and reassigned. Scheduling then continues as
before, until again all processes exhaust their
timeslice and this work repeats.

The O(1) scheduler implements anO(1) algo-
rithm for timeslice recalculation and refilling.
Instead of performing a largeO(n) recalcu-
lation when all processes exhaust their times-
lice, the O(1) scheduler implements two arrays
of tasks, the active array and the expired array.
When a task exhausts its timeslice, it is moved
to the expired array and its timeslice is refilled.
When the active array is empty, the two ar-
rays are switched (via a simple pointer swap)
and the scheduler begins executing tasks out of
the new active array. This algorithm guaran-
tees a deterministic and constant-time solution
to timeslice recalculation.

Another benefit of this approach is it provides
a simple prevention to processor starvation of

interactive tasks. In the 2.4 scheduler, when a
task exhausts its timeslice it does not have a
chance to run again until the remaining tasks
also exhaust their timeslice and timeslices are
globally recalculated. This allows starvation of
the task, which might lead to perceptable de-
lays. To prevent this, the 2.5 scheduler will
reinsert interactive tasks into the active array
when they expire their timeslice.How interac-
tive a task need be in order to be reinserted into
the active array and not expired depends on the
task’s priority. To prevent indefinite starvation
of non-interactive tasks in the expired array, in-
teractive tasks are only reinserted into the ac-
tive array so long as the tasks on the expired
array have run recently.

3.4 Finegrained timeslice distribution

A final behavioral change in the O(1) sched-
uler is a more finegrained timeslice distribution
and calculation [mingo2]. Currently, this be-
havior is only present in the 2.5-mm tree but
will likely be merged into the mainline 2.5 tree
soon.

Normally, tasks are round-robined with other
tasks of the same priority (tasks with a higher
priority are run earlier and tasks with a lower
priority will run later). When they exhaust their
timeslice, their priority is recalculated (taking
into effect the interactivity estimator) and they
are either placed on the expired list or inserted
into the back of the queue for their priority
level.

This leads to two problems. First, the scheduler
may give an interactive task a large timeslice in
order to ensure it is always runnable. This is
good, but it also results in a long timeslice that
may prevent other tasks from running. Second,
since priority is recalculated only when a task
exhausts its timeslice, a task with a large times-
lice may go some time without a priority re-
calculation. The task’s behavior may change

Linux Symposium 290

in this time, reversing whether or not the task
is deemed interactive. Recognizing this, the
scheduler was modified to split timeslices into
small pieces—by default, 20ms chunks. Tasks
do not receive any less timeslice, instead a task
of equal priority may preempt the running task
every 20ms. The task is then requeued to the
end of the list for its priority and it continues
to run round robin with other tasks at its prior-
ity level. In addition to this finer distribution
of timeslices, the task’s priority is recalculated
every 20ms as well.

3.5 An O(1) Algorithm

An important property of real-time systems is
deterministic behavior. Time-sensitive applica-
tions demand consistent behavior that they can
understand a priori. Critical algorithms, there-
fore, need to operate in constant time or at least
within predefined bounds.

It is important that scheduling behavior (espe-
cially process selection and process wake up)
operate deterministically, as time-sensitive ap-
plications demand minimal latency from wake
up to process selection to actual execution. If a
scheduling algorithm is dependent on the total
number of processes (or runnable processes)
even a high priority task cannot make an as-
sumption about scheduling latency. Worse,
with a sufficiently large number of processes,
the time required to wake up and schedule a
task may be far larger than acceptable (e.g.,
your mp3 may skip or the nuclear power plant
may meltdown).

By introducing O(1) —constant time—
algorithms for all scheduler functions, the
O(1) scheduler offers not only deterministic
but constant scheduler performance. The
scheduler can wake up a task, select it to run,
and execute it in the same amount of time
regardless of whether there are five or five
hundred thousand processes on the system.

More so, since the O(1) scheduler has excep-
tionally quick O(1) algorithms, scheduling
latency may be reduced for a givenn over
previous scheduling algorithms. Thus, the
2.5 scheduler offers deterministic, constant,
and (perhaps) reduced scheduling latency over
previous Linux kernel schedulers.

4 I/O Scheduler

4.1 Introduction

The primary job of any I/O scheduler (some-
times called an elevator) is to merge adjacent
requests together (to minimize requests) and
to sort incoming requests seek-wise along the
disk (to minimize disk head movement). Re-
ducing the number of requests and minimizing
disk head movement is critical for overall disk
throughput. Disk seeks (moving the disk head
from one sector to another) are very slow. If the
number and distance of seeks are minimized by
reordering requests, disk transfer rates are kept
closer to their theoretical maximum.

In the interest of global throughput, however,
I/O scheduler decisions can introduce local
fairness problems. Sorting requests can lead
to the starvation of requests that are not near
other requests on the disk. If a heavy writeout
is underway, the incoming write requests are
inserted near each other in the request queue
and dealt with quickly, minimizing seeks. A
request to a far-off sector may not receive at-
tention for some time. This request starvation
is detrimental to system response as it is unfair.
Request starvation is a shortcoming in the 2.4
I/O scheduler.

The general issue of request starvation leads
to a more specific case of starvation, writes-
starving-reads. Write operations can usually
occur whenever the I/O scheduler wishes to
commit them, asynchronous with respect to the

Linux Symposium 291

submitting application or filesystem. Read op-
erations, however, almost always involve a pro-
cess waiting for the read to complete—that is,
read requests are usually synchronous with re-
spect to the submitting application or filesys-
tem. Because system response is largely un-
affected by write latency (the time required to
commit a write) but is strongly affected by read
latency (the time required to commit a read),
prioritizing reads over writes will prevent write
requests from starving read requests and in-
crease the responsiveness of the system.

Unfortunately, minimizing seeks and prevent-
ing unfairness from request starvation are
largely conflicting goals. With a proper solu-
tion, however, the fairness issues are resolvable
without a large drop in global disk throughput.

4.2 Request Starvation

To prevent starvation of requests, a new I/O
scheduler, the deadline I/O scheduler, was in-
troduced [axboe1, axboe2]. The deadline I/O
scheduler works by assigning tasks an expira-
tion time and trying to ensure (although not
guaranteeing) that requests are dispatched be-
fore they expire.

The 2.4 I/O scheduler [arcangeli] implements
a single queue, which is sorted ascendingly by
sector. Requests are either merged with ad-
jacent requests or sorted into the proper loca-
tion in the queue; requests are appended to the
tail if they have no proper insertion point. The
I/O scheduler then dispatches requests as the
block devices request them from the head of
the queue.

The deadline I/O scheduler augments this
sorted queue with two more queues, a first-in
first-out (FIFO) queue of read requests and a
FIFO queue of write requests. Each request
in the FIFO queues is assigned an expiration
time. By default, this is 500 milliseconds for

read requests and 5 seconds for write requests.
When a request is submitted to the deadline I/O
scheduler, it is added to both the sorted queue
and the appropriate FIFO queue. In the case
of the sorted queue, the request is merged or
otherwise inserted sector-wise where it fits. In
the case of the FIFO queues, the request is as-
signed an expiration value and placed at the tail
of the queue.

Normally, the deadline I/O scheduler services
requests from the sorted queue, to minimize
seeks. If a request expires at the head of either
FIFO queue (the requests at the head are the
oldest), however, the scheduler stops dispatch-
ing items from the sorted queue and begins dis-
patching from the FIFO queues. This behavior
ensures that, in general, seeks are minimized
and thus global throughput is maximized. Fair-
ness is maintained, however, as the I/O sched-
uler attempts to dispatch requests within the
specified expiration time. The deadline I/O
scheduler provides an upper bound on request
latency—ensuring fairness—at the expense of
a small degradation in overall throughput.

4.3 Writes-Starving-Reads

Usually, read operations are synchronous while
writes operations are asynchronous. Basi-
cally, when an application issues a read re-
quest, it cannot continue until the operation
completes and the application is given the re-
quested value. The completion of write opera-
tions, on the other hand, usually has no bearing
on the progress of the application. Aside from
worrying about power failures, an application
is unconcerned as to whether a write commits
to disk in one second or five minutes. In fact,
most applications are probably unaware if the
data is ever committed! Conversely, an appli-
cation usually needs the results of a read oper-
ation and will block until the data is returned.
Worse, read requests are often issued en masse
and each read is dependent on the previous.

Linux Symposium 292

The application or filesystem will not submit
read requestN until read requestN-1 com-
pletes.

In the 2.4 I/O scheduler, read and write re-
quests are treated equal. The 2.4 I/O sched-
uler tries to minimize seeks by sorting requests
on insert. If a request is issued that is between
(seek-wise) two other requests in the queue, it
is inserted there. If there is no suitable place
to insert the request (perhaps because no other
operations are occurring to the same area of the
disk), the request is appended to the end of the
queue. Consequently, something like

cat * > /dev/null

where there is even only a moderate number of
files in the current directory results in hundreds
of dependent read requests. If a heavy write is
underway, each individual read request will be
inserted at the tail of the queue. Assuming the
queue can hold a maximum of about one sec-
ond’s worth of requests, each individual read
request takes a second to reach the head of the
queue. That is, the heavy write operation con-
tinually keeps the queue full with write opera-
tions to some part of the disk. When the read
request is submitted, there is no suitable inser-
tion point so it is appended to the tail of the
queue. After a second, the read is finally at the
head of the queue, and it is dispatched. This re-
peats for each and every individual read. Since
each read is dependent on the next, the requests
are issued in serial. Thus the previouscat
takes hundreds of seconds to complete in 2.4
when the system is also under write pressure.

Recognizing that the asynchrony and in-
terdependency of read operations highlights
their much stronger latency requirements
over writes, various patches were introduced
[akpm1] to solve the problem. Acknowl-
edging that appending reads to the tail of
the queue is detrimental to performance,

these modifications insert reads (failing a
proper insertion elsewhere) near the head
of the queue. This drastically improves
application performance—more than ten-fold
improvements—as it prevents writes from
starving reads.

The deadline I/O scheduler, the current de-
fault I/O scheduler in 2.5, addresses this is-
sue as well. The deadline I/O scheduler pro-
vides a separate (generally much smaller) ex-
piration timeout for read requests. Conse-
quently, the I/O scheduler tries to submit reads
requests within a rather short period, ignor-
ing write requests that may be adjacent to the
disk head’s current location or that have been
waiting longer. This prevents the starvation of
reads.

Unfortunately, not all is well. While the dead-
line I/O scheduler solves the read latency prob-
lem, the increased attention to read requests re-
sults in a seek storm. For each submitted read
request, any pending writes are delayed, the
disk seeks to the location of the reads and per-
forms the operation, and then it seeks back and
continues with the writes. This results in two
seeks for each read request (or group of adja-
cent read requests) that are issued during write
operations.

Compounding the problem, reads are issued
in groups of dependent requests, as discussed.
Not long after seeking back and continue the
writes, another read request comes in and the
whole mess is repeated.

The goal of a research interest in I/O sched-
ulers, anticipatory I/O scheduling [iyer], is to
prevent this seek storm. When an application
submits a read request, it is handled within the
usual expiration period, as usual. After the re-
quest is submitted, however, the I/O scheduler
does not immediately return to handling any
pending write requests. Instead, it does nothing
at all for a few milliseconds (the actual value

Linux Symposium 293

is configurable; it defaults to 6ms). In those
few milliseconds, there is a good chance the
application will submit another read request. If
any read request is issued to adjacent areas of
the disk, the I/O scheduler immediately han-
dles them. In this case, the I/O scheduler pre-
vented another pair of seeks. It is important to
note that the few milliseconds spent waiting is
well worth the prevention of the seeks—this is
the point of anticipatory I/O scheduling. If a
request is not issued in time, however, the I/O
scheduler times out and returns to processing
any write requests. In that case, the anticipa-
tory I/O scheduler loses and we lost a few mil-
liseconds.

The key is properly anticipating the actions
of applications and the filesystem. If the I/O
scheduler can predict the actions of an applica-
tion a sufficiently large enough percentage of
the time, it can successfully limit seeks (which
are terrible to disk performance) and still pro-
vide low read latency and high write through-
put. A version of the deadline I/O scheduler,
the anticipatory scheduler [piggin], is avail-
able in 2.5-mm which supports anticipatory I/O
scheduling. The anticipatory I/O scheduler im-
plements per-process statistics to raise the per-
centage of correct anticipations.

The results are very satisfactory. Under a
streaming write, such as

while true; do
dd if=/dev/zero of=file bs=1M

done

a simple read of a 200MB file completes in 45
seconds on 2.4.20, 40 seconds on 2.5.68-mm2
with the deadline I/O scheduler, and 4.6 sec-
onds on 2.5 with the anticipatory I/O scheduler.
In 2.4, the streaming write results in terrible
starvation for the read requests. The anticipa-
tory I/O scheduler results in nearly a ten-fold
improvement in read throughput.

In 2.4, the effect of a streaming read upon a
series of many small individual reads is also
devastating. Perform a streaming read via:

while true
do

cat big-file > /dev/null
done

and measure how long a read of every file in
the current kernel tree takes:

find . -type f -exec \
cat ’{}’ ’;’ > /dev/null

2.4.20 required 30 minutes and 28 seconds,
2.5.68-mm2 with the deadline I/O scheduler
required 3 minutes and 30 seconds, and 2.5.68-
mm2 with the anticipatory I/O scheduler re-
quired a mere 15 seconds. That is a 121-times
improvement from 2.4 to 2.5.68-mm2 with the
anticipatory I/O scheduler.

How much damage does this benefit to read la-
tency do to global throughput, though? It is
clear that read throughput is improved, but at
what cost to write requests and global through-
put? Consider the inverse, under a streaming
read such as:

while true
do

cat file > /dev/null
done

A simple write and sync of a 200MB file
takes 7.5 seconds on 2.4.20, 8.9 seconds on
2.5.68-mm2 with the deadline I/O scheduler,
and 13.1 seconds on 2.5.68-mm2 with the an-
ticipatory I/O scheduler. The 2.5 I/O sched-
ulers are slower, but not overly so (certainly not
to the degree read latency is decreased). This
test does not show global throughput, though,

Linux Symposium 294

just write throughput in the presence of heavy
reads. Since the streaming read above may op-
erate much quicker, global throughput is often
largely unchanged.

The anticipatory I/O scheduler is currently in
the 2.5-mm tree. It is expected that it will be
merged into the mainline 2.5 tree before 2.6.

5 Preemptive Kernel

5.1 Introduction

The addition of kernel preemption in 2.5 pro-
vides significantly lowered average scheduling
latency and a modest reduction in worst-case
scheduling latency. More importantly, intro-
ducing a preemptive kernel installs the initial
framework for further lowering scheduling la-
tency by allowing developers to tackle spe-
cific locks as the root of scheduling latency as
opposed to entire kernel call chains. Conve-
niently, reducing lock hold time is also a goal
for large SMP machines

5.2 Design of a Preemptive Kernel

Evolving an existing non-preemptive kernel
into a preemptive kernel is nontrivial; the task
is greatly simplified, however, if the kernel
is already safe against reentrancy and concur-
recny. Therefore, in the case of the Linux ker-
nel, the safety provided by existing SMP lock-
ing primitives were leveraged to provide a sim-
ilar protection from kernel preemptions. SMP
spin locks were modified to disable kernel pre-
emption in a nested fashion; aftern spin locks,
kernel preemption is not again enabled until the
n-th unlock.

Theret_from_intr path (the architecture-
dependent assembly which returns control
from the interrupt handler to the interrupted
code) was then modified to allow preemption

even if returning to kernel mode. Thus, a task
woken up in an interrupt handler (a common
occurrence) can then run at the earliest possi-
ble moment, as soon as the interrupt handler
returns. Consequently, a high priority task will
preempt a lower priority task, even if the lower
priority task is executing inside the kernel.

The preemption does not occur on return from
interrupt, of course, if the interrupted task
holds a lock. In that case, the pending pre-
emption will occur as soon as all locks are
released—again at the earliest possible mo-
ment.

5.3 Improved Core Kernel Algorithms

Changes to core kernel algorithms (primarily
in the VM and VFS primarily) were made to
improve fairness, provide a better bound on
time complexity (and thus a bound on schedul-
ing latency), and reduce lock hold time to take
advantage of kernel preemption and reduce la-
tency.

Some of the most important changes were to
fix fairness issues in the VM, in code paths
such as the page allocator. These changes pre-
vent VM pressure caused by one process from
unfairly affecting VM performance of other
processes.

Many small changes were made to kernel func-
tions in known high latency code paths in the
kernel. These changes involved modifying the
algorithm to have a minimized or fixed bound
on time complexity and to reduce lock hold so
as to allow kernel preemption sooner.

5.4 Reducing Scheduling Latency

Measurements of scheduling latency are highly
dependent on both machine and workload
(workload being a crucial element—one work-
load may show no perceptible scheduling la-

Linux Symposium 295

tency while another may introduce horrid
scheduling latencies). Nonetheless, worst-case
scheduling latencies of under 500 microsec-
onds are commonly observed in 2.5.

Even on a 2.4 kernel patched with the preemp-
tive kernel (which undoubtedly does not bene-
fit from some of the algorithmic improvements
in 2.5), a recent whitepaper [williams] noted a
five-fold improvement in worst-case schedul-
ing latency and a 1.6-time improvement in av-
erage case scheduling latency. A long-term
test, part of the same whitepaper, testing the
kernel for over 12 hours (to exercise many high
scheduling latency paths) showed a reduction
from over 200 milliseconds worst-case latency
in the period to 1.5 milliseconds with a com-
bination of the preemptive kernel and the low-
latency patch [akpm2]. This drastic reduction
in worst-case latency over a long period with a
complex workload demonstrates the ability of
the preemptive kernel and optimal algorithms
to provide both excellent average and worst-
case scheduling latency.

One useful benchmark is the Audio Latency
Benchmark [sbenno], which simulates keeping
an audio buffer full under various loads. A
test of a 2.4 kernel vs. a 2.4 preemptive ker-
nel shows a reduction in worst-case scheduling
latency from 17.6 milliseconds to 1.5 millisec-
onds [rml]. The same test on 2.5.68 yields a
maximum scheduling latency of 0.4 millisec-
onds.

On a modern machine, scheduling latency is
low enough to prevent any perceptible stalls
during typical desktop computing and multi-
media work.

Further, the 2.5 kernel provides a base suf-
ficient for guaranteeing sub one millisecond
worst-case latency for demanded embedded
and real-time computing needs.

6 Acknowledgments

I would like to thank the OLS program com-
mittee for providing the opportunity to write
this paper and MontaVista Software for provid-
ing the means by which I work on the kernel.

Andrew Morton deserves credit for an abnor-
mally large amount of the interactivity work
which went into the 2.5 kernel. Jens Axboe
was the primary developer of the deadline
scheduler. Nick Piggin was the primary de-
veloper of the anticipatory scheduler, which is
based on the deadline scheduler. Ingo Molnar
was the primary developer of the O(1) sched-
uler. Various others played significant roles in
the design and implementation of other related
kernel bits.

References

[akpm1] Andrew Morton,Patch:
read-latency2, http://www.zip.
com.au/~akpm/linux/patches/
2.4/2.4.19-pre5/
read-latency2.patch .

[akpm2] Andrew Morton,Patch: low-latency,
http://www.zipworld.com.au/
~akpm/linux/schedlat.html .

[arcangeli] Andrea Arcangeli and Jens
Axboe,Source: 2.4 Elevator, linux/
drivers/block/elevator.c .

[axboe1] Jens Axboe,Email: [PATCH]
deadline io scheduler,
http://www.cs.helsinki.fi/
linux/linux-kernel/2002-38/
0912.html .

[axboe2] Jens Axboe,Source: Deadline I/O
Scheduler, linux/drivers/block/
deadline-iosched.c .

Linux Symposium 296

[iyer] S. Iyer and P. Druschel,Anticipatory
scheduling: A disk scheduling
framework to overcome deceptive
idleness in synchronous I/O. ACM
Symposium on Operating System
Principals (SOSP), 2001.

[mingo1] Ingo Molnar,Source: O(1)
scheduler, linux/kernel/
drivers/sched.c .

[mingo2] Ingo Molnar,Patch:
sched-2.5.64-D3,
http://www.kernel.org/pub/
linux/kernel/people/akpm/
patches/2.5/2.5.68/2.5.
68-mm2/broken-out/sched-2.
5.64-D3.patch .

[piggin] Nick Piggin and Jens Axboe,Source:
Anticipatory I/O Scheduler, linux/
drivers/block/as-iosched.c .

[rml] Robert Love,Lowering Latency in
Linux: Introducing a Preemptible
Kernel, Linux Journal (June 2002).

[sbenno] Benno Senoner,Audio Latency
Benchmark, http://www.gardena.
net/benno/linux/audio/ .

[williams] Clark Williams,Linux Scheduler
Latency, Whitepaper, Red Hat, Inc.,
2002.

Machine Check Recovery for Linux on Itanium®
Processors

Tony Luck
Intel Corporation

Software and Solutions Group

tony.luck@intel.com

Abstract

The Itanium1 processor architecture provides
a machine check abort mechanism for report-
ing and recovering from a variety of hardware
errors that may be detected by the processor
or chip set. Simple errors such as single bit
ECC may be corrected transparently to the op-
erating system by hardware and firmware, but
more complex errors where data has been lost
require OS intervention. In cases where the OS
can reconstruct the lost data, then execution
can continue transparently to the application
layer, otherwise the OS may decide to sacri-
fice affected user processes to allow the system
to continue. This paper describes how Linux
can recover from TLB errors without affecting
applications, and also how Linux can recover
from certain memory errors at the expense of
terminating user processes.

1 Introduction

Server systems are not just about increased
speed and capacity. They must also provide
better reliability than their desktop and mo-
bile cousins. The Intel Itanium architecture in-

1Itanium is a registered trademark of Intel Corpo-
ration or its subsidiaries in the United States and other
countries. Other names and brands may be claimed as
the property of others.

cludes a machine check architecture that pro-
vides the mechanism to detect, contain and in
many cases correct processor and platform er-
rors.

2 Source of errors

There are several sources of errors within a
computer system:

1. Electrical supply line fluctuations

Can be mitigated with a high quality
power supply with surge suppression ca-
pability.

2. Static electricity

Effects can be lessened by good enclosure
design and special static reducing floor
covering.

3. Heat

Reduced by good thermal design of sys-
tem enclosure and air-conditioning of the
computer room. Hardware may also de-
tect excess temperature and automatically
switch to mode where less power is dis-
sipated (e.g. a lower clock speed and/or
voltage, or a reduction in the number of
available functional units for retiring in-
structions).

Linux Symposium 298

4. Interaction with high energy particles due
to radioactive decay

Can be reduced by careful selection of
the materials used to build the system
(e.g. use of ultra pure dopants consisting
of only stable isotopes), and addition of
shielding.

5. Interaction with high energy particles
from cosmic ray showers in the earth’s at-
mosphere

Reduce by shielding (locate computer
room in the basement) and avoiding high
altitude locations for computer systems
(intensity in Denver, altitude 5280 feet, is
over four times higher than at sea level lo-
cations).

Why is this important? Other aspects of hard-
ware are getting more reliable, but as feature
size is reduced they become more susceptible
to particles (as lower energy particles are capa-
ble of flipping bits). Software is getting more
reliable too: we cannot just blame crashes on
the OS. Clusters of computers multiply the er-
ror rates. A mean time between failure of sev-
eral years for a processor isn’t too bad of a
problem if you only have one processor, when
you build a cluster of several thousand proces-
sors, then you have a big problem.

For each of the error sources listed above I have
suggested methods by which the error rate may
be reduced, but it may be impractical or too ex-
pensive to reduce all of these errors to insignif-
icant levels, hence computer systems must be
designed to detect, isolate and recover from er-
rors when they do occur.

3 Itanium Machine Check Archi-
tecture

The Itanium machine check architecture pro-
vides a framework in which diverse types of

errors can be handled in a logical and consis-
tent way.

3.1 Error severity

Errors are divided into three categories:

1. Corrected errors are those that are re-
paired by hardware or by firmware. In ei-
ther case an interrupt (CMCI2 for proces-
sor errors, CPEI3 for platform errors) may
be raised for logging purposes.

Examples of this type of error are a cor-
rectable single-bit ECC error in the pro-
cessor cache or a correctable single-bit
ECC error on the system bus.

2. Recoverable errors involve some loss of
state. They require operating system in-
tervention to determine whether it is pos-
sible for the system to continue operation.

An example of a recoverable error is one
where incorrect data is about to be passed
to a processor register (e.g. from a load
from memory with a multi-bit ECC error).

3. Fatal errors cannot be corrected. A system
reboot is required.

On this kind of error, the processor gener-
ates a signal that is broadcast on the sys-
tem bus (called BINIT#) that causes the
processor to discard all in-flight transac-
tions to prevent error propagation. The er-
ror is fatal because there is no way to re-
cover the state of the discarded bus trans-
action, hence the need for a system reboot.

An example of a fatal error is a processor
time-out (when the processor has not re-
tired any instructions after a certain time
period).

2Corrected Machine Check Interrupt
3Corrected Platform Error Interrupt

Linux Symposium 299

In
cr

ea
sin

g
Se

ve
rit

y
of

 E
rro

r
Error Corrected

by hardware;
process continues

Error Corrected
by firmware;

process continues

Error Correction
dependent on OS

analysis & capapilities
error is signalled to
local processor only

Error Correction
dependent on OS

analysis & capapilities
error is signalled to

all processors

OS is not stable;
reboot is required;
error is signalled to

all processors

Corrected, CMCI or CPEI

Recoverable, Local MCA

Recoverable, Multiple
MCA

Fatal MCA

Corrected, Local MCA,
CMCI or CPEI

3.2 Control flow

This diagram shows how the hardware, pro-
cessor, processor abstraction layer, system ab-
straction layer and operating system interact to
handle machine checks:

Operating System Software

System Abstraction Layer
(SAL)

Processor Abstraction Layer
(PAL)

Processor (Hardware)

Platform (Hardware)

SAL MCA
Procedure

Call

PAL MCA
Procedure

Call

MCA
Hardware

events

MCA
Handoff

MCA
Handoff

At the hardware level, hardware redundancy
(parity and ECC) is used to detect and possi-
bly correct errors during program execution. In
some correctable cases the hardware may sim-
ply fix the error on the fly and raise a corrected

error interrupt to allow logging of the event. In
other cases the processor will save all machine
state and pass control to the PAL (Processor
Abstraction Layer) code at the PAL_MCA en-
try point for analysis and further processing by
firmware. Different members of the Itanium
processor family may make different choices
about whether to fix errors in hardware or pass
responsibility up to firmware.

Entry to the PAL is made in physical mode
with caches disabled. This provides the option
for the PAL to handle some types of errors de-
tected in the cache, which is useful since on
chip caches make up so much of the die area
of modern processors that they are statistically
one of the most likely forms of errors (from the
processor itself. . . memory errors from a large
array of DIMMS are probably the most likely
system-wide source of errors). If the error is
corrected at this point, then execution can be
resumed, but again an interrupt is raised to al-
low the error to be logged.

Next layer in the firmware stack is the SAL
(System Abstraction Layer) which is respon-
sible for components outside of the processor
itself (e.g. chip set, memory, I/O bus bridges
etc.). The processor is still executing in phys-
ical mode (MMU disabled), we may have en-
abled the caches by this point (depending on
whether the SAL machine check entry point is
located in cacheable or uncacheable memory).
SAL code examines the details of the error and
determines whether it can fix it without caus-
ing loss or corruption of any data. As above, if
the error is fixed, then execution resumes with
a pended interrupt to log the details.

At the highest level is the operating system.
Errors that have not been corrected at lower
levels, but which leave the processor in an in-
ternally consistent state, are still recoverable.
These can be passed to the operating system
if it is interested in trying to recover. An op-

Linux Symposium 300

erating system indicates it is capable and will-
ing to handle machine check errors by regis-
tering an entry point with the SAL using the
SAL_SET_VECTORS call. Note that the op-
erating system entry point must be a physi-
cal address because it is possible that the error
to be handled is in the memory management
H/W, hence the MMU must still be disabled
when the SAL transfers control to the operating
system entry point. The physical entry point
means that the code to service machine check
abort must either be position independent, or
at least very aware of relocation issues since it
will not be executing at the kernel’s linked ad-
dress. Also the SAL_SET_VECTORS call al-
lows the operating system to provide the length
and a simple byte checksum of the code so that
the SAL may validate that the routine has not
been corrupted.

4 Reporting corrected errors

As mentioned above, errors that are corrected
by hardware, PAL, or SAL may be reported
to the operating system by means of a CMCI
(Corrected Machine Check Interrupt) for errors
inside the processor, or a CPEI (Corrected Plat-
form Error Interrupt) for system errors outside
of the processor. The operating system may
choose to disable these interrupts and period-
ically poll the SAL to see if any errors have
been corrected. It might do this to avoid be-
ing swamped by corrected error interrupts (e.g.
a stuck data line causing hard single-bit mem-
ory errors across a wide range of physical ad-
dresses, we would like to ensure that the op-
erating system can continue to make forward
progress).

Whether the operating system takes interrupts
or polls, once a corrected error record is found
the OS can retrieve the whole record, parse it
to find any useful information, and then output
details to its own log. As a final step in error

reporting the operating system must request the
SAL to clear the error record from non-volatile
memory (to ensure that space is available for
future errors to be logged).

User level tools could be written to analyze the
operating system logs to check for patterns that
may be predictive of future hard errors in com-
ponents that generate a high level of soft errors.

5 Poisoned memory

Another feature of the machine check archi-
tecture is the concept of “poisoned memory.”
This allows a platform the option of deferring
error processing in some circumstances. Sup-
pose a modified cache line is being written
back to memory when an uncorrectable error
is detected in the data contained in the cache
line. The current execution state of the pro-
cessor probably has no connection with this
data, so signaling a machine check abort at
this time may be an over-reaction to the situ-
ation. Instead, the data can be written to mem-
ory together with an indication that it is corrupt
(the “poison” flag, typically indicated with bad
ECC bits). A regular CMC interrupt is then
raised, and the OS is allowed to examine the
situation later. Deferring the error in this case
may be useful, because it is not certain that the
corrupted data will ever be needed (e.g., the
page to which the cache line belongs may al-
ready have been freed by the operating system,
or the word that was corrupted in the cache line
may have only been present in the cache be-
cause of false sharing).

Note that in the “read” case data poisoning
does not apply, the processor will immediately
begin MCA processing.

If the operating system writer is concerned that
the poisoned data may be consumed before the
interrupt is processed, there is an option to pro-
mote CMCI to MCA to allow immediate ac-

Linux Symposium 301

tion to be taken (though this option applies to
all CMCI, not just to those caused by poison
data).

6 Operating system examples

Here are some example cases of recoverable er-
rors where the operating system can intervene
to recover from an error that has been detected
and reported using the above mechanism.

6.1 TLB translation register error

The Translation lookaside buffer in the Ita-
nium processor is not only divided into sepa-
rate structures for instruction and data access,
it is also conceptually divided into two types of
entries.

1. Translation cache entries can freely be re-
placed as new mappings are added.

2. Translation register entries are locked into
the TLB. These are used to “pin” trans-
lations for critical regions to ensure that
a TLB miss will never occur for a virtual
address mapped by a locked entry.

Errors in translation cache can be trivially han-
dled by H/W or PAL by simply discarding cor-
rupted entries from the cache. This will only
affect performance, if the discarded entry is
needed, the processor will simply reload using
the normal TLB miss execution path. How-
ever, if an error is detected in one of the transla-
tion registers, then the fault cannot be handled
by F/W, PAL or SAL, since the entry cannot
just be dropped and the firmware does not have
enough information to reconstruct the damaged
entry. So the error is propagated up to the OS
which needs to reload the errant register. The
ia64 Linux implementation uses the following
TR registers:

ITR(0) maps one large kernel page4 as the
kernel text (code)

DTR(0) maps one large kernel page as the ker-
nel data

ITR(1) maps one granule5 for PAL

DTR(1) maps one page6 for per-cpu area

DTR(2) maps one granule for kernel stack

The first four of these are loaded during ker-
nel initialization, and are never changed, so it
is a simple matter to add code to save the cor-
rect values for these registers in memory, so
that the MCA handler can reload when needed.
The last, mapping the kernel stack, can poten-
tially be reloaded on every context switch (ac-
tual reloads occur when the task structure for
the new process is in a different large kernel
page). The Linux kernel uses one of the su-
pervisor mode registers (ar.k4) to keep track of
which large kernel page is currently mapped,
and this register can be used to reconstruct the
DTR(2) value during the MCA handler.

Although the SAL error record generated for
an error in a translation register provides in-
formation on which register(s) have errors, it
would require a large amount of code to re-
trieve and parse the error record to determine
exactly which registers need to be reloaded.
All this code would have to run in physical
mode (remember that SAL passes control to
the operating system MCA entry point in phys-
ical mode, and it is not possible to transition to
virtual mode for this particular error, since we
know that one or more of the translation reg-
isters are corrupt). The simple solution to this
issue is to have the MCA TLB recovery code
purge and reload all of the TR registers in the

4Kernel is always mapped with a single 64MB page
5another type of large kernel page, configurable as

either 16MB or 64MB
6PAGE_SIZE on 2.4, 64k on 2.5

Linux Symposium 302

physical mode code. Then we can safely tran-
sition to virtual mode to retrieve and examine
the record from the SAL error log to report the
actual register(s) that were affected by the er-
ror.

6.2 Multi bit ECC error in memory

In this case some data has been irretrievably
lost, so the operating system cannot escape
from this situation unscathed. The basic strat-
egy for the OS is to identify the address of the
memory that reported the error. If the mem-
ory is owned by the kernel, this will currently
be reported as a fatal error by the Linux MCA
handler and the OS will reboot (to be strictly
accurate the Linux MCA handler will return to
SAL with a request to reboot, and the error will
be reported by Linux after the reboot when the
SAL error record is retrieved from NVRAM).
If the memory is allocated to one or more user
processes, the processes can be sacrificed to
allow the system to continue running (just as
the OOM killer will terminate processes when
Linux runs out of memory). Life is rarely that
simple. In this case a complication is that ma-
chine checks are not reported synchronously to
the instructions that trigger them, they may be
deferred for a long time (in the worst case until
the values are consumed). The processor pre-
cisely identifies the location at which the fault
is detected, but does not provide information
about the point at which the fault occurred. The
processor does not automatically7 raise ma-
chine checks across privilege transitions from
user to kernel mode and vice versa, so it is pos-
sible that an error caused in one privilege state
will be reported in the other state. Easy cases:

a) fault triggered in user mode is reported in
user mode—kill process

7There is a PAL call PAL_MC_DRAIN to do this,
but it would be a major performance issue to use this on
every transition

b) fault triggered in kernel mode is reported
in kernel mode—system reboot

Harder cases:

c) fault triggered in kernel mode is reported
in user mode—this is a very subtle case.
At first sight it appears that our error han-
dler cannot do the right thing. This case
is indistinguishable from case ‘a’ above,
since we only have precise information
about where the error was detected. But
if the error occured in some kernel data,
just killing the process is not the correct
action. It would leave the kernel running
with a corrupted data structure! However,
we are saved by the fact that the error
is detected when the user process tries to
consume the data, and we know that only
a buggy kernel would leak details of a ker-
nel data structure to user mode. So we can
assume that any such error that happened
in kernel mode and was detected in user
mode must have occurred when the ker-
nel was restoring registers that belonged
to the user process. Thus killing the pro-
cess is sufficient to contain the error.

d) fault triggered in user mode is reported
in kernel mode—sadly this will cause a
reboot because it isn’t possible to distin-
guish this from case ‘b’ above (though it
might be possible to eliminate many of
these cases by a special case for faults re-
ported during the code that saves user reg-
isters).

6.3 PCI errors

The Itanium processor family machine check
architecture provides a framework for report-
ing platform errors, such as PCI bus errors.
From an OS perspective, these may be far more
complex to handle. Issues are:

Linux Symposium 303

1. We would like a framework that is min-
imally invasive to the existing driver
model.

2. Linux is just starting to get support for
hot-add and hot-remove of devices, but it
is a big step from there to support surprise
removal of devices when errors occur.

3. Even in the case of transient errors, recov-
ery may be complicated by the firmware
on the card, which typically has been writ-
ten with an expectation that the system
will reboot after an error.

7 Acknowledgments

Thanks to all the people at Intel who spent time
reviewing this paper and providing invaluable
feedback.

References

[Menyhárt] Z. Menyhárt and D. Song,OS
Machine Check Recovery on Itanium
Architecture-base Platforms, Intel
Developer Forum, Fall 2002

[Ziegler] J.F. Ziegler,Terrestrial cosmic ray
intensities, IBM Journal of Research and
Development, Volume 42, Number 1,
1998

[SDV] Intel, Intel Itanium Architecture
Software Developer’s Manual, Volume
1–3

[EHG] Intel, Itanium Processor Family Error
Handling Guide, August 2001

[SAL] Intel, Itanium Processor Family
System Abstraction Layer (SAL)
Specification, November 2002

Low-level Optimizations in the PowerPC Linux
Kernels

Paul Mackerras
IBM Linux Technology Center OzLabs

paulus@au1.ibm.com

Abstract

We examine three low-level optimizations
in the Linux® kernel for 32-bit and 64-bit
PowerPC®, relating to cache flushing, mem-
ory copying, and PTE (page table entry) man-
agement. Benchmarking and profiling were
used to identify areas where optimizations
could be performed and to identify whether the
optimizations actually improved performance.
The cache flushing and memory copying opti-
mizations improved performance significantly,
whilst the PTE management optimization did
not.

1 Introduction

The optimizations presented in this paper rep-
resent some of the results of the continuing ef-
fort to make the Linux kernel run better and
faster on PowerPC processors, both 32-bit and
64-bit. The optimizations here are low-level
optimizations that are specific to PowerPC pro-
cessors, aimed at decreasing the overhead of
some of the fundamental operations relating
to maintaining the consistency of the instruc-
tion cache with memory, copying memory, and
managing page table entries.

Subsequent sections present measurements of
performance using benchmarking and kernel
profiling. Benchmarking is the process of
measuring performance by running a specific

program or set of programs to measure how
quickly certain operations are performed. Two
different benchmarks of different styles are
used here:

• LMBench™ is a micro-benchmark suite
originally written by Larry McVoy. It
measures the speed of a broad range
of individual kernel operations such as
forking processes, reading and writ-
ing data to/from disk, transferring data
over a socket, etc. Seehttp://
www.bitmover.com/lmbench/ for
details.

• For an application-level benchmark to
measure the overall speed of a process that
involves a range of kernel activities, we
use the process of compiling the Linux
kernel, and measure the time taken us-
ing the time(1) command. We used
the same source tree (from Linux version
2.5.25) and configuration for all tests so
that the results are comparable with each
other. A kernel compilation tends to ex-
ercise a range of kernel functions includ-
ing forking processes, starting new pro-
cesses, reading and writing files, mapping
in pages of memory on demand, and so
on.

Profiling measures the time spent in individual
kernel procedures while the kernel is perform-
ing some tasks. The form of profiling used in

Linux Symposium 305

this paper is that where a periodic interrupt is
used to obtain a statistical sample of the to-
tal time spent executing each instruction in the
kernel. When the periodic interrupt is taken,
the handler examines the instruction pointer
where the interrupt occurred, uses that to in-
dex into an array, and increments that array el-
ement. Over time this builds up a histogram of
where the kernel is spending its time. A post-
processing tool converts that histogram into a
total count for each procedure in the kernel.

This can be a very powerful tool for analysing
kernel performance provided that its limita-
tions are kept in mind. First, because the data is
a statistical sample, it can be quite noisy. Sec-
ondly, it does not measure the execution time
for code that runs with interrupts disabled (un-
less some kind of non-maskable interrupt can
be used). Instead, time spent with interrupts
disabled tends to get attributed to the point
where interrupts are re-enabled.

Three machines were used for the measure-
ments reported here:

1. An Apple® PowerBook® G3 laptop with a
400MHz PowerPC 750™ processor, sep-
arate 32kB level 1 data and instruction
caches, unified 1MB level 2 data cache,
and 192MB of RAM. This is a 32-bit ma-
chine.

2. An IBM® pSeries™ model 650 computer
with eight 1.45GHz IBM POWER4+™
processors, 32kB level 1 data cache and
64kB level 1 instruction cache per proces-
sor, 1.5MB level 2 cache per 2 processors,
and 8GB of RAM. This is a 64-bit ma-
chine.

3. An IBM “Walnut” embedded evalua-
tion board with a 200MHz IBM Pow-
erPC 405GP processor, 8kB level 1 data
cache, 16kB level 1 instruction cache and
128MB of RAM. This is a 32-bit machine.

2 Cache flushing optimizations

In the PowerPC architecture, the instruction
cache is not required to snoop changes to the
contents of memory, either by stores from this
or another CPU, or by DMA from an I/O de-
vice. Instead, software is required to maintain
the coherency of the instruction cache, using
thedcbst —data cache block store instruction
and theicbi —instruction cache block invali-
date instruction. These instructions can be ex-
ecuted at user level, and self-modifying code
is required to use them after it has written in-
structions to memory before those instructions
are executed.

The kernel uses these instructions extensively
to make sure that pages that are mapped into
a user process’s address space can be executed
safely. User code assumes that the instruction
cache is consistent with memory for pages that
are supplied by the kernel on demand. Thus
it is the kernel’s responsibility to perform the
cache flushing instructions on a page of mem-
ory before mapping it into a process’s address
space if there is a possibility that the instruc-
tion cache is incoherent with memory for that
page. If this is not done properly, the symptom
is usually that the process will get a segmen-
tation violation or illegal instruction exception,
since it is not executing the instructions that it
should.

Note that almost all PowerPC implementa-
tions have caches that are effectively physically
addressed—usually virtually indexed, physi-
cally tagged, set associative, with the set size
no greater than the page size, so no aliasing
occurs. The IBM POWER4™ processor has
a virtually indexed direct-mapped instruction
cache, but obviates the potential problems that
this could cause by having theicbi instruc-
tion clear all 16 cache blocks where a given
block of memory could be cached. There are
also some embedded PowerPC implementa-

Linux Symposium 306

tions that have virtually indexed and tagged in-
struction caches, and these require quite differ-
ent cache management and are not considered
in this paper.

2.1 Initial implementation

The Linux generic virtual memory (VM) sys-
tem provides a number of hooks that ar-
chitecture code can define in order to do
architecture-specific cache and TLB man-
agement where necessary. One of these
is called flush_page_to_ram , and it is
called at several points in the VM code
when pages are mapped into a user pro-
cess’s address space (e.g.,do_no_page ,
do_anonymous_page etc.). In older ker-
nels the flush_page_to_ram hook was
used on PowerPC to perform the cache flush
on the page in order to ensure that the in-
struction cache was consistent for the page.
This reliably ensured that the instruction cache
did not contain stale data for the pages that
processes see, but had a considerable perfor-
mance penalty. The “Original” column of Ta-
ble 1 shows the results of a kernel profile
on a kernel which usesflush_page_to_
ram to ensure instruction cache coherency.
These results were obtained on the 400MHz
G3 PowerBook machine compiling a kernel (3
times over). The kernel spends more time in
flush_dcache_icache , which performs
the flushing function offlush_page_to_
ram, than any other kernel procedure. Clearly
flush_page_to_ram is a good candidate
for optimization.

2.2 Optimized implementation

A large part of the reason why the kernel is
spending so much time inflush_dcache_
icache is that it is doing unnecessary flushes.
If the same program is executed many times
in different processes, the kernel will call

Procedure Original Optimized
flush_dcache_icache 6763 2974
ppc6xx_idle 2238 2468
do_page_fault 857 667
copy_page 537 390
clear_page 523 509
copy_tofrom_user 356 299
do_no_page 231 129
add_hash_page 220 92
flush_hash_page 195 191
do_anonymous_page 194 224

Table 1: Kernel profiles before and after cache-
flush optimization

flush_page_to_ram on each page of the
program executable each time it is mapped into
a process’s address space. However, once the
flush has been done, the instruction cache is
consistent for that page (provided that the page
is not modified), and the flush doesn’t need to
be done when the page is subsequently mapped
into other processes’ address spaces.

A solution to this problem was suggested
by David Miller. He suggested using a bit,
called PG_arch_1 , in the flags field of
thepage_struct structure for each page, to
indicate whether the instruction is consistent
with memory for the page. This bit is cleared
when the page is allocated. We use this to in-
dicate that the instruction cache may be incon-
sistent. When the flush is done on the page, we
set the bit, indicating that the instruction cache
is now consistent for the page. Subsequently,
if the bit is already set, the flush does not need
to be done.

David Miller also requested that we use the
flush_dcache_page andupdate_mmu_
cache hooks rather thanflush_page_to_
ram, since more information is provided to
the architecture code in the calls toflush_
dcache_page and update_mmu_cache ,
and flush_page_to_ram is deprecated.
The VM system calls flush_dcache_

Linux Symposium 307

page when a page which may be mapped
into a process’s address space is modified by
the kernel. update_mmu_cache is called
when a page is mapped into a process’s ad-
dress space. In our implementation,flush_
dcache_page clears thePG_arch_1 bit,
and update_mmu_cache does the flush
(by calling flush_dcache_icache) if the
PG_arch_1 bit is clear, and then sets it.

The results are shown in the “Optimized” col-
umn in Table 1. Clearly the time spent flush-
ing the cache has decreased dramatically, al-
though it is still significant. The system time
for the compilation decreased from 46.0 sec-
onds to 29.9 seconds. The user time was
not significantly different (301.9 seconds vs.
300.2 seconds). The overall speedup was
5.1%. (Note that kernel profile measurements
are quite noisy, and the other differences be-
tween the columns in Table 1 are not necessar-
ily significant.)

Table 2 shows an excerpt from the
before-and-after LMBench results. (See
ftp://ftp.samba.org/pub/paulus/
ols2003/lmb-argo-flush for the full
summary of results.) The optimization has
produced worthwhile improvements in the
fork, exec and shell process items. The first
line shows the unoptimized results, and the
second line shows the optimized results.

2.3 Further optimizations

The implementation in the previous section
aimed at minimizing the number of flushes
while still making sure that the instruction
cache was consistent with memory for each
page mapped into the process’s address space.
This includes anonymous pages and pages that
are copied as a result of a write to a copy-on-
write page, as well as page-cache pages. (A
copy-on-write page is one which is mapped
with a private writable mapping, including

anonymous pages which are shared after a
fork.)

Part of the reason that it is necessary to en-
sure consistency of the instruction cache is
that the PowerPC architecture, as originally de-
fined, doesn’t provide any way to prevent a
process from executing code from a readable
page. That is, there is no execute permission
bit in the page table entries (PTEs). If there
was a way to trap attempts to execute from a
page, it would be possible to defer the flush un-
til a process first executed instructions from the
page. That way, it would be possible to avoid
the flush altogether on anonymous pages which
are only used for data, not for code.

Embedded PowerPC implementations, such as
the IBM PPC405, don’t follow the original
PowerPC memory management unit (MMU)
architecture, but instead have a software-
loaded TLB with a unique PTE format. The
PTE format for the PPC405 includes an
execute-permission bit. Also, the POWER4
processor uses one of the previously-unused
bits in the PTEs as a no-execute bit.

We implemented an optimization on the
PPC405 where the pages are not flushed in
update_mmu_cache . Instead, if thePG_
arch_1 bit is clear, we clear the execute-
permission bit in the PTE mapping the page.
There is an added check indo_page_fault
for an attempt to execute from a page with
the execute-permission bit clear. In that case,
we do the flush on the page and then set the
execute-permission bit.

The kernel profiles shown in Table 3 show
that the number of counts recorded inflush_
dcache_icache while compiling the test
kernel twice dropped from 1685 to 31. Thus
the time spent doing cache flushes for instruc-
tion cache consistency has become negligible.
The system time for a kernel compile was re-
duced by 147.7 seconds to 139.0 seconds, a de-

Linux Symposium 308

Processor, Processes - times in microseconds - smaller is better
--
Host OS Mhz null null open selct sig sig fork exec sh

call I/O stat clos TCP inst hndl proc proc proc
------ ------------- ---- ---- ---- ---- ---- ----- ---- ---- ---- ---- ----
argo Linux 2.5.66 400 0.35 0.76 3.90 5.34 39.1 1.67 6.64 795. 5065 23.K
argo Linux 2.5.66 400 0.35 0.76 3.88 5.33 40.3 1.67 6.13 659. 2254 11.K

Table 2: LMBench results before and after cache-flush optimization

Procedure Orig. Optim.
ProgramCheckException 4766 4685
do_mathemu 4475 4526
ide_intr 1745 1729
flush_dcache_icache 1685 31
record_exception 1369 1448
copy_tofrom_user 1357 1325
do_page_fault 1027 1035
ret_from_except_full 774 775
fmul 731 721
fsub 658 629

Table 3: Kernel profiles before and after
execute-permission optimization

crease of 5.9%. The user time was not signif-
icantly different: 1460.6 seconds for the opti-
mized kernel vs. 1457.9 seconds for the unop-
timized kernel. The overall time for the kernel
compilation was reduced by 0.37%. The re-
duction is less than might have been expected
because a significant amount of the system
time was spent in the kernel floating-point em-
ulation routines (the PPC405 does not imple-
ment floating point instructions in hardware).

3 Memory copying

Copying memory is a fundamental operation in
the kernel, used for:

• Copying data to or from a user process
(e.g., for aread or write system call)

• Copying pages of memory, in particular
for write faults on copy-on-write pages

• Copying other data structures within the
kernel.

Separate procedures are used for these three
operations: copy_tofrom_user , copy_
page and memcpy respectively. The pro-
files in Table 1 show thatcopy_tofrom_
user andcopy_page are among the top ten
most time-consuming operations in the kernel.
These routines are thus a candidate for opti-
mization.

However, these routines are already well opti-
mized in the 32-bit PowerPC kernel for most
32-bit PowerPC implementations. In the 64-
bit kernel, it becomes possible to use 64-byte
loads and stores to move more data per instruc-
tion. This is easy in thecopy_page case,
since the source and destination addresses are
page-aligned. However, incopy_tofrom_
user andmemcpy, where the source and des-
tination are not necessarily 8-byte aligned, it
becomes more complicated.

PowerPC processors generally handle most 2-
byte and 4-byte unaligned loads and stores
in hardware, without generating an exception.
Older processors would generate an exception
if the access crossed a page boundary, whereas
most newer processors handle even that case
in hardware. However, 64-bit PowerPC pro-
cessors typically generate an exception on an
8-byte load or store if the address is not 4-byte
aligned. The kernel has an alignment excep-
tion handler that emulates the load or store and
allows the program to continue.

Linux Symposium 309

When copying memory and the source and/or
destination addresses are misaligned, we gen-
erally copy a small number of bytes, one at
a time, in order to get to an aligned destina-
tion address. If the source address is then mis-
aligned (that is, the bottom 2 bits of the address
are non-zero), there are two alternative strate-
gies to handling the misalignment:

1. Use 32-bit or 64-bit loads and stores, ig-
noring the misalignment. In this case we
will have misaligned load addresses and
aligned store addresses.

2. Do loads with aligned addresses and use
shift and OR instructions to shuffle the
bytes into the correct positions to be
stored to an aligned address.

For current PowerPC implementations, it turns
out that while misaligned 32-bit loads are
slower than aligned 32-bit loads, they are still
faster than aligned 32-bit loads plus the extra
instructions needed to shuffle the bytes into po-
sition. For this reason,copy_tofrom_user
andmemcpyin the 32-bit kernel use unaligned
loads in a relatively simple loop. However, the
situation is different for 64-bit loads. Since ev-
ery misaligned 64-bit load will cause an excep-
tion, it is much faster to do the aligned loads
and shuffle the bytes.

In fact, the behaviour of the processor on un-
aligned loads and stores is only one of many ar-
chitectural and implementation characteristics
that affect how an optimum memory copying
routine should be written. Some of the others
are:

• The number of levels in the storage hier-
archy and the latency to each level;

• Presence or absence of automatic hard-
ware prefetch mechanisms;

• Presence or absence of instructions to pro-
vide cache prefetch hints to the processor;

• Load-use penalty, that is, how many other
instructions should be placed between a
load and the store (or other operation)
which uses the data from the load, so that
the processor does not need to stall the
store until the data from the load is avail-
able;

• Ability of the processor to issue instruc-
tions out of order, so that later instruc-
tions are not blocked by earlier instruc-
tions which do not have all their operands
available;

• The penalty incurred for conditional
branches (if this is large then there is an
advantage to unrolling loops);

• Extended instruction sets such as Altivec
on PowerPC, MMX/SSE on x86, or the
VIS instructions on SPARC64, which pro-
vide the ability to operate on larger units
of data (typically 128 bits).

Given how many factors can affect memory
copying performance, it is not surprising that
memory copy routines can become quite large
and complicated, reaching tens of thousands of
lines of assembly code on some architectures.
Other factors that affect the performance of a
memory copy routine include the size of the
region to be copied, and whether the source
and/or destination regions are already present
in the processor’s caches. Some optimizations,
such as loop unrolling, might improve perfor-
mance dramatically for larger copies (i.e., sev-
eral cache lines or larger) but hurt performance
for small copies by increasing the setup costs.
Similarly, some optimizations, such as using
extended instruction sets, might improve per-
formance dramatically when all the source data
is present in the level-1 data cache, but have no

Linux Symposium 310

effect or actually reduce performance when the
data has to be brought in from main memory.

Thus it is interesting to know whether the ker-
nel routinely does large copies, and whether
they are misaligned or not. To test this,
we added histogramming functions tocopy_
tofrom_user andmemcpy in a 64-bit ker-
nel. The results can be summarized as follows:

• 98% of calls tomemcpy were for less
than 128 bytes (one cacheline).

• 13% of calls tomemcpywere not 8-byte
aligned.

• 84% of calls tocopy_tofrom_user
were for less than 128 bytes, and 95%
were for less than 512 bytes. Of the
remainder, most were page-sized (4096
bytes) and page-aligned.

• 43% of calls tocopy_tofrom_user
were not 8-byte aligned.

These results indicate that it is important to op-
timize for the small-copy case, particularly for
memcpybut also forcopy_tofrom_user ,
and that performance on unaligned copies is
important for copy_tofrom_user . The
one large-copy case which is worth optimizing
for is the case of copying a whole page, both
in copy_page and also to a lesser extent in
copy_tofrom_user .

3.1 Optimized POWER4 memory copy

On POWER4 the factors that need to be taken
into account include the following:

• POWER4 aggressively executes instruc-
tions out of order and uses register renam-
ing to avoid false dependencies between
instructions.

• POWER4 includes automatic prefetch
hardware which detects sequential mem-
ory accesses and prefetches cache lines
which are likely to be needed in the near
future.

• Correctly predicted conditional branches
incur a one cycle penalty.

• The level-1 data cache on POWER4 is
a write-through cache, thus all stores go
through to the level-2 cache. The L2
cache is organized as three interleaved
banks. Each bank has its own store queue.

The effect of the first three points is that while
some degree of loop unrolling is beneficial, it
is not necessary to aggressively unroll the main
copy loop or to make sure that many instruc-
tions intervene between a load and the instruc-
tion that uses the result.

Because of the interleaved nature of the L2
cache, the optimum pattern of stores is one
where stores go successively to each bank of
the level 2 cache. In fact the best perfor-
mance for large copies is obtained with a loop
that works on six cachelines at a time, so that
the loads and stores are interleaved across six
cachelines.

Based on these considerations, the author
developed optimizedcopy_tofrom_user ,
copy_page and memcpy implementations
for POWER4, with the following characteris-
tics:

• copy_tofrom_user detects page-
sized page-aligned copies and calls a
routine similar tocopy_page for them.
For other copies, it proceeds with an
algorithm similar to memcpy below.
(The main difference betweencopy_
tofrom_user and copy_page or
memcpy is that copy_tofrom_user

Linux Symposium 311

has to cope gracefully in the case where
the source or destination address cannot
be accessed, for example if a bad address
is given to a system call.)

• The main loop ofcopy_page works on
6 cachelines at once, and contains 18 load
and 18 store instructions, in three groups
of 6 stores followed by 6 loads.

• memcpy has three main loops, each of
which do two aligned 64-bit loads and two
aligned 64-bit stores. One loop is for the
case where the source and destination are
8-byte aligned with respect to each other,
and the other two are for the misaligned
case. These two loops are slightly differ-
ent to handle an even or odd number of
64-bit doublewords to be transferred (ex-
cluding any bytes copied initially to get
the destination 8-byte aligned).

These routines were tested on the 1.45GHz
POWER4+ system using the same kernel com-
pile test used in the previous section. The op-
timized copy routines were compared with the
copy_tofrom_user andmemcpyroutines
from the ppc32 kernel (thus using only 32-bit
loads and stores) and a simplecopy_page
implementation which has two 64-bit loads and
stores per iteration in its main loop.

Figure 1 shows selected LMBench re-
sults in graphical form. (Seeftp:
//ftp.samba.org/pub/paulus/
ols2003/lmb-power4-copy for the full
summary of results.) From these it is evident
that the optimized version is indeed noticeably
faster than the unoptimized versions.

However, the results from the kernel compile
test were more equivocal: the system time was
reduced from 8.30 seconds to 8.19 seconds
(a 1.3% improvement). When the user time
(78.84 seconds in both cases) is added in, the
overall improvement was only 0.13%.

Figure 1: Results of memory copy optimiza-
tion on 64-bit POWER4+.

4 PTE management

4.1 Introduction

In the PowerPC architecture, page table en-
tries (PTEs) are stored in a hash-table structure
which is accessed by the memory management
unit (MMU) hardware. The hash table is di-
vided into groups of 8 entries. Each group has
an index between 0 andN − 1, whereN is
the number of groups in the table (N must be a
power of 2). When the MMU needs to find the
PTE for a given virtual address, it first com-
putes a hash index using an XOR-based hash
function on the virtual address. The hash index
identifies one group, called the primary group
for the virtual address, which is fetched and
searched for a PTE which matches the virtual
address. The PTE includes part of the virtual
address so that a match can be verified. If no
matching PTE is found, a secondary hash value
is formed by subtracting the original hash value
fromN−1. This identifies the secondary group
for the virtual address, which is also searched

Linux Symposium 312

for a matching PTE.

In contrast, the Linux virtual memory (VM)
system uses a two-level or three-level tree
structure for storing PTEs. It is the responsibil-
ity of the PowerPC-specific parts of the kernel
to keep the MMU hash table accessed by the
hardware synchronized with the Linux page ta-
ble trees. Essentially, the MMU hash table
is used as a large level-2 translation lookaside
buffer (TLB).

To avoid confusion, we use the term HPTE
(Hashtable PTE) to refer to a PTE in the MMU
hash table, and LPTE (Linux PTE) to refer to a
PTE in the Linux page table trees. The HPTE
and LPTE formats are different, although re-
lated.

When a new LPTE is created, a corresponding
HPTE must be created before the page can be
accessed. This can be done in theupdate_
mmu_cache hook or on demand when the
page is first accessed.

Similarly, when an existing LPTE is invali-
dated, the corresponding HPTE (if any) must
be found and invalidated. One reasonable
approach is to do the HPTE invalidation in
the TLB flushing routines. There are four
TLB flushing routines called by the Linux
VM code: flush_tlb_page , flush_
tlb_range , flush_tlb_mm andflush_
tlb_kernel_range . In addition, there
are the__tlb_remove_tlb_entry and
tlb_flush routines which are used in con-
junction with themmu_gather structure used
when destroying page tables.

Of these, flush_tlb_page is relatively
easy to implement efficiently since it only op-
erates on a single page, whose address is given.
The flushing routine just needs to search one
primary HPTE group and possibly one sec-
ondary group, and invalidate the HPTE if it is
found.

Implementing flush_tlb_range and
flush_tlb_mm efficiently is more difficult,
since the information about precisely which
LPTEs have been changed or invalidated is
not readily available. Searching the MMU
hash table for every address in the range (for
flush_tlb_range) or in the whole address
space for a process (flush_tlb_mm) would
be very time-consuming, and would be par-
ticularly inefficient if there were not actually
HPTEs present for most of the addresses, as is
typically the case forflush_tlb_mm .

Instead, we use a bit in the LPTE, called
_PAGE_HASHPTE, to indicate whether a
HPTE corresponding to this LPTE has been
created. Then,flush_tlb_range and
flush_tlb_mm can scan the Linux page
tables looking for LPTEs with the_PAGE_
HASHPTEbit set and only search the MMU
hash table for the corresponding addresses.
This scheme does however require some care
in handling the_PAGE_HASHPTEbit:

• It must remain valid even if the LPTE
is invalidated or used for a swap en-
try. Thus an atomic read-modify-write se-
quence must be used to invalidate or up-
date an LPTE rather than a normal store
instruction.

• The page holding the LPTE must still be
allocated and present in the page table tree
at the time that any of the TLB flush rou-
tines are called.

The 64-bit PowerPC kernel uses an additional
4 bits in the LPTE to indicate whether the
HPTE is in the primary or secondary group,
and which of the 8 slots in the group it is
in. With this information, the TLB flush rou-
tines can invalidate the HPTE directly with-
out having to search the primary and secondary
groups. This approach isn’t used in the 32-bit

Linux Symposium 313

PowerPC kernel since there are not 4 free bits
in the LPTE.

4.2 Optimized implementation

Instead of having to scan the Linux page ta-
bles in flush_tlb_range and flush_
tlb_mm , it would potentially be more effi-
cient to invalidate the HPTE at the time that
the LPTE is changed. Alternatively, it would
be possible to make a list of virtual addresses
when LPTEs are changed and then use that list
in the TLB flush routines to avoid the search
through the Linux page tables.

This approach was not possible in ear-
lier kernels because there was not enough
information supplied in the calls to the
functions that update LPTEs (set_pte ,
ptep_get_and_clear , etc.) to deter-
mine the address space (represented by the
mm_struct structure) and virtual address for
the LPTE being modified. However, the infras-
tructure added for the reverse-mapping (rmap)
support in the Linux VM system allows us
to determine this information efficiently, since
a pointer to themm_struct for the address
space and the base virtual address mapped
by the LPTE page are now stored in the
page_struct structure for each LPTE page.

The results for the 32-bit kernel are shown in
Table 4. The times shown are the system and
user times in seconds for the kernel compila-
tion test on the 400MHz PPC750 (G3) system,
and are averages of at least two repetitions. The
first row is for the original unoptimized kernel,
the second row (“Immediate update”) is for a
kernel which invalidates the HPTE at the time
when the LPTE is modified, and the third row
(“Batched update”) is for a kernel that records
the virtual addresses when LPTEs are modified
and invalidates the HPTEs in the TLB flush
routines.

Kernel version System User Total
time time time

Original 32.09 303.71 335.80
Immediate update 32.28 302.93 335.21
Batched update 32.40 303.22 335.62

Table 4: PTE optimizations, 32-bit kernel

Kernel version System User Total
time time time

Original 8.51 78.13 86.64
Batched update 8.44 78.04 86.48

Table 5: PTE optimizations, 64-bit kernel

Clearly, neither optimization gives a significant
increase in performance. The differences in to-
tal time of less than 0.6s are less than the stan-
dard deviation of the total time measurement
for the original kernel, which was 1.42s (from
7 measurements).

The results in Table 5 for the 64-bit kernel on
the 1.45GHz POWER4+ system paint a similar
picture. The table compares the original ker-
nel with one that records the virtual addresses
when LPTEs are modified and invalidates the
HPTEs in the TLB flush routine (the “Batched
update” row). The times are in seconds and are
averages of 6 measurements. Previous experi-
ence has shown that it is important to batch up
changes to the MMU hash table in the ppc64
kernel, particularly on SMP systems. Conse-
quently we did not test the variant which inval-
idates the HPTE at the time that the LPTE is
modified.

The difference in total time is 0.16 seconds,
about 0.2% of the total time. Even if the dif-
ference were statistically significant, it hardly
represents an important optimization. How-
ever, the optimized code is actually simpler and
shorter (by 66 lines) than the original code, and
may be worth adopting for that reason alone.

Linux Symposium 314

5 Conclusions

The previous sections demonstrated perfor-
mance improvements of varying magnitudes
from the optimizations considered. Some of
the individual LMBench numbers were more
than doubled by the first optimization, that
of avoiding the instruction cache flush on
pages which had already been flushed. The
64-bit memory copy optimizations improved
the unix-domain socket bandwidth by over
60%, with smaller improvements on other
bandwidth-related measurements.

The overall improvements for the kernel com-
pile benchmark were more modest. This is to
be expected since the time spent in the kernel
is only about a tenth of the time spent in user
processes for this benchmark, and the opti-
mizations considered here only reduce the time
spent in the kernel.

In sum, the optimizations presented here pro-
vide a substantial performance boost for the
Linux kernel on PowerPC machines.

The results illustrate some general principles
about optimization work:

• Kernel profiling is a useful tool for de-
termining what a profitable target for op-
timization is, and whether a given opti-
mization is effective. However, the ker-
nel profile results are usually quite noisy,
and care must be exercised in interpreting
them.

• Some optimizations may produce dra-
matic improvements on benchmarks but
have almost no effect on the speed of ac-
tual application programs.

• Measurement is key; some optimizations
might seem like an extremely good idea
but not produce any significant perfor-
mance gains, either because of unfore-

seen side-effects or because the thing be-
ing optimized doesn’t consume a signifi-
cant amount of time.

Acknowledgements

The author would like to thank Anton Blan-
chard for assistance with implementing and
benchmarking the cache-flushing optimiza-
tions presented here.

Legal statements

This work represents the view of the author and
does not necessarily represent the view of IBM.

IBM, pSeries, PowerPC, PowerPC 750, POWER4
and POWER4+ are trademarks or registered trade-
marks of International Business Machines Corpo-
ration in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

LMBench is a trademark of BitMover, Inc.

Apple and PowerBook are trademarks of Apple
Computer, Inc., registered in the U.S. and other
countries.

Other company, product, and service names may be
trademarks or service marks of others.

Sharing Page Tables in the Linux Kernel

Dave McCracken
IBM Linux Technology Center

Austin, TX

dmccr@us.ibm.com

Abstract

An ongoing barrier to scalability has been the
amount of memory taken by page tables, es-
pecially when large numbers of tasks are map-
ping the same shared region. A solution for this
problem is for those tasks to share a common
set of page tables for those regions.

An additional benefit to implementing shared
page tables is the ability to share all the page
tables duringfork in a copy-on-write fashion.
This sharing speeds upfork immensely for
large processes, especially given the increased
overhead introduced by rmap.

This paper discusses my implementation of
shared page tables. It covers the areas that are
improved by sharing as well as its limitations.
I will also cover the highlights of how shared
page tables was implemented and discuss some
of the remaining issues around it.

This implementation is based on an initial
design and implementation done by Daniel
Phillips last year and posted to the kernel mail-
ing list. [DP]

1 Introduction

The Linux® memory management (MM) sub-
system has excellent mechanisms for minimiz-
ing the duplication of identical data pages by
sharing them between address spaces when-

ever possible. The MM subsystem currently
does not, however, make any attempt to share
the lowest layer of the page tables, even though
these may also be identical between address
spaces.

Detecting when these page tables may be
shared, and setting up sharing for them is fairly
straightforward. In the following sections the
current MM data structures are described, fol-
lowed by an explanation of how and when the
page tables would be shared. Finally some is-
sues in the implementation and some perfor-
mance results are described.

2 Major Data Structures

To understand the issues addressed by shared
page tables it is helpful to understand the struc-
tures that make up the Linux MM.

2.1 Themm_structStructure

The anchor for the memory subsystem is the
mm_structstructure. There is onemm_struct
for each active user address space. All
memory-related information for a task is found
in themm_structor in structures it points to.

2.2 Thevm_area_structStructure

The address layout is contained in two par-
allel sets of structures. The logical lay-
out is described by a set of structures called

Linux Symposium 316

vm_area_structs, or vmas. There is onevma
for each region of memory with the same file
backing, permissions, and sharing character-
istics. Thevmas are split or merged as nec-
essary in response to changes in the address
space. There is a single chain ofvmas attached
to themm_structthat describes the entire ad-
dress space, sorted by address. This chain also
can be collected into a tree for faster lookup.

Each vma contains information about a vir-
tual address range with the same characteris-
tics. This information includes the starting and
ending virtual addresses of the range, and the
file and offset into it if it is file-backed. The
vma also includes a set of flags, which indi-
cate whether the range is shared or private and
whether it is writeable.

2.3 The Page Table

The address space page layout is described by
the page table. The page table is a tree with
three levels, the page directory (pgd), the page
middle directory (pmd), and the page table en-
tries (pte). Each level is an array of entries con-
tained within a single physical page. The entry
at each level contains the physical page num-
ber of the next level. The pte entries contain
the physical page number of the data page.

For the architectures that use hardware page ta-
bles, the page table doubles as the hardware
page table. This use of the page table puts con-
straints on the size and contents of the page ta-
ble entries when they are in active use by the
hardware.

2.4 Theaddress_spaceStructure

In addition to the structures for each address
space, there is a structure for each file-backed
object called structaddress_space(not to be
confused with an address space, which is rep-
resented by anmm_struct). Theaddress_space

structure is the anchor for all mappings related
to the file object. It contains links to every
vmamapping this file, as well as links to ev-
ery physical page containing data from the file.

All shared memory uses temporary files as
backing store, so each shared memoryvma is
linked to anaddress_spacestructure. The only
vmas not attached to anaddress_spaceare the
ones describing the stack and the ones describ-
ing the bss space for the application and each
shared library. These are called the ’anony-
mous’ vmas and are backed directly by swap
space.

2.5 ThepageStructure

All physical pages in the system have a struc-
ture that contains all the metadata associated
with the page. This is called a “structpage.”
It contains flags that indicate the current usage
of the page and pointers that are used to link
the page into various lists. If the page contains
data from a file, it also has a pointer to thead-
dress_spacestructure for that file and an index
showing where in the file the data came from.

3 How Memory Gets Mapped

Memory areas are created, modified, and de-
stroyed via one of the mapping calls. These
calls can map new memory areas, change the
protections on existing memory areas, and un-
map memory areas.

3.1 Creating A Memory Mapping

New memory regions are created using the
callsshmget/shmmapor mmap. Both calls cre-
ate a mapped memory region, either backed
by an open file passed as an argument or by
a temporary file created for the purpose. The
newly mapped memory region is represented
by a new or modifiedvma that is attached to

Linux Symposium 317

the tasḱs mm_structand to theaddress_space
structure for the file. The page table is not
touched during the mapping call.

Various flags are passed in when a page is
mapped. These flags specify the characteristics
of the mapped memory. Two of the key char-
acteristics are whether the area is shared or pri-
vate and whether the area is writeable or read-
only. For read-only or shared areas, the file
data is read from and written back to the file.
Private writeable areas are treated specially in
that while the data is read from the file, mod-
ified data is not written back to the file. The
data is saved to swap space as an anonymous
page if it needs to be paged out.

Pages are actually mapped when a task at-
tempts to access a virtual address in the
mapped area. The page fault code first finds
thevmadescribing the area, then finds thepte
entry that maps a data page for that address. A
page is then found based on the information in
thevma.

3.2 Locks and Locking

The MM subsystem primarily relies on three
locks. Two locks are in themm_struct. First is
the mmap_sem, a read/write semaphore. This
semaphore controls access to thevma chain
within themm_struct.

The second lock in themm_struct is the
page_table_lock. This spinlock controls access
to the various levels of the page table.

The third lock is in theaddress_spacestruc-
ture. This lock controls the chain ofvmas
that map the file associated with thatad-
dress_space. In 2.4, it is a spinlock and is
called i_shared_lock. In 2.5, it was changed
to a semaphore and is calledi_shared_sem.

During a page fault themmap_semsemaphore
is taken for read at the beginning of the fault

and is held until the fault is complete. The
page_table_lockis taken early in the fault, but
is released as necessary when the fault needs
to block. Holding themmap_semsemaphore
for read allows other tasks with the same
mm_structto take page faults but not change
their mappings.

4 Sharing the PTE Page

Normally the overhead taken up by page tables
is small. On 32 bit architectures, there is typ-
ically a maximum of one pgd page, three pmd
pages, and one pte page for every 512 or 1024
data pages. This ratio may be somewhat higher
for sparsely populated address spaces, but vir-
tual addresses are typically allocated in order
so pte pages tend to be filled in fairly densely.

This ratio changes for shared memory areas.
A shared memory region that covers an entire
pte page may be shared among many address
spaces. This sharing means there will be 1 pte
page for each address space for every 512 or
1024 mapped data pages. Note that the pte
pages, once allocated, are not freed even if the
data pages have been paged out, so the pte page
overhead is fixed even under memory pressure.

Shared memory is a common method for many
applications to communicate among their pro-
cesses. It is possible for a massively shared ap-
plication to use over half of physical memory
for its page tables.

Each address space in this scenario has an iden-
tical set of pte pages for its shared areas, with
all its entries pointing to the same physical data
pages. The premise behind shared page tables
is to only allocate a single set of pte pages and
set the pmd entry for each address space to
point to it.

A beneficial side effect of sharing the pte page
is once a data page has been faulted in by one

Linux Symposium 318

task, the page appears in the address space of
all other tasks mapping that area. Without shar-
ing, each task would have to take its own page
fault to get access to that page.

There are clearly some constraints on when pte
pages can be shared. The shared area must
span the virtual memory mapped by the entire
pte page. All address spaces must map the area
at the same virtual address. While in theory
the mapped areas only need to be aligned per
pte page, the current implementation requires
that the virtual addresses be the same.

4.1 Finding PTE Pages to Share

For sharing to work, it is necessary to find an
existing pte page if one exists. Finding this
page is accomplished at page fault time when
there is not already a pte page for the faulting
address.

First, the currentvma is checked to see if it is
eligible for sharing. It needs to be either share-
able or read-only, and needs to span the entire
address range for that pte page.

Next, the code searches for an existing pte page
that can be shared. This search is done by go-
ing to theaddress_spacefor the current mem-
ory area, then walking itsvmachain. Eachvma
is checked for compatibility. Thevmaneeds to
be at the same file offset and virtual address
as the faultingvmaand needs to also span the
entire pte page. For each matchingvma, its
corresponding page table is checked for a pte
page. If a pte page is found, it is installed in
the pmd entry and its use count is incremented.
While in theory it should be possible to share
pte pages between anyvmas whose mappings
have the same pte page alignment, the current
rmap implementation limits sharing to those
that map to the same virtual address.

4.2 Copy On Write

On some architectures there is a second use for
shared page tables. Duringfork, every pte en-
try is copied to the new page table. Data pages
that can’t be fully shared are marked as “copy
on write.” Marking a page as copy on write in-
volves setting both the parent and the child pte
entry to point to the same data page, but with
write disabled. When either task tries to write
to that page, the page is then duplicated and
write access is enabled.

Some architectures (including x86) support
disabling write access in the pmd entry, and in-
terpret this to mean disabling write to all the
data pages mapped by that entry. Disabling
write allows the copy on write concept to be ex-
tended to shared page tables. Instead of copy-
ing each pte entry atfork time, each pmd entry
is set to point to the same pte page and write
access is disabled. When a write fault occurs, a
new pte page is allocated and all the pte entries
are copied in the same fashion as duringfork in
the non-shared version.

4.3 Locking Changes for Shared PTE Pages

When page tables have shared pte pages, the
existing locking scheme becomes inadequate.
The page_table_lockin the mm_structcan no
longer protect the entire page table, since pte
pages may be shared with other page tables.

There is a spinlock in the page struct that is
normally used forpte_chains in data pages.
Since pte pages have nopte_chains, the lock in
the pte page’s page struct can be used to con-
trol access to it. For pte pages this lock be-
comes thepte_page_lock. This change means
thepage_table_lockprotects the pgd and pmd
levels and thepte_page_lockprotects the pte
page.

Using this lock changes the locking protocol in

Linux Symposium 319

the page fault path. Thepage_table_lockmust
still be taken to until the pte page is found and
selected. Thepte_page_lockis taken for that
page, at which point thepage_table_lockcan
be released. The rest of fault resolution is done
under thepte_page_lock.

5 Complications

While making pte pages shared seems like a
simple task in theory, there are several things
that complicated the task.

Part of pte_chain-based reverse mapping is a
pointer in the pte page’sstruct pagethat points
to the mm_structthe page belongs to. Shar-
ing the pte page means it can belong to sev-
eral mm_structs. It was necessary to add an
mm_chainstructure which points to a chain of
mm_structsthat use the pte page.

There are various memory management-
related system calls that can modify existing
mappings. These includemremap, mprotect,
remap_file_pages, and mmap itself. These
calls can all change the mappings for an ad-
dress space such that the pte page can no longer
be shared. Each of those system calls was mod-
ified to identify shared pte pages and unshare
them as necessary.

6 Performance

Shared page tables are primarily intended to
reduce the space overhead of page tables, but
there are some performance benefits, as well.

The primary performance gain is duringfork
because of copy-on-write sharing. Instead of
duplicating a reference to each data pagefork
only needs to duplicate a reference to each pte
page. This can improvefork performace by up
to a factor of 10.

Fork speedup is balanced, however, by the cost
of unsharing each pte page when one of its data
pages is written to. Typically, three pte pages
are unshared after everyfork due to the user
space layout. Since small programs generally
only have three pte pages, only larger programs
benefit from the improvement. In fact, the cost
of sharing the pte, then unsharing it on page
fault, has a small but measureable cost com-
pared to copying. The simple solution to this
is to copy the pte pages onfork if the address
space only has 3 pte pages.

There is a corresponding performance im-
provement forexit and execwhen they tear
down the address space. Any pte pages that are
shared can be detached simply by decrement-
ing their reference count. For each pte page
that is not shared, the code must examine each
entry to determine what to do with its data page
or swap page.

7 Conclusion

Shared page tables achieves its primary objec-
tive of dramatically improving the scalability
of massively shared applications, as well as
also improving thefork andexit performance
of large tasks. While there is some cost in
added complexity, the benefits far outweigh the
cost.

Legal Statement

This paper represents the views of the author, and
not the IBM Corporation.

IBM® is a registered trademark of International
Business Machines Corporation.

Linux® is a registered trademark of Linus Torvalds.

Other company, product or service names may be
the trademarks or service marks of others.

Linux Symposium 320

References

[DP] Daniel Phillips.
http://nl.linux.org/
phillips/page.table.sharing

Kernel Janitors: State of the Project

Arnaldo Carvalho de Melo
Conectiva S.A.

acme@conectiva.com.br

http://advogato.org/person/acme

Abstract

The Kernel Janitors Project has been cleaning
up the kernel for quite some time, in this pa-
per I’ll present what has been done, tasks that
kernel hackers added to TODO list, tools used
to help in the process, 2.5 changes that need to
be propagated thru the tree and other aspects of
kernel janitoring.

1 What is the Kernel Janitor
Project?

The Kernel Janitors Project grew out of our
search for things to help in the development
of the Linux kernel, and learning from other
patches submitted by more experienced peo-
ple, we saw that some of these patches indi-
cated error patterns that could exist in other
parts of the kernel, we looked and. . . yes, we
discovered that some parts of the kernel suf-
fered from the same problems and in the
process we found code bitrotting. . . I (acme)
started maintaining a TODO list for things
to fix or clean up and people started sub-
mitting suggestions for things to fix that I
collected athttp://bazar.conectiva.
com.br/~acme/TODO .

2 A Way for Newbies to Start
Hacking the Kernel

Looking at the httpd logs I discovered that lots
of people accessed it, so this indeed was some-
thing useful as a starting point for people also
wanting to help in cleaning up/fixing parts of
the kernel.

Several people have the goodwill to help in
kernel programming, but many don’t have the
time to help on areas that require more knowl-
edge and effort, so the Kernel Janitor Project
TODO list helps, as there are lots of simple
tasks that needs work but are trivial enough to
allow those people to help while not requiring
much time and effort.

3 The Project Moves to Source-
Forge

Dave Jones suggested that we moved this to
sourceforge, so that we could have it on CVS
and allow more people to have admin rights to
add more entries, add explanations about the
tasks, etc.

I then registered the domain kerneljanitors.org
and made it point to the sourceforge web page,
that is very simple but has important pointers
to resources for new janitors.

Linux Symposium 322

4 Project Committers

We’re always accepting more people, prefer-
ably maintainers of parts of the kernel, so that
we can improve the TODO list, and as there
is always some boring and repetitive work that
the maintainers postpone because there is al-
ways more important things to do.

In fact even Linus has posted at least once in
the mailing list asking for help on simple repet-
itive tasks, such as the irqreturn_t conversion
for all the interrupt handling routines.

These are the current commiters for this
project, at this time:

• Arnaldo Carvalho de Melo

• Dave Jones

• Jeff Garzik

• Matthew Wilcox

• Randy Dunlap

• Tariq Shureih

• William Lee Irwin III

5 Mailing list

Using the SourceForge infrastructure we cre-
ates the kernel-janitor-discuss mailing list,
where we discuss the aspects of the project and
review janitor patches.

There has been a continuous arrival of people
asking where to start helping, and a number of
them became regular janitors.

6 Some Janitors

• William Stinson

– check_region removal

• Art Haas

– C99 struct init style

7 Tools

There are now several tools that help on pin-
pointing most of the entries in the TODO list
and even some more involved problems that
needs hands to fix, I’ll briefly talk about sev-
eral of such tools in the next sections.

7.1 Stanford Checker

Perhaps the first tool for source checking used
in the Linux kernel, the Stanford Checker is
based on a modified gcc that does several ver-
ifications for different types of common prob-
lems, and then the Stanford guys do some san-
ity checking and post the list on the linux-
kernel mailing list, where people comment on
it, checking if they are false positives and most
frequently fixing the bugs.

It is unfortunately an unreleased tool, but it has
been of great help over the last years.

7.2 kj.pl

This was a very simple perl script that Dave
Jones wrote, that searched for some very trivial
problems, but Dave has stopped working on it
as now we have smatch.

7.3 smatch

Dan Carpenter’s smatch is a released tool that
allows developers to write perl scripts to search
for problems, it is also based on a modified gcc.

Dan has created the kbugs.org web site where
he has several smatch scripts and a list of the

Linux Symposium 323

results of those scripts, allowing janitors to
pick real problems to work on.

The current scripts, for reference, are:

• ReleaseRegion

• ReleaseIRQ

• DoubleSpinlock

• Dereference

• GFP_DMA

• UnreachedCode

• SpinlockUndefined

• FunctionStack

• UncheckedReturn

• SpinSleepLazy

• UnFree

I’ll quote Dan now just as an example of
smatch results in kbugs.org:

“There were quite a few smatch related fixes
in the 2.5.69 kernel. Someone fixed 4
SpinSleepLazy bugs, 3 UnreachedCode bugs
and 6 unchecked calls ofcopy_to_user() .
It’s not entirely clear who did what from the
changelog, but thank you anonymous heros.”

7.4 cqual

Cqual is another tool that can help finding
problems on codebases such as the kernel, here
is the project description, from its authors:

“Cqual is a type-based analysis tool that pro-
vides a lightweight, practical mechanism for
specifying and checking properties of C pro-
grams. Cqual extends the type system of C
with extra user-defined type qualifiers. The

programmer adds type qualifier annotations to
their program in a few key places, and Cqual
performs qualifier inference to check whether
the annotations are correct. The analysis re-
sults are presented with a user interface that
lets the programmer browse the inferred quali-
fiers and their flow paths.”

It is part of a bigger project at the University
of Berkeley called Open Source Quality, this
seems to be a project that deserves investiga-
tion by janitors as it wasn’t mentioned up to
now on the kjp mainling list.

7.5 sparse

And now to something unreleased at this time:
Linus Torvalds’s sparse tool:

“Sparse is a semantic parser of source files: it’s
neither a compiler (although it could be used
as a front-end for one), nor is it a preprocessor
(although it contains as a part of it a prepro-
cessing phase).

It is meant to be a small—and simple—library.
Scanty and meager, and partly because of that
easy to use. It has one mission in life: create a
semantic parse tree for some arbitrary user for
further analysis. It’s not a tokenizer, nor is it
some generic context-free parser. In fact, con-
text (semantics) is what it’s all about—figuring
out not just what the grouping of tokens are, but
what thetypesare that the grouping implies.”

It is indeed very interesting that more and more
people are working towards having tools that
can help in improving the quality of Open
Source projects such as Linux.

8 Documentation

• lwn.net Articles by Jonathan Corbet

• Tariq’s "Drivers DOs and DONTs"

Linux Symposium 324

• Other Articles for janitors

• Arjan’s article about how not write a
driver

• Greg KH’s article.

Linux Kernel Power Management

Patrick Mochel
Open Source Development Labs

mochel@osdl.org

Abstract

Power management is the process by which
the overall consumption of power by a com-
puter is limited based on user requirements and
policy. Power management has become a hot
topic in the computer world in recent years,
as laptops have become more commonplace
and users have become more conscious of the
environmental and financial effects of limited
power resources.

While there is no such thing as perfect power
management, since all computers must use
some amount of power to run, there have been
many advances in system and software archi-
tectures to conserve the amount of power being
used. Exploiting these features is key to pro-
viding good system- and device-level power
management.

This paper discusses recent advances in the
power management infrastructure of the Linux
kernel that will allow Linux to fully exploit the
power management capabilities of the various
platforms that it runs on. These advances will
allow the kernel to provide equally great power
management, using a simple interface, regard-
less of the underlying archtitecture.

This paper covers the two broad areas of
power management—System Power Manage-
ment (SPM) and Device Power Management
(DPM). It describes the major concepts behind
both subjects and describes the new kernel in-
frastructure for implementing both. It also dis-

cusses the mechanism for implementing hiber-
nation, otherwise known as suspend-to-disk,
support for Linux.

1 Overview

Benefits of Power Management

A sane power management infrastructure pro-
vides many benefits to the kernel, and not only
in the obvious areas.

Battery-powered devices, such as embedded
devices, handhelds, and laptops reap most of
the rewards of power management, since the
more conservative the draw on the battery is,
the longer it will last.

System power management decreases boot
time of a system, by restoring previously saved
state instead of reinitializing the entire system.
This conserves battery life on mobile devices
by reducing the annoying wait for the computer
to boot into a useable state.

Recently, power management concepts have
begun to filter into less obvious places, like the
enterprise. In a rack of servers, some servers
may power down during idle times, and power
back up when needed again to fulfill network
requests. While the power consumption of a
single server is but a drop in the water, being
able to conserve the power draw of dozens or
hundreds of computers could save a company
a significant amount of money.

Linux Symposium 326

Also, at the lower-level, power management
may be used to provide emergency reaction to
a critical system state, such as crossing a pre-
defined thermal threshold or reaching a criti-
cally low battery state. The same concept can
be applied when triggering a critical software
state, like an Oops or a BUG() in the kernel.

System and Device Power Management

There are two types of power management that
the OS must handle—System Power Manage-
ment and Device Power Management.

Device Power Management deals with the pro-
cess of placing individual devices into low-
power states while the system is running. This
allows a user to conserve power on devices that
are not currently being used, such as the sound
device in my laptop while I write this paper.

Individual device power management may be
invoked explicitly on devices, or may happen
automatically after a device has been idle for a
set of amount of time. Not all devices support
run-time power management, but those that do
must export some mechanism for controlling it
in order to execute the user’s policy decisions.

System Power Management is the process by
which the entire system is placed into a low-
power state. There are several power states
that a system may enter, depending on the plat-
form it is running on. Many are similar across
platforms, and will be discussed in detail later.
The general concept is that the state of the run-
ning system is saved before the system is pow-
ered down, and restored once the system has
regained power. This prevents the system from
performing an entire shutdown and startup se-
quence.

System power management may be invoked for
a number of reasons. It may automatically en-
ter a low-power state after it has been idle for
some amount of time, after a user closes a lid

on a laptop, or when some critical state has
been reached. These are also policy decisions
that are up to the user to configure and require
some global mechanism for controlling.

2 Device Power Management

Overview

Device power management in the kernel is
made possible by the new driver model in the
2.5 kernel. In fact, the driver model was in-
spired by the requirement to implement decent
power management in the kernel. The new
driver model allows generic kernel to commu-
nicate with every device in the system, regard-
less of the bus the device resides on, or the class
it belongs to.

The driver model also provides a hierarchi-
cal representation of the devices in the system.
This is key to power management, since the
kernel cannot power down a device that an-
other device, that isn’t powered down, relies
on for power. For example, the system cannot
power down a parent device whose children are
still powered up and depend on their parent for
power.

In its simplest form, device power manage-
ment consists of a description of the state a
device is in, and a mechanism for controlling
those states. Device power states are described
as ‘D’ states, and consist of states D0-D3, in-
clusive. This device state representation is in-
spired by the PCI device specification and the
ACPI specification [ACPI]. Though not all de-
vice types define power states in this way, this
representation can map on to all known device
types.

Each D state represents a tradeoff between the
amount of power a device is consuming and
how functional a device is. In a lower power
state (represented by a higher digit following

Linux Symposium 327

D), some amount of power to a device is lost.
This means that some of the device’s operating
state is lost, and must be restored by its driver
when returning to the D0 state.

D0 represents the state when the device is fully
powered on and ready for, or in, use. This state
is implicitly supported by every device, since
every device may be powered on at some point
while the system is running. In this state, all
units of a device are powered on, and no device
state is lost.

D3 represents the state when the device is off.
This state is also implicitly supported by every
device, since every device is implicitly pow-
ered off when the system is powered off. In this
state, all device context is lost and must be re-
stored before using the device again. This usu-
ally means the device must also be completely
reinitialized.

The PCI Power Management spec goes on to
define D3hot as a D3 state that is entered via
driver control and D3cold that is entered when
the entire system is powered down. In D3hot,
the device may not lose all operating power,
requiring less restoration that must take place.
This is however, device-dependent. The kernel
does not distinguish between the two, though a
driver theoretically could take extra steps to do
so.

D1 and D2 are intermediate power states that
are optionally supported by a device. In each
case, the device is not functional, but not en-
tirely powered off. In order to bring the device
back to an operating state, less work is required
than reviving the device from D3. In D1, more
power is consumed than in D2, but more device
context is preserved.

A device’s power management information is
stored instruct device_pm :

struct device_pm {

#ifdef CONFIG_PM
dev_power_t power_state;
u8 * saved_state;
atomic_t depend;
atomic_t disable;
struct kobject kobj;

#endif
};

struct device contains a statically allo-
cateddevice_pm object. The PM configu-
ration dependency guarantees the overhead for
the structure is nil when power management
support is not compiled in.

The kernel defines the following power states
in include/linux/pm.h :

typedef enum {
DEVICE_PM_ON,
DEVICE_PM_INT1,
DEVICE_PM_INT2,
DEVICE_PM_OFF,
DEVICE_PM_UNKNOWN,

} dev_power_t;

When a device is registered, its initial power
state is set toDEVICE_PM_UNKNOWN. The
device driver may query the device and initial-
ize the known power state using

void device_pm_init_power_state(
struct device * dev,
dev_power_t state);

Controlling a Device’s State

A device’s power state may be controlled by
the suspend() and resume() methods in
struct device_driver :

int (*suspend)(struct device * dev,
u32 state, u32 level);

int (*resume) (struct device * dev,
u32 level);

Linux Symposium 328

These methods may be initialized by the low-
level device driver, though they are typically
initialized at registration time by the bus driver
that the driver belongs to. The bus’s functions
should forward power management requests to
the bus-specific driver, modifying the seman-
tics where necessary.

This model is used to provide the easiest route
when converting to the new driver model.
However, a device driver’s explicit initializa-
tion of these methods will be honored.

The same methods are called during individual
device power management transitions and sys-
tem power management transitions.

There are two steps to suspend a device and
two steps to resume it. In order to suspend a
device, two separate calls are made to the sus-
pend() method—one to save state, and another
to power the device down. Conversely, one call
is made to the resume() method to power the
device up, and another to restore device state.

These steps are encoded:

enum {
SUSPEND_SAVE_STATE,
SUSPEND_POWER_DOWN,

};

enum {
RESUME_POWER_ON,
RESUME_RESTORE_STATE,

};

and are passed as the ‘level’ parameter to each
method.

During theSUSPEND_SAVE_STATEcall, the
driver is expected to stop all device requests
and save all relevant device context based on
the state the device is entering.

This call is made in process context, so the
driver may sleep and allocate memory to

save state. However during system suspend,
backing swap devices may have already been
powered down, so drivers should useGFP_
ATOMICwhen allocating memory.

SUSPEND_POWER_DOWNis used only to
physically power the device down. This call
has some caveats, and drivers must be aware
of them. Interrupts will be disabled when this
routine is called. However, during run-time de-
vice power management, interrupts will be re-
enabled once the call returns. Some devices
are known to cause problems once they are
powered down and interrupts reenabled—e.g.
flooding the system with interrupts. Drivers
should be careful not to service power manage-
ment requests for devices known to be buggy.

During system power management, interrupts
are disabled and remain disabled while power-
ing down all devices in the system.

The resume sequence is identical, though re-
versed, from the suspened sequence. The
RESUME_POWER_ONstage is performed first,
with interrupts disabled. The driver is expected
to power the device on. Interrupts are then en-
abled and theRESUME_RESTORE_STATEis
performed, and the driver is expected to restore
device state and free memory that was previ-
ously allocated.

A driver may use thestruct device_
pm::saved_state field to store a pointer
to device state when the device is powered
down.

Power Dependencies

Devices that are children of other devices (e.g.
devices behind a PCI bridge) depend on their
parent devices to be powered up to either pro-
vide power to them and/or provide I/O transac-
tions.

The system must respect the power dependen-

Linux Symposium 329

cies of devices and must not attempt to power
down a device which another device depends
on being on. Put another way, all children de-
vices must be powered down before their par-
ent can be powered down. Conversely, the par-
ent device must be powered up before any chil-
dren devices may be accessed.

Expressing this type of dependency is simple,
since it is easy to determine whether or not a
device has any children or not. But, there are
more interesting power dependencies that are
more difficult to express.

On a PCI Hotplug system, the hotplug con-
troller that controls power to a range of slots
may reside on the primary PCI bus. How-
ever, the slots it controls may reside behind a
PCI-PCI bridge that is a peer of the hotplug
controller. The devices in the slots depend on
the hotplug controller being on to operate, but
it is not the devices’ parent. There are sim-
ilar transversal relationships on some embed-
ded platforms in which some I/O controller re-
sides near the system root that some PCI de-
vices, several layers deep, may depend on to
communicate properly.

Both types of power dependencies are rep-
resented using the struct device_
pm::depend field. Implicit dependencies,
like parent-child relationships, are handled by
the depend count being incremented when a
child is registered with the PM core. When
that child device is powered down or removed,
its parent’s depend count is decremented. Only
when a device’s depend count is 0 may it be
powered down.

Explicit power dependencies can be imposed
on devices using

int device_pm_get(struct
device *);

void device_pm_put(struct
device *);

device_pm_get() will increment a de-
vice’s dependency count, anddevice_pm_
put() will decrement it. It is up to the driver
to properly manage the dependency counts on
device discovery, removal, and power manage-
ment requests.

Disabling Power Management

There are circumstances in which a driver must
refuse a power management request. This
is usually because the driver author does not
know the proper reinitialization sequence, or
because the user is performing an uninterrupt-
ible operation like burning a CD.

It is valid for a driver to return an error from
a suspend() method call. For example, a
driver may know a priori that it can’t handle
the request. This works to the system’s bene-
fit, since the PM core can check if any devices
have disabled power management before start-
ing a suspend transition.

To disable or enable power management, a de-
vice may call

int device_pm_disable(struct
device *);

void device_pm_enable(struct
device *);

The former increments the struct
device_pm::disable count, and the
lattr decrements it. If the count is positive,
system power management will be disabled
completely, and device power management on
that device.

These calls should be used judiciously, since
they have a global impact on system power
management.

Linux Symposium 330

3 System Power Management

System power management (SPM) is the pro-
cess of placing the entire system into a low-
power state. In a low-power state, the sys-
tem is consuming a small, but minimal, amount
of power, yet maintaining a relatively low re-
sponse latency to the user. The exact amount
of power and response latency depends on the
state the system is in.

Power States

The states a system can enter are dependent on
the underlying platform, and differ across ar-
chitectures and even generations of the same
architecture. There tend to be three states that
are found on most archtitectures that support
a form of SPM, though. The kernel explic-
itly supports these states—Standby, Suspend,
and Hibernate, and provides a mechnanism for
a platform driver (an architectural port of the
kernel) to define new states.

typedef enum {
POWER_ON = 0,
POWER_STANDBY = 0x01,
POWER_SUSPEND = 0x02,
POWER_HIBERNATE = 0x04,

} pm_system_state_t;

Standby is a low-latency power state that is
sometimes referred to as “power-on suspend.”
In this state, the system conserves power by
placing the CPU in a halt state and the devices
in the D1 state. The power savings are not sig-
nificant, but the response latency is minimal—
typically less than 1 second.

Suspend is also commonly known as “suspend-
to-RAM.” In this state, all devices are placed in
the D3 state and the entire system, except main
memory, is expected to maintain power. Mem-
ory is placed in self-refresh mode, so its con-
tents are not lost. Response latency is higher

than Standby, yet still very low—between 3-5
seconds.

Hibernate conserves the most power by turn-
ing off the entire system, after saving state to a
persistant medium, usually a disk. All devices
are powered off unconditionally. The response
latency is the highest—about 30 seconds—but
still quicker than performing a full boot se-
quence.

Most platforms support these states, though
some platforms may support other states or
have requirements that don’t match the as-
sumptions above. For example, some PPC lap-
tops support Suspend, but because of a lack
of documentation, the video devices cannot be
fully reinitialized and hence may not enter the
D3 state. The hardware will supply enough
power to devices for them to stay in the D2
state, which the drivers are capable of recov-
ering from.

Instead of cluttering the code with a lot of con-
ditional policy to determine the correct state for
devices to enter, the PM subsystem abstracts
system state information into dynamically reg-
istered objects.

struct pm_state {
struct pm_driver * drv;
pm_system_state_t sys;
pm_device_state_t dev;
struct kobject kobj;

};

The drv field is a pointer to the platform-
specific object configured to handle the power
state. The sys field is the low-level power state
that the system will enter. The dev field is the
lowest power state that devices may enter. The
kobj field is the generic object for managing an
instance’s lifetime.

The kernel defines default power state objects
representing the assumptions above:

Linux Symposium 331

struct pm_state pm_state_standby;
struct pm_state pm_state_suspend;
struct pm_state pm_state_hibernate;

Platform drivers may also define and register
additional power states that they support using:

int
pm_state_register(struct

pm_state *);
void
pm_state_unregister(struct

pm_state *);

The PM sysfs Interface

The PM infrastructure registers a top-level
subsystem with the kobject core, which pro-
vides the/sys/power/ directory in sysfs.
By default, there is one file in the directory
/sys/power/state .

Reading from this file displays the states that
are currently registered with the system; e.g.:

cat /sys/power/state
standby suspend hibernate

By writing the name of a state to this file, the
system will perform a power state transition,
which is described next.

Each power state that is registered receives
a directory in/sys/power/ , and three at-
tribute files:

tree /sys/power/suspend/
/sys/power/suspend/
|-- devices
|-- driver
‘-- system

The ‘devices’ file and the ‘system’ file describe
which power state the devices in the computer

and the state the computer itself are to enter,
respectively. The ‘driver’ file displays which
low-level platform PM driver is configured to
handle the power transition. Writing to this file
sets the driver internally.

Power Management Platform Drivers

The process of transitioning the OS into a
low-power state is largely platform-agnostic.
However, the low-level mechanism for actually
transitioning the hardware to a low-power state
is very platform specific, and even dependent
on the generation of the hardware.

On some platforms, there may be multiple
ways to enter a low-power state, presenting a
policy decision for the user to make. Note
this arises usually only in choosing whether to
enter a minimal power state during a Hiber-
nation transition, or turning the system com-
pletely off.

To cope with these variations, the PM core de-
fines a simple driver model:

struct pm_driver {
u32 states;
int (*prepare)(u32 state);
int (*save) (u32 state);
int (*sleep) (u32 state);
int (*restore)(u32 state);
int (*cleanup)(u32 state);
struct kobject kobj;

};

int
pm_driver_register(struct

pm_driver *);

void
pm_driver_unregister(struct

pm_driver *);

The states field ofstruct pm_driver is a
logical or of the states the driver supports. The
methods are platform-specific calls that the PM

Linux Symposium 332

core executes during a power state transition.
They are designed to perform the following:

prepare — Verify that the platform can enter
the requested state and perform any nec-
essary preparation for entering the state.

save — Save low-level state of the platform
and the CPU(s).

sleep — Enter the requested state.

restore — Restore low-level register state of
the platform and CPU(s).

cleanup — Perform any necessary actions to
leave the sleep state.

A platform should intialize and register a driver
on startup:

struct pm_driver acpi_pm_driver = {
.states = (POWER_STANDBY |

POWER_SUSPEND |
POWER_HIBERNATE),

.prepare = acpi_enter_sleep_state_prep,

.sleep = acpi_pm_sleep,

.cleanup = acpi_leave_sleep_state,

.kobj = { .name = "acpi" },
};

static int __init acpi_sleep_init(void) {
return pm_driver_register(

&acpi_pm_driver);
}

Each registered PM driver receives a di-
rectory in sysfs in/sys/power/ . Each
driver receives one default attribute file named
states , which displays the power states the
driver supports. This file is not writable by
userspace.

tree /sys/power/acpi/
/sys/power/acpi/
‘-- states
cat /sys/power/acpi/states
standby suspend hibernate

Platform drivers may define and export their
own attributes.

struct pm_attribute {
struct attribute attr;
ssize_t (*show)(struct pm_driver *,

char *);
ssize_t (*store)(struct pm_driver *,

const char *,
size_t);

};

int pm_attribute_create(
struct pm_driver *,
struct pm_attribute*);

void pm_attribute_remove(
struct pm_driver *,
struct pm_attribute *);

The semantics forpm_driver attributes fol-
low the same semantics as other sysfs at-
tributes. Please see the kernel sysfs documen-
tation for more information.

Power State Transitions

Transitioning the system to a low-power state
is, unfortunately, not as simple as telling the
platform to enter the requested low power state.
The file drivers/power/suspend.c
contains the entire sequence, and should be
used as reference material for the official
process. A synopsis is provided here.

The first step is to verify that the system
can enter the power state. The PM core
must have a driver that supports the requested
state, the driver must return success from its
prepare() method, and the driver core must
return success fromdevice_pm_check() .
Next, the PM core quiesces the running system
by disabling preemption and ‘freezing’ all pro-
cesses.

Next, system state is saved by calling
device_suspend() to save device state,

Linux Symposium 333

and the driver’ssave() method to save low-
level system state. If we’re entering a vari-
ant of the Hibernation state, the contents of
memory must be saved to a persistant medium.
pm_hibernate_save() is called to per-
form this, which is described in the section Hi-
bernation.

Once state is saved, the PM core disables in-
terrupts and callsdevice_power_down()
to place each device in the specified low power
state. Finally, it calls the driver’ssleep()
method to transition the system to the low-
power state.

The resume sequence has two variants, de-
pending on whether the system is returning
from a Hibernation state or not. If it is not,
the platform is responsible for returning execu-
tion to the correct place (after the return from
the driver’ssleep() method). This may be a
function of the processor, the firmware, or the
low-level platform driver.

If we’re returning from Hibernation, the sys-
tem detects it during a boot process in the
function pm_resume() . pm_resume() is
a late_initcall, which means it is called after
most subsystems and drivers have been regis-
tered and initialized, including all non-modular
PM drivers. It calls pm_hibernate_
load() , which is responsible for attempting
to read, load, and restore a saved memory im-
age. Doing this replaces the currently run-
ning system with a saved one, and execution
returns to after the call topm_hibernate_
store() .

One way or another, the PM core proceeds
to power on all devices and restore interrupts.
The driver’srestore() method is called to
restore low-level system state, anddevice_
pm_resume() is called to restore device con-
text. Finally, the driver’scleanup() method
is called, processes are ‘thawed,’ and preemp-
tion is reenabled.

A suspend transition is triggered by writ-
ing the requested state to the sysfs file
/sys/power/state . Once the complete
transition is complete, execution will return to
the process that wrote the value.

4 Hibernation

This section describes the Hibernate power
state; specifically the process the PM core uses
to save memory to a persistant medium, and
the model for implementing a low-level back-
end driver to read and write saved state from a
specific medium.

As mentioned in the previous section, Hiber-
nate is a low-power state in which system
memory state is saved to a persistant medium
before the system is powered off and restored
during the system boot sequence.

Hibernate is the only low-power state that can
be used in the absence of any platform sup-
port for power management. Instead of en-
tering a low-power state, the configured PM
driver may simply turn the system off. This
mechanism provides perfect power savings (by
not consuming any), and can be used to work
around broken power management firmware or
hardware. The PM core registers a default plat-
form driver that supplies this mechanism. It is
named ‘shutdown’ and supports the Hibernate
state only.

Hibernation can also add value to situations
which would otherwise ignore standard power
management concepts. For example, system
state can be saved and restored should a battery
(either in a laptop or a UPS) become critcally
low. Or, system state could be saved when the
kernel Oops’d or hit aBUG() . The system
could be rebooted and the state examined later.

Linux Symposium 334

Hibernation Backend Drivers

Hibernate is commonly referred to as
“suspend-to-disk,” implying that the medium
that system state is saved to is a physical disk.
This assumption does not offer the possibility
that another type of media may be used to
capture state, nor does it make the distinction
of how the state is stored on disk, since it could
theoretically be stored on a dedicated partition,
in free swap space, or in a regular file on an
arbitrary filesystem.

The PM subsystem offers the ability to config-
ure a variable medium type to save state to.

struct pm_backend {
int (*open) (void);
void (*close)(void);
int (*read_image)(void);
int (*write_image)(void);
struct kobject kobj;

};

int pm_backend_register(struct p
m_backend *);

void pm_backend_unregister(struct
pm_backend *);

The PM core provides a default backend driver
namedpmdisk that uses a dedicated partition
type to save state. The internals of pmdisk are
discussed later.

Backend drivers are registered as children of
the Hibernatepm_state object, and are rep-
resented by directories in sysfs.

They may also define and export attributes us-
ing the following interface:

struct pm_backend_attr {
struct attribute attr;
ssize_t (*show)(struct pm_backend *,

char *);

ssize_t (*store)(struct pm_backend *,

const char *,
size_t);

};

int pm_backend_attr_create(
struct pm_backend *,
struct pm_backend_attr *);

void pm_backend_attr_remove(
struct pm_backend *,
struct pm_backend_attr *);

Snapshotting Memory

The Hibernate core ‘snapshots’ system mem-
ory by indexing and copying every active page
in the system. Once a snapshot is complete, the
saved image and index is passed to the backend
driver to store persistantly.

The snapshot process has one critical require-
ment: that at least half of memory be free. This
imposes a strict limitation on the use of the cur-
rent Hibernate implementation during periods
of high memory usage. However, this design
decision simplifies the requirements of the im-
plementaion itself.

The snapshot sequence is a three-step process.
First, all of the active pages in the system are
indexed, enough new pages are allocated to
clone these pages, then each page is copied into
its clone, or “shadow.”

Active pages are detected by iterating over
each page frame number (’pfn’) in the sys-
tem and determining whether we should save it
or not. A page’s saveability is initially deter-
mined by whether or not thePageNosave bit
is set, and then whether the page is free or not.
Reserved pages may not be saveable, depend-
ing on whether they exist in the’__nosave’
data section.

Pages marked Nosave or declared
in the __nosave section (with the
’__nosavedata’ suffix) are volatile

Linux Symposium 335

data and variables internal to the Hibernate
core. They are used and modified during the
snapshot process, and are not saved.

Saveable pages are indexed in page-sized ar-
rays calledpm_chapters :

#define PG_PER_CHAPT \
(PAGE_SIZE / sizeof(pgoff_t))

struct pm_chapter {
pgoff_t c_pages[PG_PER_CHAPT];

};

pm_chapters are dynamically allocated
based on the number of saveable pages in the
system. The addresses of the allocated chapters
are stored in another page-sized array, called a
pm_volume :

#define CHAPT_PER_VOL \
(PAGE_SIZE / \
sizeof(struct pm_chapter *))

struct pm_volume {
struct pm_chapter *

v_chapters[CHAPT_PER_VOL];
};

There are two staticpm_volumes in the Hi-
bernate core—one for the memory index (pm_
mem_index), and one for the snapshot (pm_
mem_shadow). This imposes an upper limit
on the amount of memory that can be snapshot-
ted by the Hibernate core:

CHAPT_PER_VOL * PG_PER_CHAPT * PAGE_SIZE / 2

is the number of bytes that can be saved, as-
suming half of memory must be free to store
the snapshot. On a 32-bit x86 machine with
4K-sized pages, this works out to be:

1024 * 1024 * 4096 / 2
= 2,147,483,648 bytes
= 2 GB

which is more than enough, since accessing
memory above 1GB requires 4M-sized pages.

After memory has been indexed, but before
it has been copied, the contents ofpm_mem_
index andpm_mem_shadoware copied to
pm_mem_clone and pm_shadow_clone .
The latter are also statically allocated objects,
but are not declared “nosave.” The purpose of
the clones is to save the addresses of the dy-
namically allocated chapter pages so we can
free them once the saved image has been re-
stored.

At this stage, the Hibernate core calls a re-
quired architecture- specific function:

int pm_arch_hibernate(
pm_system_state_t state);

The state parameter should be set toPOWER_
HIBERNATE. This call is responsible for sav-
ing low-level register state and callingpm_
hibernate_save() , which copies each in-
dexed page inpm_mem_index to its corre-
sponding page inpm_mem_shadow.

Restoring Memory

During a resume sequence, the Hibernate
core calls the backend’sopen() method,
which is responsible for settingpm_num_
pages , which the Hibernate core will use to
pre-allocatepm_mem_index and pm_mem_
shadow .

The backend’sread_image() method is
called, which populatespm_mem_index with
the target location of each saved page, and
pm_mem_shadow, which contains the saved
pages.

The saved image will replace the memory on a
different running system. The pages that have
been allocated to store the saved image popu-
lated from the backend may conflict with pages

Linux Symposium 336

in the saved image that are to be restored. The
Hibernate backend must guarantee that none of
the pages currently pointed to bypm_mem_
shadow conflict with the pages indexed by
pm_mem_index . To do this, it loops through
each page address inpm_mem_shadowand
compares them with each page address inpm_
mem_index . If any matches are found, a new
page is allocated and the contents copied.

To replace memory, the Hibernate core calls

pm_arch_hibernate(POWER_ON);

The architecture is responsible for iterating
over the pages inpm_mem_shadow and
copying each one to its destination, as indexed
in pm_mem_index . It is also responsible for
restoring low-level register state once memory
has been replaced.

This burden is placed on the architecture so it
can implement a replacement algorithm with-
out using the stack for variable storage. The
saved memory image contains the saved stack,
while the current stack pointer register will
point to a location on the stack in the memory
being replaced. These will likely not match and
cause the system to crash very quickly.

Once the memory image is restored, the archi-
tecture must restore register context to get the
stack pointer pointing to the right place. This
is the reason that the same function is called to
both save and restore the low-level registers.

Returning from pm_arch_hibernate()
once memory has been replaced will re-
store execution to the point inhibernate_
write() wherepm_arch_hibernate()
was called, in the saving sequence. To detect
this, the Hibernate core declares:

static in_suspend __nosavedata = 0;

and sets to it one during the save path. Since
it’s not saved, it will be 0 during the re-
store path, allowing the Hibernate core to be-
have appropriately. The cloned volumes are
copied back intopm_mem_index and pm_
mem_shadow, and the dynamically allocated
pages are freed.

Backend Driver Semantics

The Hibernate core calls the backend driver’s
open() method before any Hibernate opera-
tion. It is the backend’s responsibility to ver-
ify the existence of the media and to open any
necessary communication channels to it. The
backend driver is responsible for reading image
metadata from the medium and settingpm_
num_pages to the number of saved pages if a
saved image exists. The Hibernate core will
use this value to pre-allocate storage for the
saved pages.

It may also use this opportunity to verify there
is enough free space on the device. The maxi-
mum requirement is the total amount of mem-
ory in the system, as indicated by:

num_physpages * PAGE_SIZE

This check is optional at this stage, since the
size of the saved memory image may be much
smaller than this, and may fit on a device with
less free space than the total size of memory.

When the Hibernate core is done, it will call
the backend’sclose() method. The back-
end is responsible for closing any communica-
tion channels to the storage medium and free-
ing any memory it had allocated.

After the Hibernate core has shadowed mem-
ory, it calls the backend’swrite_image()
method. It does not pass any parameters.pm_
mem_index andpm_mem_shadowmust be
used directly. The backend must saved each

Linux Symposium 337

page pointed to in each chapter ofpm_mem_
shadow . It must also save each chapter page
of pm_mem_index . The exact format in
which these are saved are up to the driver.

When restoring a memory image, after the
Hibernate core has allocated storage for
the saved memory, the backend’sread_
image() method is called.pm_mem_index
contains enough allocated chapters to store the
saved chapters andpm_mem_shadow con-
tains enough allocated chapters and pages to
store all of the saved pages. The backend must
populate all of these.

pmdisk

pmdisk is a simple hibernate backend driver.
It uses a dedicated partition with a custom for-
mat for storing system state. Internally, pmdisk
uses the bio layer to read and write pages di-
rectly to/from the disk.

A pmdisk partition may be created using a util-
ity calledpmdisk . It simply writes a pmdisk
header to a partition, which is defined as:

#define PM_HIBERNATE_SIG "PMHibernate"
#define PM_HIBERNATE_VER 1

#define PM_UNUSED_SPACE \
(PAGE_SIZE - (4 * \
sizeof(unsigned long) + 16))

struct pmdisk_header {
char h_unused[PM_UNUSED_SPACE];
unsigned long h_version;
unsigned long h_chksum;
unsigned long h_pages;
unsigned long h_chapters;
char h_sig[16];

} __attribute__((packed));

Internally, the pmdisk backend driver reads the
header from the first page of the configured
partition when itsopen() method is called.
It verifies that it is a pmdisk partition, and sets

pm_num_pages if there is an image stored on
the disk.

On aclose() call, pmdisk set theh_pages ,
h_chapters , andh_chksum fields of the
header and writes it to the first page on the disk.
Note that on a memory restore operation,pm_
num_pages will be 0, signifying the memory
image on the disk is no longer valid.

A saved memory image on a pmdisk partition
is layed out like:

0: pmdisk header
1 toNc Saved chapters ofpm_mem_index
Nc to Np Saved pages frompm_mem_shadow

On a write_image() call, pmdisk will
first initialize an internal checksum variable.It
will then write each chapter frompm_mem_
index to disk, then each page frompm_mem_
shadow to disk. As it writes each page, it
will pass it to a checksum function. The check-
sum function is simple and definitely not cryp-
tographically secure. But, it does provide an
easy verification that an image on disk is valid.

On aread_image() call, pmdisk reads each
chapter intopm_mem_index and each page
into pm_mem_shadow. As it reads each page,
it checksums them. Once all pages have been
read, it compares the current checksum with
the h_chksum field of the header. It returns
success only if they match.

The internal pmdisk exports a sysfs attribute
file named ‘dev’ which userspace must use to
tell the kernel of the correct pmdisk partition
to use. There is currently no way for pmdisk to
automatically detect any valid partitions in the
system.

The value that userspace must write todev is
a 16-bit dev_t value in hexadecimal format
containing the major/minor number pair of the
device to use. This format is not favored, but

Linux Symposium 338

is the only current method for obtaining a ref-
erence to a specific block device at the time of
writing. This interface will change in the fu-
ture.

5 Other Power Management Op-
tions

So far, a lot of talk has been dedicated to de-
scribing the internals of the new power man-
agement subsystem, but little has been given
to describe how the new infrastructure inter-
acts with current power management options.
This section describes those relationships, and
although it focuses on options specific to ia32
platforms, the relationships should be extend-
able to other platforms.

ACPI

In terms of system power management, fits
nicely into the new PM infrastructure. It be-
haves as a PM driver, and provides platform-
specific hooks to transition the system into a
low-power state. At the basic SPM level, this
is all that is required, though ACPI offers a po-
tentially much more powerful solution, since it
it exposes more intimate knowledge of the plat-
form power requirements than has ever been
available on ia32 platforms (e.g. response la-
tencies, power consumption etc.). Exploiting
this knowledge is up to the ACPI platform
driver to expose these attributes via sysfs.

ACPI offers similar potential for device power
management. Devices that appear in the
firmware’s DSDT (Differentiated System De-
scription Table) may expose a very fine-
grained level of detail about the devices’ power
requirements and capabilities.

ACPI also stress the capabilities of device Per-
formance States. A performance state is a
power state that describes a trade-off between

the capabilities of a device against the power
consumption of the device. In each perfor-
mance state that a device supports, the device is
fully running, but different functional hardware
units may be powered off to conserve power.
The driver model does not explicitly recognize
performance states, though the new PM exten-
sions to the driver model provide a framework
that could easily be extended to recognize per-
formance states.

APM

APM power management does not appear on
very many new systems, but the current Linux
installed base includes a large number of APM-
capable computers. The new PM model was
not developed with APM, or any firmware-
driven PM model, in mind. However, care was
taken to ensure that it conceptually made sense
to use such mechanisms as low-level platform
drivers for the PM model. No work has been
done, however, to convert APM to act as a PM
driver for the new model.

pm infratructure

The original PM infrastucture was developed
by Andrew Henroid and was very ground-
breaking, since nothing like it had been done
for the Linux kernel before. It exists in its en-
tirety in:

kernel/pm.c
include/linux/pm.h

The general idea is that drivers can declare and
register an object with the pm infrastructure
that is accessed during a power state transition.
The idea is very similar to what we have now,
though the registration now is implicit when
a device is registered with the system. And,
based on the implementation, we can guarantee

Linux Symposium 339

that each device is notified in proper ancestral
order, which the old model cannot do.

Because the new model is far superior the old-
style pm infrastructure, it is declared depre-
cated. All drivers that implement pm callbacks
should be converted to use the hooks provided
by the new driver model.

swsusp

swsusp is a mechanism for doing suspend-to-
disk by saving kernel state to unused swap
space. It was also a ground-breaking feature,
as it was the first true suspend-to-disk imple-
mentation for Linux. There are some ques-
tionable characteristics of swsusp that many
people have that the maintainers of swsusp
counter are frivilous concerns, and it currently
exists as an alternative to the new PM model.
However, I’ve revoked any philosophical is-
sues with swsusp. It can be, and should be
ported to be, used as a backend driver for the
generic Hibernate mechanism. The current
code base could be reduced to a fraction of its
current complexity.

6 Resources

The current power management kernel tree can
be found in the BitKeeper repository:

bk://devloper.osdl.org/
linux-2.5-power

Information about the Linux power manag-
ment infrastructure, including GNU diffs, doc-
umentation and utilities like pmdisk can be
found at

http://developer.osdl.org/

~mochel/power/

General OSDL developer resources can be
found at:

http://developer.osdl.org/

7 Acknowledgements

Many people have contributed to this docu-
ment, both explicitly and implicitly. First, Li-
nus deserves a mention for encouraging me
look at implementing ACPI suspend-to-ram as
my first kernel project. Andy Grover and
Paul Diefenbaugh of Intel for many things—
contributing ACPI to the kernel, for talking
with me, for always arguing with and motivat-
ing me internally to do things better, and for
pushing me over the edge to write the finest
OS driver model in existence. Andy Henroid
for writing the first open-source power man-
agement model and providing a great base—
despite its shortcomings—to learn and build
from. Pavel Machek for constantly providing
code and being energetic about the project. All
the swsusp people for doing it in the first place
and keeping it up, no matter how much I gripe
about it.

Linux is a trademark of Linus Torvalds. Bit-
Keeper is a trademark of BitMover, Inc.

Bringing PowerPC Book E to Linux
Challenges in porting Linux to the first PowerPC Book E processor implementation

Matthew D. Porter
MontaVista Software, Inc.

mporter@kernel.crashing.org | mporter@mvista.com

Abstract

The PowerPCBook E1 architecture introduced
the first major change to the PowerPC archi-
tecture since the originalGreen Book2 Pow-
erPC processors were introduced. Central to
the Book Earchitectural changes is the MMU
which is always in translation mode, even dur-
ing exception processing. This presented some
unique challenges for cleanly integrating the
architecture into the Linux/PPC kernel.

In addition to the base PowerPCBook Earchi-
tecture changes, the first IBM PPC440 core im-
plementation included 36-bit physical address-
ing support. Since I/O devices are mapped
above the native 32-bit address space, provid-
ing support for this feature illuminated several
limitations within the kernel resource manage-
ment and mapping system.

1 Overview of PowerPC Book E ar-
chitecture

1.1 Book E MMU

It is important to note thatBook Eis a 64-bit
processor specification that allows for a 32-bit

1Full title of specification isBook E: Enhanced Pow-
erPC Architecture.

2Full title is PowerPC Microprocessor Family: The
Programming Environments for 32-Bit Microprocessors.

implementation. Many of the register descrip-
tions in the specification are written describ-
ing 64-bit registers where appropriate. In this
paper, discussions ofBook Earchitecture de-
scribe the 32-bit variants of all registers. Cur-
rently, all announced PowerPCBook Ecom-
pliant processors are 32-bit implementations of
the specification.

In order to understandBook Earchitecture, it
is useful to follow the history of the original
PowerPC architecture. The original PowerPC
architecture was defined at a very detailed level
in theGreen Book. This architecture provides
fine details on how the MMU, exceptions, and
all possible instructions should operate. The
familiar G3 andG4 processor families are re-
cent examples of implementations of theClas-
sic PPC3 architecture.

Book Earchitecture is a result of a collabora-
tion between IBM and Motorola to produce a
PowerPC extension which lends itself to the
needs of embedded systems. One of the driving
forces behind the specification was the desire
for each silicon manufacturer to be able dif-
ferentiate their products. Due to this require-
ment, the specification falls short of providing
enough detail to ensure that system software
can be shared among Book E compliant pro-
cessors.

3An affectionate name bestowed upon all processors
that conform to theGreen Bookspecification.

Linux Symposium 341

With the bad news out of the way, it can be said
that all Book E processors share some com-
mon architecture features. InBook E, fore-
most is the requirement that MMU translation
is always enabled. This is in sharp contrast to
the Classic PPCarchitecture which uses the
more traditional approach of powering up in
real mode and disabling the MMU upon taking
an exception.

Book E, on the other hand, powers up with
a TLB entry active at the system reset vec-
tor. This insures that the Initial Program Load
(IPL) code can execute to the point of load-
ing additional TLB entries for system software
start up.Book Earchitecture also defines sev-
eral standard page sizes from 1KB through
1TB. In addition,Book Ecalls for the existence
of two unique address spaces, AS0 and AS1.
AS0 and AS1 are intended to facilitate the em-
ulation ofClassic PPCreal mode on aBook E
processor. This property can best be described
by comparing theClassic PPCMMU transla-
tion mechanism to the manner in whichBook
E processors switch address spaces.

A Classic PPC processor has Instruction
Translation (IR) and Data Translation (DR)
bits in its Machine State Register (MSR).
These bits are used to enable or disable MMU
translation. ABook Eprocessor has the same
bits in the MSR but they are called Instruc-
tion Space (IS) and Data Space (DS). The IS
and DS bits are used a little differently since
they are used to control the current 4GB virtual
address space that the processor is executing
within. BothClassic PPCandBook Eproces-
sors set these bits to zero when an exception
is taken. On aClassic PPC, this disables the
MMU for exception processing. On aBook E
processor this switches to AS0. If the kernel
and user space are run in the context of AS1,
then TLB entries for AS0 can be used to emu-
lateClassic PPCreal mode operation.

1.2 Book E exception vectors

The Book E specification allows for a large
number of exception vectors to be imple-
mented. Sixteen standard exceptions are listed
and space is reserved for an additional 48 im-
plementation dependent exceptions.

The Book Eexception model differs from the
Classic PPCmodel in that the exception vec-
tors are not at fixed memory offsets.Classic
PPC exception vectors are each allocated 256
bytes. Using a bit in the MSR, the vectors
can be located at the top or bottom of the PPC
physical memory map.

Book E processors have an Interrupt Vector
Prefix Register (IVPR) and Interrupt Vector
Offset Registers (IVORs) to control the loca-
tion of exception vectors in the system. The
IVPR is used to set the base address of the ex-
ception vectors. Each IVORn register is used
to set the respective offset from the IVPR at
which the exception vector is located.

2 PPC440GP Book E processor

The first PowerPCBook E processor imple-
mentation was the IBM PPC440GP. This pro-
cessor’s PPC440 core was the next evolution-
ary step from the PPC405 cores that were a
cross between aClassic PPCand aBook E
PPC design.

The PPC440 core has a 64 entry unified Trans-
lation Lookaside Buffer (TLB) as its major im-
plementation specific MMU feature. This TLB
design relies on software to implement any de-
sired TLB entry locking, determine appropriate
entries for replacement, and to perform page
table walk and load TLB entries. This ap-
proach is very flexible, but can be performance
limiting when compared to processors that pro-
vide hardware table walk, Pseudo Least Re-
cently Used (PLRU) replacement algorithms,

Linux Symposium 342

and TLB entry locking mechanisms.

The PPC440 core also implements a subset of
the allowedBook Epage sizes. Implemented
sizes range from 1KB to 256MB, but exclude
the 4MB and 64MB page sizes.

3 Existing Linux/PPC kernel ports

Linux/PPC already has a number of sub-
architecture families which require their own
head.S implementation. head.S is used
by Classic PPCprocessors,head_8xx.S is
used by the Motorola MPC8xx family, and
head_4xx.S is used by the IBM PPC40x
family of processors. In order to encapsu-
late the unique features of aBook Eproces-
sor, it was necessary to create an additional
head_440.S .

Traditionally, PowerPC has required fixed ex-
ception vector locations, so all ports have fol-
lowed the basicClassic PPChead.S struc-
ture of a small amount of code at the beginning
of the kernel image which branches over the
exception vector code that is resident at fixed
vector locations. This is true even on PPC405’s
head_4xx.S even though the PPC405 offers
dynamic exception vectors in the same man-
ner as aBook Ecompliant processor. With the
standard Linux/PPC linker script,head.S is
guaranteed to be at the start of the kernel im-
age which must be loaded at the base of system
memory.

4 Initial Book E kernel port

4.1 Overview

The first Book Eprocessor kernel port in the
community was done on the Linux/PPC 2.4 de-
velopment tree4. The PPC440GP was the first

4Information on Linux/PPC ker-
nel development trees can be found at

publicly availableBook Ecompliant processor
available to run Linux.

4.2 MMU handling approaches

Several approaches were considered for imple-
menting the basic handling of exception pro-
cessing within the constraints of aBook E
MMU. With the MMU always being enabled,
it is not possible for the processor to access
instructions and data using a physical address
during exception processing. At a minimum, it
is necessary to have a TLB entry covering the
PPC exception vectors to ensure that the first
instruction of a given exception implementa-
tion can be fetched.

One implementation path is to create TLB en-
tries that cover all of kernel low memory within
the exception processing address space (AS0).
These entries would be locked so they could
not be invalidated or replaced by kernel or user
space TLB entries. This is the simplest ap-
proach for the 2.4 kernel where page tables
are limited to kernel low memory. This al-
lows task structs and page tables to be allo-
cated via the normal__get_free_page()
or __get_free_pages() calls using the
GFP_KERNELflag. Unfortunately, this ap-
proach has some drawbacks when applied to
a PPC440 System on a Chip (SoC) implemen-
tation.

The PPC440 core provides large TLB sizes
of 1MB, 16MB, and 256MB. A simple solu-
tion would be to cover all of kernel low mem-
ory with locked 256MB TLB entries. By de-
fault, Linux/PPC restricts maximum kernel low
memory to 768MB. This would only require a
maximum of 3 entries in the TLB to be con-
sumed on a permanent basis. Unfortunately,
this approach will not work since the behav-
ior of the system is undefined in the event that
system memory is not a multiple of 256MB. In

http://penguinppc.org/dev/kernel.shtml

Linux Symposium 343

practice, this generates speculative cache line
fetches past the end of system memory which
result in a Machine Check exception.

The next logical solution would be to use a
combination of locked large TLB entries to
cover kernel low memory. In this approach, we
quickly run into a situation where the locked
TLB entries consume too much of the 64 entry
TLB. Consider a system with 192MB of sys-
tem RAM. In this system, it would be neces-
sary to lock 12 16MB TLB entries permanently
to cover all of kernel low memory. This ap-
proach would leave only 52 TLB entries avail-
able for dynamic replacement. Artificially lim-
iting the already small TLB would put further
pressure on the TLB and most likely adversely
affect performance.

4.3 Linux 2.4 MMU Solution

A different approach is necessary because there
does not seem to be a good method to lock all
of kernel low memory into the PPC440 TLB.
One possible approach is to limit the area in
which kernel data structures are allocating by
creating a special pool of memory. Implement-
ing the memory pool approach involves the fol-
lowing steps:

1. Force all kernel construct allocation to oc-
cur within a given memory region.

2. Ensure that the given memory region is
covered by a locked TLB within excep-
tion space.

The system is already required to maintain one
locked TLB entry to ensure that instructions
can be fetched from the exception vectors with-
out resulting in a TLB miss. Therefore, the ker-
nel construct memory region can simply be the
pool of free memory that follows the kernel at
the base of system memory. The locked TLB
entry is then set to a size of 16MB to ensure

that it covers both the kernel (including excep-
tion vectors) and some additional free memory.
A TLB entry size of 16MB was chosen because
it is the smallest amount of RAM one could
conceivably find on a PPC440 system.

It was then necessary to create a facility to con-
trol allocation from a given memory region.
The easiest way to force allocation of mem-
ory from a specific address range in Linux is
to make use of theGFP_DMAflag to the zone
allocator calls. The allocation of task structs,
pgds, and ptes was modified to result in an al-
location from the DMA zone. Figure 1 shows
a code fragment demonstrating how this is im-
plemented for PTE allocation.

The PPC memory management initialization
was then modified to ensure that 16MB of
memory is placed intoZONE_DMAand the
remainder ends up inZONE_NORMALor
ZONE_HIGHMEMas appropriate.

With this structure, all kernel stacks and page
tables are allocated withinZONE_DMA. The
single locked TLB entry for the first 16MB of
system memory ensures that no nested excep-
tions can occur while processing an exception.

One complication that resulted from using the
ZONE_DMAzone in this manner is that there
can be many early consumers of low memory
in ZONE_DMA. It was necessary to place an ad-
ditional kludge in the early Linux/PPC mem-
ory management initialization to ensure that
some amount of the 16MB ofZONE_DMAre-
gion would be free after the bootmem allocator
was no longer in control of system memory.
This was encountered when a run with 1GB
of system RAM caused thepage structs
to nearly consume all of theZONE_DMAre-
gion. This, of course, is a fatal condition due to
the allocation of all task structs and page tables
from ZONE_DMA.

Linux Symposium 344

static inline pte_t * pte_alloc_one(struct mm_struct *mm, unsigned long address)
{

pte_t *pte;
extern int mem_init_done;
extern void *early_get_page(void);

if (mem_init_done)
#ifndef CONFIG_440

pte = (pte_t *) __get_free_page(GFP_KERNEL);
#else

/* Allocate from GFP_DMA to get entry in pinned TLB region */
pte = (pte_t *) __get_free_page(GFP_DMA);

#endif
else

pte = (pte_t *) early_get_page();
}

Figure 1: pte_alloc_one() implementation

4.4 Virtual exception processing

One minor feature of the PPC440 port is the
use of dynamic exception vectors. As allowed
by theBook Earchitecture, exception vectors
are placed in head_440.S using the following
macro:

#define START_EXCEPTION(label) \
.align 5; \

label:

This is used to align each exception vector
entry to a 32 byte boundary as required by
the PPC440 core. The following code from
head_440.S shows how the macro is used at the
beginning of an exception handler:

/* Data TLB Error Interrupt */
START_EXCEPTION(DataTLBError)
mtspr SPRG0, r20

This code fragment illustrates how each excep-
tion vector is configured based on its link loca-
tion:

SET_IVOR(12, WatchdogTimer);
SET_IVOR(13, DataTLBError);
SET_IVOR(14, InstructionTLBError);

The SET_IVOR macro moves the label address
offset into aBook EIVOR. The first parameter
specifies which IVOR is the target of the move.
Once the offsets are configured and the IVPR
is configured with the exception base prefix ad-
dress, exceptions will then be routed to the link
time specified vectors.

An interesting thing to note is that the Linux
2.4Book Ekernel actually performs exception
processing at the kernel virtual addresses. I.e.,
the exception vectors are located at an offset
from 0xc0000000.

5 New Book E kernel port

5.1 Overview

Working to get theBook Ekernel support into
the Linux/PPC 2.5 development tree resulted in
some discussions regarding the long-term via-
bility of the ZONE_DMAapproach used in the
2.4 port. One of the major issues has been
that the 2.5 kernel moved the allocation of task
structs to generic slab-based kernel code. This
move broke the currentBook Ekernel model
since it is no longer possible to force alloca-
tion of task structs to occur withinZONE_DMA.
Another important reason for considering a

Linux Symposium 345

change is that the current method is somewhat
of a hack. That is,ZONE_DMAis used in a
manner in which it was not intended.

5.2 In-exception TLB misses

The first method investigated to eliminate
ZONE_DMAusage simply allows nested excep-
tions to be handled during exception process-
ing. Exception processing code can be de-
fined as the code path from when an excep-
tion vector is entered until the processor returns
to kernel/user processing. On a lightweight
TLB miss, this can happen immediately after
a TLB entry is loaded. On heavyweight ex-
ceptions, this may occur whentransfer_
to_handler jumps to a heavyweight han-
dler routine in kernel mode.

Upon examining the exception processing
code, it becomes apparent that the only stan-
dard exception that can occur is the DataTL-
BError exception. This is because exception
vector code must be contained within a locked
TLB entry, so no InstructionTLBError condi-
tions can occur. Further, early exception pro-
cessing accesses a number of kernel data con-
structs. These include kernel stacks, pgds, and
ptes. By writing a non-destructive DataTLBEr-
ror handler it is possible to safely process data
TLB misses within exception processing code.

In order to make the DataTLBError handler
safe, it is necessary not to touch any of the
PowerPC Special Purpose General Registers
(SPRGs) when a DataTLBError exception is
taken. Instead, a tiny stack is created within
the memory region covered by the locked TLB
entry. This stack is loaded with the context
of any register that need to be used during
DataTLBError processing. The following code
fragment shows the conventional DataTLBEr-
ror register save mechanism:

/* Data TLB Error Interrupt */
START_EXCEPTION(DataTLBError)
mtspr SPRG0, r10
mtspr SPRG1, r11
mtspr SPRG4W, r12
mtspr SPRG5W, r13
mtspr SPRG6W, r14
mfcr r11
mtspr SPRG7W, r11
mfspr r10, SPRN_DEAR

In the non-destructive version of the DataTL-
BError, the code looks like following:

START_EXCEPTION(DataTLBError)
stw r10,tlb_r10@l(0);
stw r11,tlb_r11@l(0);
stw r12,tlb_r12@l(0);
stw r13,tlb_r13@l(0);
stw r14,tlb_r14@l(0);
mfcr r11
stw r11,tlb_cr@l(0);
mfspr r11, SPRN_MMUCR
stw r11,tlb_mmucr@l(0);
mfspr r10, SPRN_DEAR

Here, thetlb_* locations within the locked
TLB region are used to save register state
rather than the SPRGs.

If we were to continue to perform exception
processing from native kernel virtual address,
we would have a problem. Thetlb_* loca-
tions allocated withinhead_44x.S would be
at some offset from 0xc0000000. A store to
any address with a non-zero most significant
16 bits would require that an intermediate reg-
ister be used to load the most significant bits of
the address.

This issue made it necessary to make the
switch to emulation ofClassic PPCreal mode.
This is accomplished by placing the dynamic
exception vectors at a virtual address offset
from address zero and providing a locked TLB
entry covering this address space. By doing so
it became possible to access exception stack lo-
cations using zero indexed loads and stores.

In the DataTLBError handler, each access to
kernel data which may not have a TLB entry is

Linux Symposium 346

protected. Atlbsx. instruction is used to de-
termine if there is already a TLB entry for the
address that is to be accessed. If a TLB entry
exists, the access is made. However, if the TLB
entry does not exist, a TLB entry is created be-
fore accessing the resource. This method is il-
lustrated in the following code fragment based
on thelinuxppc-2.5 head_44x.S :

/* Stack TLB entry present? */
3: mfspr r12,SPRG3

tlbsx. r13,0,r12
beq 4f
/* Load stack TLB entry */
TLB_LOAD;

/* Get current thread’s pgd */
4: lwz r12,PGDIR(r12)

Using this strategy, the DataTLBError handler
gains the ability resolve any possible TLB miss
exceptions before they can occur. Once it has
performed the normal software page table walk
and has loaded the faulting TLB entry, it can
return to the point of the exception. Of course,
that exception may now be either from a ker-
nel/user context or from an exception process-
ing context. A DataTLBError can now be eas-
ily handled from any context.

5.3 Keep It Simple Stupid

Sometimes one has to travel a long road to
eventually come back to the simple solution.
This project has been one of those cases. An
implementation of the in-exception tlb miss
method showed that the complexity of the TLB
handling code had gone up by an order of mag-
nitude. It is desirable (for maintenance and
quality reasons) to keep the TLB handling code
as simple as possible.

The KISS approach pins all of kernel low
memory with 256MB TLB entries in AS0. The
number of TLB entries is determined from the
discovered kernel low memory size. A high

water mark value is used to mark the highest
TLB slot that may be used when creating TLB
entries in AS1 for the kernel and user space.
The remaining TLB slots are consumed by the
pinned TLB entries.

This approach was previously thrown out due
to the occurrence of speculative data cache
fetches that would result in a fatal machine
check exception. This situation occurs when
the system memory is not aligned on a 256MB
boundary. In these cases, the TLB entries cover
unimplemented address space. The data cache
controller will speculatively fetch past the end
of system memory if any access is performed
on the last cache line of the last system mem-
ory page frame.

The trick to make this approach stable is to
simply reserve the last page frame of system
memory so it may not be allocated by the ker-
nel or user space. This could be done via the
bootmem allocator, but in order to accomplish
it during early MMU initialization it is neces-
sary to utilize the PPC specificmem_pieces
allocation API. Using this trick allows for a
simple (and maintainable) implementation of
PPC440 tlb handling.

5.4 Optimizations

One clear enhancement to the low-level TLB
handling mechanism is to support large page
sizes for kernel low memory. This support is
already implemented5 for the PPC405 family
of processors that implement a subset of the
Book E page sizes. Enabling the TLB miss
handlers to load large TLB entries for kernel
low memory guarantees a lighter volume of
exceptions taken from accesses of kernel low
memory.

Although this is a common TLB handling op-
timization in the kernel, a minor change to

5In the linuxppc-2.5 development tree

Linux Symposium 347

the KISS approach could eliminate the need to
provide large TLB replacement for kernel low
memory. The change is to simply modify the
KISS approach to run completely from AS0.
AS1 would not longer be used for user/kernel
operation since all code would run from the
AS0 context. This yields the same perfor-
mance gain by reducing TLB pressure as the
large TLB replacement optimization. How-
ever, this variant leverages the TLB entries that
are already pinned for exception processing.

6 36-bit I/O support

6.1 Overview of large physical address support

The PPC440GP processor implementation
supports 36-bit physical addressing on its sys-
tem bus. 36-bit physical addressing has already
been supported on other processors with a na-
tive 32-bit MMU as found in IA32 PAE imple-
mentations. However, the PPC440GP imple-
ments a 36-bit memory map with I/O devices
above the first 4GB of physical memory.

The basic infrastructure by which large physi-
cal addresses are supported is similar to other
architectures. In the case of PPC440GP, we de-
fine a pte to be anunsigned long long
type. In order to simplify the code, we define
our page table structure as the usual two level
layout, but with an 8KB pgd. Rather than allo-
cating a single 4KB page for a pgd, we allocate
two pages to meet this requirement.

In order to share some code between large
physical address and normal physical address
PPC systems, a new type is introduced:

#ifndef CONFIG_440
#include <asm-generic/mmu.h>
#else
typedef unsigned long long phys_addr_t;
extern phys_addr_t
fixup_bigphys_addr(phys_addr_t, phys_addr_t);
#endif

This typedef allows low-level PPC memory
management routines to handle both large and
normal physical addresses without creating a
separate set of calls. On a PPC440-based core
it is a 64-bit type, yet it remains a 32-bit type
on all normal physical address systems.

6.2 Large physical address I/O kludge

The current solution for managing devices
above 4GB is somewhat of a “necessary
kludge.” In a dumb bit of luck, the PPC440GP
memory map was laid out in such a way that
made it easy to perform a simple translation of
a 32-bit physical address (or Linux resource)
into a 36-bit physical address suitable for con-
sumption by the PPC440 MMU.

All PPC440GP on-chip I/O devices and PCI
address spaces were neatly laid out so that their
least significant 32-bits of physical address did
not overlap.

A PPC440 specificioremap() call is created
to allow a 32-bit resource to be mapped into
virtual address space. Figure 2 illustrates the
ioremap() implementation.

This ioremap() implementation works by
calling a translation function to convert a
32-bit resource into a 64-bit physical ad-
dress.fixup_bigphys_addr() compares
the 32-bit resource value to several PPC440GP
memory map ranges. When it matches one dis-
tinct range, it concatenates the most significant
32-bits of the intended address range. This
results in a valid PPC440GP 64-bit physical
address that can then be passed to the local
ioremap64() routine to create the virtual
mapping .

This method works fine for maintaining com-
patibility with a large amount of generic PCI
device drivers. However, the approach quickly
falls apart when a driver implementsmmap() .

Linux Symposium 348

void *
ioremap(unsigned long addr, unsigned long size)
{

phys_addr_t addr64 = fixup_bigphys_addr(addr, size);

return ioremap64(addr64, size);
}

Figure 2: PPC440GPioremap() implementation

The core of most drivermmap() implemen-
tations is a call toremap_page_range() .
This routine is prototyped as follows:

int remap_page_range(unsigned long from,
unsigned long to,
unsigned long size,
pgprot_t prot);

The to parameter is the physical address of
the memory region that is to be mapped. The
current implementation assumes that a physi-
cal address size is always equal to the native
word size of the processor. This is obviously
now a bad assumption for large physical ad-
dress systems because it is not possible to pass
the required 64-bit physical address.

Figure 3 shows the implementation of
remap_page_range() for the mmap
compatibility kludge6.

The physical address parameter is now passed
as a phys_addr_t . On large physical
address platforms, thefixup_bigphys_
addr() call is implemented to convert a 32-
bit value (normally obtained from a 32-bit re-
source) into a platform specific 64-bit physi-
cal address. Theremap_pmd_range() and
remap_pte_range() calls likewise have
their physical address parameters passed using
aphys_addr_t .

This implementation allows device drivers im-
plementing mmap() using remap_page_

6Patches for this support can be found at
ftp://source.mvista.com/pub/linuxppc/

range() to run unchanged on a large phys-
ical address system. Unfortunately, this is not
a complete solution to the problem.

The fixup_bigphys_addr() routine
cannot necessarily be implemented for all
possible large physical address space memory
maps. Some systems will require discrete
access to the full 36-bit or larger physical
address space. In these cases, there is a need
to allow themmap() system call to handle a
64-bit value on a 32-bit platform.

6.3 Proper large physical address I/O support

One approach to resolving this issue is to
change the parameters ofremap_page_
range() and friends as was done in the
mmap compatibility kludge. The physical ad-
dress to be mapped would then be manipulated
in aphys_addr_t . On systems with a native
word sizephys_addr_t there is no effect.
The important piece of this approach is that
all callers ofremap_page_range() would
need to do any manipulation of physical ad-
dresses using aphys_addr_t variable to en-
sure portability.

In the specific case of afops->mmap imple-
mentation, a driver must now be aware that a
vma->pgoff can contain an address that is
greater than the native word size. In any case,
the vma->pgoff value would be shifted by
PAGE_OFFSETin order to yield a system spe-
cific physical address in aphys_addr_t .

Linux Symposium 349

int
remap_page_range(unsigned long from, phys_addr_t phys_addr, unsigned long size, pgprot_t prot)
{

.

.

.
phys_addr = fixup_bigphys_addr(phys_addr, size);
phys_addr -= from;
.
.
.

}

Figure 3: PPC440GPremap_page_range() implementation

Once we allow for 64-bit physical address
mapping on 32-bit systems, it becomes nec-
essary to expand the resource subsystem to
match. In order for standard PCI drivers to re-
main portable across standard and large phys-
ical address systems, it is necessary to ensure
that a resource can represent a 64-bit physi-
cal address on a large physical address sys-
tem. Building on the approach of usingphys_
addr_t to abstract the native system physical
address size, this can now be the native storage
type for resource fields. In doing so, it is also
important to extend the concept to user space to
ensure that common applications like XFree86
can parse 64-bit resources on a 32-bit platform
and cleanlymmap() a memory region.

7 Conclusion

The Linux kernel is remarkably flexible in han-
dling ports to new processors. Despite sig-
nificant architectural changes in the PowerPC
Book Especification, it was possible to enable
the PPC440GP processor within the existing
Linux abstraction layer in a reasonable amount
of time. As with all Linux projects, this one is
still very much a work-in-progress. Develop-
ment in the Linux 2.5 tree offers an opportunity
to explore some new routes for better PowerPC
Book Ekernel support.

During this project, I have had the opportunity

to learn which features of aBook Eprocessor
would be most useful in supporting a Linux
kernel port. Clearly, the most important feature
in this respect is an abundance of TLB entries.
The PPC440 core’s 64 entry TLB is the sin-
gle most limiting factor for producing a simple
Book Eport. If the PPC440 core had 128 or
256 TLB entries, the work on porting Linux to
the processor would have been far easier.

Although these new processors are now run-
ning the Linux kernel, this support does not
yet address 100% of this platform’s new ar-
chitectural features. As with many areas in
the Linux kernel, support for large physical ad-
dress mapping needs to evolve with emerging
processor technologies. Without a doubt, the
increased number of processors implementing
large physical address I/O functionality help to
make the Linux kernel community aware of the
kernel requirements inherent in this technol-
ogy.

8 Trademarks

IBM is a registered trademark of International Busi-
ness Machines Corporation.

Linux is a registered trademark of Linus Torvalds.

MontaVista is a registered trademark of MontaVista
Software, Inc.

Linux Symposium 350

Motorola is a registered trademark of Motorola In-
corporated.

PowerPC is a registered trademark of International
Business Machines Corporation. Other company,
product, or service names may be trademarks or
service marks of others.

Asynchronous I/O Support in Linux 2.5

Suparna Bhattacharya
Steven Pratt

Badari Pulavarty
Janet Morgan

IBM Linux Technology Center
suparna@in.ibm.com, slpratt@us.ibm.com,

pbadari@us.ibm.com, janetmor@us.ibm.com

Abstract

This paper describes the Asynchronous I/O
(AIO) support in the Linux® 2.5 kernel, addi-
tional functionality available as patchsets, and
plans for further improvements. More specifi-
cally, the following topics are treated in some
depth:

• Asynchronous filesystem I/O

• Asynchronous direct I/O

• Asynchronous vector I/O

As of Linux 2.5, AIO falls into the common
mainline path underlying all I/O operations,
whether synchronous or asynchronous. The
implications of this, and other significant ways
in which the design for AIO in 2.5 differs from
the patches that existed for 2.4, are explored as
part of the discussion.

1 Introduction

All modern operating systems provide a vari-
ety of I/O capabilities, each characterized by
their particular features and performance. One

such capability is Asynchronous I/O, an impor-
tant component of Enterprise Systems which
allows applications to overlap processing with
I/O operations for improved utilization of CPU
and devices.

AIO can be used to improve application per-
formance and connection management for web
servers, proxy servers, databases, I/O intensive
applications and various others.

Some of the capabilities and features provided
by AIO are:

• The ability to submit multiple I/O requests
with a single system call.

• The ability to submit an I/O request with-
out waiting for its completion and to over-
lap the request with other processing.

• Optimization of disk activity by the kernel
through combining or reordering the indi-
vidual requests of a batched I/O.

• Better CPU utilization and system
throughput by eliminating extra threads
and reducing context switches.

Linux Symposium 352

2 Design principles

An AIO implementation can be characterized
by the set of design principles on which it is
based. This section examines AIO support in
the Linux kernel in light of a few key aspects
and design alternatives.

2.1 External interface design alternatives

There are at least two external interface design
alternatives:

• A design that exposes essentially the same
interfaces for synchronous and asyn-
chronous operations with options to dis-
tinguish between mode of invocation [2].

• A design that defines a unique set of inter-
faces for asynchronous operations in sup-
port of AIO-specific requirements such
as batch submission of different request
types [4].

The AIO interface for Linux implements the
second type of external interface design.

2.2 Internal design alternatives

There are several key features and possible ap-
proaches for the internal design of an AIO im-
plementation:

• System design:

– Implement the entire path of the op-
eration as fully asynchronous from
the top down. Any synchronous I/O
is just a trivial wrapper for perform-
ing asynchronous I/O and waiting
for its completion [2].

– Synchronous and asynchronous
paths can be separate, to an extent,

and can be tuned for different
performance characteristics (for
example, minimal latency versus
maximal throughput) [10].

• Approaches for providing asynchrony:

– Offload the entire I/O to thread
pools (these may be either user-level
threads, as in glibc, or kernel worker
threads).

– Use a hybrid approach where initi-
ation of I/O occurs asynchronously
and notification of completion oc-
curs synchronously using a pool of
waiting threads ([3] and [13]).

– Implement a true asynchronous state
machine for every operation [10].

• Mechanisms for handling user-context de-
pendencies:

– Convert buffers or other such state
into a context-independent form at
I/O submission (e.g., by mapping
down user-pages) [10].

– Maintain dedicated per-address
space service threads to execute
context-dependent steps in the
caller’s context [3].

The internal design of the AIO support avail-
able for Linux 2.4 and the support integrated
into Linux 2.5 differ on the above key features.
Those differences will be discussed in some
detail in later sections.

Other design aspects and issues that are rele-
vant to AIO but which are outside the main fo-
cus of this paper include ([8] describes some of
these issues in detail):

• The sequencing of operations and
steps within an operation that supports

Linux Symposium 353

POSIX_SYNCHRONIZED_IO and
POSIX_PRIORITIZED_IO require-
ments ([5]), as well as the extent of
flexibility to order or parallelize re-
quests to maximize throughput within
reasonable latency bounds.

• AIO throttling: deciding on the queue
depths and returning an error (-EAGAIN)
when the depth is exceeded, or if re-
sources are unavailable to complete the re-
quest (rather than forcing the process to
sleep).

• Completion notification, queuing, and
wakeup policies including the design of a
flexible completion notification API and
optimization considerations like cache-
warmth, latency and batching. In the
Linux AIO implementation, every AIO
request is associated with a completion
queue. One or more application threads
explicitly wait on this completion queue
for completion event(s), where flexible
grouping is determined at the time of
I/O submission. An exclusive LIFO
wakeup policy is used among multiple
such threads, and a wakeup is issued
whenever I/O completes.

• Support for I/O cancellation.

• User/kernel interface compatibility (per
POSIX).

2.3 2.4 Design

The key characteristics of the AIO implemen-
tation for the Linux 2.4 kernel are described in
[8] and available as patches at [10]. The de-
sign:

• Implements asynchronous I/O paths and
interfaces separately, leaving existing syn-
chronous I/O paths unchanged. Reuse of

existing, underlying asynchronous code is
done where possible, for example, raw
I/O.

• Implements an asynchronous state ma-
chine for all operations. Processing oc-
curs in a series of non-blocking steps
driven by asynchronous waitqueue call-
backs. Each stage of processing com-
pletes with the queueing of deferred work
using "work-to-do" primitives. Sufficient
state is saved to proceed with the next
step, which is run in the context of a ker-
nel thread.

• Maps down user pages during I/O submis-
sion. Modifies the logic to transfer data
to/from mapped user pages in order to re-
move the user-context dependency for the
copy to/from userspace buffers.

The advantages of these choices are:

• Synchronous I/O performance is unaf-
fected by asynchronous I/O logic, which
allows AIO to be implemented and tuned
in a way that is optimum for asynchronous
I/O patterns.

• The work-to-do primitive permits state to
be carried forward to enable continua-
tion from exactly where processing left off
when a blocking point was encountered.

• The need for additional threads to com-
plete the I/O transfer in the caller’s con-
text is avoided.

There are, however, some disadvantages to the
AIO implementation (patchset) for Linux 2.4:

• The duplication of logic between syn-
chronous and asynchronous paths makes
the code difficult to maintain.

Linux Symposium 354

• The asynchronous state machine is a com-
plex model and therefore more prone to
errors and races that can be hard to debug.

• The implementation can lead to inefficient
utilization of TLB mappings, especially
for small buffers. It also forces the pin-
ning down of all pages involved in the en-
tire I/O request.

These problems motivated a new approach for
the implementation of AIO in the Linux 2.5
kernel.

2.4 2.5 Design

Although the AIO design for Linux 2.5 uses
most of the core infrastructure from the 2.4 de-
sign, the 2.5 design is built on a very different
model:

• Asynchronous I/O has been made a first-
class citizen of the kernel. Now AIO
paths underlie regular synchronous I/O in-
terfaces instead of just being grafted from
the outside.

• A retry-based model replaces the ear-
lier work-to-do state-machine implemen-
tation. Retries are triggered through asyn-
chronous notification as each step in the
process completes. However in some
cases, such as direct I/O, asynchronous
completion notification occurs directly
from interrupt context without requiring
any retries.

• User-context dependencies are handled by
making worker threads take on (i.e., tem-
porarily switch to) the caller’s address
space when executing retries.

In a retry-based model, an operation executes
by running through a series of iterations. Each

iteration makes as much progress as possible
in a non-blocking manner and returns. The
model assumes that a restart of the operation
from where it left off will occur at the next
opportunity. To ensure that another opportu-
nity indeed arises, each iteration initiates steps
towards progress without waiting. The itera-
tion then sets up to be notified when enough
progress has been made and it is worth trying
the next iteration. This cycle is repeated until
the entire operation is finished.

The implications and issues associated with the
retry-based model are:

• Tuning for the needs of both synchronous
and asynchronous I/O can be difficult
because of the issues of latency ver-
sus throughput. Performance studies are
needed to understand whether AIO over-
head causes a degradation in synchronous
I/O performance. It is expected that the
characteristics are better when the under-
lying operation is already inherently asyn-
chronous or rewritten to an asynchronous
form, rather than just modified in order to
be retried.

• Retries pass through some initial pro-
cessing steps each time. These process-
ing steps involve overhead. Saving state
across retries can help reduce some of the
redundant regeneration, albeit with some
loss of generality.

• Switching address spaces in the retry
thread can be costly. The impact would
probably be experienced to a greater ex-
tent when multiple AIO processes are run-
ning. Performance studies are needed to
determine if this is a problem.

Note that I/O cancellation is easier to handle in
a retry-based model; any future retries can sim-
ply be disabled if the I/O has been cancelled.

Linux Symposium 355

Retries are driven by AIO workqueues. If a
retry does not complete in a very short time, it
can delay other AIO operations that are under-
way in the system. Therefore, tuning the AIO
workqueues and the degree of asynchrony of
retry instances each have a bearing on overall
system performance.

3 AIO support for filesystem I/O

The Linux VFS implementation, especially as
of the 2.5 kernel, is well-structured for retry-
based I/O. The VFS is already capable of pro-
cessing and continuing some parts of an I/O
operation outside the user’s context (e.g., for
readahead, deferred writebacks, syncing of file
data and delayed block allocation). The im-
plementation even maintains certain state in
the inode or address space to enable deferred
background processing of writeouts. This abil-
ity to maintain state makes the retry model
a natural choice for implementing filesystem
AIO.

Linux 2.5 is currently without real support
for regular (buffered) filesystem AIO. While
ext2, JFS and NFS define theiraio_read
and aio_write methods to default to
generic_file_aio_read/write ,
these routines show fully synchronous behav-
ior unless the file is opened withO_DIRECT .
This means that anio_submit can block for
regular AIO read/write operations while the
application assumes it is doing asynchronous
I/O.

Our implementation of the retry model for
filesystem AIO, available as a patchset from
[6], involved identifying and focusing on the
most significant blocking points in an opera-
tion. This was followed by observations from
initial experimentation and profiling results,
and the conversion of those blocking points to
retry exit points.

The implementation we chose starts retries at a
very high level. Retries are driven directly by
the AIO infrastructure and kicked off via asyn-
chronous waitqueue functions. In synchronous
I/O context, the default waitqueue entries are
synchronous and therefore do not cause an exit
at a retry point.

One of the goals of our implementation for
filesystem AIO was to minimize changes to ex-
isting synchronous I/O paths. The intent was
to achieve a reasonable level of asynchrony in
a way that could then be further optimized and
tuned for workloads of relevance.

3.1 Design decisions

• Level at which retries are triggered:

The high-level AIO code retries filesys-
tem read/write operations, passing in the
remaining parts of the buffer to be read or
written with each retry.

• How and when a retry is triggered:

Asynchronous waitqueue functions are
used instead of blocking waits to trigger
a retry (to "kick" a dormantiocb into ac-
tion) when the operation is ready to con-
tinue.

Synchronous routines such as
lock_page , wait_on_page_
bit , andwait_on_buffer have been
modified to asynchronous variations.
Instead of blocking, these routines queue
an asynchronous wait and return with a
special return code,-EIOCBRETRY .

The return value is propagated all the way
up to the invoking AIO handler. For this
process to work correctly, the calling rou-
tine at each level in the call chain needs to
break out gracefully if a callee returns the
-EIOCBRETRY exit code.

• Operation-specific state preserved across
retries:

Linux Symposium 356

In our implementation [7], the high-level
AIO code adjusts the parameters to read
or write as retries progress. The parame-
ters are adjusted by the retry routine based
on the return value from the filesystem
operation indicating the number of bytes
transferred.

A recent patch by Benjamin LaHaise
[11] proposes moving the filesystem API
read/write parameter values to the
iocb structure. This change would en-
able retries to be triggered at the API level
rather than through a high-level AIO han-
dler.

• Extent of asynchrony:

Ideally, an AIO operation is completely
non-blocking. If too few resources ex-
ist for an AIO operation to be completely
non-blocking, the operation is expected to
return-EAGAIN to the application rather
than cause the process to sleep while wait-
ing for resources to become available.

However, converting all potential block-
ing points that could be encountered
in existing file I/O paths to an asyn-
chronous form involves trade-offs in
terms of complexity and/or invasiveness.
In some cases, this tradeoff produces only
marginal gains in the degree of asyn-
chrony.

This issue motivated a focus on first
identifying and tackling the major block-
ing points and less deeply nested cases
to achieve maximum asynchrony benefits
with reasonably limited changes. The so-
lution can then be incrementally improved
to attain greater asynchrony.

• Handling synchronous operations:

No retries currently occur in the syn-
chronous case. The low-level code distin-
guishes between synchronous and asyn-
chronous waits, so a break-out and retry

occurs only in the latter case while the
process blocks as before in the event of
a synchronous wait. Further investiga-
tion is required to determine if the retry
model can be used uniformly, even for the
synchronous case, without performance
degradation or significant code changes.

• Compatibility with existing code:

– Wrapper routines are needed for
synchronous versions of asyn-
chronous routines.

– Callers that cannot handle asyn-
chronous returns need special care
e.g., making sure that a synchronous
context is specified to potentially
asynchronous callees.

– Code that can be triggered in
both synchronous and asynchronous
mode may present some tricky is-
sues.

– Special cases like code that may
be called via page faults in asyn-
chronous context may need to be
treated carefully.

3.2 Filesystem AIO read

A filesystem read operation results in a page
cache lookup for each full or partial page of
data requested to be read. If the page is already
in the page cache, the read operation locks the
page and copies the contents into the corre-
sponding section of the user-space buffer. If
the page isn’t cached, then the read operation
creates a new page-cache page and issues I/O
to read it in. It may, in fact, read ahead sev-
eral pages at the same time. The read operation
then waits for the I/O to complete (by waiting
for a lock on the page), and then performs the
copy into user space.

Linux Symposium 357

Based on initial profiling results the crucial
blocking points identified in this sequence
were found to occur in:

• lock_page

• cond_resched

• wait_on_page_bit

Of these routines the following were converted
to retry exit points by introducing correspond-
ing versions of the routines that accept a wait-
queue entry parameter:

lock_page --> lock_page_wq
wait_on_page_bit -->

wait_on_page_bit_wq

When a blocking condition arises, these
routines propagate a return value of-
EIOCBRETRY from generic_file_
aio_read . When unblocked, the waitqueue
routine which was notified activates a retry of
the entire sequence.

As an aside, the existing readahead logic helps
reduce retries for AIO just as it helps reduce
context switches for synchronous I/O. In prac-
tice, this logic does not actually cause a volley
of retries for every page of a large sequential
read.

The following routines are other potential
blocking points that may occur in a filesystem
read path that have not yet been converted to
retry exits:

• cond_resched

• meta-data read (get block and read of
block bitmap)

• request-queue congestion

• atime updates (corresponding journal up-
dates)

Making the underlying readpages operation
asynchronous by addressing the last three
blocking points above might require more de-
tailed work. Initial results indicate that signif-
icant gains have already been realized without
doing so.

3.3 Filesystem AIO write

The degree of blocking involved in a syn-
chronous write operation is expected to be less
than in the read case. This is because (unless
O_SYNCor O_DSYNCare specified) a write
operation only needs to wait until file blocks
are mapped to disk and data is copied into
(written to) the page cache. The actual write
out to disk typically happens in a deferred way
in the context of background kernel threads or
earlier in the process via an explicit sync opera-
tion. However, for throttling reasons, a wait for
pending I/O may also occur in write context.

Some of the more prominent blocking points
identified in the this sequence were found to
occur in:

• cond_resched

• wait_on_buffer (during a get block
operation)

• find_lock_page

• blk_congestion_wait

Of these, the following routines were converted
to retry exit points by introducing correspond-
ing versions of the routines that accept a wait-
queue entry parameter:

down --> down_wq
wait_on_buffer --> wait_on_buffer_wq
sb_bread --> sb_bread_wq
ext2_get_block --> ext2_get_block_wq
find_lock_page --> find_lock_page_wq
blk_congestion_wait -->

blk_congestion_wait_wq

Linux Symposium 358

The asynchronous get block support has cur-
rently been implemented only for ext2, and
only used byext2_prepare_write . All
other instances where a filesystem-specific get
block routine is involved use the synchronous
version. In view of the kind of I/O patterns ex-
pected for AIO writes (for example, database
workloads), block allocation has not been a fo-
cus for conversion to asynchronous mode.

The following routines are other potential
blocking points that could occur in a filesys-
tem write path that have not yet been converted
to retry exits:

• cond_resched

• other meta-data updates, journal writes

Also, the case whereO_SYNC or O_DSYNC
were specified at the time when the file was
opened has not yet been converted to be asyn-
chronous.

3.4 Preliminary observations

Preliminary testing to explore the viability
of the above-described approach to filesystem
AIO support reveals a significant reduction in
the time spent inio_submit (especially for
large reads) when the file is not already cached
(for example, on first-time access). In the write
case, asynchronous get block support had to
be incorporated to obtain a measurable bene-
fit. For the cached case, no observable differ-
ences were noted, as expected. The patch does
not appear to have any effect on synchronous
read/write performance.

A second experiment involved temporarily
moving the retries into theio_getevents
context rather than into worker threads. This
move enabled a sanity check usingstrace to
detect any gross impact on CPU utilization.

Thorough performance testing is underway to
determine the effect on overall system perfor-
mance and to identify opportunities for tuning.

3.5 Issues and todos

• Should the cond_resched calls in
read/write be converted to retry points?

• Are asynchronous get block implementa-
tions needed for other filesystems (e.g.,
JFS)?

• Optional: should the retry model be
used for direct I/O (DIO) or should syn-
chronous DIO support be changed to wait
for the completion of asynchronous DIO?

• Should relevant filesystem APIs be modi-
fied to add an explicit waitqueue parame-
ter?

• Should theiocb state be updated directly
by the filesystem APIs or by the high-level
AIO handler after every retry?

4 AIO support for direct I/O

Direct I/O (raw andO_DIRECT) transfers
data between a user buffer and a device with-
out copying the data through the kernel’s buffer
cache. This mechanism can boost performance
if the data is unlikely to be used again in the
short term (during a disk backup, for exam-
ple), or for applications such as large database
management systems that perform their own
caching.

Direct I/O (DIO) support was consolidated and
redesigned in Linux 2.5. The old scalability
problems caused by preallocating kiobufs and
buffer heads were eliminated by virtue of the
new BIO structure. Also, the 2.5 DIO code
streams the entire I/O request (based on the un-
derlying driver capability) rather than breaking
the request into sector-sized chunks.

Linux Symposium 359

Any filesystem can make use of the
DIO support in Linux 2.5 by defining a
direct_IO method in the address_
space_operations structure. The method
must pass back to the DIO code a filesystem-
specific get block function, but the DIO
support takes care of everything else.

Asynchronous I/O support for DIO was added
in Linux 2.5. The following caveats are worth
noting:

• Waiting for I/O is done asynchronously
but multiple points in the submission
codepath can potentially cause the process
to block (such as the pinning of user pages
or processing in the filesystem get block
routine).

• The DIO code callsset_page_dirty
before performing I/O since the rou-
tine must be called in process context.
Once the I/O completes, the DIO code—
operating in interrupt context—checks
whether the pages are still dirty. If
so, nothing further is done; otherwise,
the pages are made dirty again via a
workqueue run in process context.

5 Vector AIO

5.1 2.5 readv/writev improvements

In Linux 2.5, direct I/O (raw andO_DIRECT)
readv/writev was changed to submit all seg-
ments or iovecs of a request before waiting
for I/O completion. Prior to this change, DIO
readv/writev was processed in a loop by calling
the filesystem read/write operations for each
iovec in turn.

The change to submit the I/O for all iovecs
before waiting was a critical performance fix
for DIO. For example, tests performed on an

aic-attached raw disk using 4Kx8 readv/writev
showed the following improvement:

Random writev 8.7 times faster
Sequential writev 6.6 times faster
Random readv sys time improves 5x
Sequential readv sys time improves 5x
Random mixed I/O 5 times faster
Sequential mixed I/O 6.6 times faster

5.2 AIO readv/writev

With the DIO readv/writev changes integrated
into Linux 2.5, we considered extending the
functionality to AIO. One problem is that
AIO readv/writev ops are not defined in
the file_operations structure, nor are
readv/writev part of the AIO API command
set. Further, the interface toio_submit is
already an array ofiocb structures analogous
to the vector of a readv/writev request, so a real
question is whether AIO readv/writev support
is even needed. To answer the question, we
prototyped the following changes [12]:

• addedaio_readv/writev ops to the
file_operations structure

• definedaio_readv/writev ops in the
raw driver

• added 32- and 64-bit readv and writev
command types to the AIO API

• added support for readv/writev command
types tofs/aio.c :

fs/aio.c | 156 ++++
include/linux/aio.h | 1
include/linux/aio_abi.h | 14 ++++
include/linux/fs.h | 2
4 files changed, 173 insertions(+)

5.3 Preliminary results

With the above-noted changes, we were able to
test whether anio_submit for N iovecs is

Linux Symposium 360

more performant than anio_submit for N
iocbs.

io_submit for N iocbs:

io_submit -->

iocb[0] |aio_buf|aio_nbytes|read/write opcode|

iocb[1] |aio_buf|aio_nbytes|read/write opcode|
...

iocb[N-1] |aio_buf|aio_nbytes|read/write opcode|

io_submit for N iovecs:

io_submit -->
--

iocb[0] |aio_buf|aio_nbytes=N|readv/writev opcode|
--
| ----------------

--> iovec[0] |iov_base|iov_len|

iovec[1] |iov_base|iov_len|
...

iovec[N-1] |iov_base|iov_len|

Based on preliminary data [1] using direct I/O,
an io_submit for N iovecs outperforms an
io_submit for N iocbs by as much as two-
to-one. While there is a singleio_submit in
both cases, aio readv/writev shortens codepath
(i.e., one instead of N calls to the underlying
driver method) and normally results in fewer
bios/callbacks.

5.4 Issues

The problem with the proposed support for
AIO readv/writev is that it creates code re-
dundancy in the custom and generic filesys-
tem layers by adding two more methods to the
file_operations structure. One solution
is to first collapse theread/write/readv/
writev/aio_read/aio_write methods
into simplyaio_read andaio_write and
to convert those methods into vectored form
[11].

6 Performance

6.1 System setup

All benchmarks for this paper were performed
on an 8-way 700MHz Pentium™III machine

with 4GB of main memory and a 2MB L2
cache. The disk subsystem used for the
I/O tests consisted of 4 IBM® ServeRAID-
4H™dual-channel SCSI controllers with 10
9GB disk drives per channel totalling 80 phys-
ical drives. The drives were configured in sets
of 4 (2 drives from each channel) in a RAID-
0 configuration to produce 20 36GB logical
drives. The software on the system was SuSE
Linux Enterprise Server 8.0. Where noted in
the results, the kernel was changed to 2.5.68
plus required patches [7]. For AIO benchmark-
ing, libaio-0.3.92 was installed on the system.

6.2 Microbenchmark

The benchmark program used to analyze AIO
performance is a custom benchmark called
rawiobench [9]. Rawiobench spawns multiple
threads to perform I/O to raw or block devices.
It can use a variety of APIs to perform I/O
including read/write , readv/writev ,
pread/pwrite and io_submit . Support
exists for both random and sequential I/O and
the exact nature of the I/O request is depen-
dent on the actual test being performed. Each
thread runs until all threads have completed a
minimum number of I/O operations at which
time all of the threads are stopped and the total
throughput for all threads is calculated. Statis-
tics on CPU utilization are tracked during the
run.

The rawiobench benchmark will be run a num-
ber of different ways to try to characterize the
performance of AIO compared to synchronous
I/O. The focus will be on the 2.5 kernel.

The first comparison is designed to measure
the overhead of the AIO APIs versus using
the normal read/write APIs (referred to as the
"overhead" test). For this test rawiobench will
be run using 160 threads each doing I/O to
one of the 20 logical drives for both sequen-
tial and random cases. In the AIO case, an

Linux Symposium 361

io_submit/io_get_events pair is sub-
mitted in place of the normal read or write call.
The baseline synchronous tests will be referred
to in the charts simply as "seqread" "seqwrite"
"ranread" "ranwrite" with an extension of ei-
ther "ODIR" for a block device opened with
the O_DIRECT flag or "RAW" for a raw de-
vice. For the AIO version of this test, "aio" is
prepended to the test name (e.g., aioseqread).

The second comparison is an attempt to reduce
the number of threads used by AIO and to take
advantage of the ability to submit multiple I/Os
in a single request. To accomplish this the
number of threads for AIO was reduced from
8 per device to 8 total (down from 160). Each
thread is now responsible for doing I/O to ev-
ery device instead of just one. This is done by
building anio_submit with 20 I/O requests
(1 for each device). The process waits for all
I/Os to complete before sending new I/Os. This
AIO test variation is called "batch mode" and
is referred to in the charts by adding a "b" to
the front of the test name (e.g., bseqaioread).

The third comparison will improve upon the
second by having each AIO process calling
io_getevents with a minimum number
equal to 1 so that as soon as any previously
submitted I/O completes, a new I/O will be
driven. This AIO test variation is called "min-
imum batch mode" and is referred to in the
charts by adding a "minb" to the front to the
test name (e.g., minbseqaioread).

In all sequential test variations, a global offset
variable per device is used to make sure that
each block is read only once. This offset vari-
able is modified using thelock xadd assem-
bly instruction to ensure correct SMP opera-
tion.

Figure 1: Sequential Read Overhead

6.3 Results, comparison and analysis

Raw andO_DIRECT performed nearly iden-
tically on all of the benchmarks tests. In order
to reduce redundant data and analysis, only the
data fromO_DIRECT will be presented here.

For the first comparison of AIO overhead, the
results show that there is significant overhead
to the AIO model for sequential reads (Figure
1). For small block sizes where the benchmark
is CPU bound, the AIO version has signifi-
cantly lower throughput values. Once the block
size reaches 8K and we are no longer CPU
bound, AIO catches up in terms of throughput,
but averages about 20% to 25% higher CPU
utilization.

In Figure 2 we can see the performance of
random reads using AIO is identical to syn-
chronous I/O in terms of throughput, but av-
erages approximately 20% higher CPU utiliza-
tion. By comparing synchronous random read
plus seeks with random pread calls (Figure 3)
we see that there is minimal measurable over-
head associated with having two system calls
instead of one. From this we can infer that the
overhead seen using AIO in this test is associ-
ated with the AIO internals, and not the cost of
the additional API call. This overhead seems

Linux Symposium 362

Figure 2: Random Read Overhead

Figure 3: read vs. pread

excessive and probably indicates a problem in
the AIO kernel code. More investigation is re-
quired to understand where this extra time is
being spent in AIO.

For write performance we can see that AIO
achieves approximately the same level of
throughput as synchronous I/O, but at a signif-
icantly higher cost in terms of CPU utilization
at smaller block sizes. For example, during the
sequential write test at 2K block sizes, AIO
uses 97% CPU while synchronous uses only
55%. This mirrors the behavior we see in the
read tests and is another indication of problems
within the AIO code.

Figure 4: Sequential Write Overhead

Figure 5: Random Write Overhead

Linux Symposium 363

Figure 6: Sequential Read Batch

Figure 7: Random Read Batch

Batch mode AIO performs poorly on the se-
quential and random read tests. Throughput is
significantly lower as is CPU utilization (Fig-
ures 6,7). This is probably due to the fact that
we can drive more I/Os in a single request than
the I/O subsystem can handle, but we must wait
for all the I/Os to complete before continuing.
This results in multiple drives being idle while
waiting for the last I/O in a submission to com-
plete.

AIO batch mode also under-performs on the
write tests. While CPU utilization is lower, it
never achieves the same throughput values as
synchronous I/O. This can be seen in Figures 8
and 9.

Figure 8: Sequential Write Batch

Figure 9: Random Write Batch

Linux Symposium 364

Figure 10: Sequential Read Minimum Batch

Minimum batch mode improves considerably
on the overhead and batch mode tests; how-
ever, forO_DIRECT access AIO either lags
in throughput or uses more CPU for all block
sizes in the sequential read test (Figure 10).
For the random read test minimum batch mode
AIO has identical throughput to synchronous
reads, but uses from 10% to 20% more CPU
in all cases (Figure 11). Sequential minimum
batch mode AIO comes close to the perfor-
mance (both throughput and CPU utilization)
of synchronous, but does not ever perform bet-
ter.

Minimum batch mode sequential writes, like
reads, lag behind synchronous writes in terms
of overall performance (Figure 12). This dif-
ference gets smaller and smaller as the block
size increases. For random writes (Figure 9),
the difference increases as the block size in-
creases.

Since we are seeing lower CPU utilization for
minimum batch mode AIO at smaller block
sizes we tried increasing the number of threads
in that mode to see if we could drive higher I/O
throughput. The results seen in Figure 14 show
that indeed for smaller block sizes that using 16
threads instead of 8 did increase the through-
put, even beating synchronous I/O at the 8K
block size. For block sizes larger than 8K the

Figure 11: Random Read Minimum Batch

Figure 12: Sequential Write Minimum Batch

Figure 13: Random Write Minimum Batch

Linux Symposium 365

increase in number of threads either made no
difference, or causes a degradation in through-
put.

Figure 14: Sequential Read Minimum Batch
with 16 threads

In conclusion, there appears to be no con-
ditions for raw or O_DIRECT access un-
der which AIO can show a noticeable bene-
fit. There are however, cases where AIO will
cause reductions in throughput and higher CPU
utilization. Further investigation is required to
determine if changes in the kernel code can be
made to improve the performance of AIO to the
level of synchronous I/O.

It should be noted that at the larger block sizes,
CPU utilization is so low (less than 5%) for
both synchronous I/O and AIO that the dif-
ference should not be an issue. Since using
minimum batch mode achieves nearly the same
throughput as synchronous I/O for these large
block sizes, an application could choose to use
AIO without any noticeable penalty. There
may be cases where the semantics of the AIO
calls make it easier for an application to coordi-
nate I/O, thus improving the overall efficiency
of the application.

6.3.1 Future work

The patches which are available to enable AIO
for buffered filesystem access are not stable
enough to collect performance data at present.
Also, due to time constraints, no rawiobench
testcases were developed to verify the effec-
tiveness of the readv/writev enhancements for
AIO [12]. Both items are left as follow-on
work.

7 Acknowledgments

We would like to thank the many people
on the linux-aio@kvack.org and
linux-kernel@vger.kernel.org
mailing lists who provided us with valuable
comments and suggestions during the devel-
opment of these patches. In particular, we
would like to thank Benjamin LaHaise, author
of the Linux kernel AIO subsystem. The
retry based model for AIO, which we used
in the filesystem AIO patches, was originally
suggested by Ben.

This work was developed as part of the Linux
Scalability Effort (LSE) on SourceForge
(sourceforge.net/projects/lse).
The patches developed by the authors and
mentioned in this paper can be found in the
"I/O Scalability" package at the LSE site.

8 Trademarks

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM and ServeRAID are trademarks or regis-
tered trademarks of International Business Ma-
chines Corporation in the United States, other coun-
tries, or both.

Pentium is a trademark of Intel Corporation in the
United States, other countries or both.

Linux Symposium 366

Windows is a trademark of Microsoft Corporation
in the United States, other countries or both.

Linux is a trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

References

[1] AIO readv/writev performance data.
http://osdn.dl.sourceforge.
net/sourceforge/lse/
vector-aio.data .

[2] Asynchronous I/O on Windows® NT.

[3] Kernel Asynchronous I/O
implementation for Linux from SGI.
http:
//oss.sgi.com/projects/kaio .

[4] POSIX Asynchronous I/O.

[5] Open Group Base Specifications Issue 6
IEEE Std 1003.1.
http://www.opengroup.org/
onlinepubs/007904975/toc.
htm , 2003.

[6] Suparna Bhattacharya. 2.5 Linux Kernel
Asynchronous I/O patches.
http://sourceforge.net/
projects/lse .

[7] Suparna Bhattacharya. 2.5 Linux Kernel
Asynchronous I/O rollup patch.
http://osdn.dl.sourceforge.
net/sourceforge/lse/
aiordwr-rollup.patch .

[8] Suparna Bhattacharya. Design Notes on
Asynchronous I/O for Linux.
http://lse.sourceforge.net/
io/aionotes.txt .

[9] Steven Pratt Bill Hartner. rawiobench
microbenchmark.
http://www-124.ibm.com/
developerworks/opensource/
linuxperf/rawread/rawr%ead.
html .

[10] Benjamin LaHaise. 2.4 Linux Kernel
Asynchronous I/O patches.
http://www.kernel.org/pub/
linux/kernel/people/bcrl/
aio/patches/ .

[11] Benjamin LaHaise. Collapsed read/write
iocb argument-based filesystem
interfaces.
http://marc.theaimsgroup.
com/?l=linux-aio&m=
104922878126300\&w=2 .

[12] Janet Morgan. 2.5 Linux Kernel
Asynchronous I/O readv/writev patches.
http://marc.theaimsgroup.
com/?l=linux-aio&m=
103485397403768\&w=2 .

[13] Venkateshwaran Venkataramani
Muthian Sivathanu and Remzi H.
Arapaci-Dusseau. Block Asynchronous
I/O: A Flexible Infrastructure for User
Level Filesystems.
http://www.cs.wisc.edu/
~muthian/baio-paper.pdf .

Towards an O(1) VM:
Making Linux virtual memory management scale towards large amounts of physical

memory

Rik van Riel
Red Hat, Inc.

riel@surriel.com

Abstract

Linux 2.4 and 2.5 already scale fairly well
towards many CPUs, large numbers of files,
large numbers of network connections and sev-
eral “other kinds of big.” However, the VM
still has a few places with poor worst case (or
even average case) behavior that needs to be
improved in order to make Linux work well on
machines with many gigabytes of RAM.

1 Introduction

In this paper I will explore the problem spaces
and algorithmic complexities of the virtual
memory subsystem. This paper will focus
mostly on the page replacement code, which by
definition has all of physical memory and parts
of virtual memory as its search space. The fol-
lowing aspects of page replacement will be dis-
cussed:

• Page launder, the reclaiming of pages that
are selected for pageout.

• Page aging, how to select which pages to
evict.

• Balancing filesystem cache vs. anony-
mous memory.

• Reverse mapping, pte based vs. object
based.

2 Page launder

Traditionally the virtual memory management
subsystems in Unix and Linux systems have
had either a clock algorithm or Mach-style ac-
tive and inactive lists to do both LRU aging and
eviction of pages. Linux 2.4 and 2.5 have what
amounts to simple Mach-style active and in-
active lists (Figure 1), at least when it comes
to the writeout and reclaiming of pages that
aren’t mapped in processes. In this paper, the
Mach VM pageout algorithm is used as an ex-
ample because it is a decent approximation of
what the different Linux VMs have done and
the Mach VM is quite possibly the best docu-
mented virtual memory subsystem.

In the Mach VM, pages get recycled once they
reach the end of the inactive list and are clean,
meaning they do not need to be written to disk.
If the page needs to be written to disk, a so-
called dirty page, disk IO is started and the
page is moved to the beginning of the inactive
list. Presumably the disk IO will have finished
and the page will be clean by the time it gets to
the end of the inactive list again.

This organisation works reasonably well when
dealing with filesystem cache pages, since

Linux Symposium 368

Inactive

Active

Free

Referenced

Allocations

Allocations

Not
Referenced
Dirty
Disk IO started

Not
Referenced
Clean

Inactive shortage
Moved on

Figure 1: Mach pageout lists

those are usually clean pages which can be re-
claimed the moment they reach the end of the
inactive list. However, when the filesystem
cache is small and the system is dealing mostly
with dirty, swap or mmap backed pages from
processes, this strategy has a big drawback on
modern, large memory computers.

2.1 The problem with Mach-style page laun-
dering

Memory used by processes is often dirty,
meaning it needs to be written back to disk.
The problem with this becomes obvious when
we look at exactly what happens when all of
the pages on the inactive list are dirty:

• The pageout code encounters a dirty page.

• Disk IO is started, the page is written to
disk.

• The page is moved to the far end of the
inactive list.

• The page reclaiming code encounters the
next dirty page, starts writeout, etc.. . .

• Since only a finite number of disk IO op-
erations can be underway at any time, the
page reclaiming code needs to wait for
current IO operations to finish once it has
started writeout on a certain number of
pages.

• IO on the pages that were written out first
finishes, meaning the pages are now clean
and reclaimable.

• The page reclaiming code continues with
the write out of the other dirty pages on
the inactive list.

Of course, this has a number of serious draw-
backs. The most obvious one is that on large
memory systems the system will wait for most
pageout IO to have finished before it can even
start the last IO. Worse yet, it won’t be able to
free a page before all IO has been submitted.

In the early 1990s, when the Mach VM was
popular, systems had up to a few megabytes
of memory, with maybe a few hundred kilo-
bytes of inactive pages, which could be written
to disk in one or at most a few seconds. Mod-
ern systems, on the other hand, often have mul-
tiple gigabytes of memory. Since the speed of
hard disks hasn’t increased nearly as much as
the size of memory, the time needed to write
out all of the inactive list can be unacceptably
high, up to dozens of seconds.

2.2 Solutions

One obvious solution is to only write out part
of the pages on the inactive list. After all, if the
system needs to free ten megabytes of memory,
there is little reason to write out one gigabyte of

Linux Symposium 369

data. The implementation of this solution is a
little less obvious, since there are various ways
to approach this goal and there is a tradeoff to
make between CPU usage and page freeing la-
tency.

The first solution would be to simply write out
a limited number of pages and skip the dirty
pages on the list, scanning the list like usual
and freeing all the clean pages encountered. In
situations where the inactive list has both clean
and dirty pages this tactic will allow you to al-
ways free the clean pages, reaching your free
target and allowing allocations to go on with as
little latency as possible. Of course, if the list
only has dirty pages, then the system could end
up spending a lot of CPU time scanning the list
over and over again.

For the rmap VM a different, hopefully more
predictable and CPU friendly solution (Fig-
ure 2) has been chosen. Instead of just one
inactive list, there are various lists for the dif-
ferent stages of the pageout process a page can
be in. Initially all rarely used pages are placed
on the inactive_dirty list, regardless of whether
or not they need to be written back to disk.

When a page reaches the end of the inac-
tive_dirty list and wasn’t referenced, the VM
will move it to the inactive_laundry list, start-
ing disk IO if the page was dirty. Referenced
pages get moved back to the active list.

On the other end of the inactive_laundry list the
VM removes clean pages, until the system has
enough immediately freeable and free pages.
Referenced pages are moved back to the active
list; cleaned pages are moved on to the inac-
tive_clean list, from where they can be imme-
diately reused by the page allocation code.

The inactive_clean list is just an extension of
the free page list. It contains clean pages that
were not referenced and can be immediately re-
claimed by the page allocation code. The rea-

son for having an inactive_clean list is that the
free page list in a VM is never the right size.
The list should be as large as possible in or-
der to be able to satisfy allocations with low la-
tency, but at the same time the list should be as
small as possible so almost all of memory can
be used for processes and the cache. Having a
list of immediately reclaimable pages with use-
ful data in them avoids most of this dilemma.

Free

Inactive

Inactive

Inactive

Active

Laundry

Clean

Dirty

Not
Referenced
Clean

Not
Referenced
Disk IO started
(if needed)

Referenced
Not

Referenced

Allocations

Referenced
Not

Free shortage

Allocations

Figure 2: O(1) page launder

3 Page aging

Since the performance penalty of evicting the
wrong page from memory is so high, due to the
enormous speed differential between memory
and disk, any virtual memory subsystem needs
to take great care in selecting which pages to
evict and which pages to keep in memory. On
the other hand, on systems with more than a
few megabytes of memory you do not want to

Linux Symposium 370

scan all the active pages every time the system
is short on inactive memory.

While it is impossible to ensure this situation
will never happen, because some applications
just have access patterns you cannot tune a
page replacement algorithm for, we can im-
prove the situation a lot by pre-sorting the ac-
tive pages in various lists (Figure 3), according
to activity.

The pageout code will only look at the pages
that most likely aren’t very active, meaning it
has a better chance of finding the proper pages
for eviction without needing to resort to a full
scan of memory. If the list with least used
pages is empty, the pageout code simply shifts
down all of the active lists and starts looking at
the pages that came from the next list up.

The page aging (sorting) code scans the ac-
tive lists periodically and moves the pages that
were accessed to higher lists. It only needs
to age pages upwards, because the downwards
movement is done by the pageout code shift-
ing down whole lists at a time. The period with
which the page aging code scans the active lists
is varied in reaction to the amount of pageout
activity. Ideally the system would do a sim-
ilar number of up aging scans as the number
of times it shifts down active lists. The scan
interval of the up aging code is reduced if the
VM did too many down shifting of active pages
and increased if the VM was quiet in-between
two aging scans. The page aging interval has
both a lower and an upper bound, to keep the
overhead under control and to have some back-
ground aging in an otherwise idle system. The
only time the page aging doesn’t run is when
there are more active pages on the higher lists
than on the lower lists.

Active 0

Active N−1

Inactive
Dirty

at a time
whole lists
Shifts down
Pageout

referenced
individual
Moves up

Page aging

pages

referenced
Pages, notReferenced

pages

Figure 3: Multi list page aging

4 Balancing cache vs program
memory

LRU style page replacement algorithms have
well-documented, known problems. There are
several replacement algorithms available that
improve the replacement of pages within one
set of data, e.g. EELRU, SEQ and LRFU;
however none of these address the problem of
balancing replacement between various sets of
data. Since all currently implemented page re-
placement algorithms for Linux have this prob-
lem, the replacement algorithm needs some
help balancing the file cache with memory used
for programs.

The rmap VM borrows a common trick from
other systems here. There are separate ac-
tive lists for file cache memory and program
memory, active_cache and active_anon, re-
spectively. While the cache is larger than a
certain percentage of active memory only the
cache pages are a candidate for pageout, this
value is the so-called borrow percentage and
is 15 by default. Below the borrow percent-
age the VM will move both cache pages and
pages belonging to processes to the inactive

Linux Symposium 371

list, reclaiming the pages that haven’t been ref-
erenced again by the time they reach the far end
of the inactive list. This gives cache and pro-
cesses a chance to balance against each other
by referencing pages. If the cache takes less
than a predetermined minimum of the active
list, one percent by default, the VM will only
reclaim pages from processes.

The deeper reasons behind the need for these
balancing hints are a little more complex than
the reasons behind other design choices in the
VM. One of the factors is that the amount
of data on the filesystems tends to be several
magnitudes larger than the amount of mem-
ory taken by the processes in the system. This
means that the number of accesses to pages
from the file cache could overwhelm the to-
tal number of accesses to the pages of the pro-
cesses, even though the individual pages of the
processes get accessed more frequently than
most file cache pages. In other words, the sys-
tem can end up evicting frequently accessed
pages from memory in favor of a mass of re-
cently but far less frequently accessed pages.

A replacement algorithm like LIRS, Low Inter-
reference Recency Set, would probably do
the right thing since it replaces pages with
a higher interval between references before
pages that have a lower interval between ref-
erences. However, for LIRS to work properly
the VM would need to keep track of pages that
have already been evicted from memory. Since
Linux does not have an infrastructure to keep
track of those, the rmap VM uses an LRFU
style page replacement algorithm with cache
size hints.

Even if the direct value of LIRS over
LRU/LFU for use as a primary cache wouldn’t
be big enough to offset the overhead of the
needed infrastructure, the facts that LIRS
would make the file cache vs process mem-
ory balancing automatic and that LIRS would

also do the right thing as a second level cache
(e.g. an NFS server, page cache on a web proxy
where squid itself has the first level cache)
make the implementation of LIRS for Linux a
promising future experiment.

5 Reverse mapping

Reverse mappings provide an inverse to the
page tables of the processes; that is, they keep
track of which processes are using the physi-
cal pages, at which virtual addresses. Using
reverse mappings, the pageout code can:

• Unmap a page from all processes using
it, without needing to search the virtual
memory of all processes.

• Unmap only those pages it really wants to
evict, instead of scanning the virtual mem-
ory of all processes and unmapping more
pages than it wants to evict in order to be
on the safe side. This could reduce the
number of minor page faults.

• Evict pages in a certain physical address
range, which is useful since Linux divides
physical memory into various zones.

• Scan only the virtual mappings of known
inactive pages, which means the pageout
code has a smaller search space in virtual
memory. Combined with smarter page ag-
ing and page laundering, this results in a
smaller overall search space for the page-
out code.

5.1 Page based vs object based

There are pros and cons to doing reverse map-
ping on a per-page or a per-object basis. Re-
verse mapping on a per-page basis is more ef-
ficient for the pageout code, but the reverse

Linux Symposium 372

mapping code affects more than just the page-
out code path. The page fault, fork, exit, and
mmap paths all modify the reverse mappings,
so doing reverse mappings on objects larger
than a page (like a vma) would reduce the re-
verse mapping overhead in those code paths, at
the cost of the pageout code needing to search
more space.

The big question here is how much the
overhead and algorithmic complexities would
change, especially under larger workloads. A
quadratic increase in complexity in the pageout
path is almost certainly more expensive than
what could be offset by a linear speedup in the
other code paths, even though the pageout path
is rarely run.

Large workloads, with many gigabytes of
memory and hundreds or thousands of large,
active processes are certainly able to bring out
the worst of any VM; with the current imple-
mentations it doesn’t even matter which style
of reverse mapping is used. Bad behaviour can
be triggered in either case.

It appears that for both object-based and page-
based reverse mappings, Linux is in need of
smarter data structures that aren’t suscepti-
ble to quadratic algorithmic complexities any-
where. Once those are written we will be able
to make a proper comparison between both
methods of reverse mapping. It is conceiv-
able that Linux would end up using a hybrid of
object-based and page-based reverse mapping,
with each type being used where it is most ap-
propriate.

6 Conclusions

Linux memory management has come a long
way in the last few years, but at the same time
users have deployed Linux in more and more
demanding environments. In fact, demand al-
ways seems to be one step ahead of whatever

stage kernel development is at.

Users have shown beyond any doubt that there
are legitimate workloads that bring out the
worst case behaviour in any VM; because of
this there is a constant need to bring the al-
gorithmic complexity of any part of the vir-
tual memory management subsystem closer to
the holy grail of constant-time, or O(1) com-
plexity. The author expects development of
the Linux virtual management subsystem to re-
main challenging for years to come.

7 References

Draves, Richard P.Page Replacement and
Reference Bit Emulation in Mach.In
Proceedings of the USENIX Mach
Symposium, Monterey, CA, November 1991.

Y. Smaragdakis, S. Kaplan, and P. Wilson,
EELRU: Simple and Effective Adaptive Page
Replacementin Proceeding of the 1999 ACM
SIGMETRICS Conference, 1999.

Gideon Glass and Pei Cao.Adaptive Page
Replacement Based on Memory Reference
Behavior.In Proceedings of ACM
SIGMETRICS 1997, June, 1997.

D. Lee, J. Choi, J.-H. Kim, S.H. Noh, S.L.
Min, Y. Cho, and C.S. Kim,LRFU: A
spectrum of policies that subsumes the least
recently used and least frequently used
policiesIEEE Trans. Computers, vol. 50, no.
12, pp. 1352–1360, 2001.

S. Jiang and X. Zhuang.LIRS: An efficient low
inter-reference recency set replacement policy
to improve buffer cache performance.In Proc.
of SIGMETRICS 2002.

Developing Mobile Devices based on Linux

Tim Riker
Texas Instruments

Tim@Rikers.org, http://Rikers.org/

Abstract

This presentation will cover available com-
ponents of embedded solutions that leverage
Linux. We discuss bootloaders, Linux kernel
configuration, BusyBox, glibc, uClibc, GUI
choices such as Qtopia, TinyX, GPE, Kon-
queror, Dillo, and similar packages that make
up a commercial-grade consumer device. This
presentation is aimed at those who are just get-
ting into Linux on mobile or other embedded
devices.

1 Why Linux?

Linux is a stable, tested platform for produc-
tion use. The most often-used environment for
Linux is as a server for key business services.
Is it well suited for embedded use on mobile
devices? It is. Linux has a low total cost of
ownership as compared to other options. There
is a large pool of developers that are familiar
with the environment and this pool continues
to grow rapidly. The use of an Open Source
platform allows for flexible hardware and other
product design choices that can save money.
There is no dependency on a single vendor for
support.

The largest advantage is quick time to market.
The wealth of available projects that can be
leveraged means that resources can be directed
toward the specific value a product has to offer
without spending undue resources duplicating
what is done on devices that are otherwise sim-

ilar. This advantage truly comes to light when a
community is formed around the product. This
community can focus on enhancing the product
without direct development cost to the manu-
facturer. When planning the product lifetime,
thought should be given to seeding hardware
to key community members so that community
support is available early in the product life cy-
cle.

2 Special Needs of Mobile Devices

Mobile devices have features not often seen
in desktop or server systems. Most use flash
storage instead of traditional hard disk media.
NOR flash is a common choice for average-
sized storage, but becomes more expensive
with larger systems. It is relatively easy to han-
dle from a software perspective, and is com-
monly available as a direct memory mapped
device. NAND flash is cheaper for larger (ie:
>32MB) devices, but is not normally mapped
to a specific memory location. In addition,
flash devices track bad sectors and have error-
correction code. Special device drivers and
filesystems are required.

Removable storage is also an option. MMC
(MultiMediaCard) is one common small-form-
factor storage card. These use a 1-bit width
serial interface to access the flash. SD (Se-
cure Digital) storage cards can have an en-
hanced 4-bit interface that allows for faster data
transfer and I/O devices, but the licensing from
http://SDCard.org/ prohibits releasing

Linux Symposium 374

the source to any driver for these cards, so
they are not currently recommended for Linux-
based solutions.

Compact Flash (CF) storage cards are another
popular option. Testing has shown that most,
if not all, CF cards are unreliable when power-
cycled during a write. Consider this strongly
if power-cycles are likely to happen. Batteries
often run down on mobile devices.

2.1 Power needs in hardware

Power consumption is critical in a mobile de-
vice. If the device has a display, the light
is often the single largest power-consuming
component. Software should be configured to
be aggressive about turning off the lighting.
This is commonly user-configurable, and often
has a different setting when the device is con-
nected to external power. Wireless interfaces
are likely the next largest power consumer. It
is wise to spend time during product develop-
ment tuning the wireless setting for maximum
power conservation. Choosing a different wire-
less chipset can make a large difference in the
power needs of the device.

Linux has support for CPU scaling on a num-
ber of architectures. Research the devices that
are affected when the CPU speeds up or down
on different platforms. For example, on typical
StrongARM platforms, the LCD display must
be turned off during any CPU speed changes.
This may mean your product cannot leverage
CPU scaling in a useful manner. Other devices
that may be affected by CPU speed changes in-
clude audio, USB, serial, network, and many
other timing-sensitive devices.

CompactFlash and other removable devices
may still consume significant power while in
a suspended state. It is wise to add support
for removing power in software to most sys-
tem devices before entering a suspend state. It

is also wise to avoid polling of any hardware
device. As a general rule, interrupt-driven de-
vices will have a lower load on the CPU and
therefore consume less power. Physical keys
on the device are one common area where this
is overlooked. If the device has a power button,
it should be on a separate hardware interrupt
from the other keys on the device.

3 The bootloader

Choosing a bootloader has a big impact on
the development environment. Most embed-
ded systems do not have a traditional BIOS on-
board. They do not have APM or ACPI inter-
faces. Some rely on the bootloader to take part
in power-resume states; others just resume ex-
ecution at the next address after where they en-
tered suspend. Most bootloaders will initialize
RAM configuration, and startup other devices
in the system. Hardware designs may want to
insure that the Linux kernel can be booted with
a minimum of hardware setup so that there
does not need to be driver code for the remain-
ing hardware in the bootloader as well as in the
kernel.

The most common interface to a bootloader is
over a serial port. If the device has a keyboard
and display, that may be another choice, but
there is usually serial port support as well. The
bootloader should support flashing new code
on the device. New kernel images and filesys-
tem images are loaded over this interface and
stored to flash on the device. This requires
that the bootloader is able to deal with what-
ever styles of flash are on the device. Xmodem,
Ymodem, and even Zmodem code is available
in existing open bootloaders.

If the device will have removable media such
as CompactFlash storage cards, the bootloader
can be configured to read images from there
for flashing. This may be a good option for

Linux Symposium 375

upgrading devices in the field. Installing from
MMC or other types of storage devices may
require significant work implementing device
support in the bootloader.

Some embedded systems have built-in ethernet
interfaces and can use that for bootp or tftp up-
dates. This is not very common for a mobile
device.

For products with a USB client connection,
USB serial support can be implemented in the
bootloader. This will likely use a different USB
device ID than presented by the product in its
normal running state. If the product also has
USB host connectivity, then it can be imaged
off another working device. The kernel and
base filesystem should be in a separate area
for the device configuration in order to support
this.

The bootloader will need to be aware of any
partitioning in flash on the device. The kernel
will need access to this same information. This
information could then be shared with the ker-
nel by dedicating an area of flash to store it.
It could be compiled into both the bootloader
and the kernel. The cleanest approach is for the
bootloader to add it to the kernel command line
when booting. There will likely be other ker-
nel command-line options the bootloader will
want to store and pass on to the kernel. All
of these can be contained in one flash block
if desired. Some bootloaders understand the
filesystem, as well as the partitions on the de-
vice. This allows for one filesystem image that
contains the base binaries and libraries as well
as the kernel and its modules. This prevents the
kernel and modules from ever being out of sync
if they are all in the same image, which is a
nice feature from a customer support perspec-
tive. If the bootloader can read files from the
filesystem directly, then one can store the per-
manent kernel command-line options and other
bootloader configuration inside the filesystem.

This will likely not include flash partitioning
information, as the partitioning would need to
be known before the filesystem could be read.

Erasing the bootloader is a Bad Thing. Steps
should be taken to insure that it it protected.
This might mean putting it in ROM, or protect-
ing the flash block(s) it lives in, or other meth-
ods. OS updates in the field should not replace
the bootloader as part of the normal procedure.

4 Filesystems

Workstation and server filesystems like ext2 do
not scale well for embedded devices. Smaller
filesystems includeromfs and cramfs ,
which are read-only.cramfs includes com-
pression. Flash or ROM often is slow to ac-
cess. The time it takes to read and decompress
files is often faster than reading the same file
if stored uncompressed.cramfs may be both
the smallest and fastest choice for a read-only
filesystem. In most cases it is also important
to conserve memory. This implies that filesys-
tems should be used directly from flash rather
than using an initial ramdisk (initrd) whenever
possible.

Some applications on the device will create
temporary files. If the filesystem is read-only,
ramfs support should be added to store these
files. One way to handle this is to link /tmp to
/var/tmp then mount ramfs on /var and unpack
a tar archive into it, or just copy a tree from
someplace else on the filesystem. You may
want /dev linked in here as well if device files
need to have permission or ownership changed
at runtime.

An alternative to /dev is to include devfs sup-
port in the kernel. You may be able to avoid
using devfsd by considering the needs of all the
applications that will be included on the device
and configuring default devices permissions in
the kernel.

Linux Symposium 376

Many handheld portable devices use jffs2. This
is a compressed journaled filesystem that un-
derstands NOR flash directly. It will need a
few free blocks to use as workspace in each
mounted partition. jffs2 has undergone a great
deal of testing to insure that it is always in a
readable state even when writes are interrupted
by a powerfail or hard reboot. jffs2 support on
NAND flash chips is in progress and may be
complete by the time you read this. There are
other flash filesystems like YAFFS designed
just for NAND flash devices. This is a reason-
able option with a lot of flash and where com-
pression at the filesystem level is not needed.
Removable storage media will still need to use
vfat if it is going to be moved to other devices.

Some systems have dedicated partitions in
flash for diagnostics or additional code that
handles reflashing the device in the case where
the normal filesystem is not usable. The im-
pact of requiring this extra flash space should
be considered carefully. Reflashing code can
be added to the bootloader in much less space.
User-space tools can be used for this task as
long as the device can get to that point using
the existing filesystem. If the device includes
removable media access, diagnostics can be
shipped on the removable media and the boot-
loader configured to load a kernel and filesys-
tem from there.

5 Kernel device drivers

Embedded devices often do not include com-
ponents like PCI, ISA, MCA busses. All de-
vices that will not be present should be turned
off in the kernel config to save space. These
are not always obvious choices. For example,
if the device includes a CompactFlash slot, all
of the PCMCIA card drivers would be avail-
able as card options. There is no clear list of
which drivers are exclusively for pcmcia cards
and do not need to be available as they would

not be inserted in a CompactFlash slot.

5.1 Connectivity

Many mobile Linux devices include some form
of networking. This is probably not a normal
ethernet interface but can include WiFi, Blue-
tooth, IrDA, USB, ppp over serial, cell phone,
etc. Some devices will have multiple options
available. Very good IPv6 support is available
under Linux, but be aware that the IPv6 stack
is larger than IPv4 or other options.

6 Libraries

Larger Linux systems are commonly based on
the GNU C Library. This is not well suited to
small devices. To quote the maintainer:

. . . glibc is not the right thing for [an
embedded OS]. It is designed as a
native library (as opposed to embed-
ded). Many functions (e.g., printf)
contain functionality which is not
wanted in embedded systems.

—Ulrich Drepper
<drepper@cygnus.com>

24 May 1999

Other alternatives will be smaller, but may re-
quire some modifications to source that is be-
ing ported. This should not be a large task
when compared with the other aspects of the
port. Alternatives include uClibc, dietlibc,
newlib, and using pieces from things such as
the Minix C library, libc5, *BSD libraries, etc.
uClibc is the best choice today, as it is un-
der the LGPL license to allow for commercial
applications, includes shared library support,
pthreads, c++, and even most locale features.
It is configurable so you can remove things

Linux Symposium 377

you don’t need. uClibc is tested for compli-
ance with POSIX and ISO standards and passes
more tests than glibc.

Other libraries included on the device should
be reviewed closely to insure that they do not
include components that are not needed. Many
of these have compile-time options to exclude
large portions of the functionality.

If no applications are going to be added to
the system at a later date, library reduction
tools can be used to remove the unneeded por-
tions. Some examples of these tools include
mklibs, lipo, and libraryopt. The python script
mklibs.py is used in the Debian project on
multiple architectures and is the best place to
start.

7 Applications

There are many basic tools that run on top of
Linux and make up a basic distribution. Many
of the GNU tools could be here. GNU fileutils,
textutils, grep, modutils, and many others are
found in most every Linux distribution, hence
the GNU/Linux naming convention. While this
is the norm for a desktop distribution, it is
likely that none of the binaries or libraries on
an embedded Linux system will be the GNU
flavor. Applications like BusyBox and Tiny-
Login are not GNU packages, nor is uClibc.

BusyBox includes close to 200 different ap-
plications in one multicall binary that is under
600k. This allows you to hardlink or symlink
to the single binary, and depending on how it is
called, it acts as each of those different applica-
tions. Each applet is normally less feature-rich
than the GNU equivalent, but much smaller in
size. If you were to include the normal binaries
for all of these from a GNU/Linux distribution,
you could have over 5 MB of binaries. Each
applet in BusyBox can be enabled or disabled
so it’s likely that your version will be much

smaller when you only include the programs
you need.

Your system will likely want to have some ser-
vices and perhaps a way to get shell access re-
motely. A small inetd (24k) with a minimal tel-
netd (32k) could do the trick. The latest version
of BusyBox includes both of these. Expansion
capabilities might warrant including pcmcia-cs
and hotplug code. Use caution in this area as
well. Linux supports a lot of PCMCIA hard-
ware but the size of included drivers can add
up quickly.

8 Crypto

For secure access OpenSSH is the com-
mon choice on Linux desktops and servers.
OpenSSH client (215k) and server (254k) nor-
mally uses OpenSSL (181k). When OpenSSL
is compiled for a smaller set of supported
hashes and algorithms, it can be smaller, but
even then it is large as compared to most em-
bedded applications. The author is still search-
ing for a small ssh/sshd solution.

FreeSWAN is another secure access method. It
is normally even larger, close to 2M in size.
FreeSWAN supports Opportunistic Encryption
which can be very useful in an enterprise envi-
ronment. Normal IPSec support is also valu-
able for many solutions. Adding hardware
crypto support as provided by the Texas In-
struments OMAP161x chips and converting all
crypto systems in the kernel and userland over
to use this can save memory as well as boost
performance.

9 Package Management

For devices that are expandable, some form of
package management is needed. Many desk-
top systems use RPM or dpkg for this purpose.
Both of these are large binaries and more im-

Linux Symposium 378

portantly they normally have a large amount
of package information stored on the filesys-
tem. BusyBox includes a stripped-down ver-
sion of both rpm and dpkg which might be a
good starting place. The Handhelds.org project
has a package manager called ipkg that is small
and better suited for embedded systems. The
Debian installer uses .udebs for about the same
purpose. ipkg packages and udeb’s do not nor-
mally include man pages or other supporting
files, but have just the minimum files included.
These packages are both the same format as a
.deb file.

Note that Linux Standards Base requires the
ability to install rpm files. It also requires many
things like libgcc_s and glibc that the embed-
ded device may not provide.

10 Graphical User Interface

There are many choices of GUIs for a mobile
device. The Sharp Zaurus models use Qtopia
with Qt/Embedded. These are available un-
der the GPL, but using these versions requires
that all applications available for the platform
are also under the GPL. These components are
also available from Trolltech under a different
license as royalty-bearing components. This
allows applications to use licenses other than
the GPL. These components might be the only
ones on the device that are not free. The base
files needed for a common Qtopia and Qt/E
configuration would be about 3 MB in size.
This does not include the applications.

The Handhelds.org distribution can use X11
and GTK as the basis for an environment called
GPE (GPE Palmtop Environment). This uses
TinyX from the XFree86 version of the X Win-
dow System. The X server itself will be around
700k and the X11 and GTK libraries add up to
about 3 MB. Note that this system retains all
the remote display options of a normal X Win-

dow System desktop machine.

Smaller systems are available such as Pixel or
NanoGUI. These might not include advanced
web browsers or other large applications, but
they are appropriate for smaller devices. A cus-
tom interface could be built on top of systems
like DirectFB, GTKfb, Qt/E, SDL, or by writ-
ing directly to the Linux framebuffer.

The Qtopia interface has gotten more atten-
tion lately and is currently ahead of the GPE
work. The OPIE project has enhanced Qtopia
and is starting work on a next-generation li-
brary that would replace the Qtopia library and
clean up the interface in the process. This new
project should be available under LGPL, and if
it was configured to run on top of TinyX using
Qt/X11 instead of Qt/E, could avoid a per-unit
royalty. Removing duplicate code between X
and Qt/X11 could drop the storage size down
very close to that of Qt/E and Qtopia. This
retains the remote display options that the X
Window System provides, while leaving a path
to use much of the available Qt widgets and ap-
plications.

11 Web Browser

As time progresses, an embedded web browser
will become more and more important.
Browsers like Netscape and Mozilla are large.
Other browsers might use the same engine but
be much more space-constrained. Browsers
like Dillo and ViewML are less feature-rich,
but even smaller. Text-based browsers like
lynx or links could be wrapped with a graphical
front end, but this would be time-consuming
and not in line with the goals of those projects.
There are commercial options like Opera to
consider as well. Konqueror Embedded, which
uses Qt, is a good mix of size and features.
Some minor interface tweaks could make it
even better.

Linux Symposium 379

12 A Small Example

The TuxScreen project is very tightly storage-
constrained. There is no web browser in the
Linux-based base filesystem image. This de-
vice is a Desktop phone with a StrongARM
1100, a 640x480x8 color touch screen, and
only 4 MB of flash storage. In this space we
have a 128k bootloader partition (with only
32k used) and a 4MB minus 128k jffs2 root
partition. In the root partition is the ker-
nel and modules, uClibc, BusyBox, TinyLo-
gin, pcmcia-cs, lrzsz, inetd, telnetd, XFree86
TinyX, rxvt, matchbox (a window manager),
and more, with over 500k left in writable space.
For devices that are only remote displays, this
is a reasonable target size.

13 Where to Go from Here?

There are many Linux consulting companies
that can help with a new product release.
Monta Vista and Metroworks are two of the
larger players in that space. Red Hat also has
a group focused on embedded work. Some
of these solutions might include other royalty-
bearing components or have the option to
spread out the engineering cost over the prod-
uct lifecycle. There are plenty of individual
consultants active in embedded systems work
based on Linux. Some are looking for perma-
nent placement and some work on a consulting
basis. You should determine the finances of
your project and pick a solution that matches
with that plan.

The big benefits of going with Linux as the so-
lution is this large available pool of resources
to draw from and the ability to have all the
source so you retain the option of doing the
work internally or through another vendor. Do
not ignore the benefit of growing a commu-
nity around your product. The work that ac-
tive, qualified developers in the community do

to improve your software solution is a valuable
benefit. Much of it will be available to you for
merely the time it costs to monitor those activ-
ities. You can effectively kill off this effort by
making it difficult for others to get involved.
This will likely have a detrimental effect on
your product sales.

When working out the details of contract work,
you will likely want to add a requirement that
all work be pushed upstream. This implies that
it will be peer-reviewed by other Linux devel-
opers and may need to be fixed to comply with
existing Linux kernel code. This is a very im-
portant part of new work done in the kernel.
Without it, you and your product will be stuck
with an old version of the kernel which the
community and other vendors will not be eager
to support. When the changes are pushed up-
stream, they are much more likely to get fixed
as the kernel develops. A few free units of
fun hardware in the right hands can go a long
ways as far as overall software development
expenses go.

Conclusion

We have touched on many projects that can be
leveraged to offer rapid time to market when
developing mobile and other embedded de-
vices based on Linux. I hope this has been
useful. There are many useful web sites that
offer more information. The author plans to
add links to all of the projects mentioned here
and others as well in the wiki found onhttp:
//eLinux.org/wiki/ if you would like
more details. Good luck with your projects,
and welcome to the community.

Lustre: Building a File System for 1,000-node
Clusters

Philip Schwan
Cluster File Systems, Inc.

phil@clusterfs.com, http://www.clusterfs.com/

Abstract

Lustre is a GPLed cluster file system for Linux
that is currently being tested on three of the
world’s largest Linux supercomputers, each
with more than 1,000 nodes. In the past 18
months we’ve tried many tactics to scale to
these limits, and the first half of this paper will
discuss some of our successes and failures. The
second half will explore some of the changes
that we plan to make over the next year, as we
scale towards tens of thousands of clients and
petabytes of data.

1 Introduction

The Lustre cluster file system has been de-
signed and implemented with the goal of re-
moving the bottlenecks traditionally found in
such systems. Lustre runs on commodity hard-
ware and provides a cluster storage layout that
is efficient, scalable, and redundant. Metadata
Servers (MDSs) contain the file system’s di-
rectory layout, permissions, and extended at-
tributes for each object. Object Storage Tar-
gets (OSTs) are responsible for the storage and
transfer of actual file data, and already scale
to many dozens of OSTs and hundreds of ter-
abytes of data. Both types of service node can
operate in pairs which automatically take over
for each other in the event of failure. Each also
runs an instance of the Lustre distributed lock
manager, access to which forms the core of the

Lustre protocols.

Although Lustre’s design dates from 1999, de-
velopment began in earnest in early 2002. In
the time since, surprisingly few of the major
points have changed from the original plan, and
the implementation has undergone fewer false
starts as a result. Our distributed lock manager
has weathered the storm and remains largely
as it was a year ago. The choice of a system
designed around object protocols has proven
to be correct, and Lustre has so far scaled to
the limits of available hardware. Lustre’s inter-
nal networking has shown itself to be relatively
flexible and high-performance, and network
abstraction layers exist for TCP/IP, Quadrics
Elan, Myrinet, and SCI.

Not all of our original decisions were ideal,
however. One source of bugs continues to be
the interaction between Lustre and the Linux
VFS layer, which is not very well suited to net-
work file systems that want a great deal of con-
trol. This interaction had a significant impact
on one of Lustre’s major metadata architecture
choices, the concept of “intent-based” locking
operations, described in more detail later. Ulti-
mately, we had to make significant changes to
our intent-based metadata implementation.

The last year of working with government
and industry has suggested which activities are
most important to pursue in the next year. First,
and most significantly, two major caching im-

Linux Symposium 381

provements will be made beginning this sum-
mer: a write-back metadata cache, and a per-
sistent data/metadata cache. The write-back
cache will be enabled in times of low concur-
rency, and allows for metadata updates which
can be made in local memory and later re-
played on the server. Making this cache per-
sistent for both metadata and file data will en-
able features such as disconnected operation
and server replication. Finally, our collabo-
rative read cache will reduce the load on pri-
mary OSTs for the most frequently accessed
files, removing a very common bottleneck in
distributed systems.

2 Distributed Lock Manager

All of Lustre’s consistency guarantees are en-
forced, in one way or another, by the Lus-
tre distributed lock manager (DLM). Core op-
erational decisions, such as when to switch
between writeback caching and synchronous
metadata updates, will be delegated to the
DLM.

The design of the Lustre DLM borrows heav-
ily from the VAX Clusters DLM, plus exten-
sions that are not found in others. Although
we have received some reasonable criticism for
not using an existing package (such as IBM’s
DLM[1]), experience thus far has seemed to
indicate that we’ve made the correct choice:
it’s smaller, simpler and, at least for our needs,
more extensible.

The Lustre DLM, at just over 4,000 lines of
code, has proven to be an overseeable main-
tenance task, despite its somewhat daunting
complexity. The IBM DLM, by comparison, is
nearly the size of all of Lustre combined. This
is not necessarily a criticism of the IBM DLM,
however; to its credit, it is a complete DLM
which implements many features which we do
not require in Lustre.

In particular, Lustre’s DLM is not reallydis-
tributed, at least not when compared to other
such systems. Locks in the Lustre DLM are al-
ways managed by the service node, and do not
change masters as other systems allow. Omit-
ting features of this type has allowed us to
rapidly develop and stabilize the core function-
ality required by the file system.

Next, we feel that our extensions to the basic
DLM API and protocol have been quite suc-
cessful. File range locking is managed inter-
nally as part of the regular lock matching and
compatiblity functions. Through the use of a
small policy function, the lock manager is able
to grant larger locks than originally requested.
In this way we avoid the bottleneck found in
some other file systems, for which a client must
lock each page or block individually. For the
very common case of a file being accessed by
only one user, Lustre’s DLM will grant exactly
one lock for the entire file.

Finally, intent locking is designed around
the concept of allowing the lock manager to
choose between different modes depending on
its view of resource contention. In a direc-
tory with very little contention—a user’s home
directory, for example—the DLM can grant a
write-back lock, allowing the client to cache
a large number of metadata updates in mem-
ory. In this way it will avoid an interaction
with the server for each request and batch them
at some later time. In a directory with very
high concurrency—such as/tmp —the DLM
will refuse to grant any lock at all. Instead, it
will perform the operation on the client’s be-
half, notify it of the result, and avoid bouncing
the directory lock between hundreds or thou-
sands of simultaneous users.

Linux Symposium 382

3 Object Protocols

Of all of the concepts that went into Lustre’s
architecture, the use ofobject protocolsis by
far the most pervasive. Although Lustre is cer-
tainly not unique in its use of storage objects,
we have also designed many of the internal
APIs to allow for additional layering (RAID
0 as one example) or short-circuiting (a client
running on an OST with no networking layer
between them). This symmetry between inter-
nal APIs and network protocols has served us
well.

During the initial design it became quite clear
that a shared block file system would abso-
lutely not scale to the required limits for many
reasons. First, shared disk arrays on any-
thing but the smallest clusters quickly become
cost ineffective for even the largest customers;
this would certainly violate our goal of run-
ning on inexpensive commidity hardware. Sec-
ond, high-level object protocols remove a key
bottleneck for scaling beyond a dozen or two
nodes: locking and allocation of metadata.

In a traditional shared-block file system, those
blocks which store inode and block alloca-
tion information are subject to incredible con-
tention. By organizing the protocol around ob-
jects instead of blocks, the OSTs remain re-
sponsible for the internal metadata allocation.
Parallel file I/O to a single file has been shown
to scale to more than 1,100 nodes, the limit of
available hardware.

For those customers who have already invested
in a large storage area network (SAN) based
around shared disk, Lustre is still an option. In
the SAN mode, OSTs are still responsible for
managing the object locking and shared stor-
age metadata, but clients can read and write in-
dividual data pages directly from the SAN.

4 Networking

Lustre’s networking layer has not changed sig-
nificantly from its original form more than a
year ago. It uses a simple message-passing
package called Portals[2], which has from an
API standpoint served us fairly well. Impor-
tantly, it provides the right abstractions for en-
hancements such as remote DMA as supported
by the networking hardware. We’ve made a
few relatively minor API changes to accomo-
date the different needs of the filesystem, as op-
posed to the scientific community from which
Portals emerged.

The original implementation of Portals, how-
ever, caused many serious problems. The port
to run in the Linux kernel and userspace was
fairly straightforward, but Portals had never
been run in a multi-threaded environment and
had absolutely no internal locking. Given that
we had to rewrite more than 80% of the code
and put up with serious race conditions for
many months, it would likely have been a bet-
ter choice to keep the API and start the imple-
mentation from scratch.

The API and the internal abstraction layers,
however, have been both simple enough to
understand and modify, and flexible enough
to cope with the needs of many networking
drivers. Lustre (and therefore Portals) needs
to support a variety of interconnects, including
kernel TCP/IP, TCP/IP offload cards, Quadrics
Elan 3, Myrinet, and SCI.

For each network type we have a Portals Net-
work Abstraction Layer (NAL), approximately
one to two thousand lines of code each. Al-
though they are small, they are generally quite
complicated, and may depend on a fair bit of
wizardry to get the most out of a particular in-
terconnect. Nevertheless, the Lustre network
regression test running on our Elan NAL be-
tween two nodes is bottlenecked by the PCI bus

Linux Symposium 383

at more than 300 MB/s.

5 Intent Operations Explained

Most distributed file systems perform meta-
data operations in the same way all the
time, regardless of contention. Some systems
choose to give locks on objects to clients, and
some choose to perform all operations syn-
chronously on the server.

In the first mode, a client wanting to perform
metadata operations will first take a lock on the
parent directory, download the applicable di-
rectory information, and make many changes
locally. This is extremely efficient in times of
low contention; it can perform as many opera-
tions as it wants locally without contacting the
server, as long as no other nodes try to acquire
the lock. In times of high contention, however,
it is a disaster: imagine users on 1,000 nodes
all runningtouch /tmp/foo . The lock on
/tmp will have to be given to each node in
turn, and the cluster will grind to a halt.

In the second mode, the client sends a mes-
sage to the server for each operation, and the
server performs the operation without giving
any locks out. Not only is this much simpler to
code properly, it also avoids the problem with
lock ping-pong. When this mode is used, how-
ever, even directories with no contention have
this behaviour, and you suffer the effects of a
server round-trip for each operation.

Lustre currently executes all operations as if
there were high concurrency, with exactly one
RPC per metadata operation. With the comple-
tion of the writeback metadata cache later this
year, the DLM will be able to make the choice
between giving the client a writeback lock on a
subtree or performing one RPC per op.

6 Intents Gone Wrong

Our first attempt at writing the client-side VFS
code to support the intent mechanism was
roughly as follows. Consider the case of a
mkdir operation: normal filesystems will lock
the parent directory, lookup the new directory
to see if it already exists, create it, then release
the lock. Lustre added alookup intentstructure
to each lookup call, to tell the lock manager on
the server why we asked for the lock (in this
case, to mkdir). If the server decided not to
give out the lock, it would perform the opera-
tion on the client’s behalf and return a success
or error code.

When the Lustre client received this reply, it
would do complicated things to cooperate with
the VFS. If the mkdir succeeded, for example,
it needed to create anegativedirectory entry
(dentry) before returning from lookup (if we
returned a new positive dentry, the VFS would
return-EEXISTS). Later, the VFS would call
us back to do the “actual” mkdir, at which time
we would instantiate the dentry based on the
reply stored in the lookup intent.

This turned out to be a disaster of race con-
ditions, both on the server and on the client.
On the server, the lock manager would perform
these operations before the lock was granted,
so that it could give the client a lock on the new
file. By the time the lock was actually granted,
however, anything could have changed. On the
client, our ability to control the dcache, partic-
ularly in the window between lookup and final
creation, proved insufficient.

Our final solution was to make two fairly major
changes to both sides. Instead of the lock man-
ager performing an operation before locks are
granted, the metadata server is able to specify
an already-granted lock to give to the client.
This allows the MDS to perform the opera-
tion and then return the still-granted lock on

Linux Symposium 384

the new file without races. The client has been
simplified to call directly into the filesystem
and return the result immediately: no dcache,
no VFS code, no races.

7 Client Metadata Caching

When a node asks to lock a directory for read-
ing or writing, the Lustre DLM will soon be
able to grant asubtree lock, if the directory has
not recently seen conflicting activity. This al-
lows the client to keep a cache which can be
filled and selectively revalidated as necessary.

As a client with a subtree lock fills its cache
from the MDS, the MDS may revoke locks on
other objects. If during this process the MDS
encounters an opened file or a file with hard
links, it flags this file for special attention by
the client. Specifically, the client also flags
these as shared objects which cannot be cached
locally and must use the intent path for updates.

Once a client has a subtree lock, it can begin
to keep a local journal of updates. Each update
is a short record which describes one logical
filesystem operation on an object, for example
“create directory, mode 0755, parent inode 12,
new directory name foo”. Because all update
operations are now reduced to the creation of
a single record in client memory, they are in-
credibly fast.

When another client attempts to perform a con-
flicting operation beneath a subtree lock, that
lock must be found and revoked. The MDS
server code can easily walk the dentry tree,
looking at each path component of the affected
object, and revoke subtree locks as necessary.
It is now easy to see why we flag hard linked
files for special handling, as they have more
than one path by which they can be reached.

When a subtree lock is revoked, any accumu-
lated updates must be flushed to the MDS and

replayed on stable storage. This is exactly the
same mechanism which already exists for in-
tent locks, except that they are grouped into
pages of operations which are all guaranteed
to succeed by virtue of the subtree lock. Now a
single network exchange can contain hundreds
of records.

8 Persistent Caching

To this design there is one particularly at-
tractive extension, which is a persistent
cache in the style of AFS[3], Coda[4], and
InterMezzo[5]. Two new pieces are required
for such an extension: the local cache itself,
and a way to revalidate its contents after locks
are lost and re-acquired.

Lustre’s stackable object protocols allow a very
symmetric design for the persistent cache by
adding a metadata server to the client. Today
the file system code interacts with a metadata
client (MDC) via function calls, which exe-
cutes network commands to an MDS. In this
new model, the MDC can be replaced with a
caching MDCwhich can talk to both a local
and remote MDS. The local MDS is respon-
sible for maintaining the local cache, either in
memory or on disk; the caching MDC resolves
cache misses and replays updates to the real
MDS as before.

At some point, after a client has lost and re-
acquired a lock, we need a way to validate
the data that already exists in the cache. Unix
filesystems already provide the concept of a
change time(ctime), which is updated when-
ever the inode changes. For Lustre directories
we will add a newsubtree change time(stc-
time) which will be updated whenever any in-
ode in the subtree is changed. These stctimes
have a nanosecond granularity and will allow
a client to very quickly establish whether large
portions of a cache are up to date.

Linux Symposium 385

Caching MDC

Data
in

cache?

Local MDS

Get locks and
attributes from
local MDS cache

No

Query Cache

Yes
Perform
local updates

Send lock request
with intent
to remote MDS,
populate local
MDS with
this data

Remote MDS

File System

Metadata operations

MDC

Disk

Figure 1: Persistent Caching

Updates to the sctime will of course dirty more
(possibly many more) inodes during each up-
date. For customers pushing their metadata
server to the limits, they have the option of
disabling the sctime and revalidating each ob-
ject individually, or going without a persistent
cache.

9 Collaborative Caching

A very common load pattern found in industry
filesystem installations is one where read traf-
fic vastly outnumbers write traffic. One such
example is a cluster of web servers serving
mostly static content.

Unless some effort is made to distribute the
load in these situations, the servers will be
completely overwhelmed, based purely on the
raw bandwidth that a single server can provide.
Consider the load placed on central servers
if workstations have remote root filesystems
and are all booted simultaneously following a

Object Storage Client

Lustre Lite
file system

Object Storage Target

Client

(OST)

4. Get requested
data from target OST
(if data not in cache yet)

Cache Server
Dedicated

1. Read request 2. Referral

forwarding
3. Read request

Figure 2: Collaborative Caching

power outage; or a lab of students all loading
large applications at the beginning of a class.

Lustre is once again leveraging the object pro-
tocols into a symmetric collaborative caching
device. Instead of working directly with an
OST, a client communicates with one or more
caching devices which can take locks on the
client’s behalf, locally service cache misses,
and provide an alternative path to the high-
demand data. These caching devices can also
run on the clients themselves, which is thecol-
laborativepart of the collaborative cache.

With the addition of caching devices, recovery
becomes somewhat more complicated. Nor-
mally the decision to give up on a particular
OST following a network timeout is a very
simple one. However with a cache in the mid-
dle it’s important to distinguish between a fail-
ure of the cache node and a failure of the OST
itself.

10 Conclusion

After more than a year of development, the
Lustre framework has deviated surprisingly lit-
tle from the original architecture. The lock
manager and object protocols have served us
well and will continue to form the centre of the
design. Despite the fairly serious setbacks with

Linux Symposium 386

the VFS and client caching, our intent lock-
ing strategy has been shown to be successful
on very large clusters and will be the primary
mechanism for dealing with high-contention
directories.

Today Lustre scales comfortably to more than
1,000 nodes and is running on 3 of the 8 largest
clusters in the world[6] (at Lawrence Liver-
more and Pacific Northwest National Labora-
tories). We have every reason to believe that
today’s Lustre code will scale to 2,000 nodes
without serious difficulties; the next two years
of development are planned to address scala-
bility and performance issues on a completely
new scale of clusters which are only just begin-
ning to be designed.

11 Acknowledgments

Lustre has benefitted significantly from the
experience, guidance, and funding of several
US Government national laboratories, notably
Lawrence Livermore National Laboratory and
Pacific Northwest National Laboratory. We
have also received the support of the National
Nuclear Security Administration ASCI Path-
Forward Program, which provides funding for
many of the advanced features in Lustre’s fu-
ture. Amongst our partners we are grateful for
the support of and opportunities with Hewlett-
Packard and Dell. The views and conclusions
contained in this paper are those of the au-
thor and should not be interpreted as neces-
sarily representing the official policies or en-
dorsements, either express or implied, of our
partners or the US Government.

12 Availability

Lustre is released under the terms and con-
ditions of the GNU General Public License,
and can be downloaded from our FTP site

or checked out of our public CVS repository.
More information can be found athttp://
www.lustre.org/

Founded in 2001 by Dr. Peter Braam, Cluster
File Systems, Inc. is a privately held company
headquartered on the internet, with developers
in five countries. CFS is focused on high-end
storage solutions, including the development
of advanced file systems, novel architectures,
and the storage industry as a whole. More
information about how we can improve your
storage offering, business, or laboratory can be
found athttp://www.clusterfs.com/
or by writing to info@clusterfs.com

References

[1] IBM, Programming Locking
Applications, Version 4.3.1, Second
Edition, 1999.

[2] Brightwell et al,The Portals 3.1 Message
Passing Interface, Revision 1.0, 1999.

[3] J. Howard,An Overview of the Andrew
File System, In Proceedings of the
USENIX Winter Technical Conference,
1988.

[4] Satyanarayanan, M, Kistler, J. J., Kumar,
et. al.,Coda: a Highly available File
System for a Distributed Workstation
Environment, IEEE Trans. on
Computers, 39(4): 447-459, 1990.

[5] Braam, Callahan, and Schwan,The
InterMezzo Filesystem, In Proceedings of
the Ottawa Linux Symposium, 1999.

[6] http://www.top500.org/list/
2003/06/

OSCAR Clusters

John Mugler, Thomas Naughton∗and Stephen L. Scott†

Oak Ridge National Laboratory, Oak Ridge, TN

Brian Barrett‡, Andrew Lumsdaine and Jeffrey M. Squyres§

Indiana University, Bloomington, IN

Benoît des Ligneris, Francis Giraldeau¶

Université de Sherbrooke, Québec, Canada

Chokchai Leangsuksun‖

Louisiana Tech University, Ruston, LA

Abstract

The Open Source Cluster Application Re-
sources (OSCAR) is a cluster software stack
providing a complete infrastructure for clus-
ter computing. The OSCAR project started
in April 2000 with its first public release a
year later as a self-installing compilation of
“best practices” for high-performance classic
Beowulf cluster computing. Since its inception
approximately three years ago, OSCAR has
matured to include cluster installation, main-
tenance, and operation capabilities and as a re-
sult has become one of the most popular clus-
ter computing packages worldwide. In the
past year, OSCAR has begun to expand into
other cluster paradigms including Thin OS-
CAR, a diskless cluster solution, and High-

∗Contact author: Thomas Naughton,
<naughtont@ornl.gov>

†This work was supported by the U.S. Department of
Energy, under Contract DE-AC05-00OR22725.

‡Supported by a Department of Energy High Perfor-
mance Computer Science Fellowship.

§Supported by a grant from the Lilly Endowment.
¶Supported by Centre de Calcul Scientifique
‖Supported by Center for Entrepreneurship and In-

formation Technology (CEnIT), Louisiana Tech Univer-
sity

Availability OSCAR, embracing fault toler-
ant capabilities. This paper will cover the
current status of OSCAR including its two
latest invocations—Thin OSCAR and High-
Availability OSCAR—as well as the details of
the individual component technology used in
the creation of OSCAR.

1 Introduction

The growth of cluster computing in recent
years has primarily been fueled by the price
performance quotient. The hardware invest-
ment to obtain a supercomputer caliber system
extends the capabilities to a much broader au-
dience. This advancement enables individu-
als to have exclusive access to their own super
computer.

The capability of individual computing clus-
ters involves the well known exchange of hard-
ware costs for software costs. This software
is necessary to build, configure and maintain
the ever growing number of distributed hetero-
geneous machines that make up these clusters.
The Open Cluster Group (OCG) was formed
to address cluster management needs. The

Linux Symposium 388

first working group formed by OCG was the
Open Source Cluster Application Resources
(OSCAR) project. The OSCAR group began
by pooling “best practice” techniques for High
Performance Computing (HPC) clusters into
an easy to use toolkit. This included the inte-
gration of HPC components with a basic wiz-
ard to drive the installation and configuration.

The initial HPC oriented OSCAR has evolved
with the base cluster toolkit being distilled into
a more general cluster framework. The sep-
aration of the HPC specific aspects enables
the framework to be used for other cluster
installation and management schemes. This
has led to the creation of two additional OCG
working groups that leverage the basic OS-
CAR framework. The “Thin-OSCAR” work-
ing group uses the framework for diskless clus-
ters. The “HA-OSCAR” group is focusing on
high availability clusters. The relationship of
OCG working groups and the framework is de-
picted in Figure 1.

(high availability)
HA−OSCAR

OSCAR
(HPC − disk based)

Thin−OSCAR
 (diskless)

OPD
Repository

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

OSCAR
Framework

Open Cluster Group

Figure 1: The Open Cluster Group (OCG)
working groups share the OSCAR framework
for cluster installation and management.

The following sections will briefly discuss the
OCG umbrella organization and the current
working groups. The basic OSCAR framework
will be discussed followed by a brief summary
of the HPC specific components. Then the
diskless (Thin-OSCAR) and high availability
(HA-OSCAR) working groups will be covered

followed by concluding remarks.

2 Background

The OSCAR working group was the first work-
ing group that was formed under the umbrella
Open Cluster Group (OCG) organization. The
OCG was formed after a handful of individu-
als met in April 2000 to discuss their forays
into cluster construction and management [1].
The consensus was that much effort was being
duplicated and a toolkit to assist with the inte-
gration and configuration of current “best prac-
tices” would be beneficial to the participants
and the HPC community in general.

This initial meeting led to subsequent discus-
sions and ultimately a public release of the
cluster installation, configuration, and manage-
ment toolkit OSCAR v1.0 in April 2001. This
initial release addressed OCG’s mission state-
ment to make cluster computing simpler while
making use of the commonly used open source
software solutions. In the years that have fol-
lowed, the OSCAR working group has en-
hanced the toolkit with features such as mod-
ular OSCAR packages and improved cluster
management facilities.

The OSCAR project is comprised of a mixture
of industry and academic/research members.
The overall project is directed by a steering
committee that is elected every two years from
the current “core organizations.” This “core”
list is composed of those actively contributing
to project development. The 2003 core orga-
nizations include: Bald Guy Software (BGS),
Dell, IBM, Intel, MSC.Software, Indiana Uni-
versity, the National Center for Supercomput-
ing Applications (NCSA), Oak Ridge National
Laboratory (ORNL), and Université de Sher-
brooke.

There have also been new OCG working
groups created to address other cluster envi-

Linux Symposium 389

ronments. These new working groups are
named “Thin-OSCAR” and “HA-OSCAR.”
The “Thin-OSCAR” project provides support
for diskless clusters. The “HA-OSCAR” group
is focused on high availability clusters. The
different groups focus on different cluster envi-
ronments but leverage much of the core facili-
ties offered by the base OSCAR framework.

3 OSCAR Framework

The standard OSCAR release targets usage in a
High Performance Computing (HPC) environ-
ment. The base OSCAR framework is not nec-
essarily tied to HPC. Currently the framework
and toolkit are simply referred to as OSCAR
and are used to build HPC clusters. To avoid
confusion throughout this paper, a distinction
will be made by using OSCAR to refer to the
entire toolkit and OSCAR framework for the
base facilities.

The framework includes the set of base or
“core” packages needed to build and maintain
a cluster. There are two other package classifi-
cations: “included” and “third-party.” Thein-
cludedclass of packages includes commonly
used HPC applications for OSCAR. These
packages are closely maintained and tested for
compatibility with each OSCAR release. The
third-party distinction is provided for all other
OSCAR packages (see Section 3.5).

The core components enable a user to con-
struct a virtualimageof the target machine us-
ing System Installation Suite (SIS). There is
also an OSCAR database (ODA) that stores
cluster information. The final two components
include a parallel distributed “shell” tool set
called C3 and an environment management fa-
cility called Env-Switcher.

The fundamental function of OSCAR is to
build and maintain clusters. This is greatly
comprised of software package management.

The guiding principle behind OSCAR and
OCG is to use “best practices” when avail-
able. Thus, the Red Hat Package Manager
(RPM) [2] is leveraged by OSCAR.1 RPM files
are pre-compiled binary versions of the soft-
ware with meta data that is used to manage
the addition, deletion, and upgrade of the pack-
age. RPM handles the conflict and dependence
analysis. This add/delete/upgrade capability is
a key strength of RPM. This is made use of by
the framework in “OSCAR Packages.”

3.1 System Installation Suite

The System Installation Suite (SIS) is based
on the well known SystemImager tool [3, 4].
SystemImager is used to build an image—a di-
rectory tree that comprises an entire filesystem
for a machine—that is used to install cluster
nodes. The suite has two additional compo-
nents: System Installer and System Configu-
rator. These two components extend the stan-
dard SystemImager to allow for a description
of the target to be used to build an image on the
head node. This image has certain aspects gen-
eralized for on-the-fly customization via Sys-
tem Configurator. This dynamic configuration
phase enables the image to be more general so
items such as the network interface card are not
in the SIS image. This capability allows for
heterogeneity within the cluster nodes, while
leveraging the established SystemImager man-
agement model.

SIS is used to “bootstrap” the node installs—
kernel boot, disk partitioning, filesystem for-
matting, and base OS installation. The image
used during the installation can also be used
to maintain the cluster nodes. Modifying the
image is as straight-forward as modifying a
local filesystem. Once the image is updated,

1The underlying framework is designed to be as dis-
tribution agnostic as possible. The RPM name is slightly
misleading but the system is available on distributions
other than Red Hat.

Linux Symposium 390

rsync 2 is used to update the local filesystem
on the cluster nodes. This method can be used
to install and manage an entire cluster, if de-
sired. This image based cluster management is
especially useful for maintaining diskless clus-
ters and is used by the Thin-OSCAR working
group, (see Section 5).

3.2 C3 Power Tools

The distributed nature of clusters introduces a
need to execute commands and exchange files
throughout the cluster. The Cluster, Command
and Control (C3) tool set offers a comprehen-
sive set of commands to perform parallel com-
mand execution across cluster(s) as well as file
scatter and gather operations [6, 7]. The tools
are useful at both administrative and user lev-
els. The tool set is the product of scalable sys-
tems research being performed at ORNL [8].

C3 includes commands to execute (cexec)
across the entire cluster—or a subset of
nodes—in parallel. File scatter and gather
(cpush /cget) operations are also available.
The C3 power tools have been developed to
span multiple clusters. This multi-cluster ca-
pability is not fully harnessed by OSCAR cur-
rently but is available for administrators or
standard users.

C3 is used internally throughout the OSCAR
toolkit to distribute files and perform parallel
operations on the cluster. For example, the user
management commands, e.g.,useradd , are
made cluster aware using the C3 tools. Since
C3 enables standard Linux commands to be run
in parallel, administrators can use the tools to
maintain clusters. A common example is the
installation of a RPM on all nodes of the clus-
ter, e.g.,

shell$ cexec rpm -ivh \

2rsync is a tool to transfer files similar to
rcp /scp [5].

foo-1.0.i386.rpm

3.3 Environment Switcher

Managing the shell environment—both at
the system-wide level as well as on a per-
user basis—has historically been a daunting
task. For cluster-wide applications, system
administrations typically need to provide cus-
tom, shell-defendant startup scripts that, cre-
ate and/or augmentPATH, LD_LIBRARY_
PATH, and MANPAGEenvironment vari-
ables. Alternatively, users could hand-edit
their “dot” files (e.g., $HOME/.profile ,
$HOME/.bashrc , and/or$HOME/.cshrc)
to create/augment the environment as neces-
sary. Both approaches, while functional and
workable, typically lead to human error—
sometimes with disastrous results, such as
users being unable to login due to errors in their
“dot” files.

Instead of these models, OSCAR provides
the env-switcher OSCAR package.
env-switcher forms the basis for sim-
plified environment management in OSCAR
clusters by providing a thin layer on top of
the Environment Modules package [9, 10].
Environment Modules provide an efficient,
shell-agnostic method of manipulating the
environment. Basic primitives are provided
for actions such as: add a directory to a
PATH-like environment variables, displaying
basic information about a package, and setting
arbitrary environment variables. For example,
a module file for setting up a given application
may include directives such as:

setenv FOO_OUTPUT $HOME/results
append-path PATH /opt/foo-1.2.3/bin
append-path \

MANPATH /opt/foo-1.2.3/man

The env-switcher package installs and
configures the base Modules package and cre-
ates two types of modules: those that are un-
conditionally loaded, and those that are subject
to system- and user-level defaults.

Linux Symposium 391

Many OSCAR packages use the unconditional
modules to append thePATH, set arbitrary en-
vironment variables, etc. Hence, all users au-
tomatically have these settings applied to their
environment (regardless of their shell) and
guarantee to have them executed even when ex-
ecuting on remote nodes viarsh /ssh .

Other modules are optional, or a provide one-
of-many selection methodology between mul-
tiple equivalent packages. This allows the sys-
tem to provide a default set of applications, that
optionally can be overridden by the user (with-
out hand-editing “dot” files). A common ex-
ample in HPC clusters is having multiple Mes-
sage Passing Interface (MPI) [11, 12] imple-
mentations installed. OSCAR installs both the
LAM/MPI [13] and MPICH [14] implementa-
tions of MPI. Some users prefer one over the
other, or have requirements only met by one of
them. Other users wish to use both, switching
between them frequently (perhaps for perfor-
mance comparisons).

Theenv-switcher package provides trivial
syntax for a user to select which MPI package
to use. Theswitcher command is used to
select which modules are loaded at shell initial-
ization time. For example, the following com-
mand shows a user selecting to use LAM/MPI:

shell$ switcher mpi = lam-6.5.9

3.4 OSCAR Database

The OSCAR database, or ODA, is used to de-
scribe the software in an OSCAR cluster. As of
OSCAR version 2.2.1, ODA has seven tables
in a MySQL database namedoscarwhich runs
on the head node. Every OSCAR package has
an XML meta file namedconfig.xml that
is used to populate the package database. This
XML file contains a description of the package,
and the RPM names associated with the pack-
age. Thus the database enables a user to find
information on packages quickly and easily.

ODA provides a command line interface into
the database via theoda command. This offers
easier access into the database without having
to use a MySQL client. ODA also provides an
abstraction layer between the user and the ac-
tual backing store method. The internal orga-
nization of data is masked through the use of a
uniform interface irrespective of this underly-
ing database engine. The retrieval and update
of cluster information is aided by the use of
ODA “shortcuts” to assist with common tasks.

ODA is intended to provide OSCAR package
developers with a central repository for infor-
mation about the installed cluster. This alle-
viates the problem of every package developer
having to keep an independent data store, and
makes the addition and removal of packages
easier.

3.5 OSCAR Packages

An OSCAR package is a simple way to wrap
software and a given configuration for a cluster.
The most basic OSCAR package is an RPM
in the appropriate location in the package di-
rectory structure. The modularity of this fa-
cility allows for easy addition of new software
to the framework. OSCAR packages are most
useful, however, when they also provide sup-
plemental documentation and a meta file de-
scribing the package. The packaging API pro-
vides authors the ability to make use of scripts
to configure the cluster software outside of the
RPM itself. The scripts fire at different stages
of the installation process and test scripts can
be added to verify the process. Additionally,
an OSCAR Package Downloader (OPD) (see
Section 3.6) is provided to simplify acquisition
of new packages.

With this modular design, packages can be up-
dated independently of the core utilities and
core packages. The OSCAR toolkit is freely
redistributable and therefore requires all “se-

Linux Symposium 392

lected” packages to adhere to this constraint.
However, any software which does not fulfill
this requirement can be made available via an
OSCAR repository with access via OPD.

The contents and directory structure of a typi-
cal OSCAR package are listed below. For fur-
ther details on the creation of packages for the
toolkit, see the OSCAR Architecture document
in the development repository [15].

config.xml – meta file with description,
version, etc.

RPMS/ – directory containing binary RPM(s)
for the package

SRPMS/ – directory containing source
RPM(s) used to build the package

scripts/ – set of scripts that run at
particular times during the installa-
tion/configuration of the cluster

testing/ – unit test scripts for the package

doc/ – documentation and/or license infor-
mation

3.6 OSCAR Package Downloader

The OSCAR Package Downloader (OPD) pro-
vides the capability to download and install
OSCAR software from remote package repos-
itories. A package repository is simply an FTP
or web site. Given the ubiquitous access to
FTP and web servers, any organization can
host their own OSCAR package repository and
publish their packages on it. There is no cen-
tral repository; the OPD network was designed
to be distributed such that no central author-
ity is required to publish OSCAR packages.
Although the OPD client program downloads
an initial list of repositories from the OSCAR

Working Group web site,3 arbitrary repository
sites can be listed on the OPD command line.

Since package repositories are FTP or web
sites, any traditional FTP client or web browser
can also be used to obtain OSCAR packages.
Most users prefer to use the OPD client it-
self, however, because it provides additional
functionality over that provided by traditional
clients. OPD offers two interfaces: a sim-
ple menu-based mechanism suitable for inter-
active use and a command-line interface suit-
able for use by higher-level tools (or automated
scripts).

Partially inspired by the Comprehensive Perl
Archive Network (CPAN), OPD provides the
following high-level capabilities:

• Automating access to a central list of
repositories

• Browsing packages available at each
repository

• Providing detailed information about
packages

• Downloading, verifying, and extracting
packages

While the job that OPD performs is actually
fairly simple and could be performed manu-
ally, having an automated tool for these func-
tions provides ease of use for the end-user, per-
forms multiple checks to ensure that down-
loaded and extracted properly, and lays the
groundwork for higher-level OSCAR pack-
age/retrieval tools.

3The centralized repository list is maintained by the
OSCAR working group. Upon request, the list maintain-
ers will add most repository sites.

Linux Symposium 393

4 OSCAR Toolkit

The integration of common HPC packages is a
key feature of the OSCAR toolkit. The focus of
this paper is to talk about the framework, how-
ever, and its use by the various OCG working
groups. A brief highlight of the packages is
provided with further details available in other
articles [16, 17].

The “selected” packages that are included en-
able a user to install and configure the head
node and cluster nodes to run HPC applica-
tions. These HPC packages include parallel li-
braries like LAM/MPI, MPICH and PVM. A
batch queue system and scheduler—OpenPBS
and MAUI—is included and setup with a rea-
sonable set of defaults. The toolkit sets up
common cluster services such as Network File
System (NFS) and Network Time Protocol
(NTP). Security packages like Pfilter [18] are
setup as well as OpenSSH with non-interactive
access to all nodes in the cluster from the head
node. The testing scripts provided with the
packages are executed by the OSCAR frame-
work to validate the cluster installation.

5 Thin-OSCAR

5.1 Goals

Thin-OSCAR4 is a workgroup dedicated to in-
tegrate diskless clustering techniques into OS-
CAR so that the OSCAR infrastructure can use
diskless nodes. There are three class of nodes
in the thin-OSCAR perspective: diskless, sys-
temless (a disk is present in the node but there
is no operating system on the disk) and disk-
full (regular OSCAR node with disk). At the
time of this writing, only diskless and diskfull
nodes are supported out of the box. System-
less nodes are supported to some extent but you

4Workgroup web site: http://thin-oscar.
ccs.usherbrooke.ca/

will have to fiddle with some config files manu-
ally. Moreover, a generic abstraction of a node
is necessary to build a generic but comprehen-
sive interface.

5.2 Principle of operation

The thin-OSCAR model is the following: the
thin-OSCAR package is a collection of Perl
scripts and libraries that are used to transform a
regular SIS image (as used by OSCAR) into the
two ram disks necessary for diskless and sys-
temless nodes. The first ram disk to be trans-
ferred is called the “BOOT image” and is used
in order to ensure that the node has network
connectivity, NFS client capabilities and to cre-
ate a raid0 array of ram disk [19]. Once this
minimal image (less than 4Mb) has booted, the
RUN image from the second ram disk can be
transferred. The RUN image is build directly
from the SIS image and contains the complete
system that will run on the node. Some directo-
ries are copied from the SIS image while others
are NFS exports (read-only) directly exported
from the SIS image directory [20].

In order to build the BOOT image, you will
need the SIS image name, modules name to in-
tegrate into this ram disk as well as the modules
used by your NIC adapter and the kernel ver-
sion you want to use. The use of the root raid
in ram technique is necessary because one of
the thin-OSCAR goals is to support the regular
kernel (only 4 Mb or ramdisk) without recom-
pilation.

5.3 mini howto

In order to download thin-OSCAR, please use
Oscar Package Downloader and select the Uni-
versité de Sherbrooke repository. Then down-
load thin-OSCAR. Before actually using thin-
OSCAR, you have to complete a regular instal-
lation from stage 1 (selection of packages) to
stage 6 (setup networking). Assign nodes IP to

Linux Symposium 394

MAC addresses and don’t forget to click on the
“Setup Network Boot” button.

Once this is done, you are ready to use the
thin-OSCAR package. Go to/usr/lib/
oscar/packages/thin-oscar/ and
run the./oscar2thin.pl script. You will
go into an interface where you will have to
define your diskless model, link the model
to an OSCAR node and then generate all the
necessary ram disk (Configure All). Once this
is done, you are finished and can reboot all the
diskless nodes. You must know which kernel
modules are necessary for your NIC before
starting this process in order to setup network
connectivity.

5.4 thin-OSCAR future

We will certainly move to a more modern
RAM filesystem (tmpfs) as it is now available
on regular kernels and toward an automatic de-
tection of NIC modules so that BOOT ramdisk
creation can be fully automated. Multicast
transfer of the ramdisk is under study as it will
shorten the boot time and the network usage
during boot (especially for big clusters!).

The proof of concept of the thin-OSCAR has
been done and, at the time of this writing, thin-
OSCAR is used on a 180 node production disk-
less cluster [21]. An improved integration into
the OSCAR framework is under development
and will be available as soon as the OSCAR
GUI enables it.

6 HA-OSCAR

High-Availability (HA) computing, once
thought as only important to industry ap-
plications such as telecommunications, has
become critically important to the fundamental
mission of high-performance computing. This
is because very large and complex application

codes are being run on increasingly larger
scale distributed computing environments.
Since COTS (common off the shelf) hard-
ware is typically employed to construct these
environments (clusters), quite often the appli-
cation code’s runtime exceeds the hardware’s
aggregated mean-time-between-failure rate for
the entire cluster. Thus, in order to efficiently
run these very large and complex applica-
tions, high-availability computing techniques
must be employed in the high-performance
computing environment (HPC).

The current HPC release of OSCAR is fully
suitable for mission critical systems as it con-
tains several individual system elements that
exhibit a single-point-of-failure trait. In or-
der to support HA requirements, clustered sys-
tems must provide ways to eliminate single-
point-of-failures. HA-OSCAR is a focus group
with goals to add HA features to the original
HPC OSCAR distribution. While HA-OSCAR
is still a work in progress, the scope of this
effort has been defined into three incremental
steps; the creation of the HA-OSCAR white-
paper [22], Active-Hot-Standby, and n + 1
Active-Active distributions.

Hardware duplication and network redundancy
are common techniques utilized for improv-
ing the reliability and availability of computer
systems. To achieve the HA-OSCAR clus-
ter system, we must first provide a duplica-
tion of the cluster head node. There are dif-
ferent ways for implementing such an architec-
ture, which includes Active-Active, Active-Hot
Standby and Active-Cold Standby [23]. Cur-
rently, the Active-Hot Standby configuration is
the initial model of choice. Figure 2 shows
the HA-OSCAR cluster system architecture.
We have experimented with and planned to in-
corporated Linux Virtual Server and Heartbeat
mechanisms to our initial Active- Hot Standby
HA-OSCAR distribution. However, we will
extend the initial architecture to support the

Linux Symposium 395

Active-Active HA after release of the Hot-
Standby distribution. The Active-Active archi-
tecture will provide a better resource utilization
since both head nodes will be simultaneously
active and providing services. The dual mas-
ter nodes will run redundant OpenPBS, MAUI,
DHCP, NTP, TFTP, NFS, rsync and SNMP
servers. In the event of a head node outage,
all functions provided by that node will fail-
over to the second redundant head node and all
service requests will continue to be served, al-
though at a reduced performance rate (i.e. in
theory, 50% at the peak or busy hours).

An additional HA functionality to support in
HA-OSCAR is that of providing a high- avail-
ability network via redundant Ethernet ports on
every machine in addition to duplicate switch-
ing fabrics (network switches, cables, etc.) for
the entire network configuration. This will en-
able every node in the cluster to be present
on two or more data paths within its net-
works. Backed with this Ethernet redundancy,
the cluster will achieve higher network avail-
ability. Furthermore, when both networks are
up, an improved communication performance
may be achieved by using techniques such as
channel bonding of messages across the redun-
dant communication paths.

7 Conclusion

The Open Cluster Group (OCG) has formed
several working groups focused on improv-
ing cluster computing management. The first
working group, OSCAR, has evolved over time
as has the toolkit by the same name. The OS-
CAR toolkit has also been distilled in order to
allow for more general usage. This more gen-
eral OSCAR framework is being leveraged by
subsequent working groups seeking to extend
support for new cluster environments. These
new environments include the areas of disk-
less and high availability clusters. These are

Internet

Dual
 Channel

Active Node Hot Standby :
redundant recovery

Node

RAID (NAS
or SAN)
Dual

 Channel

Switch1 :
 private network

Switch2 :
 private network

Client 1 Client 2 Client 3 Client N

Heartbeat link

Figure 2: Diagram of HA-OSCAR architec-
ture.

being pursued by the Thin-OSCAR and HA-
OSCAR working groups respectively. These
OCG working groups are providing the clus-
ter community with sound tools to simplify and
speed cluster installation and management.

References

[1] Richard Ferri. The OSCAR revolution.Linux
Journal, (98), June 2002.
http://www.linuxjournal.com/
article.php?sid=5559 .

[2] Edward C. Bailey.Maximum RPM: Taking
the Red Hat Package Manager to the Limit.
Red Hat Software, Inc., 1998.

[3] Sean Dague. System Installation Suite
Massive Installation for Linux. InThe 4th
Annual Ottawa Linux Symposium (OLS’02),
Ottawa, Canada, June 26-29, 2002.

[4] System Installation Suite (SIS),
http://www.sisuite.org/ .

[5] A. Tridgell and P. Mackerras. The rsync
algorithm. Technical Report TR-CS-96-05,
Australian National University, Department

Linux Symposium 396

of Computer Science, June 1996.
(see also:http:
//rsync.samba.org/).

[6] M. Brim, R. Flanery, A. Geist, B. Luethke,
and S. Scott. Cluster Command & Control
(C3) tools suite. InTo be published in,
Parallel and Distributed Computing
Practices, DAPSYS Special Edition, 2002.

[7] Cluster Command & Control (C3) Power
Tools,http:
//www.csm.ornl.gov/torc/C3 .

[8] Al Geist et al. Scalable Systems Software
Enabling Technology Center, March 7, 2001.
http://www.csm.ornl.gov/
scidac/ScalableSystems/ .

[9] John L. Furlani. Modules: Providing a
flexible user environment. InProceedings of
the Fifth Large Installation Systems
Administration Conference (LISA V), pages
141–152, San Diego, CA, September 1991.
http:
//modules.sourceforge.net/ .

[10] John L. Furlani and Peter W. Osel. Abstract
yourself with modules. InProceedings of the
Tenth Large Installation Systems
Administration Conference (LISA ’96), pages
193–204, Chicago, IL, September 1996.
http:
//modules.sourceforge.net/ .

[11] Al Geist, William Gropp, Steve
Huss-Lederman, Andrew Lumsdaine, Ewing
Lusk, William Saphir, Tony Skjellum, and
Marc Snir. MPI-2: Extending the
Message-Passing Interface. In Luc Bouge,
Pierre Fraigniaud, Anne Mignotte, and Yves
Robert, editors,Euro-Par ’96 Parallel
Processing, number 1123 in Lecture Notes in
Computer Science, pages 128–135. Springer
Verlag, 1996.

[12] Message Passing Interface Forum. MPI: A
Message Passing Interface. InProc. of
Supercomputing ’93, pages 878–883. IEEE
Computer Society Press, November 1993.

[13] Greg Burns, Raja Daoud, and James Vaigl.
LAM: An Open Cluster Environment for
MPI. In John W. Ross, editor,Proceedings of
Supercomputing Symposium ’94, pages
379–386. University of Toronto, 1994.

[14] W. Gropp, E. Lusk, N. Doss, and
A. Skjellum. A high-performance, portable
implementation of the MPI message passing
interface standard.Parallel Computing,
22(6):789–828, September 1996.

[15] Open Cluster Group: OSCAR Working
Group. OSCAR: A packaged cluster
software for High Performance Computing.
http://www.OpenClusterGroup.
org/OSCAR .

[16] Thomas Naughton, Stephen L. Scott, Brian
Barrett, Jeff Squyres, Andrew Lumsdaine,
and Yung-Chin Fang. The Penguin in the Pail
– OSCAR Cluster Installation Tool. In
Proceedings of SCI’02: Invited Session –
Commodity, High Performance Cluster
Computing Technologies and Applications,
Orlando, FL, USA, 2002.

[17] Benoît des Ligneris, Stephen L. Scott,
Thomas Naughton, and Neil Gorsuch. Open
Source Cluster Application Resources
(OSCAR) : design, implementation and
interest for the [computer] scientific
community. InProceeding of 17th Annual
International Symposium on High
Performance Computing Systems and
Applications (HPCS 2003), pages 241–246,
Sherbrooke, Canada, May 11-14, 2003.

[18] Neil Gorsuch. PFILTER in OSCAR -
Industrial Strength Cluster Firewalls in an
Open Source Environment. InProceeding of
1st Annual OSCAR Symposium (OSCAR
2003), Sherbrooke, Canada, May 11-14,
2003.

[19] Mehdi Bozzo-Rey, Michel Barrette, Benoît
des Ligneris, and Francis Giraldeau. Root
raid in ram how to. InProceeding of 17th
Annual International Symposium on High
Performance Computing Systems and

Linux Symposium 397

Applications (HPCS 2003), pages 241–246,
Sherbrooke, Canada, May 11-14, 2003.

[20] Benoît des Ligneris, Michel Barrette, Francis
Giraldeau, and Michel Dagenais.
Thin-OSCAR : Design and future
implementation. InProceeding of 1st Annual
OSCAR Symposium (OSCAR 2003), pages
261–265, May 11-14, 2003.

[21] M. Barrette, X. Barnabé-Thériault,
M. Bozzo-Rey, C. Gauthier, F. Giraldeau,
B. des Ligneris, J.-P. Turcotte, P. Vachon, and
A. Veilleux. Development, installation and
maintenance of Elix-II, a 180 nodes diskless
cluster running thin-oscar. InProceeding of
1st Annual OSCAR Symposium (OSCAR
2003), pages 267–271, May 11-14, 2003.

[22] I. Haddad, F. Rossi, C. Leangsuksun, and
S. L. Scott. Telecom/High Availability
OSCAR Suggestions for the 2nd Generation
OSCAR. Technical Report
TR-LTU-12-2002-01, Louisiana Tech
University, Computer Science Program,
December 2002.

[23] P. S. Weygant.Cluster for high availability:
A Primer of HP solutions. Hewlett-Packard
Company, Prentice-Hall, Inc., second edition,
2001.

Porting Linux to the M32R processor

Hirokazu Takata
Renesas Technology Corp., System Core Technology Div.

4-1, Mizuhara, Itami, Hyogo, 664-0005, Japan

takata.hirokazu@renesas.com

Naoto Sugai, Hitoshi Yamamoto
Mitsubishi Electric Corp., Information Technology R&D Center

5-1-1, Ofuna Kamakura, Kanagawa 247-8501, Japan

{sugai,hitoshiy}@isl.melco.co.jp

Abstract

We have ported a Linux system to the Renesas1

M32R processor, which is a 32-bit RISC mi-
croprocessor designed for embedded systems,
and with an on-chip-multiprocessor feature.

So far, both of UP (Uni-Processor) and SMP
(Symmetrical Multi-Processor) kernels (based
on 2.4.19) have been ported and they are op-
erating on the M32R processor. A Debian
GNU/Linux based system has been also devel-
oped on a diskless NFS-root environment, and
more than 300 unofficial.deb packages have
already been prepared for the M32R target.

In this paper, we describe this new architecture
port in detail and explain the current status of
the Linux/M32R project.

1Renesas Technology Corp. is a new joint semicon-
ductor company established by Hitachi Ltd. and Mit-
subishi Electric Corp. on April 1, 2003. It would be the
industry’s largest microcontroller (MCU) supplier in the
world. The M32R family microcontroller and its succes-
sor will be continuously supplied by Renesas.

1 Introduction

A Linux platform for Renesas M32R proces-
sor has been newly developed. The Renesas
M32R processor is a 32-bit RISC microproces-
sor, which is designed for embedded systems.
It is suitable for a System-on-a-Chip (SoC) LSI
due to its compactness, high performance, and
low power dissipation. So far, the M32R fam-
ily microcomputers have widely used for the
products in a variety of fields—for example,
automobiles, digital still cameras, digital video
camcorders, cellular phones, and so on.

Recently, the Linux system has begun to be
used widely and employed even in the embed-
ded systems. The embedded systems would be
more software-oriented systems hereafter. The
more complex and larger the embedded system
is, the more complicated the software becomes
and harder to develop. In order to build these
kinds of embedded systems efficiently, it will
be more important to utilize generic OSes such
as Linux to develop software.

This is the first Linux architecture port to the
M32R processor. This porting project, called a
“Linux/M32R” project, has been active since

Linux Symposium 399

2000. Its goal is to prepare a Linux plat-
form for the M32R processor. At first, this
Linux porting was just a feasibility study for
the new M32R processor development, and it
was started by only a few members of the
M32R development team. Then, this project
has grown to a lateral project among Renesas
Technology Corp., Renesas Solutions Corp.,
and Mitsubishi Electric Corp.

In this feasibility study, we have ported not
only Linux kernel, but also whole GNU/Linux
system including GNU tools, libraries, and
other software packages, so called “userland.”
We also enhanced the M32R processor to add
MMU (Memory Management Unit) facility in
order to port Linux system. And we have also
developed an SMP kernel to investigate multi-
processing by M32R’s on-chip-multiprocessor
feature[1]. At present, the Linux/M32R system
can operate on the dual M32R cores in SMP
mode.

In this paper, we describe this new architecture
port in detail and explain about the current sta-
tus of the Linux/M32R project.

2 Linux/M32R Platform for Em-
bedded Systems

Recently, due to the continuous evolution of
semiconductor technologies, it is possible to
integrate a whole system into one LSI chip, so
called “System-on-a-Chip (SoC).”

In an SoC, microprocessor core(s), peripheral
I/O functions, internal memories, and user log-
ics can be integrated into a single chip.

By making use of wide internal buses, an LSI
can achieve high performance which can not
be realized by combination of several general-
purpose LSIs. In other words, we can optimize
system performance and cost by using SoC, be-
cause we can employ optimum hardware archi-

tecture and circuit configuration.

In such an SoC, a microprocessor core is a
key part; therefore, the more compact and
higher performance microprocessor is signif-
icantly required. To make such a high per-
formance embedded processor core, not only
in circuit and process technology but also ar-
chitectural breakthrough is necessary. Espe-
cially, multiprocessor technology is important
even for the embedded processor, because it
can improve processor performance and lower
system power dissipation by increasing proces-
sor number scalably and without increasing op-
erating clock frequency.

For an SoC with embedded microprocessor,
software is also a key point. The more sys-
tem is highly functional, the more software will
be complex and there is an increasing demand
for shortening development time of SoC. Un-
der such circumstance, recently the Linux OS
becomes to be adopted for embedded systems.
Linux platform makes it easy to port applica-
tion programs developed on a PC/EWS to the
target system. We believe that a full-featured
Linux system will come into wide use in em-
bedded systems, because embedded systems
will become more functional and higher per-
formance system will be required.

In the development of embedded systems,
it is important to tune system performance
from both hardware and software points of
view. Therefore, we used M32R softmacro
and FPGA (Field Programmable Gate Array)
devices to implement an evaluation board for
rapid system prototyping. FPGA devices are
slow, but make it possible to develop a system
in short turn-around time.

In this feasibility study, to construct a Linux
platform, we ported Linux to the M32R archi-
tecture, and validated the hardware system ar-
chitecture through the porting, and developed
the software development environment.

Linux Symposium 400

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14 (link register)

R15 (stack pointer)

0 31

General Purpose Registers

PC

0 31

Control Registers

CR0 (PSW)

CR1 (CBR)

CR2 (SPI)

CR3 (SPU)

CR5 (EVB)

CR6 (BPC)

0 31

Program Counter

0 8 63

Accumulators

processor status word

condition bit register

interrupt stack pointer

user stack pointer

EIT vector base register

backup PC

A0

A1

Figure 1: M32R register architecture

2.1 M32R architecture

The M32R is a 32-bit RISC microprocessor,
and employs load-store architecture like other
RISC processors. Therefore, memory access
is executed by only load and store instruc-
tions and logical and arithmetic operation is
executed among registers. Except for multi-
ply and divide instructions, most of instruc-
tions can be executed in one clock, and instruc-
tion completion does not depend on the the in-
struction issuing order (out-of-order comple-
tion). The M32R supports DSP operation in-
structions such as multiply and accumulate in-
structions.

Figure 1 shows the M32R register architec-
ture. The M32R has sixteen 32-bit general pur-
pose registers (R0∼ R15) and 56-bit accumu-
lators for the multiply and accumulate opera-
tions. R14 is also used as a link register (LR)
which keeps return address for a subroutine
call. There are two stack pointer registers, SPI
(interrupt stack pointer) and SPU (user stack
pointer). The CPU core selects one of them as
a current stack pointer (R15; SP) by the SM
(stack mode) bit of the PSW (processor status
word).

2.2 M32R softmacro

The M32R softmacro is a compact micropro-
cessor, developed to integrate into a SoC. It is
a full synthesizable Verilog-HDL model and it
has an excellent feature that the core does not
depend on a specific process technology. Due
to a synchronous edge-triggered design, it has
good affinity to EDA tools.

This M32R softmacro is so compact that it can
be mapped into one FPGA. Utilizing such an
M32R softmacro, we developed software on a
prototype hardware and co-designed hardware
and software simultaneously.

To port Linux to the M32R, some enhance-
ment of the M32R softmacro core was needed;
processor mode (user mode and supervisor
mode) was introduced and an MMU module
was newly supported.

• TLB (Translation Lookaside Buffer): in-
struction/data TLBs are full-associative,
32-entries each, respectively.

• page size : 4kB/16kB/64kB (user page),
4MB (large page)

2.3 Integrated debugging function and SDI

The integrated debugging function is a signifi-
cant characteristic of the M32R family micro-
computer. The M32R common debugging in-
terface, called as SDI (Scalable Debug Inter-
face), is utilized via five JTAG pins; the in-
ternal debug functions are controlled through
these debug pins.

Using the JTAG interface defined as IEEE
1149.1, internal debug function can be used.
No on-chip or on-board memory to store mon-
itor programs is necessary, because such moni-
tor programs can be provided and executed via
JTAG pins.

Linux Symposium 401

3 Porting Linux to the M32R

The Linux system consists of not only the
Linux kernel, but also the GNU toolchain and
libraries. Of course, a target hardware environ-
ment is also necessary to execute Linux.

Therefore we had to accomplish the following
tasks:

• Porting the Linux kernel

• Development of Linux/M32R platforms
(M32R FPGA board, etc.)

• Enhancement of the GNU toolchain

• Porting libraries (GNU C library, etc.)

• Userland; preparing software packages

Actually, in the Linux/M32R development,
these tasks have developed concurrently.

3.1 Porting Kernel to the M32R

In the Linux kernel, the architecture-dependent
portion is clearly distinguished. Therefore, in
case of a new architecture port, all you need to
do is prepare only architecture dependent code,
which is far less than whole Linux code. In
the M32R case,include/asm-m32r/ and
arch/m32r/ are needed.

To be more precise, we can prepare the
architecture-dependent portion in reference to
the other architecture implementation. How-
ever, it has some difficulties in rewriting these
portions:

asm function : It was very difficult to port
some headers in which asm statement
is extensively used, because an insuf-
ficient and inadequate rewriting easily
cause bugs which are very hard to debug.

function inlining : In the Linux source code,
function inlining is heavily used. We can
not disable the compiler’s inline optimiza-
tion function to compile the kernel source,
but a buggy toolchain sometimes causes a
severe problem in optimization.

In this porting, we started with a minimum
configuration kernel. We prepared stub rou-
tines, built and checked the kernel operation,
and gradually added files ofkernel/ , mm/,
fs/ , and other directories. When we started
kernel porting, there was no evaluation board.
So, we made use of GNU M32R simulator to
port a kernel at first.

The GNU simulator was very useful at the ini-
tial stage of kernel porting, though it does not
support MMU. It had also good characteris-
tics that downloading was quite fast comparing
with evaluation board and C source level debug
was possible.

Employing the simulator and initrd image of
romfs root filesystem, it is possible to develop
and debug kernel’s basic operation, such as
scheduling, initialization and memory manage-
ment. Indeed, the demand loading is per-
formed after/sbin/init is executed by a
execve() system call at the end of kernel
boot sequence ofinit() .

At first, we started to port the kernel 2.2.16.
The current stable version of the M32R kernel
is 2.4.19 and now we are developing 2.5 series
kernel for the M32R.

3.1.1 System Call Interface

In the M32R kernel, like other processors, a
system call is handled by a system call trap
interface. In the system call interface (syscall
I/F), all general purpose registers and accumu-
lators are pushed onto the kernel stack to save

Linux Symposium 402

System Call : TRAP#2
R7 : System Call Number
R0 .. R6 : arg0 .. arg6 (max. 7 arguments)

User Process

User Stack (SPU)

Kernel

Kernel Stack (SPI)

System Call
Execution

System Call
Invocation TRAP#2

Change Stack Pointer

Figure 2: System call interface

the context.

In Fig. 2, the syscall ABI (Application Binary
Interface) for the M32R is shown. Two stack
pointers, kernel stack (SPI) and user stack
(SPU), are switched over by software at the en-
try point of syscall I/F routine, because stack
pointers do not change automatically byTRAP
instruction. In order to switch stack point-
ers without working register and avoid multi-
ple TLB miss exception,CLRPSWinstruction
is newly introduced.

The stack frame formed by the syscall I/F rou-
tine is shown in Fig. 3. It should be noted
that there is a special system call in Linux,
like sys_clone(), that has particular interface
passing a stack top address as a first argu-
ment. Therefore, we employ a parameter pass-
ing method: The stack top address (∗pt_regs)
is always put onto the stack as a implicit stack
parameter like the SuperH implementation.

According to the ABI of the M32R gcc com-
piler, the first 4 arguments are passed by regis-
ters and the following arguments are passed by
stack. Therefore, the∗pt_regs parameter can
be accessed as the eighth parameter on the ker-

R4
R5
R6

*pt_regs
R0
R1
R2
R3
R7
R8
R9

R10
R11
R12

syscall_nr
ACC0H
ACC0L
ACC1H
ACC1L
PSW
BPC
SPU
R13
LR
SPI

ORIG_R0

+0x00
+0x04
+0x08
+0x0c
+0x10
+0x14
+0x18
+0x1c
+0x20
+0x24
+0x28
+0x2c
+0x30
+0x34
+0x38
+0x3c
+0x40
+0x44
+0x48
+0x4c
+0x50
+0x54
+0x58
+0x5c
+0x60
+0x64

Lower Address

Upper Address

Stack Top; SPI
(= pt_regs)

Figure 3: Stack frame formed by a system call

nel stack.

The syscall_nr and ORIG_R0 field are
used for the signal operations. When a sys-
tem call is issued, its system call number is
stored intoR7 and trap instruction is executed.
syscall_nr also holds the system call num-
ber in order to determine if a signal handler is
called from a system call routine or not. Be-
cause theR0 field might be changed to the re-
turn value of a system call,ORIG_R0 keeps
the original value ofR0 in preparation to restart
the system call.

3.1.2 Memory Management

Linux manages the system memory bypaging.
In the M32R kernel, the page size is 4kB like
the other architecture.

Linux Symposium 403

TLB miss handler

access exception handler

do_page_fault()

handle_mmu_fault()

(1) TLB miss exception
(2) access exception

reexecute after
the execution of
exception handlers

MMU exception!

Figure 4: Exception handling for the demand-
loading operation

In demand loading and copy-on-write opera-
tions, a physical memory page can be newly
mapped when apage faulthappens. Such a
page fault is handled by bothTLB miss handler
andaccess exception handler(Fig. 4).

demand loading : If an instruction fetch or
operand access to the address which is not
registered in page table, an MMU excep-
tion happens. In case of a TLB miss ex-
ception, TLB miss handler is called. To
lighten the TLB miss handling operation,
TLB handler only sets TLB entries. Page
mapping and page-table setting operations
are to be handled by the access exception
handler; For accessing a page which does
not exist in the page table, the TLB miss
handler sets the TLB entry’s attribute to
not-accessible at first. After that, since
the memory access causes an access ex-
ception due to not-accessible, access ex-
ception handler deal with the page table
operations.

copy-on-write : In Linux, copying a process
by fork() and reading a page in read-
only mode are handled as a copy-on-write
operation to reduce vain copy operations.
For such a copy-on-write operation, TLB
miss handler and access exception handler
are used like a demand loading operation.

The M32R’s data cache (D-cache) is indexed
and tagged physically. So, it does not have to
take care the cache aliasing. Therefore the D-
cache is flushed only for a signal handler gen-
eration and a trampoline code generation.

To simplify and speed up the cache flushing
operations for trampoline code, a special cache
flush trap handler (trap#12) is established in the
M32R kernel.

3.1.3 SMP support

In Linux 2.4, multiprocessing performance is
significantly improved compared with Linux
2.2 or before, because the kernel locking for
accessing resources is finer.

To implement such a kernel locking on SMP
kernel, spinlock is generally used for mutual
exclusion control. But the M32R has no
atomic test-and-set instruction, the spinlock
operations can be implemented withLOCKand
UNLOCKinstructions in the M32R kernel.

The LOCK and UNLOCKinstructions are a
load and store instructions for mutual exclu-
sion operation, respectively.LOCKacquires
and keeps a privilege to access the CPU bus
until UNLOCKinstruction is executed. Access-
ing a lock variable byLOCK/UNLOCKinstruc-
tion pair under a disabled interruption condi-
tion, we implemented an atomic access.

Figure 5 shows an M32R on-chip-
multiprocessor prototype chip. Linux SMP
kernel can be executed on the on-chip mul-
tiprocessor system. On-chip multiprocessor
might be a mainstream in near future even in
embedded systems, because multiprocessor
system can enhance the CPU performance
without increasing operating clock frequency
and power dissipation. In this chip, two M32R
cores are integrated and each has its own cache
for good scalability.

Linux Symposium 404

(a) Chip (b) CPU

Figure 5: A micrograph of an on-chip-multiprocessor M32R prototype chip

3.2 Development of Linux/M32R Platform

To execute full-featured Linux OS, an MMU
is necessary; therefore, we developed a new
M32R softmacro core with an MMU and made
an evaluation board “Mappi,” which used FP-
GAs to map the M32R softmacro core, as a
Linux/M32R platform.

As shown in Fig. 6, the Mappi evaluation
board consists of two stacked boards. The up-
per board is a CPU board and the lower board
is an extension board. The CPU board has no
real CPU chip, but it has two large FPGAs on
it. We employ the M32R softmacro core and
map it onto the FPGAs.

The Mappi board is a very flexible system for
prototyping. If we have to modify a CPU or
other integrated peripherals, we can immedi-
ately change and fix them by modifying their
Verilog-HDL model.

At first, we could only useinitrd and
busybox on it, because the Mappi system
had only a CPU board and it had only 4MB
SRAMs. After the extension board was devel-
oped, more memory (SDRAM), Ethernet, and

PC-card I/F became available. So, we intro-
duced NFS and improved the porting environ-
ment. It was Dec. 2001 that we succeeded
in booting via a network using the extension
board.

Utilizing the M32R’s SDI function and JTAG-
ICE, mentioned before, we can download and
debug a target program via JTAG port. It
is much faster than a serial connection be-
cause the Debug DMA function is used for
downloading and refering internal resources.
Of cource, it is also possible to set hardware
breakpoints for the PC break and the access
break via SDI.

Generally speaking, it is too difficult to de-
velop and debug software programs on an un-
steady hardware which is under development.
But, we could debug and continued to develop
the system by using the SDI debugger, because
the SDI debugger made it possible to access
the hardware resources directly and it was very
useful for the kernel debugging.

Finally, we constructed an SMP environment
to execute the SMP kernel, mapping the M32R
softmacro cores to two FPGAs on the Mappi

Linux Symposium 405

CPU

Mem BIU

FPGA#0

I/O

FPGA#1

User
Logic

CPU Board

Display
Cont. LAN

Extension Board

PC-card

FlashROM
 4MB

SDRAM
 64MB

Figure 6: Mappi: the M32R FPGA evaluation board; it has the M32R softmacro on FPGA (CPU,
MMU, Cache, SDI, SDRAMC, UART, Timer), FPGA Xilinx XCV2000E×2, SDRAM(64MB),
FlashROM, 10BaseT Ethernet, Serial 2ch, PC-card slot×2, and Display I/F(VGA)

CPU board; concretely, we replaced the user
logic portion in FPGA#1 shown in Fig. 6
with an another M32R core with a bus arbitor,
and modified the ICU (Interrupt Control Unit)
to support inter-processor interruption for the
multiprocessor.

After the M32R prototype on-chip-
multiprocessor chip was developed, the
Linux/M32R system including userland appli-
cations has been mainly developed by using
the real chip, because the operating clock
frequency of the M32R FPGA is 25MHz but
the M32R chip can run more than 10 times
faster.

3.3 M32R GNU toolchain enhancement

The GNU toolchain is necessary to develop the
Linux kernel and a variety of Linux application
programs. When we started the Linux port-
ing, we had only Cygnus’s (now it’s Red Hat,
Inc.) GNUPro™m32r-elf toolchain. It was
sufficient for the kernel development; how-
ever, it could not be applicable to user applica-
tion development on Linux, because in a mod-
ern UNIX system a dynamic linking method

is strongly required to build a compact system
and achieve higher runtime performance. (Al-
though a static linked program is much faster
than a dynamic linked program if the program
size is small. The bigger a program becomes,
the larger cache miss penalty would be.)

We enhanced the M32R GNU toolchain to sup-
port shared libraries:

• Change BFD library to support dynamic
linking; some relocations were added for
dynamic linking.

• Change GCC and Binutils to support PIC
(Position Independent Code).

Because the version of the GNUpro m32r-elf
gcc was 2.8 and too old, we had to upgrade
and develop a new m32r-linux toolchain. We
applied GNUpro patch to the gcc of the FSF
version and developed GCC (v2.95.4, v3.0,
v3.2.2) and Binutils (v2.11.92, v2.13.90).

In a prologue portion of a C function, the fol-
lowing code is generated when the-fPIC op-
tion is specified.

Linux Symposium 406

; PROLOGUE
push r12
push lr
bl .+4 ; get the next instruction’s

; PC address to lr
ld24 r12,#_GLOBAL_OFFSET_TABLE_
add r12,lr

We also modified BFD libraries to support
dynamic linking. We referenced the i386
implementation and supported the ELF dy-
namic linking. In the ELF object format [3],
GOT (Global Offset Table) and PLT (Proce-
dure Linkage Table) are used for the dynamic
linking. In the M32R implementation, the
GOT is refered by R12 relative addressing and
the RELA type relocation is emoployed. Like
a IA-32 implementation, the code fragment of
PLT refers the GOT to determine the symbol
address, because it is suitable and efficient for
the M32R’s cache which can be simply flushed
whole caching data.

As for GDB, we enhanced it to support a new
remote targetm32rsdi to use the SDI remote
connection. By using the gdb, we can do a re-
mote debugging of the kernel in C source-level.
In the latest version ofm32r-linux-gdb/
m32r-linux-insight (v5.3), we have
employed aSDI server that engages in ac-
cessing the JTAG port of the ICE/emmulator
connected with the parallel port of the host PC.
This gdb makes it possible to debug using SDI,
communicating with the SDI server in back-
ground. Though the SDI server requires priv-
ileged access to use parallel port, we can use
gdb in user mode.

3.4 Porting GNU C library

The GNU C library is the most fundamental
library, which is necessary to execute a variety
kind of application programs. So we decided to
port it to implement full-featured Linux system
for a study, though its footprint is too large for
a tiny embedded system.

We started to port glibc-2.2.3 (v2.2.3) in eary
stage of the Linux/M32R porting, it was about
the same time that the kernel’s scheduler began
to work.

Then, the glibc for the M32R have been devel-
oped step by step;

• Check by a statically linked program, for
example,hello.c (newlib version→
glibc version).

• Build a shared library version of glibc and
check by dynamically linked programs,
hello.c, busybox, etc.

• Port the LinuxThreads library to support
Pthreads (POSIX thread).

The latest version of the glibc for the M32R
is glibc-2.2.5 (v2.2.5). It also supports a
LinuxThreads library, that implements POSIX
1003.1c kernel threads for Linux. In this Lin-
uxThreads library, we implemented fast user-
level mutual exclusion using the Lamport’s
algorithm [2], because the system call im-
plementation was quite slow due to context
switching.

After the glibc porting was finished, we started
to build various kind of software. But it has
taken several months to implement and debug
the following:

• Fixup operations of the user_copy rou-
tines in the kernel

• Resolve the relocation by a dynamic
linker ld-linux.so

• Signal handling

Especially, the dynamic linking operation was
the one of the most difficult portions in this

Linux Symposium 407

GNU/Linux system porting, because the dy-
namic linker/loader resolved global symbols
and subroutine function addresses in runtime.
Furthermore, the dynamic linker itself is also
a shared library, so we can not debug it in
C source-level. However, we debugged the
linker, making use of a simulator, a SDI de-
bugger, and all kinds of things.

3.5 Userland

For the sake of preparing software packages
and making the Linux/M32R distributable, we
built major software packages.

We chose the Debian GNU/Linux as a base dis-
tribution, because it is well-managed and all of
the package sources are open and published.
In Debian, using command programs such as
dpkg andapt , it is possible to manage abun-
dant software packages easily.

To build a binary package for the M32R, we
did as the following:

1. Expand the source tree from the Debian
source package (*.dsc and *.orig.tar.gz)

2. Rebuild a binary package by using a
dpkg- buildpackage command,
specifying the target architecture tom32r
(dpkg-buildpackage -a m32r
-t m32r-linux).

So far, more than 300 unofficial.deb pack-
ages have been prepared for the M32R target,
including the basic commands, such as self-
tools and shells, utilities, package management
tools (dpkg , apt), and application programs
as follows:

adduser, anacron, apt, base-files, bash, bc,
binutils, bison, boa, bsdgames, bsdutils, busy-
box, coreutils, cpp-3.2, cvs, debianutils, de-

Figure 7: A snapshot of the desktop image of
X; the window manager isAfterStep

vfsd, diff, dpkg, e2fsprogs, elvis-tiny, ex-
pect, file, fileutils, findutils, flex, ftp, g++-
3.2, gcc-3,2, grep, gzip, hostname, klogd, less,
libc6, locales, login, lynx, m4, make, mawk,
modutils, mount, nbd-client, net-tools, net-
base, netkit-inetd, netkit-ping, passwd, perl-
base, perl-modules, portmap, procps, rsh-
client, rsh-server, samba, sash, sed, strace,
sysklogd, tar, tcl8.3, tcpd, tcsh, telnet, textu-
tils, util-linux, wu-ftpd, . . .

Most of these packages were developed under
the cross environment, except some software
packages, such as Perl, Xserver, gcc, etc. Be-
cause they had to be configured in the target
environment. Therefore, self tools were nec-
essary in order to build packages under the
self environment. Fortunately, by using.deb
packages anddpkg-cross commands, the
same package files can be completely shared
between the self and the cross environment.

Regarding the GUI environment, we have
ported some window systems (X, Microwin-
dows, Qt-Embedded). We ported them eas-
ily using a framebuffer device. Figure 7 is a
sample screen snapshot of X desktop image.
gears and bounce are demonstration pro-

Linux Symposium 408

grams of the Mesa-3.2 3D-graphics library.

4 Evaluation

The Linux/M32R system’s conformance have
been checked and validated by using the LSB
(Linux Standard Base) testsuites, which are
open testsuites and based on the LSB Specifi-
cation 1.2 [5]. In this validation, we compared
the following two environments.

Linux/M32R
based on the Debian GNU/Linux (sid)
linux-2.4.19 (m32r_2_4_19_20030109)
glibc-2.2.5 (libc6_2.2.5-6.4_m32r.deb)
gcc-3.0 (self gcc; m32r-20021112)

RedHat7.3 2

linux-2.4.18-10 (kernel-2.4.18-10.i686.rpm)
glibc-2.2.5 (glibc-2.2.5-42.i686.rpm)
gcc-2.96

The result of validation is shown in Table 1.
Judging from the result, the LSB conformance
of the Linux/M32R is no less good than the
RedHat Linux 7.3, because the original De-
bian distribution has basically good LSB con-
formance and quality.

5 Future work

To apply the Linux/M32R to embedded sys-
tems, it is indispensable to tune and shrink the
whole system more and more. As for the ker-
nel, particulary, tuning and improving realtime
performance will be strongly required.

At present, we are porting the Linux 2.5 se-
ries kernel for the M32R in order to support
the state of the art kernel features, such as

2The kernel and glibc are upgraded and different
from the original Red Hat 7.3 distribution.

O(1) scheduler, the preemptible kernel, the no-
MMU support, the NUMA support, and so on.

We are also planning to utilize DMA function
and internal SRAM to increase Linux system
performance. And for the high-end embedded
systems, we intend to continuously focus on
the SMP kernel for the on-chip-multiprocessor.

6 Summary

To build a Linux platform, we have ported
a GNU/Linux system to the M32R processor.
In this work, a hardware/software co-design
methodology was employed, using a full syn-
thesizable M32R softmacro core to accelerate
Linux/M32R development. To develop SoC in
a short time, such a hardware and software co-
design and co-debugging methodology will be-
come more important hereafter.

Linux will play a great role in the field of not
only PC servers but also embedded systems in
the near future. Through the feasibility study,
we believe that the Open Source will provide
a quite large impact on developing embedded
system design and development. If we have op-
portunity, we hope to publish the Linux/M32R
and M32R GNU toolchain.

7 Acknowledgements

The authors greatly acknowledge the collabo-
ration and valuable discussion with the M32R
development team [1] and thank Takeo Taka-
hashi, Kazuhiro Inaoka, and Takeshi Aoki for
their special contributions, and we would also
like to thank Dr. Toru Shimizu and Hiroyuki
Kondo for their promotion of the M32R pro-
cessor development project.

Linux Symposium 409

ANSI.os POSIX.os LSB.os RedHat7.3
Section ANSI.hdr

F M
POSIX.hdr

F M F M
Total

Total

Expect 386 1244 1244 394 1600 1600 908 908 8284 8284
Total

Actual 386 1244 1244 394 1600 1600 908 908 8284 8284
Succeeded 176 1112 86 207 1333 0 695 0 3609 3583
Failed 4 0 0 5 2 0 49 0 60 45
Warnings 0 12 0 0 5 0 2 0 19 18
FIP 2 0 0 2 2 0 1 0 7 7
Unresolved 0 0 0 0 0 0 5 0 5 4
Uninitiated 0 0 0 0 0 0 0 0 0 0
Unsupported 203 0 0 179 72 0 59 0 513 513
Untested 0 4 0 0 7 0 39 0 50 43
NotInUse 1 116 1158 1 179 1600 58 908 4021 4021

Key: F:function, M:macro; FIP: Further Information Provided

Table 1: LSB 1.2 testsuites result

References

[1] Satoshi Kaneko, Katsunori Sawai, Norio
Masui, Koichi Ishimi, Teruyuki Itou,
Masayuki Satou, Hiroyuki Kondo, Naoto
Okumura, Yukari Takata, Hirokazu Takata,
Mamoru Sakugawa, Takashi Higuchi,
Sugako Ohtani, Kei Sakamoto, Naoshi
Ishikawa, Masami Nakajima, Shunichi
Iwata, Kiyoshi Hayase, Satoshi Nakano,
Sachiko Nakazawa, Osamu Tomisawa,
Toru Shimizu,A 600MHz Single-Chip
Multiprocessor with 4.8GB/s Internal
Shared Pipelined Bus and 512kB Internal
Memory, Proceedings of 2003
International Solid-State Circuits
Conference, 14.5.

[2] Laslie Lamport,A Fast Mutual Exclusion
Algorithm, ACM Trans. on Computer
System, Vol. 5, No. 1, Feb. 1987, pp. 1-11.

[3] Executable and Linkable Format (ELF),
http:
//www.cs.northwestern.edu/
~pdinda/ics-f01/doc/elf.pdf

[4] Debian GNU/Linux,
http://www.debian.org/

[5] LSB testsuites, http:
//www.linuxbase.org/test/ ,
ftp://ftp.freestandards.org/
pub/lsb/test_suites/
released-1.2.0/runtime/

Linux ∗ in a Brave New Firmware Environment

Matthew Tolentino
Intel Corporation

Enterprise Products & Services Division

matthew.e.tolentino@intel.com

Abstract

Initially included exclusively on Intel®1 Ita-
nium®2 platforms, the Extensible Firmware
Interface Architecture (EFI) will soon be sup-
ported on IA-32 server, workstation, and desk-
top systems. This paper provides insight into
the design and composition of an EFI en-
abled IA-32 Linux kernel capable of booting
on legacy free platforms. An overview of the
EFI development environment is provided, in-
cluding the specifications, development tools,
and software development kits available for de-
velopment today.

The design and prototype implementation of
the kernel initialization sequence from the in-
stantiation of the EFI enabled Linux boot
loader to the login prompt is detailed with
an emphasis on maintaining backward com-
patibility with existing legacy platforms. The
legacy free VGA replacement, the Universal
Graphics Adapter (UGA), is introduced in the
context of Linux, including the requirements
for use within the kernel. Additionally, details
of a prototype implementation of the Univer-
sal Graphics Adapter Driver stack, including
an EFI Byte Code Interpreter and Virtual Ma-
chine (EBC VM), are presented and analyzed.

∗Linux is a trademark of Linus Torvalds
1Intel is a registered trademark of the Intel Corpora-

tion
2Itanium is a registered trademark of Intel Corpo-

ration or its subsidiaries in the United States and other
countries

This paper concludes with a call for kernel de-
velopers to review and provide feedback on the
design and implementation presented.

1 Introduction

This paper begins with an overview of the Ex-
tensible Firmware Interface and the Universal
Graphics Adapter. The architecture of an EFI
enabled Linux kernel is presented as well as
the design and implementation details of the
EFI Linux Boot Loader, kernel initialization
changes, and support for the Universal Graph-
ics Adapter. Future enabling work is outlined
and conclusions presented.

2 EFI Overview

The EFI Specification defines a consistent, ar-
chitecturally neutral interface between plat-
form firmware and operating systems. De-
signed to address the limitations and issues in-
herent in legacy BIOS support for PC-AT sys-
tems, EFI provides a core set of services and
protocol interfaces used to initialize platform
hardware as well as common interfaces to ac-
cess platform capabilities. Additionally, EFI
aggregates platform configuration information
that operating systems require for initialization
– information that has been traditionally ob-
tained through BIOS calls. This includes de-
tails ranging from the system memory map and
the number of processors in the system to the

Linux Symposium 411

parameters of the current video console. Fur-
ther, the structure of EFI is modular such that
as incarnations of new technologies are incor-
porated into systems, the interfaces to the op-
erating system for these technologies will not
require significant modifications. The system
level view of the conceptual design of EFI is
depicted in figure 1.

SMBIOS

ACPI

Operating System Kernel

EFI OS Boot Loader

EFI
Boot Services

EFI Runtime
Services

Hardware

Interfaces
from other

specs

Figure 1: EFI System View

Once the system is powered on, the system
firmware initializes and owns all hardware re-
sources. Before an operating system is loaded,
EFI provides a pre-boot environment and man-
ages platform resources through the Boot Ser-
vices and Runtime Services tables. These
tables, encapsulated in the EFI System Ta-
ble provide access to system resources. Un-
like legacy BIOS which executes in 16bit real
mode, EFI provides a 32bit protected mode op-
erating environment.

2.1 EFI Boot Services

Accessed through the EFI System Table, EFI
Boot Services provide platform independent
functionality that is only available before an
operating system is loaded. This includes ser-
vices such as memory allocation routines, de-
vice access protocols, time services, and others

detailed in [1]. Once control of the system is
transferred to the operating system, EFI Boot
Services are terminated. The OS loader is re-
quired to call ExitBootServices() as part of the
transition of control to the operating system.

2.2 EFI Runtime Services and Drivers

The EFI Runtime Services provide OS neu-
tral platform specific functionality that persists
into OS runtime. One example of an EFI Run-
time driver is the floating point software as-
sist driver (fpswa.efi) on Itanium platforms dis-
cussed in [4]. Another example supported by
both IA-32 and Itanium platforms is the Uni-
versal Graphics Adapter driver. EFI implemen-
tations may provide any number of EFI drivers
for use during OS runtime in order to take ad-
vantage of the generic functionality. Details of
these drivers are passed to the operating system
via the EFI Configuration Table and the mem-
ory locations occupied are specified as Run-
time Memory.

2.3 EFI Configuration Table

Leveraging existing standards and technolo-
gies, the EFI configuration table provides an
interface to commonly used tables that de-
scribe platform resources. Each entry in the
Configuration Table is comprised of 2 elements
- a Globally Unique Identifier as defined in [9]
and a pointer to the respective table. Examples
of configuration table entries include ACPI ta-
bles, UGAs discovered by the firmware, and
SMBIOS tables.

2.4 EFI Boot Loader

Generally, loading and initializing an operating
system involves several steps. The first step is
the determination of the kernel image to load
into memory as well as any additional required
components, such as a RAM disk, that are re-

Linux Symposium 412

quired. The second is the act of loading the
chosen images into memory. The third and
final step involves transferring control to the
loaded kernel, thus enabling the kernel initial-
ization sequence to commence.

Several boot loaders have been developed to
load Linux on IA-32 platforms, including the
popular lilo and grub loaders described in [7]
and [8] respectively. Each of these provides the
capability to boot Linux kernels from a legacy
BIOS and offer varying degrees of functional-
ity as discussed in [3]. However, these loaders
do not provide the capability to boot from the
EFI environment. In order to boot a legacy-free
Linux kernel from EFI, an EFI native applica-
tion is necessary to set up and affect the trans-
fer of control from the firmware to the kernel.

3 UGA Overview

The UGA is a software abstraction that pro-
vides an interface for simple graphical output
that does not require specific implementation
knowledge of the video hardware. UGA serves
as a replacement for VGA hardware and video
BIOS providing graphical display capabilities
in an image that can be used by both system
firmware and operating systems. Unlike VGA,
UGA enables several significant features in-
cluding support for controlling multiple output
devices and higher default screen resolutions.
UGA ROMs may reside anywhere in mem-
ory, alleviating the need for static reservation
of specific video RAM and ROM memory re-
gions. Additionally, multiple UGA ROMs may
be used in a single system without conflict.

A key design consideration of UGA is the pro-
cessor and platform independent nature of the
driver image. Compilation of driver images
into EFI Byte Code (EBC) enables a single im-
age to execute on multiple architectures. The
resultant byte code image must be interpreted

and executed in the context of an EBC Virtual
Machine capable of translating EBC instruc-
tions to native instructions.

Because the UGA is an EBC image and operat-
ing systems are expected to use the same image
as the pre-boot firmware environment, an OS
resident EBC Virtual Machine is required. This
Virtual Machine provides an EFI execution en-
vironment within the OS, interfaces with the
console layer and the PCI subsystem of the op-
erating system, and provides the means to in-
terpret and execute the EBC instruction stream
of the UGA. Figure 2 pictorially describes this
generic design.

Figure 2: UGA Conceptual Design

Although UGA does provide graphics display
capabilities, it is not intended to replace high-
performance, operating system specific graph-
ics drivers. Rather, the UGA is specified
for use in the absence of a performance ori-
ented graphics driver. For example, a back-
end server may not require extensive graphics-
oriented functionality during normal operation.
There may also be cases where an installation
kernel may require the user to provide a graph-
ics driver. In these cases, a UGA driver may
be used as a default console driver. Further ad-
vantages of UGA can be found in section 10 of
[1].

Linux Symposium 413

3.1 OS Console Driver

Support for UGA at OS runtime requires an in-
terface to the OS specific console subsystem.
This driver is responsible for affecting change
to the video controller via the UGA protocols
outline in section 10 of [1].

3.2 OS EFI Byte Code Virtual Machine

The OS EBC Virtual Machine, as depicted in
figure 2, serves two functions. The first is to
provide an EFI emulation environment func-
tionally equivalent to the EFI pre-boot environ-
ment. This enables the use of the same UGA
driver as firmware through emulation of the
EFI Boot Services.

The second function is to provide the facility
to decode and execute EBC instructions. UGA
drivers compiled into EBC can not be directly
executed. Therefore, an OS present mecha-
nism is needed translate the EBC instruction
stream of the UGA image into instructions of
the native processor.

3.3 OS PCI Driver Interface

In pre-boot space, the UGA driver uses the PCI
I/O Protocol, a Boot Services structure, to ac-
cess the video controller. Because this mecha-
nism is no longer available when the operating
system takes control, PCI access must be pro-
vided via an OS level implementation of the
PCI I/O Protocol interface structure. This en-
ables the UGA to use the standard operating
system interface to access PCI space.

3.4 UGA EBC ROM

The OS support for UGA is capable of ex-
ecuting any UGA EBC ROM discovered by
firmware that is compliant with the EFI Driver
Model. In order to facilitate the transfer of con-
trol from EFI to the operating system, UGA

drivers used in pre-boot space will be halted
upon termination of Boot Services. The image
must be re-initialization to be used during OS
runtime.

4 Architecture of an EFI enabled
Linux Kernel

The advent of EFI on legacy free, IA-32 sys-
tems necessitates additional support in several
key areas of the Linux kernel. This section
presents an overview of the architectural dif-
ferences in booting the kernel from EFI ver-
sus legacy BIOS as well as the impact of the
changes. The details of the changes specific to
these areas are discussed in the remainder of
this paper.

4.1 Key Differences

One of the key differences in booting from EFI
versus legacy BIOS on IA-32 systems is the ca-
pability to launch the kernel in 32bit, protected
mode. The firmware no longer invokes the boot
loader in 16bit real mode. As a result, the ker-
nel no longer needs to affect the transition to
32bit, protected mode.

Loading an EFI enabled kernel requires an
EFI Linux boot loader. The loader is a na-
tive EFI application, which is responsible for
obtaining platform configuration information
EFI and loading the kernel into memory. In-
cluded as boot parameters, all platform config-
uration information is collected by the loader
and passed to the kernel. This permits the
loader to transfer control directly to the archi-
tecturally specific entry point of the kekernel.
This difference alleviates the need for the ker-
nel code that collects sytem information via
BIOS calls.

On EFI platforms, EFI defined services are em-
ployed to invoke firmware functionality as op-

Linux Symposium 414

posed to legacy BIOS calls. The EFI Runtime
Services provide a standard interface for ac-
cessing firmware and hardware in a platform
independent manner. For example, access to
the real time clock is accessed via a firmware
function in the Runtime Service table as op-
posed to directly reading CMOS. The practice
of scanning memory to find the signatures of
hardware description tables is no longer neces-
sary because tables such as ACPI are included
as part of the EFI interface.

The advent of the Universal Graphics Adapter
no longer requires static reservation of fixed
memory regions and presents the opportunity
for kernel level multi-head console support.

The design of an EFI enabled kernel requires
key modifications to the following three crucial
areas:

• Boot loader

• Kernel initialization sequence

• Console subsystem

4.2 Impact of EFI Kernel Changes

The changes to the kernel to support booting
from EFI are relatively straightforward. The
modifications to the boot loader involve ex-
tending the functionality of the IA-32 aspects
of the Elilo loader to pass EFI data structures
to the kernel.

The changes to the IA-32 kernel initializa-
tion sequence provide the capability to initial-
ize kernel data structures, such as the memory
manager, using EFI tables and data structures
versus those obtained via BIOS calls. Primar-
ily isolated in the architecturally specific di-
rectory of the kernel source tree, EFI support
provides additional initialization options with-
out affecting existing functionality. In other
words, the changes to the kernel initialization

sequence do not radically alter the architecture
of the kernel.

Inclusion of UGA support necessitates several
new Linux kernel drivers; however, this merely
provides an additional console display option.
Collectively, these drivers serve as an alterna-
tive to the legacy VGA console driver, but may
also operationally coexist.

4.3 Architectural Influence

Itanium Linux kernels have included support
for EFI for several years. Accordingly, much
of the design discussed in this paper for IA-
32 kernels has been leveraged from the Itanium
port of Linux. Additionally, the prototype im-
plementation has reused EFI related code to
also support IA-32.

5 EFI Linux Boot Loader

Launching an operating system from EFI re-
quires an EFI aware boot loader. This sec-
tion provides background on the Elilo Linux
Boot Loader, design considerations for im-
proved IA-32 support, and details of the new
boot parameters structure used to convey plat-
form configuration information to the kernel.

5.1 Elilo Background

Elilo is the predominant loader used to launch
Linux on Itanium platforms (on which EFI
is the only pre-boot firmware solution) and
has been included in numerous Itanium spe-
cific Linux distributions. Despite the pointed
focus on supporting the Itanium architecture,
a framework for booting self-extracting com-
pressed IA-32 kernels has been incorporated
into Elilo. This support permits booting IA-32
kernels without passing EFI information to the
kernel. Instead, there is an implicit assumption
that legacy mechanisms, such as BIOS calls,

Linux Symposium 415

still exist for traditional platform configuration
information retrieval. Essentially, Elilo manu-
ally fabricates the legacy boot parameters data
structure without any semblance of EFI aware-
ness.

5.2 Elilo Design Considerations

The primary consideration for modifying the
Elilo loader is to provide adequate EFI infor-
mation to the kernel to ensure proper initializa-
tion and functionality in a legacy free environ-
ment. The information required by the kernel
consists of:

• Kernel Location and Size

• RAM disk (initrd) Location and Size

• Kernel Command Line

• EFI Memory Map

• Console Information

• EFI System Table

• ACPI Tables

• Other EFI Configuration Table Entries
(HCDP, SMBIOS, etc.)

In addition to collecting and passing salient
platform configuration information to the ker-
nel, Elilo is also responsible for setting up the
environment for passing control to the kernel.
Further information regarding the features and
capabilities of Elilo can be found in [6].

5.3 EFI Aware Boot Parameters

The following boot parameter structure is in-
troduced that encapsulates the information the
kernel requires. The form of the structures is
as follows:

struct ia32_boot_params {
UINTN command_line;
UINTN efi_systab;
UINTN efi_memmap;
UINTN efi_memmap_size;
UINTN efi_memdesc_size;
UINTN efi_memdesc_version;
UINTN initrd_start;
UINTN initrd_size;
UINTN loader_addr;
UINTN loader_size;
UINTN kernel_start;
UINTN kernel_size;
struct {

UINT16 num_cols;
UINT16 num_rows;
UINT16 orig_x;
UINT16 orig_y;

} console_info;
} boot_parameters;

This data structure provides all necessary in-
formation to enable kernel initialization. Note
that inclusion of the EFI system table permits
access to the EFI Runtime Services and Con-
figuration Tables that contain further platform
configuration information and provide access
to runtime firmware functionality. For exam-
ple, the location of the ACPI tables is presented
to the kernel as an entry in the EFI Configura-
tion Table.

6 EFI Kernel Initialization

The Linux kernel initialization sequence re-
quires modification to utilize the EFI data
structures that describe the platform hardware
configuration. This section presents the details
of the kernel modifications and contrasts these
with the existing kernel initialization. The
methodology for dynamic, runtime determina-
tion of the appropriate structures to use is pre-
sented as are details on the EFI support rou-
tines necessary for proper kernel initialization.

Linux Symposium 416

6.1 Existing EFI Kernel Initialization

The Linux kernel initialization sequence was
developed to boot in 16bit real mode and obtain
platform configuration information via BIOS
calls. Figure 3 outlines the current initializa-
tion sequence of the Linux kernel.

Figure 3: Existing Kernel Initialization

6.2 Kernel Initialization on EFI Platforms

Booting from EFI simplifies the kernel initial-
ization sequence, but requires modifications to
parse EFI data structures. Figure 4 depicts
the proposed modified kernel initialization se-
quence.

In this model, the processor is already in 32
bit, protected mode when the boot loader is in-
voked, hence the real mode to protected mode
transition code in the kernel is not necessary.
Also, all platform configuration information
traditionally obtained through BIOS calls is
collected by the EFI Elilo loader and passed
via the boot parameter structure. This allevi-
ates the need for the code resident in setup.S,

Figure 4: EFI Kernel Initialization

video.S, and bootsect.S. Consequently, control
is transferred directly from the loader to the ar-
chitecturally specific startup_32() routine in 32
bit, protected mode.

6.3 Dynamic Configuration Detection

Because the structure of platform configuration
information on EFI platforms differs from the
structure of BIOS provided information, the
kernel must determine which to use to initial-
ize kernel data structures. This determination
is based on the location of the boot parameters
in memory.

The boot parameters of legacy kernels are
placed in a designated page in memory. Lever-
aging the re-use of this memory area, the boot
parameters of EFI aware kernels are placed
within the same page, but at a different offset.
The correct kernel initialization code path to
follow is determined by verifying which boot
parameters have been passed to the kernel. A
new global flagefi_enabled is set if the
kernel was found to be loaded from EFI. This
flag is used during the kernel initialization se-

Linux Symposium 417

quence to determine the appropriate data struc-
tures to use during initialization. This capa-
bility enables a single kernel image to load on
platform with either legacy BIOS or EFI.

6.4 EFI Data Structure Mapping

Initially, only a limited kernel virtual ad-
dress space is available through the tempo-
rary, statically initialized page global directory
swapper_pg_dir . This maps the first eight
megabytes of physical memory to kernel vir-
tual address space starting at 3GB.

This limited mapping is not sufficient because
EFI drivers and related structures may be lo-
cated anywhere in memory (below 4GB), thus
the kernel requires the capability to dynam-
ically map EFI pages into kernel virtual ad-
dress space for use during kernel initialization.
Examples of these structures include the EFI
memory map, RAM disk details, etc. Because
these structures are only used during early ini-
tialization, the memory is only required tem-
porarily. Once the kernel memory manager is
initialized these memory regions will be avail-
able as for normal kernel memory allocations.

6.5 EFI Memory Map

The EFI memory map provides a snapshot of
system memory usage before control is passed
to the kernel. Consisting of memory descrip-
tor entries that describe contiguous ranges of
physical memory by type, attribute, and size,
the EFI memory map serves as a replacement
for the e820h memory map obtained via the
legacy INT 15h (ax=0xe820) BIOS call. Each
EFI memory map descriptor consists of the fol-
lowing structure:

struct efi_memory_desc {
u32 type;
u64 phys_start;
u64 virt_start;

u64 num_pages;
u64 attribute;

};

In order to properly initialize the kernel mem-
ory manager as well as the EFI Runtime
Drivers and Services, the EFI memory map is
required. Several routines from the Itanium
kernel have been massaged into the IA-32 ker-
nel to support EFI memory map traversal and
parsing.

6.5.1 EFI Memory Map Walking Routine

The prototype for the EFI memory map de-
scriptor traversal routine is:

void efi_memmap_walk(
efi_freemem_callback_t
callback, void *arg);

This routine employs a callback mechanism
used to discern further information about
memory regions during memory map traver-
sal. For example, used in concert with the
find_max_pfn() callback routine, the kernel
is capable of discovering the maximum page
frame number.

6.5.2 Other Memory Map Related Rou-
tines

Several additional routines have been added
to accommodate initialization using the EFI
memory map. The following routine is used to
determine the memory type of the region de-
scribed by a given memory descriptor.

static int is_available_memory(struct
efi_memory_desc *md);

Differentiation between memory descriptor
types is necessary to determine usable regions

Linux Symposium 418

by the kernel. The following types constitute
memory regions available for kernel use.

• EFI_LOADER_CODE

• EFI_LOADER_DATA

• EFI_BOOT_SERVICES_CODE

• EFI_BOOT_SERVICES_DATA

• EFI_CONVENTIONAL_MEMORY

The following two functions are convenience
functions used to determine the type and at-
tributes of memory regions in the EFI memory
map given an address.

u32 efi_mem_type(unsigned long
phys_addr);

u64 efi_mem_attributes(unsigned long
phys_addr);

6.6 Persistent EFI Drivers and Services

Unlike EFI Boot Services, which are termi-
nated when control is transitioned to the ker-
nel, several EFI drivers and services are avail-
able for use during OS runtime. The follow-
ing sections detail these services and describe
the support framework for maintaining access
to these drivers and services as well as man-
aging the mappings into kernel virtual address
space.

6.6.1 EFI Runtime Drivers and Services

The IA-32 Linux kernel requires the capability
to call the EFI Runtime Drivers and Services
to take advantage of platform specific func-
tionality, such as access to the real time clock
(RTC), persistent EFI NVRAM environment
variables, and the capability to reset the sys-
tem. The following structure, included in the

include/linux/efi.h header constitutes the ker-
nel data structure through which calls to the
EFI Runtime Services and Drivers are man-
aged.

struct efi_runtime_services {
struct efi_table_hdr hdr;
unsigned long get_time;
unsigned long set_time;
unsigned long get_wakeup_time;
unsigned long set_wakeup_time;
unsigned long

set_virtual_address_map;
unsigned long convert_pointer;
unsigned long get_variable;
unsigned long get_next_variable;
unsigned long set_variable;
unsigned long

get_next_high_mono_count;
unsigned long reset_system;

};

Additional EFI Runtime Drivers may be em-
ployed to exploit OS independent functional-
ity. For example, the floating point software
assist driver (fpswa.efi) on Itanium platforms
discussed in [4] and the Universal Graphics
Adapter are EFI compliant runtime drivers
used on both IA-32 and Itanium platforms. De-
tails of runtime drivers are passed to the oper-
ating system via the EFI Configuration Table.

The memory occupied by runtime drivers is re-
served by the kernel to prevent the memory
manager from viewing the area as free mem-
ory. Additionally, these memory regions are
mapped into kernel virtual address space to
avoid the overhead of invoking these services
in flat, physical addressing mode. The map-
ping of runtime services and drivers into kernel
virtual address space is provided by the follow-
ing routine:

void efi_enter_virtual_mode(void);

This routine walks the EFI memory map and
maps all regions described by memory descrip-
tors of the following type:

Linux Symposium 419

• RunTimeServicesCode

• RunTimeServicesData

Once mapped, the VirtualStart field of the
memory descriptor is updated with the virtual
addressed returned by the mapping function,
ioremap() . After all memory descriptors
have been updated with virtual addresses, the
EFI Runtime routine SetVirtualAddressMap is
invoked and passed the updated EFI memory
map. SetVirtualAddressMap must be called in
physical mode requiring the capability to tran-
sition to physical mode before invocation and
return. This function updates all EFI runtime
images with virtual addresses and completes
all necessary fix-ups to enable EFI Runtime
Services to be called in virtual mode. Should
the call to SetVirtualAddressMap fail to com-
plete or return an error status code, the kernel
will panic.

During the mapping process, each memory de-
scriptor is also checked to determine if the ad-
dress for the EFI system table is included in the
range. Once SetVirtualAddressMap returns,
the EFI System Table pointer is updated with
the newly assigned kernel virtual address as are
as the kernel’s EFI data structures.

Because the ioremap capability is not avail-
able until the kernel memory manager is
initialized the efi_enter_virtual_mode() func-
tion must be called after the mem_init()
and kmem_cache_sizes_init() functions in
start_kernel().

6.7 ACPI Initialization

In order to support device discovery and power
management, kernel support for ACPI is re-
quired. The ACPI tables contain vital plat-
form configuration information necessary for
proper kernel initialization, such as the num-
ber of processors in a system, PCI interrupt

routing, etc. Inclusion of ACPI support in
kernel builds requires the kernel configuration
flag CONFIG_ACPI_EFI to be defined in order
to enable inspection of the kernel’s EFI data
structure for the ACPI tables. An additional re-
quirement for proper ACPI table discovery is to
update the following ACPI initialization func-
tion:

unsigned long __init
acpi_find_rsdp(void);

On legacy systems this function scans mem-
ory looking for the Root System Description
Pointer (RSDP). On EFI based systems, the ad-
dress of the ACPI tables is included in the EFI
Configuration Table. This function has been
updated to examine the EFI Configuration Ta-
ble for address of the RSDP.

7 Kernel UGA Architecture

The Linux kernel requires UGA support in or-
der to provide console display functionality on
legacy free platforms. Because the UGA is
compiled into EFI Byte Code and is program-
matically designed for execution in the EFI en-
vironment, kernel level support for UGA re-
quires the addition of new driver functionality.
These drivers, also pictorially described in fig-
ure 5, include:

• EFI Boot Service Emulation Driver

• EBC VM & Interpreter Driver

• UGA Console Driver

Each of these components may be built as ker-
nel driver modules, although all are required
for proper console display. Because these
drivers have minimal architectural dependen-
cies, all EBC drivers are included in a new
drivers/ebc directory of the kernel tree.

Linux Symposium 420

Figure 5: Kernel UGA Architecture

7.1 EFI Boot Services Emulation Driver

As is the case with all EFI drivers, the UGA
requires the EFI system table, as well as a
pointer to itself, as initialization parameters.
All requests from the UGA for services to allo-
cate memory, bind to the respective controller,
and other routines are based on EFI Boot Ser-
vices functionality. Because EFI Boot Ser-
vices are terminated when ExitBootServices()
is invoked, a minimal framework must be fab-
ricated within the kernel in order to simulate
EFI Boot Services. The Boot Services Emula-
tion Driver fulfills this requirement by provid-
ing kernel implementations of the Boot Service
routines. For example, the EFI memory allo-
cation routine AllocatePages() is implemented
with the kernel’s kmalloc() service.

7.2 EBC VM & Interpreter Driver

A kernel implementation of an EBC Virtual
Machine and interpreter is also required. This
driver provides the framework and execution
engine to:

• Interpret and execute all EBC instructions

• Provide an interface to handle calls be-
tween a native environment and the VM

• Provide an interface to fix-up calls to EBC
driver images.

Details on the full EBC instruction set can be
found in Chapter 19 of [1]. However, details
on two instructions that require particular at-
tention are included in the following sections.

7.2.1 BREAK 5 Instruction

The BREAK 5 instruction enables the transi-
tion of the instruction stream from native to
EBC instructions. This technique is referred
to as thunking in [1]. During compilation of
the UGA ROM image, the EBC compiler in-
serts BREAK 5 instructions in the initializa-
tion instruction sequence to handle the tran-
sition for each of the image’s protocol entry
points. Functionally, the BREAK 5 instruc-
tion introduces a level of indirection, as the
VM/Interpreter must replace the address of ev-
ery entry point in an image with the address
of a thunk. The thunk is an area in memory
that includes the hexadecimal encoding of na-
tive instructions to transition control to the in-
terpreter with an entry point of the image. This
enables the seamless interpretation and execu-
tion of the EBC instruction stream via the UGA
protocol interfaces. Figure 6 depicts the logical
conceptual calling mechanism and an example
implementation used to invoke the VM and in-
terpreter at the appropriate UGA protocol entry
point.

7.2.2 CALLEX Instruction

The CALLEX instruction provides the mech-
anism to facilitate calls outside the context of
the EBC instruction stream or VM. For exam-
ple during compilation, when the compiler ob-
serves a call to a Boot Service function, it in-
serts a CALLEX instruction, such that the tran-

Linux Symposium 421

Figure 6: Thunking Mechanism

sition of the stack, IP, return value, etc. are han-
dled gracefully.

7.2.3 Architectural Dependencies

This driver supports both the IA-64 and IA-
32 architectures. Architecturally specific, re-
quired features are included through inclusion
of appropriate header files. For example, the
inline assembly routines used to manipulate the
stack pointer and obtain the entry point from
a processor register are included in architec-
turally specific headers.

7.3 UGA Console Driver

The UGA console driver provides an interface
between the Linux kernel console subsystem
and the UGA ROM. Because the UGA is con-
ceptually encapsulated (i.e. registered) with
the EFI Boot Services Emulation driver, the
console driver will affect changes to the display
through the use of the UGA_IO_PROTOCOL
and UGA_DRAW_PROTOCOL protocols. As
a result, the console driver must obtain the
UGA protocol interface structures from the
EFI Boot Services Emulation Driver.

Unlike VGA, multiple UGAs may be used in

a single system. Therefore, the UGA console
driver must maintain data structures to handle
multiple UGA simultaneously. For early boot
message display, the console driver will ini-
tially employ the UGA used by the firmware,
the details of which are included in the boot
parameters.

Similar to the VGA console driver, the UGA
console driver supports the generic console
routines through theconsw structure. Once
the console driver obtains the protocol inter-
faces from the EFI Emulation Driver and the
driver is initialized the UGA may be used for
console display.

7.3.1 Firmware to OS Handoff Structure
Parsing

Details of the UGAs discovered during
firmware initialization are passed via the EFI
Configuration Table. Each entry in the Config-
uration Table consists of a GUID and pointer
pair. During kernel initialization, the pointer in
the Configuration Table is stored in the kernel’s
efi structure. In the case of UGA, this points to
the firmware-to-OS handoff header, which is of
the following form:

struct efi_os_handoff_hdr {
u32 version;
u32 hdr_size;
u32 entry_size;
u32 num_entries;

};

This header is immediately followed by the
driver handoff entries for all UGAs discovered
by the firmware. Each entry driver handoff
structure is of the following form:

struct efi_driver_handoff {
int type;
struct efi_dev_path *dev_path;

Linux Symposium 422

void *pci_rom;
u64 pci_rom_size;

};

The UGA Console driver parses each of these
driver handoff structures to obtain device in-
formation as well as the address of the PCI Ex-
pansion ROM that has been copied into mem-
ory by the firmware. The PCI Expansion ROM
is then parsed to locate the EBC UGA image.
Once the UGA image is located, the console
driver updates its internal data structures with
the image address and device information. Fig-
ure 7 shows the organization of the information
passed from the firmware to the kernel.

Figure 7: UGA Configuration Table Parsing

Details on the header information and layout of
the ROM image may be found in [2].

7.3.2 Executable Image Parsing

After the EBC image is located, the console
driver initializes a list of UGAs in the system
with device information as well as pointers to
the actual PE32+ UGA EBC image in mem-
ory. In order to use the driver, the image must
be effectively loaded. Although the image is
already in memory, the image must be parsed
to correctly identify the entry point and image
specific information. Once the entry point is
obtained, the EBC VM and Interpreter is in-
voked through the EFI Boot Services Emula-

tion Driver and the UGA is initialized. The ef-
fective loading and parsing of PE32+ EFI im-
ages requires PE header structure information
be included in the kernel.

8 Future Challenges

The possibility exists to offload kernel decom-
pression to the Elilo loader. This loader ex-
tension would provide the capability to boot
both compressed and uncompressed IA-32 ker-
nel images, similar to existing functionality on
Itanium platforms. This is an area that is still
under investigation.

Additional work to enable the use of the more
advanced features of UGA is ongoing. A
prototype implementation has been developed
that supports the UGA functionality discussed.
However, this support is currently limited to a
single console and does not account for possi-
ble UGA related changes to XFree86. Further,
the current implementation does not address is-
sues involved in supporting multi-head console
within the kernel through the use of UGA.

9 Conclusions

EFI provides a standard interface to platform
firmware from which to launch operating sys-
tems on legacy free platforms. The IA-32
Linux kernel requires several key changes to
initialize properly on EFI supported platforms.
The first change involves the inclusion of ad-
ditional IA-32 support in the Elilo Linux boot
loader. Modification of the kernel initialization
sequence to enable the use of EFI constructs
such as the EFI memory map and EFI Runtime
Drivers and Services are required. The kernel
also requires several additional driver modules
in order to use the legacy-free UGA for console
display.

As platform hardware evolves and legacy hard-

Linux Symposium 423

ware and legacy BIOS support is phased out,
operating systems must adapt. Inclusion of the
capabilities discussed in this paper constitutes
a significant step towards enabling Linux to
boot on EFI based, legacy free platforms.

10 Acknowledgements

Special thanks to Mark Doran, Andrew Fish,
Harry Hsiung, Mike Kinney, and Greg Mc-
Grath of the Intel EFI team for their contribu-
tions to this paper and always helpful advice.
Thanks to Steve Carbonari, Mark Gross, Tony
Luck, Asit Mallick, Mark Gross, Mohan Ku-
mar, Sunil Saxena, and Rohit Seth for review-
ing this paper.

Special credit is due to Mark Gross for his ef-
forts spent working on the design and imple-
mentation of the prototype EFI enabled kernel.

References

[1] EFI Specification Version 1.1, Intel
Corporation, 2003
http://developer.intel.com/
technology/efi

[2] PCI Local Bus Specification,Revision
2.3, PCI Special Interest Group,
Hillsboro, ORhttp://www.
pcisig.org/specifications

[3] Werner Almesberger,Booting Linux:
The History and the FutureProceedings
of the Ottawa Linux Symposium 2000,
July 2000

[4] David Mosberger and Stephane Eranian,
ia-64 Linux Kernel, Design and
Implementation.Prentice Hall, NJ 2002.

[5] ACPI SpecificationVersion 2.0bhttp:
//www.acpi.info/spec.htm

[6] David Mosberger and Stephane Eranian,
elilo-3.3a Documentation.2000.
ftp://ftp.hpl.hp.com/pub/
linux-ia64/elilo-3.3a.tar.
gz

[7] Werner Almesberger,Lilo Technical
Overview,
ftp://metalab.unc.edu/pub/
Linux/system/boot/lilo

[8] Eric Boleyn, et al.GNU Grub
http://www.gnu.org/
software/grub/grub.html

[9] Wired for Management Baseline,Intel
Corporation, 1998.
http://developer.intel.com/
ial/WfM/wfmspecs.htm

Implementing the SMIL Specification

Malcolm Tredinnick
CommSecure

malcolm@commsecure.com.au

Abstract

Synchronized Multimedia Integration Lan-
guage (SMIL) is a W3C recommendation for
encoding multimedia presentations. It pro-
vides presentational control over not just the
spatial layout of the document, but also the
relationship between elements over time. At
the present time there does not appear to be
a high quality Open Source implementation of
the SMIL 2.0 specification available. This pa-
per describes one attempt at an implementa-
tion. Some ideas about where future software
development could take this implementation to
fulfill the requirements of other projects are
also mentioned.

1 A Potted History Of SMIL

1.1 SMIL 1.0 — June 1998

In mid-1998, the W3C promoted the SMIL
1.0 specification [4] to Recommendation sta-
tus. The goals of this recommendation were
(from its abstract)

1. to describe the temporal behavior of a pre-
sentation,

2. describe the layout of the presentation on
a screen, and

3. associate hyperlinks with media objects.

Here, media objects are either continuous me-
dia, such as video or audio presentations, or
discrete media such as text blocks and images.

The SMIL 1.0 specification was not overly
complex. It was not short (about 30 pages
when printed out), but that was because it in-
troduced a number of elements with specific
semantics that needed to be explained clearly.
Implementations appeared, but SMIL did not
set the world on fire. This was possibly be-
cause although it fulfilled the design require-
ments mentioned above, that wasall it did. A
presentation needed to be separated out into in-
dividual media elements in practice and lever-
aging existing content was difficult1.

1.2 SMIL 2.0 — August 2001

Roughly three years later the SMIL 2.0 spec-
ification reached Recommendation status [5].
Superficially, this specification looked vastly
different from the SMIL 1.0 version. It was
also much larger (the 1.0 document was around
150 KB in size, 2.0 was 3.3 MB). However,
upon closer inspection, it became apparent that
the changes fell broadly into a only a few cate-
gories.

1. Additional markup for transitions be-
tween media components, extra layout

1This is just the present author’s observation. The
real reason may be that SMIL 1.0 was ahead of its time;
a solution in search of a problem.

Linux Symposium 425

possibilities, content control (so that pre-
sentations on PDAs and large monitors
could be driven from the same source) and
extra events for controlling the presenta-
tion.

2. Improved accessibility features (for exam-
ple, offering a choice between closed cap-
tioning and audio descriptions).

3. A modular design so that SMIL modules
could be reused in conjunction with other
XML modules. This also provides a way
to allow small-footprint implementations
to implement the commonly used portions
of the language and omit the more com-
plex parts whilst still being able to process
documents intended for more featureful
implementations.

SMIL 2.0 provided backwards-compatibility
with SMIL 1.0 documents and precisely laid
out how to process older documents with re-
spect to the newer features. Content written
for the older specification did not become ob-
solete. In view of this, an implementation of
“SMIL” need only focus on the 2.0 specifica-
tion since 1.0 compatibility comes for free2.

Today, SMIL isstill not setting the world on
fire. It is slowly gaining visibility, though,
and is becoming incorporated into a number of
auxiliary specifications which is forcing it into
peoples’ consciousness. We consider a few of
these uses later in this paper.

2 Building A SMIL Library

Around June of 2002, the present author stum-
bled across SMIL whilst looking for something
entirely different and started to read the spec-
ification, as one does in those circumstances.

2Well, it comes after a lot of work, in practice. But
you still only need to implement a single specification.

In November, a rough design for a library to
parse SMIL documents and somehow present
them was sketched out. Over the following
weekends and the odd evening or two, code
started to come together to the point where at
the present time3 a complete implementation of
the specification is within sight. The imple-
mentation has been done without reference to
third-party products, since the whole idea was
that it was meant to be a fun project and a test
of how difficult it might be to implement from
the specification alone.

Existing SMIL implementations all appear to
be designed along the lines of building a com-
plete presentation application for SMIL docu-
ments. The library being considered in this pa-
per,libsmil , has different goals.

The libsmil library parses a SMIL docu-
ment and extracts the data into a format that
can easily be used by a client application to
make the presentation. It is then up to the client
application to start and stop the presentation
of the various media objects in windows as di-
rected by the library (see Figure 1).

In essence,libsmil manages a bunch of
data structures containing information about
the presentation for the client. From time to
time, the library will poke the client and tell
it to start or stop presenting on of the media
objects in a particular location. Similarly, the
client will call the library whenever the user
(or other external stimulus) triggers an event
that may influence the progress of the presen-
tation. This encompasses actions like clicking
on a “stop” button or following a hyperlink to
some other location in the document. The li-
brary itself is agnostic about the means used
to present the information by the client. This
should provide the opportunity to reuse this li-
brary in a variety of different situations, since
it has very few dependencies on its own and

3As this paper is being written in April 2003

Linux Symposium 426

Player
SMIL

Multimedia libraries

libxml2 glib

libsmil

Figure 1: Basiclibsmil architecture

places few restrictions on the client’s behavior
and operation.

3 An Interaction With A Presenta-
tion Client

In order to illustrate the features provided by
libsmil , we consider a typical series of calls
between the library and a client application.
For our purposes here, it suffices to understand
that a standalone SMIL document consists of a
head and abody portion, much as XHTML
does. The head of the document contains data
about the presentation and the body contains
the presentation itself. The explanation in this
section necessarily skips over some of the mi-
nor steps, but we will endeavor to touch on all
the highlights.

3.1 Pre-Processing

After initializing libsmil , the client reads
in the document and creates a DOM rep-
resentation using the GNOME XML library

libxml2 . This responsibility is given to the
client since an internal representation of the
data to be presented may already exist or is be-
ing created on the fly. This would be typical,
for example, in the scenario where the client is
using SMIL as part of a larger language, such
as XHTML+SMIL (see [8]). For more infor-
mation on this type of usage, see section 5.

The DOM is then passed tolibsmil for ini-
tial, pre-presentation processing. Initially, this
involves parsing all of the contents of thehead
element

The library extracts from the document the re-
gions that are going to be used in the presen-
tation and what their dimensions are. A SMIL
document can have a number of top-level re-
gions (essentially, separate windows for a GUI
client) and each top-level region can contain
any number of named regions within it. These
internal regions can be used to display videos,
captions, text overlays on images or videos or
whatever the content author desire. The re-
gions may overlap and can have a Z-ordering
applied to them so that one region always ap-
pears on top of another region. Each region can
also have attributes specified to indicate how
media within it is treated in terms of clipping,
scrolling or scaling.

A SMIL document can specify any number of
customized tests which are used in the body
of the document. These are a sequence of
named data elements which may contain ar-
bitrary values. The values can be set by the
user—through some interface on the client—
or via a URI. Some of the tests are marked as
intended for user setting, whereas others are
nominated as “hidden,” meaning that although
an advanced client may permit them to be set,
they will typically take their value either from
a default setting or by retrieval from some re-
mote location. Solibsmil extracts out all
the custom tests, sets up their default values

Linux Symposium 427

and types (visible or hidden) and puts them into
a data structure for the client to present to the
user upon request.

In the final phase of the pre-presentation scan,
the library makes a pass over thebody element
of the document and tries to extract two more
pieces of data.

1. A list of all the media types that are re-
quired to make the presentation, and

2. a graph of all the timing and synchroniza-
tion dependencies between the elements
in the body of the document.

The first item here is straightforward: every
media object is marked with one of a limited
number of tags and includes a compulsory at-
tribute indicating the type of the media. Build-
ing up a list of required media types and link-
ing the types to the URIs for the contents is
just a matter of parsing these elements. This
list is given back to the client, who can use it to
pre-load the appropriate presentation libraries
or prepare itself (and the user) for the fact that
some items will not be presentable due to the
lack of an appropriate output method.

The timing and synchronization data is what
makes implementing the SMIL specification
interesting and challenging. It is non-trivial!
Rather than interrupt the flow of this section,
we will just take it as given that some magic
happens and a timing graph is constructed
which libsmil will use during the presen-
tation to control events. In section 4 we will
come back to this problem, since it lies at the
heart of the benefits SMIL can provide to ex-
ternal applications. The timing graph that is
constructed here is only of use to the library
and will remain hidden from the client. That is
a fair division of knowledge: most of the com-
plexity of a presentation lies in getting the tim-
ing issues correct and that is ultimately what
the client is relying on the library for.

After collecting all this data, control is returned
back to the client. The client can now query
the library to extract a list of top-level regions
that it will need to provide, or to find out which
media formats are going to be required. The
client then initializes any extra libraries it re-
quires to make the presentation and registers a
single callback withlibsmil .

3.2 Running The Presentation

After all the data collection in the previous
section, running a presentation is a reasonably
simple process, with a couple of exceptions
mentioned below.

The client program calls smil_run_
presentation() to start the action4. If
the user does nothing, the majority of the
presentation will consist oflibsmil calling
the function that the client had registered at
the end of the last section. This function
contains instructions to start or stop the pre-
sentation of a particular media element in a
particular region. For continuous media, a
“start” instruction may also contain an offset at
which to begin playing the fragment, a repeat
count and possibly a time multiplier. This last
option is an advanced feature in SMIL that
permits authors to alter the natural duration of
a media fragment by, in effect, accelerating or
decelerating time as seen by that item only.
Not all players will be able to support this
feature and presentation authors need to allow
for that possibility.

From time to time, the user may trigger an
event at the user-interface. This could be some-
thing like clicking on a hyperlink, hitting a hot-
key, or closing a window on the desktop. The
client will pass this event, along with any asso-

4This must be done in a thread or separate process,
since at the same time aslibsmil is creating events,
the client must be responding to user interactionandpre-
senting the media to the user.

Linux Symposium 428

ciated contextual information such as the name
of the link or region that was clicked, back to
the library. These events will be used by the
library to control the future of the presentation,
but from the client’s point of view they simply
result in further calls to the registered callback
for starting and stopping presentations.

The only slightly complex feature when run-
ning a presentation is how to present features
from the Animation modules. These SMIL
modules provide a means to change the value
of attributes on elements over time. The val-
ues can change linearly and non-linearly over
time. They can jump to discrete values at dif-
ferent moments. The value against time graph
can even be specified using Bezier splines.

The Animation modules are most commonly
used when SMIL is incorporated into an-
other language profile. So the attributes be-
ing changed might be things like the display
style property on an XHTML element, or the
length of a line in SVG. Displaying the host
language elements correctly is clearly the job
of the client. However, managing the complex
value against time relationships is something
that the SMIL library should be doing, since it
possesses complete knowledge of the required
algorithms.

Currently, when ananimation element is
begun, libsmil calls the client as normal
with a start instruction and supplies the ap-
propriate initial values for the attribute(s) in
question. Subsequently, whenever the client is
ready to redraw the element being animated,
it calls smil_update_animation(. . .)
with the given element / attribute pair iden-
tifier and retrieves the new value for the at-
tribute that is being animated. This is a rare
case of the client pulling the information it
needs, rather than waiting to be notified of an
update. Due to the small number of users of
libsmil at the time of writing, it is unclear if

this method of running an animation is the best.
As more experienced is gathered, this interface
may change.

The other exception to the normal run algo-
rithm outlined above is precipitated by the
Transition Effects module. This module pro-
vides a number of transitions that can be used
when moving between media objects within
the same region. They include various fades
and screen wipes. A SMIL implementation (a
player) supporting the Transition Effects mod-
ule is required to support at least four transi-
tions. However, the specification outlines over
100 transitions, with a fallback algorithm for
when a transition is specified that the player
cannot handle.

In the present implementation, a client is re-
quired to know the required behavior for each
of the transitions it supports. For example, the
library might call the client with an instruction
to begin the horizontal windshieldWipe with a
duration of three seconds. How the client im-
plements this wipe is left up to the client. It
is possible (but not compulsory) for the client
to tell libsmil which wipes it can handle so
that the library can implement the fallback al-
gorithm on behalf of the client. This way of
using the library is consistent with keeping as
many SMIL-related decisions in the library’s
domain as possible.

A client can take this to extremes and tell the
library that it can do no transitions at all—that
is, it does not support the Transition Effects
module—in which caselibsmil will simply
optimize away the calls to begin and end transi-
tions. This would be appropriate, for example,
in a client that is designed to present audio and
braille information for blind users; implement-
ing wipes makes no sense in that situation.

This implementation is not perfect—it is one
case where the client is required to have knowl-
edge of the SMIL specification in some de-

Linux Symposium 429

tail. The alternative, however, is for the library
to pass back a bitmap of how a region should
look as the wipe progresses. The problem with
this is that it would involve putting knowledge
about presentational techniques into a library
that is otherwise devoid of such information.
It would also remove some possibilities for the
client to optimize or improve the wipe accord-
ing to circumstances. For example, the same
wipe performed on a region that is 300 by 200
pixels may look different on a PDA than on a
screen capable of much higher resolutions and
with more CPU power available.

In practice (limited as it may be), this imple-
mentation appears to work. The minimal four
transitions required by the module are trivial
to implement in a client. Some multimedia li-
braries, such as thegstreamer library from
the GNOME project, also provide ways of
doing standard wipes (the SMIL specification
uses a number of wipes already specified in
standards for the television and motion picture
industries). Therefore, requiring clients to im-
plement their own versions of each wipe may
not be particularly onerous. Once again, con-
tinued use oflibsmil should provide better
indications on this front.

4 The Timing And Synchroniza-
tion Module

As mentioned in section 3.1, the heart of
libsmil is the timing and synchronization
code. This is the longest and possibly the
most complex portion of the specification. The
libsmil implementation has been rewritten
three times so far and although it is approach-
ing completeness, testing continues in an effort
to try and gain some confidence that the be-
havior is correct in all circumstances. A fourth
(or further) rewrite is not out of the question as
this code is required to be both easy (or even
just possible) to maintain and fairly fast, since

it is where most of the library’s work is done
while a presentation is running.

Without going into too many details, SMIL
contains three container elements for holding
content that is temporally related. Theseq
(“sequential”) element contains items that are
presented one after the other in the order they
are given in the document. Thepar (“paral-
lel”) element contains items that are to be pre-
sented in parallel, subject to time constraints on
their begin and end times and lengths. Finally,
theexcl (“exclusive”) element wraps content
of which only one item can be playing at any
given time, although the order is not important.
One might useexcl to present a number of
video clips from amongst which the user can
select arbitrarily with each new clip replacing
the one that is currently playing.

Within each of these containers, each element
can have a begin time (absolutely specified or
relative to the start of the container), an end
time, a duration and a repeat count5. Further
to this, the containing element (theseq , par ,
or excl element) can also have begin, end,
duration, and repeat counts attached to it. Af-
ter all, this container may reside inside another
temporal container and so on. In fact, this last
possibility is universally true. All elements are
assigned a behavior that is equivalent to one
of the containers. By default, all elements, in-
cluding and, in particular,body , act asseq
elements. So everything in the document is
played in order from beginning to end with
well-defined semantics as it concerns schedul-
ing.

By and large, scheduling the beginning and
ends of elements inside aseq or excl ele-
ment is fairly straightforward. At least, these
cases certainly fall out easily after the logic for

5There are some restrictions on these values depend-
ing on the type of containing container, but we will treat
them as all roughly the same here; no real confusion
should result from doing so.

Linux Symposium 430

<par>
<video id="vid"

begin="-5s"
dur="10s"
src="movie.mpg" />

<audio begin="vid.begin+2s"
dur="8s"
src="sound.au" />

</par>

Figure 2: A samplepar container holding
video and audio elements.

handling the contents of apar is implemented.

The difficulty for apar lies in the fact that ele-
ments may have multiple begin times (and mul-
tiple end time, but we shall omit a detailed dis-
cussion of those here). These times may also
be relative to the begin or end times of other
elements, even those within the samepar con-
tainer. Further, an element’s starting time may
be before the starting time of its containing ele-
ment. The contained element will not begin be-
fore its parent, so the net effect is that when it
does begin, it will appear to have already been
playing for some time.

An example may make this clearer (see Fig-
ure 2). In this example, when the containing
par element begins, the video will begin play-
ing five seconds into its length. Thus it will
appear as though it started from the beginning
five secondsbefore the par element started.
The video will then play for five seconds, since
its total duration is ten seconds and it effec-
tively started at minus five seconds. The audio
element in this container begins two seconds
after the video begins. This is effectively at mi-
nus three seconds, from the point of view of the
par container. Thus the audio will really start
playing three seconds in from its beginning and
will run for a further five seconds, ending at
the same time as the video element. This is a
very typical example of how audio and video

<par>
<img id="foo"

begin="0; bar.begin+2s"
dur="3s" .../>

<img id="bar"
begin="foo.begin+2s"
dur="3s" .../>

</par>

Figure 3: A ping-pong effect.

sequences can be synchronized despite having
possibly come from different sources.

In this example, we saw a case of an element
that has a definite starting time (thevideo el-
ement) coupled with one that has an indefinite
starting time (theaudio element whose start
time depends upon thevideo element). It
is those elements with indefinite starting (and
ending) times that can make life difficult for
the implementation. In some cases, such as the
above example, the effective start time of the
element can be easily determined, even as early
as the pre-presentation pass, since its only de-
pendency is on something with a definite start-
ing time. However, the start time could be
dependent upon a something such as a button
click event being sent, which is unresolvable
until presentation time.

One significant test of any synchronization im-
plementation is something like the code frag-
ment in Figure 3.

The effect here is that the image labeledfoo is
displayed at time zero and lasts for three sec-
onds, imagebar is displayed initially two sec-
onds into the element and lasts for three sec-
onds. This triggersfoo to be displayed again
at four seconds into the element’s period (the
start time ofbar plus two more seconds) and
so on, back and forth between the two image.
The duration of three seconds here is relatively
meaningless: it could be anything longer than

Linux Symposium 431

two seconds and the same effect would occur.

Implementing the code to process this frag-
ment requires a little planning. It appears
that all of the indefinite time periods (the
bar.begin+2s parts) can be resolved, since
everything can be traced back to a dependency
on the instance offoo that starts at time zero.
However, there is no definite end to this el-
ement (although there may be one hidden in
the omitted portion of the above example). It
would obviously be a mistake to try and re-
solve all of the image start times out to infinity.
Instead,libsmil detects that there is a loop
in the dependency chain and stops resolving at
that point. It then becomes a matter of resolv-
ing portions of the infinite dependency chain
as required when the container element is be-
ing presented.

The examples that we have considered in this
section are indicative of the problems to be
solved by the timing and synchronization code.
A glance at [5] shows that there are many more
cases to consider, but the logic is fairly well
explained in the specification. The problem is
that there is just a lot of it and the interactions
between cases is complex.

In theory, getting the timing information cor-
rect is just a problem in directed graph theory.
In practice, it is a maze of twisty passages, all
alike, and somewhat difficult to navigate cor-
rectly.

5 Using libsmil To Extend
Other Languages

In section 1.2 it was explained that one of the
changes between versions 1.0 and 2.0 of the
SMIL specification was that modularity was
introduced. This was done along the same
lines as the XHTML modular design and for
the same reasons—it enables the language to

be extended or for portions to be lifted and
dropped into another language profile in or-
der to extend the latter. It is natural, therefore,
to try and designlibsmil in such a fashion
that it can assist with presenting these exten-
sion languages.

On the whole, this has not been too difficult.
The languages that one would choose to ex-
tend with SMIL are things like XHTML, SVG
and MathML—languages which normally are
static presentations once rendered. SMIL adds
the ability to change attribute values over time,
particularly via the Timing and Synchroniza-
tion modules and the Animation modules.

Using libsmil to render a document in, say,
SVG+SMIL is very similar to rendering a pure
SMIL document. The library does a pre-
presentation pass over the document to build
up information about the nodes it will influ-
ence and to create a time graph, just as in the
standalone case. Once this pass is finished, the
client renders the document using the initial
values for all attributes. It then callssmil_
run_presentation() and waits for the
registered callback to be triggered with the
usual instructions about starting or stopping
some action. In this case, these actions will
typically be things like changing the value of
an attribute, rather than playing a media item.

The main difference from the standalone case
that will arise is when the document being
displayed is changed by some event outside
the control of libsmil . In the standalone
case, all document navigation is controlled by
libsmil ; in the extension case, the SMIL
library does not have the knowledge of how
navigation works in the external (hosting) lan-
guage, so that is up to the client to man-
age. Therefore, the client may from time to
time call smil_new_document() to load
a completely different document orsmil_
jump_to_xpath() to move to a location

Linux Symposium 432

within the current document.

For client applications that already have de-
cent access to their documents’ parsed object
model, adding support for SMIL’s temporal ac-
tivity appears not to be too difficult.

6 Applications Of SMIL

In case the reader is still wondering about the
practical benefits of SMIL, which have prob-
ably not been made clear in the previous sec-
tions, here are a small number of typical use
cases.

Recorded presentationsIt is possible to co-
ordinate the automatic presentation of a
conference speaker’s slides with the au-
dio recording of the their talk. The slides
will progress at the right moment. Extra
navigation possibilities for both the audio
and visual portions of the talk can be pre-
sented as well.

Digital Talking Books SMIL is already part
of the DAISY 2 [2] and ANSI/NISO
Z39.86 [1] talking book standards—the
latter standard being also known as
DAISY 3. DAISY 2 requires SMIL 1.0
support, while Z39.86 requires a mini-
mal SMIL 2.0 implementation. These two
standards provide visually impaired peo-
ple and people with reading difficulties a
means to access literature that would oth-
erwise be closed to them.

Captioning for video formats Many digital
movie and video formats do not contain
subtitles as sideband information. Some-
times, subtitles are provided, but not for
the required language. The ability to
synchronize a video presentation with
arbitrary textual captions will provide
a benefit both to people with hearing

difficulties and to those watching a
presentation given in a foreign language.

Educational presentations As authoring
tools become available, pulling to-
gether disparate sources into a coherent
presentation should become relatively
straightforward. This will permit edu-
cators to begin to build up a library of
coordinated presentations using infor-
mation that currently might be scattered
all over the Web. It was not mentioned
earlier in this paper, but the media objects
displayed by SMIL can be retrieved
from remote URLs as well as local files.
Also, SMIL provides a mechanism for
pre-fetching any content that may take
time to download so as not to hold up
later portions of the presentation.

Kiosk and conference display front-ends
SMIL provides a simple way to create
a menu-based presentation. It can also
revert to a standard looping presentation
once the requested video or audio has
completed. This makes it ideal for writing
control documents for video kiosks or
product displays at conventions.

7 Future Work

Development onlibsmil is focused on cre-
ating a complete implementation of the speci-
fication. Simultaneously, some demonstration
applications and a small presentation program
are being written to show off the library’s fea-
tures.

Following on from that work, a number of ob-
vious “next steps” present themselves. The fol-
lowing list is in no particular order, but all are
achievable tasklets.

1. Implement the Timed Text specification
that is currently being developed by the

Linux Symposium 433

W3C [7]. This will allow for scrolling
captions and easier synchronization of
captions with audio and video.

2. Implement a digital talking book player.
Currently, no Open Source implementa-
tion of the DTB standards is available.
With proprietary software for presenting
these books already available, it is impor-
tant to have a source code available imple-
mentation around to prevent inadvertent
commercialization of the standard.

3. Write plugins for various browsers. Ini-
tially plugins that act like an embedded
PDF reader and display only SMIL doc-
uments would the goal. Then integration
with the main rendering engine for dis-
playing XHTML+SMIL and SVG+SMIL
documents (which is a much harder job).

4. Implement any missing pieces of the
SMIL Animation Recommendation and
the SMIL DOM interface. These two doc-
uments from the W3C provide extensions
to the initial SMIL 2.0 specification. Ex-
tendinglibsmil to cover these features
should not be too much of a stretch.

8 Playing With libsmil

The libsmil implementation discussed in
this paper can be downloaded from the
GNOME CVS repository (see [3] for instruc-
tions if you are unfamiliar with accessing that
repository). The code is in thesmil mod-
ule, which contains the library as well as a few
small applications and extensive documenta-
tion for library hackers and client developers
alike.

Once the library has stabilized a little more, tar-
ball releases will be made and the download
site posted in a few popular locations.

References

[1] ANSI/NISO Z39.86-2002 Digital
Talking Book standardhttp:
//www.niso.org/standards/
resources/Z39-86-2002.html

[2] DAISY 2 Digital Talking Book standard
http://www.diasy.org

[3] The GNOME CVS repository
http://developer.gnome.org/
tools/cvs.html

[4] SMIL 1.0 specification.http:
//www.w3.org/TR/REC-smil/

[5] SMIL 2.0 specification.
http://www.w3.org/TR/smil20

[6] The Synchronized Multimedia group at
the W3C.http:
//www.w3.org/AudioVideo/

[7] The Timed Text group at the W3C.
http:
//www.w3.org/AudioVideo/TT/

[8] XHTML+SMIL—a W3C Note.http:
//www.w3.org/AudioVideo/TT/

Benchmarks that Model Enterprise Workloads
Using macrobenchmarks to measure and improve Linux scalability for real-world

applications

Vaijayanthimala Anand, Hubertus Franke, Hanna Linder, Shailabh Nagar,

Partha Narayanan, Rajan Ravindran, Theodore Ts’o

IBM Corp.
{manand,frankeh,hannal,nagar,partha,rajancr,tytso}@us.ibm.com

Abstract

In this paper we demonstrate the use of mac-
robenchmarks in Linux® kernel development.
We describe two macrobenchmarks, SPEC-
jAppServer2002™ benchmark application and
IBM®’s Trade, which are based on the Java™
platform and modeling enterprise applications
typically found in large data centers. This pa-
per shows how these macrobenchmarks were
used to analyse potential improvements in the
load balancing and yield behaviour of the 2.5
kernel’s O(1) CPU scheduler. We also demon-
strate how the macrobenchmarks helped debug
the 2.5 kernels and compare their performance
improvements over the 2.4 series.

1 Introduction

1.1 Microbenchmarks vs. Macrobenchmarks

Performance is a key driver for Linux kernel
development. Several patches have been devel-
oped explicitly to improve Linux performance
on various architectures. Most patches which
seek to add a new kernel feature are expected to
show that they minimize, if not eliminate, any
negative performance impact on the system.

Over the years, various benchmarks have

become popular in the kernel development
community to assess the performance of
patches. Most of these microbenchmarks
measure specific aspects of system per-
formance, such as tiobench for filesystem
performance[Tiobench] and pipetest[Pipetest]
for event delivery. Microbenchmarks have two
advantages. First, they are typically both easy
to set up and run and are free, making them ac-
cessible to all developers. This is particularly
important for the widely dispersed open source
kernel community. Second, microbenchmarks
can be pivotal in determining the impact of a
patch on a specific kernel subsystem.

The specificity of a microbenchmark limits its
suitability for predicting overall system im-
pact. Hence, developers often use microbench-
mark suites such as lmbench[lmbench] and
Contest[Contest]. By running a collection of
microbenchmarks, each stressing a different
aspect of the kernel, a more accurate picture
of the overall system impact can be obtained.

Microbenchmarks (singly or in suites) suffer
from two major disadvantages. First, they
do not adequately capture the dynamic inter-
actions between different kernel control paths
which may be impacted by the same patch.
Even if these control paths are tested indi-
vidually, their interactions will not be appar-

Linux Symposium 435

ent. Even if the microbenchmarks could be
made to run together, the interactions being
tested would be ad-hoc. Second, microbench-
mark suites are less representative of real world
workloads. As such, while they can be used to
gain a better understanding of the impact of a
patch on a single subsystem, they are not ideal.

Macrobenchmarkssuch as Trade[Trade] and
SPECjAppServer2002[SJAS] help fill this
void. They exercise different parts of the ker-
nel during runtime in ways that are repre-
sentative of real world workloads that run on
Linux. Such benchmarks are designed to com-
pare hardware and software differences based
on performance and cost-performance criteria.
However, they can also be used to guide soft-
ware development because they permit an or-
derly isolation and elimination of system-wide
performance bottlenecks. Macrobenchmarks
also allow non-kernel bottlenecks to be iden-
tified, further encouraging an evolutionary ap-
proach to kernel development.

Macrobenchmarks have their disadvantages as
well. They are often expensive to purchase
and are not open source. They are not easy
to set up and often require multiple machines
with above average physical resource require-
ments especially memory and disks. They
may also need proprietary middleware, such as
databases and Web Application Servers (here-
after referred to as AS), if freely available
open-source alternatives are not performant
enough or do not have the right feature set yet
to allow the benchmark to be run.

One notable effort to provide free macrobench-
marks is being done by the Open Source De-
velopment Lab(OSDL). The OSDL’s Database
Test (DBT) benchmark suite[DBT] develop-
ment effort is a welcome step in reducing the
need to purchase specialized middleware in or-
der to run macrobenchmarks. The Scalable
Test Platform, also from OSDL, helps make

enterprise class hardware available to all devel-
opers, further easing the hurdles in using mac-
robenchmarks.

1.2 J2EE-based Macrobenchmarks

The Java 2 Platform, Enterprise Edition, J2EE
[J2EE] framework is a mechanism for creating
distributed and Java-based enterprise class ap-
plications for various business domains such as
manufacturing, supply-chain management, and
on-line financial applications. Compared to the
traditional transaction processing benchmarks
such as TPC-H, TPC-C and TPC-W, the J2EE
framework has not received much attention in
the Linux benchmarking efforts. For this paper,
two J2EE based macrobenchmarks, Trade and
SPECjAppServer2002, are used to investigate
Linux kernel performance.

J2EE applications consist of multiple layers.
Performance analysis of such applications are
involved and demanding as they depend on
many factors. A typical J2EE stack is illus-
trated in Figure 1.

Application Server

Business App

Java Virtual Machine

Operating System

Hardware/ Network

Figure 1: J2EE stack

The component which implements the actual
application depends on the AS services. The
AS in turn takes advantage of the underlying
Java Virtual Machine (JVM) implementation.
The Java applications call methods from the
Java API libraries that provide access to the
system resources through appropriate system
calls.

The AS performance depends on many fac-

Linux Symposium 436

tors: caching support, transaction execution ef-
ficiency, JVM implementation, Enterprise Java
Beans component pooling mechanisms, effi-
ciency of persistent storage mechanisms, Java
Database Connectivity, optimized driver sup-
port, etc. More information on J2EE best
practices can be found in the literature such
as Oracle9i and Java Performance [Oracle9i,
EnterpriseJava, JavaPerf]. These studies focus
on J2EE and its associated components rather
than the operating system. By contrast, the fo-
cus in this paper is on the operating system;
specifically, the Linux kernel. Two complex
enterprise workloads are used to identify ker-
nel performance issues and suggest possible
kernel improvements.

1.3 Description of Trade

Trade [Trade] is a freely available benchmark
developed by IBM. It is designed to measure
AS performance. Trade is an end to end bench-
mark that models an online financial applica-
tion. Specifically, an electronic stock broker-
age providing web-based online securities trad-
ing.

Two versions of the Trade benchmark, Trade
2.7 and Trade 3.0, are used in this study. Trade
2.7 is a collection of Java classes, Java servlets,
Java Server Pages (JSP), and Enterprise Java
Beans integrated into a single application.

While Trade 2.7 is written based on J2EE 1.2,
Trade 3.0 is the third generation of this bench-
mark making use of many features of J2EE
1.3 [J2EE] including local-interfaces, message
driven beans, Container-Managed Relationship
(CMR), etc. It also incorporates Web Services
as one of its major enhancements. Many Appli-
cation Servers in the industry implement these
features.

This benchmark is used for performance re-
search on a wide range of software components

including the Linux operating system, AS, Java
and more.

The Trade benchmark can be run in either a
two tier or in a three tier configuration. In the
two tier model, the client driver (which sim-
ulates clients of the online brokerage applica-
tion) runs on one system, while the AS and the
backend database runs on another. The AS ex-
ecutes J2EE applications which consist of two
parts: the server side presentation logic and the
server side business logic. In a three tier model,
the AS and the backend databases run on sep-
arate systems, interconnected by a high speed
network. We were more interested in the per-
formance and scaling of the AS, so we chose to
do our testing using a three tier configuration.
Figure 2 shows such a configuration.

Client
Driver

Database
Server

Application Server

Workload (Trade, SPECjAppServer)
(Implemented in Java)

Host 1

HTTP

CLI / SQLnet

Host 3Host 2

DB ClientApplication

Figure 2: Three tier configuration for Trade 3.0
and SPECjAppServer2002

The client driver simulates requests of an on-
line stock brokerage application, which makes
a predefined mix of login, register, buy, sell,
and quote requests of online securities. These
requests come in as HTTP requests to the AS.
Trade 3.0 has been configured to use the En-
terprise Java Beans (EJB) mode meaning that
all accesses to the back-end pass through the
EJB container of the AS as opposed to the use
of direct Java database connectivity (JDBC).
All the orders are executed in a synchronous
mode by the session and entity beans rather
than being queued for asynchronus execution.
The communication between the servlets and
EJBs are done using the Remote Method Invo-
cation (RMI) protocol. The backend database

Linux Symposium 437

stores 5000 users and 1000 securities applica-
tions. Database records are inserted, then mod-
ified as the benchmark progresses. To main-
tain reproducibility of the benchmark results, a
database is initialized once and backed up. The
database is restored before each test run.

The Trade application generates a large num-
ber of threads, of the order of 160, during
its operation. The metric of interest in this
benchmark is the number of web pages that are
served by the AS.

1.4 Description of the SPECjAppServer2002
Benchmark

SPECjAppServer2002 [SJAS] (hereafter re-
ferred to as SJAS) is a benchmark for mea-
suring the performance and scalability of J2EE
(Java 2 Enterprise Edition) application servers
and containers, by emulating the heavyweight
manufacturing, supply chain management, and
order/inventory system representative of a For-
tune 500 company. It is a derivative of the
ECperf 1.1 benchmark [ECperf]. SJAS sup-
ports multiple configurations such as single,
dual, multiple, and distributed nodes. We
chose dual mode (3-tier configuration) for our
setup: (i) a client driver emulator, (ii) an AS
tier and (iii) a database backend tier. This pa-
per always refers to the 2002 version of SPEC-
jAppServer.

SJAS models four logical business entities (do-
mains): customer, manufacturing, supplier and
service provider, and corporate. In the cus-
tomer domain, large and small orders are dis-
tinguished in that they trigger different trans-
actions (e.g., credit checks, order change). The
manufacturing domain processes the different
orders and schedules parts with suppliers. The
supplier domain decides which supplier to use
and handles the transaction (e.g., order size,
due date) with the supplier. The corporate do-
main handles the list of all customers, parts,

suppliers, and credit information. SJAS can
be implemented either in a centralized or dis-
tributed mode. In this paper we chose the cen-
tralized mode, which allows us to put all four
business entities on a single AS.

The throughput of SJAS is driven by the num-
ber of order entries in the customer domain and
the manufacturing domain and is measured in
TOPS, which is the average number of suc-
cessful total operations per second completed
during the measurement interval. TOPS is lin-
early related to the injection rate (IR). The IR
refers to the rate at which business transaction
requests from the order entry application in the
customer domain are injected into the AS. The
goal is to drive the injection rate as high as pos-
sible. An injection rate is sustainable if at least
90% of each type of business transactions com-
pletes within a required response time.

Though a full SJAS benchmark run requires
more with respect to reporting [SJAS], we are
using the sustainable injection rate as a means
to evaluate scalability and changes to the ker-
nel.

Note: SPECjAppServer2002 is a trademark
of the Standard Performance Evaluation Corp.
(SPEC). The SPECjAppServer2002 results or
findings in this publication have not been re-
viewed or approved by SPEC, therefore no
comparison nor performance inference can be
made against any published SPEC result. The
official web site for SPECjAppServer2002 is
located athttp://www.spec.org/osg/
jAppServer2002 .

1.5 Hardware Configuration

The Trade and SJAS macrobenchmarks are
complex and require a fair amount of tuning
for getting useful results. Combined with the
multiplicity of issues being investigated, it was
difficult to ensure that all results presented in

Linux Symposium 438

this paper came from the same hardware setup.
Four different environments were used to col-
lect the experimental data shown in later sec-
tions. These environments will be denoted
hereafter as Configurations A, B, C, and D.

Configuration A consists of a 4-way 700 Mhz
Pentium(tm) III, 1MB L2 Cache, and 4GB
RAM for the AS and a 4 way 700 Mhz Pen-
tium III, 1MB L2 Cache and 4GB RAM for
the backend. A 2-way Pentium III 1GHz sys-
tem was used to drive the workload.

Configuration B consists of a 4-way Pentium
III 900 Mhz, 2 MB L2 Cache, 2.5GB RAM for
the AS and a 4-way Pentium III 500 Mhz, 512
KB L2 Cache, 3.2 GB RAM for the backend.
The client was a 2-way Pentium III 850 Mhz,
256KB L2 Cache, 2GB RAM system.

Configuration C differed from Configuration B
only in doubling the number of processors in
the AS tier. Thus, it has an 8-way Pentium III
900 Mhz, 2 MB L2 Cache, 2.5GB RAM for the
AS, and a 4-way Pentium III 500 Mhz, 512 KB
L2 Cache, 3.2 GB RAM for the backend. The
client remained a 2-way Pentium III 850 Mhz,
256KB L2 Cache, 2GB RAM system.

Configuration D includes a 8-way Pentium III
900 Mhz, 2MB L2 Cache, 24GB RAM for the
AS, and a 8-way Pentium III 700 Mhz, 1MB
L2 cache, 8 GB RAM for the backend.

2 Kernel Bug Detection Using
Macrobenchmarks

One benefit of complex macrobenchmarks is
their ability to find bugs in the kernel that oth-
erwise might not be found until the kernel is
run on a large real-world system. During ini-
tial experiments with the SJAS benchmark, one
such bug was found, fixed, and included in the
2.5.63 kernel.

The sole symptom was a complete system hang
of the middle tier, with no oops or diagnostic
of any kind produced. The hang could be re-
produced by stopping and restarting the appli-
cation server between five and ten times. The
problem was traced using the NMI (Non mask-
able interrupt) watchdog timer and taking stack
traces of all CPUs in the system.

The problem turned out to be threads deadlock-
ing in the kernel. On any multiprocessor sys-
tem, one task (say A) acquired a spinlock with
interrupts disabled. Thereafter A performed an
operation requiring all other processors to flush
their Translation Lookaside Buffers (TLBs).
To flush remote TLBs, task A would send an
inter-processor interrupt (IPI) and go into a
busy wait for an acknowledgement. However,
if the tasks on the other CPUs were busy wait-
ing on the same spinlock and also had their in-
terrupts disabled, they would never receive the
IPI, thus leading to a deadlock.

This issue was resolved by modifying the code
to ensure that the spinlock was not held with
interrupts disabled. The fix was included in the
2.5.63 kernel. Although the problem was easy
to fix once the cause was determined, it took
the right set of dynamic interactions, provided
in this case by SJAS, to trigger the bug.

3 Comparing 2.4 and 2.5 Kernels

The project was initiated by using Trade 2.7
to test 2.4-based distribution kernels as well as
then-current stock 2.5 kernels. Presented in Ta-
ble 1 are the results of running Trade 2.7 in a
three-tiered mode using configuration A.

The results obtained were unexpected. It was
found that the 2.4 based distribution kernel
(2.4-distro) performed better than the 2.5.59
stock kernel. To recheck the results, we ran
the SJAS benchmark on a stock 2.4.20 ker-
nel (2.4.20-stock) and compared results with

Linux Symposium 439

Kernel #CPUs TOPS CPU Utilization (%)
Version user system idle
2.4.20-stock 4 Base1 68 14 17
2.5.59 4 Base1-3.8% 60 10 28
2.5.66 4 Base1+11.6% 70 12 16
2.4.20-stock 8 Base2 47 10 41
2.5.59 8 Base2+0% 36 6 56
2.5.66 8 Base2+24.0% 49 9 41

Table 2: Performance and middle tier CPU utilization of SJAS on 2.5.59 and 2.5.66 kernels using
2.4.20 as a baseline for 4-way (Base1) and 8-way (Base2) servers

Kernel TOPS %CPU Usage
on AS

2.4-distro Base1 87
2.5.59 Base1-14.4% 66
2.5.59+D7 Base1+2% 86

Table 1: Trade 2.7 results

the 2.5.59 kernel using Configurations C and
D. The results, shown in Table 2, confirm that
the 2.4.20-stock kernel exhibits better perfor-
mance than 2.5.59 with the latter’s TOPS de-
creasing by 3.8% on Configuration C and re-
maining unchanged in Configuration D.

At a later date, we also compared the perfor-
mance on a 2.5.66 kernel and found that it per-
formed significantly better than 2.4.20-stock
with an increasein TOPS of 11.6% and 24.0%
on Configurations C and D respectively. Ta-
ble 2 shows that system time remained approx-
imately the same for these two kernels though
overall utilization was higher for 2.5.66. Iso-
lating the performance changes between 2.5.59
and 2.5.66 is part of our future work. We
felt our first task was to determine why the
2.5.59 kernel performed worse than the 2.4.20
and 2.4.20-distro, despite several scalability
enhancements in 2.5.59.

Since distribution kernels have patches added
on top of a 2.4 stock kernel, the profile data was
analyzed in order to understand the observed

processes context CPU Utilization (%)
runnable switches user sys idle

8 15689 74 18 8
12 18844 76 18 6
10 15778 71 21 8
11 16114 74 20 6
11 17629 74 17 8

Table 3: Output from vmstat for AS on a 2.4-x
distro kernel using a 4-way server and Trade
2.7. Number of runnable processes are 2-3
times the number of processes.

differences. Comparing the vmstat outputs for
a 2.4-x distro kernel (Table 3) to a 2.5.59 ker-
nel (Table 4) we clearly see that the latter has
fewer runnable processes in general and often
has fewer runnable tasks than processors. Con-
sequently, 2.5.59 shows higher idle times. The
data initiated further investigation of the CPU
scheduler behaviour.

In the next step, readprofile data was collected
at a 60 second granularity during the steady
run of Trade 2.7 on the same configuration as
above. Comparing the data for the 2.4-distro
kernel (Table 5) and 2.5.59 (Table 6), we see
thatschedule() is the costliest kernel func-
tion in both kernels.

The calls toschedule() drew our attention
because they were still high on both lists even
though 2.4-x uses the old scheduler and 2.5.59

Linux Symposium 440

runnable context CPU Utilization (%)
tasks switches user sys idle

3 12195 41 10 49
5 12079 41 9 50
7 17508 49 10 42
2 12087 41 9 50
3 11898 44 9 47

Table 4: Output from vmstat for AS on a 2.5.59
kernel running Trade 2.7 on a 4-way server.
Number of runnable processes often dip be-
low the number of processors and are low com-
pared to the 2.4-x data shown earlier.

Ticks Kernel function
Normalized

Ticks
23969 Total 0.02
7071 default_idle 110.48
2388 schedule 1.52
822 csum_partial_copy... 3.31
799 send_sig_info 4.54
744 save_i387 1.29
511 tcp_v4_rcv 0.31

Table 5: Readprofile data for AS on a 2.4-
distro kernel running Trade 2.7 on a 4-way
server. Normalized ticks gives the number
of ticks divided by the size of the function.
schedule() figures are high though idle
times are low compared to 2.5.59.

Ticks Kernel function
Normalized

Ticks
60332 Total 0.05
54048 default_idle 844.50

397 schedule 0.41
365 csum_partial_copy... 1.47
191 tcp_sendmsg 0.04
181 __kfree_skb 0.60
177 load_balance 0.19

Table 6: Readprofile data for AS on 2.5.59 run-
ning Trade 2.7 on a 4-way server. Normalized
ticks gives the number of ticks divided by the
size of the function.schedule() is costly
despite the usage of the O(1) scheduler; also
idle time is higher than in the 2.4-distro kernel.

uses the O(1) scheduler. To examine our hy-
pothesis that the O(1) scheduler was causing
the high idle times, we tested a 2.4.20 ker-
nel with and without the O(1) scheduler using
the same configuration as above. The results,
not shown in this paper, were similar to the
data shown earlier and confirmed the hypoth-
esis. The 2.4.20 stock kernel produced 20%
better throughput than the 2.4.20+O(1) sched-
uler. Further, 2.4.20+O(1) had fewer tasks in
the run queue than the number of CPUs in the
system and 40% idle time, similar to the results
found in the 2.5.59 kernel.

Using snapshots of runqueue lengths in all
CPUs at each timer tick, it was found that
CPUs were going idle while there were
runnable tasks on other runqueues. The imbal-
ance in runqueue lengths across various CPU’s
while using O(1) led us to a careful examina-
tion of the load balancing logic of the O(1)
scheduler. The analysis is discussed in the next
section.

Linux Symposium 441

4 Load Balancing

Before discussing the results of various exper-
iments, we revisit the load balancing differ-
ences between the old 2.4 scheduler and O(1).
The 2.4 scheduler uses a single runqueue for all
CPUs which leads to high lock contention and
lock hold times when the number of tasks and
CPUs start increasing. O(1) replaces the sin-
gle runqueue with per-CPU runqueues. While
choosing the next task to run on a CPU, it
does not look at remote runqueues, maintain-
ing the O(1) behaviour and preserving cache
affinity. Consequently, it needs to explicitly
balance the load on each runqueue by call-
ing a load_balance() function. Work-
loads which are sensitive to load imbalance,
such as Trade and SJAS, get affected by the ef-
fectiveness ofload_balance() . In 2.5.59,
load_balance() is called periodically on
each CPU, with the frequency of invocation de-
termined by the idleness of the CPU.

To improve the load balancing behaviour
of the O(1) scheduler, we tried a se-
ries of patches from Ingo Molnar’s D7
patch [D7-PATCH] to Andrea Arcangeli’s try_
to_wake_up patches (included within his O(1)
patch [AA-O1-PATCH]) to a find_busiest_
queuepatch, created in-house [FBQ].

4.1 D7 patch

Ingo Molnar’s D7 patch unconditionally mi-
grates a task from a remote to the current run-
queue if the current CPU is about to go idle.
Table 1 shows that this patch helps 2.5.59 per-
form 2% better than 2.4-distro for Trade 2.7,
more than making up for the 14.4% perfor-
mance loss seen by stock 2.5.59. For an SJAS
workload, the same patch helps 2.5.59 draw on
a par with the 2.4.20 stock kernel, overcom-
ing the 3.8% degradation seen by 2.5.59 ver-
sus 2.4.20 (Table 7). The 10% degradation of
2.4.20+O(1) compared to 2.4.20 in the same

Kernel level CPU % TOPS
Usage improved

2.4.20-stock 82% baseline
2.4.20+O(1) 66% -10.6%
2.5.59-stock 70% -3.8%
2.5.59+D7 64% no change

Table 7: SPECjAppServer2002 - v1.14, 4-way
results on 2.5.59

Kernel level CPU %TOPS
Usage improved

2.5.66-stock 82% baseline
2.5.66+trytowakeup1 83% +4.3%
2.5.66+trytowakeup2 89% +0%
2.5.66+busiestqueue 82% -4.3%

Table 8: SPECjAppServer2002 - v1.14 4-way
results on 2.5.66

table reconfirm the earlier hypothesis that the
O(1) scheduler is at least partially responsible
for the performance loss of 2.5.59 compared to
2.4.20.

4.2 Load Balancing on Task Wakeup

The O(1) scheduler used in Andrea Arcan-
geli’s 2.4 kernel tree contains two changes to
do load balancing on task wakeup events in
addition to the periodic invocations ofload_
balance() in the stock kernel’s O(1). We
implemented these changes as two separate
patches for the 2.5.66 kernel.

The first patch, henceforth called try-

Kernel level CPU %TOPS
Usage improved

2.5.66-stock 56% baseline
2.5.66+trytowakeup1 60% +4.4%
2.5.66+trytowakeup2 72% +3.0%
2.5.66+busiestqueue 65% +5.2%

Table 9: SPECjAppServer2002 - v1.14 8-way
results on 2.5.66

Linux Symposium 442

towakeup1, modifies thetry_to_wake_
up() function to invoke load balancing
whenever a task is being woken up. Using
the task wakeup event as a load balancing
trigger was also motivated by the high count
for calls to tcp_data_wait() ; the high
count causes task wakeups in the profiling
data similar to the one shown in Table 6 for
2.5.59. The trytowakeup1 patch improved
SJAS throughput performance by 4.7% on
Configuration C compared to the 2.5.66 stock
kernel, as shown by Table 8. Configuration D
showed a similar 4.3% improvement as seen
in Table 9.

The second patch, henceforth called try-
towakeup2, tries to explicitly address the prob-
lem of CPUs going idle by trying to place the
task being woken up onto an idle CPU if possi-
ble. This is in contrast to trytowakeup1 which
is only concerned with pulling tasks to the run-
queue of the waker. While trytowakeup2 in-
creases SJAS performance by 4.5% in Config-
uration D (Table 9), it has no effect in Con-
figuration C(Table 8). The behaviour can be
explained by the relative lack of idle CPUs in
Configuration C (4-way AS) compared to Con-
figuration D.

The final patch called busiestqueue [FBQ],
aimed at improving the aggresiveness of the
existing load balance function itself rather than
changing the frequency or location of its in-
vocation. In the normal O(1) scheduler, the
find_busiest_queue() function is used
by load_balance() to find the remote run-
queue with the maximum number of runnable
tasks from which tasks can be pulled to the
current runqueue. Theload_balance()
code checks whether tasks on the remote run-
queue are suitable for migration but if none are
found suitable, it does not try to find another
runqueue and try again. The busiestqueue
patch remedies this behaviour by modifying
find_busiest_queue and its invocation

by load_balance() to ensure that all re-
mote runqueues are examined for tasks to mi-
grate. The results from using the patch are
mixed. Configuration C shows a performance
degradation of 5.1%(Table 8) whereas Config-
uration D shows a 2.4% improvement(Table 9).
Evidently, the patch is too aggressive and the
extra cycles spent in trying to find another re-
mote runqueue prove too costly. We are in the
process of finetuning the patch by limiting the
number of iterations in the search for a busy
queue.

The trytowakeup1 and busiestqueue patches in-
creased performance by around 5% on the 8-
way Configuration D when applied individu-
ally and in combination (data not shown). This
suggests that one or the other approach is suf-
ficient in achieving better load balancing and
leads to the question of which one should be
used. The answer will lie in the effect of the
patches on other workloads and is part of our
future work.

5 Yielding to Other Tasks

The system call sys_sched_yield()
causes the calling task to yield execution to an-
other task that is ready to run on the current
processor. Multi-threaded applications often
usesys_sched_yield() to improve inter-
active response or to improve the performance
of the system by letting the scheduler use the
processor resources more effectively. This is
particularly true if the applications use tradi-
tional userspace locks (not based on futexes).

However, the benefits realized from the use
of sys_sched_yield() are heavily depen-
dent on the implementation of the system call.
The CPU scheduler selects the next task to run
and determines how long the yielding task will
remain on the runqueue before getting a chance
to run again. The following implementations

Linux Symposium 443

of sys_sched_yield() are feasible:

PA The yielding process is queued right after
the next task on the same priority queue.
Effectively, it yields only to the next task
at the same priority level.

PB The yielding process is queued at the tail
of its priority queue making it yield to all
runnable tasks at the same priority level.

PC The yielding process is moved to the pri-
ority queue on the expired list effectively
making it yield to all runnable tasks in the
system (as the expired list becomes the ac-
tive list only after all runnable tasks have
exhausted their timeslices).

The yielding task rarely knows how long it
needs to yield before it can attempt to acquire
a shared resource again as the availability of
the shared resource depends on external events
and progress made by competing tasks. For in-
stance, an interactive application might see re-
duced response time if policy PA were used.
But a task polling for a shared resource such
as a userspace spinlock, might benefit from PB
or PC which allows the task holding the re-
source to run and potentially release it for use
by the yielding task. As the CPU scheduler is
unaware of the task’s rationale for usingsys_
sched_yield() , it cannot decide the best
yielding interval either. Hence different Linux
distributions have tried all three policies.

To understand the impact of these policies on
macrobenchmarks such as Trade and SPEC-
jAppServer2002, we collected profile data to
see the number ofsys_sched_yield()
calls issued. Table 10 shows thatsys_
sched_yield() accounts for almost one
third of all calls toschedule() when Trade
2.7 is run on Configuration A.

Table 11 shows the data collected by instru-
menting thesys_sched_yield() for a 1

Ticks Kernel Functions
6826403 Total
2523245 sys_sched_yield+11d
2236660 cpu_idle+3e
1312369 schedule_timeout+9d
327747 schedule_timeout+184

Table 10: Functions callingschedule() for
a 2 minute run of Trade 2.7 on Configuration A

minute run of Trade 2.7 on 2.4.20 using Con-
figuration A. In the table,higher, lowerand
samerefer to the number ofsys_sched_
yield() calls in which there was at least
one task on a higher, lower and same pri-
ority level as the yielding task. The row
labelled only counts the number ofsys_
sched_yield() calls in which the yielding
task was the only one on its runqueue. We see
that most tasks in the system are on the same
priority queue as the yielding task. Hence, the
policy adopted bysys_sched_yield() is
likely to have a significant impact on perfor-
mance.

The 2.5.65 stock kernel uses the PC policy. We
implemented the other two policies, PA and PB
and compared their performance with PA using
Trade 3 in Configuration D. PB and PC turned
out to have the same results for the benchmark
which follows from Table 11. As there are very
few tasks on lower priority levels whensys_
sched_yield() is called, PB and PC are ef-
fectively the same policy. Hence only PA and
PC results are shown in Table 14. We see that
the pages per second (pg/s) drops by 32.6% if
PA is used instead of the default PC policy.
CPU usage (usg) and efficiency (effncy) also
see a corresponding drop. Similar results are
seen for SJAS (not shown). Using PA instead
of PC decreases TOPS by 10% on a 4-way.

The reasons become clear from the vmstat out-
puts of PA and PC shown in Tables 12 and 13
respectively. The number of context switches

Linux Symposium 444

Relative Priority CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7
Same 145103 157055 163064 156379 162783 161733 167366 177876
Only 117653 112196 112387 105653 101420 96053 108830 92293
Higher 26 34 28 29 31 25 33 36
Lower 929 937 1000 1073 1036 1016 1156 1132

Total 263711 270222 276479 263134 265270 258827 277385 271337

Table 11: sys_sched_yield call count and the distribution of tasks on priority queues relative to
the yielding task, using Trade 2.7 on 2.4.20 in Configuration A. The data indicates that most tasks
in the system were on the same priority queue as the yielding task.

increases almost fourfold (from approximately
6700 to 27000) when PA is used. As PA causes
the yielding process to get scheduled much
sooner, the shared resource it waits on is gener-
ally not available, thus leading to frequent con-
text switches as it yields again and again. For
such an application, the default policy of let-
ting all other runnable tasks run once is a good
choice.

The kernel development community has
been discussing alternative policies forsys_
sched_yield() in order to improve re-
sponse time for interactive applications. The
results shown here indicate that such changes
might adversely affect macrobenchmarks
like Trade. However, this is only true until
application servers start using the new fast
user-level mutex (futex) feature provided by
the 2.5 kernels.

6 Conclusions and Future Work

In this paper, we have examined two
macrobenchmarks, Trade and SPEC-
jAppServer2002. Both benchmarks model
complex workloads utilizing the J2EE frame-
work, which are popular in many enterprise
data centers. We have shown a case study
of a kernel bug that was triggered by these
benchmarks and which would have been hard
to find otherwise.

procs system cpu
r in cs us sy id

14 6067 27204 63 10 27
9 5868 29230 60 9 31

12 5337 24765 61 8 30
10 6021 27753 61 9 30
5 5947 27496 64 10 25

Table 12: vmstat output collected while us-
ing Policy A showing high context switches
and high idle times.r, in, andcs refer to the
number of runnable tasks, interrupts, context
switches respectively, whileus, sy, andid refer
to the percentage of time spent by CPUs in user
mode, system mode, and idling respectively.

procs system cpu
r in cs us sy id

18 7788 6903 85 14 0
26 7168 6686 84 11 6
24 8010 6798 87 12 1
23 8083 6727 87 13 0
22 7934 6212 87 13 1

Table 13: vmstat output collected for Trade 3
running on Configuration D, while policy PC is
used to implementsys_sched_yield() .
The other labels are explained in the caption
for Table 12. Context switches and idle time
are significantly lower for PC compared to PA.

Linux Symposium 445

Kernel Policy Pg/s Usg Effncy
2.5.65 PC Baseline 95% 100%
2.5.65 PA -32.6% 75% 85%

Table 14: Comparison ofsys_sched_
yield() implementations using Trade 3 on
Configuration D.

The macrobenchmarks were also used to re-
veal deficiencies in the load balancing logic of
the 2.5 kernel’s O(1) CPU scheduler. Various
patches were used to increase the aggressive-
ness of load balancing and reduce the probabil-
ity of CPUs going idle despite the presence of
runnable tasks in the system. Based on our ob-
servations, we suggest the following four load
balancing policies might be of help for work-
loads sensitive to load imbalance such as Trade
and SJAS:

• Load balance during initial placement of
tasks by choosing the idle processor

• Load balance during wakeup by choosing
the idle processor

• Load balance the queues aggressively
(similar to patches described above) when
a processor goes idle

• Consider providing aggressive load bal-
ancing through a configuration option

More patches will be produced to implement
the above catagory of improvement and the
investigation will continue to find a fair load
balancer to improve these workloads for SMP
(Symmetrical Multi Processor) and NUMA
(Non Uniform Memory Access) systems. Any
load balancing patches proposed will need to
be tested using different workloads to make
sure that they do not degrade performance by
unnecessary balancing.

The final part of this paper examined dif-
ferent implementations of thesys_sched_

yield() call and concluded that the exist-
ing 2.5.65 implementation performed well for
macrobenchmarks such as Trade and SJAS.

There is still much work to be done in explor-
ing how the kernel can more efficiently sup-
port J2EE-based workloads. As we have seen,
these workloads tend to be very sensitive to
scheduler issues, and changes which benefit
one workload may actually cause harm to other
workloads.

Further tuning of the application and improve-
ments in the Linux kernel has improved the
CPU utilization of these benchmarks. Hence,
while initial attempts to use spinlock meter-
ing to find lock contention was not fruitful, we
anticipate that future work in improving the
benchmark score of these workloads will in-
clude finding and fixing lock contention prob-
lems.

We have used, and are continuing to use, mac-
robenchmarks as a method for finding potential
areas for improvement in the Linux 2.5 kernel,
especially as it relates to the Linux scheduler.
We hope we have demonstrated to the reader
that more complex benchmarks are a useful
tool for the kernel developer interested in im-
proving the performance and scalability of the
Linux kernel.

7 Acknowledgments

The authors would like to thank the following
people for their help: Jianwen Alex Feng, Bill
Hartner, Wilfred Jamison, Sandra Johnson, and
Rick Lindsley.

8 Legal Statement

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM is a registered trademark of International Busi-

Linux Symposium 446

ness Machines Corp. in the United State and/or
other countries.

Java and all Java-based trademarks are trademarks
of Sun Microsystems, Inc. in the United States,
other countries, or both.

Linux is a registered trademark of Linus Torvalds.

Pentium is a trademark of Intel Corporation in the
United States, other countries, or both.

SPECjAppServer2002 is a trademark of the Stan-
dard Performance Evaluation Corp. (SPEC).
The SPECjAppServer2002 results or findings in
this publication have not been reviewed or ap-
proved by SPEC, therefore no comparison nor
performance inference can be made against any
published SPEC result. The official web site
for SPECjAppServer2002 is located athttp://
www.spec.org/osg/jAppServer2002 .

Other company, product, and service names may be
trademarks or service marks of others.

References

[AA-O1-PATCH] Andrea Arcangeli,
http://www.kernel.org/pub/
linux/kernel/people/andrea/
kernels/v2.4/2.4.20rcaa1

[FBQ] Rick Lindsley,
http://www.ibm.com/linux/ltc/
patches/?patch_id=865

[Contest] Con Kolivas,
http://members.optusnet.com.
au/ckolivas/contest/

[D7-PATCH] Ingo Molnar,http:
//people.redhat.com/mingo/O(1)
-scheduler/sched-2.5.59-D7

[DBT] Open Source Development Lab,
http://sourceforge.net/
projects/osdldbt

[J2EE] Java 2 Platform, Enterprise Edition
http://java.sun.com/j2ee/
overview.html

[ECperf] http:
//java.sun.com/j2ee/ecperf/

[EnterpriseJava] Kingsum Chow, Ricardo Morin,
and Kumar Shiv,Enterprise Java
Performance: Best Practices, Intel
Technology Journal, Vol 07 (Feb 2003) p.
32–48

[JavaPerf] Java Performance Tuning,http://
www.javaperformancetuning.com

[lmbench] Carl Staelin and Larry McVoy,
http://sourceforge.net/
projects/lmbench

[Oracle9i] Oracle9i Application Server,
Architecting for J2EE performance,
http://otn.oracle.com/
products/ias/pdf/
ArchitectingForJ2EEPerformance.
pdf

[Pipetest] Ben LaHaise,http://www.kvack.
org/~blah/ols2002.tar.gz

[PMQS] Hubertus Franke, Shailabh Nagar, Mike
Kravetz, Rajan Ravindran,PMQS:Scalable
Linux Scheduling for High End Servers,
ALS’01, Annual Linux Symposium, Oakland,
11/2001

[SJAS] Standard Performance Evaluation Corp.,
http://www.specbench.org/
jAppServer2002/

[Tiobench] Mika Kuoppala,
http://sourceforge.net/
projects/tiobench

[Trade] Application Server Benchmark,
http://www-3.ibm.com/software/
webservers/appserv/benchmark3.
html

Large Free Software Projects and Bugzilla
Lessons from GNOME Project QA

Luis Villa
Ximian, Inc.

luis@ximian.com, http://tieguy.org/

Abstract

The GNOME project transitioned, during the
GNOME 2.0 development and release cycle,
from a fairly typical, mostly anarchic free soft-
ware development model to a more disciplined,
release driven development model. The ed-
ucational portion of this paper will focus on
two key components that made the GNOME
QA model successful: developer/QA interac-
tion and QA process. Falling into the first cat-
egory, it will discuss why GNOME develop-
ers bought in to the process, how Bugzilla was
made easier for them and for GNOME as a
whole, and why they still believe in the pro-
cess despite having been under Bugzilla’s lash
for more than a year. Falling into the second,
some nuts and bolts: how the bugmasters and
bug volunteers fit into the development pro-
cess, how we coordinate, and how we triage
and organize. Finally, the paper will discuss
how these lessons might apply to other large
projects such as the kernel and Xfree86.

1 Introduction

During the GNOME 2.0 development and re-
lease cycle in 2002, the GNOME project grew
from a fairly typical, fairly anarchic free soft-
ware development model to a more disciplined,
release driven development model. A key com-
ponent of this transition was the move towards
organized use of Bugzilla as the central repos-

itory for quality assurance and patch track-
ing. This was not a process without problems-
hackers resisted, QA volunteers did too lit-
tle, or too much, we learned things we need
to know too late, or over-engineered the pro-
cess too early. Despite the problems, though,
GNOME learned a great deal and as a result,
GNOME’s latest releases have been more sta-
ble and reliable than ever before (even if far
from perfect yet :)

The purpose of this paper isn’t to teach some-
one to do QA, or to impress upon the reader
the need for good QA—other tomes have been
written on each of those subjects. Instead, it
will focus on QA in a Free Software context—
how it works in GNOME, what needed to be
done to make it work both for hackers and
for QA volunteers, and what lessons can be
learned from that experience. To explain these
things, I’ll focus on three main sections. The
first will be a very brief history of GNOME’s
transition to a more Bugzilla-centric develop-
ment style, in order to provide some back-
ground for the rest of the paper. The second
part will focus on the lessons learned from this
transition. If a reader needs to learn how to
manage QA and Bugzilla for a large Free Soft-
ware project (either as bugmaster or as a devel-
oper), this section should serve as a fairly con-
cise guide to GNOME’s free software QA best
practices—explaining how developers and QA
should work together, what processes make for
good free software QA, and how a free soft-

Linux Symposium 448

ware project can build a QA community that
works. Finally, in the third section, the paper
will attempt to discuss how GNOME’s lessons
might be applied to the usage of Bugzilla in
other projects.

2 Background

Before going further, I’ll offer a brief bit of
background on the GNOME project and how
it came to be a project where QA was an inte-
grated part of the Free Software development
process.

2.1 The GNOME Code Base

GNOME is not the kernel or X, but it is on
roughly the same order of magnitude in terms
of code and complexity. And it is continuing
to grow as we integrate the functionality ex-
pected by modern desktop users. Desktop is,
of course, a very vague term, but at the cur-
rent time, GNOME includes a file manager,
a menu system, utilities, games, some media
tools, and other things you’d expect from the
modern proprietary OSes. Of course, there is
also a development infrastructure as well, in-
cluding accessibility for the disabled, interna-
tionalization, advanced multimedia, documen-
tation, and support for many standards.

To provide all of this, GNOME is a whole lot
of code. A very basic build is more than 60
modules, each with its own build and depen-
dencies. Wheeler’s sloccount in a ‘basic’ build
(no web browser and no multimedia infrastruc-
ture) shows 8,000 .c or .h files and roughly 2.0
million lines of code.[Wheeler]. When count-
ing word processing, web browsing, spread-
sheets, media handling, and e-mail and calen-
daring (all of which are provided by fairly ro-
bust, complex GTK/GNOME apps) the total
grows to roughly 4.2 million lines of code.

2.1.1 The GNOME User Base

To a free software hacker, of course, users are
not just users—they are potential volunteers.
The ‘modern desktop users’ GNOME devel-
opers like and/or hate to talk about are actu-
ally quite numerous, which means a large base
of people who generate bug reports (especially
stack traces) and who also can be possibly per-
suaded to do QA work. For context, Ximian
GNOME 1.4 had a million and a half installa-
tions. By late in the 2.0 cycle daily rpm builds
of CVS HEAD drew thousands of downloads
a day, and each tarball pre-release of GNOME
2.0 was downloaded and built by tens of thou-
sands of testers. So, even during the relatively
unstable runup to 2.0, thousands of users were
pounding gnome’s pre-releases on a daily ba-
sis, and many of those became willing helpers
in the QA process- over 1,500 people sub-
mitted bugs during the 2.0 release cycle, and
several thousand more crashes were submitted
anonymously. This type of QA is difficult for
anything but the largest proprietary software
companies to match, and has been invaluable
to GNOME.

2.1.2 QA in GNOME 2.0

As can be imagined, this much code, with
this many users, trying to excersize a lot of
functionality, while developers seek to make
things more functional, usable and accessi-
ble, generates a lot of crash data and bug re-
ports. Between January 2002 and the release
of GNOME 2.0 on June 26th, 2002, slightly
over 10,000 bugs were tagged as 2.0 bugs and
an additional 13,000 non-2.0 bugs were filed.
The QA team triaged or closed over 17,000
of those. Over 5,000 more were eventually
marked as fixed, including over 1,000 deemed
high priority by the QA team. For a project
with a fairly small active core development

Linux Symposium 449

team, these were huge numbers. It’s only be-
cause of volunteer help in identifying and triag-
ing bugs that dealing with this at all was possi-
ble. During the 2.0 cycle, regular ‘bug days’—
12 hour long meetings of new volunteers—and
a mailing list helped coordinate and recruit vol-
unteers.

3 So what did we learn?

None of this was a pretty or clean process; lots
of mistakes were made and not quite as many
lessons learned. But we did learn a number of
general rules for volunteer driven, high-volume
bug handling. The gist of these lessons can
be summarized simply—QA volunteers must
work with their community to find, identify,
and track the most important bugs. But the de-
tails are more complex and will, I hope, make
this paper worth reading.

3.1 QA and Hackers

While ESR may have his critics, he was un-
doubtedly right in observing that we are all in
this to scratch our itches, whatever those itches
may be. Free software QA is a slightly odd
bird in this light—QA volunteers are in it to
scratch the itch of higher quality software, but
they can’t do it themselves. That means paying
a lot more attention to the needs of others than
may be typical for free software. Following are
some of the GNOME team’s lessons learned.

3.1.1 Rule 1: free software QA must sup-
port the needs and desires of devel-
opers in order to succeed

This seems fairly obvious, but it is also fairly
easy to forget or ignore. Free software begins
and ends with developers who are having fun.
There may be others involved for reasons other

than ‘fun’, but if QA’s sole purpose is to whine
about what QA thinks are the important flaws,
volunteers will leave, and leave quickly. QA
must think first and foremost not about their
own goals, but about the goals of developers.

To put it another way: developers think they
can do their thing without QA (which, in free
software, they mostly can) and QA absolutely
cannot do its job (which is getting bugs fixed,
not just finding bugs) without developers. If
QA forgets this in proprietary software, devel-
opers have to suck it up. If QA forgets this in
free software, developers will ignore them, or
worse, walk away from the project.

This is not to say that QA must be silent ser-
vants of hackers, never giving feedback or their
own input. QA volunteers can be and should be
trusted individuals whose advice is valued. But
that will happen more quickly and more easily
if the goal of supporting and aiding hackers is
always first and foremost.

3.1.2 Rule 2: QA needs guidance from
maintainers

In order for QA volunteers to serve the needs of
maintainers and developers in general, main-
tainers and developers must clearly commu-
nicate their priorities. This falls out pretty
cleanly from rule 0: if a project doesn’t know
where the project is going, or what the project’s
developers want, then it is going to be very
hard for QA to help reach those goals. This
also means that when a project is conflicted,
QA teams may not be of as much utility as a
project expects.

‘What a project wants’, from a QA perspec-
tive, is usually pretty obvious in GNOME—
stability, stability, stability. If a program can
be crashed, or a button doesn’t work, everyone
typically agrees that this should raise a red flag.

Linux Symposium 450

But past that, things often get murkier—some
maintainers may, for example, care deeply
about code quality, while others may be deeply
involved with fixing usability issues. And how
does one weigh a difficult to reproduce crasher
against, say, a build problem on Solaris? That’s
not typically an easy or fun call to make; it’s
nearly an impossible one to make correctly un-
less a QA volunteer has guidance from the de-
veloper.

In proprietary QA, these answers are usually
pretty easy—compare against a design doc and
go. In free software QA, where design docs
are often lacking in details if they exist at all,
developers must do the best they can to com-
municate to QA what exactly the priorities are
so that when the QA team finds a problem they
can classify it correctly.

3.1.3 Rule 3: QA must persuade hackers
they are useful and intelligent

When I came on board the Evolution team, the
universal response was ‘oh, someone is going
to mark duplicates for us, that’s nice.’ When I
left, I was very flattered to know that the team
was worried about a lot more than duplicates.
The difference between coming and going was
not just that I was effective, but that the very
first thing I did was work very hard to learn the
lay of the land in Evolution. Instead of reading
one bug and deciding ‘this is bad’, I read nearly
two thousand bugs before doing anything more
than rudimentary marking of duplicates in the
bug database. This is an extreme example, of
course, but it is the direction Free Software QA
volunteers should lean if they can.

In contrast, some first-time GNOME volun-
teers have dropped in, read one or two bugs,
and decided ‘oh, this bug is hugely important’,
and tried to mark it as such. Worse, some will
try to guess at the source of problems in code

they’ve never looked at, or (this is inevitably
the most irritating to developers) they’ll de-
clare that something ‘must be easy to fix’. In-
variably, this leads to irritation from developers
who have seen a lot more issues and have, un-
surprisingly, a much better grasp of their own
code. The best way to avoid this is to work hard
to always make the right call, especially when
first working on a project. There aren’t the ob-
vious checks of functionality and code review
that typically establish trust between hackers—
so very sound and conservative judgement has
to substitute at first.

3.1.4 Rule 4: Bugzilla cannot be the end-
all and be-all of communication be-
tween hackers and QA

Bugzilla is a wonderful tool, that allows for
great communication and incredibly flexible
ways to sort, parse, and otherwise mangle
bugs. But it doesn’t speak to mailing lists,
and it can’t selectively poke hackers about
important issues. QA volunteers must ac-
tively seek out other, non-Bugzilla forms of
communication—mailing lists and IRC, pri-
marily, but also web pages and other forums.
Use these channels to draw attention to QA and
to QA processes—most important new or out-
standing bugs, important recent fixes, new fea-
tures or reports in Bugzilla, or even simple ‘this
many bugs were opened and this many closed
last week.’ By doing this, a QA team can estab-
lish an identity as a ‘regular’ part of the devel-
opment process even amongst developers who
aren’t familiar or comfortable with Bugzilla.

This was a lesson learned the hard way in
GNOME. During the 2.0 cycle, the bug squad
assembled and emailed regular Friday status
reports to GNOME’s main development list. It
was well recieved by hackers, but like many
things in free software, it wasn’t completely
appreciated until (during the 2.2 cycle) it was

Linux Symposium 451

gone, done away with by lack of attention on
the part of the bug squad and the mistaken be-
lief that it wasn’t very useful to developers.
Developers let us know, and as a result we’ll
try to bring

3.2 Triage

Triage is a word that has been thrown around
in this paper a fair amount—before going fur-
ther it may be useful to define it. In medicine,
battlefield triage is the process of separating
the very badly wounded from those who are
lightly wounded and those who are so wounded
that they will die regardless of treatment. In
a free software context, it’s the process of
separating and identifying bugs that are most
severe and/or most useful to developers out
from the inevitable mountain of bugs that will
come in for any popular project. Specifically,
in GNOME, we triage by setting ‘priority’,
‘severity’, and ‘milestone’ fields in Bugzilla.
Like communication, GNOME has learned a
fair amount about this in the past year.

3.2.1 Rule 5: bugs need to be triaged, not
just tracked

When I came into GNOME and Evolution,
both projects knew that having a Bugzilla was
a good thing. So, they dutifully entered bugs in
their bug tracking systems—they tracked bugs.
But neither project had useful definitions of
severity and priority—they couldn’t or didn’t
triage their bugs. So what they had, when they
needed to know what came next, was a large
list of bugs in basically random order. Not sur-
prisingly, that wasn’t very helpful and so bugs
ended up getting entered in to Bugzilla and
never read again. Developers ended up main-
taining lists outside of Bugzilla to help them
figure out what to do next—a silly duplication
inefficiency in projects that can’t really afford

much inefficiency.

If this kind of thing is happening, it indicates
that bugzilla is not being used properly. The
solution is to carefully define priorities, sever-
ities, and milestones, and use them religiously,
by looking at every bug and making at least
an attempt to judge how bad it is and when it
should be fixed by. When it comes down to
release time, having consistently marked bugs
with these priorities means that it will be much
easier to say ‘these things must be fixed, these
we fix if we have time, these we pretend just
don’t exist.’ And that will leave you with much
better software.

3.3 Rule 6: triage must be tied to release goals

This is a whole lot like Rules 0 and 1, so I’ll be
brief. It’s worth repeating, though—triage is
basically the art of determining what is impor-
tant, and if QA and hackers frequently disagree
on what is important, QA will get ignored.
This greatly reduces the space for personal
freedom in QA—several volunteers have come
into GNOME, picked up on a pet theme and
marked those bugs up, and I’ve spent a great
deal of time apologizing for them. Bugzilla
cannot be allowed to become a soapbox, for
anything except the goals maintainers have al-
ready agreed to. If there is dissent on those
goals, take it to the lists—Bugzilla is not a
good forum for setting or arguing goals.

(In proprietary software, this is easy—‘project
goals’ are in a tightly defined project spec that
must be followed. Bug volunteers, especially
those coming from a proprietary background,
must remember that this just isn’t possible in
Free Software.)

Linux Symposium 452

3.3.1 Rule 7: triage new bugs agressively,
or Bugzilla will quickly terrify main-
tainers

The initial temptation of almost all the QA vol-
unteers I’ve dealt with is to assume that a bug
they’ve just read is extremely important, and
should be prioritized to reflect that. In some
ways, this is true—we do see a lot of very ugly
bugs, that in an ideal world given infinite re-
sources and time would be high priority. But
we live in a world of volunteers and spare time,
so marking bugs as more important than oth-
ers should be done only carefully and conser-
vatively.

Most free software hackers work on their
projects in blocks of very short periods of time.
That means that if Bugzilla is their TODO
list, the smaller and the more sorted it is, the
more beautiful. In practice, we’ve found that
it means that once maintainers trust their QA,
they tend to only look at high priority bugs.
This can be scary- it puts a lot of power in the
hands of QA, and messing up by deciding that
a bug is not important enough for a maintainer
to look is seemingly very bad. This is utterly
true in proprietary QA—if a QA guy screws
up and punts something that he shouldn’t, there
may not be much of a system of checks and
balances to catch the error. Free Software QA
saves us from such a fate—punt a bug or mark
it low priority, and if it is important, ten other
people will file it or add comments. The mas-
sive volume of bugs we get is a constant check.

For example, in GNOME, we regularly see
crashes that a maintainer or QA volunteer (or
often the original reporter) decides is com-
pletely impossible to reproduce. We knock
them down in importance or close them in that
case. Often, they actually are impossible to
reproduce- build problem, transient issue that
got fixed the next day, or other such. But in
some cases, after everyone has thrown up their

hands, you’ll continue to see reports of the
crash. The ‘mistake’ of triaging or punting the
original crash can then be revisited—thanks to
the volume of bugs we recieve, we’ve gotten
ample confirmation that maybe it wasn’t such
a bogon after all.

This isn’t perfect, of course—in Evolution,
for example, we get relatively few bugs on
first-time installation, so a single punt on an
installation issue may obscure much deeper
and more important issues that won’t be filed
again for some time. But, unfortunately, it’s
something that frequently must be done—the
alternative is often for maintainers to query
Bugzilla and face massive lists that are quickly
overwhelming. QA can and should serve as a
buffer for that if necessary.

3.3.2 Rule 7: closing old bugs, even com-
pletely unread, is unpleasant but OK

GNOME’s QA was publicly flamed several
months ago by someone (we’ll call them
‘james w. z.’) for mass-closing old GNOME
bugs without substantially reviewing them.
This was an unfortunate thing that we hate to
do, but it was justified. In the typical free soft-
ware cycle, a project starts off too unstable and
with too few users to get many bug reports. Af-
ter the project builds and grows, you still have
all the old bugs from the early period, and an
increasing number of users and bug reporters,
many of whom are filing bugs you can’t possi-
bly have time to fix or even sometimes look at
before your next rewrite and release.

Faced with an escalating number of bugs, a
volunteer-driven project that can’t easily bring
in more resources has two options: mass close
old bugs with an ‘if you still see this in our lat-
est release, please reopen the bug’, or let the
DB grow so large that it is unusable for hack-
ers and QA volunteers alike. From these two,

Linux Symposium 453

the choice is obvious if unpleasant. Further-
more, as ‘james’ reminded us, this isn’t some-
thing that is easy for bug filers to understand.
But when doing it, remind yourself: if it is still
a bug, someone will file it again.

3.3.3 Rule 8: triage rules can’t be just in
one person’s head

As already mentioned, the first step I took
when moving in to GNOME was to revise and
rewrite GNOME’s definitions for priorities.
Previously, they’d been fairly broad and
inspecific. The new priorities gave specific
examples, and tried to group problems into
specific classes as well. This was an important
first step for sane triage across Bugzilla.
But it was not enough—nearly all judgment
calls by volunteers ended up coming back
to me for validation, since the definitions
did not include a lot of my experience and
judgement—just examples and definitions.
So, I’ve started (and the QA volunteers have
rewritten and completed) a GNOME triage
guide [http://developer.gnome.
org/projects/bugsquad/triage/].
This document attempts to put a lot of collec-
tive wisdom down onto paper, and makes it
easier for new volunteers to come in and get
started, and for old volunteers and developers
to understand more precisely what should be
going on.

This will hold true for any project without
strong guidelines, I believe—either a large
group of volunteers will inconsistently apply
their own judgments (confusing developers) or
the project will become overly dependent on
one person, which will eventually again lead
to inconsistency as the mass of bugs becomes
too much for that one person to handle. Again,
this was a lesson learned by GNOME only af-
ter 2.0- during the 2.0 cycle, much of the triage
wisdom stayed in my head and when I had less

time (during the 2.2 cycle) the process grew a
bit creaky, because triage often blocked on my
availability to answer judgment calls.

3.4 Some Miscellaneous (But Important) Ob-
servations on Free Software QA

There are a few other important lessons
GNOME has learned that aren’t rules, per se,
but which everyone trying to do Free Software
QA should always keep in mind.

3.4.1 Observation 1: volunteers and hack-
ers are expensive, and bugs are cheap

You could also think of this as ‘volunteers are
scarce, bug filers are like locusts.’ This has
a number of implications for Free Software
QA- many of the rules I’ve previously cited
are almost the direct results of this observation.
Many others I haven’t cited also fall out of it. If
you keep this simple observation (almost more
a law than a rule) in mind, you’ll find the others
with time.

3.4.2 Observation 2: triage is an imperfect
art

Despite the immediately previous suggestions
about how to make triage consisten, it must
be understood that triage is an imperfect art,
where a certain amount of inconsistency is in-
evitable.

As already mentioned, the best way to triage is
to read a lot of bugs first, to gain an appreci-
ation for what types of bugs a project is see-
ing and how severe they are. But even after
having read 20,000 or so bugs in the past year,
over four projects, drawing the line even be-
tween seemingly simple things like ‘is this an
enhancement or a bug’ is a frequent borderline
judgement call for me.

Linux Symposium 454

Everyone involved in the QA process—bug re-
porters, bug fixers, and bug triagers (both ca-
sual and regular) must learn to accept this and
work with it. The important lesson here is
that volunteers should not be held to an impos-
sible standard—both volunteers and develop-
ers must understand that differences of opinion
will happen and aren’t the end of the world.
There will be thousands more bugs to work
with if one gets screwed up. :)

3.4.3 Observation 3: QA is winning when
people are interested in the process,
not just the results

So how can one know when QA is starting to
win? At what point can a QA volunteer sit back
and say ‘the hard part is done, now all I have to
do is read bugs?’ I’d suggest that one important
metric is noting the point when the standard re-
sponse by developers to bug reports is ‘put it in
Bugzilla.’ GNOME moved very slowly in this
direction, but that’s now pretty much the stan-
dard response on mailing lists when a bug is re-
ported to a list—‘take it to Bugzilla.’ There are
other parts of the process as well—bug days,
noting bug numbers in CVS commits or code
comments, and an overall commitment by de-
velopers to working with QA volunteers.

4 And these rules apply to other
large projects how?

4.1 XFree

A few months back, XFree had a dis-
cussion on their mailing list about use of
Bugzilla to track XFree86 bugs. The response
was. . . underwhelming. Why? The main fears
were pretty straightforward: ‘will we get lots
of useless bug email?’, ‘will people try to con-
trol what we do?’, and of course ‘what benefit
do we get?’

The answers to these questions aren’t always
obvious to a project just embarking on doing
serious Free Software QA for the first time.
Being more public can definitely open main-
tainers up to more mail. Obviously, this can
happen—as I discussed, it’s even possible that
less buggy software will get more bug re-
ports. That’s not truly a requirement—even if
Bugzilla is used only to triage and track bugs
that come in through other forums (say, open
only to developers, and used to track issues re-
ported to a mailing list) it can still be of great
use to a project, assuming that other rules I
laid out about supporting developer goals and
defining the triage process well are followed.
GNOME actually allows anonymous bug sub-
mission, the opposite end of the spectrum, and
while this is far from perfect, it has helped us
make huge leaps and bounds in terms of stabil-
ity by encouraging stack-trace submission.

Concerns about ‘control’ were equally
unfounded—even borderline paranoiac. Xfree,
like all other Free Software projects, is con-
trolled by hackers and hackers alone. If a
hacker decides that QA volunteers aren’t to
be trusted, or simply disagrees with triage
decisions, they can ignore them and move on.
The burden is on those running the QA process
to prove that their bugs are valid and useful.
I’ve given some suggestions on how this can
happen already.

Finally, the most obvious and at the same time
most difficult question—“what benefit do we
get?” I got into Linux because I’d heard about,
heard it didn’t crash, and one night Outlook
crashed 10 times, while I was trying to write
a single email to a professor. So for me, more
stable software is an obvious benefit of work-
ing in QA. That is, admittedly, not for every-
one. Answering this question really requires
some introspection on the part of hackers and
maintainers—if you want to make software
that is good for your users (virtually no matter

Linux Symposium 455

how you define good), then your project wants
a QA process and wants Bugzilla. If you are in
free software purely because you want to write
cool hacks, or because in free software, no one
can tell you what to do, Bugzilla may not be
for your project. But that’s an answer only
you can answer. Frankly, on reading the XFree
lists, it was not altogether clear that many of
the XFree hackers were particularly concerned
about their users. If that is the case (and that
is most definitely their prerogative as authors
of the code) then perhaps Bugzilla is not for
them. No matter how hard they try, it would be
hard for QA volunteers to support the pursuit
of power or cool hacks.

4.2 Kernel

Reading kernel traffic, I was very pleased to
see that Andrew Morton had proposed not just
a list of bugs, but actually defined what he felt
should be the standard for “when should we
go to 2.6.0?” I’m a long time k-t reader, and
this was the first time I’d seen something of the
sort. Defining and agreeing on that is part of
my Rule 0—QA has to support development,
and developers have to tell QA what they want.
The list had even been split into rudimentary
“can’t ship without fixing” and “it would be
nice” lists—a big first step towards solid triage.

It was sort of disappointing, though, to read
through the details—the vast majority of is-
sues had no bugs associated with them, and
squirelled down at the bottom was “and there
are several hundred open Bugzilla bugs.” This
was the kind of opportunity kernel bug peo-
ple should have seized on (and possibly have
since this paper has been written, of course.)
Bugzilla is perfectly designed to track these
kinds of issues and their progress. Some in-
trepid volunteer could easily have volunteered
to enter every issue into Bugzilla and assign
it a high priority and assign it to the owner
of the issue. From there, patches could have

been attached and tracked, punting it from one
list to another would have been as simple as
changing a single field, outsiders could easily
discover what bugs had and hadn’t been fixed
already, and a host of other things. Instead
of ongoing IRC status meetings where many
things were reported fixed or irrelevant, a sim-
ple query could have reported a list before the
meeting that could be updated by all partici-
pants in parallel if need be. (And of course,
no more diffs to show what had changed—
again, simple, dynamic query to show what has
changed over any period of time.)

Similarly, the “several hundred open Bugzilla
bugs” was a great invitation for someone to
work with Bugzilla, trawl them (it only takes
a weekend, at worst, to read a couple hun-
dred bugs, once you’ve got the knack) and start
making preliminary suggestions to maintainers
aobut important bugs that were in Bugzilla but
not on the list. Remember rule two—persuade
the hackers you are useful. Filling in the blanks
on information they knew must be there but
didn’t have time to find themselves is a great
step towards that, and reading the (currently
small) open bugs to get perspective would have
been a great start for those looking to help out
and do effective triage.

Pre-release is the best time for QA and
Bugzilla—priorities are typically clear cut,
hackers are most pressed for time and so most
appreciative of the help, and hackers are the
most motivated to work on bug-fixing instead
of pie-in-the-sky features. Hopefully, someone
involved in the kernel community will find this
general advice useful and can take advantage
of this relatively rare time in the kernel cycle.

5 Conclusion

Free Software QA is a slightly different beast,
playing with different sets of data inputs and

Linux Symposium 456

different sets of motivations than a typical QA
process. As a result, making QA central to the
release process is not easy for any Free Soft-
ware project, and it’s even harder to stay with
it once it is successful, since success breeds
difficulty. But it can be done if communica-
tion, motivation and technique are all brought
in line with each other. GNOME did, and ben-
efited immensely from it. It is my hope that
other large projects will be able to learn from
our lead.

6 Acknowledgments

Thanks to Ximian and Sun, for allowing me to
work so extensively with the GNOME commu-
nity.

Thanks to the Bugsquad and all the volun-
teers who preceded it, first for doing so much
work for their own communities, and second
for keeping me sane while I worked on Evolu-
tion and GNOME. And thirdly for suggesting
the title of my talk.

Thanks to all those who proceeded me, at
Mozilla and GNOME, for giving me some-
thing to work with—tools, skills, and data.

Thanks to ed on gimpnet, for helping me fight
through the structure of this paper.

7 Availability

This paper and slides from the associated pre-
sentation will be available from

http://tieguy.org/talks/

References

[Wheeler] From David Wheeler’s
SLOCCount—http://www.
dwheeler.com/sloccount/

Performance Testing the Linux Kernel
The re-aim workload

Cliff White
Open Source Development Labs

cliffw@osdl.org, http://www.osdl.org/archive/cliffw

Abstract

Good performance testing requires good tests
and good procedures. This paper discusses ex-
periences creating and using an automated test
environment.

The paper also describes work done at Open
Source Development Labs (OSDL™) in re-
writing and modernizing the AIM7 and AIM9
benchmarks. The intent is to make the bench-
marks relevant for modern hardware by mak-
ing it flexible and extensible.

This paper talks about how to create a testing
environment, how to automate it, and how to
select and evaluate potential tests. The paper
talks about the differences between low-level
(micro) workloads and application-modeling
(macro) workloads, using OSDL Scalable Test
Platform tests as examples, and talk about the
difference between tests that focus on specific
areas and tests that exercise broad areas.

1 Introduction

Performance testing in kernel context is neces-
sary to show that a projected improvement is
in fact an improvement. Performance tests are
used to measure large-scale application perfor-
mance and small-scale system routine and sys-
tem call performance.

There are two areas not specifically addressed

by performance testing. One area is compli-
ance which the Linux Standard Base and Linux
Test Project test suites both address. The other
area is reliability—demonstrating the ability to
sustain proper operation over long time spans.

A goal of the OSDL’s Scalable Test Platform is
to measure performance, over and over again.
To do this, we run publicly available work-
loads, and we create a few of our own. This
paper describes work being done to revise an
old workload suite, the AIM tests.

2 Creating a Proper Test Environ-
ment

A good test must be repeatable. It is very im-
portant that multiple runs of a test on the same
hardware with the same kernel produce the
same results. OSDL’s STP creates this repeat-
able environment by re-loading the test ma-
chines with a new OS before every run. Thus,
every test starts from an identical state. For
non-STP testing, the system is set up for re-
peated runs by using a Makefile. Whenever
a new test is created, the first thing created is
a setup/tear-down Makefile. In the Makefile,
careful track is kept of everything added to the
system for the test.

When running the test, care should be taken
to understand and control the test environment.
There are a few areas to consider:

Linux Symposium 458

• Networking – This should be obvious, but
any test of networking should be run on a
private network, where no other traffic im-
pacts the test measurement. This is espe-
cially important when a test is controlled
or monitored via a network.

• Other shared resources – Might include
shared storage arrays, or other devices.
Again, it is best to use dedicated hardware
or stop other users before testing.

• State of the system prior to test startup
– This is especially important for repeat-
ing test results. Rebooting the system
prior to every test run is one way to
assure a known state. However, many
tests are very influenced by cache effects
and this must be considered. When test-
ing database workloads, it is common to
warm the database cache prior to taking
any performance measurement.

• Repeat testing for repeatability – A single
test result might be useful. A repeatable
test result is much more usable. Statisti-
cally, three runs are about the minimum
for good data, five or more runs are better.

2.1 Experiences from the STP

Here is some advice, culled from experiences
adding tests to the OSDL’s Scalable Test Plat-
form.

• When scripting for automation, error re-
covery is everything. Error reporting
is more important. Error discovery is
most important. You will find that mak-
ing things happen in a script is easy—
knowing when things have not happened
and doing the right thing thereafter is
hard.

• Be very paranoid. Review and sanity
check test results frequently. Hardware
failures can be very sneaky; repeating
known tests can be a good way to spot
flaky hardware.

• When running a large or even a medium
number of systems, administration tools
are very important, especially tools that
allow you to look at health over time.

• When testing kernels, sometimes the most
interesting tests are the ones that do not
run at all.

• Likewise, be aware of timeout
conditions—the tests that never com-
plete can also be interesting. You should
have timeout conditions for each phase of
an automated process.

• Build the tools to parse and present results
when you build the test. If possible, build
the tool so you can compare multiple runs.

• Likewise, instrument the test when you
build the test. Add readprofile or opro-
file if possible. However, be aware of the
impact of your instrumentation; touching
/proc too frequently can impact your re-
sults.

• Results presentation is very important.
design the report so that the most impor-
tant data is the easiest to see.

• Establish a baseline run you can use for
comparison purposes.

• Compare frequently to that baseline. Test
results in isolation are less interesting than
comparisons to known conditions.

• Establish your hardware baselines in as
much detail as you can. In a perfect world,
what is the maximum rate your disk sub-
system can deliver? Knowing these rates

Linux Symposium 459

can help you determine when a test is us-
ing real hardware and when a test is run-
ning from disk cache.

2.2 Macro and Micro Workloads

STP uses two very different types of tests when
testing kernel performance. These tests are di-
vided into macro and micro workloads. Micro
workloads are tests that exercise a very small
piece of the system, such as a single system
call. These tests focus on the low-level perfor-
mance details.

A macro workload is a simulation of a real-
world task. Macro workloads are sometimes
created from real customer workloads, or may
be designed to a specification, such as the
Transaction Processing Performance Council’s
TPC-N specification. These large-scale work-
loads might include OLTP applications, deci-
sion support systems or reservation and inven-
tory systems. (OSDL’s macro workloads in-
clude the Database test suite—the subject of
another paper at this conference.)

It is important that we do not confuse the re-
sults of macro and micro workloads, or attempt
to extrapolate too much real-world behavior
from micro measurements. Micro benchmarks
are usually developer-focused and not very
useful for understanding customer needs.

When looking at macro benchmarks, avoid
confusing simulation with reality, and extrapo-
lating results beyond the specific configuration
and problem tested. Many macro benchmarks
are grounded in real customer needs and situa-
tions, but some are designed more for market-
ing price/performance comparisons.

2.2.1 The AIM Suite

The AIM suite was created by AIM Technol-
ogy in the 1980’s. The AIM company spon-
sored a yearly ‘Hot Iron’ [DEC] award for
hardware manufactures, with prizes awarded in
various price/performance categories. To quote
from a press release[HP]:

Since 1981, AIM Technology has
provided vendors and end users com-
prehensive, unbiased performance
testing to help users determine the
best fit between their application
needs and available systems and con-
figurations.. . . AIM is an independent
organization, as opposed to a ven-
dor consortium, which allows AIM
to bring an expert eye to performance
measurement, not restrained by ob-
jectives of consortium members.

The company no longer exists and the awards
are no longer being given out. SCO acquired
rights to the AIM technology in 2000, and
placed suites VII and IX of the test under the
GPL. From the SCO web page[SCO]:

The AIM benchmark technology has
proved useful for more than a decade
in measuring performance of hard-
ware and versions of the Unix operat-
ing system. The benchmarks were li-
censed by nearly all of the vendors of
Unix system hardware. More than 70
companies used these benchmarks to
compare and tune products. In addi-
tion, because of the stressful multidi-
mensional nature of the AIM work-
load many OS and hardware vendors
have used the benchmarks as part of
their quality assurance process.

Linux Symposium 460

The AIM suite combines features of both
macro and micro tests. The suite consists
of a list of sub-tests, also known as “jobs.”
Each job exercises a specific area of system
functionality, such as file I/O, shared memory,
process creation, and compute-intensive math
tasks. Each job consists of a C function which
is linked to the driver code. A job may loop
repeatedly internal to the C function. (For ex-
ample, each addition test does 1.5 million in-
ternal loops.) Lists of jobs are grouped into a
“workload,” contained in a workload file.

The test runs in two modes. In the single-user
mode (AIM suite IX), each job in the work-
load file is executed serially by the test driver.
An alarm is set, and the job is executed repeat-
edly until the alarm expires. The alarm time
is referred to as the “test period.” Performance
is calculated by multiplying the number of job
executions by the internal job loop count, and
dividing by the test period. Results reported
are iterations per test period and operations per
second for each job.

In the multiuser mode, the driver forks a num-
ber of subprocesses, giving each an identical
list of jobs. The length of the job list is vari-
able, the default is 100 jobs per child. The jobs
are identical to the single user case. Each job is
given a weight (the ‘hit’ count). This weight is
used to calculate the fraction of the total work
performed by each subtest, the total work is the
sum of all job weights.

A typical test executions consists of a series of
passes wherein the number of subprocesses is
increased on each pass. Each subprocess runs
a randomly-ordered set of jobs until its list is
exhausted. The driver waits for all the child
processes to exit, and records the time between
child start and child exit. From this data two
numbers are calculated—the jobs per minute
(JPM) and jobs per child process per minute
(JPM_C)[SGI].

As the system load increases the jobs per
minute increases until it reaches a peak. If
the number of child processes continues to in-
crease, the work per child per minute begins to
decrease. Depending on the command line op-
tions, the test run terminates when child work
decreases below a threshold or the number of
child processes reaches the maximum desired.
Results reported are parent time, total child
time, jobs per minute, and jobs per minute per
child.

The AIM suite provides a set of building blocks
(the sub-tests) that can be combined to create a
simulation of a real-world workload. The old
test has several examples of these workloads,
including simulations of databases, file servers,
and compute servers. The workload can be ad-
justed by altering test weight or changing the
test mix.

3 Re-aim – AIM rework

3.1 The driver

The AIM code has remained untouched since
1991. I re-wrote the driver portion of the code
so that I could understand it, maintain it and en-
hance the list of sub-tests. After studying the
old code for a time, I choose to write a new
driver, preserving as much of the functionality
of the old driver as was useful. No doubt a dif-
ferent coder could have continued to maintain
the existing structure, I choose not to.

The old driver used global data structures and
static defines to control the size of the test list,
the number of test arguments, and other details.
The static definitions were replaced with dy-
namicly linked lists for flexibility. The AIM7
and AIM9 tests use almost the same list of
tests, so a common driver was desirable.

For convenience, the GNU autoconf tools were
used for the build and install system. The fol-

Linux Symposium 461

lowing parts of the old AIM framework are es-
sentially unchanged:

• The method of statically linking test mod-
ules to the driver engine code, and calling
those modules through a function pointer.

• The method for calculating workload task
distribution and weighting.

• The method for calculating disk file size
and distribution.

• The majority of the test module code (not
changed at this time).

• The method of calculating the results is
unchanged, however the timing method
and location of timestamps relative to
driver sleep() has.

• The adaptive timer remains the default.

The current driver has the following options,
shown in Table 1 which may help explain us-
age.

Most of the parameters can be specified in a
configuration file, options in this file are ig-
nored if the command line option is present.
Disk directories and disk file sizes must be
specified in a configuration file.

Several things were noted while re-doing the
driver.

• The old multi-user test ran until the
jobs/child/minute was less than 1.0. This
is quite a load on modern systems, result-
ing runs greater than eight hours to at-
tain convergence. This length of a run
is generally not useful for such a per-
formance test so the default crossover is
jobs/child/minute less than 10.0, with a
second switch to set this to a quick test

Options Description
-d(x), –debug(x) Turns on debugging output,

1 is default
-v, –verbose Produces more output
-s(x), –startusers Number of users at start
-e(x), –endusers Number of users at end
-i(x), –increment Number to increment by
-f(s), –file(s) Workfile name,

(default ’workfile’)
-l(s), –list(s) Config file name,

(default ’reaim.config’)
-c, –crossover Run to crossover,

(JPM/user less than 10.0)
-q, –quick Run to quick crossover,

(JPM/user less than 60.0)
-x Runs until max JPM detected
-j(x),–jobs(x) Number of jobs in tasklist,

(minimum is workfile size)
-m, –multiuser AIM7 style, default
-t, –timeroff No adaptive timer
-o, –oneuser Runs AIM9 style

single thread
-p, –period Length for single thread
-r, –repeat Iterate entire test
-h, –help This message

Table 1: Re-aim Options

Linux Symposium 462

value of 60.0. On a 2-CPU 800MHZ Pen-
tium III system, the quick test converges
at 15→50 users, depending on workload.
The default crossover point is 50→200
users depending on the workload.

• The jobs per child is now adjustable, with
a default value of 100. This can be used
to cause a set number of child processes
to do more or less work without changing
the workload.

• In a perfect world, all children (doing
equal work) should receive equal favor
from the scheduler. In reality, as the num-
ber of children exceeds the number of
CPUs, unfairness occurs and the child exit
is serialized. In addition, the child exit
timing is collected serially by the parent
usingwait() . The maximum and min-
imum child exit times are recorded to re-
flect this. This variance also appears in the
standard deviation calculated by keeping a
running total across all child exits.

• Timestamps are collected with the
times() function. The parent time
figure is effectively wall clock time for
the test. This function also allows us to
extract the system and user time as seen
by the child process. This information
is reported as a running total. The child
time thus exceeds the parent time in the
report.

• Filesize and poolsize (see below) are now
set in the configuration file. If either is
specified in the workfile, that setting over-
rides the configuration file, maintaining
old behavior.

• A method for detecting the maximum jobs
per minute was added. When the-x op-
tion is used, the jobs per minute rate is
tested by taking the standard deviation
across the last five test iterations. If the

standard deviation is less than 1.0 percent
of the average, the test exits. In addition,
if the the JPM rate drops more than 1.0 be-
low the average, the test exits. Maximum
jobs per minute are always reported.

3.2 Math tests

Time changes everything. Years ago, when
computing was frequently referred to as
“number-crunching,” math performance was
an exciting topic. Today, in the kernel context,
when run single threaded, these math tests tell
us very little. Fluctuations in the single-user
(AIM9) integer math test times are undoubt-
edly due to non-math causes, and do not typ-
ically reflect a change in the kernel. The multi-
user is a bit different—when we examine the
multiuser case we see that all these test run en-
tirely in user space. If we think of each subtest
as a part of a larger workload, these user space
functions are quite useful.

Table 2 shows typical parent times and child
system and user times when running these tests
on a 2-CPU system (Linux-2.4.18).

Test_Name Parent Child Sys Child usr
add_short 5.96 0.00 1.18
add_double 15.71 0.00 3.13
add_float 10.58 0.00 2.09
add_int 16.90 0.00 3.37
add_long 16.93 0.00 3.38
mul_short 0.50 0.00 0.09
mul_long 0.42 0.00 0.07
mul_int 0.40 0.00 0.07
mul_float 17.43 0.00 3.48
mul_double 17.55 0.00 3.48
div_double 15.40 0.00 3.07
div_float 15.83 0.00 3.07
div_int 18.94 0.00 3.76
div_long 18.83 0.00 3.76
div_short 18.94 0.00 3.76

Table 2: Re-aim Math Tests

Linux Symposium 463

Number Parent Jobs per
Forked Time Minute

Without math tests
10 75.23 797.55

With math tests
10 58.07 1064.23

Table 3: Database Load Comparisons

Number Parent Jobs per
Forked Time Minute

Equal Weight
10 39.17 1531.78
20 66.41 1806.96

Disk:math - 4:1
10 57.38 1045.66
20 91.33 1313.92

Disk:math - 1:4
10 26.53 2261.59
20 49.07 2445.49

Table 4: Effects of Test Weight

Adding these user space workloads to the mul-
tiuser test produces these results, shown in Ta-
ble 3:

This appears a bit counter-intuitive—we have
a longer test list, but it runs faster! Remem-
ber that the number of tests per child is con-
stant (100 in this case). Adding the short user-
space math tests to the workload actually de-
creases the amount of work per child. Here are
some further examples of how changing a sim-
ple mix can change the run time. We’ll start
with four tests, equally weighted, then we will
set the disk test weight to four times the weight
for the math tests, then do the reverse. Results
shown in Table 4:

There are fifteen of these math tests, all are
tight loops. No changes in these tests are
planned.

Num Parent Child Child
Forked Time SysTime UTime

10 23.70 7.64 4.10
20 26.29 15.30 8.27
30 29.02 23.02 12.30
40 31.55 31.48 16.38
50 35.91 39.54 20.33

Table 5: High System Time Load

3.3 Other Tests

The math tests are notable for consuming
mostly user time. There is another list of
tests that consume mostly system time. These
tests include the various memory tests (brk,
shared memory) and the various system call
tests. (create/close, link, fork, exec.) Combin-
ing these tests into into a single workload does
consume more system time, as seen in Table 5:

The current list of system-call focused test is a
bit short. Repeated runs of various workloads
have not yielded memory consumption at rea-
sonable user levels.

Another current question involves the shell_rtn
tests, which currently use the shortest possible
shell script. In addition, the three functions
calling the shell are identical. The reason for
this duplication is unknown.

The intent is to examine other open sources
of test routines for incorporation into this run
framework.

3.4 Disk Tests

The disk tests in the old AIM test consist of
three groups: basic block I/O tests, the same
tests with an added sync, and the sync I/O
tests. Each test determines file size from a
global variable,disk_iteration_count .
There are two configuration variables that con-
trol this, FILESIZE and POOLSIZE (speci-

Linux Symposium 464

fied in kilobytes or megabytes). If POOL-
SIZE is zero, each child will write or read
a total of FILESIZE bytes. If POOLSIZE is
non-zero, child file size is equal to FILESIZE
+ (POOLSIZE/number_of_children). Thus
when POOLSIZE is non-zero, I/O per child
will be reduced on each increase in child count.

For example, specifying a FILESIZE of 10K
and a POOLSIZE of 100K will result in a sin-
gle child creating a 110K byte file on each disk
device listed. Two children will create a 60K
file, etc. 24 children will create a 14K file, con-
suming 328KB per disk device.

The old AIM tests follow this sequence:

• creat() file

• write file

• close() file descriptor

• open() file descriptor

• do test

This results in the disk test running entirely
from cache. I added a second set of disk tests
using this method:

• creat() file

• write file

• close() file descriptor

• sync()

• open() file descriptor

• do test

This simple change noticeably impacted per-
formance:

Random Disk Writes
disk_rw without sync() 21922 (1K) per second
disk_rw with sync() 1218.78 (1K) per second

The first number is more indicative of real-
world hardware performance, but the cache-
only version of the tests may be of greater in-
terest to kernel developers.

The third category of disk tests performs the
same operations, but descriptors are opened
with the O_SYNC flag. (The read-only test
is not performed, of course.) This test is of
lesser interest, due to the relative slowness of
O_SYNC.

The current disk tests do all IO at 1K block
sizes. Future improvements to the disk test
suite include:

• Tests that use O_DIRECT and raw IO.

• Tests that use a common file created dur-
ing the test setup or prior to the test run,
requiring noticeable non-cached IO.

• Tests that produce measurable read activ-
ity, period. This is a weakness of the
cache-intensive design of the current tests.
Many test runs show little or no real read
IO—files are created, read and destroyed
too quickly.

• Tests that attempt to consume a noticeable
percentage of the cache.

• Temporary file creation is currently serial-
ized, multiple devices should work in par-
allel.

The final test is disk_src, which does a series
of directory searches. This test is of interest
due to its use of dcache. Future enhancements
include creating a script which will allow other
trees to be searched by disk_src, in place of the
current fakeh.tar.

Linux Symposium 465

Run Time Change
2 seconds 2.39%
4 seconds 2.17%
8 seconds 2.02%
15 seconds 1.52%
30 seconds 1.46%
45 seconds 1.62%

Table 6: Single user variation—3 runs each

3.5 Comparison of AIM9 Duration

This comparison attempts to show the useful
duration for the single user (AIM9) test run.
A proper duration should produce stable re-
sults from run to run. To test this, a single
user test was run three times using a list of
fifty-four tests. Average change between tests
was compared across the three runs, as shown
in Table 6. (Note: Each test must complete
one full loop.) While the run-to-run perfor-
mance does stabilize slightly when the test du-
ration exceeds fifteen seconds, run-to-run sta-
bility does not improve noticeably beyond that
point. This has been reflected in the choice of
default settings for the single user run duration
(10 seconds).

4 Run results

4.1 List of the workloads

Appendix A has a list of the various workloads
with run times on several sample configura-
tions.

4.2 Comparisons – 2.5

Table 7 is a quick comparison of a 2.5 patch
set, which is a subset of one of Martin Bligh’s
trees. We can see by this quick comparison that
the patch does improve performance. The test

Forks JPM-mjb JPM delta
10 1167.50 1074.15 8.3%
20 1240.24 1219.13 1.7%
22 1252.72 1219.14 2.7%

100 1247.36 1203.68 3.6%

Table 7: Comparison of 2.5.68 and 2.5.68-
mjb0.5

was run on a small 2-CPU system, with 1GB
of physical memory and IDE disks.

5 Conclusions

I have described the work that has been done to
change from AIM to Re-aim. I intend to spend
a great deal more time adding to the list of test
cases and otherwise improving the usefulness
of the tests.

6 Availability

The Re-aim code is available from Source-
forge:

http://sourceforge.net/
projects/re-aim-7

Or via BitKeeper:

bk://bk.osdl.org/aimrework

7 Trademarks

Linux is a trademark of Linux Torvalds

OSDL is a trademark of Open Source Development
Labs, Inc. All other marks and brands are the prop-
erty of their respective owners.

Linux Symposium 466

8 Acknowledgements

Thanks to Ruth Forester and John Hawkes for
advice, and OSDL for support.

References

[SCO] Web page announcing AIM suite
release,http://www.caldera.
com/developers/community/
contrib/aim.html , 2000.

[HP] Press Release with AIM description,
http:
//www.compaq.com.hk/press/
release/99press/990623.html ,
1995.

[DEC] Press Release with AIM description,
http://wint.decsy.ru/
alphaservers/digital/
v0000022.htm , 1995.

[SGI] Ruth Forester, et al. “Filesystem
Performance and Scalability in Linux
2.4.17,”Proceedings of the 2002
USENIX Annual Technical Conference,
Berkeley, CA 2002
http://oss.sgi.com/
projects/xfs/papers/
filesystem-perf-tm.pdf .

A Re-aim Results

A.1 Example runs

This appendix shows how various workloads
perform on some sample systems. Work-
loads were run until max sustainable jobs were
reached. The results shown below are the
maximum users obtained by each workload.
Several iterations are shown in some cases
to demonstrate typical run termination—the
adaptive timer was used for these runs. See the

source package for a listing of each workfile.
Some of the workload have arbitrary names re-
flecting time. This is not intended as a hard-
ware comparison.

We notice that for several of the workloads,
scaling is roughly linear across the three con-
figurations. For other workloads, most notice-
able the fserver and Dbase, performance on the
quad system jumps markedly. However, the
adaptive timer skews the increment such that
comparisons may not be relied upon—any true
comparison should be made without the adap-
tive timer. (The adaptive timer was used in this
case to reduce total run time.) The additional
disks on the Quad system appear to impact run
times. The other systems under test use disks
which are shared by the system. (/tmp or
/usr/tmp) The quad system has 5 spindles
of disk devoted to the tests. The actual test
report includes data on standard deviation and
confidence levels. These columns have been
removed, due to text formatting requirements.

The systems:

1. Single CPU
PIII - 600MHZ
384KB RAM
single IDE disk
Linux-2.5.68 -stock
FILESIZE 10k
POOLSIZE 100k

2. Dual CPU
PIII - 868MHZ
1GB RAM
Dual IDE disk
Linux-2.5.68 - stock
FILESIZE 10k
POOLSIZE 1m

3. Quad CPU
PIII - 700MHZ

Linux Symposium 467

4GB RAM
5 SCSI disks
Linux-2.4.20 - stock
FILESIZE 10k
POOLSIZE 1m

A.2 The Workloads

workfile.all_utimeTable 8. All these tests run
entirely in user space.

workfile.alltestsTable 9. The full test list.

workfile.computeTable 10. From the old
test. Simulation of a compute-intensive server.
31.7% of this workload are tests from the
all_utime list.

workfile.dbase Table 11 Simulation of a
database load. 21.8% percent of this workload
are tests from the all_utime list.

workfile.diskTable 12. The disk tests with no
other work. All tests in this list are weighted
equally. Notice the difference between this
workload and the fserver workload, which in-
cludes other subtests.

workfile.fivesecTable 13 A completely artifi-
cial grouping of tests, based on their run dura-
tion when tested on a UP system.

workfile.fserverTable 14 Simulation of a file
server. 21.8% of this mix is 100% user time
tests, which matches the dbase workfile.

workfile.fivesecTable 15 A completely artifi-
cial grouping of tests, based on their run dura-
tion when tested on a UP system.

workfile.sharedTable 16. Simulation of a
multi-user shared server, assumed to be sup-
porting telnet clients. 39.7% of the work mix
are 100% user time tests.

workfile.shortTable 17 A completely artificial

Max Jobs per minute
Single - 1044.37 (1 user)
Dual - 2938.27 (7 users)
Quad - 4896.00 (12 users)
Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
5 29.32 0.00 29.32 1043.66
Dual
14 29.27 0.01 56.72 2927.23
Quad
20 25.04 0.03 100.04 4888.18

Table 8: All User Time Workload

Max Jobs per minute
Single - 1839.22 (118 users)
Dual - 4233.31 (345 users)
Quad - 7207.78 (281 users)

Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
222 674.92 79.09 583.36 1835.42
Dual
545 727.78 288.98 973.43 4223.53
Quad
281 217.54 219.01 611.41 7207.78
343 317.68 494.41 750.89 6024.74

Table 9: All Tests Workload

grouping of tests, based on their run duration
when tested on a UP system.

Linux Symposium 468

Max Jobs per minute
Single - 803.29 (5 users)
Dual - 1429.25 (7 users)
Quad - 4708.68 (753 users)
Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
6 45.57 1.90 43.63 797.89
Dual
10 43.35 3.73 78.56 1397.92
Quad
753 969.10 246.37 3620.94 4708.68
1007 1300.27 348.33 4838.78 4693.19

Table 10: Compute Workload

Max Jobs per minute
Single - 806.63
Dual - 1186.52
Quad - 1124.23
Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
10 73.64 3.92 68.51 806.63
Dual
53 265.33 38.30 457.17 1186.52
Quad
383 2626.73 7089.40 2706.01 866.10

Table 11: Dbase Workload

Max Jobs per minute
Single - 1059.20
Dual - 2753.83
Quad - 9723.69
Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
52 309.29 19.06 11.38 1059.20
65 396.09 24.01 14.32 1033.86
Dual
259 592.52 272.62 45.07 2753.83
349 816.90 370.08 61.38 2691.52
386 927.06 423.03 67.48 2623.13
464 1131.55 518.55 81.22 2583.36
Quad
352 374.70 766.36 53.39 5918.33
510 330.43 899.31 76.65 9723.69
807 867.55 3087.03 119.11 5860.30

Table 12: Disk Workload

Max Jobs per minute
Single - 2014.13
Dual - 3872.86
Quad - 10995.93
Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
24 70.78 16.60 12.21 2014.13
32 101.06 22.16 16.34 1880.86
35 110.06 24.29 17.73 1888.97
41 130.73 28.48 20.89 1862.92
Dual
136 208.59 158.24 51.78 3872.86
180 287.05 210.50 68.99 3724.79
198 319.77 231.98 75.75 3678.02
Quad
432 265.98 698.35 170.78 9647.64
550 297.11 875.30 214.95 10995.93
799 1023.44 3577.29 314.54 4637.36

Table 13: FiveSec Workload

Max Jobs per minute
Single - 1617.78
Dual - 4267.88
Quad - 149.06
Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
17 63.68 9.74 37.24 1617.78
19 72.01 11.17 41.57 1598.94
23 89.66 13.41 50.25 1554.54
Dual
328 465.73 241.80 483.01 4267.88
367 525.04 272.13 540.58 4235.91
449 639.48 339.93 661.62 4254.93
531 756.40 402.28 782.39 4254.18
Quad
141 5732.32 4832.17 283.59 149.06
145 5968.47 4803.54 290.69 147.22
146 6112.96 5288.60 292.91 144.74

Table 14: Fserver Workload

Linux Symposium 469

Max Jobs per minute
Single - 952.59
Dual - 2945.31
Quad - 5007.89
Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
12 81.63 3.42 69.14 952.59
Dual
187 411.42 57.24 730.43 2945.31
Quad
48 62.11 12.72 231.40 5007.89

Table 15: Long Workload

Max Jobs per minute
Single - 1177.14
Dual - 2232.94
Quad - 2153.06
Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
12 59.33 5.09 51.69 1177.14
16 80.37 6.84 68.84 1158.64
Dual
28 72.98 23.81 95.95 2232.94
34 103.61 26.71 116.53 1909.85
Quad
132 520.91 386.16 436.88 1474.80
182 624.65 585.43 628.17 1695.73
291 786.61 1135.61 1002.55 2153.06
400 1409.01 3649.24 1380.71 1652.22

Table 16: Shared Workload

Max Jobs per minute
Single - 45333.33
Dual - 166909.09
Quad - 222545.45
Num Parent Child Child Jobs per
Forked Time SysTime UTime Minute
Single
6 0.82 0.38 0.42 44780.49
Dual
9 0.33 0.27 0.39 166909.09
Quad
4 0.11 0.24 0.23 222545.45
8 0.26 0.47 0.45 188307.69

Table 17: Short Workload

Stressing Linux with Real-world Workloads

Mark Wong
Open Source Development Labs

markw@osdl.org

Abstract

Open Source Development Labs (OSDL™)
have developed three freely available real-
world database workloads to characterize the
performance of the Linux kernel. These cus-
tomizable workloads are modeled after the
Transaction Processing Performance Council’s
industry standard W, C, and H benchmarks,
and are intended for kernel developers with or
without database management experience. The
Scalable Test Platform can be used by those
who do not feel they have the resources to run a
large scale database workload to collect system
statistics and kernel profile data. This paper de-
scribes the kind of real world activities simu-
lated by each workload and how they stress the
Linux kernel.

1 Introduction

OSDL1 is dedicated to providing developers
with resources to build enterprise enhance-
ments into the Linux® kernel and its Open
Source solution stacks. This paper focuses
on real-world database workloads, based on
industry standard benchmarks, used to stress
Linux.

OSDL currently provides three workloads, de-
rived from specifications published by the
Transaction Processing Performance Council2

1http://www.osdl.org/
2http://www.tpc.org/

(TPC). TPC is a non-profit corporation created
to define database benchmarks with which per-
formance data can be disseminated to the in-
dustry.

TPC benchmarks are intended to be used as a
competitive tool. All published TPC bench-
mark results must comply with strict publi-
cation rules and auditing to ensure fair com-
parisons between competitors. Furthermore,
it is required that all the hardware and soft-
ware used in a benchmark must be commer-
cially available with a full disclosure report of
the pricing of all the products used as well as
support and maintenance costs.

As a basis for our three workloads, we used the
TPC Benchmark∗ W (TPC-W∗), TPC Bench-
mark C (TPC-C∗), and TPC Benchmark H
(TPC-H∗). Each benchmark is briefly de-
scribed here. TPC-W is a Web commerce
benchmark, simulating the activities of Web
browsers accessing an on-line book reseller for
browsing, searching or ordering. TPC-C is an
on-line transaction processing (OLTP) bench-
mark, simulating the activities of a supplier
managing warehouse orders and stock. TPC-
H is an ad hoc decision support benchmark,
simulating an application performing complex
business analyses that supports the making of
sound business decisions for a wholesale sup-
plier.

It is impractical for most Linux kernel devel-
opers to adhere to TPC rules, simply for cost
alone. The executive summaries of the pub-

Linux Symposium 471

lished results on the TPC Results Listing Web
page3 show system costs in the millions of dol-
lars.

To illustrate, the highest performing TPC-
W result at the 10,000 item scale fac-
tor4 [TPCW10K] uses forty-eight dual-
processor Web servers, twelve dual-processor
and two single-processor Web caches, and
one system with eight processors and ap-
proximately 150 hard drives for the database
management system. This does not include the
systems emulating Web browsers that drive the
benchmark.

The highest performing TPC-
C [TPCCRESULT] result uses thirty-two
eight-processor system with 108 hard drives
each, four four-processor systems with
fourteen hard drives each for the database
management system, and sixty-four dual-
processor clients. This does not include the
systems emulating the terminals required to
drive the benchmark.

The highest performing TPC-H result at the
10,000 GB scale factor [TPCH10000GB] uses
sixty-four dual-processor systems with four gi-
gabytes of memory each and a total of 896 hard
drives.

2 Database Test Suite

The Database Test Suite5 is a collection of
simplified derivatives of the TPC benchmarks
that simulate real-world workloads in smaller
scale environments than that of a full blown
TPC benchmark. These workloads are not very
well suited to compare databases or systems
because the variations allowed in running the

3Current results can be viewed on the Web at:
http://www.tpc.org/information/results.asp

4The scale factordetermines the initial size of the
database.

5http://www.osdl.org/projects/performance/

workload would result in an apples-to-oranges
comparison. However, these workloads can be
used to compare the performance between dif-
ferent Linux kernels on the same system.

The amount of database administration knowl-
edge and resources needed to run one of these
workloads may still be intimidating to some,
but the OSDL Scalable Test Platform6 (STP)
offsets these concerns. How the STP can be
used is discussed towards the end of this paper.

These tests were initially developed on Linux
with SAP DB but each test kit is designed to
allow them to be usable with any database,
such as MySQL7 or PostgreSQL8, with some
porting work. Members of the PostgreSQL
community are currently contributing to the
Database Test Suite so that it may be used with
PostgreSQL and also run on FreeBSD9.

Each test provides scripts to collect sys-
tem statistics using sar, iostat, and vmstat.
Database statistics for SAP DB are also col-
lected by using the tools that are provided with
the database. The data presented for each
workload in this paper are primarily profile
data to show what parts of the Linux kernel is
exercised. Keep in mind that the profile data
presented here characterizes the workload for
a specific set of parameters and system config-
urations. For example, as we review the profile
data we will see that Database Test 2 appears
to be stressing a SCSI disk controller driver,
yet the workload can be customized so that
the working set of data can fit completely into
memory to put the focus of the workload on the
system memory and processors as opposed to
the storage subsystem.

6STP can be accessed through the Web at
http://www.osdl.org/stp/

7http://www.mysql.com/
8http://www.postgresql.org/
9http://www.freebsd.org/

Linux Symposium 472

2.1 Database Test 1 (DBT-1)

Database Test 1 (DBT-1) is derived from the
TPC-W Specification [TPCW], which typi-
cally consists of an array of Web servers, host-
ing the on-line reseller’s store front, that in-
terfaces with a database management system,
shown in Figure 1. An array of systems is also
required to support the benchmark by simulat-
ing Web browsers accessing the Web site.

Figure 1: TPC-W Component Diagram

DBT-1, on the other hand, focuses on the ac-
tivities of the database. There are no Web
servers used, and a simple database caching ap-
plication can be used to simulate some of the
effects that a Web cache would have on the
database. Since no Web servers are used, emu-
lated Web browsers are not fully implemented.
Instead, a driver is implemented to simulate
users requesting the same interactions against
the database that a Web browser would make
against a Web server.

Figure 2 is a component diagram of the pro-
grams used in DBT-1. The Driver is a multi-
threaded program that simulates users access-
ing a store front. The Application Server is
another multi-threaded application that man-
ages a pool of database connections and han-
dles interaction requests from the Driver. The
Database Cache is yet another multi-threaded
program that extracts data from the database
before the test starts running. If the caching
component is not used, the Application Server
queries the database directly. Each component
of DBT-1 can run on separate or shared sys-
tems, in other words, in a three-tier or one-tier

environment.

Figure 2: DBT-1 Component Diagram

The emulated users behave similarly to the
TPC-W emulated browsers by executing in-
teractions that search for products, make or-
ders, display orders, and perform administra-
tive tasks. There are a total of fourteen in-
teractions that can occur, as shown in Table 1
with their frequency of execution. Each inter-
action, except Customer Registration, causes
read-only or read-write I/O activity to occur.
The overall effect is that 80% of the inter-
actions executed cause read-only I/O activity
while the remaining 20% of the interactions
execute also cause writing to occur. Admin
Request, Best Sellers, Home, New Products,
Order Inquiry, Order Display, Product Detail,
Search Request, and Search Results are the
read-only interactions. Admin Confirm, Buy
Request, Buy Confirm, and Shopping Cart are
the read-write interactions. Customer registra-
tion does not interact with the database. It is
maintained in the workload to keep the inter-
action mix close to the TPC-W specification.

An emulated user maintains state between in-
teractions to simulate a browser session. A ses-
sion lasts an average of fifteen minutes, which
can be tester defined, over a negative exponen-
tial distribution. The state maintained includes
the emulated user’s identification and a shop-
ping cart identifier. Each emulated user also
randomly picks a think time from a negative
exponential distribution, with a specified aver-
age, to determine how long to sleep between

Linux Symposium 473

Interaction Executed
Admin Confirm 0.09 %
Admin Request 0.10 %
Best Sellers 11.00 %
Buy Confirm 0.69 %
Buy Request 0.75 %
Customer Registration 0.82 %
Home 29.00 %
New Products 11.00 %
Order Display 0.25 %
Order Inquiry 0.30 %
Product Detail 21.00 %
Search Request 12.00 %
Search Results 11.00 %
Shopping Cart 2.00 %

Table 1: DBT-1 Database Interactions Mix

interactions.

This workload generally exhibits high proces-
sor and memory activity mixed with with net-
working and low to medium I/O activity that
is mostly read-only. The parameters that can
be controlled to alter the characteristics of the
workload are the scale factor of the database,
the number of connections the Application
Server opens to the database, the number of
emulated users created by the driver, and the
think time between interaction requests.

The following results for DBT-110 are collected
from a four-processor Pentium III Xeon∗ sys-
tem with 1 MB of L2 cache and 4 GB of mem-
ory in the OSDL STP environment. The sys-
tem is configured in a one-tier environment
with SAP DB using a total of eleven raw disk
devices and to run against Linux 2.5.67. A
database with 10,000 items and 600 users is
created, where 400 users are emulated using an
average think think of 1.6 seconds

Table 2 displays the top 20 functions called

10http://khack.osdl.org/stp/271067/

sorted by the frequency of clock ticks. The
profile data is collected using readprofile where
the processors in the system become 100% uti-
lized, as shown in Figure 3. Other than the
scheduler, we can see that TCP network func-
tions are called most frequently in this work-
load.

Function Ticks
default_idle 944946
schedule 15835
__wake_up 7376
tcp_v4_rcv 6871
__copy_to_user_ll 6456
tcp_sendmsg 6386
mod_timer 4666
__copy_from_user_ll 4482
tcp_recvmsg 4297
__copy_user_intel 3602
tcp_transmit_skb 3369
ip_queue_xmit 3230
dev_queue_xmit 3105
ip_output 2936
__copy_user_zeroing_intel 2806
tcp_data_wait 2711
tcp_rcv_established 2675
generic_file_aio_write_nolock 2614
fget 2536
do_gettimeofday 2420
.
total 1124848

Table 2: DBT-1 Profile Ticks

Table 3 displays the top 20 functions with the
highest normalized load, which is calculated
by dividing the number of ticks a function has
recorded by the length of the address space the
function occupies in memory. By comparing
Table 2 and Table 3, we can see that__copy_
to_user_ll and __copy_from_user_
ll appear in both tables. This implies that
the user address space is accessed frequently
in this workload.

Linux Symposium 474

Function Load
default_idle 14764.7812
__wake_up 153.6667
__copy_to_user_ll 57.6429
system_call 52.5682
get_offset_tsc 45.9688
syscall_exit 40.1818
__copy_from_user_ll 40.0179
fget 31.7000
restore_fpu 30.6875
fput 26.4062
ipc_lock 24.6250
__copy_user_intel 22.5125
sock_wfree 19.6094
__copy_user_zeroing_intel 17.5375
local_bh_enable 16.7396
mod_timer 16.2014
schedule 15.4639
do_gettimeofday 15.1250
sockfd_lookup 14.8393
device_not_available 13.4146

Table 3: DBT-1 Normalized Profile Load

2.2 Database Test 2 (DBT-2)

Database Test 2 (DBT-2) is derived from the
TPC-C Specification [TPCC], which typically
consists of a database server and a transaction
manager used to access the database server.
There is also an array of systems required to
support the benchmark by simulating terminals
accessing the database. This benchmark can be
run in one of two configurations, as shown in
Figure 4 and Figure 5. The only difference be-
tween these two configuration is that the emu-
lated terminals access the database through a
transaction manager, labeled as theClient in
Figure 4, while the emulated terminals access
the database directly in the Figure 5.

DBT-2 can be also be configured to run in one
of two ways. The first way is shown in Fig-
ure 6 where the Driver, a multi-threaded pro-

0 500 1000 1500 2000
Elapsed Time (seconds)

0

20

40

60

80

100

%
 U

til
iz

ed

user
system
idle
wait

Figure 3: DBT-1 Processor Utilization

Figure 4: TPC-C Component Diagram 1

gram that creates a thread for every terminal
emulated, accesses the database through the
Client program, a transaction manager that is a
multi-threaded program that manages a pool of
database connections. The second way, shown
in Figure 7, combines the functionality of the
Client program into the Driver program so that
the driver can connect directly to the database.
In either case, the workload can be run in a
single- or multi-tier environment.

DBT-2 consists of five transactions that create
orders, display order information, pay for or-
ders, deliver orders, and examine stock levels.
Table 4 lists each transaction and the frequency
that each is executed by the emulated termi-
nals. The Deliver, New-Order, and Payment
transactions are read-write transactions, while
the Order-Status and Stock-Level transactions
are read-only transactions.

This workload can be customized so that the

Linux Symposium 475

Figure 5: TPC-C Component Diagram 2

Figure 6: DBT-2 Component Diagram 1

working set of data is contained completely in
memory. If the working set of data is cached
completely in memory, the system puts a heavy
load on processors and memory usage. In sit-
uations where the working set of data is not
completely cached, random I/O activity in-
creases, while in both cases, sequential writes
to the database logging device occurs through-
out the test.

There are several parameters that can be cus-
tomized to alter the characteristics of the work-
load. There are constant keying and thinking
times between interactions that can be tester
defined. The keying time simulates the time
taken to enter information into a terminal and
the thinking time simulates the time taken for a
tester to determine the next transaction to exe-
cute.

By default, every terminal that is emulated is
assigned a district and a warehouse to work out
of. This can be changed so that a terminal ran-
domly picks a warehouse and district in a spec-
ified range for every transaction. The effect this
has on the workload is that a single emulated
terminal is likely to access a greater amount of
data in the database over the course of a test.

Figure 7: DBT-2 Component Diagram 2

Transaction Executed
Delivery 4.0 %
New-Order 45.0 %
Order-Status 4.0 %
Payment 43.0 %
Stock-Level 4.0 %

Table 4: DBT-2 Database Transaction Mix

Given the same amount of memory, this would
create a workload less likely to be cached in
memory and more likely to incur an increased
amount of I/O activity. It would also create
more lock contention in the database. By re-
ducing the number of emulated terminals and
by limiting the range of data an emulated ter-
minal accesses in the database, the workload
can be cached into memory, effectively creat-
ing a workload that only performs synchronous
writes on the database logging device.

The following results for DBT-211 are collected
from a four-processor Pentium III Xeon sys-
tem with 1 MB of L2 cache and 4 GB of mem-
ory in the OSDL STP environment. The sys-
tem is configured in a one-tier environment
with SAP DB using twelve raw disk devices
to run against Linux 2.5.67. Sixteen termi-
nals are emulated to randomly select a district
across six distinct warehouses with a keying
and thinking time of zero seconds.

Table 5 displays the top 20 functions called

11http://khack.osdl.org/stp/271071/

Linux Symposium 476

sorted by the frequency of clock ticks and
Table 6 displays the top 20 functions with
the highest normalized load. If we compare
these tables like we did with the results
from DBT-1, we see thatbounce_copy_
vec , __blk_queue_bounce , scsi_
request_fn , scsi_end_request , and
page_address appear in both tables. The
default_idle function also appears at
the top of both tables. This implies that the
processors on the system are not fully utilized
and that the system may be stressing the
storage subsystem. Figure 8 confirms that
the processors are approximately 5% to 10%
idle and are approximately 40% to 50% busy
waiting for I/O.

Function Ticks
default_idle 5695427
bounce_copy_vec 84136
schedule 55663
__blk_queue_bounce 28391
scsi_request_fn 23052
do_softirq 21760
__make_request 20124
try_to_wake_up 10511
scsi_end_request 10161
system_call 9734
dio_bio_end_io 9241
scsi_queue_next_request 9066
ipc_lock 6856
sys_semtimedop 5858
do_anonymous_page 5693
kmem_cache_free 5587
free_hot_cold_page 4768
page_address 4752
buffered_rmqueue 4648
try_atomic_semop 4406
.
total 6211231

Table 5: DBT-2 Profile Ticks

Function Load
default_idle 88991.0469
bounce_copy_vec 1051.7000
system_call 221.2273
syscall_exit 105.5455
do_softirq 104.6154
ipc_lock 85.7000
dio_bio_end_io 82.5089
kmem_cache_free 69.8375
scsi_end_request 63.5063
__wake_up 55.9375
schedule 54.3584
get_offset_tsc 54.1562
__blk_queue_bounce 47.9578
bio_put 46.3542
scsi_request_fn 42.3750
fget 37.5125
restore_fpu 36.7812
page_address 33.0000
generic_unplug_device 29.7143
device_not_available 29.6098

Table 6: DBT-2 Normalized Profile Load

2.3 Database Test 3 (DBT-3)

Database Test 3 (DBT-3) is derived from the
TPC-H Specification [TPCH], which typically
consists of a single database server that is
queried by an application in a host-based or
client/server configuration, as shown in Fig-
ure 9 and Figure 10.

There are twenty-two queries that provide busi-
ness analyses for pricing and promotions, sup-
ply and demand management, profit and rev-
enue management, customer satisfaction, mar-
ket share, and shipping management. In addi-
tion to the twenty-two queries, there are two
refresh functions that load new sales informa-
tion into the database.

This workload consists of loading a database,
running a series of queries against the database,

Linux Symposium 477

0 10 20 30 40 50
Elapsed Time (minutes)

0

10

20

30

40

50

60

70

80

90

100
%

 U
til

iz
ed

user
system
idle
wait

Figure 8: DBT-2 Processor Utilization

Figure 9: TPC-H Host-Based Component Dia-
gram

and loading new sales information into the
database. There are three distinct tests in which
these actions occur, the Load Test, Power Test,
and Throughput Test. The Load Test creates
the database tables and loads data into them.
The Power Test executes each of the twenty-
two queries and two refresh functions sequen-
tially. The Throughput Test executes a speci-
fied number of processes that executes each of
the twenty-two queries in parallel and an equal
number of processes that executes only the re-
fresh functions.

There are several ways that this workload can
be customized. The scale factor of the database
can be selected so that at some point dur-
ing a test, the working set of data becomes
cached into memory. The number of streams

Figure 10: TPC-H Client/Server Component
Diagram

for the throughput test may have to be adjusted
according to the available system resources.
The TPC-H Specification requires a minimum
number of streams to be used depending on
the scale factor of the database and ideally the
number of streams should be selected so that
the highest throughput metric can be achieved.
However, for DBT-3, selecting the number of
streams can be determined by how the Linux
kernel is stressed by the workload. In any case,
if the working set of data is not cached, large
sequential I/O activity occurs in the Power and
Throughput Test. Also, each of the twenty-
two queries can be modified to meet different
needs. For example, a query can be modified
to answer another type of business question.

The following results for DBT-312 are collected
from a four-processor Xeon∗ system with 256
KB of L2 cache and 4 GB of memory in the
OSDL STP environment. The system is con-
figured in a host-based environment running
Linux 2.5.67 with hyper-threading enabled and
a patch that allows the DAC960 driver to have
direct memory access into high memory. A
1 GB database was created and only statistics
from a Throughput Test with eight streams are
reported here.

Table 7 displays the top 20 functions
called sorted by the frequency of clock
ticks. Similar to DBT-2, the prominence of

12http://khack.osdl.org/stp/271071/

Linux Symposium 478

default_idle with __make_request
and DAC960_BA_InterruptHandler
suggests that the system is also busy waiting
for I/O. Table 8 displays the top 20 func-
tions with the highest normalized load and
again, similar to DBT-2, seeingDAC960_
BA_InterruptHandler as one of the
more prominent functions on this list also
supports the theory that the kernel is spending
a significant amount of time attempting to
process I/O requests. Figure 11 shows that the
processors are waiting for I/O 40% to 80% of
time throughout the middle of the Throughput
Test.

Function Ticks
poll_idle 24160697
__make_request 21161
schedule 16354
generic_unplug_device 14701
DAC960_LP_InterruptHandler 12160
system_call 7361
kmap_atomic 3783
fget 3148
get_user_pages 3099
do_direct_IO 2968
dio_await_one 2955
bio_alloc 2850
device_not_available 2767
direct_io_worker 2551
blockdev_direct_IO 2226
find_vma 2020
__generic_file_aio_read 1924
follow_page 1891
__copy_to_user_ll 1817
.
total 24322403

Table 7: DBT-3 Profile Ticks

3 PLM and STP

Using the Database Test Suite can be an inti-
mating task for those inexperienced with ad-

Function Load
poll_idle 383503.127
system_call 167.2955
generic_unplug_device 140.0095
DAC960_LP_InterruptHandler 74.1463
device_not_available 67.4878
fget 44.9714
kmap_atomic 34.3909
fput 31.1154
find_vma 24.3373
unlock_page 20.9059
restore_fpu 20.4857
get_offset_tsc 19.6667
syscall_call 19.4545
io_schedule 18.8542
__make_request 18.7431
dio_await_one 18.5849
current_kernel_time 18.5303
math_state_restore 17.7846
mempool_alloc_slab 15.9524
kmem_cache_alloc 15.8158

Table 8: DBT-3 Normalized Profile Load

ministering database management systems, or
large systems may not be readily available for
testing. Rather than implementing one of the
Database Test Suite workloads on their own
system, Linux kernel developers can test their
kernel patches by using the Patch Lifecycle
Manager13 (PLM) and the STP. In order to use
PLM or STP, you must sign up as an associate
of the OSDL, free of charge, through the Web
athttp://www.osdl.org/ .

PLM can be used to store patches for the Linux
kernel that can be used by STP for testing. Cur-
rently, PLM automatically copies Linus Tor-
valds’s tree as well as Andrew Morton’s, Mar-
tin Bligh’s, Alan Cox’s, and the ia64 patch sets.
PLM also executes filters against each patch
entered into the system, to verify the patch ap-

13PLM can be accessed through the Web at
http://www.osdl.org/cgi-bin/plm/

Linux Symposium 479

0 1000 2000 3000 4000 5000 6000 7000
Elapsed Time (s)

0

20

40

60

80

100
%

 U
til

iz
ed

user
system
idle
wait

Figure 11: DBT-3 Throughput Test Processor
Utilization

plies to a kernel or another patch, and verifies
that the kernel can still be compiled with that
patch.

STP currently implements all three of the
workloads in the Database Test Suite14. DBT-1
can be run on systems with 2, 4 or 8 proces-
sors, DBT-2 and DBT-3 can be run on systems
with 4 processor. The 4 and 8 processor sys-
tems also have arrays of external hard drives at-
tached. Each test in STP generates a Web page
of results with links to raw data and charts, as
well as profile data if desired. E-mail notifica-
tion is also sent to the test requester when a test
has completed.

4 Comparing Results

While the OSDL Database Test Suite is de-
rived from TPC benchmarks, results from the
Database Test Suite are in no way compara-
ble to results published from TPC benchmarks.
Such comparisons should be reported to the
TPC (admin@tpc.org) and to the OSDL
(wookie@osdl.org).

14DBT-3 is currently being developed for STP and
should be available by the time this paper is published.

References

[TPCC] TPC Benchmark C Standard
Specification Revision 5.0, February 26,
2001.

[TPCH] TPC Benchmark H Standard
Specification Revision 1.5.0, 2002.

[TPCH10000GB]NCR 5350 Using Teradata
V2R5.0 Executive Summary, Teradata a
division of NCR, March 12, 2003.

[TPCCRESULT] ProLiant DL760-900-256P
Client/Server Executive Summary,
Compaq Computer Corporation,
September 19, 2001.

[TPCW] TPC Benchmark W Specification
Version 1.6, August 14, 2001.

[TPCW10K] Netfinity 5600 with Netfinity
6000R using Microsoft SQL Server 2000
Executive Summary, International
Business Machines, Inc., July 1, 2000.

Trademarks

OSDL is a trademark of Open Source Development
Labs, Inc.

Linux is a registered trademark of Linus Torvalds.

∗ All other marks and brands are the property of
their respective owners.

Xr: Cross-device Rendering for Vector Graphics

Carl Worth
USC, Information Sciences Institute

cworth@isi.edu

Keith Packard
Cambridge Research Laboratory, HP Labs, HP

keithp@keithp.com

Abstract

Xr provides a vector-based rendering API with
output support for the X Window System and
local image buffers. PostScript and PDF file
output is planned. Xr is designed to produce
identical output on all output media while tak-
ing advantage of display hardware acceleration
through the X Render Extension.

Xr provides a stateful user-level API with sup-
port for the PDF 1.4 imaging model. Xr pro-
vides operations including stroking and filling
Bézier cubic splines, transforming and com-
positing translucent images, and antialiased
text rendering. The PostScript drawing model
has been adapted for use within C applications.
Extensions needed to support much of the PDF
1.4 imaging operations have been included.
This integration of the familiar PostScript op-
erational model within the native application
language environment provides a simple and
powerful new tool for graphics application de-
velopment.

1 Introduction

The design of the Xr library is motivated by the
desire to provide a high-quality rendering in-
terface for all areas of application presentation,

from labels and shading on buttons to the cen-
tral image manipulation in a drawing or paint-
ing program. Xr targets displays, printers and
local image buffers with a uniform rendering
model so that applications can use the same
API to present information regardless of the
media.

The Xr library provides a device-independent
API, and can currently drive X Window
System[10] applications as well as manipulate
images in the application address space. It can
take advantage of the X Render Extension[7]
where available but does not require it. The
intent is to add support for Xr to produce
PostScript[1] and PDF 1.4[5] output.

Moving from the primitive original graphics
system available in the X Window System to
a complete device-independent rendering envi-
ronment should serve to drive future applica-
tion development in exciting directions.

1.1 Vector Graphics

On modern display hardware, an application’s
desire to present information using abstract ge-
ometric objects must be translated to physical
pixels at some point in the process. The later
this transition occurs in the rendering process
the fewer pixelization artifacts will appear as
a result of additional transformation operations

Linux Symposium 481

on pixel-based data.

Existing application artwork is often generated
in pixel format because the rendering opera-
tions available to the application at runtime are
a mere shadow of those provided in a typical
image manipulation program. Providing suffi-
cient rendering functionality within the appli-
cation environment allows artwork to be pro-
vided in vector form which presents high qual-
ity results at a wide range of sizes.

Figure 1: Raster and vector images at original
size (artwork courtesy of Larry Ewing and Si-
mon Budig)

Figures 1-3 illustrate the benefits of vector art-
work. The penguin on the left of Figure 1 is
the familiar image as originally drawn by Larry
Ewing[3]. The penguin on the right is an Xr
rendering of vector-based artwork by Simon
Budig[2] intended to match Ewing’s artwork as
closely as possible. At the original scale of the
raster artwork, the two images are quite com-
parable.

Figure 2: Raster image scaled 400%

However, when the images are scaled up, the
differences between raster and vector artwork
become apparent. Figure 2 shows a portion of
the original raster image scaled by a factor of 4
with the GIMP [6]. Artifacts from the scaling
are apparent, primarily in the jaggies around
the contour of the image. The GIMP did apply
an interpolating filter to reduce these artifacts
but this comes at the cost of blurring the im-
age. Compare this to Figure 3 where Xr has
been used to draw the vector artwork at 4 times
the original scale. Since the vector artwork is
resolution independent, the artifacts of jaggies
and blurring are not present in this image.

1.2 Vector Rendering Model

The two-dimensional graphics world is fortu-
nate to have one dominant rendering model.
With the introduction of desktop publishing
and the PostScript printer, application devel-
opers converged on that model. Recent exten-
sions to that model have been incorporated in
PDF 1.4, but the basic architecture remains the
same. PostScript provides a simple painters
model; each rendering operation places new
paint on top of the contents of the surface. PDF
1.4 extends this model to include Porter/Duff
image compositing [9] and other image ma-
nipulation operations which serve to bring the
basic PostScript rendering model in line with
modern application demands.

Figure 3: Vector image scaled 400%

Linux Symposium 482

PostScript and PDF draw geometric shapes by
constructing arbitrary paths of lines and cubic
Bézier splines. The coordinates used for the
construction can be transformed with an affine
matrix. This provides a powerful compositing
technique as the transformation may be set be-
fore a complex object is drawn to position and
scale it appropriately. Text is treated as pre-
built path sections which couples it tightly and
cleanly with the rest of the model.

1.3 Xr Programming Interface

While the goal of the Xr library is to provide
a PDF 1.4 imaging model, PDF doesn’t pro-
vide any programming language interface. Xr
borrows its imperative immediate mode model
from PostScript operators. However, instead of
proposing a complete new programming lan-
guage to encapsulate these operators, Xr uses C
functions for the operations and expects the de-
veloper to use C instead of PostScript to imple-
ment the application part of the rendering sys-
tem. This dramatically reduces the number of
operations needed by the library as only those
directly involved in graphics need be provided.
The large number of PostScript operators that
support a complete language are more than ad-
equately replaced by the C programming lan-
guage.

PostScript encapsulates rendering state in a
global opaque object and provides simple op-
erators to change various aspects of that state,
from color to line width and dash patterns. Be-
cause global objects can cause various prob-
lems in C library interfaces, the graphics state
in Xr is held in a structure that is passed to each
of the library functions.

The translation from PostScript operators to
the Xr interface is straightforward. For ex-
ample, the lineto operator translates to the Xr-
LineTo function. The coordinates of the line
endpoint needed by the operator are preceded

by the graphics state object in the Xr interface.

2 API and Examples

This section provides a tour of the application
programming interface (API) provided by Xr.
Major features of the API are demonstrated in
illustrations, and the source code for each illus-
tration is provided in Appendix A.

2.1 Xr Initialization

#include <Xr.h>

#define WIDTH 600
#define HEIGHT 600
#define STRIDE (WIDTH * 4)

char image[STRIDE*HEIGHT];

int
main (void)
{

XrState *xrs;

xrs = XrCreate ();

XrSetTargetImage (xrs, image,
XrFormatARGB32,
WIDTH, HEIGHT, STRIDE);

/* draw things using xrs ... */

XrDestroy (xrs);

/* do something useful with image
(eg. write to a file) */

return 0;
}

Figure 4: Minimal program using Xr

Figure 4 shows a minimal program using
Xr. This program does not actually do useful
work—it never draws anything, but it demon-
strates the initialization and cleanup proce-
dures required for using Xr.

After including the Xr header file, the first Xr
function a program must call is XrCreate. This
function returns a pointer to an XrState object,
which is used by Xr to store its data. The

Linux Symposium 483

XrState pointer is passed as the first argument
to almost all other Xr functions.

Before any drawing functions may be called,
Xr must be provided with a target surface to
receive the resulting graphics. The backend of
Xr has support for multiple types of graphics
targets. Currently, Xr has support for render-
ing to in-memory images as well as to any X
Window System “drawable”, (eg. a window or
a pixmap).

The program calls XrSetTargetImage to direct
graphics to an array of bytes arranged as 4-
byte ARGB pixels. A similar call, XrSetTar-
getDrawable, is available to direct graphics to
an X drawable.

When the program is done using Xr, it signi-
fies this by calling XrDestroy. During XrDe-
stroy, all data is released from the XrState ob-
ject. It is then invalid for the program to use
the value of the XrState pointer until a new ob-
ject is created by calling XrCreate. The results
of any graphics operations are still available on
the target surface, and the program can access
that surface as appropriate, (eg. write the im-
age to a file, display the graphics on the screen,
etc.).

2.2 Transformations

All coordinates passed from user code to Xr are
in a coordinate system known as “user space”.
These coordinates are then transformed to “de-
vice space” which corresponds to the device
grid of the target surface. This transformation
is controlled by the current transformation ma-
trix (CTM) within Xr.

The initial CTM is established such that one
user unit maps to an integer number of device
pixels as close as possible to 3780 user units
per meter (˜96 DPI) of physical device. This
approach attempts to balance the competing
desires of having a predictable real-world in-

terpretation for user units and having the ability
to draw elements on exact device pixel bound-
aries. Ideally, device pixels would be so small
that the user could ignore pixel boundaries, but
with current display pixel sizes of about 100
DPI, the pixel boundaries are still significant.

The CTM can be modified by the user to po-
sition, scale, or rotate subsequent objects to be
drawn. These operations are performed by the
functions XrTranslate, XrScale, and XrRotate.
Additionally, XrConcatMatrix will compose a
given matrix into the current CTM and XrSet-
Matrix will directly set the CTM to a given
matrix. The XrDefaultMatrix function can be
used to restore the CTM to its original state.

Figure 5: Hering illusion (originally discov-
ered by Ewald Hering in 1861)[11]. The radial
lines were positioned with XrTranslate and Xr-
Rotate

In Figure 5, each of the radial lines was drawn
using identical path coordinates. The different
angles were achieved by calling XrRotate be-
fore drawing each line. The source code for
this image is in Figure 11.

2.3 Save/Restore of Graphics State

Programs using a structured approach to draw-
ing will modify graphics state parameters in
a hierarchical fashion. For example, while

Linux Symposium 484

traversing a tree of objects to be drawn a pro-
gram may modify the CTM, current color, line
width, etc. at each level of the hierarchy.

Xr supports this hierarchical approach to
graphics by maintaining a stack of graphics
state objects within the XrState object. The
XrSave function pushes a copy of the current
graphics state onto the top of the stack. Mod-
ifications to the graphics state are made only
to the object on the top of the stack. The Xr-
Restore function pops a graphics state object
off of the stack, restoring all graphics parame-
ters to their state before the last XrSave opera-
tion.

This model has proven effective within struc-
tured C programs. Most drawing functions can
be written with the following style, wrapping
the body of the function with calls to XrSave
and XrRestore:

void
draw_something (XrState *xrs)
{

XrSave (xrs);
/* draw something here */
XrRestore (xrs);

}

This approach has the benefit that modifica-
tions to the graphics state within the function
will not be visible outside the function, leading
to more readily reusable code. Sometimes a
single function will contain multiple sections
of code framed by XrSave/XrRestore calls.
Some find it more readable to include a new
indented block between the XrSave/XrRestore
calls in this case. Figure 12 contains an exam-
ple of this style.

2.4 Path Construction

One of the primary elements of the Xr graphics
state is the current path. A path consists of one

or more independent subpaths, each of which is
an ordered set of straight or curved segments.
Any non-empty path has a “current point”, the
final coordinate in the final segment of the cur-
rent subpath. Path construction functions may
read and update the current point.

Xr provides several functions for construct-
ing paths. XrNewPath installs an empty path,
discarding any previously defined path. The
first path construction called after XrNewPath
should be XrMoveTo which simply moves the
current point to the point specified. It is also
valid to call XrMoveTo when the current path
is non-empty in order to begin a new subpath.

XrLineTo adds a straight line segment to the
current path, from the current point to the point
specified. XrCurveTo adds a cubic Bézier
spline with a control polygon defined by the
current point as well as the three points speci-
fied.

XrClosePath closes the current subpath. This
operation involves adding a straight line seg-
ment from the current point to the initial point
of the current subpath, (ie. the point specified
by the most recent call to XrMoveTo). Call-
ing XrClosePath is not equivalent to adding
the corresponding line segment with XrLineTo.
The distinction is that a closed subpath will
have a join at the junction of the final coin-
cident point while an unclosed path will have
caps on either end of the path, (even if the two
ends happen to be coincident). See Section 2.5
for more discussion of caps and joins.

It is often convenient to specify path coordi-
nates as relative offsets from the current point
rather than as absolute coordinates. To allow
this, Xr provides XrRelMoveTo, XrRelLineTo,
and XrRelCurveTo. Figure 6 shows a render-
ing of a path constructed with one call to Xr-
MoveTo and four calls to XrRelLineTo in a
loop. The source code for this figure can be
seen in Figure 13.

Linux Symposium 485

Figure 6: Nested box illusion (after a figure by
Al Seckel[11]). Constructed with XrMoveTo
and XrRelLineTo

As rectangular paths are commonly used, Xr
provides a convenience function for adding a
rectangular subpath to the current path. A
call to XrRectangle(xrs, x, y, width,
height) is equivalent to the following se-
quence of calls:

XrMoveTo (xrs, x, y);
XrRelLineTo (xrs, width, 0);
XrRelLineTo (xrs, 0, height);
XrRelLineTo (xrs, -width, 0);
XrClosePath (xrs);

After a path is constructed, it can be drawn
in one of two ways: stroking its outline
(XrStroke) or filling its interior (XrFill).

2.5 Path Stroking

XrStroke draws the outline formed by stroking
the path with a pen that in user space is cir-
cular with a radius of the current line width,
(as set by XrSetLineWidth). The specification
of the XrStroke operator is based on the con-
volution of polygonal tracings as set forth by
Guibas, Ramshaw and Stolfi [4]. Convolution
lends itself to efficient implementation as the
outline of the stroke can be computed within an
arbitrarily small error bound by simply using

piece-wise linear approximations of the path
and the pen.

As subsequent segments within a subpath are
drawn, they are connected according to one
of three different join styles, (bevel, miter, or
round), as set by XrSetLineJoin. Closed sub-
paths are also joined at the closure point. Un-
closed subpaths have one of three different cap
styles, (butt, square, or round), applied at ei-
ther end of the path. The cap style is set with
the XrSetLineCap function.

Figure 7 demonstrates the three possible cap
and join styles. The source code for this figure
(Figure 12) demonstrates the use of XrSetLine-
Join and XrSetLineCap as well as XrTranslate,
XrSave, and XrRestore.

Figure 7: Demonstration of cap and join styles

2.6 Path Filling

XrFill fills the area on the “inside” of the cur-
rent path. Xr can apply either the winding rule
or the even-odd rule to determine the meaning
of “inside”. This behavior is controlled by call-
ing XrSetFillRule with a value of either XrFill-
RuleWinding or XrFillRuleEvenOdd.

Figure 8 demonstrates the effect of the fill rule
given a star-shaped path. With the winding rule
the entire star is filled in, while with the even-

Linux Symposium 486

odd rule the center of the star is considered out-
side the path and is not filled. Figure 15 con-
tains the source code for this example.

Figure 8: Demonstration of the effect of the fill
rule

2.7 Controlling Accuracy

The graphics rendering of Xr is carefully im-
plemented to allow all rendering approxima-
tions to be performed within a user-specified
error tolerance, (within the limits of machine
arithmetic of course). The XrSetTolerance
function allows the user to specify a maximum
error in units of device pixels.

The tolerance value has a strong impact on the
quality of rendered splines. Empirical testing
with modern displays reveals that errors larger
than 0.1 device pixels are observable. The de-
fault tolerance value in Xr is therefore 0.1 de-
vice pixels.

The user can increase the tolerance value to
tradeoff rendering accuracy for performance.
Figure 9 displays the same curved path ren-
dered several times with increasing tolerance
values. Figure 14 contains the source code for
this figure.

2.8 Paint

The example renderings shown so far have all
used opaque “paint” as the source color for all
drawing operations. The color of this paint can
be controlled with the XrSetRGBColor func-
tion.

Figure 9: Splines drawn with tolerance values
of .1, .5, 1, 5, and 10

Xr supports more interesting possibilities for
the paint used in graphics operations. First, the
source color need not be opaque; the XrSetAl-
pha function establishes an opacity level for the
source paint. The alpha value ranges from 0
(transparent) to 1 (opaque).

When Xr graphics operations combine translu-
cent surfaces, there are a number of different
ways in which the source and destination col-
ors can be combined. Xr provides support for
all of the Porter/Duff compositing operators as
well as the extended operators defined in the
X Render Extension. The desired operator is
selected by calling XrSetOperator before com-
positing. The default operator value is Xr-
OperatorOver corresponding to the Porter/Duff
OVER operator.

Finally, the XrSetPattern function allows any
XrSurface to be installed as a static or repeat-
ing pattern to be used as the “paint” for subse-
quent graphics operations. The pattern surface
may have been initialized from an external im-
age source or may have been the result of pre-
vious Xr graphics operations.

Figure 10 was created by first drawing small,
vertical black and white rectangles onto a 3X2
surface. This surface was then scaled, filtered,
and used as the pattern for 3 XrFill operations.
This demonstrates an efficient means of gener-
ating linear gradients within Xr.

Linux Symposium 487

Figure 10: Outline affects perception of depth
from shading, (after an illustration by Isao
Watanabe[14]). This example uses XrFill with
XrSetPattern

2.9 Images

In addition to the vector path support, Xr also
supports bitmapped images as primitive ob-
jects. Images are transformed, (and optionally
filtered), by the CTM in the same manner as all
other primitives. In order to display an image,
an XrSurface object must first be created for
the image, then the surface can be displayed
with the XrShowSurface function. XrShow-
Surface places an image of the given width and
height at the origin in user space, so XrTrans-
late can be used to position the surface.

In addition to the CTM, each surface also has
its own matrix providing a transformation from
user space to image space. This matrix can be
used to transform a surface independently from
the CTM.

The XrShowSurface function has another im-
portant use besides allowing the display of ex-
ternal images. When using the Porter/Duff
compositing operators, it is often desirable to
combine several graphics primitives on an in-
termediate surface before compositing the re-
sult onto the target surface. This functionality
is similar to the notion of transparency groups
in PDF 1.4 and can be achieved with the fol-
lowing idiom:

XrSave (xrs);
XrSetTargetSurface (xrs, surface);
/* draw to intermediate surface with

any Xr functions */
XrRestore (xrs);
XrShowSurface (xrs, surface);

In this example an intermediate surface is in-
stalled as the target surface, and then graphics
are drawn on the intermediate surface. When
XrRestore is called, the original target surface
is restored and the resulting graphics from the
intermediate surface are composited onto the
original target.

This technique can be applied recursively with
any number of levels of intermediate surfaces
each receiving the results of its “child” surfaces
before being composited onto its “parent” sur-
face.

Alternatively, images can be constructed from
data external to the Xr environment, acquired
from image files, external devices or even the
window system. Because the image formats
used within Xr are exposed to applications, this
kind of manipulation is easy and efficient.

3 Implementation

As currently implemented, Xr has good sup-
port for all functions described here. The major
aspects of the PostScript imaging model that
have not been discussed are text/font support,
clipping, and color management. Xr does in-
clude some level of experimental support for
text and clipping already, but these areas need
further development.

The Xr system is implemented as 3 major li-
brary components: libXr, libXc, and libIc.
LibXr provides the user-level API described in
detail already.

LibXc is the backend of the Xr system. It
provides a uniform, abstract interface to sev-

Linux Symposium 488

eral different low-level graphics systems. Cur-
rently, libXc provides support for drawing to
the X Window System or to in-memory im-
ages. The semantics of the libXc interface are
consistent with the X Render Extension so it is
used directly whenever available.

LibIc is an image compositing library that is
used by libXc when drawing to in-memory im-
ages. LibIc can also be used to provide support
for a low-level system whose semantics do not
match the libXc interface. In this case, libIc is
used to draw everything to an in-memory im-
age and then the resulting image is provided
to the low-level system. This is the approach
libXc uses to draw to an X server that does not
support the X Render Extension.

The libIc code is based on the original code for
the software fallback in the reference imple-
mentation of the X Render Extension. It would
be useful to convert any X server using that im-
plementation to instead use libIc.

These three libraries are implemented in ap-
proximately 7000 lines of C code.

4 Related Work

Of the many existing graphics systems, several
relate directly to this new work.

4.1 PostScript and Display PostScript

As described in the introduction, Xr adopts
(and extends) the PostScript rendering model.
However, PostScript is not just a rendering
model as it includes a complete program-
ming language. Display PostScript embeds a
PostScript interpreter inside the window sys-
tem. Drawing is done by generating PostScript
programs and delivering them to the window
system.

One obvious benefit of using PostScript every-

where is that printing and display can easily be
done with the same rendering code, as long as
the printer supports PostScript. A disadvantage
is that images are never generated within the
application address space making it more diffi-
cult to use where PostScript is not available.

Using the full PostScript language as an inter-
mediate representation means that a significant
fraction of the overall application development
will be done in this primitive language. In ad-
dition, the PostScript portion is executed asyn-
chronously with respect to the remaining code,
further complicating development. Integrating
the powerful PostScript rendering model into
the regular application development language
provides a coherent and efficient infrastructure.

4.2 Portable Document Format

PDF provides a very powerful rendering
model, but no application interface. Generat-
ing PDF directly from an application would re-
quire some kind of PDF API along with a PDF
interpreter. The goal for Xr is to be able to gen-
erate PDF output files while providing a clean
application interface.

A secondary goal is to allow PDF interpreters
to be implemented on top of Xr. As Xr is miss-
ing some of the less important PDF operations,
those will need to be emulated within the inter-
preter. An important feature within Xr is that
such emulation be reasonably efficient.

4.3 OpenGL

OpenGL[12] provides an API with much
the same flavor as Xr; immediate mode
functions with an underlying stateful library.
OpenGL doesn’t provide the PostScript ren-
dering model, and doesn’t purport to support
printing or the local generation of images.

As Xr provides an abstract interface atop many

Linux Symposium 489

graphics architectures, it should be possible to
layer Xr on OpenGL.

5 Future Work

The Xr library is in active development. Every-
thing described in this paper is currently work-
ing, but much work remains to make the library
generally useful for application development.

5.1 Text Support

Much of the current design effort has been
focused on the high-level drawing model and
some low-level rendering implementation for
geometric primitives. This design effort was
simplified by the adoption of the PostScript
model. PostScript offers a few useful sug-
gestions about handling text, but applications
require significantly more information about
fonts and layout. The current plan is to require
applications to use the FreeType [13] library
for font access and the Fontconfig [8] library
for font selection and matching. That should
leave Xr needing only relatively primitive sup-
port for positioning glyphs and will push issues
of layout back on the application.

5.2 Printing Backend

Xr is currently able to target the X Window
System, (with or without the X Render Ex-
tension), as well as local images. Still miss-
ing is the ability to generate PostScript or PDF
output files. Getting this working is important
not only so that applications can print, but also
because there may be unintended limitations
in both the implementation and specification
caused by the essential similarity between the
two existing backends.

One of the goals of Xr is to have identical out-
put across all output devices. This will re-
quire that Xr embed glyph images along with

the document output to ensure font matching
across all PostScript or PDF interpreters. Em-
bedding TrueType and Type1 fonts in the out-
put file should help solve this problem.

5.3 Color Management

Xr currently supports only the RGB color
space. This simplifies many aspects of the
library interface and implementation. While
it might become necessary to add support for
more sophisticated color management, such
development will certainly await a compelling
need. One simple thing to do in the meantime
would be to reinterpret the device-dependent
RGB values currently provided as sRGB in-
stead. Using ICC color profiles would per-
mit reasonable color matching across devices
while not adding significant burden to the API
or implementation.

6 Availability

Xr is free software released under an MIT li-
cense fromhttp://xr.xwin.org .

7 Disclaimer

Portions of this effort sponsored by the Defense Advanced Research

Projects Agency (DARPA) under agreement number F30602-99-1-

0529. The views and conclusions contained herein are those of the au-

thors and should not be interpreted as representing the official policies

or endorsements of the Defense Advanced Research Projects Agency

(DARPA) or the U.S. Government.

References

[1] Adobe Systems Incorporated.PostScript
Language Reference Manual. Addison
Wesley, 1985.

Linux Symposium 490

[2] Simon Budig. The linux-pinguin again.
http://www.home.unix-ag.
org/simon/penguin .

[3] Larry Ewing. Linux 2.0 penguins.
http://www.isc.tamu.edu/
~lewing/linux .

[4] Leo Guibas, Lyle Ramshaw, and Jorge
Stolfi. A kinetic framework for
computational geometry. InProceedings
of the IEEE 1983 24th Annual
Symposium on the Foundations of
Computer Science, pages 100–111. IEEE
Computer Society Press, 1983.

[5] Adobe Systems Incorporated, editor.
PDF Reference: Version 1.4.
Addison-Wesley, 3rd edition, 2001.

[6] Peter Mattis, Spencer Kimball, and the
GIMP developers. The GIMP: The GNU
image manipulation program.
http://www.gimp.org .

[7] Keith Packard. Design and
Implementation of the X Rendering
Extension. InFREENIX Track, 2001
Usenix Annual Technical Conference,
Boston, MA, June 2001. USENIX.

[8] Keith Packard. Font Configuration and
Customization for Open Source Systems.
In 2002 Gnome User’s and Developers
European Conference, Seville, Spain,
April 2002. Gnome.

[9] Thomas Porter and Tom Duff.
Compositing Digital Images.Computer
Graphics, 18(3):253–259, July 1984.

[10] Robert W. Scheifler and James Gettys.X
Window System. Digital Press, third
edition, 1992.

[11] Al Seckel.The Great Book of Optical
Illusions. Firefly Books Ltd., 2002.

[12] Mark Segal, Kurt Akeley, and Jon Leach
(ed). The OpenGL Graphics System: A
Specification. SGI, 1999.

[13] David Turner and The
FreeType Development Team. The
design of FreeType 2, 2000.
http://www.freetype.org/
freetype2/docs/design/ .

[14] Isao Watanabe. 3-d shape and outline.
http://www.let.kumamoto-u.
ac.jp/watanabe/Watanabe-E/
Illus-E/3D-E/index.%html .

A Example Source Code

This appendix contains the source code that
was used to draw each figure in Section 2. Each
example contains a top-level “draw” function
that accepts an XrState pointer, a width, and a
height. The examples here can be made into
complete programs by adding the code from
the example program of Figure 4 and inserting
a call to the appropriate “draw” function.

Linux Symposium 491

void
draw_hering (XrState *xrs,

int width, int height)
{
#define LINES 32.0
#define MAX_THETA (.80 * M_PI_2)
#define THETA (2 * MAX_THETA / (LINES-1))

int i;

XrSetRGBColor (xrs, 0, 0, 0);
XrSetLineWidth (xrs, 2.0);

XrSave (xrs);
{

XrTranslate (xrs, width / 2, height / 2);
XrRotate (xrs, MAX_THETA);

for (i=0; i < LINES; i++) {
XrMoveTo (xrs, -2 * width, 0);
XrLineTo (xrs, 2 * width, 0);
XrStroke (xrs);

XrRotate (xrs, - THETA);
}

}
XrRestore (xrs);

XrSetLineWidth (xrs, 6);
XrSetRGBColor (xrs, 1, 0, 0);

XrMoveTo (xrs, width / 4, 0);
XrRelLineTo (xrs, 0, height);
XrStroke (xrs);

XrMoveTo (xrs, 3 * width / 4, 0);
XrRelLineTo (xrs, 0, height);
XrStroke (xrs);

}

Figure 11: Source for Hering illusion of Fig-
ure 5

void
draw_caps_joins (XrState *xrs,

int width, int height)
{

static double dashes[2] = {10, 20};
int line_width = height / 12 & (~1);

XrSetLineWidth (xrs, line_width);
XrSetRGBColor (xrs, 0, 0, 0);

XrTranslate (xrs, line_width, line_width);
width -= 2 *line_width;

XrSetLineJoin (xrs, XrLineJoinBevel);
XrSetLineCap (xrs, XrLineCapButt);
stroke_v_twice (xrs, width, height);

XrTranslate (xrs, 0, height/4-line_width);
XrSetLineJoin (xrs, XrLineJoinMiter);
XrSetLineCap (xrs, XrLineCapSquare);
stroke_v_twice (xrs, width, height);

XrTranslate (xrs, 0, height/4-line_width);
XrSetLineJoin (xrs, XrLineJoinRound);
XrSetLineCap (xrs, XrLineCapRound);
stroke_v_twice (xrs, width, height);

}

void
stroke_v_twice (XrState *xrs,

int width, int height)
{

XrMoveTo (xrs, 0, 0);
XrRelLineTo (xrs, width/2, height/2);
XrRelLineTo (xrs, width/2, -height/2);

XrSave (xrs);
XrStroke (xrs);
XrRestore (xrs);

XrSave (xrs);
{

XrSetLineWidth (xrs, 2.0);
XrSetLineCap (xrs, XrLineCapButt);
XrSetRGBColor (xrs, 1, 1, 1);
XrStroke (xrs);

}
XrRestore (xrs);

XrNewPath (xrs);
}

Figure 12: Source for cap and join demonstra-
tion of Figure 7

Linux Symposium 492

void
draw_spiral (XrState *xrs,

int width, int height)
{

int wd = .02 * width;
int hd = .02 * height;
int i;

width -= 2;
height -= 2;

XrMoveTo (xrs, width - 1, -hd - 1);
for (i=0; i < 9; i++) {

XrRelLineTo (xrs, 0, height-hd*(2*i-1));
XrRelLineTo (xrs, -(width-wd*(2*i)), 0);
XrRelLineTo (xrs, 0,-(height-hd*(2*i)));
XrRelLineTo (xrs, width-wd*(2*i+1), 0);

}

XrSetRGBColor (xrs, 0, 0, 1);
XrStroke (xrs);

}

Figure 13: Source for nested box illusion of
Figure 6

void
draw_splines (XrState *xrs,

int width, int height)
{

int i;
double tolerance[5] = {.1,.5,1,5,10};
double line_width = .08 * width;
double gap = width / 6;

XrSetRGBColor (xrs, 0, 0, 0);
XrSetLineWidth (xrs, line_width);

XrTranslate (xrs, gap, 0);
for (i=0; i < 5; i++) {

XrSetTolerance (xrs, tolerance[i]);
draw_spline (xrs, height);
XrTranslate (xrs, gap, 0);

}
}

void
draw_spline (XrState *xrs, double height)
{

XrMoveTo (xrs, 0, .1 * height);
height = .8 * height;
XrRelCurveTo (xrs,

-height/2, height/2,
height/2, height/2,
0, height);

XrStroke (xrs);
}

Figure 14: Source for splines drawn with vary-
ing tolerance as in Figure 9

void
draw_stars (XrState *xrs,

int width, int height)
{

XrSetRGBColor (xrs, 0, 0, 0);

XrSave (xrs);
{

XrTranslate (xrs, 5, height/2.6);
XrScale (xrs, height, height);
star_path (xrs);
XrSetFillRule (xrs, XrFillRuleWinding);
XrFill (xrs);

}
XrRestore (xrs);

XrSave (xrs);
{

XrTranslate (xrs,
width-height-5, height/2.6);

XrScale (xrs, height, height);
star_path (xrs);
XrSetFillRule (xrs, XrFillRuleEvenOdd);
XrFill (xrs);

}
XrRestore (xrs);

}

void
star_path (XrState *xrs)
{

int i;
double theta = 4 * M_PI / 5.0;

XrMoveTo (xrs, 0, 0);
for (i=0; i < 4; i++) {

XrRelLineTo (xrs, 1.0, 0);
XrRotate (xrs, theta);

}
XrClosePath (xrs);

}

Figure 15: Source for stars to demonstrate fill
rule as in Figure 8

Linux Symposium 493

void
draw_gradients (XrState *xrs,

int img_width, int img_height)
{

XrSurface *gradient;
double width, height, pad;

width = img_width / 4.0;
pad = (img_width - (3 * width)) / 2.0;
height = img_height;

gradient=make_gradient(xrs,width,height);

XrSetPattern (xrs, gradient);
draw_flat (xrs, width, height);
XrTranslate (xrs, width + pad, 0);
XrSetPattern (xrs, gradient);
draw_tent (xrs, width, height);
XrTranslate (xrs, width + pad, 0);
XrSetPattern (xrs, gradient);
draw_cylinder (xrs, width, height);

XrRestore (xrs);

XrSurfaceDestroy (gradient);
}

XrSurface *
make_gradient (XrState *xrs,

double width, double height)
{

XrSurface *g;
XrMatrix *matrix;

XrSave (xrs);

g = XrSurfaceCreateNextTo (
XrGetTargetSurface (xrs),
XrFormatARGB32, 3, 2);

XrSetTargetSurface (xrs, g);

XrSetRGBColor (xrs, 0, 0, 0);
XrRectangle (xrs, 0, 0, 1, 2);
XrFill (xrs);

XrSetRGBColor (xrs, 1, 1, 1);
XrRectangle (xrs, 1, 0, 1, 2);
XrFill (xrs);

XrSetRGBColor (xrs, 0, 0, 0);
XrRectangle (xrs, 2, 0, 1, 2);
XrFill (xrs);

XrRestore (xrs);

matrix = XrMatrixCreate ();
XrMatrixScale (matrix,

2.0/width, 1.0/height);
XrSurfaceSetMatrix (g, matrix);
XrSurfaceSetFilter (g, XrFilterBilinear);
XrMatrixDestroy (matrix);

return g;
}

void
draw_flat (XrState *xrs, double w, double h)
{

double hw = w / 2.0;

XrRectangle (xrs, 0, hw, w, h - hw);

XrFill (xrs);
}

void
draw_tent (XrState *xrs, double w, double h)
{

double hw = w / 2.0;

XrMoveTo (xrs, 0, hw);
XrRelLineTo (xrs, hw, -hw);
XrRelLineTo (xrs, hw, hw);
XrRelLineTo (xrs, 0, h - hw);
XrRelLineTo (xrs, -hw, -hw);
XrRelLineTo (xrs, -hw, hw);
XrClosePath (xrs);

XrFill (xrs);
}

void
draw_cylinder (XrState *xrs, double w, double h)
{

double hw = w / 2.0;

XrMoveTo (xrs, 0, hw);
XrRelCurveTo (xrs, 0, -hw,

w, -hw, w, 0);
XrRelLineTo (xrs, 0, h - hw);
XrRelCurveTo (xrs, 0, -hw,

-w, -hw, -w, 0);
XrClosePath (xrs);

XrFill (xrs);
}

Figure 16: Source for 3 gradient-filled shapes of Figure 10

relayfs: An Efficient Unified Approach for
Transmitting Data from Kernel to User Space

Tom Zanussizanussi@us.ibm.com

Karim Yaghmourkarim@opersys.com

Robert Wisniewskibob@watson.ibm.com

Richard Moorerichardj_moore@uk.ibm.com

Michel Dagenaismichel.dagenais@polymtl.ca

Abstract

Linux has several mechanisms for relaying in-
formation about the system and applications to
the user. Some examples include printk and
other syslog events, evlog, ltt, oprofile, etc.
Each subsystem has its own method for relay-
ing information from the kernel to user space.
Some of these mechanisms have difficulties,
e.g. logging of printk messages is unreliable.
In addition to selected difficulties, the replica-
tion of code and maintenance is undesirable. In
this paper we describe a high-speed data relay
filesystem that satisfies the buffering require-
ments of the above subsystems while providing
a unified, efficient, and reliable relay mecha-
nism. relayfs allows subsystems to log data ef-
ficiently and safely using lockless technology
that is designed to scale well on multiproces-
sor systems. relayfs includes the flexibility to
be expanded should other subsystems need ad-
ditional services, but has a simple design in-
tended to meet the needs of currently available
subsystems. In this paper we discuss the ar-
chitecture, implementation, and usage of re-
layfs. relayfs uses channels that allow data to
be directed to a suitable buffer or buffers for
the subsystems that allocated the channel. We
describe the kernel API and file naming con-
ventions, address init-time issues, and discuss
performance trade-offs available using relayfs.

Finally we demonstrate how existing subsys-
tems use relayfs to log their data.

1 Introduction

Sharing data between the kernel and user-space
applications requires buffering. For relatively
small transfers, such as passing variables or
small data arrays, the normal system call API
is sufficient; the overhead required for safely
transferring data across the kernel boundary is
acceptable. For larger data transfers, the sub-
system generating the data is responsible for
providing a buffering and transfer mechanism
to deliver the data to user space. With in-
creasing system speed and growing demand for
more information regarding the kernel’s opera-
tion, many of the conventional buffering mech-
anisms have reached their limits. Further, the
buffering and transfer code for each of the sub-
systems is replicated and needs to be indepen-
dently maintained.

To address these challenges, we designed and
implemented relayfs. relayfs is a unified, re-
liable, efficient, and simple mechanism for
transferring large amounts of data between the
kernel and user space. The algorithms used
for relayfs have been designed to handle both
high frequency and large data applications such
as kernel tracing. To satisfy these demand-

Linux Symposium 495

xlog/channel1

xlog/channel3

xlog/channel2

printk/channel1

.

.

.

relayfs

printk

xlog

User−space

Kernel Subsystems /mnt/xlog/channel1

/mnt/xlog/channel2

/mnt/xlog/channel3

/mnt/printk/channel1

Figure 1: relayfs architecture

ing clients, relayfs is a high-speed, low-impact
data relay filesystem. Data logged by a sub-
system using relayfs appears under the direc-
tory where the filesystem is mounted. For ex-
ample, if relayfs is mounted under /mnt, printk
data may appear in /mnt/printk/data. Although
this paper focuses on the use of relayfs for ker-
nel subsystems, user-space clients can also be
served by relayfs.

relayfs provides the abstraction of achannelto
the subsystem using its services. Channels and
files have a 1-to-1 mapping. A given subsystem
may log data to multiple channels. For exam-
ple, a tracing subsystem may log the majority
of its data to one channel and create a control
channel for less frequent but informative events
such as new process creation. printk could, for
example, use different channels to log informa-
tion from devices versus the memory system.
Alternatively, a kernel developer could create
a separate channel for just the events in newly
written (and currently being debugged) code,
so as to view only those.

relayfs has a simple design and mechanisms

intended to meet the demands of current sub-
systems while affording flexibility in meeting
new requirements of future subsystems. re-
layfs provides the option of using locking or
lockless data logging. The lockless option is
very efficient but introduces potential difficul-
ties as discussed later. relayfs provides the
choice of using per-processor buffers or a sin-
gle buffer shared across the machine. It also
provides choice between block or packet deliv-
ery of events. The trade-offs of these options
are discussed later as well.

In addition to these options, relayfs reduces
code replication among subsystems by provid-
ing mechanisms common to the subsystems.
These include handling overflow issues, pro-
viding efficient timestamping on events, pro-
viding efficient delivery to user space, and han-
dling dynamic allocation and de-allocation of
memory needed to provide the buffering. Tests
conducted using relayfs have shown it can han-
dle significant amounts of data with very low
overhead.

The rest of the paper is structured as follows.

Linux Symposium 496

Section 2 describes the channel architecture
and the lockless algorithm. Section 3 describes
how the code is structured and where to find the
implementation files. Section 4 describes the
interface to relayfs, the different options avail-
able, and how it handles overflows. Section 5
describes the impact and performance of re-
layfs. Section 6 describes how to modify some
example subsystems to use relayfs. Section 7
concludes.

2 Architecture

Figure 1 presents the relayfs architecture. Ker-
nel subsystems create and use different relayfs
channels to log their data, while user-space ap-
plications see those same channels as files lo-
cated in the mounted relayfs filesystem.

2.1 Channels

The main building block of relayfs is a channel.
To relay data to user-space applications, kernel
subsystems allocate channels to transfer their
data. Multiple channels can be used to imple-
ment any data multiplexing desired, including
using one channel per CPU to implement per-
CPU buffering.

The buffering implemented by relayfs is trans-
parent to the client subsystem. Writing to the
channel requires that the following be speci-
fied: channel ID, pointer to the data, and size
of data. relayfs does not parse the data being
relayed; it just transfers bytes. Because some
relayfs clients may implement a particular data
protocol (for example, special markings on
buffer ends), relayfs provides callback func-
tions for its clients when significant changes in
the channel buffers occur. The callbacks are
optional.

From user space, channels are accessed as files.
relayfs implements the standard operations re-

quired for normal file manipulation. For exam-
ple, to gain access to a relayfs file, applications
can perform read() operation on the file speci-
fying a number of bytes. Alternatively the ap-
plication can mmap() in the file and reference
the contents of the file via memory pointer.

2.2 Lockless Event Logging

An important feature of relayfs is its abil-
ity to write data to buffers without requiring
locks. Previous lockless logging schemes[2]
used fixed-length events with valid bits. There
are several advantages to using variable-length
events (assuming the random access problem
is solved, see Section 4.2). The algorithm
integrated into relayfs allows variable-length
events to be logged without locking.

Each process attempts toreserveenough space
in the buffer immediately after the current
index for the event it wants to log. Once
the process makes a successful reservation,
it may proceed to log its data. To reserve
space, each process attempts to atomically in-
crement the current index using acompare
and store . The process that successfully
increments (as determined by the return value
of thecompare and store operation) the
index has the right to proceed to log data into
the buffer; failing processes retry. Figure 2
shows on the left, in step 1, two processes,
A and B, attempting to log events of different
lengths after the current index from the initial
configuration in step 0. Each process attempts
to increment the current index by the size of the
event being logged. The process that succeeds,
in this case B, will log the event immediately
following the old current index (see step 2).
This will be followed by process A’s data, as-
suming no other competing processes attempt
to log more data (see step 3). Because it is im-
portant to guarantee monotonically increasing
timestamps, processes must re-determine the
timestamp during each attempt to atomically

Linux Symposium 497

proc A

B A

proc B

B 2

3

current index

current index

current index

current index

current index

1

0

Figure 2: Illustration of Lockless Event Logging

eventReserve(length, *indexPtr, *timestampPtr)
integer: oldIndex, newIndex
EvtCtl: *evtCtlPtr

update evtCtlPtr
do

oldIndex = evtCtlPtr->index
newIndex = oldIndex + length
if (newIndex >= buffer end)

eventReserveSlow(length, indexPtr, timestampPtr)
// generates filler event, sets timestamp, moves to new buffer

return
*timestampPtr = getTimestamp()

while (!CompareAndStore(&(evtCtlPtr->index), oldIndex, newIndex))
*indexPtr = oldIndex & INDEXMASK // confine index to buffer bounds

eventLog(majorID, minorID, data)
integer: index, timestamp, length

length = length of data
eventReserve(length, &index, ×tamp)
evtArray[index] = logEvtHeader(timestamp, length, majorID, minorID)
evtArray[index+1 ... index+length] = data
eventCommit(index, length) // optional, see explanation in text

Figure 3: Pseudo code for lockless event logging

increment the index.

The memory used for logging is logically di-
vided into buffers. Once a buffer is full, the
logging facility proceeds to the subsequent
buffer and the previous buffer is available to
be written out. The pseudo code appears in
Figure 3 and complete C code can be obtained
by downloading relayfs from the relayfs web
site[1].

Despite having good performance, complica-
tions can arise from using the lockless algo-

rithm. A process’s execution may be inter-
rupted after it has reserved space to log an
event, but before it actually performs the log.
The interruption can occur because the pro-
cess is preempted, blocks for a long time, or
is killed. Depending on where (in the sequence
of code in Figure 3) the process is interrupted,
different problems occur. If the process has
had a chance to write the event header, but not
the data, then only the data will be unrecov-
erable. If, however, the process has not yet
logged the event header then it is possible the

Linux Symposium 498

rest of the buffer will be uninterpretable. Only
by locking, making the kernel perform the log,
and disabling interrupts can this problem be
prevented (in practice there are low-level ker-
nel events that would still exhibit the problem).
There are methods that avoid these difficulties.

If the reason the process’s execution was inter-
rupted was due to preemption, then it is likely
the process will run again soon and finish fill-
ing in the event before another entity notices,
thus posing no real problem. If the reason for
the process’s interruption was because the pro-
cess was killed, then the data will never finish
being logged. The last line of pseudo-code de-
tects this situation. TheeventCommit func-
tion updates a per-buffer count of the amount
of data that has been logged to that buffer.
The count is zeroed during thestart new
buffer code. When the code responsible
for writing the data (to a network stream, file,
etc.) writes this buffer, it can compare the
amount of data logged to this buffer with the
buffer’s size and report an anomaly if they do
not match. If the reason the process was inter-
rupted was because of a long blocking opera-
tion, it is possible that both the current buffer
will not have enough data logged, and that the
same buffer, when reused in the future, will
have too much (because the long-blocked pro-
cess was unblocked and logged data into a re-
cycled buffer). Again the per-buffer counts can
detect this situation.

Besides a per-buffer count there are other pos-
sible ways to detect or minimize the occurrence
of corrupted data. For example, it is possible to
use a flag in a per-process data structure to in-
dicate to the kernel that a process should not
be killed while the flag is set. Other possibili-
ties include zero-filling a buffer before use, or
keeping a side array of valid bits for the header
data. In practice the probability of corrupt-
ing a buffer, and the ease with which tools can
handle the situation, reduces the issue’s impor-

tance except perhaps in setups where recreat-
ing the situation generating the logged data is
very difficult. In those cases the locking ver-
sion of the event logging may be the best op-
tion.

3 Implementation

The relayfs code is structured as follows: the
public API and common relay code are con-
tained in fs/relayfs/relay.c, with the scheme-
specific code in fs/relayfs/relay_lockless.c
and fs/relayfs/relay_locking.c. The file
fs/relayfs/inode.c implements the VFS layer on
top of the relay channel code.

relayfs can be compiled either directly into the
kernel or as a kernel module.

4 Interface and Use

relayfs is used both as a temporary repository
for logged data and as a filesystem from which
user-space clients may retrieve logged data.
The first of these is supported by set of kernel-
space APIs. For the second, relayfs is mounted
as a filesystem:

mount -t relayfs relayfs /mnt/relay

Kernel subsystems (also referred to as kernel
clients) create and write to channels via the
kernel API described below. The contents of
these channels are available to user-space pro-
grams via a standard file abstraction that can
be read using mmap() or read(). relayfs pro-
vides automatic support for locking or lockless
logging, overflow handling, data delivery, and
timestamping.

4.1 Interface

This section describes the basic usage
of the kernel and user APIs. Com-

Linux Symposium 499

plete details can be found in Documenta-
tion/filesystems/relayfs.txt. To initiate data
logging, a kernel client creates a channel rela-
tive to the mountpoint of the relayfs filesystem
via relay_open():

int channel_id =
relay_open("file", ...);

This would cause the creation of a relayfs file
named /mnt/relay/file, assuming relayfs was
mounted at /mnt/relay.

relayfs does not impose any namespace con-
ventions; clients may choose names as they
wish. We recommend the adoption of the con-
vention whereby a client specifies a top-level
directory name that is closely associated with
the corresponding subsystem. For example, the
Linux Trace Toolkit would manage the names-
pace under /mnt/relay/trace, printk would use
/mnt/relay/printk, driver debugging channels
might use /mnt/relay/debug/drivers/mydriver,
etc.

A kernel client can then log a variable-length
data item to the channel via relay_write(),
given the channel id.

relay_write(channel_id, data,
count,...);

In user space, a program can open the relayfs
file and wait in a read() loop waiting for data.

fd = open("/mnt/relay/file", ...);

while(1) {
n = read(fd, buf, sizeof(buf));
if(n <= 0) {

close(fd);
break;

}
}

Alternatively, the file can be mmap()’ed and
directly accessed via a pointer to the mapped
buffer when data is ready.

fd = open("/mnt/relay/file", ...);
char *map = mmap(..., fd, ...);

void on_ready(count) {
write(diskfile, map, count);

}

There are five callbacks that can optionally be
registered by the kernel client when a chan-
nel is opened. These are used to notify the
client when significant events occur (buffer
start, buffer end, event deliver, buffers full,
buffer resize) and are described below.

4.2 Channel and data management schemes

The channel data for a given channel is inter-
nally managed via one of two schemes defined
at channel creation. They arelocklessor lock-
ing. The lockless scheme is described in Sec-
tion 2. The locking scheme is a simple two-
buffer ping-pong scheme. One of the buffers is
the current write buffer, into which events are
written, and the other is the current read buffer,
from which events are read (by, for instance, a
user daemon). When the current write buffer
is filled, it becomes the current read buffer and
the current read buffer becomes the new write
buffer. The key feature of the locking scheme
is that the channel is locked (the exact seman-
tics are described below) while space is allo-
cated for the event and for the duration of the
write.

The reason two schemes exist is that while it
would be ideal to have all channels managed
by the lockless scheme, the availability of the
lockless scheme depends on the availability of
a cmpxchg instruction or a generic equivalent,
which does not exist on all Linux platforms.
Thus, the locking scheme is available as a fall-
back scheme for those platforms that cannot
support the lockless scheme.

relayfs channels are implemented as circular
buffers divided into a number of sub-buffers.
If a scheme has not been explicitly specified,
the channel creation code will choose lock-
less. The number and size of these sub-buffers

Linux Symposium 500

are specified at channel creation (or with cer-
tain restrictions can be dynamically sized after-
ward). For efficiency reasons, in the lockless
code, both of these are a power of 2. Having
each buffer size be a power of 2 allows a cheap
logicaland comparison to determine if the end
of a buffer has been reached. Having the num-
ber of buffers be a power of 2 allows a cheaper
operation to be performed to ensure the index
remains within the memory allocated for the
buffers. Both of these operations occur on the
fast path of every event log and thus are criti-
cal. The index value could be interpreted as a
straight index into a single circular buffer, but
for other reasons multiple buffers are prefer-
able. For example, breaking up the buffers into
multiple sub-buffers rather than a single large
buffer allows flexibility in buffer processing,
allows more timely delivery of events to user
space, and minimizes the impact of potential
data corruption.

One aspect of using the lockless scheme is the
use of variable-length events. There are trade-
offs between using fixed-length or variable-
length events. Fixed-size events allow for sim-
pler logging and reading out as the consumer
of events always knows the starting point of
an event. This allows validity bits to be used,
and allows invalid events to be skipped. Fixed-
length events allow easy random access to
the data stream, aiding reading and display-
ing large files. The disadvantages of fixed-
length events are that they waste space, they
take longer to write (to disk or network) be-
cause extra data needs to be written for short
events, and they make it complicated to log
data that is larger than the fixed size. The
lockless scheme obtains the benefits of each
by ensuring that events never cross medium-
scale alignment boundaries. We insert filler
events as necessary to align the event stream.
Data analysis tools can skip to any of the align-
ment points in a large event buffer and can be-
gin interpreting events from that point. This

unused

unused

unused

unused

unused

reserved

uncommitted 1
1
0
1
1
0

1

0

offsetbuf idindex

3 bits 18 bits

bufs_produced: 38
bufs_consumed: 35
buffer_complete[]:

alloc_size: 2M

rchan_info:
n_bufs: 8
buf_size: 256K

Figure 4: Buffer layout.

technique provides the advantages of variable-
length events and still allows fast access to all
parts of a large file. A filler event is a header
with a length equal to the remainder of the cur-
rent buffer; no data need be logged. For the
clients we have studied this alignment wastes
little space. Other applications that have few
large events and whose events frequently end
on buffer boundaries will exhibit similar be-
havior. This technique does not provide com-
pletely random access, but is a close enough
approximation that it allows post-processing
tools to make it appear to the end user that the
stream is completely random access.

Figure 4 shows a 2M buffer divided into 8 sub-
buffers of 256K (in this case, 256K would be
the alignment boundary described above). This
splits the index logically into a 3-bit portion
containing the buffer id and 18 bits contain-
ing the current offset within the buffer. The
rchan_info struct, retrieved via relay_info(),

Linux Symposium 501

contains a snapshot of the current state of the
channel. The data in Figure 4 shows that 35
sub-buffers have been consumed and 38 have
been produced. The buffer_complete array
shows the completeness state of all of the sub-
buffers not including the current one. As Fig-
ure 4 shows, sub-buffer 3 is not yet complete
as there is still a pending write. This is also
the reason buffers_consumed has not caught up
with buffers_produced. The user-space client
suspends processing the sub-buffers when it
encounters the incomplete buffer until such
time as the buffer becomes complete, or is
“lapped”, in which case the buffer contents
would be lost.

4.3 Buffer start/end callbacks

Two of the five channel callbacks registered
by the kernel client exist to allow the client
to be notified when sub-buffer boundaries are
crossed, i.e. when buffer switches occur. These
callbacks are invoked in the slow path of event
logging, which is executed when an event
write would overflow the current sub-buffer.
The buffer_end() callback is invoked to allow
the kernel subsystem the opportunity to per-
form end-of-buffer processing on the just-filled
buffer. To allow space for data even when a
buffer is exactly filled, there needs to be space
reserved at the end of the buffer into which
the client can write an unused count. This is
the purpose of the end_reserve parameter to re-
lay_open. It specifies the number of bytes at
the end of each sub-buffer that should be left
alone by the logging algorithm and left avail-
able for the client to write data. Similarly, the
buffer_start() callback is invoked to give the
client an opportunity to write header data at the
beginning of a sub-buffer. The start_reserve
parameter to relay_open() allows the client to
specify a value for this purpose. One of the
parameters of the buffer_start() callback is the
buffer id, which has a value of zero for the very

first buffer in the channel. Clients can check for
this value and optionally write channel header
data in the position reserved for it by the chan-
nel_start_reserve parameter of relay_open().

4.4 Channel attributes

The characteristics of a given channel are de-
rived from a set of channel attributes specified
when the channel is opened. These are:

• scheme: lockless or locking. Indicates
which of the logging algorithms to use. If
’any’ is specified, relayfs attempts to use
the lockless scheme; if unavailable it re-
verts to the locking scheme.

• SMP usage: global or SMP. Applies
only if the locking scheme is being used.
Global indicates that the channel is be-
ing shared across multiple processors. In
this case lock acquisition involves a spin-
lock_irqsave/restore. The SMP option in-
dicates per-processor channels and thus
lock acquisition can use the cheaper lo-
cal_irqsave/restore.

• delivery mode: bulk or packet. If bulk de-
livery mode is specified, the kernel client
is notified via the delivery callback when
complete buffers become available. If
packet delivery mode is specified, the de-
livery callback is invoked after each write.
Bulk delivery is suited for clients logging
large volumes of data. They would be no-
ticeably affected by callbacks after each
event, but still may be interested in the
beginnings and ends of buffers. Less de-
manding clients may require notification
for each event logged. Clients specify
callbacks to, for example, signal a user-
level program indicating data is ready.
This is a typical mode of operation for a
bulk data client and is somewhat less typ-
ical for packet client as its user-space pro-

Linux Symposium 502

gram is often polling for the next piece of
data. Either type of client may be inter-
ested in filtering the data and/or dispatch-
ing events to other channels or subsys-
tems. Typically, packet clients would be
more interested in data filtering due to the
more manageable volume of events.

• timestamping: TSC or gettimeofday()
deltas. This attribute allows the client to
choose the granularity and cost of times-
tamping. Timestamping is optional and
timestamps are not written to a channel
unless explicitly requested. Events are
timestamped by relay_write() timestamp
events using either the efficient TSC (or
equivalent cheap clock on other architec-
tures), or a slower but globally consistent
gettimeofday() time delta method. get-
timeofday() is also a fallback in the cases
where the TSC, or an equivalent clock
counter, is unavailable on a given archi-
tecture. In brief, part of the task of writ-
ing an event involves obtaining the cur-
rent TSC, or the current gettimeofday()
value. If the gettimeofday() option is cho-
sen each timestamp is the difference be-
tween the current time and the time when
the buffer was started. The value logged
is either the TSC value or this difference
and is written at the offset within the event
slot specified by the td_offset parameter
of relay_write() (if the parameter value is
negative, the timestamp is not written).
The start and end buffer gettimeofday()
and TSC (if applicable) values are avail-
able as parameters to the buffer_start()
and buffer_end() kernel client callbacks.
If a client is interested in timestamping,
it can write these values into the reserved
space for later inter-buffer correlation.

4.5 Channel overflow handling

As with any buffering scheme, data may be
written into a channel faster than the channel’s
clients can read it out. relayfs channel clients
have three options for dealing with an over-
flow:

• do nothing, writers overwrite old data
(flight recorder mode)

• suspend writing into the channel, causing
loss of new events

• resize the channel, making more space for
writers

The first two options are controlled by the re-
turn value of the buffers_full() callback. This
callback provides the client with the option of
what action to take if the consumer has not kept
pace with the logging. A value of 0 directs re-
layfs to continue logging events, overwriting
the oldest data. A value of 1 directs relayfs
to discard subsequent events until the over-
flow situation has been resolved. In this case,
an events_lost count is kept and is available
via relay_info(). Once the consumer (usually
the user-space daemon reading from the chan-
nel) has caught up, the relayfs client can call
relay_resume() to allow the channel to con-
tinue logging events. To implement this, the
client needs to keep the channel informed of
how many buffers it has read. It increments
the count of buffers consumed by calling re-
lay_buffers_consumed(n_buffers). This value
is compared with the channel’s count of buffers
produced (tracked on the buffer-switch slow
path) to determine whether a buffers-full con-
dition exists. If the difference is greater than or
equal to the number of sub-buffers in the chan-
nel, the buffers are considered full and the call-
back is invoked.

The third option, resizing the channel, is avail-
able to clients that have specified non-zero val-
ues for the resize_min and resize_max parame-
ters to relay_open() when the channel was cre-
ated. If (during the buffer-switch slow path)

Linux Symposium 503

relayfs detects that the channel is almost full
(if 3/4 of the sub-buffers remain unread, by de-
fault), the needs_resize() callback is invoked
with parameter values containing a suggested
new sub-buffer size and/or sub-buffer count,
which can be used to expand the buffer space.
The client can use these values (or ignore
them and supply its own) to allocate a new
buffer for the channel via the API function re-
lay_resize_channel(). This function can block,
so it should not be called with spinlocks held.
If called from user context, it directly allo-
cates the new buffer, which is available upon
return. If called from within interrupt context,
the allocation is put onto a work queue, and
the client is notified upon completion via an-
other call to the needs_resize() callback. Once
the new buffer is allocated, the client can call
relay_replace_buffer() to replace the channel’s
buffer. This function can be called from any
context. Clients call it when they can guarantee
the replacement does not interfere with other
channel activity, such as outstanding writes.
Reducing the buffer size follows a similar path.
When relayfs detects that the “almost-full”
condition has not existed for a period of time (1
minute by default), the needs_resize() callback
is invoked with the new suggested (smaller)
sub-buffer values. Buffer reduction is handled
by the client in a similar manner to buffer ex-
pansion. Clients can choose to ignore the de-
tails of buffer resizing. To do so, they specify
a non-zero value for the autoresize parameter
to relay_open() causing buffer re-allocation re-
quests to be placed onto a work queue. The re-
sizing strategy reflects empirical observations
that channel traffic tends to be bursty in nature
with sudden activity creating immediate short-
term need for increased buffer capacity, which
after a short period is no longer needed.

Config. avg time difference
per run

(in seconds)

1 756.1
2 766.7 +1.40%
3 771.3 +2.01%

Figure 5: LTT on relayfs test results.

5 Testing

To test the efficiency of relayfs, we ran LTT,
a very demanding client of relayfs, while per-
forming 10 kernel compiles under each of the
following conditions:

1. not tracing anything (baseline)

2. tracing everything, daemon not writing to
disk

3. tracing everything, daemon writing to
disk

Testing was performed on a 4-way 700MHz
Pentium III system. The tests generated large
amounts of data for relayfs to process. Approx-
imately 200 million events comprising about
2 gigabytes were generated during each 10-
compile run. As can be seen from the results in
Figure 5, the overhead of relayfs was at most
1.4 percent (a portion of this overhead is in
fact due to tracing code), demonstrating the ef-
ficiency of relayfs.

6 Example client subsystems

In this section we examine some practical uses
of relayfs. In particular, we discuss how re-
layfs can be used as an engine for printk and
LTT, how it can be used for driver debugging,
and how it could become a replacement for rv-
malloc and rvfree.

Linux Symposium 504

6.1 printk

We have developed a version of printk that re-
places the static printk buffer with a dynam-
ically resizeable relayfs channel. This solves
the lost printk problem by providing reliable
printk logging services. A dynamically resize-
able channel prevents lost printk messages in
normal usage, but it can also prevent the loss
of init-time printk messages. At init-time (be-
fore free_initmem()), the contents of the static
printk buffer are copied into the relayfs chan-
nel created for printk. The static printk buffer
used at init-time is marked as __initdata and
is subsequently discarded. A benefit of this
scheme is that the printk kernel buffer can be
made relatively large. In fact, it can be large
enough so that it does not overflow even when
copious boot messages are printed on a large
system. The relayfs version of printk modi-
fies the syslog(3) system call to read from the
printk channel instead of from the static ker-
nel buffer. Since /proc/kmsg also uses sys-
log(3) to retrieve data from the kernel buffer,
user-space programs that read from the printk
buffer do not need to be modified to use the
relayfs version of printk. The relayfs version
of printk adds commands to syslog(3) allowing
user-mode clients to manually resize the printk
channel; these of course must be coded for. See
the relayfs web page[1] for code and status.

6.2 Linux Trace Toolkit

LTT creates a separate bulk-delivery chan-
nel for each processor. The LTT ker-
nel client replicates the inner workings
of relay_write by using the relayfs low-
level API described briefly in Documenta-
tion/filesystems/relayfs.txt. More detail can be
found by examining trace() in kernel/trace.c
and the relay_write() implementation. It uses
the low-level API to obtain maximum perfor-
mance from relayfs, because system tracing is

one of the most demanding clients. We would
expect most subsystems to function acceptably
using the described APIs, but the low-level API
is available for those requiring maximum per-
formance. The low-level API allows a client
to write directly into the reserved slot in the
channel, rather than passing the address of a
buffer to relay_write for it to copy. By doing
so, LTT avoids the overhead of forcing trace()
to collate its fields into a separate buffer before
passing it to relay_write, and avoids putting the
event data on the stack (in reality this would not
be possible because some events can be 8K in
length). This is more convenient than having
trace() manage a staging buffer between poten-
tially multiple writers.

rchan = rchan_get(channel_handle);
if (rchan == NULL)

return -ENODEV;

/* this is a nop for lockless */
relay_lock_channel(rchan, flags);

reserved =
relay_reserve(rchan,

data_size, &time_stamp,
&time_delta, &reserve_code,
&interrupting);

if (reserved == NULL)
goto check_buffer_switch_signal;

bytes_written +=
relay_write_direct(reserved,

&event_id, sizeof(event_id));
bytes_written +=

relay_write_direct(reserved,
&data, sizeof(data));

relay_commit(rchan, reserved,
bytes_written, reserve_code,
interrupting);

relay_unlock_channel(rchan, flags);
rchan_put(rchan);

In the above code, the first few tasks are
bookkeeping tasks. These involve getting the
channel structure backing the channel handle,
and locking the channel (if applicable—for the

Linux Symposium 505

lockless scheme, this is effectively a no-op).
We then reserve a slot, and using the special
relay_write_direct() low-level method (essen-
tially a memcpy), write fields directly into the
channel buffer. When we are done writing the
fields, we indicate to the channel that the data
is ready by ’committing’ the slot, and then fin-
ish up with a couple more bookkeeping tasks.

See the relayfs web page[1] for code and status.

6.3 Driver debugging

It is straightforward to create and use a relayfs
channel for driver tracing/debugging. Open a
channel with the desired_attributes:

channel = relay_open("channel", ...);

and write to it from within your driver:

relay_write(channel, ...)

Then write a simple user-space program that
loops around read():

fd = open("/mnt/relay/channel", ...);

for(;;)
read(fd, ...);

6.4 rvmalloc/rvfree replacement

At last count there were 9 drivers with sepa-
rate implementations of rvmalloc/rvfree. There
have been discussions in the past of exporting
a single ’blessed’ instance of rvmalloc/rvfree,
but so far that has not happened. Since re-
layfs channels are based on rvmalloc/rvfree,
relayfs provides the equivalent of a public rv-
malloc/rvfree by providing clients a means to
create rvmalloc’ed buffers using degenerate
values to relay_open() e.g. a large frame buffer
could be allocated via relay_open with most
parameters 0/NULL:

int channel_id =
relay_open(

"framebuffer",

bufsize, /* size of sub-buffer */
1, /* one sub-buffer only */
0, /* no flags in this case */,
NULL, /* no callbacks */
0, /* no reserve */
0, /* no reserve */
0, /* no reserve */
0, /* no resize_min */
0, /* no resize_max */
0, /* don’t autoresize */
NULL); /* no special file ops */

The above opens a relay channel with a file-
name of /mnt/relay/framebuffer, assuming re-
layfs is mounted at /mnt/relay.

Information about the channel can be retrieved
using relay_info().

relay_info(channel_id, &rchan_info);

The data contained in rchan_info includes the
virtual address of the buffer allocated for the
channel via rvmalloc. This can be directly used
to write into the buffer memory from the kernel
side.

The file created for the channel can then subse-
quently be mmap()’ed into user space:

int framebuf_file =
open("/mnt/relay/framebuffer",

...);
char * framebuf = mmap(NULL, bufsize,

PROT_READ|PROT_WRITE, MAP_PRIVATE,
framebuf_file);

Note that if a channel is mmap()’ed, it can-
not be resized, but a client wishing to resize
the channel can unmap the file, resize it, then
remap it.

Finally, closing the channel frees the buffer via
rvfree():

relay_close(channel_id);

7 Conclusion

We have presented relayfs, an efficient and uni-
fied mechanism for transferring data from ker-
nel to user space. relayfs addresses the need

Linux Symposium 506

to have a reliable mechanism that can be used
across various kernel subsystems, without hav-
ing to replicate and separately maintain the
functionality for each subsystem. The lock-
less and per-processor techniques allow effi-
cient logging on multiprocessor systems, and
the channels provide flexibility to the clients.
Test results show that relayfs performs well
even under demanding workloads. We pre-
sented several example kernel subsystems that
use relayfs including printk, LTT, and driver
debugging. As relayfs becomes more widely
accepted, other kernel subsystems will be able
to use it, reducing code replication and improv-
ing reliability of the kernel subsystems.

References

[1] relayfs home page,http:
//www.opersys.com/relayfs .

[2] Robert W. Wisniewski and Luis F.
Stevens. A model and tools for supporting
parallel real-time applications in unix
environments. InProceedings of The 12th
IEEE Real-Time Technology and
Applications Symposium, pages 126–133,
Chicago Illinois, May 15-17 1995.

Linux IPv6 Networking
Past, Present, and Future

Hideaki Yoshifuji
The University of Tokyo

yoshfuji@linux-ipv6.org

Kazunori Miyazawa
Yokogawa Electric Corporation

miyazawa@linux-ipv6.org

Yuji Sekiya
The University of Tokyo

sekiya@linux-ipv6.org

Hiroshi Esaki
The University of Tokyo
hiroshi@wide.ad.jp

Jun Murai
Keio University

jun@wide.ad.jp

Abstract

In order to deploy high-quality IPv6 proto-
col stack, we, USAGI Project[13], have ana-
lyzed and addressed issues on Linux IPv6 im-
plementation. In this paper / in our talk in
OLS2003, we describe the analysis of Linux
IPv6 protocol stack, improvements and imple-
mentation of the IPv6 and IPsec protocol stack
and patches which are integrated into the main-
line kernel. We will explain the impacts of our
API improvements on network applications.

We want to discuss on missing pieces and di-
rection for future development.

As a demonstration we would like to provide
IPv6 network connectivity to the OLS2003
meeting venue.

1 Introduction

Establishment of IPv6, as a next-generation In-
ternet protocol to IPv4, started from the be-
ginning of the 1990’s. The aspect of IPv6 is
on providing the solution to the protocol scal-
ability, the greatest problem IPv4 facing as the
Internet growing larger. In detail, IPv6 differ
from IPv4 in following ways.

• 128bit address space.

• Forbidding of packet fragmentation in in-
termediate routers.

• Flexible feature extension using extension
headers.

• Supporting security features by default.

• Supporting Plug & Play features by de-
fault.

Currently, IPv6 is at the final phase of standard-
ization. Fundamental specifications are almost
fixed and commercial products with IPv6 sup-
port are being deployed in the market. Inter-
national leased lines for IPv6 are out as well.
IPv6 has expanded the existing Internet by pro-
viding solutions to protocol scalability and be-
ginning to grow as a standard for connecting
everything, not just existing computers.

2 The Dawn of Linux IPv6 Stack

Linux IPv6 implementation was originally de-
veloped by Pedro Roque and integrated into
mainline kernel at the end of 1996 in early 2.1
days and this was the one of the earliest imple-
mentation of IPv6 stack in the world.

Linux Symposium 508

In 1998, Linux IPv6 Users JP, which is a group
of Linux IPv6 users in Japan, examined the sta-
tus of IPv6 implementation in Linux and rec-
ognized the several grave issues1.

• lack of scope in socket API; for example
Linux does not havesin6_scope_id
member insockaddr_in6{} .

• So many bugs (Table 1), found by the
TAHI [11] IPv6 Conformance Test Suite,
especially in Neighbor Discovery and
Stateless Address Auto-configuration.

• "default routes" are ignored on routers

• many missing features such as IPsec, Mo-
bile IP.

These were because the stack had not been
well-maintained / developed since 2.1 because
there were not so widely used by Linux hack-
ers. Thus, there had been few new features.
Implementation had not followed the specifica-
tion even the spec had been changed, and then,
conformity to Specification became very low.

In 2.3 days, they, the Linux IPv6 Users JP,
developedsin6_scope_id support. Their
code was integrated into mainline kernel.
There, however, were very few change in 2.3
days other than this.

Considering above circumstances, USAGI
Project was lunched in October, 2000. US-
AGI Project is a project which aims to pro-
vide improved IPv6 stack on Linux; It seems to
be required (almost) full-time task-force which
commits Linux IPv6 development. There are
similar organization called KAME [6], which
provides IPv6 stack on BSD Operating sys-
tems such as FreeBSD, NetBSD, OpenBSD,
and BSD/OS. However, KAME Project does
not target their development on Linux. It is

1We will discuss them later.

important to provide high-quality IPv6 stack
on Linux, which is one of the most popu-
lar free open-source operating systems in the
world, and widely used in embedded systems,
for IPv6 to propagate.

Table 1: Summary of TAHI Conformance Test
(linux-2.2.15, %)

Test Series Pass Warn Fail

Spec. 94 6 0
ICMPv6 100 0 0

Neighbor Discovery 34 0 66
Autoconf 4 0 96
PMTU 50 0 50

IPv6/IPv4 Tunnel 100 0 0
Robustness 100 0 0

3 USAGI Challenges in Linux IPv6
Stack

Since USAGI Project started, we have contin-
ued analyzing issues we faced. In this section,
we describes issues we found and our chal-
lenges to solve them.

3.1 ND and Addrconf

Neighbor Discovery (ND [8]) and Stateless
Address Auto-configuration (Addrconf, [12])
are ones of the core features of IPv6. They take
very important role to keep stable communica-
tion. However, the results of the Conformance
Tests of Linux IPv6 stack were bad.

We’ve tried to fix the problems in the following
way.

• Reinforcing checking illegal ND Mes-
sages

• Improving control times for ND state tran-
sition and address validation.

Linux Symposium 509

���������
	���

���������
	���

���������
	���

���������
	���

����� ���������

��� ��!#"
���������
	���

���������
	���

���������
	���

���������
	���

����� ���������

��� ��!#"

����� ���	��
�

��������������

��������������

��������������

��������������

��� �"!$#&%

��� �"!$#('

��� �"!$#*)

��� �"!$#(+

����� ���	��
�

��������������

��������������

��������������

��������������

��� �"!$#&%

��� �"!$#('

��� �"!$#*)

��� �"!$#(+

Figure 1: NDP Table: Linux vs USAGI

• Fixing ND state transition

3.1.1 Improving Timers for ND

The state of a neighbor is changed by events
such as incoming Neighbor Advertisement
message and timer expiration. It is required to
manage timer accurately.

However, the existing Linux IPv6 protocol
stack checks reachability of neighbor nodes
with a single kernel timer(Figure 1 (Left)).
Consequently, reachability were checked in
constant intervals, regardless of the status for
each node.

Therefore, USAGI Project improved this ker-
nel timer to check each NDP entry indepen-
dently as shown in Figure 1 (Right). Thus, re-
source management for a neighbor including
mutual exception is simplified, and it is pos-
sible to enable and disable timer separately for
each NDP entry, and prevent check made to un-
necessary NDP entries. Moreover, it is possi-
ble to exchange messages correspondent to the
status of each NDP entry as defined in the NDP
specifications.

now

tstamp

tstamp

Figure 2: Dynamic Address Validation Timer

3.1.2 Improving Timers for Address Vali-
dation

As ND is, the state of an address is changed by
events such as incoming Router Advertisement
and time expiration. It is required to manage
timer accurately, especially for Privacy Exten-
sions [7].

However, the existing Linux IPv6 protocol
stack performs validity checks with a long-
term, constant, single kernel timer.

USAGI Project introduced new dynamic timer.
When the timer expires, the timeout function
visits each address for validation and deter-
mining the next timeout (Figure 2) with mini-
mum and maximum interval between timeouts.
Thus, accuracy of timer is improved. It is usual
that several addresses request next timeout at
(almost) the same time, introducing minimum
interval between operations aggregates them
and suppresses load of timer events.

Table 2 shows the results of these improve-
ments and other minor fixes. Neighbor Discov-
ery and Autoconf are significantly improved.

3.2 Routing Restructuring

3.2.1 Default Route Support on Routers

In routing table using radix tree[9], the top
of the tree is the host which possesses the
information regarding “default route.” How-
ever, as shown in Figure 3, Linux IPv6

Linux Symposium 510

Table 2: Summary of TAHI Conformance Test
(usagi24-s20020401, %)

Test Series Pass Warn Fail

Spec. 100 0 0
ICMPv6 100 0 0

Neighbor Discovery 79 5 15
Autoconf 98 2 0
PMTU 50 0 50

IPv6/IPv4 Tunnel 100 0 0
Robustness 100 0 0

���������
	�����

����������	����� ���������
	�����

����������� �"!

#�$ �����%	���� #&$ �'�(�%	����

�)+*,�'��	�-�./.0�1�2	 $/#43
�5��62798/8;:�<=798>:@?A���48B����C�DE8 �6

���������
	��������������
	�����

����������	����� ���������
	�����

����������� �"!

#�$ �����%	���� #&$ �'�(�%	����

�)+*,�'��	�-�./.0�1�2	 $/#43
�5��62798/8;:�<=798>:@?A���48B����C�DE8 �6

Figure 3: Linux IPv6 Routing Table Structure

protocol stack has a radix tree with fixed
node information on top and it points to
ipv6_null_entry . Therefore, when de-
fault route is added, the information is attached
next to thert6_info{} structure which con-
tains ipv6_null_entry . This causes de-
fault route not to be referred.

In USAGI implementation, we replace the
ipv6_null_entry with the new entry
when adding a new routing entry on the top
level root of the tree (Figure 4). When
the last route is being deleted from the
the top level root of the tree, we re-insert
ipv6_null_entry . Thus, we can insert
and remove the “default route” entries properly
to/from the routing table.

3.3 Improvements on Router Selection

We pick one default router from the de-
fault router list and round-robin the de-

���������
	�����

���������������

��� ��� �!	"�#�

�$� �%� �&	'���

� (*)+�%�,	�-/.0.1���2	 �0�43

�&�65279808;:�</7 8;:>=*�?�48@�A��BDCE8 '5

�#�&�"���
	F���� �A�&�"����	G����

���������
	��������������
	�����

���������������

��� ��� �!	"�#�

�$� �%� �&	'���

� (*)+�%�,	�-/.0.1���2	 �0�43

�&�65279808;:�</7 8;:>=*�?�48@�A��BDCE8 '5

�#�&�"���
	F�����#�&�"���
	F���� �A�&�"����	G�����A�&�"����	G����

Figure 4: USAGI IPv6 Routing Table Structure

metrics
::/0

fib6_node

rt6_info

RTN_INFO

rt6_dflt_ptr

Figure 5: Default Routers in Linux

fault router list when it becomes unreach-
able. The default router is pointed by the
rt6_dflt_pointer , which is guarded by
rt6_dflt_lock , and default routers are
stored on the top level root node of the routing
tree (Figure 5). In this implementation, there
were several issues.

• rt6_dflt_pointer is reset when
routing is modified; this happens very of-
ten and routers are not equally selected.

• We did not regard the metrics; we could
not force using routes with smaller met-
rics (which is probably added manually.)

“Default Router Preferences, More-Specific
Routes, and Load Sharing” [1] improves the
ability of hosts to pick an appropriate router,
especially when the host is multi-homed and
the routers are on different links, and mandates
load-share between routers with same "prefer-
ences."

To implement this specification, we stores pref-
erence (2 bits) of routes into the flags of the

Linux Symposium 511

metrics
::/0

fib6_node

rt6_info

RTN_INFO

same metrics

Figure 6: New Method for Route Round-robin

routing informations instead of reflecting it to
the metrics; We would have to fix up routing
table when receiving RA.

We also make a new generic round-robin
code for the routes with same metrics
(Figure 6). We use this for all routes
and the rt6_dflt_pointer and
rt6_dflt_lock are eliminated. Now
we are free from above issues.

4 Linux IPv6 in 2.6

In this section, we describes key changes of
IPv6 networking code between 2.4 and 2.62

Then we try to describes how IPsec works.

4.1 Key Changes in 2.6.x

We have been developing IPv6 actively since
end of 2.3.x era. However, only several se-
lected changes were integrated into the main-
line tree. One reason was that we were obscure
and novice on kernel development.

After experiencing about two years of kernel
development, we started integrating our efforts
to the mainline kernel from the fall of 2002
more aggressively than before.

We have been being fixing several bugs such
as:

• Verify ND options properly

2Some changes will be appeared in 2.4.21 (or later
2.4.x series).

• Refine IPv6 Address Validation Timer

• Fixing source address of MLD messages

• Avoiding garbage sin6_scope_id for
MSG_ERRQUEUE message

In addition to these bug fixing, we’ve inte-
grated following new features:

IPsec for IPv6
This is based on IPsec for IPv4, developed
by David S. Miller et.al. See section 4.2.

Default route support on router
See section 3.2.1.

IPV6_V6ONLY support
See section 5.2.4.

ICMP6 rate limit support
Added rate-limit sysctl for ICMPv6 like
for ICMP.

Privacy Extensions [7]
Assign randomized interface identifier to
improve privacy.

AF-independent XFRM Infrastructure
Split up XFRM subsystem into af-
independent portion and af-specific por-
tion. Section 4.2.3.

Per-interface Statistics Infrastructure
Make a new infrastructure to provide per-
interface statistics information.

4.2 IPsec

IP security provides security functionality for
IP layer. An implementation of IPv4 IPsec by
FreeS/WAN is available for years, however, the
code was never merged into the mainline ker-
nel. In 2000, IABG Project provided IPv6 sup-
port patch for FreeS/WAN. It, however, was
“patched” and also unlikely to be merged into
the mainline kernel.

Linux Symposium 512

We redesigned the architecture for multi-
protocol, both IPv4 and IPv6, extensible IPsec.
In our design, IPv4 and IPv6 share the Security
Policy Database (SPD) and Security Associa-
tion Database (SAD). CryptoAPI and its vari-
ants are used for cryptographic, digesting and
compression/decompression algorithms.

4.2.1 Stackable Destination and XFRM

A new framework for processing IP packets
has been introduced into linux-2.5.x. It is
called “stackable destination” and XFRM.

Stackable destination is like a linked list of
dst{} , which is made temporally and cached.
We are able to insert anotherdst{} to orig-
inal dst{} and make a stack of thedst{}
structure. dst{} normally has a pointer
to xfrm_state{} , whose output provides
some functionality, i.e. transformation, for the
packet.

XFRM stands for transformer.
xfrm_policy{} and xfrm_state{}
represent IPsec policy and IPsec SA respec-
tively. xfrm_state{} is associated with
xfrm_policy{} by xfrm_tmpl{} . SPD
consists ofxfrm_policy{} . SAD also
consist ofxfrm_state{} .

4.2.2 Packet Processing

The output process of IPsec fully uses this
architecture. The order of primal func-
tions arexfrm_lookup() , xfrm_tmpl_
resolve() , xfrm_bundle_create()
and dst_output() . xfrm_lookup()
looks up xfrm_policy{} in SPD after
routing resolution. At the moment the pa-
rameterdst{} in the stack points original
dst{} structure.xfrm_tmpl_resolve()
is called in xfrm_lookup() to resolve

xfrm_tmpl{} in xfrm_policy{} which
represents how the packet is processed and find
xfrm_state{} matched up withxfrm_
tmpl{} . This process is equivalent to looking
up IPsec SA or IPsec SA bundle matched with
IPsec policy. xfrm_bundle_create()
creates the stackable destination and IPsec SA
bundle if multiple SA are needed. These func-
tions are called at routing resolution.dst_
output() is called after building up the
packet. Each output routine specified by the
function pointer in thedst{} is called along
with the chain ofdst{} . This pointer points
e.g esp6_output() . The output function
is able to usexfrm_state{} from dst{}
pointer insk_buff{} .

Output Packet Processing

Lookup Routing Table

Find xfrm_policy as IPsec policy

Look up xfrm_state with comparing
with xfrm_tmpl in the policy

xfrm_policy xfrm_tmpl
xfrm_tmpl
xfrm_tmpl

dstsk_buff

xfrm_tmpl
xfrm_tmpl
xfrm_state

ip6_route_output

xfrm_lookup

xfrm_tmpl_resolv

xfrm_bunele_create
Connect xfrm_state with the dst and
create stackable destination

dstsk_buff

xfrm_statedst

dstoriginal dst

xfrm_state

Figure 7: IPsec output process

The input process for IPsec is more simple
than output. AH and ESP process routines
are registered toinet6_protos[] at ini-
tiation. The kernel parse a packet and call
the routines when protocol is AH or ESP.
To unified extension header processing, all
header types and handlers are registered in
inet6_protos[] like upper layer proto-
col. IPsec packet process is looking up
xfrm_state{} and process it. When it
succeeds, usedxfrm_state{} pointer keep
in sec_path{} in sk_buff{} which con-
tains the packet. After processing IPsec,
the kernel call xfrm_policy_check()
at entrance of upper layer process. In
xfrm_policy_check() the kernel match
up xfrm_tmpl{} in xfrm_policy{} and

Linux Symposium 513

Input Packet Processing

Comparing xfrm_tmpl in xfrm_policy
and xfrm_state used for header processing

xfrm6_rcv

ip6_input_finish

IP Layer Process

xfrm6_policy_check

xfrm_state looking up
Used xfrm_states are connect with skb

Call header processing functions registered
with ip_proto

xfrm_policy xfrm_tmpl
xfrm_tmpl
xfrm_tmpl

sec_pathsk_buff
xfrm_tmpl
xfrm_tmpl
xfrm_state

Compare

Figure 8: IPsec input process

xfrm_state{} kept insec_path{} .

4.2.3 AF Indenendent XFRM Infrastruc-
ture

Since core functionality of the XFRM engine is
common among address families, AF indepen-
dent XFRM infrastructure has been introduced.

Address family specific XFRM functions are
registered via address family information ta-
bles, e.g. xfrm_policy_afinfo{} and
xfrm_state_afinfo{} . Common vari-
ables are also passed via the tables.

4.2.4 Key And Policy Management Inter-
face

PF_KEYandnetlink(7) interface are pro-
vided as IPsec interfaces.PF_KEY provides
interface to maintain SAD and SPD.PF_KEY
protocol is defined in RFC2367 but it is not so
enough to maintain IPsec that implementation
of PF_KEY is ordinary extended. The exten-
sion is different each implementation. Linux-
2.5.xPF_KEYis compatible with KAME.

4.2.5 Test Results

On 24th April, 2003, Tom Lendacky reported
to netdev mailing list that Test results of Linux-
2.5 IPsec are very excellent(Table 3).

We have tried to fix the bugs in IPv6 IPsec frag-
mentation, and they should be fixed for now.

Test Series Pass Warn Fail

ipsec 95 2 3
ipsec4 98 2 0

ipsec4-udp 96 4 0

Table 3: Summary of TAHI Conformance Test
(linux-2.5.58, %)

5 Modern Programming Style for
Network Applications

It is requested that applications should support
both IPv4 and IPv6. In this section, we try
to describe modern programming style for net-
work applications.

5.1 Socket API and Protocol Independency

The Socket API is the framework of program-
ming for communication including networking
via the Internet. It was designed to be proto-
col independent. Communication is abstracted
by the socket descriptor, and endpoint informa-
tion, which is protocol dependent, is passed via
opaque pointers to the generic socket address
structuresockaddr .

IPv6 networking is also supported in
this framework. New address family
AF_INET6 and IPv6 socket address structure
sockaddr_in6 are defined.

Linux Symposium 514

5.2 Protocol Independent Programming

The framework of the Socket API between the
kernel and the user space is basically proto-
col independent. However, since the socket
address structure and the naming space of
the protocol depend on the protocol (or ad-
dress), it was protocol dependent to lookup the
name/address and to setup the protocol specific
socket address structure. This prevented appli-
cation from the protocol independency.

In RFC2133[3], new two name-lookup func-
tions are defined: getaddrinfo() and
getnameinfo() . It abstracts translation be-
tween name/service representation and socket
address structure.

5.2.1 getaddrinfo(3)

getaddrinfo(3) [2] is the protocol inde-
pendent function for forward lookup (name
to address). This function looks up the
“node” and “service” on condition that is
specified by the “hints.” It returns dynami-
cally allocated linked list ofaddrinfo{} .
Eachaddrinfo{} includes information for
socket(2) , connect(2) (orbind(2) , if
AI_PASSIVE flag is specified in hints).

Thus, application is not required to know the
details of socket address structure, now. A
client application walks though the list trying
to create a socket and trying to connecting re-
mote host until one of the attempt succeeds.
Likewise, a server application walks through
the list trying to create a socket and trying to
binding local address.

5.2.2 getnameinfo(3)

getnameinfo(3) [2] is the protocol inde-
pendent function for reverse lookup (address

to name). This function takes socket address
structure and looks up node name and ser-
vice name on condition specified by the flags.
By using this function, application is not re-
quired to know the details of each socket ad-
dress structure for extracting addresses and / or
port number.

For example, to extract numeric ser-
vice number from the socket address
structure, use getnameinfo(3) with
NI_NUMERICSERV, and convert the resulting
service number usingatoul(3) .

Sample programs usinggetaddrinfo(3)
andgetnameinfo(3) are provided in Ap-
pendix.

5.2.3 getifaddrs(3)

Other issue to support IPv6 in application how
we know addresses on the node on which it
is running. SIOCGIFADDR is used for IPv4,
however,ifreq{} is not enough to store IPv6
socket address structure. There might be pos-
sibility to introduce newioctl(2) to man-
age lager addresses, however, it is nasty to get
information via buffer of fixed length. Thus,
getifaddrs(3) was invented.3 This func-
tion grubs network address information includ-
ing netmask etc. on the node. MAC, IPv4 and
IPv6 are supported for now. Application walks
through the linked list returned from this func-
tion, looking for appropriate information using
the family, flags etc.

Sample programs usinggetifaddrs(3) is
provided in Appendix.

3BSDI’s invention; this is not standardized yet.

Linux Symposium 515

5.2.4 IPV6_V6ONLY Socket Option

IPv6 sockets may be used for both IPv4 and
IPv6 communications. IPv4-mapped IPv6 ad-
dress is defined [5] to enable IPv6 application
IPv4 address of an IPv4 node is represented as
an IPv4-mapped IPv6 address in such applica-
tions.

Linux supports this feature and port space of
TCP (or UDP) has been completely shared be-
tween IPv4 and IPv64.

However, some applications may want to re-
strict their use of an IPv6 socket to IPv6
communication only. For these applications,
IPV6_V6ONLY is defined in RFC3493 [2].

In 2.6, IPV6_V6ONLY socket option is sup-
ported. In this implementation, the ‘IPv4-
mapped” feature is enabled by default as be-
fore, and as spec says. If theIPV6_V6ONLY
socket option is set to the IPv6 socket, the
socket will not care about IPv4 address space
at all.

As mentioned before, spec says this “IPv4-
mapped” feature is enable by default. How-
ever, there are OSes, such as NetBSD, which
do not enable that feature by default, or even
which do not support that feature at all. These
OSes are not RFC compliant, but, unfortu-
nately, it is the real. So, application would need
to take care of this situation. For example:

• Try to setup both IPv6 and IPv4 sockets.

• Set IPV6_V6ONLY socket option to the
IPv6 socket, prior to performbind(2) .

• It is not fatal to failed to set
IPV6_V6ONLY socket option.

4In some OSes, such as FreeBSD 4.x, IPv4 socket
can override IPv6 socket of the same port. We believe
that this fashion is vulnerable to "binding closer" type
attacks.

• Don’t take it fatal unless all socket cre-
ation resulted in error.

The sample server provided in the Appendix is
written in this manner.

6 Future Plans

Finally, we list our future plans. Here’s our fu-
ture plan, especially for this year.

• stabilizing IPv6 IPsec

• introducing IP Mobility to mainline

• completing porting ND fix to (pre-)linux-
2.6 and submitting patches to mainline

• introducing generic IPv4,6 tunnel inter-
face

• examining and stabilizing IPv6 Netfilter

• completing Prefix Delegation

• improving API support [2, 10]

• implementing IPv6 Multicast Routing

As of writing this paper, we’re working hard
stabilizing IPv6 and IPv6 IPsec stack in (pre-
)linux-2.6.

We’re also discussing how the Mobile IP
should be implemented with the maintainers
and HUT [4] people.

XFRM is flexible and promising framework in
netwroking. We are able to and going to imple-
ment Mobile IP, generic tunnel etc.

We have been waiting for new documents for
the APIs. It has taken long time to publish
the new documents for APIs, however, new
version are (about to) available. We’ll follow
them.

Linux Symposium 516

Multicast routing is probably the biggest miss-
ing piece; we will try to implement this, too.

References

[1] R. Drave and R. Hinden. Default router
preferences, more-specific routes, and
load sharing. Work in Progress, June
2002.

[2] R. Gilligan, S. Thomson, J. Bound,
J. McCann, and W. Stevens. Basic
Socket Interface Extensions for IPv6.
RFC3493, March 2003.

[3] R. Gilligan, S. Thomson, J. Bound, and
W. Stevens. Basic Socket Interface
Extensions for IPv6. RFC2133, April
1997.

[4] GO Project. MIPL Mobile IPv6 for
Linux. http://www.mipl.mediapoli.com/.

[5] R. Hinden and S. Deering. Ip version 6
addressing architecture. RFC2373, July
1998.

[6] KAME Project. KAME Project Web
Page. http://www.kame.net.

[7] T. Narten and R. Draves. Privacy
extensions for stateless address
autoconfiguration in ipv6. RFC3041,
January 2001.

[8] T. Narten, E. Nordmark, and
W. Simpson. Neighbor Discovery for IP
Version 6 (IPv6). RFC2461, December
1998.

[9] Keith Sklower. A tree-based packet
routing table for berkeley unix. In
USENIX Winter, pages 93–104, 1991.

[10] W. Stevens, M. Thomas, E. Nordmark,
and T. Jinmei. Advanced sockets api for
ipv6. Work in Progress, March 2003.

[11] TAHI Project. Test and Verification for
IPv6. http://www.tahi.org.

[12] S. Thomson and T. Narten. IPv6
Stateless Address Autoconfiguration.
RFC2462, December 1998.

[13] USAGI Project. USAGI Project Web
Page. http://www.linux-ipv6.org.

Linux Symposium 517

7 Appendix: Sample Application Written in Modern Manner

7.1 Client

/*
* Sample Modern Client
*
* Usage:
* % ./modern-client host.example.com daytime
*
* $Id: modern-client.c,v 1.1 2003/05/13 20:06:58 yoshfuji Exp $
*/

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>

int main(int argc, char **argv) {
char *host, *port;
struct addrinfo hints, *ai0, *ai;
int s;
int gai;

/* check arguments */
if (argc != 2 && argc != 3) {

fprintf(stderr, "Usage: %s [host] portnum\n", argv[0]);
exit(1);

}

if (argc == 3) {
host = argv[1];
port = argv[2];

} else {
host = NULL; /* loopback address */
port = argv[1];

}

/* look-up name */
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
hints.ai_flags = 0;

gai = getaddrinfo(host, port, &hints, &ai0);
if (gai) {

fprintf(stderr,
"getaddrinfo(): %s port %s: %s\n",
host, port, gai_strerror(gai));

Linux Symposium 518

exit(1);
}

/* loop connecting remote entity */
s = -1;
for (ai = ai0; ai; ai = ai->ai_next) {

/* create a socket */
s = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);
if (s == -1)

continue;

/* connect */
if (connect(s, ai->ai_addr, ai->ai_addrlen) == 0)

break;

close(s);
s = -1;

}

/* free address information */
freeaddrinfo(ai0);

/* check if we have failed */
if (s == -1) {

fprintf(stderr, "Cannot connect to %s port %s\n",
host != NULL ? host : "(null)",
port);

exit(1);
}

/* process loop */
while (1) {

ssize_t cc;
char buf[1024];

/* read from remote host */
cc = read(s, buf, sizeof(buf));
if (cc == -1) {

perror("read");
close(s);
exit(1);

} else if (cc == 0) {
break;

}

/* output response */
if (write(STDOUT_FILENO, buf, cc) == -1) {

perror("write");
close(s);
exit(1);

}
}

close(s);

Linux Symposium 519

exit(0);
}

7.2 Server

/*
* Sample Modern Server
*
* Usage:
* % ./modern-server :: 12345
*
* $Id: modern-server.tex,v 1.1 2003/05/15 03:54:13 yoshfuji Exp $
*/

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <stdlib.h>
#include <sys/select.h>

#ifndef MAX_SOCKNUM
define MAX_SOCKNUM FD_SETSIZE
#endif

static const char *message = "Hello, world!\n";

int main(int argc, char **argv) {
char *host, *port;
struct addrinfo hints, *ai0, *ai;
int gai;
int socknum = 0, *socklist = NULL;
int maxfd = -1;
fd_set fds_init, fds;
int i;

/* check arguments */
if (argc != 2 && argc != 3) {

fprintf(stderr, "Usage: %s [host] portnum\n", argv[0]);
exit(1);

}

if (argc == 3) {
host = argv[1];
port = argv[2];

} else {
host = NULL; /* unspecified address */
port = argv[1];

}

Linux Symposium 520

/* resolve address */
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
hints.ai_flags = AI_PASSIVE;

gai = getaddrinfo(host, port, &hints, &ai0);
if (gai) {

fprintf(stderr,
"getaddrinfo(): %s port %s: %s\n",
host != NULL ? host : "(null)",
port,
gai_strerror(gai));

exit(1);
}

/* initialize fd_set for select(2) */
FD_ZERO(&fds_init);

/* loop waiting for connection */
for (ai = ai0; ai; ai = ai->ai_next) {

int s;
int *newlist;

#ifdef IPV6_V6ONLY
int on = 1;

#endif

/* create a socket */
s = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);
if (s == -1)

continue;

#ifdef IPV6_V6ONLY
if (ai->ai_family == AF_INET6 &&

setsockopt(s,
IPPROTO_IPV6, IPV6_V6ONLY,
&on, sizeof(on)) == -1) {

perror("setsockopt(IPV6_V6ONLY)");
/*

* Some systems do not support his option;
* This error should no be fatal.
*/

}
#endif

/* listen */
if (bind(s, ai->ai_addr, ai->ai_addrlen) == -1) {

close(s);
continue;

}

if (listen(s, 5) == -1) {
close(s);

Linux Symposium 521

continue;
}

if (s >= FD_SETSIZE || socknum >= MAX_SOCKNUM) {
close(s);
fprintf(stderr, "too many file/socket descriptors\n");
break;

}

/* re-allocate list of socket */
newlist = realloc(socklist, sizeof(int)*(socknum+1));
if (newlist == NULL) {

perror("realloc");
close(s);
break; /* XXX: terminate immidiately? */

}

socklist = newlist;
socklist[socknum++] = s;

/* set fd_set */
FD_SET(s, &fds_init);

if (maxfd < s)
maxfd = s;

}

/* free address information */
freeaddrinfo(ai0);

/* check if we have failed */
if (socknum == 0) {

fprintf(stderr,
"Cannot allocate any listen sockets on %s port %s\n",
host != NULL ? host : "(null)",
port);

exit(1);
}

while (1) {
int i;

fds = fds_init;

if (select(maxfd + 1, &fds, NULL, NULL, NULL) == -1) {
perror("select");
continue;

}

for (i = 0; i < socknum; i++) {
int sock = socklist[i];

/* look up listener.
* XXX: this is not fair between listers

Linux Symposium 522

*/
if (FD_ISSET(sock, &fds)) {

int newfd;
struct sockaddr_storage ss;
socklen_t sslen;
ssize_t cc;
char hostbuf[NI_MAXHOST];
int gni;

sslen = sizeof(ss);
newfd = accept(sock, (struct sockaddr *)&ss, &sslen);
if (newfd == -1) {

perror("accept");
continue;

}

gni = getnameinfo((struct sockaddr *)&ss, sslen,
hostbuf, sizeof(hostbuf),
NULL, 0,
NI_NUMERICHOST);

if (gni)
strcpy(hostbuf, "???"); /*FIXME!*/

printf("accept from %s\n", hostbuf);

cc = write(newfd, message, strlen(message));
if (cc == -1) {

perror("write");
} else if (cc != strlen(message)) {

fprintf(stderr,
"write returned %d "
"while %d is expected.\n",
cc, strlen(message));

}

close(newfd);
}

}
}

/* we should not reache here */
for (i = 0; i < socknum; i++)

close(socklist[i]);
free(socklist);

exit(0);
}

7.3 getifaddrs(3)

#include <stdlib.h>
#include <ifaddrs.h>

Linux Symposium 523

int main() {
struct ifaddrs *ifa0, *ifa;
int ret;

ret = getifaddrs(&ifa0);
if (ret) {

perror("getifaddrs()");
exit(1);

}

for (ifa = ifa0; ifa; ifa = ifa->ifa_next) {
if (!ifa->ifa_addr)

continue;
switch(ifa->ifa_addr->sa_family) {

case AF_INET:
/* ifa->ifa_addr points sockaddr_in{} */
/* ... */
break;

case AF_INET6:
/* ifa->ifa_addr points sockaddr_in6{} */
/* ... */
break;

#if defined(AF_PACKET)
case AF_PACKET:

/* ifa->ifa_addr points sockaddr_ll{} */
/* ... */
break;

#endif
#if defined(AF_LINK)

case AF_LINK:
/* ifa->ifa_addr points sockaddr_dl{} */
/* ... */
break;

#endif
default:

/* not supported */
;

}
}
freeifaddrs(ifa0);
exit(0);

}

Fault Injection Test Harness
a tool for validating driver robustness

Louis Zhuang
Intel Corp.

louis.zhuang@intel.com,

louis.zhuang@acm.org

Stanley Wang
Intel Corp.

stanley.wang@intel.com

Kevin Gao
Intel Corp.

kevin.gao@intel.com

Abstract

FITH (Fault Injection Test Harness) is a tool
for validating driver robustness. Without
changing existing code, it can intercept arbi-
trary MMIO/PIO access and IRQ handler in
driver.

Firstly I’ll first list the requirements and design
for Fault Injection. Next, we discuss a cou-
ple of new generally useful implementation in
FITH

1. KMMIO - the ability to dynamically hook
into arbitrary MMIO operations.

2. KIRQ - the ability to hook into an arbi-
trary IRQ handler,

Then I’ll demonstrate how the FITH can help
developers to trace and identify tricky issues
in their driver. Performance benchmark is also
provided to show our efforts in minimizing the
impact to system performance. At last, I’ll
elaborate on current and future efforts and con-
clude.

1 Introduction

High-availability (HA) systems must respond
gracefully to fault conditions and remain oper-
ational during unexpected software and hard-
ware failures. Each layer of the software stack
of a HA system must be fault tolerant, produc-
ing acceptable output or results when encoun-
tering system, software or hardware faults, in-
cluding faults that theoretically should not oc-
cur. An empirical study [2] shows that 60-
70% of kernel space defects can be attributed
to device driver software. Some defect con-
ditions (such as hardware failure, system re-
source shortages, and so forth) seldom hap-
pen, however, it is difficult to simulate and
reproduce without special assistant hardware,
such as an In-Circuit Emulator. In these situa-
tions, it is difficult to predict what would hap-
pen should such a fault occur at some time in
the future. Consequently, device drivers that
are highly available or hardened are designed
to minimize the impact of failures to a system’s
overall functionality.

Developing hardened drivers requires employ-
ing fault avoidance software development tech-
niques early in the development phase. To

Linux Symposium 525

eliminate faults during development and con-
firm a driver’s level of hardening, a developer
can test a device driver by injecting or simulat-
ing fault events or conditions. The focus of this
paper is on the injection or simulation of hard-
ware faults. Injection of software faults will be
considered in future version.

FITH simulates hardware-induced software er-
rors without modifying the original driver. It
offers flexible customization of hardware fault
simulation as well as provides command-line
tool for facilitating test development. FITH can
also provide the ability to log the route of an in-
jected fault, thereby enabling driver developers
to diagnose the tested driver.

2 Requirements

This section describes some requirements for
FITH; we derived as part of the development.

The only behavioral requirement is that FITH
should not impact functionality of the tested
driver. The tested driver should work as if there
is no FITH at all.

There are various functionality requirements
that need to be considered. Most center around
the interception of resources access. FITH
needs to have capability to intercept accesses
for MMIO, IO, IRQ and PCI configuration.
The other major requirement is about handling
after interception. FITH needs to have capa-
bility to support the complex and customized
post-handling, such as tracing hardware status,
emulating fake hardware register, injecting er-
ror data and logging.

With respect to performance, there are basi-
cally two overriding goals:

• minimize the impact to system perfor-
mance when the tested driver doesn’t en-
able FITH.

• minimize the number of instructions in
critical kernel path, such as exception and
interrupt part.

3 Architecture

FITH consists of four components: intercep-
tors, faultsets, configuration tools, and a fault
injection manager. The configuration tools
provide the command-line utilities needed to
customize a faultset for a driver. Three in-
terceptors will be implemented to catch IO,
MMIO and IRQ access. When a driver tries to
access a hardware resource, the IO interceptor
captures this access and asks the fault injection
manager if there is a corresponding item in the
faultset. If there is, the fault injection manager
determines how to inject the appropriate fault
according to the associated properties defined
in the faultset. The fault injection manager then
returns this information to the interceptor, so
the interceptor injects the actual fault into the
hardware.

IRQ fault injection is somewhat different from
the other types of fault injection. Hardware
triggers the IRQ, and a kernel IRQ interrupt
handler delivers this event to the IRQ inter-
ceptor. The IRQ interceptor then checks the
faultset to determine whether a specific fault
is available to inject into the event. 1 illus-
trates how the interceptor interacts with the
other subsystems.

The interceptor sits between the hardware and
the device driver and modifies information
based on certain conditions in the driver’s
namespace. An interceptor for one driver does
not affect the interceptor for others. As a mat-
ter of fact, the hardware that the driver observes
is the hardware that our interceptor wraps.

Linux Symposium 526

Figure 1: Architecture of FITH

4 KMMIO—Interceptor of MMIO
access

One of those requirementsof FITH is the abil-
ity to hook to a specific memory mapped IO re-
gion before the user of the region gets access.
A fault injection test case may need to just note
when a given region is being read/written, take
some action before the caller returns from the
read or write operation, or change the value
that is being read or written.

4.1 Approaches for capturing MMIO accesses

There are several hardware/software ap-
proaches for capaturing MMIO accesses.

• Overriding MMIO functions.

Memory mapped IO access can be cap-
tured by overriding MMIO functions,
such as readb() and writeb() .
The major advantage is this method is
platform-independent because all Linux
platforms support these MMIO functions.
Disadvantages are

1. Any driver that accesses MMIO
without using the standard MMIO

functions cannot be intercepted.

2. A special FITH header file needs to
be added to the driver code, and the
driver needs to be recompiled.

3. There are some differences between
the “released driver” and the “driver
with FITH.” The driver that is vali-
dated and verified is the driver with
FITH rather than the released driver.

• Setting Watch Points.

IA-32 architecture provides extensive de-
bugging facilities for debugging code and
monitoring code execution. These facili-
ties can also be used to intercept memory
access. The major advantages are

1. The driver does not need to be re-
compiled.

2. There have been a good patch to sup-
port it.[3]

On the other hand, there are several disad-
vantages:

1. In IA32 architecture, this is a trap
type of exception, which means that
the processor generates the excep-
tion after the IO instruction has been
executed, so this method cannot do
fault injection in write operation.

2. There are only four watch points that
can be used. This may be not enough
in a complex environment.

• Trapping MMIO access by using Page-
Fault Exceptions.

Like normal memory, MMIO is handled
by a page-protection mechanism. There-
fore, MMIO access can be intercepted by
capturing page faults. The method clears
the PE (PRESENT) bit of the PTE (Page
Table Entry) of the MMIO address so that

Linux Symposium 527

the processor triggers a page-fault excep-
tion when MMIO is accessed. The major
advantages are

1. In IA32 architecture, this is a fault
type of exception, which means that
the processor generates an exception
before MMIO access is executed, so
this method can do fault injection in
write operation.

2. The driver does not need to be re-
compiled. There is a disadvan-
tage in the method—because the
unit of intercepted MMIO is the size
of a page (4k in IA-32), an adja-
cent MMIO access may unnecessar-
ily trigger an exception, system per-
formance might be impacted.

Based on FITH requirements and our analysis
above, we implemented a page-fault method to
capture MMIO.

4.2 Implementation

We also followed the same usage style like
what kprobes provides, with aregister_
kmmio_probe() function for adding
the probe, and aunregister_kmmio_
probe() function for removing the probe.
The register_kmmio_probe adds the
probe into internal list and set the page
which the probe is on as UNPRESENT. After
register_kmmio_probe , any access on
the page will trigger a page-fault exception
and fall into KMMIO core.

To get the control in page-fault exception,
we need some tweaks tofaults.c . KM-
MIO needs to add an additional path here.
When the page-fault falls into KMMIO, KM-
MIO looks up the fault address in probe hash
list. If the fault address is one of probes, the
pre_handler of the probe is called.

diff −Nru a/arch/i386/mm/fault.c

b/arch/i386/mm/fault.c

−−− a/arch/i386/mm/fault.c Thu May 15

15:52:08 2003

+++ b/arch/i386/mm/fault.c Thu May 15 15:52:08

2003

@@−80,6 +81,9 @@

/ ∗ get the address ∗/

__asm__("movl %%cr2,%0":"=r"

(address));

+ if (is_kmmio_active() && kmmio_handler(regs,

address))

+ return;

+

/ ∗ It’s safe to allow irq’s after cr2 has been saved ∗/

if (regs −>eflags & X86_EFLAGS_IF)

local_irq_enable();

Figure 2: Patch against fault.c

Then, KMMIO tries to recover normal exe-
cution. It sets the page as PRESENT. But
KMMIO needs to do more than this. Be-
cause the probe should be re-enabled after cur-
rent instruction which trigger the page-fault
exception, KMMIO enables single-step before
exiting page-fault exception. Similar to the
change tofaults.c , KMMIO needs to patch
traps.c to get the control when the single-
step exception is triggered.

After the instruction, which triggers the page-
fault execption, is executed, a single-step ex-
ecption is triggered and falls into KMMIO
again. If there is a probe on the fault ad-
dress, KMMIO calls thepost_handler of
the probe. Then KMMIO sets the page as UN-
PRESENT again to enable the probe on the
page.

Linux Symposium 528

diff −Nru a/arch/i386/kernel/traps.c

b/arch/i386/kernel/traps.c

−−− a/arch/i386/kernel/traps.c Thu May 15

15:52:08 2003

+++ b/arch/i386/kernel/traps.c Thu May 15

15:52:08 2003

@@−524,6 +525,9 @@

__asm__ __volatile__("movl %%db6,%0" : "=r"

(condition));

+ if (post_kmmio_handler(condition, regs))

+ return;

+

/ ∗ It’s safe to allow irq’s after DR6 has been saved ∗/

if (regs −>eflags & X86_EFLAGS_IF)

local_irq_enable();

Figure 3: Patch against traps.c

5 KIRQ—Interceptor of IRQ han-
dler

Placing hooks into IRQ handler of devices is
a straight task. KIRQ stores IRQ handler of
the device intostruct kirq and modifies
the IRQ chain in kernel to replace IRQ han-
dler of the device with KIRQ’s handler. When
the device’s interrupt falls into KIRQ, it calls
handler of the hook. Based on return value
of handler of hook, KIRQ calls the original
handler of the device in turn.

6 Example

The serial device driver in Linux kernel was
used in our fault injection trials. Four steps
were involved in developing the fault injection
tests:

1. Identify resources that needs to be fault in-
jected.

2. Prepare the faultset data source.

3. Set up the test environment.

4. Run the workload and analyze the results.

6.1 Preparing the Faultset Data Source

FITH supports faultset scripts and action code
segments. They can be used for customizing
For example, a transmission error fault would
modify data when the driver received the hard-
ware status from the register. The faultset de-
scription looks like the following:

<?xml version="1.0" encoding="UTF-8" ? >

<fsml

xmlns=

"http://fault-injection.sourceforge.net/FSML/" >

<trigger id="2"

type="r"

len="1"

addr="0x3FD"

bitmask="0"

min="0"

max="0"

skip="0"

protection_mask="0"

hz="0" >

<action code −segment="cs_001" / >

</trigger >

</fsml >

Figure 4: Faultset description example

The corresponding code segment looked like
the following:

6.2 Setting Up the Test Environment

There are three steps:

1. load FITH kernel modules.

Linux Symposium 529

#include <fith/state_machine.h >

unsigned long pointer=0;

int inject_faults(struct

context ∗cur) {
// translate the bus address into linear address
line_addr = fith_bus2line(pointer);

// inject errors in data by going though
// the device special
// structure data
// ...

return 0;

};

/ ∗ cs_001 is called by trigger "001" in FSML
∗ script when IO port 0x3FD
∗ (Command Register) is written. ∗ /

int cs_001(struct state_machine ∗sm,

struct context ∗cur) {
unsigned long line_addr;

if (cur −>data==‚a‚) {
// check if it is ’a’ character
inject_faults(cur);

}
return 0;

};

Figure 5: Code segment example

2. set up the faultsets by Fault Injection
Command-Line (ficl) configuration tool.

3. load the serial driver.

6.3 Running the Workload and Analyzing the
Results

To validate the serial driver, a well-chosen
workload was run to stress the driver when it
accessed the device. FITH injected faults be-
tween the driver and device and logged these

operations. The fault-induced results and in-
jected faults were later analyzed.

7 System Performance Impact

In this section we assess the performance im-
pact of current implementation of FITH.

7.1 LMbench

LMbench is a general OS benchmark designed
to measure all sides of OS from application
view. This is useful for generating a set of
apples to apples systems comparisons between
pure Linux kernel and FITH-enabled Linux
kernel.

All experiments were performed on a dual
Pentium-III 933, 512K L2 Cache, 512 MB
RAM system. The “52-pure” data was ob-
tained by running on a vanilla 2.5.52 linux ker-
nel. The “cs@1901” data was obtained by run-
ning on a patched 2.5.52 Linux kernel (which
contained KMMIO KIRQ etc. patches). There
are no active probes in “cs@1901” experiment.

Because FITH patches Linux kernel in page-
fault exception path, the potential impacts
should be in memory management subsystem.
Current FITH implementation, however, has
minimized the impact when there are no ac-
tive probes. Differences between two experi-
ments are so small that they are buried by test-
ing noise.

8 Acknowledgements

We specially thanks following persons for their
kind help and feedback:

David Edwards (for initial prototype and de-
sign), Frank Wang and Elton Yang (for project
plan and support), Fleming Feng (for feedback

Linux Symposium 530

LMB ENCH 2.0 SUMMARY

Basic system parameters
Host OS Description Mhz
52-pure Linux 2.5.52 i686-pc-linux-gnu 932
cs@1901 Linux 2.5.52 i686-pc-linux-gnu 932

Processor, Processes - times in microseconds - smaller is better
Host OS Mhz null null open selct sig sig fork exec sh

call I/O stat clos TCP inst hndl proc proc proc
52-pure Linux 2.5.52 932 0.39 0.68 22.9 24.4 27.2 1.09 4.47 210. 996. 5050
cs@1901 Linux 2.5.52 932 0.37 0.68 22.7 24.0 31.5 1.06 4.51 221. 1052. 5202

Local Communication latencies in microseconds - smaller is better
Host OS 2p/0K Pipe AF UDP RPC/ TCP RPC/ TCP

ctxsw UNIX UDP TCP conn
52-pure Linux 2.5.52 7.109 33.4 41.7 61.6 81.1 110.2 110.
cs@1901 Linux 2.5.52 7.137 15.2 41.8 61.1 81.1 109.8 134.

File & VM system latencies in microseconds - smaller is better
Host OS 0K File 10K File Mmap Prot Page

Create Delete Create Delete Latency Fault Fault
52-pure Linux 2.5.52 92.5 46.0 225.6 75.3 2053.0 0.885 2.00000
cs@1901 Linux 2.5.52 93.4 46.5 229.2 77.1 2063.0 0.765 2.00000

Local Communication bandwidths in MB/s - bigger is better
Host OS Pipe AF TCP File Mmap Bcopy Bcopy Mem Mem

UNIX reread reread (libc) (hand) read write
52-pure Linux 2.5.52 40.7
cs@1901 Linux 2.5.52 41.0

Figure 6: LM Benchmark

and requirement), Rusty Lynch (for sysfs inter-
face in FITH).

References

[1] David A. Edwards, “An Approach to
Injecting Faults into Hardened Software,”
Proceedings of the Ottawa Linux
Symposium,
http://wwww.linuxsymposium.org
/2002

[2] Andy Chou, Junfeng Yang, Benjamin Chelf
etc., “An Empirical Study of Operating
System Errors,” 2001,
http://www.stanford.edu
/˜engler/metrics-sosp-01.ps

[3] Vamsi Krishna, Rusty Russell etc., “Kernel
Probes for Linux,”

http://www-124.ibm.com/linux
/projects/kprobes/

